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ABSTRACT

The path-integral approximation of quantum cosmology is applied to a
particular homogeneous and anisotropic model (Bianchi type-IX). The
dynamical equations governing the system are examined for different
equivalent sets of dynamical variables and time parameters. The
imposition of specific boundary conditions, when the Universe shrinks to
zero volume, changes drastically the whole solution (Instanton). Close to
the boundaries, approximate solutions are written down explicitly, so the
correct initial data for the differential equations are extracted and
numerical solutions are derived. Using the first-order approximation for
the wave function of the Universe, according to the Hartle-Hawking no-
boundary proposal, the maximality of the wavefunction for an isotropic
configuration is verified. The addition of a cosmological constant or some
types of scalar fields is examined. A comparison with the Ashtekar-
theoretical version of the model for non-zero value of the cosmological

constant is attempted.
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1. Path - Integral quantum cosmology

In any attempt to apply quantum mechanics to the Universe as a whole
the specification of the possible quantum :nechanical states which the Universe
can occupy is of central importance. This specification determines the possible
dynamical behavior of the Universe. Moreover, if the uniqueness of the present
Universe is to find any explanation in quantum gravity, it can only come from a
restriction on the possible states available.

In quantum mechanics the state of a system is specified by giving its
wave function on an appropriate configuration space. The possible wave
functions can be constructed from the fundamental quantum mechanical
amplitude for a complete history of the system which may be regarded as the

starting point for quantum theory. In the case of a single particle a history is a

path x(t) and the amplitude for a particular path is proportional to e SIxO]
where Sx(t)] is the classical action. From this basic amplitude, the amplitude
for more restricted observations can be constructed by superposition. In
particular, the amplitude that the particle, having been prepared in a certain

way, is located at position x and nowhere else at time t is

w(x,t)=N “'6x(t)e‘s"‘“’l . Here, N is a normalizing factor and the sum is over a
[ag

class of paths which intersect x at time t and which are weighted in a way that
reflects the preparation of the system. A state of particular interest in any
quantum-mechanical theory is the ground state, or state of minimum excitation.
This is naturally defined by the path integral, made definite by Wick rotating

to Euclidean time, over the class of paths which have vanishing action in the
past. Thus, for a ground state at t = 0 one would write w,(x0)=N I&x(‘r)e freol

where I[ x(7)] is the Euclidean action obtained from S by sending t — —it



and adjusting the sign so that it is positive. When the time is well-defined and
the corresponding Hamiltonian is time-independent then this definition
coincides with the lowest eigenfunction of the Hamiltonian.

In the case of flat space quantum field theory, the wave function is a
functional of the field configuration of the spacelike surface of constant time,

¥ =¥[® (X)t]. The functional ¥ gives the amplitude that a particular field

distribution & (X), occurs on this spacelike surface. The ground-state wave
functional is ¥, [® (R’),()]:NJ'&D (x)e "™ \where the integral is over all

Euclidean field configurations for 7 <0 which match ® (x), on the surface
7 =0 and leave the action finite at Euclidean infinity.

To evaluate the functional integral one first looks the non-singular
stationary points of the action functional (classical solutions) and expands about
them. Such critical points are called "Instantons”.

In the case of quantum gravity new features enter. For definiteness and
simplicity we restrict ourselves to spatially closed universes. There is no well-
defined intrinsic measure of the location of a spacelike surface in the spacetime
beyond that contained in the intrinsic or extrinsic geometry of the surface
itself. One cannot move a given spacelike surface back and forth in time. It is
¢asy to understand what is meant by fixing a field on a given spacelike surface.
What is meant by fixing the four-geometry is less obvious.

In quantum mechanics, one fixes the coordinates or the momenta (or
some combination) as the argument of the wave f unction, but not both. This is
why for gravity one fixes h; or K, but not both, even thought a definite 4-
geometry fixes both on a spacelike surface. Similarly, for a scalar field one

fixes @ (X), or &(X) but not both, and for the electromagnetic field one fixes

B(X) or E(X), but not both. For classical physics one would need to give both on

a Cauchy surface to fix the classical evolution, but in quantum physics the
argument of the wave function is only half of the phase-space variables.

Quantum dynamics is supplied” by the functional integral

iSela,l . . . . .
Wlh;1= N_[Sgu,.(x) e » Where S, is the classical action for a given metric
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g, and the functional integral is over all four-geometries with a compact
spacelike boundary on which the induced metric is h, and which to the past of
that surface satisfy some appropriate condition to define the state. In particular

the amplitude to go from a three-geometry h, on an initial spacelike surface to

' . _'se tanl
h”> - J.‘Sguv e

where the sum is over all four-geometries which match h, on the initial surface

a three-geometry h, on a final spacelike surface is <h,')

and h,"j on the final surface. In these states, time cannot be specified. The proper
time between the surfaces depends on the four-geometry in the sum.
Unfortunately, such an integral is not well-defincd. First, the integral
oscillates rapidly. We can try to remedy this problem by going to Euclidean
spacetime, where W[h,] becomes lP[h,.]]:1\\I1[_6‘gm, e ™' where I is the

Euclidean version of the Einstein-Hilbert action appropriate to keeping the

three-geometry fixed on the boundary, i.e.

1 1
I=—— [a*x Jg (Y"R-2A) ——fd’x vh Kk (G=]) (L.1)
lér n

oMt

The first term is integrated over spacetime and the second over its boundary. K

is the trace of the extrinsic curvature K, of the boundary three-surface and

h :det(hu). In the case of matter fields included

Wi h,

1= 6,50 o rtettnner | (12)
where I _[g,,.®P] is a matter action and I.lg, 1 is the Euclidean Einstein-
Hilbert action. When suitably defined, the path-integral expression generates
solutions to the Wheeler-DeWitt equation and momentum constraints :
H W= G, w=0 .

However, this method does not solve the problem completely, because
the Einstein-Hilbert action has a special feature that distinguishes it from most
matter~field actions ~ it is not positive definite. As a consequence, the path-

integral will not converge if taken over real Euclidean metrics. For example, if

we make the conformal transformation g,..(x) > Q%(x)g,,(x) keeping h, fixed,



then the action contains the term —J(VQ)zd‘x and if Q changes rapidly the

functional integral blows up. Since we observed that it is the conformal part of
the Euclidean four-metric which is responsible for the Euclidean action
becoming negative, it was suggested that the integral over all metrics be split
up into a sum over conformal equivalence classes and a sum over conformal
factors within each class, where the representant is chosen in such a way that
'R = 4A. If the integration over conformal factors was rotated to lie parallel to
the imaginary axis (£ — iQ), then the integral can be calculated and the result
analytically continued.

This procedure does not include large classes of metrics and also it
breaks down when the metric is coupled to non-conformally invariant manner -
the positivity of the Euclidean matter action is not preserved by the conformal
rotation. Rather than trying to rotate certain components of the four-metrics
while leaving others alone, one could allow the four-metric to become fully
complex and then integrate along some contour in the space of complex four-
metrics.

There are a few more things needed to be specified before the Euclidean
path-integral above may be regarded as properly and uniquely defined. These
are gauge-fixing terms, a regularization scheme, a measure and boundary
conditions. Actually, the class C may contain metrics of an open spacetime and
in such a case we need boundary conditions. In the quantum mechanics of
closed Universes there is no natural definition of energy for a closed Universe
Just as there is no independent standard of time. In a certain sense the total
energy for a closed Universe is always zero - the gravitational energy canceliing
the matter energy. It is logical to define a state of minimum excitation
corresponding to the classical notion of a geometry of high symmetry. Such a
ground-state wave function is given by the Hartle-Hawking "no boundary”

proposal, as a Euclidean sum-over-histories of the form

.

Yylh;, @ X]= Z Iag”v S e 18 ? s 1.3)
M



where I is the Euclidean action of the gravitational field g, and the matter

field @. on a four-manifold M. The sum over manifolds is over a class of
compact manifolds which have ac their only boundary the three-surface T on
which the arguments of the wave function are specified.

One of the major successes of the Hartle - Hawking proposal was to
show how the classical Universes corresponding 1o the HH quantum state tend
to have a long inflationary period, developing into large. homogeneous and
isotropic Universes containing small-scale inhomogeneity and thus resembling
our own Universe.

Since a geometry is a manitfold with a metric, in a sum-over-histories
quantum mechanics of spacetime it is, therefore. as natural to sum over
manifolds as it is over metrics. Admitting different manifolds to the sums over
geometries defining quantum amplitedes means allowing different possibilities
for the topology of physical spacetime and allowing also for the possibility of
quantum transitions between the topology of space at one time and another. We
do not really know how to perform the sum over manifolds, because we do not
know what measure to use. In practice, one can therefore do litt'e more than
consider each term in the sum over four-manifolds separately. Naively, the
functional integral for a given M is taken to extend over real Euclidean four-

metrics g,, and matter fields ® on M. When defined in this way, however, the

integral is divergent, and so a viable definition should include a prescription for
the contour of integration in the space of complex metrics and matter-field
configurations.

The quantum state of the Universe is exceedingly difficult to calculate. It
is possible to gain sume insight into its behavior by studying simplifying models,
with a restricted number of degrees of freedom. When applying the no-
boundary proposal in spatially homogeneous minisuperspace models, it is
possible to consider two qualitatively different situations. The first is to take
the boundary to consist of two separate components so that the interpolating
four-geometries are bounded by an "initial” and a “final” three-surface. In this

case the arguments of the wave fun<tion are two copies of the set of the



minisuperspace coordinates. It is often argued that the appropriate object to
study is then the deasity matrix obtained by tracing over states on one of the
three-surfaces. The second possibility is to take the boundary to consist of a
single connected component. In this case the minisuperspace geometries to be
integrated over should "begin” at an initial value of the Euclidean time
coordinate, where this time coordinate becomes singular, but the manifold closes
in a regular way and "end” at some final value of the Euclidean time coordinate
with the three-geometry specified by the arguments of the wave function.
Although from a four-dimensional geometrical point of view, one would expect
to have to specify only the boundary data at the actual three-surface boundary,
the fact that we are working with a 3+l formalism obliges us to specify, in
addition, conditions for the metric variaties at the “bottom” of the four-
manifold. Then, the no-boundary proposal which means that the Universe does
not have any boundaries in space or t.me (at least in the Euclidean regime), can
be interpreted as giving the amplitude for the specific three-geometry to arise
from a zero three-geometry, ie. a single point (the Universe appears from
nothing). Also, note that if the wave function is finite and nonzero at the zero-
volume three-geometry, corresponding to the big-bang singularity, it allows the
possibility of topological fluctuations of the three-geometry.

Since we cannot perform such an integration directly, except for some
simple minisuperspace models, some prescriptions have been given to obtain the
wave function approximately. In the case of simple systems for which we can
explicitly write down the classical Euclidean action I, , we may approximate
the wave function as ¥ =e '«

When we sum over all compact geometries, an additional problem may
appear. There may be more than one surface with the same h, , eg in a four-
sphere there are two spacelike surfaces with the same radii. Therefore, it is

convenient to change the variables from h; to the "K representation” in which

we use h; = h,(deth)”” and the K trace of the external curvature K‘ . The

’

transformation formulas are



4
3’

WTh,.K1= Jdh expi-— Ja*x VEK] wih,]

1 4 -
W[h,j]z—;;gfdx exp[;fd"x JhK) Yh,;.K1. (14)
r

-

where I" goes from —ic to +ic at the right of all singularities of Y[h .K] and I

is the Planck length.



2. The position of relativistic Bianchi-IX Universe in
Cosmology

General-relativistic cosmology was for many Yyears concerned almost
entirely with the simplest possible models. These are the models which are both
isotropic, i.e. in which all spatial directions are equivalent, and spatially
homogeneous, i.e. all points in space at a given time are equivalent. The
condition of isotropy at every point leads uniquely to a certain metric
form (Friedmann-Robertson-Walker). This observed large-scale isotropy,
homogeneity and also flatness of our Universe described by a FRW spacetime
filled with energy nearly equal to the critical density, constitutes an important
cosmological problem. Actually, the conventional big-bang cosmology has no
answer - it merely resorts to a very unnatural fine-tuning of the initial
condition. For various reasons, attempts have been made to compare FRW
models with other, less symmetrical models. We have the freedom to consider
various models since the governing equations of general relativity must be
supplemented by initial conditions, boundary conditioas, symmetry conditions
and/or other restrictions in order to yield definite solutions. The easiest models
to consider are those which share with the FRW model the property of spatial-
homogeneity. The philosophical reasons for considering non-FRW models are
essentially that the Friedmann models offer no explanation for the observed
symmetry, and in particular that regions now observable (by tke microwave
radiation) could not have been in causal contact at time of emission, so that the
symmetry really seems to be imposed, rather than natural. A second aspect is
that although FRW models start from a big-bang, thus satisfying the singularity
theorems which strongly indicate such an arigin for our Universe, they do not

exhibit the most general types of singularity. In particular, small perturbations



of FRW models exist. i.e. small at some time ¢ after the big-bang. such that
they grow as the singularity is approached. The singularity structure is
therefore unstable and the FRW initial conditions are far from general, being,
in some ill defined sense. isolated in the space of solutions. A further impetus to
the study of non-FRW models came from the fact that small perturbations
caused by random statistical fluctuations in FRW models do not appear to grow
fast enough for this to provide a satisfactory account of galaxy formation.

Belief in homogeneity is really the outcome of a long series of reverses
from a geocentric point of view. However, it is almost impossible to test
homogeneity, because we see distant regions as they were a long time ago, and
in order to compare them with the present-day we must find the appropriate
evolution to obtain the present-day parameters of those distant regions,
something that may well lead us into a circular argument. The only attempts at
direct testing of homogeneity use the distribution of galaxies, and since the
galaxies appear to be clustered on scales which may be very large indeed, the
outcome of these tests is disputed. The principal advantage of the spatially-
homogeneous models is that the physical variables depend only on time. Thus all
equations reduce to ordinary differential equations.

We can directly test, in a number of ways, the isotropy of the Universe
about us (e.g. the distribution of galaxies, distribution of radio sources, cosmic
x-ray background, cosmic microwave background, cosmic magnetic field). There
is no strong case for anisotropic models, but some of the data, if confirmed,
could provide such evidence.

Bianchi type-IX or "Mixmaster” cosmologies genzralize the closed (k =
+1) FRW model by allowing the constant-time surfaces to be distorted three-
spheres. This spatially homogeneous mixmaster gravitational collapse is a very
famous gravitational collapse (a "big crunch”) which gives us a "hint” of the sort
of complexity one should expect for gravitational collapses with more than one
degree of freedom. The Bianchi IX Univ:c.se has been much studied by
cosmologists for various reasons:

(i) It is an anisotropically expanding Universe with closed space sections. It

begins expanding in a strongly irregular fashion but can, in the course of time,
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isotropize and provide a good description of the large scale Universe today.
When the anisotropy level is small it resembles an anisotropic perturbation of
the closed Friedmann Universe.

(ii)) It has been shown [3] that for general (inhomogeneous) vacuum closed
Universes away from initial data with symmetries (Killing vectors) the initial
data for the Einstein equations can be completely defined by four independent
functions of three variables. That is, there is locally a diffeomorphism from the
space of pairs of three-tensors describing the induced metric on a spacelike
hypersurface and its extrinsic curvature onto the Hilbert space consisting of
four arbitrary functions of three variables. The general Bianchi IX (as well as
V1, ,VI1, ,VIII), Cauchy data is specified by four arbitrary constants in vacuum
and so in some sense, might be locally near a general vacuum solution to the
Einstein equations. It is worth remarking that the type VIII and IX models have
no Newtonian analogues, unlike type I-VIL Their unusual dynamics is a
consequence of the non-Newtonian, or “magnetic” portion of the Weyl
conformal curvature. They are intrinsicaily general relativistic phenomena. The
oscillatory mode of approach to the singularity, described below, exists in the
vacuum case only in models VIII and IX. and it is this circumstance that
attaches to these models the special role of prototypes for constructing the
general inhomogeneous solution of the Einstein equations in the neighborhood
of the singuiarity.

(iti) Misner originally discovered that the mixmaster Universe has the unusual
property that periodically, close to the initial singularity, light can
circumnavigate the Universe. This is not possible in other simpler homogeneous
models and probably also not in inhomogeneous models either. Misner hoped
that this discovery might go some way towards providing an explanation for the
remarkable degree of regularity displayed by the present-day Universe;
regularity that extends over regions, which in the more conventional
cosmological models like Friedmann’s, could never have been causally connected
during the expansion history of the Universe. How then did they manage to
coordinate their structure to within one part in ten thousand today? Misner’s

suggestion was that if the Universe began in a manner resembling the Bianchi
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type IX model, then causal communication could. in principle. be established
over the entire Universe in its earliest stages. Irregularities associated with the
"big-bang” would be efficiently ironed-out by viscous transport processes and
diffusive mixing. Unfortunately, subsequent studies revealed that the mixmaster
model very rarely visited configurations conducive to "mixing” over very large
regions. It has been proved that without an extremely specialized choice of the
parameters of the model, the light will never have time to circle around the
Universe in any direction during the first period of expansion. The mixmaster
model could not guarantee the present structrure of the Universe independently
of the initial data-the goal of the so called “chaotic cosmology” program.

We also note that Mach’s idea that the inertial frame is determined by
the distant stars is the ground of Wheeler’s persuasive philosophical statement
that the Machian problem is more precisely stated and understood when posed
on a compact manifold.

We imagine that a 3+1 split has been performed, splitting the spacetime
manifold into the topological product of a line (the "time” axis) and the three-
dimensional spacelike hypersurfaces I, (the dynamical degrees of freedom are

the spatial components of the metric, the induced metric h, on X, , which

t L]
evolves in the “time” parameter “t” ). In fact, we operate in a "synchronous

reference frame” which brings the spacetime metric on the very simple form
ds® = ~dt® + hydx'dx’. By definition, the general Bianchi IX spacetime has
topology RxS* (product of a time axis and the compact three-sphere), with a

simply transitive action of the isometry group SU(2) on the S° spatial slices.

The metric of a general Bianchi IX model can be put in the form
ds® = —dt® + v, ()0’ (x)a’(x), i, j = 1,23. Here, ¢',0?, and o’ are isometry
invariant one-forms on the three sphere satisfying £, o' = O (where t* is the
unit normal to the homogeneous hypersurfaces) and v, 1s a symmetric 3X3
matrix. The basis (¢',6,0°) obeys the Cartan structure equations in the exterior
calculus do’ =—3g, 0’ A o' , where &, is the completely antisymmetric tensor

of rank 3. (Explicitly do' =—0’ A 06?, do* =-0* AP, do® =-0 A ). The

11



diagonal Bianchi IX spacetimes are those for which the ¢' can be chosen so that

Y, is a diagonal matrix for all time. This requirement is equivalent to
demanding that on each homogeneous slice the eigenvectors of the extrinsic

curvature tensor K| coincide with the eigenvectors of the three-dimensional

Ricci tensor ‘”R} . For vacuum solutions, this condition is implied by the field
equations, so the diagonal case encompasses all vacuum Bianchi IX spacetimes.
Then, let v, (t) =diag(a®(t), b*(t), c*(t)) and so

ds® = ~dt* + a* (o ¥+ bz(a"")2 +c2(03)2 .

Let y, 6, ¢ are the classical angle coordinates on SO(3) . Since we
consider the simply connected covering space S* instead of SO(3), we allow y
to have fundamental domain 0< y < 4n , while § and @ have their usual ranges
0sfO<mn and 0<@=<2n. We let (c'.0°,0°) be a basis for the space of left-
invariant differential one-forms on the three-sphere S? =SU(2). In local
parametric coordinates we have : |

¢' = cosydf +sinysindp , o* =—sinydB + cosysinBdp , o = dy+ cosbdy .

. . O si 0
The dual basis of vectors {K,} is: K, =cos u/55+ Zli:'ga;—cotesinwa;,
) 3 cosy O (5} o
K, -smwae ~eind a(p+cot9cosu/6w, K, = e

Written out in terms of the coordinate differentials dy, dé, dp we get for the
line element of the spacetime
ds® = -dt* + c*dy’ + (a® cos” y + b? sin® y)d* +{sin’ @(a’ sin® y + b cos® y) + ¢ cos’ 6}de?
+(a* - b*)sin2ysin6d6de + 2c* cos 6dydp (21)
This is a toy-model spacetime metric (with a(t),b(t),c(t), the three scale-
functions, as degrees of freedom) which we can also evolve on approach to the

"big crunch” spacetime singularity where the three-volume of the metric

collapses to zero.

The space is closed and the three-volume of the compact space is given

.

by
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V= _.‘J;dwded(p = Iabco' Ao’ AC’, where y= det(y,)=a’b’c’sin’0 is the
determinant of the three-metric in the frame of v.0.¢. Then
V= abc fsin 6d6 f"dw f"d(p =16n"abc .

When a=b=c=R/2, the space reduces to the space of constant positive curvature

with radius R=2a , which is the metric of highest symmetry on the group space
SU(2). The volume then reduces to the three-volume V=2r R%(t) of the

compact (isotropic) Robertson-Walker space. If we couple the gravitational field
to perfect fluid matter, the cosmological model with the ansatz for the metric is
an anisotropic generalization of the well-known compact FRW model : It has
different "Hubble constants” along different directions in the three-space. One
may also interpret the metric as a closed FRW Universe on which is superposed
circularly polarized gravitational waves with the longest wavelengths that will
fit into a closed Universe [15].

Since the metric is spatially homogeneous, the full non-linear Einstein
equations for this are a set of ordinary (non-linear) differential cquations. To

see this more explicitly, introduce in place of the quantities a,b,c their
logarithms a = Ina, B =Inb, y = Inc, and a new time variable t = Idt/abc in place

of the proper (synchronous) time t . With the inclusion of a perfect fluid matter

source, the space-space components of Einstein’s equations read:

2

d 2 2.2

2a_ = = (Ina®) = (b* -~ c*)* —a* +8n(p - p)a’b’c? (2.2)
d2

2B, = dt? (Inb*)=(c? -a’)’ - b* + 8n(p - p)a’b’c? (2.3)
d2

27, = g (nc’)=(@* -b")" —c* +8n(p - p)a’b’c? (2.4)

and the time-time component reads

@+B+7),.-2a.pB, +a,y, +B,y,)=-4np+3p)a’b’c? (2.5)
The quantities p and p denote the pressure and the energy density of the fluid.
One may easily combine the equations (22), (2.3), (2.4), (2.5) to get the first

integral T =1 —8npazb2c? =0 , where

13



I=aB, +ay +By, —5@ +b*+c*)+Li(@’b? +a’c? +bc?) (2:6)
To be in accordance with the vacuum set of Einstein equations the solution

should have I = 0. The dynamical equations for the compact FRW cosmology is
recovered in the case of a=b=c=R/2.
One can show that sufficiently near the singularity the perfect fluid

matter terms may be neglected if the equation of state gives p < (2/3)p. Thus, it

is sufficient to investigate the empty space equations there. Then, the volume V

cannot oscillate. Statements of monotonicity of the three-volume are equivalent

whether given in t or in 7 - time, since dt = abcdt and abc > 0. The property of
InV being a concave function (negative second derivative) does not translate
from t to T ~ time. Below we show that InV is a concave function in the t - time
variable. Neglecting, for notational convenience, the factor 16n> in the
expression for the three-volume, we have InV=Ina+Inb+Inc=a+ B+ v and the
R,, equation for the mixmaster metric reads
@+ B+y), =5nY)_ =a B, +a.y, +B.y, .
From the definition &, = (abc)'d, =V'3, one arrives at
0} =Y *{9* - (InY),d,} and hence
V23 (InV) =V&V-3,V)? = (lnY)_, - (hV)?

=2a.B. +a,y, +B.v)-(@ + B, +7,)

=—a’-Bl-y1<0.
It follows that InV and therefore the volume V itself, can have no local
minimum (where we should have Y, =0,V > 0). As a corollary it follows that
volume oscillations are not possible.

A stronger result has recently been proved [18] There do not exist any

vacuum Bianchi IX solutions which expand for an infinite amount of proper
time as measured by observers moving  orthogonally to the homogeneous

hypersurfaces. Furthermore, since every expanding vacuum Bianchi IX solution

on a finite proper time interval is extendible into the future, every initially

14



expanding, inextendible, vacuum Bianchi IX must recollapse. In the non-vacuum
case, there do not exist any Bianchi IX Universes which expand for an infinite
time, provided only that the matter satisfies the dominant energy condition and
has non-negative average pressure (i.e. a non-negative trace of the spatial
projection of the stress-energy tensor).

When the right-hand sides of equations (2.2), (2.3), (2.4) are set equal to
zero and equation (2.5) becomes a,B +a.y, + By, =0 , the field equations
reduce exactly to those for the Bianchi I or Kasner Universe

3
ds® =—dt’ + D t*"dx} , where the field equations place two algebraic constraints

3 3
on the three Kasner indices {p,} : ZP.- = Zp: =1. Approaching the singularity,
e 1 11

two metric components go to zero while the third goes to infinity. Thus, a small
comoving volume of fluid is squashed to zero in two directions and stretched to
infinity in the third, while its volume shrinks to zero. This is to be contrasted
with the Friedmann-Robertson-Walker singularity where the volume shrinks
uniformly in every direction. If one thinks of equations (2.2), (23), (24) as a
Hamiltonian description, then the left-hand side of these equations represent
the kinetic terms whilst the right-hand side describes the potential. Whilst the
motion is far from the potential walls (the shape of the potential appears in
section 3), the right-hand sides are negligible and the Kasner solution is
obtained. After a momentary collision with the potential wall, the model is
perturbed into a different Kasner model.

To establish the mixmaster behavior as t —» 0 (t — —o), suppose it begins

to evolve with a>>b>>c. Then a’ = Ausechf, b? —éy—csche exp(—--a—),
B u

2

= ﬂcsche exp(—6u), where A and u are constants and 8 = Au(r ~1,). The two
C

remaining constants B and C are defined as C = (a2 c2 )'a':ﬂ ,B= (a2 b2 )a=0

and they give the amplitude of the relative scales at the maximum of a(t).
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('sd/dt). The evolution towards the singularity proceeds through an infinite

number of oscillations of the scale factors a(t), b(t) and c(t) on any open interval
of time t . Physically speaking one is following the evolution of a ball of
gravitational wave energy as it collapses to zero volume. The collapse follows a
series of cycles during which two of the scale factors (“radii”) execute small
oscillations whilst the third collapses monotonically. The change of behavior
indicating the onset of a new cycle is the attainment of a local minimum by the
monotonically falling function. During the new cycle the monotonic scale of the
old cycle executes small oscillations whilst the scale factor it replaced now
undertakes monotonic behavior until the next cycle commences. During any
interval of time in which none of a,b or ¢ have local maxima or minima the
expansion is described to a good approximation by the Kasner model. As the
collapse occurs the amplitude of both the large and the small oscillations
increases steadily even though the overall volume decreases. So, briefly, the
solution of the Einstein equations for a Bianchi IX metric in vacuum has the
property that the evolution proceeds towards an initial Weyl curvature
singularity via a chaotically unpredictable sequence of oscillations which
ergodically pass close to a sequence of Kasner eras. It has also been shown that
under certain conditions the introduction of a cosmological constant does not
change the alternation of Kasner eras on approach to the initial singularity.
Generally, mosi of the spatially homogeneous cosmologies have Weyl tensor
singularities. An isotropic model has vanishing Weyl tensor. E.g, for the Kasner
Universe the curvature invariant C#*V K"LC“V A turns out to be proportional to

the inverse fourth power of the proper time.

16



3. The Euclidean Bianchi - IX spacetime

There has been considerable interest in “Instantons” in Yang-Mills theory.
As we have stated, they may be defined as non-singular solutions of the
classical equations in four-dimensional Euclidean space. They provide stationary
phase points in the path-integral for the amplitude to tunnel between two
topologically distinct vacua. Because gravity is a gauge theory like Yang-Mills,
it seems reasonable to suppose that gravitational instantons may play a similar
important role. We define a gravitational instanton to be a non-singular
complete positive-definite metric which satisfies the classical vacuum Einstein
equations or the Einstein equations with a A term. The A term can be regarded
as a Lagrange multiplier for the four-volume. Also, solutions of Euclidean
general relativity are important to the study of "spacetime foam” and other
Euclidean quantum gravity iieories. As stationary phase points, in the path-
integral approach to quantum gravity, the dominant contribution is expected to
occur near such metrics, sc they may be concidered the "atoms” out of which a
quantum spacetime is built.

We are going to derive the action for the diagonal Euclidean Bianchi IX
Universe, with three scale factors a,b and c. Let £ be the proper distance, then
the metric takes the form ds* =d&* +a®*(d')? +b*(c*)* + c*(a’)? .The full action

for the Euclidean equations has the form

I=I,+I,+I, , where I, = - IJ;(“’R—ZA) d*x is the Hilbert-
16n
1
Einstein action , g=det(g_ ), I,=-— JJhK d>x is the surface term,
sy $ 8n
aM
l ’
and I, is the matter action : Io =g JJ_g_L, dx .
M

17



The full action I supplies the field equations R,,-iRg,, + Ag, =8nrT, .T, is

Hv nv

the energy-momentum tensor. If there is no matter field then

“R=4ADI, Y I\/g d*x, and for A=0 , the numerical value of I, is

87T
zero. The Cartan method gives the Ricci tensor components for the above
metric.

Define the one-forms 6°=d&, ' =ac', 9> =bo®, 0° =cs® . Then
ds* =(0°)* +(8')* +(08*)* +(8°)* = pn, 6°6* ; K., =diag(1,11,1). Also define the
curvature one and two-forms w/=Tr), 8' , Q'=dw’+w'Aw’ , which
satisfy the structure equations d@* = —w! A 0" , Q*=%R*, 6" A6” . Also,
from w*u*" =0 it follows that w; =0, o = -, , ' = -/ . So,

d6° =0=-w’ A0’ ,

e . d
d0' =20° A0 + 207 70" = - AO° —0' NO' (~=—)
a bc dé
dg-’=9_9° ,\92+£9’A9'=—w§/\9° -} AB'
b ac
d0° = 2-6° A0’ +-0' A6 =~ A0° —@ AB'
c ab
From these we can put o, ==0'=-0° , ®; =by: =-0? , 0w} =50’ = —o?,
a b c

2 + b i Solving this we get
S—yv=— _ S+Uu=— ,U—yv =—, n :
bc ac ab g &
1 b a c 1 b a c
_,=_____+__~_03=_ 2 , l= _____ _562=_w3
@ 2(ac bc ab) ! e 2(ac bc ab) !
1 b c
S _____el___z
@ 2 ac ab bc) @

For the curvature 2-forms we have

Q=0)rnw, , Q=Q==0
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(b: __a.' ~‘:.‘)p.' ,\9,1

b2 e

4

l_(b.‘ Q‘C: ~.a.‘)‘pl /\9“

@ =0 =dC 0"+ Al =
a a
Ied 5 2 0 ' 5 1] hd 1 -~ 3 + > N
QL =- =-d(—6 )+ Awy =-—6° A0° +—[bb ——(a' +b- ¢7)—
b b abc X
k] E‘ 3 0 i C: (s 3 I ~ 5 N 5 » g 2 * N 1 h
.Qf=~(% =-d(=0")+w, Awy =—08" A8 +—[C —— (b —a" —c)+— (b +c” ~a)jg Ag°
c c ¢ 2 »
l » 1 at+b*-c? | \ .
QZ=_Ql :-—z-d( 2b )Y+ w N, =
a7 4b et~ € —(a® +b —c7)J6° A 0" +
abc-
' AB°

[(
abc
L[Cz(az +b? -C:)~2abczﬁb~+L(b: ~a’ —c7)b* +c* ~a’)] .
2 2 (abc)?

r4 Pl

2

. s 1 b'-a*-c* | 1 .
Q, =-Q =§d( 2o 0 tow, Aw) =
1 b- P-c? ~ b 2 2 2 2
=—[( 2 ¢ ) + b (b —a* —=c?)]p° A 0° -
2 abc ab’c
! 3
Lib2o7 —a® —c*y+ 2ab7cEE +~(a® +b* —c?)(b? +c° ~ay? ’\91
2 (abc)”
1 b*+c?-2a°
2 3 - < _
‘Qz:“'gz—zd( abe 63)+w§/\co;‘—
2 2 2 ~ ~
=—I—[(b re —e ) + ’a (b? +c? —a’)P’° Al +
2 abc a“bc
2.0 A0’
R v
(abc)

é[az(bz +c? —a2)~2a2bcb~c~+-§(a2 +b%? ~c?)b? —a® -

Now, very easily we can get the curvature tensor components

e
Ry, =—;’ R, = Ry, =Ry, = R, =0,
1 b -
Rpy = ——[-a8 +—~(a’ +b? —c*) =< (b? = a® —¢?)),
2 abc 2b c
RS, =-2 Ry, =R), =R° =R’, =0
202 ’ 201 T V03 T Mg T Ry = U,

1 bard 3 oncd
Ry = ——[bb ~2=(a® +b? —c?)~ (b +c? —a?)],
abc 2¢
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o _ 0 _ p0 _ po _
» Rm "Rzoz‘Rzlz—Razz"o'

-~
-~

2 3 b ed i
R, = J—[-cc? —;aa—(bz —a’-c’)+—(b° +c* -a’)]

abc 2b
' 1_a’+b*—c? ~ c 2 2 2 I _p! _pl _p!' _
R. =—[( ) + (a” +b” —-c7)], Ry =Ry =R53;=R;,, =0
2 abc abc*
H 55 4 E 4 23 2 2.2 2.2
R., =———+———(a +b” -3¢ —2a"b" +2a°c” +2b°c?),
ab 4(abc)
b*-a’-¢ ~ b 2
R:,,z =—[( ) + > (b —-a" —c7)], R::m = R;m —R;r' =0,
2 abc ab“c
1 ac ! 3 4 4 252 2.2 2.z
R, =—— (a° -3b” +c” +2a"b° —2a°c” +2b°c”),
ac  4(abc)"
- I b +c*-a*~ b ., , 2 2 2
Ria = ;[( abc )+ a’bc (b" +e -a’ )]’ R3°2 = R3203 =R3|z =R3|3 =0,
> 56 I 4 E 3 242 2 .2 2.2
Riy=-——+——(-3a"+b" +c’ +22°b° + 2a°c’ -2b’c?),
bc  4(abc)”
From Q;=-Q° = R, =-R,,

Q' =0 =» R, =0 (nosum) ,
Q'=-Q, > R, ,=-R,, andalso R} =-R.,, ,R. =—R .

The Ricci components are

x g x
Rgo = Ry = Ry + Ry, + Ry, :_(£+_+_C_) >
a b c
R, =Ry, = R?m +R.izz +R;u :‘i—‘a—b—_‘ai'*'—l"*—‘l—‘ a* —b* -c*),
a ab ac a’ 2(abc)’
, b ab be 1
R. =R4. =Ry, + R;, + Ry, :____:3_1)___<_:_+_+____1__’_ b* —c* —a'),
b b bc b 2(abc)’
RJJ = R;.J = R;)OJ + RJID +R323 :—i—ﬂ—.?i{.__l__-*-__l___ c" _.b" —a‘) .

Finally, the Ricci scalar is
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WOR=u*R, Rw+R +R. + Ry, 3.0

b -, - + . -~ 4
= 22+2.8 (ﬂ+i‘-’—+3°—)+——'——,(2;rb- +2a%c” +2b%ct —a* - b* —c*)
a b ¢ ab ac be 2(abc)”

If we repeat the Cartan calculus only for the three-dimensional part of the
metric we find for all the 1-forms, the 2-forms, and the curvature components
the same results as above. except for all the terms including derivatives of a.b,

or ¢ which now disappear completely. So, the three~-dimensional Ricci scalar is

l 2 2 2
MR=——7(22°b% + 23°c* +2b3¢* —a* - b* ~¢*) 3.1
2(abc)”

The gravitational part of the action becomes

I, = [(“"R-24)g d* x=—— [("R-2A)abc sind dy dp Bt = [(*R—2A)abc a2

l6m - 16n
T T A b 2,2 2.2 22 _ 4 g9
=onfabe@ 424 S 202 POy p(BW B 4 Be —a b ¢ &+ 2mA fabe &
a b c ab ac ke Zabc
If there is no matter field then I, =—21tAIabcd§ is the numerical value.

One has j?bcd& = I(Ebc)~d§ - I(55c+58b)d§ and similarly for the terms
containing the second derivatives of b and c. But the integral of the total

derivative gives a contribution which is canceled by the surface termI,, as will
be shown below. Finally, we obtain the following action (first order as usual in

classical mechanics) :

——nj[zabc(ab +3°-+—)+———(2a b® +2a%c” +2b7c” ~a* —b* ~c*)JE + 2nA [abodk
ab ac bc 2abc

32)

where we haveset I, =1 +1,.

Now it is very simple to obtain the Euler-Lagrange equations of this

action, which coincide with the Einstein equations and read :

~ |

abc) = P~ (b* -c?)?1- Aab 33

(2bc) Zabc[a ( c’) ]-Aabc ’ )
Bey =—1 bt - 2)21- Aab (34)

(abc) 2abc[ -c“)°] C
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(abS) = ! [c* —¢a® -b7)*]- Aabc 3.5)
2abc

This system is a constrained system due to the time reparametrization -the

remnant of the full coordinate covariance of general relativity. The constraint
may be derived from the action I, if one imposes the condition that the

integral is stationary under the replacement d&= N(£)dE , where N(§) is an
arbitrary function of & The constraint says that the “Hamiltonian”
corresponding to the Lagrangian of the action vanishes. Note that because the
time is imaginary the roles of the physical Lagrangian and minus the

Hamiltonian are interchanged.  The constraint has the form

_a_b_+a_c_+9£ - (22°b" +2a°c® +2b°c’ ~a* —b* -c*)-A 36)

ab ac bc 4(abc)?

and puts a restriction on the initial values of a,b,c,3 ,5 ,€ which is preserved by
the evolution equations. Adding the three dynamical equations and replacing in

the constraint, we obtain another equivalent expression for that, namely

+—+A=0 3.7

CEET
o | Cu
o | o)

We define two more useful "time” parameters (actually it would be

better to say "distance” parameters). One is the logarithmic one T such that

d& = abcdT (- Ed/dr )- Now the lapse function of the metric is proportional to

the spatial volume V. Then, the expression for the Ricci scalar and the action

are :

i b & & B & ab ac B 22°b° +2a°C +2b%c% —at —b* —c"

WR=- 42+l ) (S E T ;

(aec)’ a b ¢ a2 b ¢ ab ac b 2(abc)
(38)
= -nj‘[o(__ + 2 +£)+ 2(.a b’ +2a%c +2b%c? —a* —b* —c*)dr + 2nA [a’b’c7dr

ac

. 3.9

The field equations and the constraint get the form:

22



(Ina”)" =a*—-(b" ~¢’)* - 2Aab°c’ (3.10)

(Inb*y" =b* —¢a® -¢*)* = 2A7bc°

3.1

(Inc?) =c* -(a” -b*)? = 2ATb°c? 3.12)
v e ab aé¢ bé 5y 4 =
In(a*b"c”)] =4(—+—+—)-2Aab’c*’

Lin( ] ab ac be (313

=2a°b* +2a’c” +2b’c? —a* ~b* —c* —6A b’

: 9 !
Second, we have the “time”™ 7 such that d&= 2(abc) *dn. , where now the
lapse function is proportios:=i to the linear dimension corresponding to the

spatial volume (‘=d/dn). Both t and 7 g0 to —oo when £ — 0 and to +o0o for

& — +o0, for some specific boundary condition we discuss latter.

We come back to the surface term I . For the extrinsic curvature we

have the general formula K, = 711;(3':; —ZN(._ JA)) , where

ds’ =(N'N, + N*)dt* + 2N dwdx' + g, dx'dx’ . From the ansatz we use, it is
N'=N,=0, N=abc. Thus:

1

K, = & - So, if the frame is {dt,dy,d8,dg} it will be
2abc
I . 1 ¢
K = g = (CZ) = —
" 2abe T*  2abc ab
Ky =Kg =— 0
v e 2abc Bve =
K, =K, = Lg’ = (c’cos) = —é—cose
v oy 2abc Ve Zabc ab
I > 2 2 2 .2 - é 2 5 .2
Ky = 8o = (@ cos‘y + b sin“y) = —cos’y + —sin’y
2abc 2abc bc ac
1 . 1 a® ~-b? | . 1 a b
K, =K_ = o = ( sin2ysin@) = —(— — —)sin2ysind
% 2abc® T 2abe 2 2 'bc ac
K, = ! Lo =sin29(—a——sin2u/ +-9—coszw)'+ £ cos?6 .
2abc bc ac ab
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A lengthy but straightforward calculation gives for the scalar K :

b ¢

K =g"K, =——1—-(£+——+—) . Replacing in I, we get
abc a b c
I, =-—+24+5) [sinodydede = -2m(3 + 2+ &) (314)
8t a b ¢ a b c

The integral of the total derivative appearing in I, is:

271 I(Zbc +abc+ abE’)~d§ =2r I(abc?d& = ZnI[(:Z:) ]'dt

= 2nj(3+9+5)'dc (3.14")
a b ¢

and cancels the surface term (314) if the term coming from the upper limit of

the integral (3.14°) is zero.

At this point we introduce the Misner variables a, B,, B, writing
the metric as follows : d52=d§2+e2ae2ﬁijciaj » where (B,(§)) is-a 3x3

traceless matrix (e? denotes matrix exponentiation). For the diagonal Bianchi IX

Universe, only two independent parameters must be contained in the matrix

(B;), namely (B,)=diag(B, ++/3B_,B, —3B.,~2B.). The relation of Misner

variables with the scale factors a, b, c is the following :

_ea+B++ﬁB_ e.a+B+—\/§B_

-2
, b= , e® B or

1 1 ab 1 a
a=§ln(abC) , B, =gln(;-.:) . B.= e ln(g) .

Then V=16n%e3® . This form separates the expansion (volume change) and the

anisotropy (shape change). If put B, = B. = 0, we obtain the FRW model with

R =2e", R being the radius of the Universe. As & — —0 we approach the

singularity at R=0. We derive the various preceding results in terms of

a.p,.B..
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E:(E«L’E,)c , and thus

I, = 6nfe® (5, % +8_% -a? _Spe—za + i3‘-)d§ 315)
where
p= 2048 4 2e42ﬂ,»2\55. + ze—m.~z\§a _ew.mjp_ _eép,--l\fw — et
= 4e™** cosh(2v/3B.) — 4e** sinh*(2+/38 ) — e
=3-3V. (3.16)

The potential V(B,,B.) is V 20 and the diagram showing the contours
of  this is the following, where the three-fold rotational symmetry and the
two-fold reflection symmetry is obvious.

The potential has exponentially steep walls
with equipotentials forming equilaterals \
triangles in the (B,, B.) plane. However, the

corners of the triangular contours are not

closed, but rather have thin channels leading

off to infinity. The potential is time-

-

) IS w®

1

P Aty
. ~
. N
. ~

. ~

- ~.
. -

independent, since it has no dependence on &
orevenona.

The dynamical equations arising from the action (3.15) can be thought of as

12

At large negative values of « this potential is flat. As a increases so does this

those of a particle moving in the time-dependent potential e (~£e'2" + g—).

potential, becoming infinitely steep as a—» +o. Care must be taken however
since « is not always a monotonic function of £ ormn.

Going back to the Lorentzian case, the walls expand as the Universe
collapses to zero volume at zero proper time. Encounters with walls become
increasingly rare as the proper time goes to zero. In all models (except Bianchi

VIII & IX) the potential is open in at least one direction. The closed potentials
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allow recurrence to occur and the motion explores all of the phase-space
available to 1it, constrained only by the conservation laws of energy and
momentum [3]). The shape of the VIII & IX potentials in the corner channels
supplies the instability necessary for chaotic behavior. Chaotic behavior
requires that neighboring trajectories of Universe points diverge as they are
followed both forwards and backwards in time. Approximate “bounce laws™
may be obtained to describe tiie interaction of the system point with the
potential walls (where the Kasner exponents change durieg this interaction). It

is worthwhile to say that chaotic behavior does not appear in the Euclidean

model. The following argument is due to [5]. If H?Zis the square of the

Euclidean Arnowitt-Deser-Misner Hamiltonian, then

2

1'-12 = pi + p2 +241t2h(3)R = p_‘z +p +361:2e4a(l ~V) , since (3)R='l£e_2ap,

and h="g is the determinant of the three-dimensional metric. A positive sign
in front of the third term on the right-hand of the above equation appears,
instead of a negative one in the space-time case. The shape of the equipotentials

is unchanged in passing to the Euclidean case. The potential minimum at the

origin becomes a maximum. The walls decrease steeply to —o as !le increases.
For convenience, let a single (triangular) equipotential represents for some fixed
a and H® (with H? <0 allowed) the curve described by the last equation with
p, = p =0. Since the region inside the curve for the same fixed a corresponds

to greater H’, it is forbidden to the system point. Thus the system point is
either above or outside the potential (now a barrier) in the Euclidean case. Even
if H?<O0 is possible, there is no Euclidean analog of the system point
repeatedly bouncing off the corners of the potential. The presence of at most
one bounce for the system point in the Euclidean case means that the separation
between trajectories with infinitesimally different initial points will be linear
rather than exponential in a. In the Euclidean case there is no qualitative
change in the dynamics analogous to the clange from expanding to contracting
directions in the spacetime case which occurs when the point enters the

"corners” of the potential. Because the system point must remain outside the
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corners of the potentials, qualitative dynamical changes which cause the chaotic

behavior of spacetime type-IX cosmologies cannot occur in the Euclidean

analog solutions.

In the logarithmic time the action is

I =6nfB2+p2-a%-Leta, Nbayy 317)
g 12 3
The constraint equation is Bf +Bz g~ =- ie'm + ; ¢ (3.18). Varying
- 12

with respect to the dynamical variables a, B,, B gives rise to the second-order

1
evolution equations : a = —e4ap - A e6a 3.19)

6

B o=t et P

(3.20)
r 24 B4

) ] | . ]
With respect to the time n, where dn= 'ezad‘tzze adé, the action is

1 =3dpl+p?_a?-2. 8 2ay 20y, (321
g 3 3
The constraint is B;_z + [3'~2 - a'2 = -f + %’}_e’.’.a (3.22), and the field
equations are :
ar=-2B2 + ) - % Ae? (3.23)
i_=—%—§é—2&'ﬁ;=—%%—$2ﬂi\/ﬂf+B'_2+;p—‘;'-Aeza (3.24).

For A=0, this system has a special feature. The (f,,8 ) motion decouples from
the o motion, after using the constraint equation to eliminate a. The evolution

in the B,, B_ plane is governed by a system of two coupled equations.

Finally, we note for completeness that the surface action I, is
Is = —6n = -3mea’.
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4. Nut and Bolt boundaries

Nearly all known gravitational instantons possess continuous symmetry
groups of at least two parameters. There is a classification scheme [8] based on
the existence of at least a one parameter group.

We consider an oriented manifold M with a positive definite metric g,
which admits 2t least a one-parameter isometry group G. Denote by

H.:M — M the action of the group, where 7 is the group parameter and by

o . . .
= =~ the Killing vector. The isometry group G is said to have a

ox* Ot
fixed point where K=:0. At a fixed point p the action of u_ on the manifold M

K=K*

gives rise to an isometry H..T,(M)—>T, (M) where T_ (M) is the tangent space
at p. u,, is generated by the antisymmetric matrix K, , . Antisymmetric 4x4
matrices can have rank O, 2, or 4. The zero case is not interesting because it
would imply that the Killing vector K was zero everywhere. Since then K. is
the identity, and p commutes with the exponential map at p , ie.

u oexpX =exp(u.(X)), VX e T, (M), it follows that the action of the group
G is trivial. In the case that K, ., has rank 2, there will be a two-dimensional
subspace T, of T (M) which is left invariant by H,. . The action of pu_, will

rotate T, , the two-dimensional orthogonal complement of T,, into itself. Thus

0 0o )

(1 0
. o . lo1 o 0 .
the canonical form in this case is p . = Lo 0 cos xr sinx’rJ , where k is the
0 0 -sinkt coskt

surface gravity and is given by the non-zero skew eigenvalue of K, | in an

orthonormal frame. From this one can see that M. , and hence u, , must be
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periodic with a period 2nk '. The image of T, under the exponential map will

not be moved by u, . and so will contribute a 2-dimensional oriented totally
geodesic submanifold of fixed points. Gibbons and Hawking [8] named such a 2-
dimensional fixed point set a Bolt. A simple example is provided by the horizon

2-sphere of the Euclidean Schwarzschild solution, with G being the periodic

group of imaginary time translations. In the case that K, . has the maximal

rank 4 there can be no directions at p which are left invariant under u,.. . Thus
p must be an isolated fixed point. Gibbons and Hawking called it a Nut after
the fixed point at the centre of the Euclidean self-dual Taub-NUT solution. In

this case there will be two orthogonal 2-dimensional subspaces T, and T, which

are mapped into themselves by u... The canonical form is

( coskpT  singT 0 0 \
-SinKyT cosKkT 0 0 .
Hrx = ! : . . where k), k, are the skew-eigenvalues of
0 0 Cos KoT  sinKoT =
0 0 —Sin KT cos Kot

K, . in an orthonormal frame. For some purposes it is convenient to subdivide
nuts into 2 classes - "Nuts” and "anti-Nuts” - depending on whether the sign of
K,.K, is positive or negative respectively.

We express Nut and Bolt boundary conditions in terms of the more
convenient objects a, b, ¢, & Let one of {a, b, ¢} vanishes, for example c, at a
point p. Then the corresponding vector will have zero length at p. This means
that the orbit of G through p can no longer be 3-dimensional. In fact the orbit
through p corresponds to a subgroup H of G and hence must be one-dimensional
or the entire group G. In the first case, which is a Bolt, only c vanishes and the
orbit through p ccrresponds to G/G,. This is a homogeneous 2-space whose
second fundamental form vanishes. This means that a tends to b on the Bolt
with vanishing derivative with respect to & By considering the limiting form of
the metric on a 2-surface orthogonal to the Bolt -ie. the (t, ) plane in the
coordinates (7, ¥, 6, @) - one can readily see that ¢ must vanish as &, if w has

range 47 , whereas ¢ vanishes as £ if y has range 27 . Strictly speaking, the
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word Bolt, introduced in [8], applies only when a= b, V£&. In this case there is an

additional Killing vector K, (i.e. the group is extended to U(2)) and ¢ =0 is the
locus of its fixed point set - i.e. its Bolt. In the second case the orbit through p

is just p itself and is refered as a Nut. In this case all the {a, b, ¢} must vanish as

& as £ = 0, in order that the orbits be a nested sequence of 3-spheres near p-

Below we give the behavior of the various quantities close to the Nut or the
Bolt point.
Nut case
E—>0, a,bc~3&50
~3InGG &)= In(3§) > —0

Bo~0 ? B~O

dt

d£ = 2(abc) dn~¢§ dn

b~ 2 50 a~1, g0

dn 2
Bolt case

E—>0, ab—>a, co>iE 3,650

2
a~Lin(a,? L& > ~o, B,~%In(1;f"-) - 4 , B.~0

C 2»a 35 ~>» +00, B, = —>» —00, B‘~O

dé~La, Edr, 3,b~atalf— 0, é~Lalé -0
d~-l6_ag * B¢~_—lb-a§ ’ B—~O
dE~(4a}f) *dn , a,b' — 0, c'~(+a2&)'> — 0
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2a, » 2a,

: ) >S40, Br~—1( £

Definition : If, as a function of 7, no two of a. b, and ¢ are equal, we call the

a’'~5( ) =~ , B'~0

solution triaxial. Otherwise, it is called biaxial. (In analogous problems with
quadratic forms in optics the terms biaxial and triaxial are often used).
The action until now has the form [ = J',.Ldr+ Is, where the Lagrangian

L = L(a,b,c,a,b,¢) . Then

0 3] 3] 2
si=[ dr(Clsa+ %L sb+ B scy s (L sas L spy L 50
= sa &b sc oa b ae

=+
rew +OIg

where a—Lza—L——d—(QL—‘) the usual Eu.cr-Lagrange variational derivative. At
da oOa dt oa

the boundary 7=+ we fix the intrinsic metric, so 8a= b= 64 r=+= 0. Then

p 2)
oI = £ dr(a—L8a+§£5b+ éI’—Sc)—(i6z1+il§6b+f)—1'—8c) r=—a +6Ig |
©  Ba éb é¢c da ob Jé
where I is the expression (3.14) and
ab ac b¢ 1 242 2 2 22 $ 4 4 242 2
L=-n2(—+—+—)+—(22°b* +2a’c? +2b%c® -a* ~b* ~-¢ MN+2nAa b'c”.
ab ac bc 2
. . . 6L 6L 6L )
We must arrive at the field equations 52 = 6b" 8o 0 and thus the following
equation must hold
-(Q—L—'63+-a—lf6b+a—L8c)’,=_m +8I, =0 .
0a Ob o¢
It is §£= —-2—71(2+£) and similarly for ?A . —(ZE . Also
oa a b c 0ob  Jc

. . .. P )
51, = 2n(38, 86,86 ada_b8b_¢sc |
a b c a a b b C C T = -0

Thus

b ¢ ada_a ¢ béb ,a b ¢ 6c 6a 8b 8¢
(—+ +(—+ +(—+ +—+ —+—

e =0 .
c a a a c¢c b b abccabct-qo
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This is the initial condition that must be satisfied. One sufficient but not

necessary choice is to take a=b=¢[,__, =0.

Proposition : The only solutions satisfying a=5b=¢ o =0 on some spacelike

surface X, , (7, > —), which give a compact Einstein metric are biaxial.

Proof : To have a compact metric, a, b, and ¢ cannot all remain non-zero : we
must "close of f the space”. This can be done, as we already said, if one or three
of a, b, c vanish. This is because the orbits of SU(2) must collapse in dimension.
The collapsed orbits are still homogeneous spaces of SU(2). The only possibilities
are zero-dimensional points (Nuts, a= b= c=0) or two-dimensional subspaces
(Bolts, one of a, b, ¢ vanishes and the other two become equal). The resulting

Bolt is either an S* or an RP*®. Now, let us suppose that a, b, and c are al!

unequal on the surface Z,O. With no loss of generality we may then assume

a > b> c on this surface. From the equations (3.10), (3.11), (3.12), for (Ina)’, (Inb),

(Inc) we obtain by subtraction :

(lns)"z(az—bz)(a2+b2~c2) , (In2y=(a? —c?)a? +c? —b?).
C
At =1, , one has In>>0, (In2y =0, (In2y >0, mW2>0, (n?y =o,
b b b c c

(In £!—)" >0 and thus In% and InZ for all preceding instants is strictly positive.
c c

Thus, if a>b>c at t=1,,then a>b and a>c for all times at which a>0.
One cannot have a Bolt, requiring one of the three, which could only be b or c,
to go to zero, while the remaining pair, which must include a , become equal

(non-zero). Neither can one have a Nut for the following reason : Since

(Inﬁ)" >0 for each time, one has (In%)' <0 , Vt<t, . At this point, one

should have a look at the beginning of section 7, where the relations
(7.3) and (74) are stated for the behavior near a Nut. So,
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dg

:j:(ln%}<0:>(ln%3<0,‘v’t<'r0 . From (7.3) one has 1, <, =, <&, . so

(ln%? <0,VE <&, (§, corresponds to t,). From (7.5).

1 +2a&*” . , . \ .
n2s In——i&T > In[(1 + 23,8 )1 - 2b,5%) = In[1 + 2(a, ~b,)E* | ~ 2(a, - b, )&
b 1+2bE*

where a, > b, , since a>b. Thus, close to E=0itis (Inii x4(a, -b,)E >0 .This
b

contradiction means that the existence of a Nut is also impossible. The result is
that a=b or a=c (or both) will be true for all time and the metric is biaxial.
(q.e.d)

Biaxial Bianchi type-IX metrics have an extra Killing vector, ie. they are
invariant under a group homomorphic to U(l) x U(2). If a=b and c vanishes at

. da db

a Bolt with a=b# 0 and E=O=E the generator of the U(l) factor has a
fixed point set at the Bolt.

Finally, we find the limiting value of the surface action at the Nut and

Bolt point. It is I = ~27t(3 +2+E—).

a b ¢
%éﬁ:j 3n
At the Nut limit , I, -)—21t(——l——~)-3 =-—¢% 50,850 (4.1)
) 4
At the Bolt limit ,
2 2 2
5’& Eﬂ)._g ‘—’Q-f 2
Iy » -2n( 2 + 2 +—‘-’I———)—-a——27r(0+0+£0——)=—7ra02,§->0 (4.2)
agp a9 25 2

Obviously, the same results arise if one works in a different time-parameter.

Since Nuts and Bolts are not boundaries of the manifold, one does not

have a contribution from I, there. However, the integration by parts of I, gives
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a surface term which is canceled by I, at the true boundary but would not be

at a Bolt (at a Nut the contribution is zero).
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5. A few known solutions

If in the dynamical equations for A =0 we put the condition that two of
the invariant directions have equal magnitude, e.g. a=5. this leads to the
general Taub-NUT family of solutions which is invariant uader a 4-parameter

group with the Lie algebra of U(2):
a’ =b’ = quinhq(t -1, )esch’® _%q(r ~1,) , ¢’ =qcschq(t - T,) (3.1

where (q,7,,7,) are constants of integration. The most familiar form

ds’ =(r’ —n’Xr* - 2mr + n*) 'dr’ + 4n(r* — 0°) "(r* = 2mr + 0" X&' )’ +(r' - 0 X(& ) +(0%)%)

3.2)
is obtained using the transformation :
n® = —-lqcschq(r —t,) , m=ncoshq(r, -1,),
r= [%coth{q(r ~1,)~cothq(t, -7, )] 4.3
N 2 '

Two special cases are of note :

A) 7, =1,. These are the Eguchi-Hanson metrics [4,7]. Real g corresponds to

their type II. Imaginary g corresponds to their type I. One can obtain their

4 2

280> r=m+8£; , where g is

Eguchi and Hanson’s parameter. If one lets n — <o, this gives the metric

metric by the following transformation :m= n+

4 4
ds? =(1-E ) 1dp+ 2 ps1 - B yo3 )2 + L peqot )t 1007 )7) (5.4)
p? 4 p* 4

B) q = 0. This corresponds to the self-dual solution discussed by Hawking (13}
All Bianchi IX solutions with self-dual curvature may be obtained

systematically. The self-dual conditions lead, after a single integration, to the

following equations :
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22-b7+c? —a? -22,bc ,
a

22=z=l2 +c? -b* - 22,ac ,
b

25 -a?+b? —c? - 22,ab (5.5)
C

The {4,} are constants obeying 4, = 4,4, , A, = 4, A, , 4, = A,A. Then the possible
solutions for A, are : Sl) (4,4,,4,)=(0,00), S2) (4,4,,4,)=(L1), S3)
(4,,A,,4,)=(-1,-1]) and cyclic permutations. In fact case S3) is not distinct
from case S2) since it may be obtained by the substitution ¢ — —c. Both cases
A) and B) have self-dual curvature. Case S1) may be obtained directly without

i

integration by requiring that the connection forms @’; in the basis

(abcdtr, ad’, bo?, co’) be self-dual

- . 2 0,00 , _ 0,0, . W,
If define w, =bc, w, sac, w,=ab or a =-a—, b>=—, ¢ =

the system of the self-dual equations becomes :

W, = W,0; - 0, (A,w, +1,0,)

@, =00, -0,(Ae, +1,0,)

0, =@, - 0,(L0, +1,0,) (5.6)
For A4, =4,=2,=0 the Euler system is defined, describing the motion of a
rigid body around its centre of gravity : @, = w,w, , and cyclically.

For 4, =A4,=24,=1 we get the Darboux system describing a problem of

geometry of second degree surfaces : @, =w,0, - 0,0, —®,0, , and cyclically.
The Euler system has been integrated by Abel and Jacobi and in the
Bianchi IX model by Belinski, Gibbons, Page, and Pope (BGPP) with elliptic

functions [4] If u=-c, 1+ c, then the general solution of the Euler system is :

n cnudnu cnu - dnu
a“=¢——— , 2=c,——‘—, c2=cl (W)
snu snudiau snucnu
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where sn, cn, dn are the standard Jacobian elliptic functions with modulus k. An

l a: 2 03)1
alternative form is ds’= —P dx® + P ( (@) + (@) + ( )
4 - X X—X, X-—X,

dx =2a’b’c’dr=2P'*dt , x-x, =bc"

. where

, X—x,=a’c’® . x-x,=a%?,
P=(x—x,)(x—x,)(x~ Xx,)=(abc)*. The only singularities of the general
solution of the Euler system are movable simple poles. In the Misner variables

and 7- time the Euler system has the following form :

B; = 2(-eP+ cosh(243B_) + ¢ P+
=22 Ginh23
B =~—e"* sinh(2V3B_)

a' =112 *Ps cosh(2V3B_) + & *P+ (5.7)

The Darboux system has been integrated by Halphen and Bureau with
Hermite modular elliptic functions. The general solution of the Darboux system
is only defined inside or outside a movable disk. It is holomorphic in its domain
of definition, and its only singularity is a movable natural boundary defined by

the circle. Then the self-dual system takes the form :

(@ +0,) =-20,0, , (@ +©,) =-20,0, , (0, +0,) = -20,0, (5.8)
These equations were explicitly solved (or linearized) by Atiyah and Hitchin

(AH) [2] as follows. Consider any solution of the linear differential equation

d;: Yesci9=0 (5.9), where @ and T are related by the linear equation
do- 4
dd = u*dt. Then
du 1 du 1 ou 1
=—g— — — =—y— + — t = —y—o )
o, udO 2u *csch , o, ud9+2u cotf , w, ud6+2u csch  (5.10)

is a three-parameter family of solutions. A solution for u s

u(6)=\/2sin6K(sin%), 0<0<n (511, where K(k) is the complete elliptic

integral K(k)= . At o , ie. as O 5=, this metric (Atiyah-

[

sm2 Q

Hitchin) is exponentially close to the Taub-NUT metric (with a negative mass
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parameter), while at the origin (the Nut) it is regular. In the Misner variables

and in n~time the Darboux system has the following form :

B = % 2B, a- cosh(2\/—B- )N—e cosh(\/—3-[3_ )+ e—4B+ ]
2B, . ~B, .
B = J— [-e smh(2\/§B_ )+e smh(\EB_ )]
@' = 1126+ (cosh(2v3B_) - 1) ~ 4¢P+ cosh(v3p_) +e P+ ] (5.12).
From the self-dual system (5.8) we obtain by integration
a b ¢ - ) 2
2(——+—b—+—)=a' +b” +c~ —2(A,bc + A,ac + A;ab) (5.13)
a c

and the surface action becomes
=ma’ + b® + c* — 2(A, bc + Aac + A,ab)] (5.14)

Then at the Nut limit a,b,c - 0= Is —> 0. If we got the limit of this
expression for the Bolt boundary, we would obtain Is = 2n( - A,)a; and so for
A, =1, Is — 0 while for 4,=0, I, —» 2ma; . Both results do not agree with the
limit we have found in (4.2) for a Bolt. This confirms that the self-dual action
corresponds to a Nut boundary condition and agrees with that (non-round case
onlyif 4, =4,=2, =1).
In the BGPP case we have

s =@’ +b* + c*) =me*[e TP + 26?P+ cosh(2V38_)1= e £, (B, B.) (5.15)
while in the AH case it is
I; =n(a’ + b* + ¢ — 2ab — 2ac — 2bc) (516)

=ne?2[e™*P+ 1 26%P+ (cosh(2v3p_) ~ 1) — 4e P+ cosh(v3p. N=e%f,, (B..B)
and the approximate wave function ¥ =e's for both cases and for some

constant a is shown by the following diagrams
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¥ =¥,,(8,.B) ¥ =W (B,.B )
with the only differences being that the AH wave function is much higher,
sharper and more extended.

A point with the BGPP action is that it is appropriate for matching the
boundary to an asymptotically Euclidean self-dual solution and so gives a
“wormhole” wavefunction rather than a HH “no-boundary” wavefunction as
one would get from compact 4-metrics with no other boundary. At the origin
the BGPP solution is singular.

The three local solutions discussed are valid so long as {a,b,c} are finite
and non-zero. If any of {a,b,c} cease to be finite and non-zero in a finite proper
distance interval, the manifold may be incomplete. If G is SU(2) and all three of
{a,b,c} diverge as 1 x(proper distance), we have a Euclidean infinity. The Taub-
NUT infinity corresponds to a— &,b — &,c —> constant (or any permutation of
{a,b,c}) as the proper distance £ tends to infinity. In the Eguchi-Hanson metric,
{a,b,c} diverge as & but G is SO(3), giving a sort of “conical” Euclidean
infinity. Also, we have the Nut and Bolt boundary conditions we discussed
before. Among the various ways the five regular boundary conditions can be

combined to give regular manifolds, most of them are rejected due to

topological statements [9].
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6. A new set of dynamical variables

In this section we introduce a new set of dynamical variables x, y instead
of B,,B .Let

. aw + bw + ¢ h iy
X+ iy =-- 1Bt o , where w=e .
Then
__!_a+b—2c _ﬁ a—b 61
X = a+b+c Y S A rb+e 6D
cosh(\/gB_ y—e B \/Ssinh(\/gﬁ_)
orx =

, Y= 6.2
2cosh(\/-3_[3 )+ e Y ZCosh(\/SB_)+e‘3‘3+ ©2)

Then e/ "38& =________2x—l >0 NI36 x+l+\/—y

\/Sy—x—l

, €

>0.
x+l—\/—y

These two inequalities hold only in the region above, the interior of the

triangle, defined by the straight lines y _x+! =—XJ,-_I
3

34
V3

segment of the line x=% is not included for B, finite, while for

and x——— The
2

B, & +0=>x > +.
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The inverse transformation is

1 (x+1))=3y° 1 x+l+\/§y
, =ZIn 3 , = In 6.3
I T P S - L pa 3 ©3

The Nut point (B,,B.)=(0,0) is mapped to (x.y)=(0,0)., while the Bolt

(B.,B.)= (+0,0) to the point (X, ¥)=(3,0). For c =0 = x = t.y= -‘_-r’— J;Z and
a

the three-dimensional Ricci scalar ‘*’R given by (3.I') becomes singular on this
edge.

The advantage of this description is that the region in which the problem
is focused is finite, while the disadvantage is that the kinetic energy is not
diagonal and the resulting equations are more complicated.

The quantity p becomes

3 (1-2x)2@y? +4x+ 1) - 16y2(x +1)*

= 64
p (I -2x)*3 ((x+ 12 —3y?)+3 4
For A= 0 the constraint and the equation for @, in n-time, are :
a*=a,x"’ +a,y” -i-a,x'_y'%—-;2 (6.5)
"==2(a, X" +a,y'? +a,x'y’) (6.6)
where
_(x+1-4y* ) (x+1-y* )+ y*(4x® - 3x +2) o = y:+(x+1)?
%= A= 2x)7[(x +1) = 3y°] B T+ 1T =3y 7F
4y(x*+y* -1
= . 6.7
% T U= 20[G 17 - 3y°T ©n

The second order equations for B,,8 are

. 1 op ' ,
Bl =Bix"+Biy"+ Bix? + Biy” + Bix'y'= “6ap. _ 2Bx"+ B y) (68)

or after solving for x”, y” :

X" = B B; 1 BB [(B; B; — B, B, )x"* +(B;[3f~ — B; B; )y + (B, B, - B. B, )x'y"

- prp- ' @- ' a- 1 dp . Op
+Za'(Bz+ﬁ6 _Bs Bz )X'+2¢1'(B2 Bv _B-/ Bz )}""E aB Bz —aB

B:)1 (6.9)
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l + - + - ,2_ + R + N- ,2__ + Q- L » & Pe,?
Y = BB BB (=B B; + BB )x"* —(B'B; — B;B )y —(B'B; — B; B )x'y

1 ©J 0
=20 By~ B BN = 20 BB, ~ BBy + g B =35 A1 (610)
where

B Xx+1-2y? B! = -y
T A-20)[(x+1)2 =3y2] > 72 T (x+1)> = 3y?

B

,_ (x+DPAx+D)-12y*x(x+1)—- 9y +12y*

(x+1)? +3y?
B,

AQ-2x)’[(x+1* =3y’ - B =_[(x+l)2 —-3y*P’

v o 4y(x+l) Y, T v Y 1 - - x+1
ﬂs _[(x+l)2_3y2]2 ’Bb _ﬂl ’B7 _B2 ’BI —BZ ’Bz _(x+1)2_3y2 ’

B, =3B, .B, =3B, .B;, =2B, ,B,=8B;,B;, =8,
op 24 (1-2x)'(x>-2x-y?)—-8y*(x +1)*
op,  a-2x)* [(x+1)?* =3y*}* ’

Jp _48y(x+1)2x* -8x—1-6y’
0B, (1-2x)°[(x+1)? -3y?}*’

(6.11)

The coefficients B, B; — B; B, and B’ B, — B; B, of a’y’ and a’x’ of equations
(69) and (6.10) respectively are zero, while the coefficients
(B; B, — B, B;)/(B'B; = B; B> and (B’ B; — B; B7)/(B; B; - B; B7) are equal to
-1 and +1 respectively , so these equations are a little more simplified.

The Atiyah-Hitchin action in x-y variables takes the following form

after a few calculations

4x° + 4y* —1
* 1 - 2x)? 3[(x +1)? — 3y2]23 =ezaf(X,.Y) (6.12)

Is=31(e

and both I and ¥ = e”'s have exactly the same form with the relative ones of
section 5.
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7. Nut - solution in 3,.83 for A=0

Close to the Nut point (8, = B8 = B’ = ' =0), the constraint (3.22) is

approximated by a’* = B* + B* + § —gzl , SO0 a =1. The relations between
the times defined before are :
df=2e%dn=2"dn = &£=x2" = n=InG&) 7.

Then for § > 0=> 1 — —0 = g = —0. From equation (3.18) we have

a’ = B,z +B_2 ——&e"“ = —£e4° zie"a =a z—l—eza =Da = ——1— In(-71). (7.2)
12 4 2 2

So 7 < 0 close to the Nut, and

dé = e dr =~ (1) dtr = Ex 2(=1) "2 (7.3)

Then for £ > 0= 7 — —00 => @ — —0. We approximate p near (B,.B )=(00)
by p=3-24(B + B?) and the equations (3.24) for B, become
Br =8B, — 2B, = Br+ 2B -8B, ~0.If B,~e’", then the characteristic equation

is A°+24-8=0=>A=-4, +2 . The negative value is rejected since it does

not satisfy the boundary condition and then B, ~b,e?" =~ 4 b &2, (7.4)
Thus
a=eae’3+e‘§’3‘ z-;—é(l-i-'b!,‘ )(I+"b§ )~’E+ (b, +\/—b)§ < §+a§ +a,E% 4--

b=e®efre™ I s Leqyip g2 X1-22bE*)~LE+ip, —V3b e’ ~LE+bE +b,E% 4

c =e% P+ zég(l—%b,gz)zéé—lb,ﬁ" ng +c, &7 +c, &%+ (7.5)
where a, = (b, +v3b.) , b =4(b, =/3b.), ¢, =~Lb,
Then b_ -—(a b)) and b, =4(a + b)=—-4c, => a + b +c, =0. This is an

accurate relation which also arises if one substitutes into the dynamical

equations the complete form for a, b, c as expanded in powers of &
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The solution should scale when a,b,c, scale, ie. when b, scales (b, —> Ab,) or
(a,,b,,c,) > Ala,,b,c,). Then if & — 17 ?&, one has (a,b,c) = A" %(a,b,c).

If 6 is the angle shown in the figure then

i b ~
tanf = sin6 and from B, =th§2+---:> B, =Lb, &+ --
cosG b 4 2
x 0
=B, =Lb, +- :B(O)_’b,,wegettane—ﬁ()

B+ (0)

—
But B, = B,0)+ E,(O)g +§§,(0)§2+--- and applying De I' Hospital’s rule

twice, we obtain

ti- © _ lim B-©) =>tan@ = Iim—B—_-(—Q = (B———)o . One has

B+(@) 5B (%) 0B, (8) By

B, ~Lin2L o)L In( -and B_ In(—)+ ln(——-)+
67" o2 ~3 ENee

1 2

Thus, up to first order one has

L L, RN &
tan6 = /3 In(-H)[I—35)]" = tan@ = J_u ) / i )1, a.b <O.
bl 1 l (al+bl)2

We can go further and find the second order approximation for a:
a* = 4(b, +b e+ 1-8(b,’ +b )e* = a’'x1—2(b," +b_ e ~1— 2B+ B3
= axn-1(b, +b"e*" ~n-4(B* +B°) (7.6)
This suggests that to get a time t such that the motion in the (B.,B.) plane

starts off at unit velocity, giving B>+ B =t> , we have to choose



- . da .
=,/'3(l—a") . The quantity a'=—cﬁ Is a time-parameter which decreases

d*B, dp,
ar =D Bugr 0

monotonically with 1 since a” < 0. Then one should get

which one can integrate from 8, (t=0)=0
After a few calculations we find that :

d 2t d

— T &
dn” B+ B dt
d’ 4t* d’ 2 d 1d
2 = 2 2 LR 2 2 (P Pig + P b)) +777]
dn- (B+t~ + B—-:-)z [dt- BH- + ﬁ_‘- (B B B 'B ")dt + t dt]

where the index t means differentiation with respect to t. Then :

(B> + B'*X(B,,> + B.>)=4t* and the constraint equation takes the foren :

2 2 2 | 2 . . .
B, +B, —a + 1262 p(B,” + B.,’)* =0, while the equation for the expansion
parameter is

2 2, 1 2
Oy ==2(Byy + B, )— Pl m—'?(ﬂ+tﬁ+ﬂ + B_B_w)a,

The action takes the form

p (B, +B.,’)

= 31‘-[ 2 [B+r + B——r - '2 - 3 4¢2 ]ezadt

B_

The equations for B,,B. are mixed and after solving for Bur’ﬁ-" we find

(B, +B.,’)* p . B, +B, B 0p
24t7 0B, 120 PeeBug” a;; ‘3B,

o

B.. =7 B[l +QA—2t2)B,.° + B+

~—

These equations are quite complicated, and we do not go any further with these.

We come back to the system (3.23), (3.24) (A= 0). To make it first-order

we set a'=H, B'=p,, B =p. The constraint takes the form

H=p +p’+L

3 ?
and the dynamical equations become
H'=-2(p>+p*) (1.7)
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,_ 1 0op
p. = —66B. 2Hp! (7'8)

So, we have a system for (H,B,,B.,p,,p.) of five first-order equations. In
order to find the initial conditions, we take a highly negative initial value for 7,

say 1,- From the approximate solution (7.4) we have

’

B!
B =2be® = B! =2, => 2 E->0.

4

We could make a better approximation and add cubic terms, but this is not
necessary. If we set £=e?® < M, =3Ing , b, =cos@ , b_ =sinb , then
(B,), =€cos® , (B),=¢esin , (p,), =2&cosh , (p.), = 2g&sinf. (7.9)

There is only one parameter in this problem - the angle 6 determining the curve
in the B,,B_ plane. Let’s try to explain this. There are three 2nd-order equations
plus one Ist-order constraint equation reducing the number of parameters to 5,
namely : H,B,,B ,p,, p.. But one can take out one parameter each for the
origin of the time (or 7)), and for the scale (since there are no dimensional
constants in the equations). These leave 3 parameters. Regularity at the origin
presumably takes out 2 more, leaving 1. This is the angle 6.

If we use the constraint we can eliminate the primed quantities from the

action and this takes the form :

I=-%fpe?an, (7.10)

which is a simpler one for computational work.
Using the Runge-Kutta method the computer gives the following picture

for the solutions for various values of the angle-parameter 9:
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The figure has the expected symmetry under rotation of 120° as well as the
reflection symmetry with respect to the B, axis, the 60° and the 300° straight
lines (as the potential has). We observe that whatever the initial ratio of
expansion of the two anisotropic scale factors B,,B is, after some period of
time the solution approaches a specific way of expansion : that of the 60° , the
180°, and the 300° solution. The curves do not approach asymptotically the 60°
solution, but asymptotically become parallel to it. Also, after some search we
find that there are curves somewhere between 0 =108° and 8 =112° which do
cross each other. This happens only very close to the origin and this must be a

mistake due to numerical approximations made by the computer. An

explanation of the fact that solutions do not cross is given in section 9. As we
approach the solution of 120° we have to make the value of 0 extremely close

to 120°% in order to find a nearby curve. This means that the “density” of
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he region of 60° and decreases considerably as we
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We can also get the contour plot of ¥ as follow
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t
The wavefunction ¥ decreases for increasing anisotropy (B: +B’) *. So the

maximum of the probability corresponds to an isotropic universe. One

can use the symmetry of the wavefunction to see that
w(B, <0.p. =0)= W(B’ = %:B‘ > O) . Also the probability of the points (8,.8.)

near the three directions of symmetry is remarkably bigger relative to the other
directions in (B,B_) plane.
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8. The Hamilton - Jacobi -~ equation BGPP solution

Another approach is to use the Hamilton-Jacobi equation. In canonical

formulation the action for the diagonal Bianchi IX. model has the form

d d d .
I= I(p, dBt* + p. cft + pad—‘:— NH)dt , where d§ = Ndt and the Hamiltonian

H=0=—p,+ p’> +p’*+24n* g™ R . With @g=efe and <3’R=12’-e-2“ we

obtain 247> ¥ g*R =12n’e** p. The Hamilton-Jacobi equation is

. a
H(q'.p, = ) 0 ls-(——) +(aﬁ )? +(8B ) +12n%e*®p=0 81

Rescaling the action I — I'= 51 and calling I' again I, we obtain

367:

-Z )+(aﬁ> +(613) +3e*p=0 82)

Let I =e2*f(8,, /3_ ). Then

— 2
(8B ) Af + 3P= 0 83)
One solution of this equation is
f(B,,B.)=gle™*® +2e*™ cosh(2V38_)], (8.4)

as we can verify by direct computation.
Then the action is exactly the BGPP action (5.15) except for an irrelevant
multiplying factor in front. M|
The wave function ¥ ~e™! falls sharply away /\
from a maximum at B, =B =0 (the k=+1

FRW Universe). The special case, where

B. =0, Y@ .,a =const.) is shown in the A,
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figure beside. The figure may also be taken as a roughly representative cross-

section of the contour plot. One feature of this is that near the singularity
(a — —0) it is spread out over the B,, B. plane. since the coefficient e** of f in

I is tiny and so e ! does not go to zero very rapidly. As the Universe moves

|
. . . - -3e .
away from the singularity, since at 8, =8 =0, f = L thene ! =e2 |, which

shrinks rapidly with a. But for fixed a, the relative shrinkage of e ! with B, as

they move away from O is faster for larger @, so e | is more sharply peaked

near the k=+1 FRW metric. If one regards W'¥ as representing the
probability of finding the Universe in some state, it is possible to interpret this
behavior as showing that as the Universe evolves it becomes more and more
probable to find it in the FRW state. While it is tempting to regard the square
of these functions in the Hartle-Hawking interpretation as the probability of
finding the Universe in a corresponding state, there are a number of different
probability interpretations which would not agree with such an assignment.
Actually, the BGPP action does not lead to classical solutions, regular at the

center, so it does not give the HH wavefunction. In the canonical quantization
of the Bianchi IX model, if we select [21] a factor ordering and write ¥ = We™*

and then replace this form in the Wheeler-DeWitt equation for ¥, then a very

complicated equation arises, containing both W,S. If we set

(SZ)’ngf— 457 +3p=0,

which is exactly the Hamilton-Jacobi equation of our case, with
ds®’ = d§* + g o'c’ then the Wheeler-DeWitt equation is somehow simplified. I
think this agreement between the canonical quantization method and the path-

integral approximation method is something positive towards the direction of

convergence of these two.
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9. The AH solution

For the system (5.12) we have obtained in the case A, = 4, =4, =1 in 1-
time, we can find an approximate solution with a regular centre.

For small B,,B it is up to first order in B8,,B_ :

3B =—A+28 +23B)-A+2B - 2V3B)+20-4B)~-A-B. - V3B)-a - B. +3B.) +2a +2B.)

=—6B, = B, ~-2p, = p,_~b e " (91)
V3p2 ~ - +2B, +2v38 )+ 0 +28, ~2\38_y-u -B4 —\/;ﬁ_)+(I—B+ +V38_)
= 2V3B_ =B ~-28_ =p_~b_e 2" (9.2)

3ar=@+2B +2V3B)+A +2B -238)+A-4B)-2a-B_ -3B.)- 21— B. +3B.)-2a +28.)
==3 = a'=-1 = ax-n (9.3)

For €0, it is B, 20=>e ™" 50> n— +o. After coordinate change
n— -n , AH should be same as the full Nut case. Also there a =~ n. But the
behavior of a is the same, i.e. @ — —c0.
For the proper distance &, it is

dé=2e"dn=2e"dn = E=-2e"+c¢ (9.4)
But, it is required from the Nut condition that when n— +00 = £ —> 0 , thus
c=0 and &=-2¢"". The only difference from before is that now &

approaches the center from negative values. We notice something more : The

self-dual equations satisfy the constraint equation, which yield the expression

a’? =1 near the origin. In the full Nut case, we kept the positive value for o’

’

now the self-dual equations force us to accept the minus sign.
For a very negative value of n, say n,, let g=e M o T =—'7ln8 and
then (B,), =é&cos@ , (B.), = €sinf are the initial conditions for solving the

system of the two Ist-order differential equations of B,,B.. The unique

parameter of the problem is again the angle 6.
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The figure below shows the solutions in the 8, .8 plane.

8.

1

-1

This figure is in complete agreement with the full Nut case, except for the
three solutions for 8 =0°, 8=120° and , O =240° whose decline from the
straight lines is due to the fact that the sines cannot be represented exactly by a
finite number of digits in the computer and this leads to round-off errors
making the numerical results stray from the straight lines. This last figure has
been derived using the “Mathematica” package, while for the similar figure of
section 7, the “Matlab” package has been used. Actually, this last package is
basically made for numerical manipulations, while the former one is also
available for symbolic manipulations. We note this fact and keep the figure
with the limited accuracy (at least for the three curves), to indicate that the
choice of a package may sometimes influence the final results slightly.

For the wavefunction we have got, using the formula (7.10) for calculating the

action I, with a fixed at the boundary, the following picture :
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while the contour plot is shown below
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The same features arise as in the full-Nut case of section 7. However, the
peak of the self-dual wavefunction is much more distinct than that of the full-
Nut ¥. But as the distance from (0,0) increases, the full-Nut ¥ obtains values
smaller than the corresponding ones of the self-dual ¥. This difference arises

from using different rules for the scale at the boundary. More accurate results

can be obtained if we plot (I/ez")(B,,B_) instead of I(B,.B.).

One more remarkable thing : The polynomial single-valued form of the

AH action for the configuration variables implies that there must be precisely
one trajectory solution through each point in the (B,,B_) space, so there should
be solutions everywhere, and, furthermore, the solutions should not cross (only

one solution through each point).

Remark : If we define a time parameter t = —n increasing instead of decreasing,

then the new equations’ figure in the (B,,B.) plane is the same.
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10. Bolt - solution in B8,.8 for A=0

In the case of a Bolt boundary, we have found in the table of section 4.
2

that a = iQ——, ¢ — 0. This is also verified from the constraint equation (3.18), if
6
2

. - a .
we set f3 ~0, B*~OT and also use the asymptotic behavior of p for

B.=0, B, >+ (p~4e P*). Thus pe*®* >0, £ 0.

2
1 2an , a _ . 240
In the n-time it is a’~-(—2)23 =20 ¢=2¢  yhile B’ z—i(—}’—o—)’ i
3 & 3 3
Thus a’ = -/, and the equation (3.24) for 8, becomes
" _Lop +2p'% , where P ~-8¢P 0.
6 0B, R

So, B! = ZB:2 is the approximate equation for f, close to the Bolt. The equation

for a, (3.23), becomes a” = -2a’'* . If y =a’ then
] 2 ] l l
y'=-2y' = ym=a'm=o- = am= .

For @ — —0=> |} = 0. Then B, = - Injy| - +oo.

The relation of £ and 7n is found by
dé =2e%dn= ZJHdn = &= -!_-%I—nr 2, where the positive sign corresponds to

n>0, while the negative to n<0. If we want £-—0' at the Bolt, then

1
& z-‘;-n.‘iz,,n—)o* and then f, z—az—%lnn and B’ z_._é_ .
‘ n

The unique arbitrary parameter parametrizing the paths is
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B =8 -3£= 2Be™  where B >0, e2® — 4o .

For some n, — 0" we put the initial data for (a',B,,B .B..B’') according to the

relations above and obtain the following figure
s

%

03

+*

05

, NN

From the table of section 4 one has f’~0, so the values of B’ for this plot are

very small.
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11. Nut - solution in x.y for A=0

The system of differential equations governing this problem consists of
the equations (6.5), (6.6), (6.9), (6.10). We have noted that close to the Nut point it
is (x,y) — (0,0) and we approximate the quantities x, y by

L La+V3B)+a-+38)-20-38)_

- L zB‘ 11
2 a++3B)+0-3B)+a-38) 1-8B, aib
NE) a+~38)-1~-+3B) B.
= = =fB 11.2)
2 A+V38)+0-38)+0-38) 1-8,
Then
o BO-BI-B.CB)__ B . p 113)
a-8)° a-g)>>
, BQA-B)-B(-B) B -BB +BB
~ - = . ~ 11.4
g a-B,) -8 g R

All the relations about times are the same with those at the Nut case in 8,,8

variables. If s=e2"0 then (B,), =&cos8 , (B ), =¢&sin@ and x,=egcosf ,
Yo =8sinf@ , x; =2¢gcos@ , y, =2esinf (where the second-order terms with
respect to £ in the expression for y' have been neglected). So, the initial data
for the system (a’,x,y,x’,y’') are the same with those for (a’, B..B.B.B).

For various values of the angle-parameter 0, we get the following figure for

the solutions in the x-y plane.
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Certainly, everything is restricted in the allowed domain of definition of
x,y. The expected symmetry is also present here. The point (-1,0) is a pole to
which all solutions between 120° and 240° converge. Due to computational
difficulties (the algorithm did not manage to pass over all values of time), the
remaining solutions are partially plotted. Observing the plots, it seems that all

of them are directed (if extended) towards the corner points (0.5,\/5/ 2) or (0.5,
-\/5/2 )- Even for very small values of the angle 6, or for 8 approaching 120°

from below, this feature seems to be preserved. In section 6, we have stated that
for B, >+0o=>x— 1/2 . At this limit, one has from (62) that

L a-2v3 P
y— J—3— I-e =——. So if B_ goes to a finite number, y will also go to a finite
2 1 +e -24v3 B
number, smaller than \/—3:/2, and for B. > +o=y —-)\/?3-/2 . From this

statement, we can conclude that all the B,,B. Nut-solutions (section 7) with

0<6<120°, will be mapped to x ,y solutions which approach the corner point
(0.5,\/3/ 2), since all these B,,B_ solutions have B, — +o for & — +o. The same

argument also holds for the other two symmetry directions.

S8



12. Bolt - solution in x,y for A=0

Close to the Bolt (B,,B ) — (+,0), one has (x,y)—> (}.0). We have

already seen that as a parameter for the paths, one can take the variable f’ .

We have seen that B, = —%Inn ,as n—0
1
B: = n—>0and B.~0, n—0 (2.
n

Then ei‘SB‘ can be approximated by | * \/SB_ and then

32

1-7n 1
3 3
and y= 2+Br;32 ~ g' ~0, T[—)O (12.3)

Differentiating these formulas, we obtain the velocities

9 12 9 ,

x’z—————"—;;—;z——n" (12.4)
2Q+n " 8
3 3 3B’

'z-—————‘, 3 4 2+ 32 ——— 12 N — 12-5

y (2+n")‘[B'( no) 2B.n] > (12.5)

1
Also a’'=—-fB =— (12.6)

2n )
From these relations we can choose initial data if we select some very small
value 7, >0 for the time and parametrize the paths by very small positive
values of B’ . Unfortunately, when we put these initial data in the computer

program, the algorithm does not start ; it stops from the beginning. This could

probably mean that this problem, as it is stated, contains some sort of anomaly
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and needs to be reformulated. The root of this anomaly may be due to the

following fact: close to the Bolt (%,O) the slope of a solution is

dy _y' 4 B!

dx  x’ ‘_E—ﬁ°
So, the limiting value of the slope is —0. The curvature of the trajectory in the
(x,y) plane is :
dZ 1 d'.’ er ” ’ 9 4 B_"
[1+¢( ‘,V)z] : 2y= ,,(y,+y)%-—,(n2——n~—)—>0,n—>0.
dx d’x  (x"7+y'?)s x'? x" g 9 B’

One might ask whether there is some other choice of variables instead of

(B;,B.) or (x, y), let (u,v) such that (1) a Bolt is at a finite point (u, v), (2) a curve
into that point is uniquely determined by the slope there, and the curve has
finite curvature there (as happens in either (B,B.) or (x, y) coordinates for a
Nut).
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The system of equations (3.22), (3.23), (3.24) takes the form:

1 o
a'= R
2 a

13. Nut - solution with cosmological constant in 3 .8

We define a new parameter o = Ae®® and then

'_la' G.':

)]
o

2 o

1,2 )2 2, P4
s(—) =p8"+B +—=--a
4(oc p 3 3

”n

a o’ , )2 ,2
— - () =-4B + p’)-%a
o a
1 o a’
B;'z—_i- ﬁ;
6 0B, Q
weseta'=H, B/ =p,, B’ =p._ ,then
H_, 2
Ler=pitepi+l-ta
o

H'=—-4a(p,” +p’)- 8§’
o

(13.1D)

(13.2)

(13.3)

(13.4)

(13.5)

(13.6)

Now, we have 3 second-order equations and 1 first-order constraint equation,

giving 5 independent parameters. If we take out one parameter for the origin of

time and two more for the regularity conditions then we are left with two

independent parameters. The solution does not scale any more.

From the constraint (3.22) it is a'’ =

wiv

] > a'=l = a=n+k . This is

the crucial difference from the case in which A=0, namely, that now a second

parameter k appears (besides 6). Then from &zZIeﬂdn = & =~ 2eken x~ 2ev
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(13.7) , close to (B,,B )=(0,0). From the equations for B, we have the usual
approximation

B’'+2B. -8B, =0 = B, =be’"=LbEe (13.8)

Then a~ L&a + Lb £e72 )0 + L3 p gre2k) < LeE+Lb, +/3b )82,

k

Now, if we scale & b,, there is no way to cancel e % such that the parameter a

scales. Many paths in (a,B,,B8 ) space, parametrized by k, give the same

projection on the (B,,B ) plane.

The parameter a is approximated by a = Ae?ke? = a’ x2Ae%e? v 2q .
So. we can consider as the second parameter of the problem the quantity

2 o' x20e% x2a .

o= Ae’ and then a ~ e
The initial data for the system (a,H,B ,B ., p,, p.) are set if g=e and then
a,=c, H,=2c, (B,), =&cosO ,(B ), =¢€sinb , (p,), =2€ecosh ,

{p ), =2&sinf .
For a, =1 we get the picture :
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If o, becomes smaller. the solutions become closer to the 8 = 60° solution. but
even for a, = 0.001 , the difference is not so significant.

If o, becomes larger then, for example, for the value o, =10 we get :

2 L2 L Ll — ¥ — 1 R .
B 110°
120" °
\5r ' so°® ]
30°
1+ 9=10° A
130°
0.5} \ 4
150"
o iso° 0
210°
—05} A
230~
-1k 350" 4
330"
p 300"
—1.5¢ 230" 7
240y 250°
_2 I ' i i . . AL
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
B,

If a, =350 then the figure becomes nearly “radial”, and as o, increases the

curves tend to become straighter, as seen from the following diagram :
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For negative value of a, (not plotted here), the range of the solutions in the

( B, .B ) plane is extremely small compared to that of an equal positive vali.

of a, .



14. Bolt - solution with cosmological constant in 8 .8

As in section 10 concerning the Bolt-solution in 8,,8 for A =0, we have

also here the approximate equations:

Br=~2B7 , a"=-2a"
Thus, a'zZL::a(n)z%Inth:a(n)—)—oo. |n|—-)0
n 2
and B,’z—a’z—Lz B‘z—ilnlnlzﬁ,awo. njl »>o0.
2n 2

The governing equations are those of the preceding section and so only two

independent parameters should remain.
From d& = 2eadn = 2e*|n|'2dn =& = i%ekl—nljf +(const. ), where the plus sign is
for n>0, while the minus for n<0. If £ —»0*at the Bolt, then n—>0'and

(4 =—§-e*nv’2. The parameter o, close to the Bolt is approximated by:

o= /ae“lnl =Ae™*n=0a= Ae™. Since B’ is one of the two parameters of the

probiem, we can consider as the second parameter the quantity o = Ae*

and then a=on, o~o. For some n, »0', we put the initial data for

(o, o',B,.8_,B!,B’) in agreement with the relations above for some fixed value

of o. For o=l the solutions in theB, — B space are shown in the following

diagzam.
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1
When the cosmological constant A increases we get the following picture for a

bigger ¢ (say 6=10) and for the same values of B’ as before.

B

135

We observe that as in the Nut case, when the cosmological constant increases,
the solutions tend to become “‘straighter’ lines. This means that the effect of A

on the solutions is similar to that of increasing the initial velocity B’.

66



15. Nut - solution witi: cosmological constant in x.y

We consider the system of equations (3.22). (3.23). (3.24) again. In x — y

variables the quantity Bf: + Bf: +§- has been evaluated in section 6, and this

is what we called there a’’ . So, the constraint becomes

H* 4 2 2
-+—-a=a,p +a.p +a,p,p +£—, (15.H
4o~ 3 - 3

where p,=x',p =y’ .a=Ae® ,H=a'.

Also —2(B’* + B'*) is the old a”, thus

H' H2 4 ) N
————+—-a=-2a,p, +a,p +ta,p,p) &
20 20 3
' 2 2 f{2 8 2
H'=-4o(a,p,” +a,p +a,p,.p )+————§a (15.2)
a

. . . . H
From the remaining two equations (6.9), (6.10) just replacing 2a’ by — , we
a

obtain
Pl =g g pr (BB — BB p." + (BB, =B, B)p” + (BB, - B,B)p. P
_’i A » S - + _’_"_ + - - + _l ap o ap 4
+ @ (Bz 35 Bz B6 )P. + o (Bz B7 Bz B7 )P 6(0B+ Bz OB_ Bz )] (15~3)

- Bl"'ﬂ-—lﬂl—ﬁ'* [(B"B; —BIVB::)}K2 +(B|’Ba _BI B;)P : +(B|’Bs - Bl ﬁ;)P.P
2 - 2
1 Jp

rn- - nt tp- - Y +
+£(B| B, - B B.)p. +"1(B| B, - B B, )p. — —( B - 2 B')] a54)
o o« 3] op_

P,
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where the various a;, B are the same functions of x,y as defined there. The
system now is (o, H,Xx,y,p,.,p.) -

If £=e”™ then the initial data are :

a,=c, H,=2c, x,=€cosf , y, = &sinb , x; = 2gcosf , y/ = 2€sinb,

where o is the second parameter of the problem, as in section 13.

For various positive values (A >0) of the parameter @, , we get various
pictures for the solutions in the x-y space.

For a,=0.1 it is

For a,=1 we get the picture:



. - -
- — P e
P e T e
- e -~
B RS S, P
< = ProaE T e
= ~-\\<\;\_» —_— T
-~ ~- l’\\; —— P
~ T el
- - e
-l -
X

where now the distances between corresponding curves (curves with the

0’s as before) become bigger.

For a, even bigger (a,=100), the solutions are as follows:
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where the phenomenon of spreading of solution becomes more obvious. This is
an agreement with the B, , B_ - description (section 13) of the problem. By
studying the preceding three pictures, it can be concluded that the three
solutions for 8=0°, 6 = 120° and 8 = 240° remain practically fixed. This also
agrees with the B,,B_ picture where these solutions are fixed straight lines at
angles =0, 6=120° and 6=240°.
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16. An approach through Ashtekar theory

Kodama has pointed out that the Chern-Simons functional S, provides
an exact solution to the Ashtekar-Hamilton-Jacobi equation of general

relativity with a non-zero cosmological constant. Louko [19] has iavestigated
Scs in the Bianchi IX spatially homogeneous cosmological model with S?

spatial surfaces. Among the classical solutions generated by S, there is a two
parameter family of Euclidean spacetimes that have a regular closing of the
Nut-type. This implies that, in this model, a wave function of the semiclassical
form e'5* can be regarded as compatible with the no-boundary proposal of
Hartle-Hawking.

The (Lorentzian) spacetime metric is

1 - : )
ds® = — [-6,0,0,p°dt* + 6, 0,0,(d')* + 6, '6,6,(6%)* + g, '6,0.(0°)*] .
T

where o' are the left invariant one-forms on SU (2)=S>. The rescaled lapse g
and the components o, of the inverse densitized triad are functions of t only
and have nothing to do with o'. The Ashtekar action takes the form
S = J.dt(-—a, A, —nph) , where the Hamiltonian constraint h(g,, A;) is given by
h=-0,0,(A A, ¥ iA)) - 0,0,(A,A, TiA)) - 0,06,(A A FiA,)+ 3Ao,0,0,

Here A =

5 - The upper and lower signs correspond to the two possible signs
967

of i in the definition of the Ashtekar connection.

The fundamental Poisson brackets are { A;,0,} = -8, , . Dirac quantization with

A; as the configuration variables leads to the Wheeler-DeWitt equation

7



ad

h(i

»A;)¥ =0, for the wave function W(A,). Given such a solution with the
9 AI

(approximate) form e’ | a semiclassical expansion shows that S (approximately)

os

solves the Hamilton-Jacobi equation h(— »A;)=0 . The wave function is

Af

therefore associated with the spacetimes obtained by solving the equations

os Oh
op=——m—, A, =n{A, ,h}=—-n—
! 0A,; 1= M AL B g f

1 i 2 2 2
The Chern-Simons action takes the form S = —E[AquAs +—;~(A|' + A~ +A)]

and solves the Hamilton-Jacobi equation. Replacing this in the two equations

above we obtain
Ao, = A,A, FiA , Ao, =AA FiA, , Ao, = A A, FiA,
A'n =—Apgo,0, Az = —Ago,0, , As =—-Ancoc, , ( =—).
dt
Going to the Euclidean case, set g=*i(0,0,0,)"'” and take all o, positive

without loss of generality. Define

o 'o,0,=La® , o,'0,0,=4b* , 0,00, =1e’ , a,be>0 (16.1)
and A; =*iB, . Then
1 1 2
Ses = i;’:[B,BZB, -~(B}+B,’ +B,")] (16.2)
and ibe=B,-B,B, , Yiea=B,-B,B, , L1ab=B, - BB, (16.3)
Bi=-%2a , B,=-4ab , B,=-12c (16.4)
Now the metric has become
1 2 I 2 2 2.2 2 2
ds® = 5dt’ + ——[a’(d')’ + b*(6°)° + 6’(a’)*] (16.5)
2r 128x%

The proper distance is £ = sz—nt' We will find the equations governing a,b,e

and compare these with the standard form of Bianchi IX equations containing a,

b, and c. Differentiating (16.3) and substituting from (16.4) we get
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82 b > a

B, =- +o——t —

L (be +bé)+a =bB, +6B, Zo 26 b 2

2t ‘ ) ) :
L(éa+ea)+b=6B, +aB, < B, =2 2.8 .2 (16.6)

[ - . 2 2 2 2

%(ab+ab)+e=a8, + bB, aze @

- € a b e

B,=———+—+—+—

2ab 2¢ 2a 2

Differentiating these once more and replacing B ; from (16.4) we find

b’c’d—2abca+e(a’ +b° —e’ )b+b@’ +e° —b’)é+ Aab’e’ =0
a’c’b+e@ +b> —e’ja—2abeb+ab’ +e’ —a’)é+ Aa‘be® =0 (16.7)
a’b’é+b@’ +e’ —b’Ja+ab’ +¢° —a’)b—-2abeé + Aa'ble =0

Now we substitute the values of B,,B,, B, from (16.6) into (16.3) and have

Aa’b’e? = 2a’bei —ac(a’ + b’ —e?)b—ab@® +6° —b? )é — a’bebé |
+(b* +e* —3a’ +2a’b? + 2a%c’ - 2b%e7)

Aa’b’e? = —be(@’® +b® —¢” )a+ 2ab’eb — ab(b’ +e’ —a’ )é — ab’caé
+@* +e* - 3b* +2a%°p® +2b%e® —2a%6?)

Aa’b’e? = -be(a’ +e’ —b’ )a—ae(b® +e° —a’ )b+ 2abe’é — abe’ab
+@* +b* ~3e* +2a%? +2b°c” —2a%b?)

q (16.8)

Using (16.8) we eliminate in (16.7) th# terms linear in a,b,é and thus obtain

e b‘é

E__.+_-2—’2—7(b" +e' —3a* +2a’b? + 2a%e? -2b%c?)=0
a be a‘b e

3-33+—2—’2~2—(a‘ +e* —3b* +2a°b® +2b°c? ~2a°6* ) =0} (16.9)
b ae a‘b‘e

i_ﬂ+_2_lz_-_(a4 +b* - 3¢* +2a%¢? + 2b%c¢? ~2a°b? ) =0
e ab a’b?e?

J

We can take the form of this system with the time variable being the proper

. {,é . . .
distance £ The only difference is that the term E——g; (and similarly in the
a

I
other two equations) will be multiplied by the factor —— , and the time
T

differentiation will be with respect to &
From system of equations (3.3), (3.4), (3.5) governing the three usual scale-

factors a, b, c with A # 0, and using the constraint equation (3.6) we find exactly
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the system (16.9) for a, b, c instead of a,b,e except that the differentiations are
with respect to & Then it is obvious that

a=8/2na , b=8J/2nb , e=8V2nc (16.10)
and the metric takes the common form ds® = dé* + a’(d)? + b’ (6*)* + c*(c*)%.

The simple algebraic form of S gives the correct equations. It is

tempting though try to express S.; with relation to a, b, ¢ (in a closed form)
instead of B ,B,, B, . After a few calculations, system (16.3) takes the equivalent
form :

B, ~1AabB,' — 2B + L lab(l — tAe*)B,’ + (1 — LA%e*(a@® + b*))B, = 1 dab(l + A¢%)

a+bB3
;=3

b+aB3

2

B, =L2e (16.11)

N

For the fifth-order algebraic equation for B, it is not possible to find the
solution explicitly.
Let us define the Misner variables as :

a =t 3B~ , b= e Pen 38 e=e% 2P+ (16.12)

b4 ?

where the scale factors of anisotropy B,,B have exactly the same numerical
value as the usual ones, while a differs from the usual o by the additional
constant ln(8\/§1t).

If we define the variable & =21e2 instead of a, and express system
(16.11) in &, B,, B variables we obtain
B, ~ jae™™ B, 2B +La(e’™ - Lae™™)B,” + (1 - La’e " cosh(23B_))B,

‘ -LlaE®™ +Llae?)=0
-B, e - p e B,

B,=lae .
e 1- B}
-3 7.
3 + B
B, =Llae P S 1 ; 3 (16.13)

3
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Now the cosmological constant has disappeared. For some constant &, we can

Plot B; = Bg(B,sB,)s Bg = B:(,B, -B_ )9 B‘ = B|(B',B ) and then

. - 2 2 2 B ByB3-L(B, +B,° +B;2
iAScs = ¥[B,B,B, —%(B,’ + B," + B,)] and  w =g P28 j(B7 +B2 74837

. ! -
as functions of B,,B, where W=¥*  and ¥ is the wave function

approximation. Doing this for @ = -10 (A <0) we get the picture

p’ 60

where the positive sign in the exponential has been used. Then for every

|
4 <0 the wave function ¥ = ¥'* will have a wave packet shape as follows

Varying the value of the cosmological constant, we observe that the peak is
sharper when |4]is smaller. It is interesting to note that W has the familiar form

as before, but the method used now does not soive differential equations but

only algebraic ones. This deduction is due to Ashtekar theory.
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For 2>0, Y does not appear to have a peak but changes monotonically with
B..B (at least for &« =01, 1, 10).
We come back to the systems (16.3), (164) to find a solution at the limit

of small anisotropy. If we define furthermore F,g ,g by

B, =L1Fef*"% B =LlFef+ % B =1lFpe 2% (16.14)

and expand to linear order in B,, g, then

| R P
Ae® = F2 - F)

) (16.15)
(Fg,) =-1e"B,
Ae®B, =-F2 + F)g,
For A > 0, the solution is
ea = ﬁsin( Jap
=] 2 2 -’_ 2 L
B. =B, )(2 +tan?( 4 Japtan?( £ Jan 1616)

F =1 + cos( th)
8. =B, )tan*( 4 Jn

. . 4
where (B, ), are constants of integration and 0< ¢ < —‘/—7 .

For A <O0. there are two solutions. One is given by (16.16) understood in the

sense of analytic continuation in A with 0 <t < . The other solution is

ea = ﬁsin( V=20
B, = (v, h(coth?(4J=2t) - 2)cothz (L /-2
F =1 - cosh( \/_—_/'\_.t)
g. = ~(v Jocoth* (421

(16.17)

where (y, ), constants and —0 <t < o0,

It can now be verified that inserting the linearized solution (16.16) into
the initial metric ansatz gives a Euclidean metric that car be regularly extended
to ¢t =90 by adding just one point to the manifold : one can view the new point
as the coordinate singularity at the origin of a hyperspherical coordinate system
in which t is the radial coordinate. Since t — 0 is the limit where the linearized

solution is accurate, we see that the corresponding exact metrics can be
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similarly extended to t = 0. Then, the closing of the geometry at t =0 is of the
Nut-type. This regular closing of the geometry is precisely the property
characterizing the classical solutions that are relevant for the no-boundary
proposal of Hartle and Hawking. in the sense that wave functions satisfying the
no-boundary proposal are expected to get their dominant semiclassical
contribution from one or more such regular classical solutions. Therefore in this
model, a wave function of the semiclassical form e'%* is compatible with a

semiclassical estimate to the no-boundary wave function.
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17. Bianchi IX model coupled to a massless scalar field

If matter is included in a model for the Universe then the action of the

system is I =1, + I, where

I, =-[Je(“R-20)0*x +1, , I, = [Jelod*x a7y
The numerical factor ﬁ has been omitted for simplicity. The field & is
considered constant on the surfaces of homogeneity and so @ = ®(n). The

Lagrangian L, is a function of & and its derivatives.

For a free scalar field it is by definition
I = [d*xg(-0 L @+ m? 3;-) (17.2)
and since J'd‘x\/;d) Nep = Id‘xwu(J;g“vav¢) =—Id"x‘/;g“"¢_“d>_v =
Is = [a*xg(e""® 0, + m’ 27)
= J-d"x\/_g—(%e'zatb'z +ngi?i
= i‘j;sinedeﬁndtp ﬂndw IZe‘zae“(%e_zatb’z + m? %?—)dn
=8n’ [dn &% (@2 + 2m*p?e ) 17.3)
Equation (17.2) contains the surface term

- .“d ¢ X0, ((D\/; g o,d)=-16n’ Id&(e **®dd)”, so the surface action I s» €q. (3.14),

should be modified in order to cancel this new surface term of I.

So,

> 2 .’ d
I=6n"[(B;" +B! ~a'* - B+ 302 )e®dn +gn’ (07 + 2m @™ )e ™ dn
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=2r° _[Ldn . with

L=3B +p’ —a'?- % + 302 4 42 + 2mi D)™ (17.9)

This is the Lagrangian of the system and evaluating the various derivatives of L

we get the Euler-Lagrange equations :

ﬁ£'=—;‘$“—3 B! (17.5)
OB+

a"=-2B + B H-2Pe® -’ —Emieie™ (17.6)

" =--2a'® +2m'el P 7.7
and the constraint -

B+ B’ -a’+4e?+ g 24" —Emieie™ =0 (17.8).

We are only interested in the case with A=0, m=0. Then the equation

(17.5) remains unchanged while the others become :

a" =B + p7)-§o'” (7
(D" =_2al¢l (|7.10)
B +B*-a’+30?+8=0 (1710

We have four 2nd-order equations plus one Ist-order constraint , giving 7
independent parameters : a,B.,B..B .B',P,P’. Again, we take out one
parameier each for the origin of the time, for the scale, and for the origin of @

(since only @’ enters into the equations). This leaves 4, just as in the case of the

cosmological constant. Regularity at the origin takes out 2 more, leaving 2 at

last.

If set p, =B, ,H=a',g=¢', then:

p. =—2Hp, _1 % (17.12)
B 6 api_

H'=-2(p, +p’)-8g° , (17.13)

gv = __2Hg (17.14)
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H'=p'+p’+2+4g7 (17.15)

Equation (17.10) is equivalent to (e?*®’) =0 = ¢’ = ce?* (17.16)

. . . . dd
Regularity at a Nut origin means B; =0 , near the center, and — — 0 , thus

£-»0

— 0. So, the constraint (}7.11) becomes a'* x1=>a’*1 =a=xn,
£ »0

@ =

'k
E3FS

and from (17.16) one has c¢=0. Thus, ¢ =@, = constant, everywhere.
The relation between § and n in this region, is found by

dé =2e’dn=dE ~ 2e"dn =& ~2e" and so for n— -0 =>& > 0*. If g=e°™,
the initial conditions are : (B,), = €cos@ , (B.), =¢€sinf , (p, ), = 2ecosf ,
(p ), =2¢&sin@ , H, =1 , g, =0. The second parameter of the problem, namely

the value @, of the scalar field, does not enter into the equations (17.12), (17.13),
(17.14), so there is only one configuration of solutions, shown in the following

picture

v

0.5

+W

We observe that this picture is very "similar (slightly different), even

quantitatively, to the case where no field is present (section 7).
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18. Bianchi IX model conformally coupled to a scalar field

For the action term I, of equations (17.1) it is
Iy = jd"x‘/;(d) ZO+LYRP — pPd*) (18.1)
=— J'd‘x\/;(g"%,“ ®D,,~+ RO + p D7)

=-321° J-e“(%e_zadi'z ~LORGT +p70%)dn (18.2)

From equation (3.8) for the Ricci scalar we have

(-ﬂR______

>3 @”+a*+ 7+ B+ R(a.B..B.)
e

So, I, =-8n° I[?——Z a®

e d

2 z 2 2 >
~a’”? +B! +B' —ZRe? + 40’0’ W e dn
- 3
As in the case of section 17, I also here, takes a different form in order to
cancel the two surface terms coming from @ {5® and (1/6)“’R<1>2 in (18.1).

The total action takes the form

2 2 12 12 2 r2 'y 2a
I=27" [[((3-4@%)B. +B! ~a'’)-40'% +80a'd’ —p+4Ae

8 (18.3)
+5(3)R¢2e2a _ Iépz(p.era ]ezadn
4
It is E‘3’12(15282"' =—pd’ = -p +§(3)R¢2820 = ——2(3 - 49?%)
3 3 3 3
Varying the action, the Euler-Lagrange equations arise :
Br=-20p; - L9 , 82 4 (18.4)
6 0B, 3-4d?
> 2 4 ’ " ) 2a ¢4

a” =-2(B"+B7)+ 120 § 3PO7__ 44 +16p%e®® (18.5)

3—4d® 3-4P* 3- 4P° 3- 4
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where we have used the constraint equation

(3-40* B’ +p'° — 49’ +8da’'d' + p — 4N — gpsz +16p°®'e?®* =0
(18.6)
and the equation for @ is :
D e +2%8 gt pr el gprere g (18.7)
<D 3
Solving algebraically the system of equations (18.5), (18.7) for a”,P" we obtain
1-2¢? 4'? - 12 ) 8P
a"= 6 l’ I )+ " a!- + ¢I I¢I
3-8¢° EErr oL 3 - 82 3-8p° . 8d*
4Ae? o, 4p @°
_A4e — 4 48 - ple?® LA (18.8)
3-8¢° 3-89 3 3-8d°
and substituting a’* from the constraint, we get
9 - l 6 2 ” 8
=-2B*+p7)+4 S ———(—’%a'@
(3 —49°)(3-8¢%) 3-49
12Ae%® 16p° @ (9 ~ 8p*
- e, e e 0°59) (18.9)
(3- AD*)(3-8d*) (3 — 4d*)(3— 8P7) A
Similarly,
8 :__ 8 2 249°
P'=-20'PD + ——no P’ — — Ae*® + —— p?e’? 18.10
3-89 3-84° 3—8¢2p (1510

So, the full system of equations we have consists of (18.4), (18.6), (18.9), (18.10).
We are only interested in the case A=0, p=0. Then we have
1 0p 8b
+ 2
6 o, 3—-4d

B'=-2a'B, - D'B! 18.11)

49 —-160?) s 8¢
a”"=-2(8'"+ B+ PP -— g’ 18.12
B+ B (3- 49%)(3-8d%) 3- 4¢? (18.12)
D' =-2a'd" + —5‘9—;¢'2 (18.13)
3-8d
4
a’? =BIZ+BS’+£— @'’ 8 a'd’ (18.19)

2 Am? NPT
3 3-40 3-49
The scaling, the time translation, the constraint and the two regularity

conditions lead to three independent parameters.
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As in the previous section, regularity at the origin gives @' — 0. Supposed
L0

that @ does not approach the values iT3 close to the Nut, then we get from

equation (I18.14) that a’=1 , and from (18.11) that B, zb,e"". If we set, as
usually, p, =B, , H=a' , g=®', then we have a first-order differential

system for (H,B,,B_,p,.p ,P,g). The initial values of B,.p, are the usual
ones. The initial value of the scalar field ® cannot be determined elsewhere,

and giving to that various values, the following figure arises (with non-

remarkable differences observed between figures with different values of @, ).

Now, as it is easily seen, the solutions do not stay close to the three symmetry
directions and the figure becomes nearly “radial”, as in the case of the

cosmological constant.



Conclusion

A lot of important work on the study of relativistic Bianchi-IX model has been
done by various people. The significance of this model and its chaotic behavior,
approaching the singularity, were revised. The action and the dynamical
equations governing the Euclidean Bianchi~-IX model were derived using various
time parameters. When the Universe shrinks to zero volume, the Nut and the
Bolt boundary conditions arise, and the asymptotic form of the various
quantities was stated. Closed expressions of the self-dual actions corresponding
to the (asymptotically Euclidean but singular) BGPP and/or the (regular at the
center) AH solutions were extracted. A new set of dynamical variables was
introduced, mapping the entire plane of the two anisotropy scale factors into a
finite triangular region. Approximate solutions, close to the Nut, were obtained
and they supplied the correct initial data for the full system of the differential
equations. This way, the numerical solutions and the first-order approximation
of the Hartle-Hawking no boundary wavefunction were obtained, with the
expected properties (three-fold symmetry of the potential, peak at the center)
verified. The Euclidean Hamilton-Jacobi equation contains the BGPP action as
solution and its semiclassical wavefunction coincides with a canonical
quantization solution, given in the bibliography. For the simplified first-order
differential equations of the regular (AH) self-dual case, results were given, in
agreement with the previous ones. In the Bolt case, with or without a
cosmological constant, the time derivative of one of the two anisotropy scale

factors was found to be able to serve as a parameter in the space of solutions
and the figures of such solutions were given. The role of A is similar to that of

increasing the initial value of that velocity. In the Nut case, the presence of A

makes the solutions spreading, in either the infinite or the finite region
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parametrization of the anisotripy. The application of the Ashtekar theory to the
Bianc’:i-IX model uses the Chern-Simmons action to provide a solution for a
nonzero cosmological constant. Transforming the system of the Euclidean
equations from the Ashtekar variables to the wusual scale factors, the
equivalence of this description with that of general relativity was confirmed
for this model. The difficulty in solving the system of differential equations of
general relativity is transformed into the difficulty in solving an algebraic
system of equations for the Ashtekar variables in terms of the usual scale
factors. Solving implicitly such a system, the figure of the CS action and of the
wavefunction were found to agree with the previous figures. The coupling of
the Bianchi IX model to a massless scalar field does not bring any significant
difference to the configuration of the solutions, while the conformal coupling

to a scalar field makes the solutions spreading.
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