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Abstract

Antimicrobial resistance is a growing global health crisis that requires an interdis-

ciplinary approach to better understand and combat. Physics-based modelling has

provided valuable insights into the underlying mechanisms of antimicrobial resistance

and the quantitative behaviour of resistant cell populations. Antimicrobial resistance

can arise through genetic mutations and from non-genetic mechanisms that arise due

to underlying stochastic physical processes which occur during gene expression. Non-

genetic resistance results in phenotypic heterogeneity in genetically identical cell pop-

ulations, which enables a fraction of the population to survive during drug treatment.

Although genetic and non-genetic mechanisms have been investigated individually, it

remains unclear how non-genetic resistance alters the evolution of antimicrobial re-

sistance. In this thesis, physics-based methods are used to develop and analyze a

phenomenological model of cell population dynamics to investigate the evolution of

antimicrobial resistance during drug treatment. The model quantifies the transition

from reversible non-genetic resistance to permanent genetic resistance and is used to

make quantitative predictions about antimicrobial resistance evolution in cell pop-

ulations. A deterministic framework that utilizes population growth equations is

used to investigate regimes where stochastic fluctuations in population dynamics are

negligible and standard numerical methods are used to solve these equations. In

regimes where stochastic fluctuations play an important role in the population dy-

namics leading to antimicrobial resistance, the model is reformulated in a stochastic

framework as a set of continuous-time stochastic processes and simulated using Monte

Carlo methods. The structure and parameter values of the model are guided by ex-
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perimental studies of non-genetic and genetic antimicrobial resistance in fungi, with

parameter scans being used to investigate changes in subpopulation fitness and their

effect on the survival and evolution of the population. The research presented in

this thesis supports previous experimental and qualitative findings of antimicrobial

resistance evolution by showing quantitatively that non-genetic resistance aids the

survival of cell populations undergoing drug treatment and increases the probability

of an antimicrobial resistance mutation appearing in the population. Additionally, a

novel hypothesis about the evolution of antimicrobial resistance in cell populations

is suggested, namely that increased survival due to non-genetically resistant cells re-

sults in intraspecific competition between subpopulations and hinders the evolution

of antimicrobial resistance. The research presented in this thesis has advanced our

understanding of antimicrobial resistance by providing a quantitative framework for

investigating the transition from non-genetic to genetic resistance.
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Preface

The work presented in Chapter 2 was previously published in the journal Physical

Biology (Joshua D Guthrie and Daniel A Charlebois, “Non-genetic resistance facil-

itates survival while hindering the evolution of drug resistance due to intraspecific

competition”, Physical Biology 19 066002, 2022) [1]. I presented early findings of

the work at the 2022 APS March Meeting, with my presentation titled “Phenotypic

Heterogeneity Facilitates Survival While Hindering the Evolution of Drug Resistance

Due to Intraspecific Competition”. In addition to the work presented in this thesis,

I co-authored a textbook chapter on applying machine learning to the study of an-

timicrobial resistance and drug development (“Machine Learning for Antimicrobial

Resistance Research and Drug Development”, Shamanth A. Shankarnarayan, Joshua

D. Guthrie and Daniel A. Charlebois, The Global Antimicrobial Resistance Epidemic

- Innovative Approaches and Cutting-Edge Solutions, IntechOpen, 2022) [2].
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Chapter 1

Introduction

“Everything should be made as simple as possible, but no simpler.”

- Albert Einstein

1.1 Antimicrobial Resistance

1.1.1 A Global Health Crisis

Antimicrobial resistance (AMR), defined as a decrease in the sensitivity of microbes

to antimicrobial drugs, has resulted in a growing global health crisis [3, 4]. AMR

occurs when microbes (such as bacteria, fungi, and viruses) no longer respond to

antimicrobial drugs [3, 4], which have played a significant role in the development of

modern medicine [3–5]. It has been estimated that AMR will result in more than

10 million deaths per year by 2050 if preventative measures are not developed [4].

Additionally, AMR places a significant burden on healthcare systems and has ma-

jor economic and social implications [6, 7], with an estimated loss of global capital

between $300 billion to $1 trillion by 2050 [7] and a significant increase in poverty,

especially in under-developed countries and among marginalized groups [7, 8]. In

Canada, healthcare costs related to AMR are currently estimated to exceed $1 bil-

lion per year and are projected to reach $120 billion per year by 2050 [8]. The

medical, societal, and economic burdens that AMR causes has led to an extensive

global research effort to better understand the underlying mechanisms and evolution
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of AMR, with contributions from many disciplines. Physics has played an important

role in understanding AMR, with biophysicists providing a robust understanding of

the underlying molecular mechanisms responsible for AMR [9], along with providing

quantitative frameworks for investigating AMR phenomenon, such as AMR evolution

in cellular populations [10, 11].

1.1.2 Taking a Physics-Based Approach to Study the Evolu-
tion of Antimicrobial Resistance

Biophysics research is particularly interested in understanding biological phenomena

through the application of physical theories and methodology. The physics method-

ology of producing mathematical models to predict the behaviour of complex systems

that can be tested experimentally has led to a robust, quantitative understanding of

many biological mechanisms on a variety of scales, from the molecular level of bio-

logical molecules [9, 12, 13] to the macroscopic scale of interacting organisms [11, 14,

15]. Biophysical investigations have provided invaluable insights into the molecular

mechanisms of AMR, especially through the application of statistical mechanics and

other physical theories to the study of gene expression and genetic networks [9, 16–

18], and in understanding the behaviour of larger-scale biological systems through the

application of mathematical modelling and computational methods commonly used

in physics [10, 11, 19, 20]. The latter is the approach taken for the research presented

in this thesis, where we have aimed to better understand the evolutionary dynamics

of AMR at the cell population level using predictive modelling and computational

methods commonly used in physics.

The evolution of AMR due to genetic mutations within cell populations is a well-

understood phenomenon, with a long history of major advancements using both ex-

perimental and theoretical frameworks [21–23]. The development of AMR due to

non-genetic mechanisms is increasingly understood, although not to the extent of ge-

netic mutations in terms of cell population evolution [10, 20]. While these mechanisms
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have been studied individually, it remains unclear how non-genetic mechanisms may

alter the course of AMR evolution at the cell population level [10, 20]. Understanding

AMR evolution in heterogeneous cell populations is crucial for developing strategies

for treating drug-resistant infections, as infections occur due to pathogenic microbes

that grow alongside and interact with other cells, forming large populations of cells

where the collective behaviour of the population can have a significant impact on the

severity of infections and the evolution of AMR [24, 25]. Additionally, heterogeneous

cell populations exhibit large-scale behaviour that would not be evident by study-

ing AMR at the single-cell level or in homogeneous populations, such as impacting

the overall evolution of AMR through competition between susceptible and resistant

cells [24–26].

Developing a quantitative framework that can be used to predict the evolution of

AMR in cell populations that exhibit genetic and non-genetic AMR is the main goal

of the research presented in this thesis, the results of which are presented in Chapter

2. By taking a physics-based approach to studying AMR through the development of

quantitative frameworks for investigating the evolution of AMR in heterogeneous cell

populations researchers may be able to predict the development of AMR and describe

quantitatively how AMR evolves over time [10, 11, 19, 20]. Quantitative models of

AMR evolution also have the potential to guide medical treatments of drug-resistant

infections and diseases in humans by providing a predictive method that can be used

to alter treatment strategies [11, 19, 27], a topic that is discussed further in Chapter

3 of this thesis.

In the remainder of this chapter, I give an overview of gene expression, including

stochasticity in gene expression that occurs due to underlying physical processes and

which plays a significant role in the development of non-genetic AMR. This is followed

by an introduction to mechanisms responsible for cells becoming drug-resistant, which

is important for understanding the cell population-level characteristics that arise from

them. These mechanisms are then related to biological evolution at the cell population
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level. Next, deterministic and stochastic models of cell population dynamics, along

with the computational methods required to simulate them, are discussed. Chap-

ter 2, which was previously published in the journal Physical Biology [1], presents

a quantitative model to investigate the evolutionary dynamics of a cell population

under the effects of antimicrobial drugs. The model is based on the AMR literature,

which was used to tune the overall mathematical structure and parameter values of

the model, with a particular focus on yeast due to their extensive use as model organ-

isms [28–30]. Additionally, the mathematical formulation of the model was inspired

by compartmental models that have been successfully applied in other fields, such as

infectious disease modelling in epidemiology [31]. The model, which incorporates cell

population-level characteristics of AMR that arise due to the mechanisms discussed

in this chapter, is expressed both as a deterministic set of population growth equa-

tions and as a discrete system of stochastic processes. Computational methods are

used to simulate the model in each of these frameworks. The resulting simulations are

then analyzed to make novel predictions about the effects of non-genetic resistance on

the evolution of AMR and to support previous experimental and qualitative findings.

Chapter 3 concludes the thesis with a summary of the research, a discussion of the

limitations of the model presented in Chapter 2, and my thoughts on future directions

for the field.

1.2 Gene Expression

1.2.1 Genetic Information and Gene Expression

At the molecular level, cells are made up of molecules that are responsible for carrying

out different biological processes within the cell [32]. The nucleic acids deoxyribonu-

cleic acid (DNA) and ribonucleic acid (RNA) are responsible for storing and encoding

information within cells and are of particular importance for the replication and use

of genetic information [32, 33]. Genetic information contains the instructions (the
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genetic code) required to create the biological molecules that carry out functions

within cells [32–34]. This genetic code is separated into genes, which are sequences

of nucleotides that encode the information required to translate DNA into RNA [32].

RNA can carry out specific processes in the cell or be used as a template for the

creation of proteins (in the latter case, the RNA is referred to as messenger RNA or

mRNA) [32]. Proteins are complex biological macromolecules that carry out a vast

number of essential processes within cells, including (but not limited to) catalyzing

biochemical reactions, providing cellular structure, transporting molecules, respond-

ing to stimuli, and replicating DNA [32]. Gene expression, which is the process of

translating mRNA into specific proteins from genes encoded in DNA (represented by

a promoter, the regulatory region of DNA that precedes the gene) through the tran-

scription of DNA into mRNA (also referred to as the “central dogma” of molecular

biology [33]) [32]. This process is shown visually in Figure 1.1 as a phenomenological

model of gene expression [16, 35].

Figure 1.1: A phenomenological model of gene expression [35]. A gene encoded in
DNA, represented by its promoter A, is expressed through transcription into mRNA
(M) at a rate sA, which is then translated into a protein (P ) at a rate sP . mRNA
and proteins degrade at rates δM and δP , respectively. Figure inspired by Figure 1
in [16] and Figure 1A in [35].

Cells that contain the same genetic information are said to have the same “geno-
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type”, while cells that possess the same observable physical and biochemical charac-

teristics are said to have the same “phenotype” [36]. Changes to the genetic code, for

example through genetic mutations, can result in different phenotypes [37]. Having

the same genotype does not necessarily produce the same phenotype - gene expres-

sion levels among genetically identical cells can vary due to intrinsic stochastic effects

and extrinsic environmental conditions, leading to phenotypic variations among ge-

netically identical cells [16, 38–40]. The intrinsic gene expression “noise” that arises

due to the underlying physical processes of gene expression is described further in

Section 1.2.4. Figure 1.2 illustrates the relationship between gene expression noise

and protein levels, showing how differences in protein levels can lead to phenotypic

variations in genetically identical cells [16, 38].

Figure 1.2: Gene expression (Figure 1.1) occurs due to discrete biochemical reactions
which are intrinsically stochastic, leading to variations in gene expression among
genetically identical cells [16, 38]. Stochastic variations in protein levels due to gene
expression noise can result in phenotypic variation among genetically identical cells.
Figure inspired by Figure 1 in [38].

For a more in-depth review of the information covered in this section, see standard

biology textbooks such as [32]. For similar information placed into the context of

physical biology, see textbooks such as [41].
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1.2.2 Two-Stage Model of Gene Expression

The process of gene expression illustrated in Figure 1.1 can be modelled as a bio-

chemical reaction system that determines the molecular levels of mRNA and proteins

within the system [35]. A common formulation of this model is referred to as the

“two-stage” model of gene expression [35]. Although this model simplifies the com-

plex biochemical reactions involved in gene expression [35], it provides a reasonable

approximation in some cases and can be useful for investigating important dynamics

involved in the expression of genes [16]. The reactions of this system can be described

by the following set of reaction equations [42]:

A
sAÐ→ A +M (1.1)

M
sPÐ→M + P (1.2)

M
δMÐ→ ∅ (1.3)

P
δPÐ→ ∅ (1.4)

where A represents the promoter of a given gene, M denotes mRNA, and P denotes

proteins [35, 42]. Equations 1.1 and 1.2 represent transcription and translation with

reaction rates sA and sP , respectively, and Equations 1.3 and 1.4 respectively rep-

resent the degradation of M and P with reaction rates δM and δP [35, 42]. In this

model, a single promoter A is considered, while the number of M and P molecules

change when reactions occur [35, 42]. These equations are first-order chemical reac-

tions and a deterministic approximation of the system can be obtained by applying

the empirical law of mass action [43], resulting in a set of coupled ordinary differential

equations [42]:
d[M]

dt
= sA − δM[M] (1.5)

d[P ]
dt
= sP [M] − δP [P ] (1.6)

where [M] and [P ] denote the concentrations of mRNA and protein, respectively.

The term sA denotes the rate of mRNA production, which is constant due to only a
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single promoter (A) being present [35, 42]. sP [M] defines the rate of protein synthesis,

while δM[M] and δP [P ] are the rates of mRNA and protein dilution and degradation,

respectively [35, 42]. Although these equations can provide an accurate approxima-

tion when molecular populations are large and stochastic fluctuations are negligible,

they fail to capture the underlying stochastic behaviour of the reaction system when

molecular populations are small and stochastic fluctuations may significantly affect

the dynamics of the system, which is often the case for gene expression [16]. The

deterministic formulation is therefore insufficient to describe gene expression noise

and the system must be formulated using stochastic chemical kinetics.

1.2.3 Stochastic Chemical Kinetics

Gene expression relies on biochemical reactions where the number of molecules in-

volved in these reactions varies by discrete integer amounts and these molecules un-

dergo physical interactions with each other and their environment [16, 35, 42, 44].

Biochemical systems are generally considered to be in thermal equilibrium (but not

chemical equilibrium), resulting in a random distribution of molecules throughout

the volume that contains them [42, 45, 46]. In the formulation of stochastic chemi-

cal kinetics, the reaction environment is assumed to contain underlying fluids and is

well-stirred, which results in random movement fluctuations of the reacting molecules

due to Brownian motion [44, 47]. Brownian motion arises from random non-reactive

collisions with other molecules in the system, in particular the fluid molecules which

have random motions due to thermal fluctuations and non-reactive collisions with

other molecules [44, 47]. Reactant molecules must collide with each other for a chem-

ical reaction to occur and the physical interactions in the system lead to random

collisions [45–47]. These random collisions result in stochastic timing of reaction

events and, therefore, stochastic molecular levels [45–47]. Stochastic chemical kinet-

ics is formulated by determining the statistical behaviour of these collisions through

the application of statistical mechanics to the reaction system and can be used to
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describe the stochastic nature of the system [45–47]. This is achieved using a fi-

nite differential-difference equation that describes the time evolution of the reactant

species in the system [44, 45]. For chemical reactions, this equation is referred to

as the chemical master equation (CME) and its solution is referred to as the grand

probability function (GPF) [42, 44, 45, 47].

A reaction system contained within a volume V can be defined by N reaction

species {S1, ..., SN} and M possible reactions {R1, ..., RM} which occur with reaction

constants {c1, ..., cM} [47]. The state of the system can be described by a vector

of independent integer variables X(t) = x = [X1, ..., XN] containing the number of

molecules Xi of each species Si at some time t [47]. Each reaction Rj can change

the system, and state change vectors vj can be defined which contain the change in

population numbers of each population Si for every reaction Rj [47]. Propensity func-

tions aj for each reaction Rj, where ajdt describes the probability that a reaction Rj

will occur in the infinitesimal time interval dt (the fundamental premise of stochastic

chemical kinetics [47]), can be defined as aj = cjhj where hj is the number of distinct

molecular reaction combinations for Rj in the system at time t and cj is defined as

cjdt being the average probability that a particular combination of reactants of Rj

will occur in the infinitesimal time interval dt [45, 47]. The mathematical form of

the reaction constants cj and combinations hj are defined based on the underlying

physics of the system (generally through the application of statistical mechanics [47])

and change based on the order of the reactions that they describe, but for first-order

reactions hj is always equal to the population size of the reactant species of Rj and

cj is equivalent to the empirical reaction rates defined in the deterministic formula-

tion of chemical kinetics described by the law of mass action [45, 47]. For a reaction

system defined in this way, the GPF takes the form p(x, t), which is a probability

density function of the time-dependent variable x = X(t) and describes the proba-

bility that the system will consist of X1 molecules of S1, X2 molecules of S2, ..., and

XN molecules of SN at time t in the volume V of the system [45]. The CME can then
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be defined as [47]

∂

∂t
p(x, t) =

M

∑
j=1
[aj(x − vj)p(x − vj, t) − p(x, t)aj(x)] (1.7)

which analytically describes the time evolution of the GPF and the stochastic nature

of chemical reaction systems (see [47] for a full derivation of the CME based on the

microphysical foundations of chemical kinetics). To write the CME more concisely

for particular systems, the step operator Ek
Xi

can be defined as [42]

Ek
Xi

f(Xi, Xl) = f(Xi + k, Xl) (1.8)

which describes the removal or addition of k molecules from species i when a given

reaction occurs [42, 48].

The CME can be written as a set of ordinary differential equations in t, but the

number of equations required to describe a given reaction system is comparable to

the number of combinations of molecules in the system, making analytical solutions

of the CME generally impossible in biologically realistic scenarios and the use of

standard numerical methods difficult [45–47]. Although approximation methods exist

to investigate the CME analytically, such as using the Fokker-Planck equation to

approximate the CME [49], Monte Carlo methods are the standard approach for

investigating stochastic systems described by the CME [45–47]. Monte Carlo methods

for simulating stochastic reaction systems are discussed further in Section 1.4.4.

1.2.4 Gene Expression Noise

With respect to gene expression, noise refers to the stochastic variations of mRNA

and protein levels among genetically identical cells in the same environment [16, 42].

These fluctuations arise due to the underlying stochastic biochemical processes that

occur during transcription and translation [16, 42]. This in turn can lead to stochastic

phenotypic variations among genetically identical cells (or “phenotypic heterogene-

ity”) [16, 38, 50]. A common quantitative measure of noise in gene expression is the
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coefficient of variation (CV), which is defined as the standard deviation σ divided by

the mean and describes the relative deviation from the average of a distribution [16,

42]. Another common measure is the fano factor (or noise strength), defined as

the variance σ2 divided by the mean, which can provide additional information that

might be missed when using the CV due to the inverse square root scaling of noise

that is often present in stochastic systems (e.g. in “translational bursting”, where

the amplitude of protein fluctuations depends on the number of proteins produced

per mRNA [16]) [16, 42, 51]. Through the application of stochastic chemical kinetics,

statistical properties of mRNA and protein levels can be investigated [35].

The two-stage model of gene expression discussed in Section 1.2.2 is relatively sim-

ple (as it contains only a small number of populations and reactions) and analytic

methods have been used to investigate it [35]. Of particular interest are the moments

of the GPF for the system with respect to each molecular species, with the first

moment corresponding to the average number of molecules ⟨ni(t)⟩ of species i and

the second moment describing the variance σ2
i (t) = ⟨n2

i ⟩ − ⟨ni⟩2 [35, 42]. These mo-

ments can be used to quantify the noise of the system in terms of mRNA and protein

population levels. The GPF for this system is defined as p(M, P, t) and by apply-

ing Equation 1.7 (using the step operator defined in Equation 1.8) to the reactions

described by 1.1-1.4, the CME of the system can be written as [35, 42]

dp(M, P, t)
dt

= sA(E−1
M − 1)p(M, P, t) + sP (E−1

P − 1)Mp(M, P, t)

+δM(E1
M − 1)Mp(M, P, t) + δP (E1

P − 1)Pp(M, P, t)
(1.9)

which defines the time evolution of the GPF that describes the stochastic mRNA and

protein levels [35].

To investigate the statistics of the system when it has reached a steady state (when

the rate of change of each population is zero, denoted M s and P s), analytical methods

have been applied to determine the first and second moments of the GPF with respect

to M s and P s [35]. The first moment results in the average steady-state population
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numbers for M s and P s, giving [35, 42]

⟨M s⟩ = sA

δM

(1.10)

⟨P s⟩ = sAsP

δMδP

= ⟨M s⟩sP

δP

(1.11)

which are the same values that would be found by setting the deterministic rate

equations (Equations 1.5 and 1.6) to zero and solving for M and P , showing that

the deterministic rate equations can approximate averages of the GPF [16, 35, 42].

M production and decay is fully described by Poisson statistics and therefore the

steady-state variance of M s is equivalent to its mean (i.e, (σs
M)2 = ⟨M s⟩) [35, 42].

The variance of P s is determined by calculating the second moment of the GPF with

respect to P s and results in [35]

(σs
P )2 = ⟨P s⟩(1 + sP

δM

) (1.12)

The means and variances with respect to M s and P s can be used to quantify the

noise of the steady-state system. Defining the steady state CV for each population i

as CV s
i , we have

CV s
M =

σs
M

⟨M s⟩ =
1√
⟨M s⟩

(1.13)

and

CV s
P =

σs
P

⟨P s⟩ =

¿
ÁÁÀ1 + sP

δM

⟨P s⟩ (1.14)

which shows that the steady-state noise of the mRNA and protein distributions fall

off to the inverse square of the population sizes, a result that is common for stochastic

processes [16]. This implies that noise becomes negligible when molecular reactant

population sizes are large (enabling the use of deterministic rate equations) but can

be significant when population sizes are small (which is often the case during gene ex-

pression) [16, 47]. In the latter case, the use of stochastic chemical kinetics is required

to accurately model the dynamics of the system. For models more complicated than

the simple two-stage model, Monte Carlo methods are generally required to simulate

trajectories of the GPF [45, 47].
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The macroscopic phenotypic implications of the molecular level processes that re-

sult in gene expression noise have been studied, showing that noise in gene expression

can result in phenotypic variances among members of genetically identical cellular

populations [16, 38]. Gene expression noise has also been shown to be modulated by

gene expression networks, which can change gene expression levels and alter biological

functions [10, 17]. This enables the use of synthetic biology methods to investigate

the behaviour and resulting biological functions of gene expression noise [10, 11]. Ad-

ditionally, phenotypic characteristics that arise due to gene expression noise can be

heritable (although not as stable as genetic mutations) in some cases [20], in part

due to epigenetic mechanisms (heritable changes in gene expression not caused by

alterations of the genetic code, e.g. through DNA methylation and chromatin remod-

eling [52]) [20]. This has important implications for non-genetic mechanisms of AMR,

which are discussed further in Section 1.3.3.

Genetic information and gene expression play crucial roles in the development

of AMR in all cells [20]. The genetic and non-genetic mechanisms responsible for

AMR development, and how they relate to biological evolution at the level of cell

populations, are discussed in the next section.

1.3 Antimicrobial Drugs, Mechanisms of Antimi-
crobial Resistance, and Antimicrobial Resis-
tance Evolution in Cell Populations

1.3.1 Antimicrobial Drugs and Resistance

In the study of AMR, bacteria and fungi are of particular interest as they are respon-

sible for a large number of infections and diseases in humans [3, 4, 53]. Infections

and diseases caused by bacteria and fungi are generally treated using antibiotic and

antifungal drugs, respectively, which are compounds that either inhibit cell growth

(static drug) or kill cells (cidal drug) [54, 55]. Antimicrobial drugs target specific

biological mechanisms that are responsible for the growth and survival of cells, which
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can vary among different species [54–56].

Fungi, especially the genera Candida, Aspergillus and Cryptococcus, are of partic-

ular interest to AMR researchers as fungal infections due to certain species, such as

Candida albicans and Cryptococcus neoformans, can become pathogenic in humans,

causing serious, life-threatening illnesses [53, 57]. Additionally, fungi species often

display resistance to the limited number of currently available antifungal drugs [57],

with Candida auris infections being resistant to all classes of antifungal drugs in some

cases, making it a pathogen of significant importance for global healthcare [58–61].

The seriousness of infections due to Candida species and other genera of pathogenic

fungi, and the difficulty in treating them due to AMR, has made studying antifungal

AMR a highly active area of research [23]. Along with the significant threats that cer-

tain yeast species pose to human health, yeast cells, such as Saccharomyces cerevisiae,

have a long history of being studied as model organisms to investigate the biological

functions of eukaryotic cells [28–30], which in turn has led to significant advance-

ments in our understanding of the underlying biological mechanisms of AMR [56,

62]. This has provided researchers with a large amount of information to guide the

formulation of mathematical models to further investigate AMR. In the research pre-

sented in Chapter 2, the formulation and parameters of the developed mathematical

model were guided by previous studies that have utilized model organisms to study

cell population-level characteristics of AMR that arise due to underlying physical and

biochemical mechanisms.

In evolutionary terms, microbes in a population of cells that exhibit resistance to

a drug can be said to have a higher “fitness” in the drug environment [63]. For the

research presented in this thesis, we define fitness as the rate of growth of a pop-

ulation in a given environment [63, 64]. Cells that have higher fitness will have a

selective advantage relative to the rest of the population, leading them to become

dominant within the population [10, 22]. AMR can arise due to genetic mechanisms,

which involve changes to the genetic information of cells and result in phenotypes
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with selective advantages [10, 22, 23], and non-genetic mechanisms, which can pro-

duce heritable (and reversible) resistance to a drug without changing the underlying

genetic code of the organism [20]. The exact biological mechanisms responsible for

the development of AMR within cells can vary greatly among cells of different bio-

logical kingdoms (for example, between bacteria and fungi) due to differences in cell

structure and the overall biological functions of their constituents [23, 56, 65], but

there are resistance mechanisms that are present in all cells, such as AMR that arises

due to genetic mutation and non-genetic gene expression noise [20].

1.3.2 Genetic Mechanisms of Antimicrobial Resistance

The main driving force of genetic AMR is evolution by natural selection due to ben-

eficial genetic mutations that provide a selective advantage to the phenotypes the

mutation produces, enabling them to preferentially survive and replicate within a

population [10, 20, 22, 66]. With DNA being relatively stable, and the presence of

biomolecular mechanisms designed to repair damaged DNA [32], genetic information

is generally replicated accurately to produce offspring with the same genetic code as

the parent cells [32, 67, 68]. Even so, occasional permanent changes to the DNA of

a cell can occur for a variety of reasons (such as errors in the DNA error-checking

process or the effects of chemicals and radiation that can alter DNA), leading to a

mutation in the genetic code [66–68]. These mutations are often small, and may only

affect a single gene, but any change to the genetic code and genes of an organism may

result in differences in cellular function [66]. In the context of AMR, if these muta-

tions affect the genes responsible for AMR beneficially they may provide the resultant

mutant cells with an evolutionary advantage relative to cells that are susceptible to

the antimicrobial drugs [10, 22, 23, 66].

Although genetic mutations are the main driving force for the development of

long-term AMR, beneficial genetic mutations are rare [68, 69]. For cells that have

already acquired a beneficial mutation, this enables them to maintain and pass on the
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mutation to their offspring (with a low possibility of the mutated genes being altered

by further mutations), eventually leading to the phenotype created by the mutation

becoming dominant within the population due to natural selection [10, 20]. Mutation

rates vary but are generally estimated to be on the order of 10−10 mutations per base

pair per generation [68, 69]. Beneficial mutations are even more scarce, given that

very few mutations will result in a beneficial phenotypic difference [70]. Experimental

AMR studies have established that the rate of a cell acquiring a beneficial AMR

mutation is generally on the order of 10−6 per hour [71].

Given the small mutation rates required to produce beneficial genetic mutations

that result in AMR, researchers have questioned the ability of purely genetic mech-

anisms to explain the development of AMR [20]. For large populations consisting

of many cells that survive over long periods of time, the probability of a beneficial

genetic mutation appearing somewhere in the population increases drastically, given

that a cell population can consist of thousands to billions of individual cells, each of

which having long lifespans ranging from days to years [72, 73]. But for small popu-

lations where individual cells do not survive long (which is often the case when cells

are exposed to an antimicrobial drug), the possibility of a beneficial genetic mutation

occurring before the population goes extinct is low [10]. This has led researchers

to postulate that non-genetic mechanisms play a critical role in the development of

AMR [10, 20].

1.3.3 Non-Genetic Mechanisms of Antimicrobial Resistance

Over the past few decades, the importance of non-genetic mechanisms to the de-

velopment of AMR has been increasingly investigated [10, 20]. Non-genetic AMR

is defined as resistance that arises without modifications to the genetic code of the

cell [20]. Of particular importance is the phenotypic heterogeneity caused by gene

expression noise [16, 38], as the processes of transcription and translation are com-

mon to all cells [32, 33]. As described in Section 1.2.4, the processes of transcription
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and translation that result in the expression of genes which encode specific biological

functions within cells are not deterministic, mainly due to stochastic biochemical re-

actions [16]. This can result in a large variance in gene expression levels, resulting in

phenotypic differences among genetically identical cells (Figure 1.2) [16, 38, 74].

Non-genetic phenotypic heterogeneity among genetically identical cells has been

increasingly shown to play an important role in the development of AMR [10, 20].

Populations of genetically identical cells that exhibit a large amount of phenotypic

heterogeneity can produce cells with phenotypes that are better suited to survive and

grow under drug exposure [10, 20], as illustrated in Figure 1.3. Additionally, it has

been shown that heritable AMR can potentially arise independently of mutation due

to non-genetic mechanisms [75]. Experimental studies using synthetic gene networks

(or “circuits”) that control gene expression levels [10] have quantified the rates at

which non-genetic AMR arises and the stability of non-genetically resistant pheno-

types over multiple generations in cellar populations [63, 76]. Along with phenotypic

heterogeneity arising due to gene expression noise, other mechanisms of non-genetic

AMR have been investigated, such as “heteroresistance” in yeast [56] and “persis-

tence” in bacteria [77]. These studies have illustrated the importance of considering

non-genetic mechanisms alongside genetic mechanisms when investigating AMR.

The model presented in Chapter 2 incorporates non-genetic AMR by modelling

cell population level characteristics that arise due to underlying physical mechanisms

that take place at the molecular level and lead to phenotypic heterogeneity among

genetically identical cells in the same environment [10, 16, 20, 74].

1.3.4 Evolution of Antimicrobial Resistance in Cell Popula-
tions

Studying the evolution of AMR within cellular populations is of particular impor-

tance for understanding how cell populations, especially those that are pathogenic

to humans, develop and maintain AMR through time [20]. In the context of this
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Figure 1.3: High non-genetic phenotypic heterogeneity can lead to the survival of cells
which express genes that aid in AMR in populations of genetically identical cells [10].
Cells left of the drug threshold succumb to the effects of the drug. Figure inspired
by Figure 1 in [10] and Figure 1 in [71].

thesis, the evolution of a cell population is defined as changes in the characteristics

of the population that are maintained over time [78]. With respect to AMR, this

often corresponds to a genetic mutation that offers resistance to a drug (and there-

fore a selective advantage) becoming dominant in the cell population [10], i.e., the

phenotype produced by the genetic mutation becomes the phenotype that makes up

the majority of the population [78]. Figure 1.4(A) highlights this scenario, where a

drug-resistant mutation appears at some point in time (the “first appearance time”

of the genetic mutation) in a genetically identical population of cells susceptible to a

given drug. Over time, the phenotype created by the genetic mutation will become

the dominant phenotype in the population due to the selective advantage that the

genetic mutation creates. The time at which this phenotype becomes overwhelmingly
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dominant in the total population can be defined as the “fixation time”, which can

be used as a quantitative measure of genetic evolution in cell populations [78, 79].

Phenotypes that are resistant to a given drug due to non-genetic mechanisms also

provide a selective advantage when the population is exposed to a drug, but these

phenotypes are not sustained after the drug is removed due to the stochastic nature

of these phenotypes [10], which is illustrated in Figure 1.4(B).

Although the effects of genetic mutations and non-genetic phenotypic variation on

cell populations are increasingly well understood individually, the effects that non-

genetic AMR has on the evolution of AMR within populations of cells is an open

question [10, 11, 20]. Figure 1.4(C) provides a visual representation of this problem.

Qualitative reasoning in the literature generally indicates that non-genetic resistance

is beneficial to the genetic evolution of AMR mutations by suggesting that the ex-

tended survival and growth time frames provided by non-genetically resistant pheno-

types enable drug-resistant mutations to occur and fixate within cell populations [20,

80, 81]. Many qualitative and experimental investigations of this sort are given in

the literature, but there is a lack of studies that have investigated the quantitative

implications of non-genetically resistant phenotypes being present in a cell popula-

tion that can develop AMR through beneficial mutations [10]. The work presented

in Chapter 2 aims to fill this gap by investigating the evolutionary dynamics of such

a system through the use of quantitative modelling. Although the structure of the

model in Chapter 2 was motivated by AMR characteristics observed in yeast, it can

in theory be modified to account for AMR characteristics specific to other organisms

(e.g. bacteria). The mathematical and computational methods used to develop, solve,

and analyze the model presented in Chapter 2 are discussed in the remainder of this

chapter.
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Figure 1.4: Schematic showing the time evolution of different cell populations when
exposed to a drug. Figure inspired by Figure 1 in [10]. A) A genetically identical sus-
ceptible population undergoes drug treatment. A beneficial genetic mutation arises,
providing a selective advantage to the phenotype produced allowing it to survive and
fixate in the population. When the drug is removed, the phenotype produced by the
genetic mutation remains the dominant phenotype in the population. B) A genetically
identical susceptible population containing phenotypic heterogeneity is exposed to a
drug. Phenotypes that are non-genetically resistant survive and propagate while some
of the remaining susceptible cells acquire non-genetic resistance, eventually resulting
in a full population of non-genetically resistant cells. Once the drug is removed, the
population returns to the original distribution of phenotypes due to the reversibility
of non-genetic resistance. C) A cell population under similar conditions that contains
all three phenotypes. The overall evolution of cell populations containing susceptible,
non-genetically resistant, and genetically resistant cells is an active area of study and
the work presented in Chapter 2 proposes a model to investigate this scenario.
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1.4 Quantitative Modelling of Antimicrobial Re-
sistance at the Cell Population Level

1.4.1 Cell Population Dynamics

Cells are seldom isolated entities - they generally grow within large populations where

individual cells affect the growth, survival, functions, and overall dynamics of other

cells in the population [64]. Although the behaviour of individual cells and their

interactions with other cells are complex, mathematical modelling can be used to

model the collective behaviour of all cells within a population to determine high-level

characteristics of cell population dynamics and evolution [64].

Cell populations can be homogeneous, where each individual shares the same ge-

netic makeup and phenotypic characteristics as all other individuals in the population,

or heterogeneous, where different subpopulations of cells having different phenotypes

make up the overall population [64]. As discussed in the previous section, genetically

identical cells can result in heterogeneous populations due to significant variation in

gene expression due to stochastic and epigenetic mechanisms [20]. Many mathemat-

ical models have been proposed to investigate the time evolution of both idealistic

homogeneous populations and heterogeneous populations made up of many subpopu-

lations that interact and compete with each other [24, 25, 64]. With these models, the

time evolution of cell populations can be quantified, providing an efficient and robust

means to carry out investigations that would otherwise be extremely time-consuming

and costly to study in a biological lab [64]. Models of cell population dynamics can

also be used to guide experimental studies by producing novel hypotheses that can

be tested experimentally, by applying mathematical models to analyze experimental

data and determine certain aspects of the system, or by reducing the space of poten-

tial experiments needed to investigate a given system [10, 11, 64]. Along with aiding

biological experiments, quantitative mathematical modelling can be used to guide

clinical treatments by providing healthcare researchers with a means to better under-
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stand and predict the behaviour of cell populations responsible for certain infections

and diseases [10, 11, 19].

Cell population dynamics models generally fall into one of two categories: 1) deter-

ministic models that approximate cell populations as a continuous variable through

time, and 2) stochastic models that take into account the discrete nature of cells

within a population to account for stochastic fluctuations that may affect the overall

population dynamics through time [64]. By applying these models in the regimes

where their underlying assumptions are satisfied, characteristics of the time evolution

of cell populations can be quantitatively investigated. Characteristics of the biological

mechanisms of AMR can be incorporated into population-level models to investigate

the time evolution of the population when the cells are exposed to a drug environ-

ment [10, 11]. In the following sections, I will discuss deterministic and stochastic

modelling approaches commonly used for studying cell population dynamics, with an

emphasis on the particular methods used to produce the results in Chapter 2.

1.4.2 Deterministic Modelling of Cell Population Dynamics

The most common deterministic models of cell population dynamics are population

growth models that take the form of an ordinary differential equation (ODE) that

describes the rate of change of a cell population where the solution provides the

trajectory of the population size through time [64]. For heterogeneous populations

containing multiple subpopulations, this framework is expanded into a set of cou-

pled ODEs where each differential equation describes the dynamics of an individual

subpopulation [64]. If we consider a cell population consisting of three distinct sub-

populations, similar to the model presented in Chapter 2, we can model the growth

of the system with the following set of coupled ODEs:

dx

dt
= f(t, x, y, z) (1.15)

dy

dt
= g(t, x, y, z) (1.16)
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dz

dt
= h(t, x, y, z) (1.17)

where x(t), y(t) and z(t) are the solutions to each equation and describe the number

of cells in each subpopulation as functions of time [64]. The rate of change of the

total population x + y + z can be modelled by combining these equations:

d(x + y + z)
dt

= dx

dt
+ dy

dt
+ dz

dt
= f(t, x, y, z) + g(t, x, y, z) + h(t, x, y, z) (1.18)

The functions f(t, x, y, z), g(t, x, y, z) and h(t, x, y, z) describe the rate of change

of each subpopulation and depend on the solutions x(t), y(t) and z(t). Multiple

mathematical models have been developed to define these functions based on the

observed biological behaviour of cell populations [64]. Population growth models also

closely resemble the mathematical rate equations that describe chemical reactions

and follow mass action kinetics [43], enabling cell population growth to be modelled

as a set of “reactions” [64], which will be discussed further in Sections 1.4.4-1.4.5.

Without any external restraints, such as constricted space or lack of nutrients, cell

populations grow exponentially [64]. If we consider a cell population N , we can model

exponential growth with the ODE

dN

dt
= rN (1.19)

where r is the population growth rate [64]. The growth rate r is often used as a

measure of biological fitness and models how well a given population is adapted to

the growth environment, as higher growth rates lead to more efficient population

growth [63, 64]. This simple ODE can be solved analytically, giving the solution

N(t) = N0e
rt (1.20)

where N0 is the initial size of the population, showing that the population size grows

exponentially with a growth rate r [64]. This equation can accurately model cell

population growth when there are few external constraints on the system but fails to

accurately model the full dynamics of realistic cell population growth where space and
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energy sources are limited [64]. For cell populations growing in a large volume with

plentiful resources, exponential growth can accurately model cell population dynamics

until the populations become large enough to be limited by the environment, in which

case the population growth saturates until a steady concentration is reached [64, 82].

This is more accurately modelled by modifying the exponential growth model with a

phenomenological inhibition factor z(N) that ranges from 1 to 0 to scale the growth

rate as the population N increases, giving the updated equation

dN

dt
= z(N)rN = r′N (1.21)

where r′ = z(N)r is the effective growth rate of the population [64]. This equation

satisfies the following limit:

lim
N→K

dN

dt
= lim

N→K
z(N)rN = 0 (1.22)

where K is the “carrying capacity” of the system and is defined as the concentration

at which the population is no longer able to grow any larger [64, 82]. A model of this

form separates the population dynamics into three phases: (1) the exponential phase,

which can accurately be described by the exponential growth model and occurs during

early growth where z(N) ≈ 1, (2) a saturation phase where the growth rate decreases,

corresponding to 0 < z(N) < 1, and (3) the stationary phase where the population

no longer grows, corresponding to z(N) ≈ 0 [64]. The time spent in each phase and

how the system transitions between each phase depends on the form of the inhibition

function z(N). In the case where there are multiple subpopulations within the total

population such that N = x + y + z + ..., the inhibition function is applied to each of

the individual growth rates of the subpopulations [64]. If we define N = x+ y + z and

again consider the three population models described in Equations 1.15-1.17 and use

Equation 1.21 to model the growth of each subpopulation using rates rx, ry and rz,

we have
dx

dt
= z(N)rxx (1.23)
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dy

dt
= z(N)ryy (1.24)

dz

dt
= z(N)rzz (1.25)

for each of the subpopulations and

dN

dt
= d(x + y + z)

dt
= dx

dt
+dy

dt
+dz

dt
= z(N)rxx+z(N)ryy+z(N)rzz = z(N)(rxx+ryy+rzz)

(1.26)

for the total population. The inhibition function z(N) is used to model the effects

that the environment (which consists of resources, chemicals, available space, and

other cells) has on the growth of the population, leading to an effective growth rate

of r′ = z(T )r where r is the maximum exponential growth rate seen when z(T ) =

1 [64]. Many models of cell population growth have been developed that use different

inhibition functions [64], such as the logistic growth model where z(N) = 1−N/K [64,

82, 83], Monad kinetics where z(N) = N
KN+N and KN defines the concentration of

N where the inhibition function is 0.5 [64, 84], Allee models that define a critical

population size Nc required for growth and use an inhibition function of z(N) =

(1− N
K )( N

Nc
−1) [64, 85–87], and the more general Baranyi model where the inhibition

function can also be scaled by a time-dependent adjustment function α(t) that ranges

from 0 to 1 to model the “lag” or “adaptation” phase of early cell growth making the

total inhibition function α(t)z(N) where z(N) can be any unitless inhibition function

that ranges from 1 to 0 [64, 88, 89], along with others [64].

The choice of inhibition function generally depends on the empirically observed

growth curve characteristics of the system being modelled [64]. In the work presented

in the following chapter, a Hill-type inhibition function defined by [90]

z(N) = hn

hn +Nn
(1.27)

where h is the point at which z(N) is at its half maximum, and n is the Hill coefficient

that defines the overall steepness of the inhibition function [90], is used with a general

Baranyi model to investigate cell population dynamics in a drug environment. The
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choice of using a Hill function is based on observations of cell population growth curves

while cells are growing in a drug environment, as the shapes of these curves are better

modelled by an adjustable inhibition function (using the parameters h and n) than

the standard logistic inhibition function [90]. It also enables intraspecific competition

(competition between members of the same species for limited resources [25, 26]) to

be modelled. An example Baranyi-Hill model, along with exponential and logistic

growth models, are shown in Figure 1.5.

Figure 1.5: Numerical solutions of growth curves produced by exponential, logistic,
and Baranyi-Hill models of cell population dynamics. Each model here has the same
maximum growth rate (r) value. The exponential model creates indefinite exponential
growth of the population, while the logistic model remains nearly exponential until
the carrying capacity is reached. The Baranyi-Hill model saturates over a longer
timescale, which can be more representative of growth in a drug environment than
the standard logistic growth model [90].

A few adjustments to the equations described above are required to formulate

the model presented in Chapter 2. These adjustments add additional terms to the

equations based on mass action kinetics, by considering additional characteristics

of the subpopulations (such as cell death and phenotypic switching) as “reactions”

26



that occur at a given rate [43, 64]. Firstly, the above models assume that the cells

survive indefinitely (i.e. once a cell is present in the population, it will remain in the

population as t→∞). This assumption may be reasonable for short time scales, but

for the longer time scales required to investigate biological evolution cell death must

be considered. This can be obtained by adding a negative cell death term for each

of the subpopulations, which depends on a death rate δi and the size of the given

population i, to model the death of the cells in each subpopulation either due to

natural means, such as aging [73], or due to external factors, such as the application

of a cidal drug [54, 55]. This can be done by adding a death term −δii, where δi is the

death rate of population i, to the ODE for each subpopulation, making the equations

dx

dt
= r′xx − δxx (1.28)

dy

dt
= r′yy − δyy (1.29)

dz

dt
= r′zz − δzz (1.30)

The coupled ODE model can also be adjusted to account for interactions between

the subpopulations. For the model presented in Chapter 2, we are particularly inter-

ested in “switching” between subpopulations, corresponding to cells in one subpop-

ulation changing their phenotype to that of another subpopulation (either through

mutations or non-genetic mechanisms). Switching can be modelled by incorporating

terms into the equations that model cells leaving one subpopulation and entering

another [90]. These terms have the same mathematical form but opposite signs, with

the negative term being added to the equation for the subpopulation that has cells

switching to another type (i.e. leaving the subpopulation, hence the negative sign),

while the positive term is added to the subpopulation that is being switched into [64].

This is modelled by a first-order reaction j
ri,jÐ→ i between subpopulations i and j [64]

and corresponding terms are added to the equations based on mass action kinetics [43,

64]. As an example using the model described above, we can consider switching that
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occurs between each of the three subpopulations (i.e. x can switch into y and z, y can

switch into x and z, and z can switch into x and y). We can assume that switching

occurs exponentially with some rate ri,j where i corresponds to the subpopulation

that cells are switching into and j corresponds to the subpopulation of cells that are

undergoing switching. Applying mass action kinetics, this produces the model

dx

dt
= r′xx + rx,yy + rx,zz − ry,xx − rz,xx − δxx (1.31)

dy

dt
= r′yy + ry,xx + ry,zz − rx,yy − rz,yy − δyy (1.32)

dz

dt
= r′zz + rz,xx + rz,yy − rx,zz − ry,zz − δzz (1.33)

Since the switching terms cancel out when solving for the total population growth (due

to the opposite signs), switching does not affect the growth of the overall population

but can drastically change the dynamics of the individual subpopulation.

The model shown in equations 1.31-1.33 is the general form of the model pre-

sented in Chapter 2. The model incorporates inhibited exponential cell growth due

to the environment (which includes intraspecific competition between the subpopula-

tions), cell death, and phenotypic switching between subpopulations (due to genetic

mutations and non-genetic phenotypic heterogeneity). This model can be adjusted

to account for certain biological conditions by removing transitions between specific

subpopulations (for example, letting x switch into y but not the reverse) that are not

biologically relevant and by tuning the numerical values of the parameters based on

experimental results.

1.4.3 Numerical Solutions of Coupled ODEs

To solve the system of coupled ODEs presented in the next chapter, MATLAB’s

ode45 solver was used [91, 92]. ode45 is the recommended ODE solver in MATLAB

for systems of non-stiff equations and is based on an explicit Runge-Kutta formula,

the Dormand-Prince pair, which is a single-step method where the solution at a given

time depends on the solution at the previous time step [92, 93]. Explicit Runge-Kutta
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methods consist of algorithms that solve ODEs by estimating the solution at each

time step using a weighted average over slope estimations at different points along the

step interval (generally the middle, end, and multiple mid-points), calculated using

the ODE and the solution at the previous time point [93, 94]. The Dormand-Prince

pair is an adaptive method that tunes the parameters of the algorithm to minimize

truncation errors while maintaining computational efficiency [92–94].

A standard initial value problem can be defined as:

dy

dt
= f(t, y), y(t0) = y0 (1.34)

where t is time, y is the unknown solution, f(t, y) is a function of t and y, and y0 is

the solution for y at the initial time t0. To numerically solve an initial value problem

of this form, the Dormund-Prince pair uses a fifth-order Runge-Kutta formula. Using

a time step ∆t, a fifth-order Runge-Kutta method provides a numerical solution at

the next time point tn+1 = tn +∆t using the formula [93, 94]

yn+1 = yn +
6
∑
i=1

biki (1.35)

where the sum is a weighted average over slope estimations ki using weights bi. The

slope estimations are calculated using the following equations [93, 94]

k1 =∆tf(tn, yn) (1.36)

k2 =∆tf(tn + c2∆t, yn + a21k1) (1.37)

k3 =∆tf(tn + c3∆t, yn + a31k1 + a32k2) (1.38)

k4 =∆tf(tn + c4∆t, yn + a41k1 + a42k2 + a43k3) (1.39)

k5 =∆tf(tn + c5∆t, yn + a51k1 + ... + a54k4) (1.40)

k6 =∆tf(tn + c6∆t, yn + a61k1 + ... + a65k5) (1.41)

where ci and aij are constants used to optimize the algorithm and are defined, along

with the weights bi, in the original Dormund-Prince paper [93].
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For an initial value problem consisting of a system of ODEs, the slope estimations

are calculated for each ODE to numerically solve the system [94]. If we consider

a system of three coupled ODEs (similar to the model presented in the following

chapter) given by the initial value problem

dx

dt
= f(t, x, y, z), x(t0) = x0 (1.42)

dy

dt
= g(t, x, y, z), y(t0) = y0 (1.43)

dz

dt
= h(t, x, y, z), z(t0) = z0 (1.44)

the fifth-order Runge-Kutta solution with Dormund-Prince parameters is then

xn+1 = xn +
6
∑
i=1

biki (1.45)

yn+1 = yn +
6
∑
i=1

bili (1.46)

zn+1 = zn +
6
∑
i=1

bimi (1.47)

where ki, li and mi are the slope estimations for each equation given by [94]

k1 =∆tf(tn, yn) (1.48)

l1 =∆tg(tn, yn) (1.49)

m1 =∆th(tn, yn) (1.50)

k2 =∆tf(tn + c2∆t, xn + a21k1, yn + a21l1, zn + a21h1) (1.51)

l2 =∆tg(tn + c2∆t, xn + a21k1, yn + a21l1, zn + a21h1) (1.52)

m2 =∆th(tn + c2∆t, xn + a21k1, yn + a21l1, zn + a21h1) (1.53)

...

k6 =∆tf(tn + c6∆t, xn +a61k1 + ...+a65k5, yn +a61l1 + ...+a65l5, zn +a61m1 + ...+a65m5)

(1.54)
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l6 =∆tg(tn + c6∆t, xn + a61k1 + ...+ a65k5, yn + a61l1 + ...+ a65l5, zn + a61m1 + ...+ a65m5)

(1.55)

m6 =∆th(tn + c6∆t, xn +a61k1 + ...+a65k5, yn +a61l1 + ...+a65l5, zn +a61m1 + ...+a65m5)

(1.56)

1.4.4 Stochastic Modelling of Cell Population Dynamics Us-
ing Reaction Systems and SSA

Although deterministic population models are useful, they fail to capture the true

stochastic behaviour of cell population dynamics that arise due to the discrete nature

of cell populations [16]. Stochastic effects become particularly important at low cell

numbers, where stochastic fluctuations can greatly affect the resulting dynamics of

the system [45–47, 64]. For example, stochastic fluctuations in the early stages of

cell population growth in stressful environments may lead to the extinction of the

population, as fluctuations in the growth and death of cells can lead to all viable

cells dying before full population growth is reached, a phenomenon investigated in

Chapter 2. Therefore, a stochastic modelling framework is required to investigate cell

population dynamics in low cell number regimes. Many stochastic models exist, but

the most commonly used framework to study stochastic cell population dynamics is

modelling the system as a set of stochastic processes (or “reactions”) and applying

Gillespie’s stochastic simulation algorithm (SSA) [45, 46]. The SSA was originally

developed to produce exact realizations of the GPF that solves the CME for molecular

reaction systems but has since found success in modelling other stochastic systems

that can be modelled as a set of discrete events defined as continuous-time Markov

processes [46, 47, 95, 96].

The SSA is a Monte Carlo method that produces single stochastic realizations

(trajectories) from the GPF that solves the CME of a given reaction system where

the reactions are modelled as discrete stochastic events that occur in real-time [45–

47]. A reaction system is defined as a set of reaction channels {R1, ..., RM} where M
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is the number of reactions [47]. Each reaction Ri is described by reactants {S1, ...,

SN} where N is the number of reactant species, the reaction products, and a reaction

constant ci [47]. Reactions can be of the following types [45]:

∗ cÐ→ products (1.57)

Si
cÐ→ products (1.58)

Si + Sj
cÐ→ products (1.59)

2Si
cÐ→ products (1.60)

Si + Sj + Sk
cÐ→ products (1.61)

Si + 2Sk
cÐ→ products (1.62)

3Si
cÐ→ products (1.63)

where Equation 1.57 is a zeroth-order (or “external source”) reaction which does not

depend on the reactants {S1, ..., SN} [45]. Equation 1.58 is a first-order reaction [45]

and is of particular importance for the work presented in Chapter 2, where our model

is expressed as a set of first-order reactions. The mathematical form of the reaction

constants cj depends on the order of the reaction channel and for first-order reactions

it is exactly the exponential growth rate (also referred to as the reaction rate) used

in the deterministic rate equations described in Section 1.4.2 (i.e., ci = ri) [45]. For

higher-order reactions cj depends on additional factors, such as the volume occupied

by the reactants and underlying physical interactions between reactants, and generally

requires the application of statistical mechanics to determine [45, 47].

With the set of reaction channels {R1, ..., RM}, reaction constants {c1, ..., cM},

reactants {S1, ..., SN} and products, the SSA can be used to compute exact individual

trajectories of the reaction system through time [45–47]. Single trajectories provide

limited information, but distributions can be created by computing a large number of

trajectories to estimate the overall GPF and to analyze the statistical behaviour of the

system [45–47]. The number of trajectories required to create accurate distributions
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depends on the system but can be found by adding trajectories to the distribution

until the overall distribution is relatively unchanged by additional realizations (often

requiring thousands of trajectories) [45, 46].

The SSA computes trajectories by using randomly generated numbers from the

uniform distribution to determine the time to the next reaction event and which

reaction will occur [45–47]. To do this, the propensity functions for each reaction,

which describe the probability per unit time of a reaction Ri occurring in the current

state of the system X(t) = x at a given time t, are required [45, 47]. x is defined by

a vector containing the number of reactants in each reactant species population at

time t:

x = [S1(t), ..., SN(t)] (1.64)

where Sj(t) corresponds to the total number of reactants within the population of the

reactant species Sj at time t [47]. Product (or state-change) vectors vi = [v1i, ..., vNi]

can be defined for each reaction channel Ri and contain the change in each population

Sj when reaction Ri occurs [47]. For first-order reactions, the propensity function

ai(x) at time t is equal to the reaction rate multiplied by the total size of the reactant

species population at time t [45, 47]. Therefore, for a reaction Ri with a reaction rate

ki and reactant Sj, the propensity function of Ri when the system is in the state x

at time t is given by [45, 47]:

ai(x) = kiSj(t) (1.65)

To calculate the time to the next reaction and which reaction will occur, the summa-

tion of all propensity functions {a1(x), ..., aM(x)} is needed [45, 47]. Defining the

summation of propensity functions as a0(x), we have [47]:

a0(x) =
M

∑
n=1

an(x) (1.66)

Using two uniform random numbers r1 and r2, the time to the next reaction τ and

which reaction will occur, symbolized by its index i, are then determined using the
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following equations [45, 47]:

τ = 1
a0(x)

ln( 1
r1
) (1.67)

i = smallest value that satisfies
i

∑
i′=1

ai′(x) > r2a0(x) (1.68)

These equations are derived analytically by considering the joint probability distri-

bution p(τ, i ∣x, t) which is defined as [45, 47]:

p(τ, i ∣x, t)dτ = aj(x)e−a0(x)τ dτ (1.69)

and describes the probability that the reaction Ri will occur in the time interval

[t+ τ, t+ τ +dτ) when the system is in the state x (see [45, 47] for the full derivation

of p(τ, i ∣x, t)).

The algorithm is implemented through the following steps [45, 47]:

1. Set the initial values for the time and state vector. Create state-change vectors

for each reaction containing the change in population size produced by the

reaction products.

2. Generate two uniform random numbers. Evaluate all propensity functions and

their sum for the given state.

3. Calculate the time to the next reaction and which reaction will occur. Propagate

the time forward using the calculated time to the next reaction and update the

state vector using the state-change vector for the determined reaction.

4. Record the new time and state.

5. Repeat steps (2)-(4) until the desired time is reached.

This process can then be repeated for the desired number of trajectories. The pseu-

docode I used to implement the SSA to calculate a large number of trajectories for

the results presented in Chapter 2 is shown in Algorithm 1.
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Algorithm 1 Pseudocode implementation of the SSA for multiple trajectories. The
implementation is based on the original formulation of the Gillespie SSA [45]. The
C code I wrote to implement the algorithm and produce the results in Chapter 2 is
shown in Appendix A.2.

Define initial time t = t0, initial state vector x = x0, and initial trajectory number
T = 1. Define state-change vectors vi that contain the products for each reaction Ri.
Define the final time of each trajectory as tfinal and the total number of trajectories
as Tend.

while T ≤ Tend do

Set t = t0 and x = x0.

while t ≤ tfinal do

Generate two uniform random numbers r1 and r2.

Calculate each ai(x) using equation (1.65).

Calculate a0(x) using equation (1.66).

Calculate τ and i using equations (1.67) and (1.68).

Set t = t + τ and x = x + vi.

Record the new state (x, t).

end while

Store each (x, t) calculated for the trajectory.

Set T = T + 1.

end while
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Distributions over the trajectories calculated using the SSA simulate the GPF of

the reaction system and can be analyzed to determine the statistical characteristics

of the system [45, 47]. For example, the fixation time of a genetic mutation can be

calculated for each trajectory to create a fixation probability distribution over time

to investigate the evolutionary dynamics of a cell population, which is investigated

in Chapter 2. Additionally, cell population survival distributions can be created by

analyzing the number of trajectories that die out (equivalent to all populations in the

state vector reaching zero), another case that is investigated in Chapter 2.

Multiple formulations of the SSA have been developed, with the version I have

presented here and used to produce the results in Chapter 2 being referred to as the

“direct method”, which is the original formulation of the SSA presented by Gille-

spie [45] and does not make any approximating assumptions as it simulates every

reaction that occurs in the system [45, 47]. The limitation of doing this is that it is

computationally expensive [47]. Accelerated SSA methods have been produced, such

as the Gibson-Bruck procedure [97] and tau leaping [47, 98], which use simplifying

assumptions to reduce the computational cost of the algorithm, such as grouping

multiple reactions over a predefined time step in the case of tau leaping [47, 98].

The computational efficiency of the direct method was sufficient to produce the re-

sults presented in Chapter 2 due to the relatively small size of the reaction system

modelled, but accelerated methods are generally required for large systems where the

direct method is no longer feasible [47].

1.4.5 Relating Deterministic Population Growth Models to
Stochastic Reaction Systems

An interesting aspect of the deterministic population growth models presented in Sec-

tion 1.4.2 is that their mathematical form closely resembles the reaction rate equa-

tions used to model chemical reaction systems under conditions where a deterministic

approach can be applied as an accurate approximation (generally when the popula-
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tions of each reactant species are large) [43, 45–47]. Additionally, each term in the

ODEs has the same form as the propensity functions for first-order reactions described

in Equation 1.65. Mathematically, reactions are continuous-time Markov processes,

where each reaction changes the state of the system based on a random variable from

the exponential distribution [47]. Cell populations are made up of discrete quantities

that undergo stochastic processes as they evolve through time and the underlying dy-

namics of the population growth models presented in Section 1.4.2 can be thought of

as arising due to a set of continuous-time Markov chain processes (or “reactions”) [46,

64].

Continuing with the three-subpopulation example presented in Section 1.4.2, the

system (Equations 1.31-1.33) can be translated into a set of reactions of the following

form:

x
r′xÐ→ 2x (1.70)

y
r′yÐ→ 2y (1.71)

z
r′zÐ→ 2z (1.72)

x
δxÐ→ ∅ (1.73)

y
δyÐ→ ∅ (1.74)

z
δzÐ→ ∅ (1.75)

x
ry,xÐÐ→ y (1.76)

x
rz,xÐÐ→ z (1.77)

y
rx,yÐÐ→ x (1.78)

y
rz,yÐÐ→ z (1.79)

z
rx,zÐÐ→ x (1.80)

z
ry,zÐÐ→ y (1.81)

where the exponential rates now become reaction constants and can be thought of as

the probability per unit time that the given reaction will occur [47]. Equations 1.70-
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1.72 model cell division, 1.73-1.75 model cell death, and 1.76-1.81 model switching

between subpopulations. As these are first-order reactions, the propensity function

of each reaction follows Equation 1.65 [45, 47]. Using the terminology of the previous

section, the set of coupled ODEs used to describe the system can now be rewritten

as a vector equation of the following form [47]:

dx

dt
=

M

∑
i=1

viai(x) (1.82)

where x = [x, y, z], ai(x) are the propensity functions for each reaction, and vi are

the state change vectors corresponding to the numerical change in each subpopulation

when the reaction i occurs [47].

In the large number limit, trajectories produced by the SSA to simulate a given

reaction system generally converge to the deterministic rate equations described

above [47]. To show why this is the case, it is useful to discuss the Langevin equation

for continuous-time Markov processes, which can be used to approximate the time

evolution of a reaction system when certain conditions are met [47, 99]. For a given

reaction system, a macroscopically infinitesimal time increment dt can be defined if

the following two conditions are satisfied: (1) During dt, the propensity functions

ai(x =X(t)) of all reactions Ri do not change significantly, and (2) each reaction in

the system occurs many times during dt [47, 99]. If these two conditions are met, the

stochastic behaviour of the reaction system can be approximated using the Langevin

equation [47]:

X(t + dt) =X(t) +
M

∑
i=1

viai(X(t))dt +
M

∑
i=1

vi

√
ai(X(t))Ni(t)

√
dt (1.83)

where Ni(t) are M are independent, uncorrelated, normal random variables with

means of 0 and variances of 1 (for the full derivation of the Langevin equation with

respect to the SSA, see [47, 99]) [47]. Equation 1.83 holds only if dt is small enough to

satisfy condition (1) while also large enough to satisfy condition (2), which is generally

possible when population sizes are large [47, 99]. The second term on the right side of
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equation 1.83 is deterministic and proportional to dt, while the third term is stochastic

and proportional to
√

dt. The deterministic term in equation 1.83 scales linearly with

the propensity functions ai(X(t)) while the stochastic term grows to the power of

1/2 of the propensity functions. As is clear from the propensity functions of first-

order reactions (equation 1.65), the propensity functions grow proportionally with

the size of the populations. Relative to the deterministic component, the stochastic

component therefore scales to the power of −1/2 of the system size, implying that

stochastic fluctuations in the reaction system scale with the inverse square root of

the size of the system (a result that is common for stochastic processes [16]) [47]. For

large population sizes, this means that the stochastic term essentially vanishes and

the Langevin equation can be approximated as [47]

X(t + dt) =X(t) +
M

∑
i=1

viai(X(t))dt (1.84)

or

X(t + dt) −X(t) =
M

∑
i=1

viai(X(t))dt (1.85)

which is a function containing differentials and can be rewritten as

dX(t)
dt

=
M

∑
i=1

viai(X(t)) (1.86)

which is exactly the deterministic rate equation (a set of coupled ODEs) for a system

where the dynamics can be described as a set of reactions with propensity functions

ai(X(t)) shown in Equation 1.82 [47]. Therefore, when population sizes are large,

the trajectories produced using the SSA can be accurately approximated using the

deterministic rate equations described in Section 1.4.2. To show this convergence

visually, Figure 1.6 provides example SSA and population growth equation simula-

tions to a simple reaction system containing two subpopulations of cells (based on

the model presented in Chapter 2). As can be seen, the SSA trajectories converge to

the deterministic rate equation solutions as the size of each subpopulation becomes

large, illustrating that the deterministic growth equations can provide an accurate

approximation of growth dynamics for large populations [47, 64].
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Figure 1.6: A system containing two cell populations (S and N) modelled by stochas-
tic reactions and the corresponding deterministic population growth equations. The
system incorporates Baranyi-Hill growth, switching, and death, with all parameters
set to the same numerical values for each case. Ten SSA trajectories are shown by
faint lines, while the bold lines show numerical solutions to the population growth
ODEs. The SSA trajectories converge to the numerical solutions of the deterministic
population growth ODEs as the population sizes become large, with the largest fluc-
tuations occurring when subpopulation sizes are small. The model used in this plot
is based on the model presented in Chapter 2 and uses low initial subpopulation sizes
to highlight the stochastic fluctuations.

The relationship between SSA and deterministic rate equations is important for

the work presented in Chapter 2, where we present a phenomenological model of cell

population dynamics to investigate the evolution of AMR. A deterministic framework

consisting of coupled population growth equations is used when population sizes are

large and stochastic fluctuations are negligible. A stochastic framework is used to

investigate the statistical properties of the system when population levels are low

and the system cannot be modelled accurately using deterministic population growth

equations. To do this, the model is reformulated as a set of first-order reactions and
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the SSA is used to simulate a large number of trajectories to create distributions and

investigate the statistical properties of the system.
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Chapter 2

Non-Genetic Resistance Facilitates
Survival While Hindering the
Evolution of Drug Resistance Due
to Intraspecific Competition

The work presented in this chapter was previously published in the journal Physical

Biology [1]. All codes written to produce the results are given in the Appendix of this

thesis.
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Abstract
Rising rates of resistance to antimicrobial drugs threaten the effective treatment of infections across
the globe. Drug resistance has been established to emerge from non-genetic mechanisms as well as
from genetic mechanisms. However, it is still unclear how non-genetic resistance affects the
evolution of genetic drug resistance. We develop deterministic and stochastic population models
that incorporate resource competition to quantitatively investigate the transition from non-genetic
to genetic resistance during the exposure to static and cidal drugs. We find that non-genetic
resistance facilitates the survival of cell populations during drug treatment while hindering the
development of genetic resistance due to competition between the non-genetically and genetically
resistant subpopulations. Non-genetic resistance in the presence of subpopulation competition
increases the fixation times of drug resistance mutations, while increasing the probability of
mutation before population extinction during cidal drug treatment. Intense intraspecific
competition during drug treatment leads to extinction of susceptible and non-genetically resistant
subpopulations. Alternating between drug and no drug conditions results in oscillatory population
dynamics, increased resistance mutation fixation timescales, and reduced population survival.
These findings advance our fundamental understanding of the evolution of resistance and may
guide novel treatment strategies for patients with drug-resistant infections.

1. Introduction

Antimicrobial (drug) resistance occurs when bacteria,
viruses, fungi, and parasites no longer respond to
drug therapy, making infections difficult or impossi-
ble to treat, which increases the risk of disease trans-
mission, severe illness, and death [1]. The evolution
of genetic drug resistance is known to arise from
the natural selection of mutations or resistance genes
that provide microbes with the ability to survive and
proliferate during treatment [2]. It has also been
shown that non-genetic mechanisms promote micro-
bial phenotypic diversification and survival strate-
gies in selective drug environments [3]. Phenotypic
heterogeneity has important implications for drug
resistance [4, 5], with heritable resistance potentially
arising independently of genetic mechanisms [6]. The
stochastic or ‘noisy’ expression of genes [7, 8] intro-
duces phenotypic heterogeneity among genetically

identical cells in the same drug environment, which

can result in the fractional killing of clonal microbial

populations [3, 9], as well as chemotherapy resistance

in cancer [10]. This stochasticity is due in part to

the inherently random nature of the biochemical

reactions involved in the transcription and translation

of genetic material, and can lead to the emergence

of phenotypically distinct subpopulations within an

actively replicating clonal cell population [8, 11].

Another form of non-genetic drug resistance called

‘tolerance’ occurs in fungi, in which a slow-growing

subpopulation of cells (that are genetically identical

to susceptible cells) emerges during antifungal drug

treatment [12]; related phenomena occur in bacteria

[13, 14] and cancer [15].

Non-genetic drug resistance has been proposed to

promote the development of genetic drug resistance

[4, 5, 10, 12, 16]. This process may be enhanced

© 2022 The Author(s). Published by IOP Publishing Ltd
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by the interaction between non-genetic and genetic
mechanisms inside the cell [5]. For instance, pro-
moter mutations can alter the expression noise levels
of drug resistance genes [9], genetic network architec-
ture can modulate gene expression noise to enhance
drug resistance [17–19], and stress response genes
can evolve elevated transcriptional variability through
natural selection [20, 21]. Non-genetic mechanisms
can facilitate the generation of genetic diversity by
increasing the expression of key regulators involved in
DNA replication, recombination, or repair [22, 23], as
well as by enhancing the adaptive value of beneficial
mutations during drug treatment [24] and promot-
ing the fixation of favorable gene expression altering
mutations [25]. Non-genetic phenotypic variability
can impact cellular populations by providing a link
between micro-scale dynamics (such as stochasticity
at the molecular level) and macro-scale biological
phenomena (including the fate of interacting cell
populations) [26]. Such noise in biological systems
may facilitate the adaptation to environmental stress
by allowing distinct, co-existing cellular states in a
population to find the best adaptive solution from
multiple starting points [27]. However, there are con-
flicting views on how phenotypic heterogeneity may
facilitate adaptive evolution [28] and the transition
from non-genetic to genetic drug resistance remains
to be quantified [5, 12].

Fungal pathogens are among the leading causes
of infectious disease mortality, which is expected
to accelerate due to a variety of factors including
climate change [29]. Particularly concerning is the
emergence of multidrug resistant yeast pathogens
around the globe [30]. Mathematical models and
synthetic gene networks (or ‘circuits’) are being used
to experimentally investigate drug resistance in yeast
[31]. In particular, synthetic gene circuits have been
designed to mimic network motifs that occur natu-
rally, such as positive feedback loops, to study non-
genetic resistance in the budding yeast Saccharomyces
cerevisiae [18, 32, 33]. This positive feedback has
been shown to confer yeast cells with a heritable,
non-genetically drug-resistant phenotype for up to
283 h before switching back to the drug-susceptible
phenotype [32]. These experimental studies reveal
important insights into fungal drug resistance and
provide parameters for our quantitative models.

Selective pressures during infection can lead
to cooperation and competition within microbial
communities [34], and these interactions can have
implications for disease outcomes [35]. Competition
within a microbial community composed of the same
species becomes relevant when resources such as
nutrients or space become limiting, such as at high
population density. Intraspecific competition results
from ‘exploitation competition’, which involves the
relatively more efficient use of a limiting resource or
from ‘interference competition’, which results from
the production of toxic substances that impair the

growth or survival of competitors [36]. Intraspe-
cific competition leads to logistic growth, whereby
population growth is exponential when population
size and resource competition are low, followed by a
progressively reduced growth rate as the population
size increases toward the carrying capacity of the
micro-environment [37]. Phenotypic heterogeneity
can promote interactions among subpopulations as
well as the division of labour between individual
cells, providing clonal microbial populations with
new functionalities [38]. Importantly, the evolution-
ary effects of intraspecific competition have not been
investigated in the context of resource competition
between non-genetically and genetically resistant sub-
populations in microbial populations undergoing
drug treatment.

In this study, we investigate the transition from
non-genetic to genetic resistance during static drug
(drugs that stop or slow cell growth) and cidal
drug (drugs that kill cells) treatment in the pres-
ence of resource competition using deterministic and
stochastic population models [37]. Overall, we find
that non-genetic resistance facilitates the survival of
cell populations undergoing drug treatment, while
hindering the fixation of genetic mutations due to
competition effects between the non-genetically and
genetically resistant subpopulations.

2. Methods

2.1. Deterministic population model
The deterministic population model describes
changes in cellular subpopulation concentrations
over time during drug treatment. Three different
subpopulations comprising the total population T are
described in this model: a susceptible subpopulation
S, a non-genetically resistant subpopulation N, and
a genetically resistant subpopulation G. Cells may
switch between the S and N subpopulations, and
cells in the N subpopulation can mutate into the G
subpopulation (figure 1). The mathematical model
is described by a set of coupled ordinary differential
equations (ODEs):

dS

dt
= SkS + NrS,N − SrN ,S − SδS (1)

dN

dt
= NkN + SrN ,S − NrG,N − NrS,N − NδN (2)

dG

dt
= GkG + NrG,N − GδG, (3)

where rS,N is the switching rate from N to S, rN,S is
the switching rate from S to N, rG,N is the mutation
rate from N to G, and δS, δN, δG are the death rates of
S, N, and G, respectively. kS, kN , and kG describe the
birth rate of each subpopulation in the presence of a
drug and resource competition, and are described by
equation (6). There is no mutational pathway from
S to G, as we are considering drugs that completely

2
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arrest growth and division (kS = 0) and therefore
genetic mutation due to DNA replication errors in
the S subpopulation does not occur [39]. Appendix D
considers cases where S is allowed to grow (kS = 0),
which allows mutation from S to G (rG,S = 0),
and shows that the qualitative trends seen in our
main results hold for this scenario. Unless otherwise
indicated, we assume that N has partial, temporary
resistance (i.e., 0 < δN < δS) and that genetic muta-
tion provides complete, permanent resistance to the
drug. To model static and cidal drug treatments of
varying strengths, we respectively varied the birth and
death rates in equations (1)–(3).

Summing equations (1)–(3) under the above
assumptions yields the following equation for the
concentration of the total population:

T = S + N + G (4)

as well as an equation for the growth rate of the total
population:

dT

dt
= SkS + NkN + GkG − SδS − NδN − GδG. (5)

Resource competition between the subpopula-
tions was modeled by scaling kS, kN, and kG by a
Baranyi-Hill type function, which depends on T and
results in logistic growth [37]. The Baranyi model
accurately describes the transition from lag-phase to
exponential growth that occurs during the adaptation
to antimicrobial drugs [37, 40]. For subpopulation i
(where, i ∈ {S, N, G}), this is given by:

ki = kiz(T) = ki

(
hn

hn + Tn

)
, (6)

where ki is the maximum birth rate for subpopulation
i (which leads to exponential growth in the absence of
competition for limited resources), n is the Hill coef-
ficient, and h is the point at which the competition
function z(T) is half of its maximum value.

The growth dynamics of S, N, and G were obtained
by solving the deterministic model, starting from
initial population sizes Si, Ni, and Gi and numerically
integrating equations (1)–(3) over a total time ttot

using a time step Δt. This numerical integration was
performed using the ode45 ODE solver, which is based
on an explicit Runge–Kutta method, in MATLAB
[41]. The fixation time τ fix was used as a quantita-
tive measure of how long it takes for G to become
dominant in the population [42] and was defined as
the time it takes for G to comprise 95% of the total
population.

2.2. Stochastic population model
Next, we developed a stochastic population model
corresponding to the deterministic population model
to study the effects of non-genetic resistance on
the evolution of genetic resistance in low cell num-
ber regimes. Low numbers of infectious cells can

occur at the onset of infection and during the final
stages of drug treatment, and is the regime where
stochastic fluctuations are expected to have a sig-
nificant effect on population dynamics. Accordingly,
equations (1)–(3) were translated into the following
set of reactions:

S
kS−→ 2S (7)

N
kN−−→ 2N (8)

G
kG−−→ 2G (9)

S
rN ,S−−→N (10)

N
rS,N−−→ S (11)

N
rG,N−−−→G (12)

S
δS−→ (13)

N
δN−−→ (14)

G
δG−−→ (15)

equations (7)–(15) were simulated using the Gillespie
stochastic simulation algorithm [43, 44].

To quantify the effect of non-genetic drug resis-
tance on the evolution of genetic drug resistance in
the stochastic population model, we obtained the
first-appearance time (Pτ ) and fixation time (Pτfix

)
distributions of G. For parameter regimes where
population extinction could occur during the cidal
drug treatment simulations (i.e., when S and N go
extinct before G appears), we determined the effect
that the death rate of N had on the probability
of G emerging (PG) before population extinction.
This was determined from the number of population
extinction events that occurred over a large number
of simulations for different values of the death rate
for N.

While the deterministic population model
(equations (1)–(3)) was suitable for investigating
large population dynamics under drug treatment,
the corresponding stochastic population model
(equations (7)–(15)) was necessary to accurately
quantify fixation time and mutation first-appearance
time distributions and extinction events for cidal
drug treatment scenarios, where the total population
size becomes small enough to result in extinction
events (no drug resistance mutation appears before S
and N reach zero). When starting with no pre-existing
mutations (Gi = 0), the fixation times calculated
using the deterministic model of cidal drug treatment
tended to be underestimated compared to those
calculated using averages over exact stochastic
simulations. When starting with a pre-existing
mutation (Gi = 1), the average fixation times using
the stochastic model converged to the those found
using the deterministic model (appendix H). This
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Figure 1. Schematic depicting the transitions between susceptible, non-genetically resistant, and genetically resistant
subpopulations in a cell population undergoing drug treatment. Cells with the drug susceptible (S) phenotype can switch to
non-genetically drug-resistant (N) phenotype and vice versa (at rates rN,S and rS,N, respectively). The degree of susceptibility or
resistance of S, N, and G to a drug can be varied between simulations and is dependent on the treatment scenario being
investigated. For example, a higher birth rate (kN) or a lower death rate (δN) results in the degree of transient drug resistance of N
cells being higher (represented by dark green cells), whereas a lower kN or a higher δN results in a lower level of transient drug
resistance (represented by light green cells), as described overall by the fitness (N subpopulation growth rate) in the presence of a
static or cidal drug, respectively; this is similar, but not shown in the schematic for clarity, for S and G cells. Cells from the N
subpopulation can mutate (at a rate rG,N) to become permanently genetically drug-resistant (G) cells.

highlights the importance of stochastic modeling
when considering low numbers of infectious cells
with no pre-existing drug resistance mutations.

We focus on the cidal drug treatment scenario for
stochastic simulations for constant and fluctuating
drug conditions, as the corresponding static drug
stochastic simulations took prohibitively long to sim-
ulate due the lack of cell death, which resulted in larger
subpopulation/population sizes, and correspondingly
stochastic fluctuations were not expected to have
much effect on the population dynamics.

3. Results and discussion

The parameters for the deterministic and stochas-
tic population models are provided in appendix A
(table A1) and the simulation codes are freely avail-
able at: https://github.com/CharleboisLab/S-N-G.

3.1. Deterministic population and evolutionary
dynamics under static drug exposure
We began by numerically solving the deterministic
population model to generate the time series sub-
population concentrations to investigate the relative
fitness effects of the non-genetically and genetically
resistant subpopulations on the evolution of drug
resistance during static drug treatment. We model the
effects of a static drug by setting the birth rate of
the susceptible cells S to zero (kS = 0) and setting all
death rates to a natural basal death rate, which was
based on the chronological life span of S. cerevisiae
(table A1) [45].

The concentration of S initially decreases after
the application of the static drug as a result of cells
switching from S to N and then increases logistically
due to switching from N to S, before falling toward
extinction due to resource competition with the G
subpopulation (figure 2(A)). The growth of N fol-
lows a logistic-type curve before also falling toward

extinction (figure 2(B)). Overall, the growth of S and
N (figures 2(A) and (B)), along with the growth of
total population (figure 2(D)), increase as the fitness
of N increases (modeled for static drug treatment by
increasing the birth rate of N).

The concentration of G (figure 2(C)) and the
fraction of G in the total population (figure 2(E))
reveal that an increase in the fitness of N slows the
expansion of G. This can be attributed to resource
competition between the subpopulations, as a higher
total population size reduces the growth rate of G
(equation (6)).

The growth rate of the total population over time
increases before sharply decreasing after it reaches
a maximum (figure 2(F)). This is a result of the
growth of the population beginning to slow down as
it increases in size (dT/dt → 0 as T →∞), which is
expected for logistic-type growth [37]. Despite the
decrease in the expansion of G, the total population
growth rate increases as the fitness of N increases
(figure 2(F)). Thus, increasing the fitness of N in
the static drug environment enhances the growth of
the population, while at the same time hindering
the expansion of G. Additionally, intense resource
competition drives the S and N subpopulations to
extinction at longer timescales.

Then, we quantified how the fitness of the N and
G subpopulations affect the fixation of the mutated G
subpopulation. As expected, an increase in kG relative
to kN shortens the fixation time of G in the population
(figure 3(A)). Importantly, increasing kN relative to kG

lengthens the fixation time of G (figure 3(A)), due to
competition decreasing the fraction of G in the total
population (figure 2(E)).

Overall, the trends in the static drug environ-
ment were similar for a wide range of mutation
rates (figure F5), though there were some qualitative
differences for variations in the S–N switching rates
(figures F1 and F2) (appendix F).
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Figure 2. Growth of the genetically resistant subpopulation is hindered by an increase in birth rate of the non-genetically
resistant subpopulation during static drug treatment. (A) The growth curve of the susceptible (S) subpopulation. (B) The growth
curve of the non-genetically resistant (N ) subpopulation. (C) The growth curve of the genetically resistant (G) subpopulation.
(D) The growth curve of the total population (T). (E) The fraction of G in the total population (T). (F) The rate of change
in the size of T (dT/dt) as a function of time (t). Each coloured line represents a different numerical simulation corresponding to
the growth value of N (kN) shown in the legend in (A), with the solid blue line representing the lowest level of N fitness
(kN = 0.1733 h−1), the red dash-dotted line an intermediate level of N fitness (kN = 0.2600 h−1), and the yellow dashed line the
highest level of N fitness (kN = 0.3466 h−1) relative to the fitness of G (kG = 0.3466 h−1) when exposed to a static drug.

Figure 3. Drug resistance of the non-genetic subpopulation slows the evolution of the genetically resistant subpopulation during
drug exposure. (A) Heat map shows the effect of the birth rates of the non-genetically resistant (N ) and genetically resistant (G)
subpopulations (kN and kG, respectively) on the fixation time (τ fix) of the genetically resistant subpopulation (G) during static
drug treatment. (B) Heat map shows the effect of the death rates of N and G (δN and δG , respectively) on the τ fix of G during cidal
drug treatment. For this case, we set δS was set to 1.0 h−1 and kN and kG to 0.3466 h−1. Each bin in (A) and (B) corresponds to a
simulation for a particular combination of kN and kG or δN and δG, respectively. The colour bar gives τfix in hours. As kN is less
than or equal to kG, numerical simulation data does not appear in the upper diagonal of the heat map in (A).

3.2. Deterministic population and evolutionary
dynamics under cidal drug exposure
Next, we investigated how the relative fitness of
the non-genetically resistant and genetically resistant
subpopulations affected the evolutionary dynamics of
the population under cidal drug treatment.

The concentration of S quickly declines after expo-
sure to the cidal drug, with phenotype switching
from N providing temporary survival before dying off

(figure 4(A)). The N subpopulation shows temporary
growth for lower values of δN before dying off, while
higher values of δN produce flat growth curves before
going extinct due to drug treatment and subpop-
ulation competition (figure 4(B)). Lower δN values
(higher N fitness) prolong the temporary survival of
S and N compared to higher δN values (figures 4(A)
and (B)). The logistic growth of G also changes due to
the fitness of N, with the higher δN (lower N fitness)
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Figure 4. The fraction of the genetically resistant cells in the population increases with a decrease in fitness of the non-genetically
resistant subpopulation in a cidal drug environment due to intraspecific competition. (A) The growth curve of the drug
susceptible (S) subpopulation. (B) The growth curve of the non-genetically drug resistant (N ) subpopulation. (C) The growth
curve of the genetically drug resistant (G) subpopulation. (D) The growth curve of the total population (T ). (E) The fraction of G
in the total population (T). (F) The rate of change in the size of T (dT/dt) as a function of time (t). Each coloured line represents
a different numerical simulation corresponding to the death rates of N shown in the legend in (A), with the solid blue line
representing the highest level of N fitness (death rate of 0.1 h−1), the red dash-dotted line an intermediate level of N fitness
(death rate of 0.5 h−1), and the yellow dashed line the lowest level N fitness (death rate of 1.0 h−1) relative to the fitness of G
(unaffected by the drug) during cidal drug treatment. S was given a death rate of 1.0 h−1 for these simulations, and the birth rate
of both N and G was set to 0.3466 h−1.

Figure 5. Probability of genetic drug resistance emerging before population extinction increases with the fitness of the
non-genetically resistant subpopulation during cidal drug treatment. The appearance probability of the genetically drug resistant
subpopulation (PG) is shown as a function of decreasing N fitness (death rate; δN). Each coloured line represents a different
strength of the cidal drug on the susceptible population S, with the red dashed-dotted line representing the lowest strength
(δS = 0.1 h−1), the blue line an intermediate strength (δS = 0.5), and the green dashed-dotted line the highest strength
(δS = 1.0 h−1). The birth rates of N and G were set to kN = kG = 0.3466 h−1. Each data point is an average over ten realizations
of 10 000 simulations. Error bars show the standard deviation.

values producing a sharper increase toward saturation
(figure 4(C)). Increasing the fitness of N decreases
the fraction of G in the total population, as lower δN

values result in more N cells and consequently lower
G/T values (figure 4(E)).

The number of cells in the total population ini-
tially declines (negative growth rate; figure 4(D)) be
fore stabilizing at zero population growth (figure
4(F)). Then the population growth rate increases
as the genetically drug resistant G subpopulation
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Figure 6. Drug resistance mutation first-appearance time and fixation time distributions during cidal drug treatment. (A)
First-appearance time (Pτ ) and (B) fixation time (Pτfix

) distributions for the genetically resistant subpopulation (G) for a low level
of non-genetically resistant subpopulation (N) fitness (death rate; δN = 0.3 h−1). For (A) and (B), histograms show results for
14 625 stochastic simulations. (C) Pτ and (D) Pτfix

distributions for G for an intermediate level of N fitness (δN = 0.2 h−1). For
(C) and (D), histograms show results for 30 391 SSA simulations. (E) Pτ and (F) Pτfix

distributions for G for a high level of N
fitness (δN = 0.1 h−1). For (E) and (F), histograms show results for 100 000 stochastic simulations. The mean and the CV for each
distribution is provided in the top corners of each plot. The death rate of S was set to δS = 1.0 h−1 and the birth rates of N and G
were set to kN = kG = 0.3466 h−1 for these simulations.

expands to take over the population. This is
followed by a decrease in the population growth
rate, as the total population size moves toward
saturation (zero population growth) after the
maximum population growth rate is reached.
Interestingly, when the fitness of N was high, there
was a subsequent resurgence in the population
growth rate before the population finally saturates.
The first peak in the population growth rate is a
due increasing S and N concentrations, and the
second peak is due to a subsequent rising in G
subpopulation concentration. When G is considered
to be partially resistant (i.e. δG > 1/156 h−1),

cidal drug treatment can either drive the total
population to extinction or result in non-zero steady-
state S, N, and G subpopulation concentrations
(figure E1).

As for the static drug treatment, increasing the
fitness of N hinders the fixation time of the geneti-
cally resistant subpopulation during cidal drug treat-
ment (figure 3(B)). Similar population dynamics were
observed when N was given a smaller birth rate
(kN = 0.1733 h−1) compared to G (figure D1). Over-
all, the findings for cidal drug treatment were qual-
itatively similar for a wide range of parameters
(figures C1, F3, F4, and F6) (appendix F).
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Figure 7. Fixation time of a genetic resistance mutation as a function of non-genetic drug resistance. Shown are the numerical
solutions of the deterministic ODE model (blue dots) and SSA results (orange crosses) for the corresponding stochastic model.
The death rate of the susceptible population (S) was set to δS = 1.0 h−1 and the birth rates of N and G were set to
kN = kG = 0.3466 h−1 for these simulations. Error bars on the SSA results denote the standard deviation.

3.3. Stochastic evolutionary dynamics during
cidal drug treatment
We simulated the stochastic population model
(equations (7)–(15)) translated from the
deterministic population model (equations (1)–(3))
to investigate the transition from non-genetic to
genetic drug resistance in cell populations moving
toward extinction during cidal drug treatment. This
is important as fluctuations in small subpopulation
sizes may impact the evolutionary dynamics of the
population. Given that S and N are killed to differing
degrees by the cidal drug, and that the evolution
of G depends directly on N, we hypothesized that
stochastic fluctuations in the size of N could lead to
the survival or extinction of the total population.
To quantify the population and evolutionary drug
resistance dynamics in this regime, we determined
how the fitness of N affects the probability of
population extinction (which occurs when S and N
go extinct before G emerges; figure G1), along with
the first-appearance and fixation times of a genetic
mutation, which are bound to occur in our model
once G is present in the population.

Decreasing the fitness of N (increasing δN)
decreased the likelihood of G appearing and res-
cuing the cell population from extinction during
cidal drug treatment (figure 5). This is in quali-
tative agreement with a previous study that found
that increasing the fluctuation relaxation time of
a drug resistance gene increased the probability of
acquiring a drug resistance mutation [6]. When
N had high fitness in the cidal drug environment
(δN = 0.1 h−1 to δN = 0.3 h−1) the total popu-
lation never went extinct. The extinction proba-
bility increased exponentially as the fitness of N
decreased, with the population going extinct between
57% and 83% (depending on the value of δS)

of the time for moderate fitness (δN = 0.5 h−1),
and between 87% and 96% (depending on the value
of δS) of the time for low fitness (δN = 1.0 h−1).
These results show that the presence of non-genetic
resistance enhances population survival when there
are no pre-existing drug resistance mutations prior
to drug exposure, and that non-genetic resistance
increases the chance that a mutation will occur by
providing a drug-exposed population with more time
before extinction. As expected, G always appeared
in the population when the strength of the cidal
drug was low (δN < 0.3 h−1), and conversely, the
population almost always went extinct before G could
emerge when the strength of the cidal drug was high
(δN = 1.0 h−1) (figure 5).

When the fitness of N increased in the cidal
drug environment so did the means of the muta-
tion first-appearance time and fixation time distri-
butions (figure 6). This indicates that the presence
of non-genetic drug resistance slows the evolution
of genetic drug resistance, in agreement with the
results obtained from the deterministic population
model (figure 3(B)). While the coefficient of variation
(CV; defined as the standard deviation divided by
the mean) of the first-appearance time distributions
(figures 6(A), (C) and (E)) was only marginally
dependent on the fitness of N, the CV of the fixa-
tion time distributions (figures 6(B), (D) and (F))
increased approximately three fold as the fitness of N
increased from low to high. Therefore, the presence of
increased non-genetic drug resistance is predicted to
not only slow down genetic drug resistance, but also
to increase the uncertainty in its evolution.

A comparison of the fixation times found using
the deterministic ODE model and the mean fixa-
tion times calculated over many stochastic simulation
algorithm (SSA) simulations for various δN values
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Figure 8. Oscillatory subpopulation concentration and growth rate dynamics in alternating drug-no drug conditions. The
fraction of the genetically resistant cells in the population increases with the death rate of the non-genetically resistant
subpopulation in a fluctuating cidal drug environment (12 h alternating drug-no drug intervals, starting with the drug applied).
(A) The growth curve of the drug susceptible (S) subpopulation. (B) The growth curve of the non-genetically drug resistant (N)
subpopulation. (C) The growth curve of the genetically drug resistant (G) subpopulation. (D) The growth curve of the total
population (T). (E) The fraction of G in the total population (T). (F) The rate of change in the size of T (dT/dt) as a function of
time (t). Each coloured line represents a different numerical simulation corresponding to the death rates of N shown in the legend
in (A), with the solid blue line representing the highest level of N fitness (death rate of 0.1 h−1), the red dash-dotted line an
intermediate level of N fitness (death rate of 0.5 h−1), and the yellow dashed line the lowest level N fitness (death rate of 1.0 h−1)
relative to the fitness of G (unaffected by the drug) during cidal drug treatment. S was given a death rate of 1.0 h−1 for these
simulations, and the birth rate of both N and G was set to 0.3466 h−1.

is shown in figure 7. As expected, the mean fixa-
tion times calculated from the stochastic simulations
generally match those found using the determin-
istic model. When modeling a pre-existing muta-
tion (Gi = 1), which removes the stochasticity in the
first appearance time of the mutant subpopulation,
the mean values of the stochastic simulation results
converge with those found using the deterministic
model (figure H1). Importantly, both determinis-
tic and stochastic models show that decreasing the
fitness of N increases the speed of genetic fixation
(this also holds for pre-existing mutation scenarios;
figure H1).

3.4. Evolutionary dynamics during fluctuating
cidal drug treatment
To investigate evolutionary drug resistance dynamics
in fluctuating drug treatment scenarios, we assigned
resistant subpopulations a fitness cost when the drug
was removed. This was done by reducing kN to
0.2600 h−1 and kG to 0.1733 h−1, while allowing S
to grow with kS = 0.3466 h−1 in the no-drug envi-
ronment (which also opened the mutational pathway
from S to G at a rate rG,S); the parameters were the
same as before in the intervals where the cidal drug
was applied (table A1).

We first performed deterministic simulations
where drug application intervals ranged from 6 to
48 h, followed by no-drug intervals of the same
duration. The fraction of G in the total population
changes relative to the fitness of N in a similar
way as the constant drug environment, showing a
hindrance of the fixation of G with increasing N
fitness (figures 8 and 9). Alternating between drug
and no-drug environment resulted in oscillations
in the subpopulation concentrations and population
growth rate (figure 8). Interestingly, when N had a
high level of resistance to cidal drug treatment, the
population growth rate oscillated dramatically before
saturating, rather than the isolated population growth
rate surge and resurgence peaks that occurred prior
to saturation in the constant cidal drug environment
simulations (figure 8(F)). Increasing the period of
the drug–no drug fluctuations also lengthens the
fixation time scales of G (figure 9) compared to the
constant cidal drug treatment scenario (figure 3(B)).
Thus, fluctuating the drug condition, along with the
presence of non-genetic drug resistance, can length
the onset of permanent genetic drug resistance.

Next, we performed stochastic simulations to
determine the probability of genetic drug resis-
tance appearing before population extinction for 12,
24, and 48 h fluctuations in cidal drug treatment.
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Figure 9. Drug resistance of the non-genetic subpopulation slows the evolution of the genetically drug resistant subpopulation
during fluctuating cidal drug exposure. Heat map shows the effect of the death rates δN and δG on the τ fix of G during cidal drug
treatment for 12 h drug–no drug fluctuations time, starting with drug applied. δS was set to 1.0 h−1, as it was assumed that S
would experience the least amount of resistance to the drug compared to N and G, and the trends seen here were found to hold
for fluctuation times of 6–48 h (data not shown). Each bin corresponds to a simulation for a particular combination of δN and
δG. The colour bar gives τ fix in hours.

Figure 10. Probability of genetic drug resistance emerging before population extinction decreases at longer cidal drug–no cidal
drug fluctuation intervals. The appearance probability of the genetically drug resistant subpopulation (PG) is shown as a function
of N fitness (death rate; δN). Each coloured line represents a different fluctuation time, with the red dashed-dotted line
representing 12 h fluctuations, the blue line 24 h fluctuations, and the green dashed-dotted line 48 h fluctuations (each starting
with drug applied). Each data point is an average over ten realizations of 10 000 simulations. Error bars show the standard
deviation.

Importantly, increasing the fluctuation timescale of
the drug to 48 h decreases the probability of genetic
drug resistance emerging at intermediate levels of
δN, compared to 12 and 24 h drug–no drug fluctu-
ation intervals (figure 10). As in the constant cidal
drug scenario, decreasing the fitness of the non-
genetically resistant subpopulation lowers the chance
of G appearing before population extinction.

Overall, these results suggests that alternating
drug conditions can result in oscillatory population
dynamics, and that increasing the drug–no drug
timescales can increase resistance mutation fixation
times and decrease population survival.

4. Conclusion

We found using deterministic and stochastic pop-
ulation models that while non-genetic resistance
enhances population survival, a slower rate of genetic
resistance evolution emerges from resource com-
petition between these subpopulations during con-
stant and fluctuating drug treatments. Specifically,
increasing the fitness of the non-genetically resistant
subpopulation (which allows the population to sur-
vive initial drug exposure) exponentially increased
the chance of a genetically resistant subpopulation
appearing and rescuing the total population from
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extinction during treatment at intermediate cidal
drug strength. However, increasing the fitness of the
non-genetically resistant subpopulation, along with
fluctuating the drug condition, slowed down the fix-
ation time of the genetic drug resistance mutation
due to subpopulation competition effects, when no
pre-existing mutations were present in the popula-
tion. Incorporating pre-existing mutations into the
model reduced the timescale of fixation, as it removed
the growth delay resulting from the time taken by
non-genetically resistant cells to mutate into genet-
ically resistant cells. For the stochastic simulations,
the presence of pre-existing mutations reduced the
stochasticity of the first-appearance time of the genet-
ically resistant subpopulation and protected against
population extinction. Corresponding experimental
investigations could be performed using microbes
harbouring inducible synthetic gene circuits to con-
trol the fraction of non-genetically resistant cells in
the population in combination with DNA sequencing
to track the appearance time and frequency of drug
resistance mutations [31–33].

High levels of competition drove the competing
susceptible and non-genetically resistant subpopula-
tions extinct in static and cidal drug treatment sce-
narios, which opens the possibility of incorporating
competition and resource limitation strategies into
antimicrobial therapies. These predictions could be
tested experimentally, for instance through competi-
tion assays [46] in which synthetic gene circuits tune
the initial fractions of susceptible and non-genetically
drug resistant cells in the population [31].

Alternating drug–no drug conditions generated
oscillatory population dynamics, and increasing
the drug–no drug fluctuation timescale resulted
in lengthened resistance mutation fixation times
and a sharper population survival-extinction ‘phase
transition’. It will be important to investigate
the effects of non-genetic resistance on the
development of genetic resistance in more complex
cell models [47] and further in the context of
fluctuating environments, which may be governed
by environment-sensing genetic networks [48],
along with cellular trade-offs that may occur in drug
environments [49]. Microfluidic devices could be
used to experimentally study the effects of fluctuating
drug stress at the single-cell level [50, 51]. Fluctuating
environmental stressors have been shown to facilitate
‘bet-hedging’ in cell populations [52, 53], whereby
some cells adopt a non-growing, stress-resistant
phenotype to increase the long-term fitness of the
population. This could be modelled using stochastic
hybrid processes [54], for instance by using an
stochastic ON–OFF switch coupled to a system of
ODEs describing subpopulation dynamics in the
presence of a drug. Furthermore, the first-appearance

time, fixation time, and extinction events could
be described analytically in future studies using a
first-passage time framework [6, 55].

Overall, our quantitative model generated robust
and novel predictions on the evolution of drug
resistance, and revealed that the interplay between
transient non-genetic drug resistance and permanent
genetic resistance may be more complex than previ-
ously thought. Specifically, in addition to enhancing
the survival of a drug-exposed microbial popula-
tion in constant drug conditions [4, 5, 10, 16, 24],
our findings demonstrate that transient non-genetic
resistance may hinder the evolution of permanent
genetic resistance in constant and fluctuating drug
conditions. As drug exposure is generally a form of
selective pressure, the results of this study are also
anticipated to be useful for understanding the evo-
lutionary dynamics of other stress-resistant microbial
populations.

A complete understanding of the drug resis-
tance process, including the interplay between non-
genetic and genetic forms of drug resistance, will be
important for mitigating the socio-economic costs of
antimicrobial resistance [5]. The resistance mutation
appearance probabilities and first-appearance time
distributions determined using stochastic population
models may prove useful for guiding drug therapies.
Quantitative distributions such as these may someday
serve as a way to avoid drug failure resulting from the
transition from non-genetic to genetic resistance by
indicating the timescale at which a clinician should
substitute or combine drugs during treatment to
avoid the selection of resistance-conferring mutations
[56, 57]. Fluctuations in mutation first-appearance
times are also important, as they can be the difference
between the eradication or the establishment of drug-
resistant infection during drug therapy. Finally, drug
resistant infections may one day be overcome by
novel strategies that enhance competition between
non-genetically and genetically resistant pathogens
during treatment. One potential strategy is to revert
an infectious population of cells from being drug-
resistant to drug-sensitive by periodically fluctuating
the drug environment. Specifically, by temporarily
removing or substituting the drug, the fitness costs
associated with subpopulation competition consid-
ered in our study, along with the previously estab-
lished costs of non-genetic resistance [9, 32] and resis-
tance mutations [58], could be exploited such that
drug-susceptible cells dominate in the population.
Overall, improving our quantitative understanding
of how non-genetic and genetic mechanisms interact
will advance our fundamental understanding of drug
resistance evolution and may lead to more effective
treatments for patients with drug-resistant infections.
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Appendix A. Parameters

The parameter values used in our study (table A1)
were based on experimental studies on the budding
yeast S. cerevisiae [32, 33, 45, 59, 60]. Additionally,
some parameters were scanned over a range of values
to account for parameter uncertainty, to probe for
parameter regime specific model behaviour, and to
test the robustness of the simulation results.

Drug susceptible cells S formed the majority of
the total initial population (Ti) and non-genetically
drug resistant cells N formed 1%–10% of Ti [19].
We assumed there were no pre-existing genetic drug
resistance mutations (Gi = 0) for all numerical and
stochastic simulations in the main text. Numerical
simulation of the deterministic population started
with Si = 5.5 × 105 cells ml−1 and Ni = 5.5 × 104

cells ml−1, which are common initial concentrations
for ‘log-phase’ laboratory experiments [60].

Depending on the concentration of the drug being
considered, constant birth rates kN and kG (which
model the fitness of the given subpopulation in the
presence of a static drug where death rates are unaf-
fected) were assigned values between 0.1733 h−1 and
0.3466 h−1, based on birth rates measured in standard
yeast cell culture experiments [59]. For cidal drugs,
we modeled fitness by setting the birth rates kN and

kG equal and scanning over N and G death rates

(δN and δG) at a constant S death rate (δS); the trends

also held for lower kN and δS values (see appendix C

and appendix D). The parameter ranges in table A1

were the basis of parameter scans that were used to

predict how the relative fitness between N and G

will affect population dynamics and the evolution of

genetic drug resistance in our study.

To model partial drug resistance due to gene-

expression noise, it was assumed that kN 6 kG for

static drugs and δG 6 δN for cidal drugs, with genetic

drug resistance mutations providing the greatest level

of resistance. Genetic mutations were also assumed to

be permanent in our simulations.

The switching rates between S and N are based

on experimental estimates [32] and ranged between

rS,N = 0.0035 h−1 and rN,S = 0.0625 h−1. The muta-

tion rate from N to G was based on a previous

modeling-experimental study [19], which ranged

from 10−6 to 10−7 per cell division, and was

assigned a value of rG,N = 0.3 × 10−6 h−1 in our

simulations.

The deterministic and stochastic population mod-

els provide a means to simulate the effects of non-

genetic resistance on the evolution of drug resistance.

The effects of static drugs (which reduce cell growth

but do not kill cells) were modeled by arresting the

birth of S (kS = 0 and rG,S = 0) and varying the

birth rates of N and G (kN and kG, respectively)

and by setting the death rates to a low natural basal

death rate (δS = δN = δG = 1/156 h−1). Cidal drugs

(which eventually kill all non-genetically resistant

cells) were modeled by adding non-zero death rates

for S and N (δS and δN, respectively). Unless otherwise

stated, we also modeled partial drug resistance of N by

setting δN < δS. Overall, varying key parameters spec-

ified in table A1 did not yield qualitatively different

results.

The parameter values given in table A1 were

also used for the stochastic simulations, as all the

corresponding reactions in the stochastic population

model were of zeroth-order or first-order [37]. Note

that in the stochastic population model the values of

Si, Ni, and Gi are exact numbers of cells (Si = 5.5 ×
105 cells and Ni = 5.5 × 104 cells), which we used

as the initial conditions to investigate the stochastic

transition from non-genetic to genetic resistance as

the number of cells in the population approached zero

(extinction) due to cidal drug treatment. The S to N

(and vice-versa) phenotype switching rates (rN,S and

rS,N, respectively), the N to G mutation rate (rG,N), and

the birth and death rates (ki and δi, respectively, where

i ∈ {S, N, G}) are all given as probability per unit time

in the stochastic population model.
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Table A1. Parameters used for numerically simulating the deterministic population dynamics model in static and cidal drug
conditions. A horizontal line in the ‘cidal drug value’ column indicates that the value is the same as the corresponding value in the ‘static
drug value’ column. A blank entry in the ‘units’ column indicates no units and ‘see text’ in the ‘reference’ indicates that the justification
for the parameter value is given in the main text or appendices.

Parameter Static drug value Cidal drug value Units Reference

Si 5.5 × 103 to 5.5 × 108 — Cells ml−1 [60]
Ni 5.5 × 102 to 1.1 × 108 — Cells ml−1 [9, 19]
Gi 0 — Cells ml−1 [39]
kS 0 — h−1 [39]
kN 0.1733–0.3466 — h−1 [59]
kG 0.1733–0.3466 — h−1 [59]
rS,N 0.0035 — h−1 [32, 33]
rN,S 0.0625 — h−1 [32, 33]
rG,S 0 — h−1 [39]
rG,N 10−6/3 — h−1 [19]
δS 1/156 0.1–1.0 h−1 [45]
δN 1/156 0.1–1.0 h−1 [45]
δG 1/156 1/156–0.05 h−1 [45]
h 1 × 107 — Cells ml−1 See text
n 2 — [59]

Figure B1. Simulations with a small S birth rate of kS = 0.01 h−1 and a mutational pathway from S to G (with a mutation rate
rG,S equal to rG,N used previously). (A) Fixation time heatmap for static drug case. (B) Fixation time heatmap for cidal drug case
(with δS = 1.0 h−1).

Appendix B. Small S birth rate
and mutational pathway from S to G

To test the scenario where drugs hinder but do not
completely arrest growth of the susceptible cells S, we
ran simulations with a small birth rate kS. We also
considered an active mutational pathway from S to G
(with the mutation rate rG,S being equal to the rG,N

mutation rate used in the main text). For all values
of kS tested (ranging from 1% to 50% the growth
rates used in the main text), the main conclusion
that non-genetic resistance hinders the fixation of
resistance mutations held for static and cidal drug
scenarios. A representative case for kS = 0.01 h−1 is
provided for the static drug case in figure B1(A) and
for the cidal case in figure B1(B). Specifically, there
were small quantitative differences in fixation times,

but the qualitative relationship between fixation time
and kN or δN held.

Appendix C. Different cidal drug
strengths

Figure C1 demonstrates that the qualitative results
discussed in the main text hold for higher levels of S
fitness (death rate δS = 0.5 h−1 and δS = 0.1 h−1) in
the cidal drug environment. Figure C1(A) shows the
cidal drug fixation heatmap using the deterministic
ODE model for an intermediate S fitness of δS =

0.5 h−1 and figure C1(B) shows the same case for
a high S fitness of δS = 0.1 h−1. The finding that
the fitness of the S subpopulation had little effect on
the fixation of G in the cidal drug environment can
likely be attributed to the fact that kS = 0 makes the
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Figure C1. The results in the main text regarding N fitness and G fixation are shown to hold for higher levels of S fitness than
those considered in the cidal drug environment in the main text (δS = 1.0 h−1; figure 3(B)). (A) Fixation time heatmap for
intermediate S fitness (δS = 0.5 h−1). (B) Fixation time heatmap for higher S fitness (δS = 0.1 h−1).

Figure D1. Growth of the genetically resistant subpopulation is hindered by the growth of the non-genetically resistant
subpopulation with a low birth rate in cidal drug environment. (A) The growth curve of the drug susceptible (S) subpopulation.
(B) The growth curve of the non-genetically drug resistant (N ) subpopulation. (C) The growth curve of the genetically drug
resistant (G) subpopulation. (D) The growth curve of the total population (T). (E) The fraction of G(t) in the total population T.
(F) The rate of change in the size of T (dT/dt) as a function of time. Each coloured line represents a different numerical
simulation corresponding to the death rates of N shown in the legend in (A), with the solid blue line representing the highest level
of N fitness (death rate of 0.1 h−1), the red dash-dotted line an intermediate level of N fitness (death rate of 0.5 h−1), and the
yellow dashed line the lowest level N fitness (death rate of 1.0 h−1) relative to the fitness of G (unaffected by the drug) during cidal
drug treatment. S was given a death rate of δS = 1.0 h−1 for these simulations, and the birth rate of G was set to kN = 0.3466 h−1.

S population significantly less fit relative to N and G
subpopulations regardless of the cidal drug strength.

Appendix D. Cidal drug simulations
with low N birth rate

Here we consider a cidal drug scenario where N has a
low birth rate relative to G by setting kN = 0.1733 h−1,
while kG remained at 0.3466 h−1. Subpopulation
trajectories, the fraction of genetically drug resistant
cells in the population G/T, and the population rate

of change dT/dt for this case are shown in figure D1.

A fixation time heat map for this case is shown in

figure D2. The qualitative trends and conclusions

made in the main text hold for this scenario.

Appendix E. Partially drug-susceptible
genetic mutant

Figure E1 shows a cidal drug case where G is assigned

a death rate of δG = 0.5 h−1 and hence is not fully

resistant to the drug. The time series show three
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Figure D2. Drug resistance of the non-genetic subpopulation slows the development of the genetically drug resistant
subpopulation in a cidal drug environment with N having a low birth rate relative to G (kN = 0.1733 h−1). Heat map shows the
effect of the death rates of the non-genetically resistant (δN) and genetically resistant (δG) subpopulations on the fixation time
(τfix) of G under cidal drug treatment. Each bin corresponds to a simulation for a combination of δN and δG parameter values.
The colour map show the fixation time in hours.

Figure E1. Partially resistant genetic mutation results in either total population extinction or non-zero steady-state population
size during cidal drug treatment (δG = 0.5 h−1). (A) The growth curve of the drug susceptible (S) subpopulation. (B) The growth
curve of the non-genetically drug resistant (N) subpopulation. (C) The growth curve of the genetically partially drug resistant (G)
subpopulation. (D) The growth curve of the total population (T). (E) The fraction of G(t) in T. (F) The rate of change in the size
of T (dT/dt) as a function of time. Each coloured line represents a different numerical simulation using the death rate values
shown in the legend in (A), with the solid blue line representing the highest level of N fitness (δN = 0.1 h−1), the red dash-dotted
line an intermediate level of N fitness (δN = 0.5 h−1), and the yellow dashed line the lowest level of N fitness (δN = 1.0 h−1)
relative to the intermediate fitness level of G (δG = 0.5 h−1).

different cases. The first case is where N has a rel-
atively high-fitness death rate, resulting in the total

population moving toward a non-zero steady state
over time (solid blue lines in figure E1). The second

case captures a scenario where N and G have the same
intermediate fitness death rate, resulting in extinction

of the total population (dash-dotted red lines in

figure E1). The last case shows a situation where N
has a low fitness death rate that is greater than the

death rate of G, which also results in total population
extinction (dashed yellow lines in figure E1). Consis-

tent with our main results, this case shows that the
fitness of N hinders the evolution of G, even when G

is partly susceptible to the drug.
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Figure F1. Genetic fixation results in the static drug environment for different values of switching rate rN,S. (A) rN,S = 0.001 h−1.
(B) rN,S = 0.1 h−1.

Figure F2. Genetic fixation results in the static drug environment for different values of switching rate rS,N. (A) rS,N = 0.0001 h−1.
Due to the large range of values (ranging from 2080 h to over 106 hr) this color map was plotted on a log scale. (B) rS,N = 0.01 h−1.

Figure F3. Genetic fixation results in the cidal drug environment for different values of switching rate rN,S. (A) rN,S = 0.001 h−1.
(B) rN,S = 0.1 h−1.

Appendix F. Parameter scans
of switching and mutation rates

To further test the robustness of our main findings,

we performed order-of-magnitude parameter scans

of the switching rates rN,S and rS,N (figures F1–F4), as

well as the mutation rate rG,N (figures F5 and F6), for

the static and cidal drug scenarios.

Specifically, when the switching rate from S to

N (rN,S) was decreased by an order of magnitude

it reduced the timescale (i.e., slightly decreased the
lower bound of τfix and drastically decreased the
upper bound of τ fix) over which G fixed in the popula-
tion (figure F1(A)); (2) when the switching rate from
N to S (rS,N) was decreased by an order of magnitude
it increased the timescale (i.e., slightly decreased the
lower bound of τ fix and drastically increased the
upper bound of τ fix) over which G evolved in the
population (figure F2(A)); and (3) when the switch-
ing rate from N to S (rS,N) was increased by an order
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Figure F4. Genetic fixation results in the cidal drug environment for different values of switching rate rS,N. (A) rS,N = 0.0001 h−1.
(B) rS,N = 0.01 h−1.

Figure F5. Genetic fixation results in the static drug environment for different values of mutation rate rG,N. (A) rG,N = 10−7/4 h
(B) rG,N = 10−6/2 h.

Figure F6. Genetic fixation results in the cidal drug environment for different values of mutation rate rG,N. (A) rG,N = 10−7/4 h
(B) rG,N = 10−6/2 h.

of magnitude, it decreased the timescale (i.e., slightly

decreased the lower bound of τ fix and drastically

decreased the upper bound of τ fix) over which G

fixed in the population (figure F2(B)). One might

expect that any change that leads to an increase in N

would also increase G (because N mutates to G) and

therefore would decrease the fixation of time of G,

however, this was not the case and the evolution of G

depended on the interactions between the competing

subpopulations.

There were no important differences were

observed for parameter scans of the N to G mutation

rate (figures F5 and F6).

Overall, these results demonstrate that the conclu-

sions made in the main text hold for a wide range

of parameters, though changing the switching rates
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Figure G1. Cell population survival and extinction during cidal drug treatment. (A) A representative population non-extinction
case where G appears before S and N go extinct. (B) A representative population extinction case where S and N go extinct before
G appears in the population.

Figure H1. Genetic subpopulation G fixation time comparison for deterministic ODE and SSA simulations with a pre-existing
mutation (Gi = 1). Genetic fixation time τfix is shown as a function of non-genetic subpopulation N fitness (δN) in the cidal drug
environment. The death rate of the susceptible population S was set to δS = 1.0 h−1 and the birth rates of N and G were set to
kN = kG = 0.3466 h−1 for these simulations. Error bars on the SSA results show the standard deviation.

qualitatively affects the evolution of drug-resistant

mutants in a way that is not entirely obvious and that

depends on the underlying population dynamics.

Appendix G. Survival and extinction
scenarios

Representative survival and extinction trajectories

from the stochastic simulations are shown in

figure G1. Figure G1(A) shows a case where the cell

population survives cidal drug treatment due to G

emerging before S and N go extinct. G subsequently

takes over the population in this scenario. In contrast,

figure G1(B) shows a case where the cell population

goes extinct due to S and N reaching zero cells before

G appears.

Appendix H. Pre-existing mutation
for stochastic simulations

To show that the discrepancies seen in figure 7 were

due to differences between the modeling approaches,

i.e., SSA models extinction due to stochasticity in τ app,

simulations using a pre-existing mutation (Gi = 1)

were made. Figure H1 shows the comparison of

genetic fixation times calculated using simulations

from the deterministic ODE and SSA modeling

approaches, similar to figure 7 in the main text.

As seen, removing the possibility of extinction by

removing the stochastic nature of the first appearance

time of G results in the SSA results converging to those

found using the deterministic ODE model.

18

60



Phys. Biol. 19 (2022) 066002 J D Guthrie and D A Charlebois

Appendix I. Varying initial population
sizes

Starting the deterministic simulations with a low or
high initial population size (Ti ≈ 103 or Ti ≈ 108) or
with varying amounts of initial non-genetically resis-
tant cells (Ni making up 1%–20% of Ti) were found to
have little effect on the fixation time of the genetically
resistant population, as the population dynamics in
these cases quickly converged to similar trajectories
regardless of their initial population sizes. For the
stochastic simulations the initial population size was
found to aid survival, with high initial populations
surviving the drug for longer amounts of time and
hence providing more time for the mutant population
to emerge, as expected, but the fixation times of the
genetically resistant population were once again not
strongly affected by varying Ti or Ni.
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Chapter 3

Conclusion

“For objective description and harmonious comprehension, it is necessary in almost

every field of knowledge to pay attention to the circumstances under which evidence

is obtained.”

-Niels Bohr

3.1 Physics-Based Modelling Provides Valuable In-
sights into the Evolution of Drug Resistance

In Chapter 2, a model used to predict the evolutionary dynamics of AMR in a pop-

ulation consisting of susceptible, genetically resistant, and non-genetically resistant

cells was proposed. The model was presented as a set of deterministic coupled pop-

ulation growth equations and as a set of stochastic reactions. The deterministic

growth equations were numerically solved to investigate the evolutionary dynamics

of the population in large cell number regimes where stochastic effects are negligi-

ble. Stochastic trajectories of the reaction system were simulated using the SSA to

analyze the model in low cell number regimes where stochastic effects can alter the

evolutionary dynamics of the population. The stochastic formulation of the model

was primarily used to investigate population survival and statistical distributions of

genetic mutation appearance and fixation probabilities over time.

The analysis of this model led to multiple quantitative conclusions about the po-
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tential evolutionary dynamics of cell populations undergoing drug treatment:

1. The survival of a cell population undergoing drug treatment is aided by non-

genetic phenotypic heterogeneity.

2. Increased survival due to non-genetic phenotypic heterogeneity increases the

probability of a genetic drug resistance mutation appearing in the population.

3. Intraspecific competition effects between non-genetically resistant and geneti-

cally resistant cells lead to longer genetic fixation times within the population.

Conclusion 1 has been documented in the literature [10, 20, 50, 80, 81], showing that

our model can provide quantitative support for empirical and qualitative biological

evidence. Conclusion 2 is in agreement with previous studies suggesting that non-

genetic phenotypic heterogeneity increases the probability of a beneficial genetic mu-

tation arising in the population [10, 20]. Conclusion 3 is a novel prediction about the

evolutionary dynamics of cell populations consisting of susceptible, non-genetically

resistant, and genetically resistant cells, which compete with each other while un-

dergoing drug treatment. It leads to an experimentally testable hypothesis that the

survival of non-genetically resistant cells results in a subpopulation that can directly

compete with genetically resistant cells, hindering the overall evolution of the genetic

mutation towards fixation. This result has not previously been suggested in the liter-

ature, which has leaned towards the idea that non-genetic resistance is beneficial for

the development of permanent genetic resistance [10, 20, 80].

The phenomenological model we have presented incorporates population-level char-

acteristics that arise due to the underlying physical processes that occur during gene

expression and result in non-genetic AMR. Additionally, the analysis was carried out

using numerical and Monte Carlo simulation methods commonly used in physics [45].

The research presented in this thesis has shown that taking a physics-based approach
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to produce predictive quantitative models and investigate the complex dynamics of

AMR can provide valuable insights by reinforcing qualitative biological reasoning

and experimental findings, along with enabling the development of novel quantitative

hypotheses that can be tested experimentally.

3.2 Limitations and Future Directions

The work presented in Chapter 2 is a computational study investigating the evolu-

tionary dynamics of drug resistance at the cell population level and hence has several

limitations that should be noted. Future research utilizing similar methods will in-

volve addressing these limitations and testing model predictions experimentally to

deepen our understanding of AMR.

Firstly, the model does not explicitly incorporate the underlying mechanisms of

drug resistance in cells [56]. Additionally, the overall structure and parameters of the

model were based on in vitro studies of AMR in yeast, which may not accurately

represent the cell population dynamics of biological systems undergoing drug treat-

ment in other settings [100]. A phenomenological approach was taken by modelling

population-level characteristics that arise due to the mechanisms that we considered

to be the most influential for cell population AMR evolution given the current state

of understanding in the literature [20], with phenotypic differences in the population

being modelled by three distinct subgroups. In particular, the population-level pheno-

typic characteristics generated by beneficial genetic mutations and non-genetic gene

expression noise were incorporated into our model, as they are universal to cells [20].

The model may need to be extended to incorporate more phenotypic differences,

such as including population-level characteristics that arise due to other genetic (e.g.,

horizontal gene transfer in bacteria [101]) and non-genetic (e.g., persistence in bac-

teria [77] and heteroresistance in fungi [56]) mechanisms, to capture cell population

dynamics during drug-treatment more accurately. Antifungal tolerance, defined as

the ability of a susceptible fungal strain to grow slowly in the presence of an anti-
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fungal drug [62], should also be incorporated to more robustly model the dynamics

of the susceptible subpopulation. Other considerations, such as incorporating a spa-

tial component [102] and modelling the fitness costs associated with mutations [103]

and non-genetic phenotypic heterogeneity [76, 104] should be investigated and in-

corporated into the model to further advance our understanding of AMR evolution.

Mechanistic approaches that explicitly incorporate mechanisms of AMR and cell-to-

cell differences caused by them (e.g., individual cell size and functions) [105] should

also be considered to further investigate the interplay between genetic and non-genetic

AMR.

Secondly, the quantitative measure of evolution used in our study was limited to the

genetic fixation time of the genetically resistant population. Although genetic fixation

is a useful measure of evolution in cell populations, more in-depth evolutionary in-

vestigations, such as considering fitness landscapes [106, 107], allele frequencies [107],

and frequency-dependent selection [108], could be applied within the context of the

model we have proposed to make additional predictions about the evolution of AMR

in cell populations. Other mathematical formulations of the proposed model could

also be investigated to make additional predictions, such as applying a first-passage

time framework to further investigate first-appearance and fixation times of the ge-

netic mutations [75, 109], coupling the ODEs to stochastic hybrid processes [110]

to better model cell population behaviour in fluctuating environments, and incorpo-

rating drug concentration equations [111] to more robustly model fluctuating drug

levels.

Lastly, the work presented in this thesis is computational. The structure and

parameters of the model were based on empirical observations of drug-resistant cell

populations, but the conclusions we have drawn from the analysis of the model require

experimental validation before they can be accepted as conclusive evidence for the

evolutionary dynamics of AMR in cell populations. To test predictions made regard-

ing population survival and the first appearance times of genetic mutations, synthetic
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biology methods could be used to control levels of non-genetically resistant cells in

an experimental cell population using inducible synthetic gene circuits, with DNA se-

quencing being used to track the first appearance and frequency of genetic mutations

in the population [10, 63, 76]. Our predictions regarding the effect of intraspecific

competition between subpopulations could be tested using competition assays [112]

while also utilizing synthetic gene circuits to tune the fraction of susceptible and non-

genetically resistant cells [10]. Future work will require close collaboration between

theoretical and experimental researchers to validate the quantitative predictions made

by mathematical models of AMR and to guide the development of future models.

Along with providing a more robust understanding of AMR mechanisms and evolu-

tion, predictive, physics-based modelling may someday be used to aid medical treat-

ments and drug discovery, reducing the medical, societal and economic impacts of

AMR [10, 11, 20]. First appearance and genetic fixation distributions could poten-

tially be used to guide treatment strategies by providing a quantitative framework

for predicting the development of AMR in infections, allowing clinicians to determine

when certain drugs should be substituted or combined to reduce the selection of re-

sistance mutations [113, 114]. The effects of intraspecific competition [24, 25] and the

fitness costs associated with non-genetic [76, 104] and genetic AMR [103] could be ex-

ploited to hinder or prevent the development of drug-resistant infections, potentially

by periodically fluctuating the drug environment based on timescales suggested by

AMR models to ensure that drug-susceptible cells remain dominant in the population.

Predictive modelling may also aid in the development of “evolution-proof” antimicro-

bial drugs [27] by providing drug development researchers with tools to investigate

AMR mechanisms and the evolutionary dynamics of AMR to optimize antimicro-

bial compounds that reduce, or eliminate, the possibility of genetic AMR mutations

and evolution [11]. This further demonstrates that AMR research will require close

collaboration between researchers in many different fields.

Based on the work presented in this thesis and elsewhere in the literature, I antic-
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ipate that quantitative modelling that incorporates aspects of physics methodology,

along with utilizing physical theories and methods, will continue to be a valuable

tool for understanding AMR at a fundamental level and to guide new developments

towards reducing the global impacts of AMR. AMR is a complex problem that will

require an interdisciplinary approach to better understand the mechanisms and conse-

quences of resistance at various scales, from the molecular underpinnings of resistance

to the large-scale behaviour of cell populations that cause drug-resistant infections

and threaten global health security.
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Appendix A: Code

The following sections present the source code I wrote to produce the results presented

in this thesis. I wrote all of the codes utilizing suggestions and feedback from my

supervisor Dr. Daniel Charlebois. The programming languages used were chosen

to balance computational efficiency and ease of use. For computationally intensive

algorithms (the SSA in particular) C was used. Python was used to analyze and plot

the results obtained from the C code. MATLAB was used to create the deterministic

simulations and analyze the results. The code shown below can be altered to produce

all of the results presented in this thesis.

A.1 Deterministic Algorithms

A.1.1: MATLAB code used to numerically solve the coupled ODE system presented
in Chapter 2 using ode45 [92].
f u n c t i o n [ t , X] = O D E s o l v e r m o d e l 2 s c e n a r i o 1 ( t i , t end , dt , S ,N, G1)
% S o l v e s a s y s t e m of c o u p l e d O D E s v i a M A T L A B s o l v e r ( d e f a u l t s o l v e r : o d e 4 5 )
[ t X] = o d e 4 5 ( @equations , t i : dt : t end , [ S N G1 ] ) ;

e n d

f u n c t i o n dx = e q u a t i o n s ( t , x )

g l o b a l n k kS rSN rNS rG1S dS kN rG1N dN kG1 dG1

dx = z e r o s ( 3 , 1 ) ;

dx ( 1 ) = x ( 1 ) ∗kS ∗( kˆn ) /( kˆn + ( x ( 1 )+x ( 2 )+x ( 3 ) ) ˆn ) + x ( 2 ) ∗rSN − x ( 1 ) ∗rNS − x ( 1 ) ∗rG1S − x ( 1 ) ∗dS ;
dx ( 2 ) = x ( 2 ) ∗kN∗( kˆn ) /( kˆn + ( x ( 1 )+x ( 2 )+x ( 3 ) ) ˆn ) + x ( 1 ) ∗rNS − x ( 2 ) ∗rG1N − x ( 2 ) ∗rSN − x ( 2 ) ∗dN ;
dx ( 3 ) = x ( 3 ) ∗kG1∗( kˆn ) /( kˆn + ( x ( 1 )+x ( 2 )+x ( 3 ) ) ˆn ) + x ( 1 ) ∗rG1S + x ( 2 ) ∗rG1N − x ( 3 ) ∗dG1 ;

e n d

A.1.2: MATLAB code used to run the deterministic simulations and produce the time
series and heatmap plots presented in Chapter 2 for the constant drug environment.
f u n c t i o n d e t e r m i n i s t i c s i m u l a t i o n s ( model , s c e n a r i o , r e l a t i v e t o N 0 , c i d a l , d e a t h f a c t o r , . . .

G 1 s u s c e p t i b l e , G 2 s u s c e p t i b l e , l o g b o o l , s a v e t i m e s e r i e s , ⤦
Ç . . .

plot heatmaps , l i n s p a c e n , save heatmaps , deathrate sweep , . . .
t end , dt , S i , N i , G1 i , G2 i , s a v e t o )

% J o s h u a G u t h r i e , C h a r l e b o i s L a b o r a t o r y , U n i v e r s i t y of A l b e r t a
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% S i m u l a t i o n c o d e u s i n g d e t e r m i n i s t i c O D E m o d e l s f o r q u a n t i t a t i v e
% non - g e n e t i c / g e n e t i c d r u g r e s i s t a n c e / e v o l u t i o n s t u d y . C o v e r s n u m e r i c a l s i m u l a t i o n s
% f o r m u l t i p l e m o d e l s , s c e n a r i o s , a n d d r u g t y p e s , as w e l l as r e s u l t p l o t t i n g .

g l o b a l N0 k n kS kN kG1 kG2 rSN rNS rG1S rG1N rG2G1 dS dN dG1 dG2 kN dsweep kG dsweep
k N l i s t = [ 0 . 1 7 3 3 0 . 2 6 0 0 0 . 3 4 6 6 ] ; k G l i s t = [ 0 . 3 4 6 6 0 . 3 4 6 6 0 . 3 4 6 6 ] ;
d N l i s t = [ 0 . 1 0 . 5 1 . 0 ] ;
d S l i s t = [ 1 1 1 ] ;

% % S c e n a r i o 1
% R u n S c e n a r i o 1 ( no G2 ) f o r d i f f e r e n t v a l u e s of k G 1 a n d kN
if s c e n a r i o == 1

t l i s t = [ ] ;
S l i s t = [ ] ;
N l i s t = [ ] ;
G 1 l i s t = [ ] ;
d N d t l i s t = [ ] ;
t e s t l i s t = [ ] ;
t f i x l i s t = [ ] ;
l e g e n d l i s t = [ ] ;

% r u n s i m u l a t i o n s f o r e a c h kN a n d kG
f o r i = 1 : l e n g t h ( k N l i s t )

kN = k N l i s t ( i ) ; kG1 = k G l i s t ( i ) ;
% if u s i n g c i d a l d r u g s , s p e c i f y d e a t h r a t e s
if c i d a l

dN = d N l i s t ( i ) ;
dS = d S l i s t ( i ) ;
if G 1 s u s c e p t i b l e

dG1 = 0 . 5 ;
e l s e

dG1 = 1 / 1 5 6 ;
e n d

e l s e
dS = 1 / 1 5 6 ; dN = 1 / 1 5 6 ; dG1 = 1 / 1 5 6 ; dG2 = 0 . 0 ;

e n d
% r u n s i m u l a t i o n s , s a v e r e s u l t s to l i s t s
[ t , S , N, G1 , ˜ , dN dt , t e s t , t f i x ] = s i m u l a t e ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end ,⤦

Ç dt , S i , N i , G1 i , G2 i ) ;
if c i d a l

l e g e n d t e x t = s p r i n t f ( ’ \\ d e l t a _ N = % . 1 f / hr ’ , dN) ;
e l s e

l e g e n d t e x t = s p r i n t f ( ’ k _ N = % . 4 f / hr ’ , kN) ;
e n d
t l i s t = [ t l i s t , t ] ;
S l i s t = [ S l i s t , S ] ;
N l i s t = [ N l i s t , N ] ;
G 1 l i s t = [ G 1 l i s t , G1 ] ;
d N d t l i s t = [ d N d t l i s t , dN dt ] ;
t e s t l i s t = [ t e s t l i s t , t e s t ] ;
t f i x l i s t = [ t f i x l i s t , t f i x ] ;
l e g e n d l i s t = [ l e g e n d l i s t , { l e g e n d t e x t } ] ;

e n d

% p l o t s i m u l a t i o n r e s u l t s
% c r e a t e t h e t i m e s e r i e s f i l e n a m e
if s a v e t i m e s e r i e s

d i r e c t o r y = s a v e t o ;
if c i d a l

drug type = ’ c i d a l ’ ;
d e a t h f a c t o r s t r = s p r i n t f ( ’ _ d e a t h f a c t o r % d ’ , d e a t h f a c t o r ) ;

e l s e
drug type = ’ s t a t i c ’ ;
d e a t h f a c t o r s t r =’ ’ ;

e n d
if G 1 s u s c e p t i b l e

G 1 s u s c e p t i b l e s t r = ’ _ G 1 s u s c e p t i b l e ’ ;
e l s e

G 1 s u s c e p t i b l e s t r = ’ ’ ;
e n d

if G 2 s u s c e p t i b l e
G 2 s u s c e p t i b l e s t r = ’ _ G 2 s u s c e p t i b l e ’ ;

e l s e
G 2 s u s c e p t i b l e s t r = ’ ’ ;

e n d

if l o g b o o l
l o g s t r = ’ _ l o g l o g ’ ;

e l s e
l o g s t r = ’ ’ ;

e n d

TS fi lename = s p r i n t f (” % s m o d e l % d _ s c e n a r i o % d_ % s % s % s % s _ N i % 0 . 1 e % s _ T i m e S e r i e s " , d i r e c t o r y ,⤦
Ç m o d e l , s c e n a r i o , . . .

drug type , d e a t h f a c t o r s t r , G 1 s u s c e p t i b l e s t r , G 2 s u s c e p t i b l e s t r ,⤦
Ç N i , l o g s t r ) ;

e l s e
TS fi lename = ’ n / a ’ ;

e n d
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p l o t s i m u l a t i o n r e s u l t s ( t l i s t , S l i s t , N l i s t , G 1 l i s t , ’ n / a ’ , d N d t l i s t , l e g e n d l i s t ,⤦
Ç l o g b o o l , s a v e t i m e s e r i e s , TS f i lename )

% r u n l a r g e a m o u n t of s i m u l a t i o n s a n d p l o t t _ e s t a n d t _ f i x h e a t m a p s
if plot heatmaps

[ kG used est , k G u s e d f i x , kN used est , k N u s e d f i x , t e s t l i s t , t f i x l i s t ] = . . .
p o p u l a t i o n t i m e s ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end , dt , . . .

S i , N i , G1 i , G2 i , c i d a l , G 1 s u s c e p t i b l e , . . .
G 2 s u s c e p t i b l e , d e a t h f a c t o r , l i n s p a c e n ) ;

if save heatmaps
d i r e c t o r y = s a v e t o ;
if c i d a l

drug type = ’ c i d a l ’ ;
d e a t h f a c t o r s t r = s p r i n t f ( ’ _ d e a t h f a c t o r % d ’ , d e a t h f a c t o r ) ;

e l s e
drug type = ’ s t a t i c ’ ;
d e a t h f a c t o r s t r =’ ’ ;

e n d
if G 1 s u s c e p t i b l e

G 1 s u s c e p t i b l e s t r = ’ _ G 1 s u s c e p t i b l e ’ ;
e l s e

G 1 s u s c e p t i b l e s t r = ’ ’ ;
e n d

if G 2 s u s c e p t i b l e
G 2 s u s c e p t i b l e s t r = ’ _ G 2 s u s c e p t i b l e ’ ;

e l s e
G 2 s u s c e p t i b l e s t r = ’ ’ ;

e n d

HM fi lename est = s p r i n t f (” % s m o d e l % d _ s c e n a r i o % d_ % s % s % s % s _ N i % 0 . 1⤦
Ç e _ e s t a b l i s h m e n t _ h e a t m a p " , d i r e c t o r y , m o d e l , s c e n a r i o , . . .

drug type , d e a t h f a c t o r s t r , G 1 s u s c e p t i b l e s t r ,⤦
Ç G 2 s u s c e p t i b l e s t r , N i ) ;

H M f i l e n a m e f i x = s p r i n t f (” % s m o d e l % d _ s c e n a r i o % d_ % s % s % s % s _ N i % 0 . 1 e _ f i x a t i o n _ h e a t m a p⤦
Ç " , d i r e c t o r y , m o d e l , s c e n a r i o , . . .

drug type , d e a t h f a c t o r s t r , G 1 s u s c e p t i b l e s t r ,⤦
Ç G 2 s u s c e p t i b l e s t r , N i ) ;

e l s e
HM fi lename est = ’ n / a ’ ;
H M f i l e n a m e f i x = ’ n / a ’ ;

e n d
p l o t p o p u l a t i o n t i m e s ( kG used est , kN used est , t e s t l i s t , ’ E s t a b l i s h m e n t ’ , s c e n a r i o ⤦

Ç , save heatmaps , HM fi lename est )
p l o t p o p u l a t i o n t i m e s ( k G u s e d f i x , k N u s e d f i x , t f i x l i s t , ’ F i x a t i o n ’ , s c e n a r i o , ⤦

Ç save heatmaps , H M f i l e n a m e f i x )
e n d

% r u n a s w e e p of v a r y i n g c i d a l d r u g d e a t h r a t e v a l u e s
if d e a t h r a t e s w e e p

[ dG used est , dG used f ix , dN used est , d N u s e d f i x , t e s t l i s t , t f i x l i s t ] = . . .
p o p u l a t i o n t i m e s d e l t a ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end , dt , . . .

S i , N i , G1 i , G2 i , G 1 s u s c e p t i b l e , . . .
G 2 s u s c e p t i b l e , kN dsweep , kG dsweep , l i n s p a c e n ) ;

if save heatmaps
d i r e c t o r y = s a v e t o ;
if G 1 s u s c e p t i b l e

G 1 s u s c e p t i b l e s t r = ’ _ G 1 s u s c e p t i b l e ’ ;
e l s e

G 1 s u s c e p t i b l e s t r = ’ ’ ;
e n d

if G 2 s u s c e p t i b l e
G 2 s u s c e p t i b l e s t r = ’ _ G 2 s u s c e p t i b l e ’ ;

e l s e
G 2 s u s c e p t i b l e s t r = ’ ’ ;

e n d

HM fi lename est = s p r i n t f (” % s m o d e l % d _ s c e n a r i o % d_ % s % s _ N i % 0 . 1 e _ k N % 0 . 4 f _ k G % 0 . 4⤦
Ç f _ d e a t h r a t e _ e s t a b l i s h m e n t _ h e a t m a p " , d i r e c t o r y , m o d e l , s c e n a r i o , . . .

G 1 s u s c e p t i b l e s t r , G 2 s u s c e p t i b l e s t r , N i , kN dsweep , ⤦
Ç kG dsweep ) ;

H M f i l e n a m e f i x = s p r i n t f (” % s m o d e l % d _ s c e n a r i o % d_ % s % s _ N i % 0 . 1 e _ k N % 0 . 4 f _ k G % 0 . 4⤦
Ç f _ d e a t h r a t e _ f i x a t i o n _ h e a t m a p " , d i r e c t o r y , m o d e l , s c e n a r i o , . . .

G 1 s u s c e p t i b l e s t r , G 2 s u s c e p t i b l e s t r , N i , kN dsweep , ⤦
Ç kG dsweep ) ;

e l s e
HM fi lename est = ’ n / a ’ ;
H M f i l e n a m e f i x = ’ n / a ’ ;

e n d
p l o t p o p u l a t i o n t i m e s d e l t a ( dG used est , dN used est , t e s t l i s t , ’ E s t a b l i s h m e n t ’ , ⤦

Ç kN dsweep , kG dsweep , save heatmaps , HM fi lename est )
p l o t p o p u l a t i o n t i m e s d e l t a ( dG used f ix , d N u s e d f i x , t f i x l i s t , ’ F i x a t i o n ’ , ⤦

Ç kN dsweep , kG dsweep , save heatmaps , H M f i l e n a m e f i x )
e n d

e n d

% % S c e n a r i o 2
% R u n S c e n a r i o 2 s i m u l a t i o n s f o r d i f f e r e n t v a l u e s of kN , kG1 , k G 2
if s c e n a r i o == 2

t l i s t = [ ] ;
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S l i s t = [ ] ;
N l i s t = [ ] ;
G 1 l i s t = [ ] ;
G 2 l i s t = [ ] ;
d N d t l i s t = [ ] ;
t e s t l i s t = [ ] ;
t f i x l i s t = [ ] ;
l e g e n d l i s t = [ ] ;

% r u n s i m u l a t i o n s f o r a l l kN a n d kG
f o r i = 1 : l e n g t h ( k N l i s t )

kN = k N l i s t ( i ) ; kG1 = 0 . 1 7 3 3 ; kG2 = k G l i s t ( i ) ;

% s e t c i d a l d r u g d e a t h r a t e s
if c i d a l

dN = 0.1733∗ d e a t h f a c t o r ;
dS = 0.3466∗ d e a t h f a c t o r ;

if G 1 s u s c e p t i b l e
dG1 = 0.2600∗ d e a t h f a c t o r ;

e l s e
dG1 = 1 / 1 5 6 ;

e n d
if G 2 s u s c e p t i b l e

dG2 = 0.1733∗ d e a t h f a c t o r ;
e l s e

dG2 = 0 . 0 ;
e n d

e l s e
dS = 1 / 1 5 6 ; dN = 1 / 1 5 6 ; dG1 = 1 / 1 5 6 ; dG2 = 0 . 0 ;

e n d

% r u n s i m u l a t i o n s , s a v e r e s u l t s to l i s t s
[ t , S , N, G1 , G2 , dN dt , t e s t , t f i x ] = s i m u l a t e ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end⤦

Ç , dt , S i , N i , G1 i , G2 i ) ;
if i == 1

l e g e n d t e x t = s p r i n t f ( ’ k _ N = % . 4 f / hr ,\ n k _ { G2 } = % . 4 f / hr \ n ’ , [ kN kG2 ] ) ;
e l s e

l e g e n d t e x t = s p r i n t f ( ’ \ n k _ N = % . 4 f / hr ,\ n k _ { G2 } = % . 4 f / hr \ n ’ , [ kN kG2 ] ) ;
e n d
t l i s t = [ t l i s t , t ] ;
S l i s t = [ S l i s t , S ] ;
N l i s t = [ N l i s t , N ] ;
G 1 l i s t = [ G 1 l i s t , G1 ] ;
G 2 l i s t = [ G 2 l i s t , G2 ] ;
d N d t l i s t = [ d N d t l i s t , dN dt ] ;
t e s t l i s t = [ t e s t l i s t , t e s t ] ;
t f i x l i s t = [ t f i x l i s t , t f i x ] ;
l e g e n d l i s t = [ l e g e n d l i s t , { l e g e n d t e x t } ] ;

e n d
% p l o t s i m u l a t i o n r e s u l t s
% c r e a t e t h e t i m e s e r i e s f i l e n a m e
if s a v e t i m e s e r i e s

d i r e c t o r y = s a v e t o ;
if c i d a l

drug type = ’ c i d a l ’ ;
d e a t h f a c t o r s t r = s p r i n t f ( ’ _ d e a t h f a c t o r % d ’ , d e a t h f a c t o r ) ;

e l s e
drug type = ’ s t a t i c ’ ;
d e a t h f a c t o r s t r =’ ’ ;

e n d
if G 1 s u s c e p t i b l e

G 1 s u s c e p t i b l e s t r = ’ _ G 1 s u s c e p t i b l e ’ ;
e l s e

G 1 s u s c e p t i b l e s t r = ’ ’ ;
e n d

if G 2 s u s c e p t i b l e
G 2 s u s c e p t i b l e s t r = ’ _ G 2 s u s c e p t i b l e ’ ;

e l s e
G 2 s u s c e p t i b l e s t r = ’ ’ ;

e n d

if l o g b o o l
l o g s t r = ’ _ l o g l o g ’ ;

e l s e
l o g s t r = ’ ’ ;

e n d

TS fi lename = s p r i n t f (” % s m o d e l % d _ s c e n a r i o % d_ % s % s % s % s _ N i % 0 . 1 e % s _ T i m e S e r i e s " , d i r e c t o r y ,⤦
Ç m o d e l , s c e n a r i o , . . .

drug type , d e a t h f a c t o r s t r , G 1 s u s c e p t i b l e s t r , G 2 s u s c e p t i b l e s t r ,⤦
Ç N i , l o g s t r ) ;

e l s e
TS fi lename = ’ n / a ’ ;

e n d

p l o t s i m u l a t i o n r e s u l t s ( t l i s t , S l i s t , N l i s t , G 1 l i s t , G 2 l i s t , d N d t l i s t , l e g e n d l i s t ,⤦
Ç l o g b o o l , s a v e t i m e s e r i e s , TS f i lename )

% r u n l a r g e a m o u n t of s i m u l a t i o n s a n d p l o t t _ e s t a n d t _ f i x h e a t m a p s
if plot heatmaps
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[ kG used est , k G u s e d f i x , kN used est , k N u s e d f i x , t e s t l i s t , t f i x l i s t ] = . . .
p o p u l a t i o n t i m e s ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end , dt , . . .

S i , N i , G1 i , G2 i , c i d a l , G 1 s u s c e p t i b l e , . . .
G 2 s u s c e p t i b l e , d e a t h f a c t o r , l i n s p a c e n ) ;

if save heatmaps
d i r e c t o r y = s a v e t o ;
if c i d a l

drug type = ’ c i d a l ’ ;
d e a t h f a c t o r s t r = s p r i n t f ( ’ _ d e a t h f a c t o r % d ’ , d e a t h f a c t o r ) ;

e l s e
drug type = ’ s t a t i c ’ ;
d e a t h f a c t o r s t r =’ ’ ;

e n d
if G 1 s u s c e p t i b l e

G 1 s u s c e p t i b l e s t r = ’ _ G 1 s u s c e p t i b l e ’ ;
e l s e

G 1 s u s c e p t i b l e s t r = ’ ’ ;
e n d

if G 2 s u s c e p t i b l e
G 2 s u s c e p t i b l e s t r = ’ _ G 2 s u s c e p t i b l e ’ ;

e l s e
G 2 s u s c e p t i b l e s t r = ’ ’ ;

e n d

HM fi lename est = s p r i n t f (” % s m o d e l % d _ s c e n a r i o % d_ % s % s % s % s _ N i % 0 . 1⤦
Ç e _ e s t a b l i s h m e n t _ h e a t m a p " , d i r e c t o r y , m o d e l , s c e n a r i o , . . .

drug type , d e a t h f a c t o r s t r , G 1 s u s c e p t i b l e s t r ,⤦
Ç G 2 s u s c e p t i b l e s t r , N i ) ;

H M f i l e n a m e f i x = s p r i n t f (” % s m o d e l % d _ s c e n a r i o % d_ % s % s % s % s _ N i % 0 . 1 e _ f i x a t i o n _ h e a t m a p⤦
Ç " , d i r e c t o r y , m o d e l , s c e n a r i o , . . .

drug type , d e a t h f a c t o r s t r , G 1 s u s c e p t i b l e s t r ,⤦
Ç G 2 s u s c e p t i b l e s t r , N i ) ;

e l s e
HM fi lename est = ’ n / a ’ ;
H M f i l e n a m e f i x = ’ n / a ’ ;

e n d

p l o t p o p u l a t i o n t i m e s ( kG used est , kN used est , t e s t l i s t , ’ E s t a b l i s h m e n t ’ , 2 , ⤦
Ç save heatmaps , HM fi lename est )

p l o t p o p u l a t i o n t i m e s ( k G u s e d f i x , k N u s e d f i x , t f i x l i s t , ’ F i x a t i o n ’ , 2 , ⤦
Ç save heatmaps , H M f i l e n a m e f i x )

e n d
e n d

e n d

% % f u n c t i o n s
f u n c t i o n [ time , S , N, G1 , G2 , dN dt , t e s t , t f i x ] = s i m u l a t e ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end⤦

Ç , dt , S i , N i , G1 i , G2 i )
% T h i s f u c t i o n r u n s t h e s i m u l a t i o n s f o r s p e c i f i e d s i m u l a t i o n p a r a m e t e r s
% a n d n u m e r i c a l v a l u e s .
% I n p u t :
% [ i n t or f l o a t ] s i m u l a t i o n t i m e ( t _ e n d ) , [ i n t or f l o a t ] t i m e s t e p ( dt ) , [ i n t or f l o a t ] ⤦

Ç i n i t i a l p o p u l a t i o n c o n c e n t r a t i o n s ,
% [ i n t ] s i m u l a t i o n s c e n a r i o
% O u t p u t :
% time , p o p u l a t i o n c o n c e n t r a t i o n s as f u n c t i o n s of time , c o n s e r v a t i o n dN / dt as a
% f u n c t i o n of time , e s t a b l i s h m e n t t i m e ( t _ e s t ) a n d f i x a t i o n t i m e ( t _ f i x ) f o r t h e g i v e n ⤦

Ç s c e n a r i o

% b r i n g g l o b a l s i n t o f u n c t i o n s p a c e
g l o b a l N0 k n kS kN kG1 kG2 rSN rNS rG1S rG1N rG2G1 dS dN dG1 dG2

% D e t e r m i n e w h i c h O D E s o l v e r to u s e b a s e d on s c e n a r i o a n d m o d e l
if s c e n a r i o == 2

if model == 1
[ t , X] = O D E s o l v e r m o d e l 1 s c e n a r i o 2 ( t end , dt , S i , N i , G1 i , G2 i ) ;

e l s e i f model == 2
[ t , X] = O D E s o l v e r m o d e l 2 s c e n a r i o 2 ( t end , dt , S i , N i , G1 i , G2 i ) ;

e n d
e l s e i f s c e n a r i o == 1

if model == 1
[ t , X] = O D E s o l v e r m o d e l 1 s c e n a r i o 1 ( t end , dt , S i , N i , G1 i ) ;

e l s e i f model == 2
[ t , X] = O D E s o l v e r m o d e l 2 s c e n a r i o 1 ( t end , dt , S i , N i , G1 i ) ;

e n d
e n d

% s i m u l a t i o n r e s u l t s
time = t ;
S = X( : , 1 ) ;
N = X( : , 2 ) ;
G1 = X( : , 3 ) ;
if s c e n a r i o == 2

G2 = X( : , 4 ) ;
e l s e i f s c e n a r i o == 1

G2 = ’ n / a ’ ;
e n d

% c a l c u l a t e c o n s e r v a t i o n e q u a t i o n r e s u l t s b a s e d on s c e n a r i o a n d m o d e l
d N d t l i s t = [ ] ;
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f o r i = 1 : l e n g t h ( S )
if model == 1

if s c e n a r i o == 2
d N d t c a l c = S ( i ) ∗kS + N( i ) ∗kN + G1( i ) ∗kG1 +G2( i ) ∗kG2 − S ( i ) ∗dS − N( i ) ∗dN − G1( i )⤦

Ç ∗dG1 − G2( i ) ∗dG2 ;
e l s e i f s c e n a r i o == 1

d N d t c a l c = S ( i ) ∗kS + N( i ) ∗kN + G1( i ) ∗kG1 − S ( i ) ∗dS − N( i ) ∗dN − G1( i ) ∗dG1 ;
e n d

e l s e i f model == 2
if s c e n a r i o == 2

d N d t c a l c = S ( i ) ∗kS ∗( kˆn ) /( kˆn + ( S ( i )+N( i )+G1( i )+G2( i ) ) ˆn ) . . .
+ N( i ) ∗kN∗( kˆn ) /( kˆn + ( S ( i )+N( i )+G1( i )+G2( i ) ) ˆn ) . . .
+ G1( i ) ∗kG1∗( kˆn ) /( kˆn + ( S ( i )+N( i )+G1( i )+G2( i ) ) ˆn ) . . .
+ G2( i ) ∗kG2∗( kˆn ) /( kˆn + ( S ( i )+N( i )+G1( i )+G2( i ) ) ˆn ) . . .
− S ( i ) ∗dS − N( i ) ∗dN − G1( i ) ∗dG1 − G2( i ) ∗dG2 ;

e l s e i f s c e n a r i o == 1
d N d t c a l c = S ( i ) ∗kS ∗( kˆn ) /( kˆn + ( S ( i )+N( i )+G1( i ) ) ˆn ) . . .

+ N( i ) ∗kN∗( kˆn ) /( kˆn + ( S ( i )+N( i )+G1( i ) ) ˆn ) . . .
+ G1( i ) ∗kG1∗( kˆn ) /( kˆn + ( S ( i )+N( i )+G1( i ) ) ˆn ) . . .
− S ( i ) ∗dS − N( i ) ∗dN − G1( i ) ∗dG1 ;

e n d
e n d
d N d t l i s t ( i , : ) = d N d t c a l c ;

e n d
dN dt = d N d t l i s t ;

% e s t a b l i s h m e n t a n d f i x a t i o n t i m e c a l c u l a t i o n
e s t a b l i s h m e n t = f a l s e ;
f i x a t i o n = f a l s e ;
t e s t = ”> t e n d ” ;
t f i x = ”> t e n d ” ;
index = 1 ;
p o p f r a c t i o n = 0 ;
if s c e n a r i o == 2

p o p u l a t i o n = G2 ;
e l s e i f s c e n a r i o == 1

p o p u l a t i o n = G1 ;
e n d
% c a l c u l a t e r e l a t i v e to e i t h e r N _ 0 or N _ t o t
if r e l a t i v e t o N 0

% l o o p t h r o u g h t h e r e s u l t s u n t i l f i x a t i o n is f o u n d
w h i l e f i x a t i o n == f a l s e && index <= l e n g t h ( p o p u l a t i o n )

pop t = t ( index ) ;
p o p f r a c t i o n = p o p u l a t i o n ( index ) /N0 ;
% c h e c k f o r e s t a b l i s h m e n t
if e s t a b l i s h m e n t == f a l s e && p o p f r a c t i o n > 0 . 0 5

t e s t = pop t ;
e s t a b l i s h m e n t = t r u e ;

e n d
% c h e c k f o r f i x a t i o n ( e x i t l o o p if f o u n d )
if p o p f r a c t i o n > 0 . 9 5

t f i x = pop t ;
f i x a t i o n = t r u e ;

e n d
index = index + 1 ;

e n d
e l s e

w h i l e f i x a t i o n == f a l s e && index <= l e n g t h ( p o p u l a t i o n )
pop t = t ( index ) ;
if s c e n a r i o == 2

p o p f r a c t i o n = p o p u l a t i o n ( index ) / ( S ( index ) + N( index ) + G1( index ) + p o p u l a t i o n (⤦
Ç index ) ) ;

e l s e i f s c e n a r i o == 1
p o p f r a c t i o n = p o p u l a t i o n ( index ) / ( S ( index ) + N( index ) + p o p u l a t i o n ( index ) ) ;

e n d
% c h e c k f o r e s t a b l i s h m e n t
if e s t a b l i s h m e n t == f a l s e && p o p f r a c t i o n > 0 . 0 5

t e s t = pop t ;
e s t a b l i s h m e n t = t r u e ; % to m a k e s u r e t _ e s t isn ’ t o v e r w r i t t e n

e n d
% c h e c k f o r f i x a t i o n ( e x i t s l o o p if f o u n d )
if p o p f r a c t i o n > 0 . 9 5

t f i x = pop t ;
f i x a t i o n = t r u e ;

e n d
index = index + 1 ;

e n d
e n d
f p r i n t f (” t e s t = % 0 . 2 f , t _ f i x = % 0 . 2 f \ n " , t _ e s t , t _ f i x ) % p r i n t e s t / f i x t i m e r e s u l t s to ⤦

Ç c o m m a n d w i n d o w
e n d

f u n c t i o n [ kG used est , k G u s e d f i x , kN used est , k N u s e d f i x , t e s t l i s t , t f i x l i s t ] = . . .
p o p u l a t i o n t i m e s ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end , dt , S i , N i , G1 i , G2 i , . . .

c i d a l , G 1 s u s c e p t i b l e , G 2 s u s c e p t i b l e , d e a t h f a c t o r , l i n s p a c e n )
% C r e a t e s i m u l a t i o n s f o r l a r g e v a r i a t i o n s of k G 1 a n d kN
% I n p u t :
% [ i n t ] n u m b e r of c o m b i n a t i o n s to c o n s i d e r ( l i n s p a c e _ n ) ,
% a l l p a r a m e t e r s f o r s i m u l a t e () f u n c t i o n , [ i n t or f l o a t ] c i d a l d r u g
% d e a t h f a c t o r ( d e a t h _ f a c t o r )
% O u t p u t :
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% l i s t s of t h e kG a n d kN v a l u e s u s e d f o r b o t h t h e e s t a b l i s h m e n t a n d
% f i x a t i o n t i m e s , l i s t s f o r t h e c o r r e s p o n d i n g e s t a b l i s h m e n t a n d
% f i x a t i o n t i m e r e s u l t s

% b r i n g g l o b a l s i n t o f u n c t i o n s p a c e

g l o b a l N0 k n kS kN kG1 kG2 rSN rNS rG1S rG1N rG2G1 dS dN dG1 dG2
% c r e a t e i n t i a l l i s t s of kG a n d kN v a l u e s a n d c r e a t e a r r a y of a l l
% c o m b i n a t i o n s of t h e s e v a l u e s
k G l i s t = l i n s p a c e ( 0 . 1 7 3 3 , 0 . 3 4 6 6 , l i n s p a c e n ) ;
k N l i s t = l i n s p a c e ( 0 . 1 7 3 3 , 0 . 3 4 6 6 , l i n s p a c e n ) ;
kG kN combinations = combvec ( k G l i s t , k N l i s t ) ;

k G u s e d e s t = [ ] ;
k G u s e d f i x = [ ] ;
k N u s e d e s t = [ ] ;
k N u s e d f i x = [ ] ;
t e s t l i s t = [ ] ;
t f i x l i s t = [ ] ;

% Go t h r o u g h a l l c o m b i n a t i o n s of kG a n d kN a n d r u n s i m u l a t i o n s
f o r i = 1 : l e n g t h ( kG kN combinations )

combination = kG kN combinations ( : , i ) ; % g e t s a c o m b i n a t i o n
kG = combination ( 1 ) ;
kN = combination ( 2 ) ;

% c h a n g e v a l u e s b a s e d on s c e n a r i o
if s c e n a r i o == 1

kG1 = kG ;
e l s e i f s c e n a r i o == 2

kG2 = kG ;
kG1 = 0 . 1 7 3 3 ;

e n d

% u s e d e a t h f a c t o r if o n e is g i v e n
if c i d a l

dN = 0.1733∗ d e a t h f a c t o r ;
dS = 0.3466∗ d e a t h f a c t o r ;
if G 1 s u s c e p t i b l e

dG1 = 0.2600∗ d e a t h f a c t o r ;
e l s e

dG1 = 1 / 1 5 6 ;
e n d
if G 2 s u s c e p t i b l e

dG2 = 0.2600∗ d e a t h f a c t o r ;
e l s e

dG2 = 0 . 0 ;
e n d

e l s e
dS = 1 / 1 5 6 ; dN = 1 / 1 5 6 ; dG1 = 1 / 1 5 6 ; dG2 = 0 . 0 ;

e n d

% c h e c k if kN <= kG ( as r e q u i r e d )
if kN <= kG

[ ˜ , ˜ , ˜ , ˜ , ˜ , ˜ , t e s t , t f i x ] = s i m u l a t e ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end , dt , S i , ⤦
Ç N i , G1 i , G2 i ) ; % r u n s i m u l a t i o n

% if t _ e s t is f o u n d , s a v e it a n d t h e kG a n d kN u s e d to t h e r e s u l t l i s t s
if i s n u m e r i c ( t e s t )

k G u s e d e s t = [ kG used est , kG ] ;
k N u s e d e s t = [ kN used est , kN ] ;
t e s t l i s t = [ t e s t l i s t , t e s t ] ;

e n d
% s a m e f o r t _ f i x
if i s n u m e r i c ( t f i x )

k G u s e d f i x = [ k G u s e d f i x , kG ] ;
k N u s e d f i x = [ k N u s e d f i x , kN ] ;
t f i x l i s t = [ t f i x l i s t , t f i x ] ;

e n d
e n d

e n d
e n d

f u n c t i o n [ dG used est , dG used f ix , dN used est , d N u s e d f i x , t e s t l i s t , t f i x l i s t ] = . . .
p o p u l a t i o n t i m e s d e l t a ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end , dt , S i , N i , G1 i , G2 i , . . .

G 1 s u s c e p t i b l e , G 2 s u s c e p t i b l e , kN dsweep , kG dsweep , l i n s p a c e n )
% C r e a t e s i m u l a t i o n s f o r l a r g e v a r i a t i o n s of k G 1 a n d kN
% I n p u t :
% [ i n t ] n u m b e r of c o m b i n a t i o n s to c o n s i d e r ( l i n s p a c e _ n ) ,
% a l l p a r a m e t e r s f o r s i m u l a t e () f u n c t i o n , [ i n t or f l o a t ] c i d a l d r u g
% d e a t h f a c t o r ( d e a t h _ f a c t o r )
% O u t p u t :
% l i s t s of t h e kG a n d kN v a l u e s u s e d f o r b o t h t h e e s t a b l i s h m e n t a n d
% f i x a t i o n t i m e s , l i s t s f o r t h e c o r r e s p o n d i n g e s t a b l i s h m e n t a n d
% f i x a t i o n t i m e r e s u l t s

% b r i n g g l o b a l s i n t o f u n c t i o n s p a c e

g l o b a l N0 k n kS kN kG1 kG2 rSN rNS rG1S rG1N rG2G1 dS dN dG1 dG2
% c r e a t e i n t i a l l i s t s of kG a n d kN v a l u e s a n d c r e a t e a r r a y of a l l
% c o m b i n a t i o n s of t h e s e v a l u e s

kN = kN dsweep ;
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if s c e n a r i o == 1
kG1 = kG dsweep ;

e l s e i f s c e n a r i o == 2
kG1 = 0 . 1 7 3 3 ;
kG2 = kG dsweep ;

e n d

d N l i s t = l i n s p a c e ( 0 . 1 , 1 . 0 , l i n s p a c e n ) ;
d G l i s t = l i n s p a c e ( 1 / 1 5 6 , 0 . 0 5 , l i n s p a c e n ) ;
dG dN combinations = combvec ( d G l i s t , d N l i s t ) ;

dG used est = [ ] ;
d G u s e d f i x = [ ] ;
d N u s e d e s t = [ ] ;
d N u s e d f i x = [ ] ;
t e s t l i s t = [ ] ;
t f i x l i s t = [ ] ;

% Go t h r o u g h a l l c o m b i n a t i o n s of dG a n d dN a n d r u n s i m u l a t i o n s
f o r i = 1 : l e n g t h ( dG dN combinations )

combination = dG dN combinations ( : , i ) ; % g e t s a c o m b i n a t i o n
dG1 = combination ( 1 ) ;
dN = combination ( 2 ) ;
dS = 1 . 0 ;

[ ˜ , ˜ , ˜ , ˜ , ˜ , ˜ , t e s t , t f i x ] = s i m u l a t e ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end , dt , S i , N i ,⤦
Ç G1 i , G2 i ) ; % r u n s i m u l a t i o n

% if t _ e s t is f o u n d , s a v e it a n d t h e kG a n d kN u s e d to t h e r e s u l t l i s t s
if i s n u m e r i c ( t e s t )

dG used est = [ dG used est , dG1 ] ;
d N u s e d e s t = [ dN used est , dN ] ;
t e s t l i s t = [ t e s t l i s t , t e s t ] ;

e n d
% s a m e f o r t _ f i x
if i s n u m e r i c ( t f i x )

d G u s e d f i x = [ dG used f ix , dG1 ] ;
d N u s e d f i x = [ d N u s e d f i x , dN ] ;
t f i x l i s t = [ t f i x l i s t , t f i x ] ;

e n d
e n d

e n d

f u n c t i o n p l o t s i m u l a t i o n r e s u l t s ( t , S ,N, G1 , G2 , dN dt , l e g e n d s e t , l o g b o o l , s a v e f i g b o o l , f i l e n a m e )
% P l o t s t h e r e s u l t s of a g i v e n s i m u l a t i o n
% I n p u t s :
% [ l i s t ] 1 D l i s t s c o n t a i n i n g r e s u l t s f o r d i f f e r e n t s i m u l a t i o n s , [ s e t ]
% l e g e n d s t r i n g f o r d i f f e r e n t kN kG v a l u e s ( l e g e n d _ s e t ) , b o o l to u s e
% l o g l o g i n s t e a d of r e g u l a r p l o t s ( l o g _ b o o l ) , b o o l to s a v e f i g u r e to a
% f i l e ( s a v e f i g _ b o o l ) , [ s t r ] n a m e of f i l e w i t h or w i t h o u t e x t e n s i o n
% ( d e f a u l t is . f i g )

% C r e a t e f i g u r e a n d s u b p l o t s , f o r e a c h p o p u l a t i o n p l o t a l l r e s u l t s on t h e s a m e s u b p l o t
f i g = f i g u r e ;
f i g u r e ( ’ D e f a u l t A x e s F o n t S i z e ’ , 2 4 ) ;

s u b p l o t ( 2 , 3 , 1 ) ;
% p l o t e a c h of t h e s i m u l a t i o n r e s u l t s in t h e i n p u t l i s t s
f o r i = 1 : l e n g t h ( S ( 1 , : ) )

% p l o t in l o g l o g
if l o g b o o l

% f o r d i f f e r e n t s i m u l a t i o n sets , u s e d i f f e r e n t l i n e f o r m a t s
if i == 1

l o g l o g ( t ( : , i ) , S ( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

l o g l o g ( t ( : , i ) , S ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

l o g l o g ( t ( : , i ) , S ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e l s e
if i == 1

p l o t ( t ( : , i ) , S ( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

p l o t ( t ( : , i ) , S ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

p l o t ( t ( : , i ) , S ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e n d
h o l d on

e n d
h o l d o f f
% a x i s l a b e l s a n d t i t l e
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( ’ S ( t ) ( c e l l s / mL ) ’ ) ;

xlim ([10ˆ −1 1 0 ˆ 5 ] ) ;
ylim ([10ˆ −5 1 0 ˆ 9 ] ) ;

x t i c k s ( [ 10ˆ−1 10ˆ2 1 0 ˆ 5 ] )
x t i c k l a b e l s ({ ’ 1 0 ˆ { - 1 } ’ , ’ 1 0 ˆ { 2 } ’ , ’ 1 0 ˆ { 5 } ’ })

t t l = t i t l e ( ’ A ) ’ ) ;
t t l . Units = ’ N o r m a l i z e ’ ;
t t l . P o s i t i o n ( 1 ) = −0.36;
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t t l . Hor izontalAl ignment = ’ l e f t ’ ;

% s u b p l o t ( 2 , 3 , 2 ) ;
% % % p l o t (0 ,0 , 0 ,0 , 0 ,0 , ’ L i n e W i d t h ’ , 2) ;
% % p l o t (0 ,0 , ’ L i n e W i d t h ’ ,3) ;
% % h o l d on
% % p l o t (0 ,0 , ’ -. ’ , ’ L i n e W i d t h ’ ,3) ;
% % h o l d on
% % p l o t (0 ,0 , ’ - - ’ , ’ L i n e W i d t h ’ ,3) ;
% % h o l d o f f
% % a x i s o f f ;
% t t l = t i t l e ( ’ A ) ’) ;
% t t l . U n i t s = ’ N o r m a l i z e ’;
% t t l . P o s i t i o n ( 1 ) = - 0 . 3 3 ;
% t t l . H o r i z o n t a l A l i g n m e n t = ’ left ’;

% p l o t l e g e n d
l = l e g e n d ( l e g e n d s e t , ’ L o c a t i o n ’ , ’ s o u t h w e s t ’ ) ;
l . FontSize = 1 8 ;

s u b p l o t ( 2 , 3 , 2 ) ;
% s a m e c o m m e n t s as a b o v e
f o r i = 1 : l e n g t h (N( 1 , : ) )

if l o g b o o l
if i == 1

l o g l o g ( t ( : , i ) ,N( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

l o g l o g ( t ( : , i ) ,N( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

l o g l o g ( t ( : , i ) ,N( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e l s e
if i == 1

p l o t ( t ( : , i ) ,N( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

p l o t ( t ( : , i ) ,N( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

p l o t ( t ( : , i ) ,N( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e n d
h o l d on

e n d
h o l d o f f
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( ’ N ( t ) ( c e l l s / mL ) ’ ) ;

xlim ([10ˆ −1 1 0 ˆ 5 ] ) ;
ylim ([10ˆ −5 1 0 ˆ 9 ] ) ;

x t i c k s ( [ 10ˆ−1 10ˆ2 1 0 ˆ 5 ] )
x t i c k l a b e l s ({ ’ 1 0 ˆ { - 1 } ’ , ’ 1 0 ˆ { 2 } ’ , ’ 1 0 ˆ { 5 } ’ })

t t l = t i t l e ( ’ B ) ’ ) ;
t t l . Units = ’ N o r m a l i z e ’ ;
t t l . P o s i t i o n ( 1 ) = −0.35;
t t l . Hor izontalAl ignment = ’ l e f t ’ ;
% t i t l e ( ’ N ’)

s u b p l o t ( 2 , 3 , 3 ) ;
f o r i = 1 : l e n g t h (G1 ( 1 , : ) )

if l o g b o o l
if i == 1

l o g l o g ( t ( : , i ) ,G1 ( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

l o g l o g ( t ( : , i ) ,G1 ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

l o g l o g ( t ( : , i ) ,G1 ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e l s e
if i == 1

p l o t ( t ( : , i ) ,G1 ( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

p l o t ( t ( : , i ) ,G1 ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

p l o t ( t ( : , i ) ,G1 ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e n d
h o l d on

e n d
h o l d o f f
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( ’ G ( t ) ( c e l l s / mL ) ’ ) ;

xlim ([10ˆ −1 1 0 ˆ 5 ] ) ;
ylim ([10ˆ −5 1 0 ˆ 9 ] ) ;

x t i c k s ( [ 10ˆ−1 10ˆ2 1 0 ˆ 5 ] )
x t i c k l a b e l s ({ ’ 1 0 ˆ { - 1 } ’ , ’ 1 0 ˆ { 2 } ’ , ’ 1 0 ˆ { 5 } ’ })

t t l = t i t l e ( ’ C ) ’ ) ;
t t l . Units = ’ N o r m a l i z e ’ ;
t t l . P o s i t i o n ( 1 ) = −0.35;
t t l . Hor izontalAl ignment = ’ l e f t ’ ;
% t i t l e ( ’ G ’)
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if i s n u m e r i c (G2)
s u b p l o t ( 2 , 3 , 5 ) ;
f o r i = 1 : l e n g t h (G2 ( 1 , : ) )

if l o g b o o l
if i == 1

l o g l o g ( t ( : , i ) ,G2 ( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

l o g l o g ( t ( : , i ) ,G2 ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

l o g l o g ( t ( : , i ) ,G2 ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e l s e
if i == 1

p l o t ( t ( : , i ) ,G2 ( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

p l o t ( t ( : , i ) ,G2 ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

p l o t ( t ( : , i ) ,G2 ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e n d
h o l d on

e n d
h o l d o f f
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( ’ G _ 2 ( t ) ( c e l l s / mL ) ’ ) ;
% t i t l e ( ’ G_2 ’)

e n d

s u b p l o t ( 2 , 3 , 4 ) ;
f o r i = 1 : l e n g t h (G1 ( 1 , : ) )

T = S ( : , i ) + N( : , i ) + G1 ( : , i ) ;
if l o g b o o l

if i == 1
l o g l o g ( t ( : , i ) ,T, ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 2
l o g l o g ( t ( : , i ) ,T, ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 3
l o g l o g ( t ( : , i ) ,T, ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;

e n d
e l s e

if i == 1
p l o t ( t ( : , i ) ,T, ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 2
p l o t ( t ( : , i ) ,T, ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 3
p l o t ( t ( : , i ) ,T, ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;

e n d
e n d
h o l d on

e n d
h o l d o f f
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( ’ T ( t ) ( c e l l s / mL ) ’ ) ;

xlim ([10ˆ −1 1 0 ˆ 5 ] ) ;
ylim ([10ˆ −5 1 0 ˆ 9 ] ) ;

x t i c k s ( [ 10ˆ−1 10ˆ2 1 0 ˆ 5 ] )
x t i c k l a b e l s ({ ’ 1 0 ˆ { - 1 } ’ , ’ 1 0 ˆ { 2 } ’ , ’ 1 0 ˆ { 5 } ’ })

t t l = t i t l e ( ’ D ) ’ ) ;
t t l . Units = ’ N o r m a l i z e ’ ;
t t l . P o s i t i o n ( 1 ) = −0.35;
t t l . Hor izontalAl ignment = ’ l e f t ’ ;

s u b p l o t ( 2 , 3 , 5 ) ;
f o r i = 1 : l e n g t h (G1 ( 1 , : ) )

if i s n u m e r i c (G2)
r a t i o = G2 ( : , i ) . /N( : , i ) ;
r a t i o s t r i n g = ’ G _ 2 ( t ) / N ( t ) ’ ;
r a t i o t i t l e s t r i n g = ’ G _ 2 / N ’ ;

e l s e
r a t i o = G1 ( : , i ) . / ( S ( : , i ) + N( : , i ) + G1 ( : , i ) ) ;
r a t i o s t r i n g = ’ G ( t ) / T ( t ) ’ ;
r a t i o t i t l e s t r i n g = ’ G / T R a t i o ’ ;

e n d
if l o g b o o l

if i == 1
l o g l o g ( t ( : , i ) , r a t i o , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 2
l o g l o g ( t ( : , i ) , r a t i o , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 3
l o g l o g ( t ( : , i ) , r a t i o , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;

e n d
e l s e

if i == 1
p l o t ( t ( : , i ) , r a t i o , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 2
p l o t ( t ( : , i ) , r a t i o , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 3
p l o t ( t ( : , i ) , r a t i o , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;

e n d
e n d
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h o l d on
e n d
h o l d o f f
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( r a t i o s t r i n g ) ;

xlim ([10ˆ −1 1 0 ˆ 5 ] ) ;
ylim ([10ˆ −10 1 0 ˆ 1 ] ) ;

x t i c k s ( [ 10ˆ−1 10ˆ2 1 0 ˆ 5 ] )
x t i c k l a b e l s ({ ’ 1 0 ˆ { - 1 } ’ , ’ 1 0 ˆ { 2 } ’ , ’ 1 0 ˆ { 5 } ’ })

t t l = t i t l e ( ’ E ) ’ ) ;
t t l . Units = ’ N o r m a l i z e ’ ;
t t l . P o s i t i o n ( 1 ) = −0.39;
t t l . Hor izontalAl ignment = ’ l e f t ’ ;
% t i t l e ( r a t i o _ t i t l e _ s t r i n g )

s u b p l o t ( 2 , 3 , 6 ) ;
f o r i = 1 : l e n g t h ( dN dt ( 1 , : ) )

if i == 1
s e m i l o g x ( t ( : , i ) , dN dt ( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 2
s e m i l o g x ( t ( : , i ) , dN dt ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 3
s e m i l o g x ( t ( : , i ) , dN dt ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;

e n d
% if l o g _ b o o l
% if i == 1
% l o g l o g ( t (: , i ) , d N _ d t (: , i ) , ’ L i n e W i d t h ’ ,2) ;
% e l s e i f i == 2
% l o g l o g ( t (: , i ) , d N _ d t (: , i ) , ’ -. ’ , ’ L i n e W i d t h ’ ,2) ;
% e l s e i f i == 3
% l o g l o g ( t (: , i ) , d N _ d t (: , i ) , ’ - - ’ , ’ L i n e W i d t h ’ ,2) ;
% e n d
% e l s e
% if i == 1
% p l o t ( t (: , i ) , d N _ d t (: , i ) , ’ L i n e W i d t h ’ ,2) ;
% e l s e i f i == 2
% p l o t ( t (: , i ) , d N _ d t (: , i ) , ’ -. ’ , ’ L i n e W i d t h ’ ,2) ;
% e l s e i f i == 3
% p l o t ( t (: , i ) , d N _ d t (: , i ) , ’ - - ’ , ’ L i n e W i d t h ’ ,2) ;
% e n d
% e n d

h o l d on
e n d
h o l d o f f
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( ’ dT / dt ( c e l l s / m L h r ) ’ ) ;

xlim ([10ˆ −1 1 0 ˆ 5 ] ) ;

x t i c k s ( [ 10ˆ−1 10ˆ2 1 0 ˆ 5 ] )
x t i c k l a b e l s ({ ’ 1 0 ˆ { - 1 } ’ , ’ 1 0 ˆ { 2 } ’ , ’ 1 0 ˆ { 5 } ’ })

t t l = t i t l e ( ’ F ) ’ ) ;
t t l . Units = ’ N o r m a l i z e ’ ;
t t l . P o s i t i o n ( 1 ) = −0.35;
t t l . Hor izontalAl ignment = ’ l e f t ’ ;
% t i t l e ( ’ dT / dt ’)

s e t ( gcf , ’ P a p e r U n i t s ’ , ’ i n c h e s ’ ) ;
x width=18 ; y width =12;
s e t ( gcf , ’ P a p e r P o s i t i o n ’ , [ 0 0 x width y width ] ) ;
o r i e n t ( f i g , ’ l a n d s c a p e ’ ) ;
if s a v e f i g b o o l

s a v e a s ( gcf , append ( f i l e n a m e , ’ . p n g ’ ) )
% s a v e ( a p p e n d ( f i l e _ n a m e , ’. mat ’) , ’ t ’ , ’ S ’ , ’ N ’ , ’ G1 ’ , ’ G2 ’ , ’ d N _ d t ’)

e n d
e n d

f u n c t i o n p l o t p o p u l a t i o n t i m e s ( k G l i s t , k N l i s t , p o p u l a t i o n t i m e l i s t , p o p u l a t i o n t y p e , s c e n a r i o ,⤦
Ç s a v e f i g b o o l , f i l e n a m e )

% P l o t h e a t m a p s u s i n g t h e kG , kN a n d t _ e s t or t _ f i x r e s u l t s f o r a l a r g e
% a m o u n t of s i m u l a t i o n s .
% I n p u t :
% [ l i s t ] l i s t s of t h e kG , kN u s e d a n d t _ e s t or t _ f i x r e s u l t s , [ s t r ]
% q u a n t i t a t i v e m e a s u r e u s e d (" E s t a b l i s h m e n t " or " F i x a t i o n ") f o r p l o t
% t i t l e s ( p o p u l a t i o n _ t y p e ) , [ i n t ] s c e n a r i o s i m u l a t e d f o r p l o t t i t l e s
% a n d f i l e n a m e s ( s c e n a r i o ) , [ b o o l ] to s a v e f i g u r e or n o t
% ( s a v e f i g _ b o o l ) ,[ s t r ] n a m e of f i l e to s a v e ( w i t h or w i t h o u t f i l e t y p e e x t e n s i o n , d e f a u l t is ⤦

Ç . f i g if t h e r e is n o n e )

% c r e a t e f i g u r e
f i g = f i g u r e ;

% p u t i n p u t l i s t s i n t o a t a b l e to m a k e t h e h e a t m a p s w i t h
X = k G l i s t ( : ) ; Y = k N l i s t ( : ) ; Z = p o p u l a t i o n t i m e l i s t ( : ) ;
t b l = t a b l e (X,Y, Z) ;
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% c r e a t e t h e h e a t m a p
hHM = heatmap ( tbl , ’ X ’ , ’ Y ’ , ’ C o l o r V a r i a b l e ’ , ’ Z ’ , ’ C o l o r M e t h o d ’ , ’ n o n e ’ , ’ C e l l L a b e l C o l o r ’ , ’ n o n e⤦

Ç ’ , . . .
’ G r i d V i s i b l e ’ , ’ o f f ’ , ’ M i s s i n g D a t a L a b e l ’ , ’ No D a t a ’ , ’ M i s s i n g D a t a C o l o r ’ , ’ w ’ , . . .
’ F o n t S i z e ’ , 20) ; % , ’ C o l o r S c a l i n g ’ , ’ log ’) ;

hHM. NodeChildren ( 3 ) . YDir=’ n o r m a l ’ ; % f l i p s t h e y - a x i s to m a k e it i n c r e a s i n g ( m a t l a b d e f a u l t ⤦

Ç is d e c r e a s i n g )
hHM. Colormap = j e t ;

% s e t a x i s l a b e l s a n d t i t l e
y l a b e l ( ’ k _ N (/ hr ) ’ )
if s c e n a r i o == 2

x l a b e l ( ’ k_ { G2 } (/ hr ) ’ )
t i t l e ( ’ ’ ) % a p p e n d ( p o p u l a t i o n _ t y p e , ’ T i m e as a F u n c t i o n of k _ N a n d k_ { G2 } ( k _ N <= k_ { G2 }) ’)⤦

Ç )
e l s e

x l a b e l ( ’ k_ { G } (/ hr ) ’ )
t i t l e ( ’ ’ ) % a p p e n d ( p o p u l a t i o n _ t y p e , ’ T i m e as a F u n c t i o n of k _ N a n d k_ { G } ( k _ N <= k_ { G }) ’) )

e n d
c o l o r b a r ; % a d d s a c o l o r b a r f o r t h e h e a t m a p

s e t ( gcf , ’ P a p e r U n i t s ’ , ’ i n c h e s ’ ) ;
x width=10 ; y width =7;
s e t ( gcf , ’ P a p e r P o s i t i o n ’ , [ 0 0 x width y width ] ) ;

if p o p u l a t i o n t y p e == ” Establ ishment ”
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 9 8 , 0 . 9 8 ] , [ 0 . 7 , 0 . 7 ] , ’ s t r i n g ’ , ’ {\ it \ t a u _ { e s t }} ( hr ) ’ , ’ F o n t S i z e ’⤦

Ç , 22 , . . .
’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ r i g h t ’ , ’ T e x t R o t a t i o n ’⤦

Ç , 9 0 ) ;
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 0 2 5 , 0 . 0 2 5 ] , [ 0 . 9 7 , 0 . 9 7 ] , ’ s t r i n g ’ , ’ A ) ’ , ’ F o n t W e i g h t ’ , ’ b o l d ’ , . . .

’ F o n t S i z e ’ , 22 , ’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’ )⤦
Ç ;

e l s e
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 9 8 , 0 . 9 8 ] , [ 0 . 7 , 0 . 7 ] , ’ s t r i n g ’ , ’ {\ it \ t a u _ { f i x }} ( hr ) ’ , ’ F o n t S i z e ’⤦

Ç , 22 , . . .
’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ r i g h t ’ , ’ T e x t R o t a t i o n ’⤦

Ç , 9 0 ) ;
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 0 2 5 , 0 . 0 2 5 ] , [ 0 . 9 7 , 0 . 9 7 ] , ’ s t r i n g ’ , ’ A ) ’ , ’ F o n t W e i g h t ’ , ’ b o l d ’ , . . .

’ F o n t S i z e ’ , 22 , ’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’ )⤦
Ç ;

e n d

% r o t a t e x - a x i s l a b e l s
s = s t r u c t (hHM) ;
s . XAxis . TickLabelRotat ion = 6 0 ; % a n g l e d
s . XDisplayLabels = compose ( ’ % . 3 f ’ , s t r 2 d o u b l e (hHM. XDisplayLabels ) ) ;
s . YDisplayLabels = compose ( ’ % . 4 f ’ , s t r 2 d o u b l e (hHM. YDisplayLabels ) ) ;

% s . F o n t S i z e = 6 0 ;
% s a v e t h e f i l e
if s a v e f i g b o o l

s a v e a s ( gcf , append ( f i l e n a m e , ’ . p n g ’ ) )
% s a v e ( a p p e n d ( f i l e _ n a m e , ’. mat ’) , ’ k G _ l i s t ’ , ’ k N _ l i s t ’ , ’ p o p u l a t i o n _ t i m e _ l i s t ’)

e n d

c l o s e ( f i g )
e n d

f u n c t i o n p l o t p o p u l a t i o n t i m e s d e l t a ( d G l i s t , d N l i s t , p o p u l a t i o n t i m e l i s t , p o p u l a t i o n t y p e , ⤦
Ç kN dsweep , kG dsweep , s a v e f i g b o o l , f i l e n a m e )

% c r e a t e f i g u r e
f i g = f i g u r e ;

% p u t i n p u t l i s t s i n t o a t a b l e to m a k e t h e h e a t m a p s w i t h
X = d G l i s t ( : ) ; Y = d N l i s t ( : ) ; Z = p o p u l a t i o n t i m e l i s t ( : ) ;
t b l = t a b l e (X,Y, Z) ;

% c r e a t e t h e h e a t m a p
hHM = heatmap ( tbl , ’ X ’ , ’ Y ’ , ’ C o l o r V a r i a b l e ’ , ’ Z ’ , ’ C o l o r M e t h o d ’ , ’ n o n e ’ , ’ C e l l L a b e l C o l o r ’ , ’ n o n e⤦

Ç ’ , . . .
’ G r i d V i s i b l e ’ , ’ o f f ’ , ’ M i s s i n g D a t a L a b e l ’ , ’ No D a t a ’ , ’ M i s s i n g D a t a C o l o r ’ , ’ w ’ , . . .
’ F o n t S i z e ’ , 20) ;

hHM. NodeChildren ( 3 ) . YDir=’ n o r m a l ’ ; % f l i p s t h e y - a x i s to m a k e it i n c r e a s i n g ( m a t l a b d e f a u l t ⤦

Ç is d e c r e a s i n g )
hHM. Colormap = j e t ;

% s e t a x i s l a b e l s a n d t i t l e
y l a b e l ( ’ \ d e l t a _ N (/ hr ) ’ )
x l a b e l ( ’ \ d e l t a _ G (/ hr ) ’ )
t i t l e ( ’ ’ )

c o l o r b a r ; % a d d s a c o l o r b a r f o r t h e h e a t m a p

s e t ( gcf , ’ P a p e r U n i t s ’ , ’ i n c h e s ’ ) ;
x width=10 ; y width =7.2;
s e t ( gcf , ’ P a p e r P o s i t i o n ’ , [ 0 0 x width y width ] ) ;

if p o p u l a t i o n t y p e == ” Establ ishment ”
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 9 8 , 0 . 9 8 ] , [ 0 . 7 , 0 . 7 ] , ’ s t r i n g ’ , ’ {\ it \ t a u _ { e s t }} ( hr ) ’ , ’ F o n t S i z e ’⤦
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Ç , 22 , . . .
’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ r i g h t ’ , ’ T e x t R o t a t i o n ’⤦

Ç , 9 0 ) ;
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 0 2 5 , 0 . 0 2 5 ] , [ 0 . 9 7 , 0 . 9 7 ] , ’ s t r i n g ’ , ’ A ) ’ , ’ F o n t W e i g h t ’ , ’ b o l d ’ , . . .

’ F o n t S i z e ’ , 22 , ’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’ )⤦
Ç ;

e l s e
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 9 8 3 , 0 . 9 8 3 ] , [ 0 . 7 , 0 . 7 ] , ’ s t r i n g ’ , ’ {\ it \ t a u _ { f i x }} ( hr ) ’ , ’⤦

Ç F o n t S i z e ’ , 22 , . . .
’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ r i g h t ’ , ’ T e x t R o t a t i o n ’⤦

Ç , 9 0 ) ;
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 0 2 5 , 0 . 0 2 5 ] , [ 0 . 9 7 , 0 . 9 7 ] , ’ s t r i n g ’ , ’ B ) ’ , ’ F o n t W e i g h t ’ , ’ b o l d ’ , . . .

’ F o n t S i z e ’ , 22 , ’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’ )⤦
Ç ;

e n d

% r o t a t e x - a x i s l a b e l s
s = s t r u c t (hHM) ;
s . XAxis . TickLabelRotat ion = 6 0 ; % a n g l e d
s . XDisplayLabels = compose ( ’ % . 3 f ’ , s t r 2 d o u b l e (hHM. XDisplayLabels ) ) ;
s . YDisplayLabels = compose ( ’ % . 4 f ’ , s t r 2 d o u b l e (hHM. YDisplayLabels ) ) ;

% s . F o n t S i z e = 6 0 ;
% s a v e t h e f i l e
if s a v e f i g b o o l

s a v e a s ( gcf , append ( f i l e n a m e , ’ . p n g ’ ) )
% s a v e ( a p p e n d ( f i l e _ n a m e , ’. mat ’) , ’ k G _ l i s t ’ , ’ k N _ l i s t ’ , ’ p o p u l a t i o n _ t i m e _ l i s t ’)

e n d

c l o s e ( f i g )
e n d

A.1.3: MATLAB code used to run the deterministic simulations and produce the time
series and heatmap plots presented in Chapter 2 for the fluctuating drug environment.
f u n c t i o n d e t e r m i n i s t i c s i m u l a t i o n s ( model , s c e n a r i o , r e l a t i v e t o N 0 , c i d a l , d e a t h f a c t o r , . . .

G 1 s u s c e p t i b l e , G 2 s u s c e p t i b l e , l o g b o o l , s a v e t i m e s e r i e s , ⤦
Ç . . .

plot heatmaps , l i n s p a c e n , save heatmaps , deathrate sweep , . . .
t end , dt , S i , N i , G1 i , G2 i , s a v e t o )

% J o s h u a G u t h r i e , C h a r l e b o i s L a b o r a t o r y , U n i v e r s i t y of A l b e r t a
% S i m u l a t i o n c o d e u s i n g d e t e r m i n i s t i c O D E m o d e l s f o r q u a n t i t a t i v e
% non - g e n e t i c / g e n e t i c d r u g r e s i s t a n c e / e v o l u t i o n s t u d y . C o v e r s n u m e r i c a l s i m u l a t i o n s
% f o r m u l t i p l e m o d e l s , s c e n a r i o s , a n d d r u g t y p e s , as w e l l as r e s u l t p l o t t i n g .

g l o b a l N0 k n kS kN kG1 kG2 rSN rNS rG1S rG1N rG2G1 dS dN dG1 dG2 kN dsweep kG dsweep
k N l i s t = [ 0 . 1 7 3 3 0 . 2 6 0 0 0 . 3 4 6 6 ] ; k G l i s t = [ 0 . 3 4 6 6 0 . 3 4 6 6 0 . 3 4 6 6 ] ;
d N l i s t = [ 0 . 1 0 . 5 1 . 0 ] ;
d S l i s t = [ 1 1 1 ] ;

% % S c e n a r i o 1
% R u n S c e n a r i o 1 ( no G2 ) f o r d i f f e r e n t v a l u e s of k G 1 a n d kN
if s c e n a r i o == 1

t l i s t = [ ] ;
S l i s t = [ ] ;
N l i s t = [ ] ;
G 1 l i s t = [ ] ;
d N d t l i s t = [ ] ;
t e s t l i s t = [ ] ;
t f i x l i s t = [ ] ;
l e g e n d l i s t = [ ] ;

% r u n s i m u l a t i o n s f o r e a c h kN a n d kG
f o r i = 1 : l e n g t h ( k N l i s t )

kN = k N l i s t ( i ) ; kG1 = k G l i s t ( i ) ;
% if u s i n g c i d a l d r u g s , s p e c i f y d e a t h r a t e s
if c i d a l

dN = d N l i s t ( i ) ;
dS = d S l i s t ( i ) ;
if G 1 s u s c e p t i b l e

dG1 = 0 . 5 ;
e l s e

dG1 = 1 / 1 5 6 ;
e n d

e l s e
dS = 1 / 1 5 6 ; dN = 1 / 1 5 6 ; dG1 = 1 / 1 5 6 ; dG2 = 0 . 0 ;

e n d
% r u n s i m u l a t i o n s , s a v e r e s u l t s to l i s t s
[ t , S , N, G1 , ˜ , dN dt , t e s t , t f i x ] = s i m u l a t e ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end ,⤦

Ç dt , S i , N i , G1 i , G2 i ) ;
if c i d a l

l e g e n d t e x t = s p r i n t f ( ’ \\ d e l t a _ N = % . 1 f / hr ’ , dN) ;
e l s e

l e g e n d t e x t = s p r i n t f ( ’ k _ N = % . 4 f / hr ’ , kN) ;
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e n d
t l i s t = [ t l i s t , t ] ;
S l i s t = [ S l i s t , S ] ;
N l i s t = [ N l i s t , N ] ;
G 1 l i s t = [ G 1 l i s t , G1 ] ;
d N d t l i s t = [ d N d t l i s t , dN dt ] ;
t e s t l i s t = [ t e s t l i s t , t e s t ] ;
t f i x l i s t = [ t f i x l i s t , t f i x ] ;
l e g e n d l i s t = [ l e g e n d l i s t , { l e g e n d t e x t } ] ;

e n d

% p l o t s i m u l a t i o n r e s u l t s
% c r e a t e t h e t i m e s e r i e s f i l e n a m e
if s a v e t i m e s e r i e s

d i r e c t o r y = s a v e t o ;
if c i d a l

drug type = ’ c i d a l ’ ;
d e a t h f a c t o r s t r = s p r i n t f ( ’ _ d e a t h f a c t o r % d ’ , d e a t h f a c t o r ) ;

e l s e
drug type = ’ s t a t i c ’ ;
d e a t h f a c t o r s t r =’ ’ ;

e n d
if G 1 s u s c e p t i b l e

G 1 s u s c e p t i b l e s t r = ’ _ G 1 s u s c e p t i b l e ’ ;
e l s e

G 1 s u s c e p t i b l e s t r = ’ ’ ;
e n d

if G 2 s u s c e p t i b l e
G 2 s u s c e p t i b l e s t r = ’ _ G 2 s u s c e p t i b l e ’ ;

e l s e
G 2 s u s c e p t i b l e s t r = ’ ’ ;

e n d

if l o g b o o l
l o g s t r = ’ _ l o g l o g ’ ;

e l s e
l o g s t r = ’ ’ ;

e n d

TS fi lename = s p r i n t f (” % s m o d e l % d _ s c e n a r i o % d_ % s % s % s % s _ N i % 0 . 1 e % s _ T i m e S e r i e s " , d i r e c t o r y ,⤦
Ç m o d e l , s c e n a r i o , . . .

drug type , d e a t h f a c t o r s t r , G 1 s u s c e p t i b l e s t r , G 2 s u s c e p t i b l e s t r ,⤦
Ç N i , l o g s t r ) ;

e l s e
TS fi lename = ’ n / a ’ ;

e n d

p l o t s i m u l a t i o n r e s u l t s ( t l i s t , S l i s t , N l i s t , G 1 l i s t , ’ n / a ’ , d N d t l i s t , l e g e n d l i s t ,⤦
Ç l o g b o o l , s a v e t i m e s e r i e s , TS f i lename )

% r u n l a r g e a m o u n t of s i m u l a t i o n s a n d p l o t t _ e s t a n d t _ f i x h e a t m a p s
if plot heatmaps

[ kG used est , k G u s e d f i x , kN used est , k N u s e d f i x , t e s t l i s t , t f i x l i s t ] = . . .
p o p u l a t i o n t i m e s ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end , dt , . . .

S i , N i , G1 i , G2 i , c i d a l , G 1 s u s c e p t i b l e , . . .
G 2 s u s c e p t i b l e , d e a t h f a c t o r , l i n s p a c e n ) ;

if save heatmaps
d i r e c t o r y = s a v e t o ;
if c i d a l

drug type = ’ c i d a l ’ ;
d e a t h f a c t o r s t r = s p r i n t f ( ’ _ d e a t h f a c t o r % d ’ , d e a t h f a c t o r ) ;

e l s e
drug type = ’ s t a t i c ’ ;
d e a t h f a c t o r s t r =’ ’ ;

e n d
if G 1 s u s c e p t i b l e

G 1 s u s c e p t i b l e s t r = ’ _ G 1 s u s c e p t i b l e ’ ;
e l s e

G 1 s u s c e p t i b l e s t r = ’ ’ ;
e n d

if G 2 s u s c e p t i b l e
G 2 s u s c e p t i b l e s t r = ’ _ G 2 s u s c e p t i b l e ’ ;

e l s e
G 2 s u s c e p t i b l e s t r = ’ ’ ;

e n d

HM fi lename est = s p r i n t f (” % s m o d e l % d _ s c e n a r i o % d_ % s % s % s % s _ N i % 0 . 1⤦
Ç e _ e s t a b l i s h m e n t _ h e a t m a p " , d i r e c t o r y , m o d e l , s c e n a r i o , . . .

drug type , d e a t h f a c t o r s t r , G 1 s u s c e p t i b l e s t r ,⤦
Ç G 2 s u s c e p t i b l e s t r , N i ) ;

H M f i l e n a m e f i x = s p r i n t f (” % s m o d e l % d _ s c e n a r i o % d_ % s % s % s % s _ N i % 0 . 1 e _ f i x a t i o n _ h e a t m a p⤦
Ç " , d i r e c t o r y , m o d e l , s c e n a r i o , . . .

drug type , d e a t h f a c t o r s t r , G 1 s u s c e p t i b l e s t r ,⤦
Ç G 2 s u s c e p t i b l e s t r , N i ) ;

e l s e
HM fi lename est = ’ n / a ’ ;
H M f i l e n a m e f i x = ’ n / a ’ ;

e n d
p l o t p o p u l a t i o n t i m e s ( kG used est , kN used est , t e s t l i s t , ’ E s t a b l i s h m e n t ’ , s c e n a r i o ⤦

Ç , save heatmaps , HM fi lename est )
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p l o t p o p u l a t i o n t i m e s ( k G u s e d f i x , k N u s e d f i x , t f i x l i s t , ’ F i x a t i o n ’ , s c e n a r i o , ⤦
Ç save heatmaps , H M f i l e n a m e f i x )

e n d

% r u n a s w e e p of v a r y i n g c i d a l d r u g d e a t h r a t e v a l u e s
if d e a t h r a t e s w e e p

[ dG used est , dG used f ix , dN used est , d N u s e d f i x , t e s t l i s t , t f i x l i s t ] = . . .
p o p u l a t i o n t i m e s d e l t a ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end , dt , . . .

S i , N i , G1 i , G2 i , G 1 s u s c e p t i b l e , . . .
G 2 s u s c e p t i b l e , kN dsweep , kG dsweep , l i n s p a c e n ) ;

if save heatmaps
d i r e c t o r y = s a v e t o ;
if G 1 s u s c e p t i b l e

G 1 s u s c e p t i b l e s t r = ’ _ G 1 s u s c e p t i b l e ’ ;
e l s e

G 1 s u s c e p t i b l e s t r = ’ ’ ;
e n d

if G 2 s u s c e p t i b l e
G 2 s u s c e p t i b l e s t r = ’ _ G 2 s u s c e p t i b l e ’ ;

e l s e
G 2 s u s c e p t i b l e s t r = ’ ’ ;

e n d

HM fi lename est = s p r i n t f (” % s m o d e l % d _ s c e n a r i o % d_ % s % s _ N i % 0 . 1 e _ k N % 0 . 4 f _ k G % 0 . 4⤦
Ç f _ d e a t h r a t e _ e s t a b l i s h m e n t _ h e a t m a p " , d i r e c t o r y , m o d e l , s c e n a r i o , . . .

G 1 s u s c e p t i b l e s t r , G 2 s u s c e p t i b l e s t r , N i , kN dsweep , ⤦
Ç kG dsweep ) ;

H M f i l e n a m e f i x = s p r i n t f (” % s m o d e l % d _ s c e n a r i o % d_ % s % s _ N i % 0 . 1 e _ k N % 0 . 4 f _ k G % 0 . 4⤦
Ç f _ d e a t h r a t e _ f i x a t i o n _ h e a t m a p " , d i r e c t o r y , m o d e l , s c e n a r i o , . . .

G 1 s u s c e p t i b l e s t r , G 2 s u s c e p t i b l e s t r , N i , kN dsweep , ⤦
Ç kG dsweep ) ;

e l s e
HM fi lename est = ’ n / a ’ ;
H M f i l e n a m e f i x = ’ n / a ’ ;

e n d
p l o t p o p u l a t i o n t i m e s d e l t a ( dG used est , dN used est , t e s t l i s t , ’ E s t a b l i s h m e n t ’ , ⤦

Ç kN dsweep , kG dsweep , save heatmaps , HM fi lename est )
p l o t p o p u l a t i o n t i m e s d e l t a ( dG used f ix , d N u s e d f i x , t f i x l i s t , ’ F i x a t i o n ’ , ⤦

Ç kN dsweep , kG dsweep , save heatmaps , H M f i l e n a m e f i x )
e n d

e n d
e n d

% % f u n c t i o n s
f u n c t i o n [ time , S , N, G1 , G2 , dN dt , t e s t , t f i x ] = s i m u l a t e ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end⤦

Ç , dt , S i , N i , G1 i , G2 i )
% T h i s f u c t i o n r u n s t h e s i m u l a t i o n s f o r s p e c i f i e d s i m u l a t i o n p a r a m e t e r s
% a n d n u m e r i c a l v a l u e s .
% I n p u t :
% [ i n t or f l o a t ] s i m u l a t i o n t i m e ( t _ e n d ) , [ i n t or f l o a t ] t i m e s t e p ( dt ) , [ i n t or f l o a t ] ⤦

Ç i n i t i a l p o p u l a t i o n c o n c e n t r a t i o n s ,
% [ i n t ] s i m u l a t i o n s c e n a r i o
% O u t p u t :
% time , p o p u l a t i o n c o n c e n t r a t i o n s as f u n c t i o n s of time , c o n s e r v a t i o n dN / dt as a
% f u n c t i o n of time , e s t a b l i s h m e n t t i m e ( t _ e s t ) a n d f i x a t i o n t i m e ( t _ f i x ) f o r t h e g i v e n ⤦

Ç s c e n a r i o

% b r i n g g l o b a l s i n t o f u n c t i o n s p a c e
g l o b a l N0 k n kS kN kG1 kG2 rSN rNS rG1S rG1N rG2G1 dS dN dG1 dG2

G2 = ’ n / a ’ ;

% f l u c t u a t e t h e e n v i r o n m e n t , r u n sims , a n d c o m b i n e r e s u l t s ( o n l y f o r m o d e l 2 , s c e n a r i o 1)
% d i s t i n q u i s h b e t w e e n d r u g a n d no - d r u g e n v i r o n m e n t s
f l u c i n t e r v a l = 1 2 ; % h o u r s
kS drug = kS ; kN drug = kN ; kG1 drug = kG1 ; rG1S drug = rG1S ; dS drug = dS ; dN drug = dN ; ⤦

Ç dG1 drug = dG1 ;
kS no = 0 . 3 4 6 6 ; kN no = 0 . 1 7 3 3 ; kG1 no = 0 ; rG1S no = rG1N ; dS no = 1 / 1 5 6 ; dN no = 1 / 1 5 6 ; ⤦

Ç dG1 no = 1 / 1 5 6 ;

t f l u c = 0 : f l u c i n t e r v a l : t e n d ;
S i f l u c = S i ; N i f l u c = N i ; G 1 i f l u c = G1 i ;

f o r i = 1 : ( l e n g t h ( t f l u c ) −1)
% s t a r t w i t h drug , r e m o v e d r u g on e v e n i n t e r v a l s
if r e m ( i , 2 )==0

kS = kS no ; kN = kN no ; kG1 = kG1 no ; rG1S = rG1S no ; dS = dS no ; dN = dN no ; dG1 = ⤦

Ç dG1 no ;
e l s e

kS = kS drug ; kN = kN drug ; kG1 = kG1 drug ; rG1S = rG1S drug ; dS = dS drug ; dN = ⤦

Ç dN drug ; dG1 = dG1 drug ;
e n d

t i = t f l u c ( i ) ;
t e n d f l u c = t f l u c ( i +1) ;

[ t , X] = O D E s o l v e r m o d e l 2 s c e n a r i o 1 ( t i , t e n d f l u c , dt , S i f l u c , N i f l u c , G 1 i f l u c ) ;

% c a l c u l a t e dT / dt
dN dt temp = [ ] ;
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f o r j = 1 : l e n g t h (X( : , 1 ) )
d N d t c a l c = X( j , 1 ) ∗kS ∗( kˆn ) /( kˆn + (X( j , 1 )+X( j , 2 )+X( j , 3 ) ) ˆn ) . . .

+ X( j , 2 ) ∗kN∗( kˆn ) /( kˆn + (X( j , 1 )+X( j , 2 )+X( j , 3 ) ) ˆn ) . . .
+ X( j , 3 ) ∗kG1∗( kˆn ) /( kˆn + (X( j , 1 )+X( j , 2 )+X( j , 3 ) ) ˆn ) . . .
− X( j , 1 ) ∗dS − X( j , 2 ) ∗dN − X( j , 3 ) ∗dG1 ;

dN dt temp ( j , : ) = d N d t c a l c ;
e n d

% u p d a t e l i s t s
if i == 1

time = t ;
S = X( : , 1 ) ;
N = X( : , 2 ) ;
G1 = X( : , 3 ) ;
dN dt = dN dt temp ;

e l s e
time = [ time ; t ] ;
S = [ S ; X( : , 1 ) ] ;
N = [N; X( : , 2 ) ] ;
G1 = [ G1 ; X( : , 3 ) ] ;
dN dt = [ dN dt ; dN dt temp ] ;

e n d

S i f l u c = S ( e n d ) ;
N i f l u c = N( e n d ) ;
G 1 i f l u c = G1( e n d ) ;

e n d

% r e s e t f o r s a f e t y
kS = kS drug ; kN = kN drug ; kG1 = kG1 drug ; rG1S = rG1S drug ; dS = dS drug ; dN = dN drug ; dG1⤦

Ç = dG1 drug ;

% c a l c u l a t e c o n s e r v a t i o n e q u a t i o n r e s u l t s b a s e d on s c e n a r i o a n d m o d e l

% f o r i = 1: l e n g t h ( S )
% if m o d e l == 1
% if s c e n a r i o == 2
% d N _ d t _ c a l c = S ( i ) * kS + N ( i ) * kN + G1 ( i ) * k G 1 + G2 ( i ) * k G 2 - S ( i ) * dS - N ( i ) * dN - G1 (⤦

Ç i ) * d G 1 - G2 ( i ) * d G 2 ;
% e l s e i f s c e n a r i o == 1
% d N _ d t _ c a l c = S ( i ) * kS + N ( i ) * kN + G1 ( i ) * k G 1 - S ( i ) * dS - N ( i ) * dN - G1 ( i ) * d G 1 ;
% e n d
% e l s e i f m o d e l == 2
% if s c e n a r i o == 2
% d N _ d t _ c a l c = S ( i ) * kS *( k ˆ n ) /( k ˆ n + ( S ( i ) + N ( i ) + G1 ( i ) + G2 ( i ) ) ˆ n ) . . .
% + N ( i ) * kN *( k ˆ n ) /( k ˆ n + ( S ( i ) + N ( i ) + G1 ( i ) + G2 ( i ) ) ˆ n ) . . .
% + G1 ( i ) * k G 1 *( k ˆ n ) /( k ˆ n + ( S ( i ) + N ( i ) + G1 ( i ) + G2 ( i ) ) ˆ n ) . . .
% + G2 ( i ) * k G 2 *( k ˆ n ) /( k ˆ n + ( S ( i ) + N ( i ) + G1 ( i ) + G2 ( i ) ) ˆ n ) . . .
% - S ( i ) * dS - N ( i ) * dN - G1 ( i ) * d G 1 - G2 ( i ) * d G 2 ;
% e l s e i f s c e n a r i o == 1
% d N _ d t _ c a l c = S ( i ) * kS *( k ˆ n ) /( k ˆ n + ( S ( i ) + N ( i ) + G1 ( i ) ) ˆ n ) . . .
% + N ( i ) * kN *( k ˆ n ) /( k ˆ n + ( S ( i ) + N ( i ) + G1 ( i ) ) ˆ n ) . . .
% + G1 ( i ) * k G 1 *( k ˆ n ) /( k ˆ n + ( S ( i ) + N ( i ) + G1 ( i ) ) ˆ n ) . . .
% - S ( i ) * dS - N ( i ) * dN - G1 ( i ) * d G 1 ;
% e n d
% e n d
% d N _ d t _ l i s t ( i , : ) = d N _ d t _ c a l c ;
% e n d
% d N _ d t = d N _ d t _ l i s t ;

% e s t a b l i s h m e n t a n d f i x a t i o n t i m e c a l c u l a t i o n
e s t a b l i s h m e n t = f a l s e ;
f i x a t i o n = f a l s e ;
t e s t = ”> t e n d ” ;
t f i x = ”> t e n d ” ;
index = 1 ;
p o p f r a c t i o n = 0 ;
if s c e n a r i o == 2

p o p u l a t i o n = G2 ;
e l s e i f s c e n a r i o == 1

p o p u l a t i o n = G1 ;
e n d
% c a l c u l a t e r e l a t i v e to e i t h e r N _ 0 or N _ t o t
if r e l a t i v e t o N 0

% l o o p t h r o u g h t h e r e s u l t s u n t i l f i x a t i o n is f o u n d
w h i l e f i x a t i o n == f a l s e && index <= l e n g t h ( p o p u l a t i o n )

pop t = time ( index ) ;
p o p f r a c t i o n = p o p u l a t i o n ( index ) /N0 ;
% c h e c k f o r e s t a b l i s h m e n t
if e s t a b l i s h m e n t == f a l s e && p o p f r a c t i o n > 0 . 0 5

t e s t = pop t ;
e s t a b l i s h m e n t = t r u e ;

e n d
% c h e c k f o r f i x a t i o n ( e x i t l o o p if f o u n d )
if p o p f r a c t i o n > 0 . 9 5

t f i x = pop t ;
f i x a t i o n = t r u e ;

e n d
index = index + 1 ;

e n d
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e l s e
w h i l e f i x a t i o n == f a l s e && index <= l e n g t h ( p o p u l a t i o n )

pop t = time ( index ) ;
if s c e n a r i o == 2

p o p f r a c t i o n = p o p u l a t i o n ( index ) / ( S ( index ) + N( index ) + G1( index ) + p o p u l a t i o n (⤦
Ç index ) ) ;

e l s e i f s c e n a r i o == 1
p o p f r a c t i o n = p o p u l a t i o n ( index ) / ( S ( index ) + N( index ) + p o p u l a t i o n ( index ) ) ;

e n d
% c h e c k f o r e s t a b l i s h m e n t
if e s t a b l i s h m e n t == f a l s e && p o p f r a c t i o n > 0 . 0 5

t e s t = pop t ;
e s t a b l i s h m e n t = t r u e ; % to m a k e s u r e t _ e s t isn ’ t o v e r w r i t t e n

e n d
% c h e c k f o r f i x a t i o n ( e x i t s l o o p if f o u n d )
if p o p f r a c t i o n > 0 . 9 5

t f i x = pop t ;
f i x a t i o n = t r u e ;

e n d
index = index + 1 ;

e n d
e n d
f p r i n t f (” t e s t = % 0 . 2 f , t _ f i x = % 0 . 2 f \ n " , t _ e s t , t _ f i x ) % p r i n t e s t / f i x t i m e r e s u l t s to ⤦

Ç c o m m a n d w i n d o w
e n d

f u n c t i o n [ kG used est , k G u s e d f i x , kN used est , k N u s e d f i x , t e s t l i s t , t f i x l i s t ] = . . .
p o p u l a t i o n t i m e s ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end , dt , S i , N i , G1 i , G2 i , . . .

c i d a l , G 1 s u s c e p t i b l e , G 2 s u s c e p t i b l e , d e a t h f a c t o r , l i n s p a c e n )
% C r e a t e s i m u l a t i o n s f o r l a r g e v a r i a t i o n s of k G 1 a n d kN
% I n p u t :
% [ i n t ] n u m b e r of c o m b i n a t i o n s to c o n s i d e r ( l i n s p a c e _ n ) ,
% a l l p a r a m e t e r s f o r s i m u l a t e () f u n c t i o n , [ i n t or f l o a t ] c i d a l d r u g
% d e a t h f a c t o r ( d e a t h _ f a c t o r )
% O u t p u t :
% l i s t s of t h e kG a n d kN v a l u e s u s e d f o r b o t h t h e e s t a b l i s h m e n t a n d
% f i x a t i o n t i m e s , l i s t s f o r t h e c o r r e s p o n d i n g e s t a b l i s h m e n t a n d
% f i x a t i o n t i m e r e s u l t s

% b r i n g g l o b a l s i n t o f u n c t i o n s p a c e

g l o b a l N0 k n kS kN kG1 kG2 rSN rNS rG1S rG1N rG2G1 dS dN dG1 dG2
% c r e a t e i n t i a l l i s t s of kG a n d kN v a l u e s a n d c r e a t e a r r a y of a l l
% c o m b i n a t i o n s of t h e s e v a l u e s
k G l i s t = l i n s p a c e ( 0 . 1 7 3 3 , 0 . 3 4 6 6 , l i n s p a c e n ) ;
k N l i s t = l i n s p a c e ( 0 . 1 7 3 3 , 0 . 3 4 6 6 , l i n s p a c e n ) ;
kG kN combinations = combvec ( k G l i s t , k N l i s t ) ;

k G u s e d e s t = [ ] ;
k G u s e d f i x = [ ] ;
k N u s e d e s t = [ ] ;
k N u s e d f i x = [ ] ;
t e s t l i s t = [ ] ;
t f i x l i s t = [ ] ;

% Go t h r o u g h a l l c o m b i n a t i o n s of kG a n d kN a n d r u n s i m u l a t i o n s
f o r i = 1 : l e n g t h ( kG kN combinations )

combination = kG kN combinations ( : , i ) ; % g e t s a c o m b i n a t i o n
kG = combination ( 1 ) ;
kN = combination ( 2 ) ;

% c h a n g e v a l u e s b a s e d on s c e n a r i o
if s c e n a r i o == 1

kG1 = kG ;
e l s e i f s c e n a r i o == 2

kG2 = kG ;
kG1 = 0 . 1 7 3 3 ;

e n d

% u s e d e a t h f a c t o r if o n e is g i v e n
if c i d a l

dN = 0.1733∗ d e a t h f a c t o r ;
dS = 0.3466∗ d e a t h f a c t o r ;
if G 1 s u s c e p t i b l e

dG1 = 0.2600∗ d e a t h f a c t o r ;
e l s e

dG1 = 1 / 1 5 6 ;
e n d
if G 2 s u s c e p t i b l e

dG2 = 0.2600∗ d e a t h f a c t o r ;
e l s e

dG2 = 0 . 0 ;
e n d

e l s e
dS = 1 / 1 5 6 ; dN = 1 / 1 5 6 ; dG1 = 1 / 1 5 6 ; dG2 = 0 . 0 ;

e n d

% c h e c k if kN <= kG ( as r e q u i r e d )
if kN <= kG

[ ˜ , ˜ , ˜ , ˜ , ˜ , ˜ , t e s t , t f i x ] = s i m u l a t e ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end , dt , S i , ⤦
Ç N i , G1 i , G2 i ) ; % r u n s i m u l a t i o n
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% if t _ e s t is f o u n d , s a v e it a n d t h e kG a n d kN u s e d to t h e r e s u l t l i s t s
if i s n u m e r i c ( t e s t )

k G u s e d e s t = [ kG used est , kG ] ;
k N u s e d e s t = [ kN used est , kN ] ;
t e s t l i s t = [ t e s t l i s t , t e s t ] ;

e n d
% s a m e f o r t _ f i x
if i s n u m e r i c ( t f i x )

k G u s e d f i x = [ k G u s e d f i x , kG ] ;
k N u s e d f i x = [ k N u s e d f i x , kN ] ;
t f i x l i s t = [ t f i x l i s t , t f i x ] ;

e n d
e n d

e n d
e n d

f u n c t i o n [ dG used est , dG used f ix , dN used est , d N u s e d f i x , t e s t l i s t , t f i x l i s t ] =
p o p u l a t i o n t i m e s d e l t a ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end , dt , S i , N i , G1 i , G2 i , . . .

G 1 s u s c e p t i b l e , G 2 s u s c e p t i b l e , kN dsweep , kG dsweep , l i n s p a c e n )
% C r e a t e s i m u l a t i o n s f o r l a r g e v a r i a t i o n s of k G 1 a n d kN
% I n p u t :
% [ i n t ] n u m b e r of c o m b i n a t i o n s to c o n s i d e r ( l i n s p a c e _ n ) ,
% a l l p a r a m e t e r s f o r s i m u l a t e () f u n c t i o n , [ i n t or f l o a t ] c i d a l d r u g
% d e a t h f a c t o r ( d e a t h _ f a c t o r )
% O u t p u t :
% l i s t s of t h e kG a n d kN v a l u e s u s e d f o r b o t h t h e e s t a b l i s h m e n t a n d
% f i x a t i o n t i m e s , l i s t s f o r t h e c o r r e s p o n d i n g e s t a b l i s h m e n t a n d
% f i x a t i o n t i m e r e s u l t s

% b r i n g g l o b a l s i n t o f u n c t i o n s p a c e

g l o b a l N0 k n kS kN kG1 kG2 rSN rNS rG1S rG1N rG2G1 dS dN dG1 dG2
% c r e a t e i n t i a l l i s t s of kG a n d kN v a l u e s a n d c r e a t e a r r a y of a l l
% c o m b i n a t i o n s of t h e s e v a l u e s

kN = kN dsweep ;
if s c e n a r i o == 1

kG1 = kG dsweep ;
e l s e i f s c e n a r i o == 2

kG1 = 0 . 1 7 3 3 ;
kG2 = kG dsweep ;

e n d

d N l i s t = l i n s p a c e ( 0 . 1 , 1 . 0 , l i n s p a c e n ) ;
d G l i s t = l i n s p a c e ( 1 / 1 5 6 , 0 . 0 5 , l i n s p a c e n ) ;
dG dN combinations = combvec ( d G l i s t , d N l i s t ) ;

dG used est = [ ] ;
d G u s e d f i x = [ ] ;
d N u s e d e s t = [ ] ;
d N u s e d f i x = [ ] ;
t e s t l i s t = [ ] ;
t f i x l i s t = [ ] ;

% Go t h r o u g h a l l c o m b i n a t i o n s of dG a n d dN a n d r u n s i m u l a t i o n s
f o r i = 1 : l e n g t h ( dG dN combinations )

combination = dG dN combinations ( : , i ) ; % g e t s a c o m b i n a t i o n
dG1 = combination ( 1 ) ;
dN = combination ( 2 ) ;
dS = 1 . 0 ;

[ ˜ , ˜ , ˜ , ˜ , ˜ , ˜ , t e s t , t f i x ] = s i m u l a t e ( model , s c e n a r i o , r e l a t i v e t o N 0 , t end , dt , S i , N i ,⤦
Ç G1 i , G2 i ) ; % r u n s i m u l a t i o n

% if t _ e s t is f o u n d , s a v e it a n d t h e kG a n d kN u s e d to t h e r e s u l t l i s t s
if i s n u m e r i c ( t e s t )

dG used est = [ dG used est , dG1 ] ;
d N u s e d e s t = [ dN used est , dN ] ;
t e s t l i s t = [ t e s t l i s t , t e s t ] ;

e n d
% s a m e f o r t _ f i x
if i s n u m e r i c ( t f i x )

d G u s e d f i x = [ dG used f ix , dG1 ] ;
d N u s e d f i x = [ d N u s e d f i x , dN ] ;
t f i x l i s t = [ t f i x l i s t , t f i x ] ;

e n d
e n d

e n d

f u n c t i o n p l o t s i m u l a t i o n r e s u l t s ( t , S ,N, G1 , G2 , dN dt , l e g e n d s e t , l o g b o o l , s a v e f i g b o o l , f i l e n a m e )
% P l o t s t h e r e s u l t s of a g i v e n s i m u l a t i o n
% I n p u t s :
% [ l i s t ] 1 D l i s t s c o n t a i n i n g r e s u l t s f o r d i f f e r e n t s i m u l a t i o n s , [ s e t ]
% l e g e n d s t r i n g f o r d i f f e r e n t kN kG v a l u e s ( l e g e n d _ s e t ) , b o o l to u s e
% l o g l o g i n s t e a d of r e g u l a r p l o t s ( l o g _ b o o l ) , b o o l to s a v e f i g u r e to a
% f i l e ( s a v e f i g _ b o o l ) , [ s t r ] n a m e of f i l e w i t h or w i t h o u t e x t e n s i o n
% ( d e f a u l t is . f i g )

% C r e a t e f i g u r e a n d s u b p l o t s , f o r e a c h p o p u l a t i o n p l o t a l l r e s u l t s on t h e s a m e s u b p l o t
f i g = f i g u r e ;
f i g u r e ( ’ D e f a u l t A x e s F o n t S i z e ’ , 2 8 ) ;

s u b p l o t ( 2 , 3 , 1 ) ;
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% p l o t e a c h of t h e s i m u l a t i o n r e s u l t s in t h e i n p u t l i s t s
f o r i = 1 : l e n g t h ( S ( 1 , : ) )

% p l o t in l o g l o g
if l o g b o o l

% f o r d i f f e r e n t s i m u l a t i o n sets , u s e d i f f e r e n t l i n e f o r m a t s
if i == 1

l o g l o g ( t ( : , i ) , S ( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

l o g l o g ( t ( : , i ) , S ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

l o g l o g ( t ( : , i ) , S ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e l s e
if i == 1

p l o t ( t ( : , i ) , S ( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

p l o t ( t ( : , i ) , S ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

p l o t ( t ( : , i ) , S ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e n d
h o l d on

e n d
h o l d o f f
% a x i s l a b e l s a n d t i t l e
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( ’ S ( t ) ( c e l l s / mL ) ’ ) ;

xlim ([10ˆ −2 1 0 ˆ 3 ] ) ;
ylim ([10ˆ −5 1 0 ˆ 9 ] ) ;
x t i c k s ( [ 10ˆ−2 10ˆ0 1 0 ˆ 3 ] )
x t i c k l a b e l s ({ ’ 1 0 ˆ { - 2 } ’ , ’ 1 0 ˆ { 0 } ’ , ’ 1 0 ˆ { 3 } ’ })

t t l = t i t l e ( ’ A ) ’ ) ;
t t l . Units = ’ N o r m a l i z e ’ ;
t t l . P o s i t i o n ( 1 ) = −0.36;
t t l . Hor izontalAl ignment = ’ l e f t ’ ;

% s u b p l o t ( 2 , 3 , 2 ) ;
% % % p l o t (0 ,0 , 0 ,0 , 0 ,0 , ’ L i n e W i d t h ’ , 2) ;
% % p l o t (0 ,0 , ’ L i n e W i d t h ’ ,3) ;
% % h o l d on
% % p l o t (0 ,0 , ’ -. ’ , ’ L i n e W i d t h ’ ,3) ;
% % h o l d on
% % p l o t (0 ,0 , ’ - - ’ , ’ L i n e W i d t h ’ ,3) ;
% % h o l d o f f
% % a x i s o f f ;
% t t l = t i t l e ( ’ A ) ’) ;
% t t l . U n i t s = ’ N o r m a l i z e ’;
% t t l . P o s i t i o n ( 1 ) = - 0 . 3 3 ;
% t t l . H o r i z o n t a l A l i g n m e n t = ’ left ’;

% p l o t l e g e n d
l = l e g e n d ( l e g e n d s e t , ’ L o c a t i o n ’ , ’ s o u t h w e s t ’ ) ;
l . FontSize = 1 8 ;

s u b p l o t ( 2 , 3 , 2 ) ;
% s a m e c o m m e n t s as a b o v e
f o r i = 1 : l e n g t h (N( 1 , : ) )

if l o g b o o l
if i == 1

l o g l o g ( t ( : , i ) ,N( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

l o g l o g ( t ( : , i ) ,N( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

l o g l o g ( t ( : , i ) ,N( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e l s e
if i == 1

p l o t ( t ( : , i ) ,N( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

p l o t ( t ( : , i ) ,N( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

p l o t ( t ( : , i ) ,N( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e n d
h o l d on

e n d
h o l d o f f
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( ’ N ( t ) ( c e l l s / mL ) ’ ) ;

xlim ([10ˆ −2 1 0 ˆ 3 ] ) ;
ylim ([10ˆ −5 1 0 ˆ 9 ] ) ;

x t i c k s ( [ 10ˆ−2 10ˆ0 1 0 ˆ 3 ] )
x t i c k l a b e l s ({ ’ 1 0 ˆ { - 2 } ’ , ’ 1 0 ˆ { 0 } ’ , ’ 1 0 ˆ { 3 } ’ })

t t l = t i t l e ( ’ B ) ’ ) ;
t t l . Units = ’ N o r m a l i z e ’ ;
t t l . P o s i t i o n ( 1 ) = −0.35;
t t l . Hor izontalAl ignment = ’ l e f t ’ ;
% t i t l e ( ’ N ’)

s u b p l o t ( 2 , 3 , 3 ) ;
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f o r i = 1 : l e n g t h (G1 ( 1 , : ) )
if l o g b o o l

if i == 1
l o g l o g ( t ( : , i ) ,G1 ( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 2
l o g l o g ( t ( : , i ) ,G1 ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 3
l o g l o g ( t ( : , i ) ,G1 ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;

e n d
e l s e

if i == 1
p l o t ( t ( : , i ) ,G1 ( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 2
p l o t ( t ( : , i ) ,G1 ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 3
p l o t ( t ( : , i ) ,G1 ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;

e n d
e n d
h o l d on

e n d
h o l d o f f
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( ’ G ( t ) ( c e l l s / mL ) ’ ) ;

xlim ([10ˆ −2 1 0 ˆ 3 ] ) ;
ylim ([10ˆ −5 1 0 ˆ 9 ] ) ;

%
x t i c k s ( [ 10ˆ−2 10ˆ0 1 0 ˆ 3 ] )
x t i c k l a b e l s ({ ’ 1 0 ˆ { - 2 } ’ , ’ 1 0 ˆ { 0 } ’ , ’ 1 0 ˆ { 3 } ’ })

t t l = t i t l e ( ’ C ) ’ ) ;
t t l . Units = ’ N o r m a l i z e ’ ;
t t l . P o s i t i o n ( 1 ) = −0.35;
t t l . Hor izontalAl ignment = ’ l e f t ’ ;
% t i t l e ( ’ G ’)

if i s n u m e r i c (G2)
s u b p l o t ( 2 , 3 , 5 ) ;
f o r i = 1 : l e n g t h (G2 ( 1 , : ) )

if l o g b o o l
if i == 1

l o g l o g ( t ( : , i ) ,G2 ( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

l o g l o g ( t ( : , i ) ,G2 ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

l o g l o g ( t ( : , i ) ,G2 ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e l s e
if i == 1

p l o t ( t ( : , i ) ,G2 ( : , i ) , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 2

p l o t ( t ( : , i ) ,G2 ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;
e l s e i f i == 3

p l o t ( t ( : , i ) ,G2 ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;
e n d

e n d
h o l d on

e n d
h o l d o f f
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( ’ G _ 2 ( t ) ( c e l l s / mL ) ’ ) ;
% t i t l e ( ’ G_2 ’)

e n d

s u b p l o t ( 2 , 3 , 4 ) ;
f o r i = 1 : l e n g t h (G1 ( 1 , : ) )

T = S ( : , i ) + N( : , i ) + G1 ( : , i ) ;
if l o g b o o l

if i == 1
l o g l o g ( t ( : , i ) ,T, ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 2
l o g l o g ( t ( : , i ) ,T, ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 3
l o g l o g ( t ( : , i ) ,T, ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;

e n d
e l s e

if i == 1
p l o t ( t ( : , i ) ,T, ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 2
p l o t ( t ( : , i ) ,T, ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 3
p l o t ( t ( : , i ) ,T, ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;

e n d
e n d
h o l d on

e n d
h o l d o f f
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( ’ T ( t ) ( c e l l s / mL ) ’ ) ;

xlim ([10ˆ −2 1 0 ˆ 3 ] ) ;
ylim ([10ˆ −5 1 0 ˆ 9 ] ) ;

x t i c k s ( [ 10ˆ−2 10ˆ0 1 0 ˆ 3 ] )
x t i c k l a b e l s ({ ’ 1 0 ˆ { - 2 } ’ , ’ 1 0 ˆ { 0 } ’ , ’ 1 0 ˆ { 3 } ’ })
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t t l = t i t l e ( ’ D ) ’ ) ;
t t l . Units = ’ N o r m a l i z e ’ ;
t t l . P o s i t i o n ( 1 ) = −0.35;
t t l . Hor izontalAl ignment = ’ l e f t ’ ;

s u b p l o t ( 2 , 3 , 5 ) ;
f o r i = 1 : l e n g t h (G1 ( 1 , : ) )

if i s n u m e r i c (G2)
r a t i o = G2 ( : , i ) . /N( : , i ) ;
r a t i o s t r i n g = ’ G _ 2 ( t ) / N ( t ) ’ ;
r a t i o t i t l e s t r i n g = ’ G _ 2 / N ’ ;

e l s e
r a t i o = G1 ( : , i ) . / ( S ( : , i ) + N( : , i ) + G1 ( : , i ) ) ;
r a t i o s t r i n g = ’ G ( t ) / T ( t ) ’ ;
r a t i o t i t l e s t r i n g = ’ G / T R a t i o ’ ;

e n d
if l o g b o o l

if i == 1
l o g l o g ( t ( : , i ) , r a t i o , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 2
l o g l o g ( t ( : , i ) , r a t i o , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 3
l o g l o g ( t ( : , i ) , r a t i o , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;

e n d
e l s e

if i == 1
p l o t ( t ( : , i ) , r a t i o , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 2
p l o t ( t ( : , i ) , r a t i o , ’ -. ’ , ’ L i n e W i d t h ’ , 4 ) ;

e l s e i f i == 3
p l o t ( t ( : , i ) , r a t i o , ’ - - ’ , ’ L i n e W i d t h ’ , 4 ) ;

e n d
e n d
h o l d on

e n d
h o l d o f f
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( r a t i o s t r i n g ) ;

xlim ([10ˆ −2 1 0 ˆ 3 ] ) ;
ylim ([10ˆ −10 1 0 ˆ 1 ] ) ;

x t i c k s ( [ 10ˆ−2 10ˆ0 1 0 ˆ 3 ] )
x t i c k l a b e l s ({ ’ 1 0 ˆ { - 2 } ’ , ’ 1 0 ˆ { 0 } ’ , ’ 1 0 ˆ { 3 } ’ })

t t l = t i t l e ( ’ E ) ’ ) ;
t t l . Units = ’ N o r m a l i z e ’ ;
t t l . P o s i t i o n ( 1 ) = −0.39;
t t l . Hor izontalAl ignment = ’ l e f t ’ ;
% t i t l e ( r a t i o _ t i t l e _ s t r i n g )

s u b p l o t ( 2 , 3 , 6 ) ;
f o r i = 1 : l e n g t h ( dN dt ( 1 , : ) )

if i == 1
s e m i l o g x ( t ( : , i ) , dN dt ( : , i ) , ’ L i n e W i d t h ’ , 2 ) ;

e l s e i f i == 2
s e m i l o g x ( t ( : , i ) , dN dt ( : , i ) , ’ -. ’ , ’ L i n e W i d t h ’ , 2 ) ;

e l s e i f i == 3
s e m i l o g x ( t ( : , i ) , dN dt ( : , i ) , ’ - - ’ , ’ L i n e W i d t h ’ , 2 ) ;

e n d
% if l o g _ b o o l
% if i == 1
% l o g l o g ( t (: , i ) , d N _ d t (: , i ) , ’ L i n e W i d t h ’ ,2) ;
% e l s e i f i == 2
% l o g l o g ( t (: , i ) , d N _ d t (: , i ) , ’ -. ’ , ’ L i n e W i d t h ’ ,2) ;
% e l s e i f i == 3
% l o g l o g ( t (: , i ) , d N _ d t (: , i ) , ’ - - ’ , ’ L i n e W i d t h ’ ,2) ;
% e n d
% e l s e
% if i == 1
% p l o t ( t (: , i ) , d N _ d t (: , i ) , ’ L i n e W i d t h ’ ,2) ;
% e l s e i f i == 2
% p l o t ( t (: , i ) , d N _ d t (: , i ) , ’ -. ’ , ’ L i n e W i d t h ’ ,2) ;
% e l s e i f i == 3
% p l o t ( t (: , i ) , d N _ d t (: , i ) , ’ - - ’ , ’ L i n e W i d t h ’ ,2) ;
% e n d
% e n d

h o l d on
e n d
h o l d o f f
x l a b e l ( ’ t ( hr ) ’ ) ; y l a b e l ( ’ dT / dt ( c e l l s / m L h r ) ’ ) ;

xlim ([10ˆ −2 1 0 ˆ 3 ] ) ;
%
%

x t i c k s ( [ 10ˆ−2 10ˆ0 1 0 ˆ 3 ] )
x t i c k l a b e l s ({ ’ 1 0 ˆ { - 2 } ’ , ’ 1 0 ˆ { 0 } ’ , ’ 1 0 ˆ { 3 } ’ })

t t l = t i t l e ( ’ F ) ’ ) ;
t t l . Units = ’ N o r m a l i z e ’ ;
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t t l . P o s i t i o n ( 1 ) = −0.35;
t t l . Hor izontalAl ignment = ’ l e f t ’ ;
% t i t l e ( ’ dT / dt ’)

s e t ( gcf , ’ P a p e r U n i t s ’ , ’ i n c h e s ’ ) ;
x width=18 ; y width =12;
s e t ( gcf , ’ P a p e r P o s i t i o n ’ , [ 0 0 x width y width ] ) ;
o r i e n t ( f i g , ’ l a n d s c a p e ’ ) ;
if s a v e f i g b o o l

s a v e a s ( gcf , append ( f i l e n a m e , ’ . p n g ’ ) )
% s a v e ( a p p e n d ( f i l e _ n a m e , ’. mat ’) , ’ t ’ , ’ S ’ , ’ N ’ , ’ G1 ’ , ’ G2 ’ , ’ d N _ d t ’)

e n d
e n d

f u n c t i o n p l o t p o p u l a t i o n t i m e s ( k G l i s t , k N l i s t , p o p u l a t i o n t i m e l i s t , p o p u l a t i o n t y p e , s c e n a r i o ,⤦
Ç s a v e f i g b o o l , f i l e n a m e )

% P l o t h e a t m a p s u s i n g t h e kG , kN a n d t _ e s t or t _ f i x r e s u l t s f o r a l a r g e
% a m o u n t of s i m u l a t i o n s .
% I n p u t :
% [ l i s t ] l i s t s of t h e kG , kN u s e d a n d t _ e s t or t _ f i x r e s u l t s , [ s t r ]
% q u a n t i t a t i v e m e a s u r e u s e d (" E s t a b l i s h m e n t " or " F i x a t i o n ") f o r p l o t
% t i t l e s ( p o p u l a t i o n _ t y p e ) , [ i n t ] s c e n a r i o s i m u l a t e d f o r p l o t t i t l e s
% a n d f i l e n a m e s ( s c e n a r i o ) , [ b o o l ] to s a v e f i g u r e or n o t
% ( s a v e f i g _ b o o l ) ,[ s t r ] n a m e of f i l e to s a v e ( w i t h or w i t h o u t f i l e t y p e e x t e n s i o n , d e f a u l t is ⤦

Ç . f i g if t h e r e is n o n e )

% c r e a t e f i g u r e
f i g = f i g u r e ;

% p u t i n p u t l i s t s i n t o a t a b l e to m a k e t h e h e a t m a p s w i t h
X = k G l i s t ( : ) ; Y = k N l i s t ( : ) ; Z = p o p u l a t i o n t i m e l i s t ( : ) ;
t b l = t a b l e (X,Y, Z) ;

% c r e a t e t h e h e a t m a p
hHM = heatmap ( tbl , ’ X ’ , ’ Y ’ , ’ C o l o r V a r i a b l e ’ , ’ Z ’ , ’ C o l o r M e t h o d ’ , ’ n o n e ’ , ’ C e l l L a b e l C o l o r ’ , ’ n o n e⤦

Ç ’ , . . .
’ G r i d V i s i b l e ’ , ’ o f f ’ , ’ M i s s i n g D a t a L a b e l ’ , ’ No D a t a ’ , ’ M i s s i n g D a t a C o l o r ’ , ’ w ’ , . . .
’ F o n t S i z e ’ , 20) ; % , ’ C o l o r S c a l i n g ’ , ’ log ’) ;

hHM. NodeChildren ( 3 ) . YDir=’ n o r m a l ’ ; % f l i p s t h e y - a x i s to m a k e it i n c r e a s i n g ( m a t l a b d e f a u l t ⤦

Ç is d e c r e a s i n g )
hHM. Colormap = j e t ;

% s e t a x i s l a b e l s a n d t i t l e
y l a b e l ( ’ k _ N (/ hr ) ’ )
if s c e n a r i o == 2

x l a b e l ( ’ k_ { G2 } (/ hr ) ’ )
t i t l e ( ’ ’ ) % a p p e n d ( p o p u l a t i o n _ t y p e , ’ T i m e as a F u n c t i o n of k _ N a n d k_ { G2 } ( k _ N <= k_ { G2 }) ’)⤦

Ç )
e l s e

x l a b e l ( ’ k_ { G } (/ hr ) ’ )
t i t l e ( ’ ’ ) % a p p e n d ( p o p u l a t i o n _ t y p e , ’ T i m e as a F u n c t i o n of k _ N a n d k_ { G } ( k _ N <= k_ { G }) ’) )

e n d
c o l o r b a r ; % a d d s a c o l o r b a r f o r t h e h e a t m a p

s e t ( gcf , ’ P a p e r U n i t s ’ , ’ i n c h e s ’ ) ;
x width=10 ; y width =7;
s e t ( gcf , ’ P a p e r P o s i t i o n ’ , [ 0 0 x width y width ] ) ;

if p o p u l a t i o n t y p e == ” Establ ishment ”
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 9 8 , 0 . 9 8 ] , [ 0 . 7 , 0 . 7 ] , ’ s t r i n g ’ , ’ {\ it \ t a u _ { e s t }} ( hr ) ’ , ’ F o n t S i z e ’⤦

Ç , 22 , . . .
’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ r i g h t ’ , ’ T e x t R o t a t i o n ’⤦

Ç , 9 0 ) ;
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 0 2 5 , 0 . 0 2 5 ] , [ 0 . 9 7 , 0 . 9 7 ] , ’ s t r i n g ’ , ’ A ) ’ , ’ F o n t W e i g h t ’ , ’ b o l d ’ , . . .

’ F o n t S i z e ’ , 22 , ’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’ )⤦
Ç ;

e l s e
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 9 8 , 0 . 9 8 ] , [ 0 . 7 , 0 . 7 ] , ’ s t r i n g ’ , ’ {\ it \ t a u _ { f i x }} ( hr ) ’ , ’ F o n t S i z e ’⤦

Ç , 22 , . . .
’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ r i g h t ’ , ’ T e x t R o t a t i o n ’⤦

Ç , 9 0 ) ;
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 0 2 5 , 0 . 0 2 5 ] , [ 0 . 9 7 , 0 . 9 7 ] , ’ s t r i n g ’ , ’ A ) ’ , ’ F o n t W e i g h t ’ , ’ b o l d ’ , . . .

’ F o n t S i z e ’ , 22 , ’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’ )⤦
Ç ;

e n d

% r o t a t e x - a x i s l a b e l s
s = s t r u c t (hHM) ;
s . XAxis . TickLabelRotat ion = 6 0 ; % a n g l e d
s . XDisplayLabels = compose ( ’ % . 3 f ’ , s t r 2 d o u b l e (hHM. XDisplayLabels ) ) ;
s . YDisplayLabels = compose ( ’ % . 4 f ’ , s t r 2 d o u b l e (hHM. YDisplayLabels ) ) ;

% s . F o n t S i z e = 6 0 ;
% s a v e t h e f i l e
if s a v e f i g b o o l

s a v e a s ( gcf , append ( f i l e n a m e , ’ . p n g ’ ) )
% s a v e ( a p p e n d ( f i l e _ n a m e , ’. mat ’) , ’ k G _ l i s t ’ , ’ k N _ l i s t ’ , ’ p o p u l a t i o n _ t i m e _ l i s t ’)

e n d
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c l o s e ( f i g )
e n d

f u n c t i o n p l o t p o p u l a t i o n t i m e s d e l t a ( d G l i s t , d N l i s t , p o p u l a t i o n t i m e l i s t , p o p u l a t i o n t y p e , ⤦
Ç kN dsweep , kG dsweep , s a v e f i g b o o l , f i l e n a m e )

% c r e a t e f i g u r e
f i g = f i g u r e ;

% p u t i n p u t l i s t s i n t o a t a b l e to m a k e t h e h e a t m a p s w i t h
X = d G l i s t ( : ) ; Y = d N l i s t ( : ) ; Z = p o p u l a t i o n t i m e l i s t ( : ) ;
t b l = t a b l e (X,Y, Z) ;

% c r e a t e t h e h e a t m a p
hHM = heatmap ( tbl , ’ X ’ , ’ Y ’ , ’ C o l o r V a r i a b l e ’ , ’ Z ’ , ’ C o l o r M e t h o d ’ , ’ n o n e ’ , ’ C e l l L a b e l C o l o r ’ , ’ n o n e⤦

Ç ’ , . . .
’ G r i d V i s i b l e ’ , ’ o f f ’ , ’ M i s s i n g D a t a L a b e l ’ , ’ No D a t a ’ , ’ M i s s i n g D a t a C o l o r ’ , ’ w ’ , . . .
’ F o n t S i z e ’ , 20) ;

hHM. NodeChildren ( 3 ) . YDir=’ n o r m a l ’ ; % f l i p s t h e y - a x i s to m a k e it i n c r e a s i n g ( m a t l a b d e f a u l t ⤦

Ç is d e c r e a s i n g )
hHM. Colormap = j e t ;

% s e t a x i s l a b e l s a n d t i t l e
y l a b e l ( ’ \ d e l t a _ N (/ hr ) ’ )
x l a b e l ( ’ \ d e l t a _ G (/ hr ) ’ )
t i t l e ( ’ ’ )

c o l o r b a r ; % a d d s a c o l o r b a r f o r t h e h e a t m a p

s e t ( gcf , ’ P a p e r U n i t s ’ , ’ i n c h e s ’ ) ;
x width=10 ; y width =7.2;
s e t ( gcf , ’ P a p e r P o s i t i o n ’ , [ 0 0 x width y width ] ) ;

if p o p u l a t i o n t y p e == ” Establ ishment ”
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 9 8 , 0 . 9 8 ] , [ 0 . 7 , 0 . 7 ] , ’ s t r i n g ’ , ’ {\ it \ t a u _ { e s t }} ( hr ) ’ , ’ F o n t S i z e ’⤦

Ç , 22 , . . .
’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ r i g h t ’ , ’ T e x t R o t a t i o n ’⤦

Ç , 9 0 ) ;
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 0 2 5 , 0 . 0 2 5 ] , [ 0 . 9 7 , 0 . 9 7 ] , ’ s t r i n g ’ , ’ A ) ’ , ’ F o n t W e i g h t ’ , ’ b o l d ’ , . . .

’ F o n t S i z e ’ , 22 , ’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’ )⤦
Ç ;

e l s e
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 9 8 3 , 0 . 9 8 3 ] , [ 0 . 7 , 0 . 7 ] , ’ s t r i n g ’ , ’ {\ it \ t a u _ { f i x }} ( hr ) ’ , ’⤦

Ç F o n t S i z e ’ , 22 , . . .
’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ r i g h t ’ , ’ T e x t R o t a t i o n ’⤦

Ç , 9 0 ) ;
a nn ot a t i on ( ’ t e x t a r r o w ’ , [ 0 . 0 2 5 , 0 . 0 2 5 ] , [ 0 . 9 7 , 0 . 9 7 ] , ’ s t r i n g ’ , ’ B ) ’ , ’ F o n t W e i g h t ’ , ’ b o l d ’ , . . .

’ F o n t S i z e ’ , 22 , ’ H e a d S t y l e ’ , ’ n o n e ’ , ’ L i n e S t y l e ’ , ’ n o n e ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’ )⤦
Ç ;

e n d

% r o t a t e x - a x i s l a b e l s
s = s t r u c t (hHM) ;
s . XAxis . TickLabelRotat ion = 6 0 ; % a n g l e d
s . XDisplayLabels = compose ( ’ % . 3 f ’ , s t r 2 d o u b l e (hHM. XDisplayLabels ) ) ;
s . YDisplayLabels = compose ( ’ % . 4 f ’ , s t r 2 d o u b l e (hHM. YDisplayLabels ) ) ;

% s . F o n t S i z e = 6 0 ;
% s a v e t h e f i l e
if s a v e f i g b o o l

s a v e a s ( gcf , append ( f i l e n a m e , ’ . p n g ’ ) )
% s a v e ( a p p e n d ( f i l e _ n a m e , ’. mat ’) , ’ k G _ l i s t ’ , ’ k N _ l i s t ’ , ’ p o p u l a t i o n _ t i m e _ l i s t ’)

e n d

c l o s e ( f i g )
e n d

A.2 Stochastic Algorithms

A.2.1: C code used to simulate the reaction system presented in Chapter 2 using
the implementation of the SSA presented in Algorithm 1 (Chapter 1) [45, 47] for the
constant drug environment.
// J o s h u a G u t h r i e , C h a r l e b o i s L a b o r a t o r y , U n i v e r s i t y of A l b e r t a

/* R E A C T I O N S
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
0: S - - - - > 2 S ( p a r a m e t e r = k _ S * z ( N _ t o t ) )
1: N - - - - > 2 N ( p a r a m e t e r = k _ N * z ( N _ t o t ) )
2: G1 - - - - > 2 G1 ( p a r a m e t e r = k _ G 1 * z ( N _ t o t ) )
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3: S - - - - > N ( p a r a m e t e r = r _ N S )
4: N - - - - > S ( p a r a m e t e r = r _ S N )
5: S - - - - > G1 ( p a r a m e t e r = r _ G 1 S )
6: N - - - - > G1 ( p a r a m e t e r = r _ G 1 N )
7: S - - - - > 0 ( p a r a m e t e r = d e l t a _ S )
8: N - - - - > 0 ( p a r a m e t e r = d e l t a _ N )
9: G1 - - - - > 0 ( p a r a m e t e r = d e l t a _ G 1 )
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

*/

# i n c l u d e < s t d l i b . h >
# i n c l u d e < s t d i o . h >
# i n c l u d e < s t d b o o l . h >
# i n c l u d e < m a t h . h >
# i n c l u d e < t i m e . h >

i n t main ( i n t argc , c h a r ∗ argv [ ] ) {
/* C o m m a n d l i n e a r g u m e n t s :

a r g v [ 1 ] = k _ N [ f l o a t ]
a r g v [ 2 ] = k _ G 1 [ f l o a t ]
a r g v [ 3 ] = d e l t a _ S [ f l o a t ]
a r g v [ 4 ] = d e l t a _ N [ f l o a t ]
a r g v [ 5 ] = N _ i [ i n t ]
a r g v [ 6 ] = t _ e n d [ f l o a t ]
a r g v [ 7 ] = n u m _ r u n s [ i n t ]
a r g v [ 8 ] = d i s t r i b u t i o n s o u t f i l e n a m e [ s t r ]
a r g v [ 9 ] = n u m b e r f o r s a m p l e t r a j e c t o r y to s a v e (0 f o r no s a v e ) [ i n t ]
a r g v [ 1 0 ] = s a m p l e t r a j e c t o r y o u t f i l e n a m e [ s t r ]
a r g v [ 1 1 ] = s t o p at G1 a p p e a r a n c e , e s t a b l i s h m e n t , or f i x a t i o n (1 , 2 , or 3 , u s e 0 o t h e r w i s e )⤦

Ç [ i n t ]
a r g v [ 1 2 ] = m e a s u r e r e l a t i v e to i n i t i a l or t o t a l p o p u l a t i o n (0 f o r i n i t i a l ( d e f a u l t ) , 1 f o r⤦

Ç t o t a l ) [ i n t ]
*/

i n t s a m p l e t r a j = a t o i ( argv [ 9 ] ) ;

i n t r e l t o = a t o i ( argv [ 1 2 ] ) ;

FILE ∗ o u t f i l e e s t f i x = fopen ( argv [ 8 ] , " w " ) ;
FILE ∗ o u t f i l e = NULL;
if ( s a m p l e t r a j > 0) {

o u t f i l e = fopen ( argv [ 1 0 ] , " w " ) ;
}

/* I N I T I A L I Z A T I O N */

// B a r a y n i - H i l l c o e f f i c i e n t s
d o u b l e k = 1 e +7;
d o u b l e n = 2 ;

// r e a c t i o n p a r a m e t e r s c _ i ( m o n o m o l e c u l a r r e a c t i o n s , k _ i = c _ i )
f l o a t k S = 0 . 0 ;
f l o a t k N = a t o f ( argv [ 1 ] ) ;
f l o a t k G1 = a t o f ( argv [ 2 ] ) ;
f l o a t r NS = 0 . 0 6 2 5 ;
f l o a t r SN = 0 . 0 0 3 5 ;
f l o a t r G1S = 0 . 0 ;
f l o a t r G1N = (1 e −6) / 3 ;
f l o a t d e l t a S = a t o f ( argv [ 3 ] ) ;
f l o a t d e l t a N = a t o f ( argv [ 4 ] ) ;
f l o a t delta G1 = 1 / 1 5 6 ;

// s t a t e c h a n g e s f o r e a c h r e a c t i o n
i n t V [ 1 0 ] [ 3 ] = {{+1, 0 , 0} ,

{0 , +1, 0} ,
{0 , 0 , +1} ,
{−1, +1, 0} ,
{+1, −1, 0} ,
{−1, 0 , +1} ,
{0 , −1, +1} ,
{−1, 0 , 0} ,
{0 , −1, 0} ,
{0 , 0 , −1}};

f l o a t t e n d = a t o f ( argv [ 6 ] ) ; // t i m e to s i m u l a t e , h o u r s
i n t num runs = a t o i ( argv [ 7 ] ) ; // N u m b e r of r u n s ( t r a j e c t o r i e s )

// i n i t i a l i z e s t a t e ( n u m b e r of c e l l s f o r e a c h p o p u l a t i o n ) a n d t i m e
l o n g i n t S = 550000000;
l o n g i n t N = a t o i ( argv [ 5 ] ) ;
l o n g i n t G1 = 0 ;
d o u b l e t = 0 . 0 ; // h o u r s

// c o n s e r v a t i o n e q u a t i o n s
l o n g i n t N tot = S + N + G1 ;
d o u b l e h i l l = pow( k , n ) /(pow( k , n ) + pow( N tot , n ) ) ;
d o u b l e dNtot dt = k S ∗ h i l l ∗S + k N∗ h i l l ∗N + k G1∗ h i l l ∗G1 − d e l t a S ∗S − d e l t a N ∗N − delta G1 ∗⤦

Ç G1 ;

// P r i n t h e a d e r f o r a p p e a r a n c e , e s t a b l i s h m e n t , f i x a t i o n t i m e o u t p u t f i l e
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f p r i n t f ( o u t f i l e e s t f i x , " # S t o c h a s t i c S i m u l a t i o n A l g o r i t h m R e s u l t s ( E s t a b l i s h m e n t / F i x a t i o n ⤦

Ç T i m e s ) \ n #\ n " ) ;

f p r i n t f ( o u t f i l e e s t f i x , " # R e a c t i o n P a r a m e t e r s (/ hr ) \ n⤦
Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n " ) ;

f p r i n t f ( o u t f i l e e s t f i x , " # G r o w t h R a t e s : k _ S = % . 4 f , k _ N = % . 4 f , k _ G 1 = % . 4 f \ n " , k S , k N , ⤦
Ç k G1 ) ;

f p r i n t f ( o u t f i l e e s t f i x , " # S w i t c h i n g R a t e s : r _ N S = % . 4 f , r _ S N = % . 4 f , r _ G 1 S = % . 4 f , r _ G 1 N = ⤦

Ç % . 4 e \ n " , r NS , r SN , r G1S , r G1N ) ;
f p r i n t f ( o u t f i l e e s t f i x , " # D e a t h R a t e s : d _ S = % 0 . 1 f , d _ N = % 0 . 1 f , d _ G 1 = % 0 . 1 f \ n " , d e l t a S , ⤦

Ç delta N , delta G1 ) ;
f p r i n t f ( o u t f i l e e s t f i x , "⤦

Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n #\ n " ) ;

f p r i n t f ( o u t f i l e e s t f i x , " # S i m u l a t i o n P a r a m e t e r s \ n⤦
Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n " ) ;

f p r i n t f ( o u t f i l e e s t f i x , " # B a r a y n i - H i l l : k = % . 0 e , n = % . 0 f \ n " , k , n ) ;
f p r i n t f ( o u t f i l e e s t f i x , " # T i m e ( hr ) : t _ i = % 0 . 1 f , t _ e n d = % 0 . 1 f \ n " , t , t e n d ) ;
f p r i n t f ( o u t f i l e e s t f i x , " # I n i t i a l S t a t e : S = % ld , N = % ld , G1 = % ld , N _ t o t = % ld , d N _ t o t / dt ⤦

Ç = % 0 . 1 0 f \ n " , S , N, G1 , N tot , dNtot dt ) ;
f p r i n t f ( o u t f i l e e s t f i x , "⤦

Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n #\ n " ) ;
f p r i n t f ( o u t f i l e e s t f i x , " # E S T A B L I S H M E N T / F I X A T I O N T I M E S ( if t i m e is n e g a t i v e it w a s n ’ t f o u n d ⤦

Ç w i t h i n t _ e n d ) \ n " ) ;
f p r i n t f ( o u t f i l e e s t f i x , " # M e a s u r e d r e l a t i v e to : % d \ n " , r e l t o ) ;
f p r i n t f ( o u t f i l e e s t f i x , " # C o l u m n s : R u n ( T r a j e c t o r y ) N u m b e r , G1 t _ a p p e a r a n c e , G1 t _ e s t , G1 ⤦

Ç t _ f i x \ n # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n " ) ;

if ( ( o u t f i l e != NULL)&&(s a m p l e t r a j > 0) ) {
// P r i n t h e a d e r f o r d a t a f i l e
f p r i n t f ( o u t f i l e , " # S t o c h a s t i c S i m u l a t i o n A l g o r i t h m R e s u l t s \ n #\ n " ) ;

f p r i n t f ( o u t f i l e , " # R e a c t i o n P a r a m e t e r s (/ hr ) \ n⤦
Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n " ) ;

f p r i n t f ( o u t f i l e , " # G r o w t h R a t e s : k _ S = % . 4 f , k _ N = % . 4 f , k _ G 1 = % . 4 f \ n " , k S , k N , k G1 ) ;
f p r i n t f ( o u t f i l e , " # S w i t c h i n g R a t e s : r _ N S = % . 4 f , r _ S N = % . 4 f , r _ G 1 S = % . 4 f , r _ G 1 N = % . 4 e \⤦

Ç n " , r NS , r SN , r G1S , r G1N ) ;
f p r i n t f ( o u t f i l e , " # D e a t h R a t e s : d _ S = % 0 . 1 f , d _ N = % 0 . 1 f , d _ G 1 = % 0 . 1 f \ n " , d e l t a S , ⤦

Ç delta N , delta G1 ) ;
f p r i n t f ( o u t f i l e , "⤦

Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n #\ n " ) ;

f p r i n t f ( o u t f i l e , " # S i m u l a t i o n P a r a m e t e r s \ n⤦
Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n " ) ;

f p r i n t f ( o u t f i l e , " # B a r a y n i - H i l l : k = % . 0 e , n = % . 0 f \ n " , k , n ) ;
f p r i n t f ( o u t f i l e , " # T i m e ( hr ) : t _ i = % 0 . 1 f , t _ e n d = % 0 . 1 f \ n " , t , t e n d ) ;
f p r i n t f ( o u t f i l e , " # I n i t i a l S t a t e : S = % ld , N = % ld , G1 = % ld , N _ t o t = % ld , d N _ t o t / dt = ⤦

Ç % 0 . 1 0 f \ n " , S , N, G1 , N tot , dNtot dt ) ;
f p r i n t f ( o u t f i l e , "⤦

Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n #\ n " ) ;

f p r i n t f ( o u t f i l e , " # D A T A ( C o l u m n s : R o w N u m b e r , Time , S , N , G1 , N _ t o t , d N _ t o t / dt ) \ n⤦
Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n " ) ;

f p r i n t f ( o u t f i l e , " % d % 0 . 2 0 f % ld % ld % ld % ld % 0 . 2 0 f \ n " , 0 , t , S , N, G1 , ⤦
Ç N tot , dNtot dt ) ;

}

srand ( time (NULL) ) ; // i n i t i a l i z e r a n d o m n u m b e r g e n e r a t o r

i n t s t o p a t = a t o i ( argv [ 1 1 ] ) ;
f o r ( i n t i = 1 ; i <= num runs ; i ++){

p r i n t f ( " T r a j e c t o r y % d r u n n i n g . . . \ n " , i ) ;

// i n i t i a l i z e s t a t e ( n u m b e r of c e l l s f o r e a c h p o p u l a t i o n ) a n d t i m e
l o n g i n t S = 550000000;
l o n g i n t N = a t o i ( argv [ 5 ] ) ;
l o n g i n t G1 = 0 ;

d o u b l e t = 0 . 0 ; // h o u r s
l o n g i n t N 0 = S + N + G1 ;

// c o n s e r v a t i o n e q u a t i o n s
l o n g i n t N tot = S + N + G1 ;

d o u b l e h i l l = pow( k , n ) /(pow( k , n ) + pow( N tot , n ) ) ;
d o u b l e dNtot dt = k S ∗ h i l l ∗S + k N∗ h i l l ∗N + k G1∗ h i l l ∗G1 − d e l t a S ∗S − d e l t a N ∗N − ⤦

Ç delta G1 ∗G1 ;

// l o o p c o n t r o l b o o l s
bool G1 app found = f a l s e ;
bool G1 e st f ou n d = f a l s e ;
bool G 1 f i x f o u n d = f a l s e ;

// i n i t i a l i z e e s t a b l i s h m e n t a n d f i x a t i o n t i m e s ( - 1 . 0 is a d u m m y v a l u e )
d o u b l e G1 app = −1.0;
d o u b l e G1 est = −1.0;
d o u b l e G 1 f i x = −1.0;

f l o a t G1 frac = −1.0;
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if ( i == s a m p l e t r a j ) {
l o n g i n t row num = 1 ;
w h i l e ( t < t e n d ) {

/* R u n s u n t i l t _ e n d */

// S T E P 1: c a l c u l a t e p r o p e n s i t y f u n c t i o n s a n d t h e i r s u m a _ 0
d o u b l e a [ 1 0 ] = {( k S ∗ h i l l ) ∗S , ( k N∗ h i l l ) ∗N, ( k G1∗ h i l l ) ∗G1 ,

r NS ∗S , r SN ∗N, r G1S ∗S , r G1N∗N,
d e l t a S ∗S , d e l t a N ∗N, delta G1 ∗G1} ;

d o u b l e a 0 = 0 . 0 ;
f o r ( i n t i = 0 ; i < 1 0 ; i ++) a 0 += a [ i ] ;

// S T E P 2: g e n e r a t e u n i f o r m r a n d o m n u m b e r s in u n i t i n t e r v a l , c a l c u l a t e t a u a n d j
d o u b l e r1 = ( d o u b l e ) rand ( ) / ( d o u b l e )RAND MAX;
w h i l e ( r1 == 0 . 0 ) r1 = ( d o u b l e ) rand ( ) / ( d o u b l e )RAND MAX;

d o u b l e tau = (1/ a 0 ) ∗ l o g (1/ r1 ) ;

d o u b l e r2 = ( d o u b l e ) rand ( ) / ( d o u b l e )RAND MAX;
i n t j = 0 ;
d o u b l e a sum = a [ j ] ;
w h i l e ( a sum < r2 ∗ a 0 ) {

j += 1 ;
a sum += a [ j ] ;

}

// S T E P 3: U p d a t e
t += tau ;

S += V[ j ] [ 0 ] ;
N += V[ j ] [ 1 ] ;
G1 += V[ j ] [ 2 ] ;

N tot = S + N + G1 ;
h i l l = pow( k , n ) /(pow( k , n ) + pow( N tot , n ) ) ;
dNtot dt = k S ∗ h i l l ∗S + k N∗ h i l l ∗N + k G1∗ h i l l ∗G1 − d e l t a S ∗S − d e l t a N ∗N − ⤦

Ç delta G1 ∗G1 ;

// p r i n t o u t t h e s a m p l e t r a j e c t o r y r e s u l t s
f p r i n t f ( o u t f i l e , " % ld % 0 . 2 0 f % ld % ld % ld % ld % 0 . 2 0 f \ n " , row num⤦

Ç , t , S , N, G1 , N tot , dNtot dt ) ;

// c h e c k f o r e s t a b l i s h m e n t a n d f i x a t i o n f o r t h e G p o p u l a t i o n s

if ( r e l t o == 1) {
G1 frac = ( f l o a t ) G1/ N tot ;

}
e l s e {

G1 frac = ( f l o a t ) G1/N 0 ;
}

// C h e c k G1 a n d G2 f i r s t a p p e a r a n c e
if ( ( G1 app found == f a l s e ) && (G1 > 0) ) {

G1 app = t ;
G1 app found = t r u e ;

}

// C h e c k G1 t _ e s t a n d t _ f i x
if ( ( G 1 e st f ou n d == f a l s e ) && ( G1 frac > 0 . 0 5 ) ) {

G1 est = t ;
G 1 e st f ou n d = t r u e ;

}
e l s e if ( ( G 1 f i x f o u n d == f a l s e ) && ( G1 frac > 0 . 9 5 ) ) {

G 1 f i x = t ;
G 1 f i x f o u n d = t r u e ;

}

row num++;
}

}
e l s e {

w h i l e ( t < t e n d ) {
/* R u n s u n t i l t _ e n d OR G2 f i x a t e s OR u n t i l a r g v [ 1 1 ] p a r a m e t e r is f o u n d */

// S T E P 1: c a l c u l a t e p r o p e n s i t y f u n c t i o n s a n d t h e i r s u m a _ 0
d o u b l e a [ 1 0 ] = {( k S ∗ h i l l ) ∗S , ( k N∗ h i l l ) ∗N, ( k G1∗ h i l l ) ∗G1 ,

r NS ∗S , r SN ∗N, r G1S ∗S , r G1N∗N,
d e l t a S ∗S , d e l t a N ∗N, delta G1 ∗G1} ;

d o u b l e a 0 = 0 . 0 ;
f o r ( i n t i = 0 ; i < 1 0 ; i ++) a 0 += a [ i ] ;

// S T E P 2: g e n e r a t e u n i f o r m r a n d o m n u m b e r s in u n i t i n t e r v a l , c a l c u l a t e t a u a n d j
d o u b l e r1 = ( d o u b l e ) rand ( ) / ( d o u b l e )RAND MAX;
w h i l e ( r1 == 0 . 0 ) r1 = ( d o u b l e ) rand ( ) / ( d o u b l e )RAND MAX;

d o u b l e tau = (1/ a 0 ) ∗ l o g (1/ r1 ) ;

d o u b l e r2 = ( d o u b l e ) rand ( ) / ( d o u b l e )RAND MAX;
i n t j = 0 ;
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d o u b l e a sum = a [ j ] ;
w h i l e ( a sum < r2 ∗ a 0 ) {

j += 1 ;
a sum += a [ j ] ;

}

// S T E P 3: U p d a t e
t += tau ;

S += V[ j ] [ 0 ] ;
N += V[ j ] [ 1 ] ;
G1 += V[ j ] [ 2 ] ;

N tot = S + N + G1 ;
h i l l = pow( k , n ) /(pow( k , n ) + pow( N tot , n ) ) ;

// c h e c k f o r e s t a b l i s h m e n t a n d f i x a t i o n f o r t h e G p o p u l a t i o n s
if ( r e l t o == 1) {

G1 frac = ( f l o a t ) G1/ N tot ;
}
e l s e {

G1 frac = ( f l o a t ) G1/N 0 ;
}

// C h e c k G1 a n d G2 f i r s t a p p e a r a n c e
if ( ( G1 app found == f a l s e ) && (G1 > 0) ) {

G1 app = t ;
G1 app found = t r u e ;
if ( s t o p a t == 1) b r e a k ;

}

// C h e c k G1 t _ e s t a n d t _ f i x
if ( ( G 1 e st f ou n d == f a l s e ) && ( G1 frac > 0 . 0 5 ) ) {

G1 est = t ;
G 1 e st f ou n d = t r u e ;
if ( s t o p a t == 2) b r e a k ;

}
e l s e if ( ( G 1 f i x f o u n d == f a l s e ) && ( G1 frac > 0 . 9 5 ) ) {

G 1 f i x = t ;
G 1 f i x f o u n d = t r u e ;
b r e a k ;

}
}

}
f p r i n t f ( o u t f i l e e s t f i x , " % d % 0 . 2 0 f % 0 . 2 0 f % 0 . 2 0 f \ n " , i , G1 app , G1 est , G 1 f i x )⤦

Ç ;
p r i n t f ( " R e s u l t s : G 1 _ a p p = % 0 . 2 0 f , G 1 _ e s t = % 0 . 2 0 f , G 1 _ f i x = % 0 . 2 0 f \ n \ n " , G1 app , G1 est , ⤦

Ç G 1 f i x ) ;
}

f c l o s e ( o u t f i l e e s t f i x ) ;
if ( o u t f i l e != NULL) f c l o s e ( o u t f i l e ) ;
r e t u r n 0 ;

}

A.2.2: C code used to simulate the reaction system presented in Chapter 2 using
the implementation of the SSA presented in Algorithm 1 (Chapter 1) [45, 47] for the
fluctuating drug environment.
// J o s h u a G u t h r i e , C h a r l e b o i s L a b o r a t o r y , U n i v e r s i t y of A l b e r t a

/* R E A C T I O N S
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
0: S - - - - > 2 S ( p a r a m e t e r = k _ S * z ( N _ t o t ) )
1: N - - - - > 2 N ( p a r a m e t e r = k _ N * z ( N _ t o t ) )
2: G1 - - - - > 2 G1 ( p a r a m e t e r = k _ G 1 * z ( N _ t o t ) )
3: S - - - - > N ( p a r a m e t e r = r _ N S )
4: N - - - - > S ( p a r a m e t e r = r _ S N )
5: S - - - - > G1 ( p a r a m e t e r = r _ G 1 S )
6: N - - - - > G1 ( p a r a m e t e r = r _ G 1 N )
7: S - - - - > 0 ( p a r a m e t e r = d e l t a _ S )
8: N - - - - > 0 ( p a r a m e t e r = d e l t a _ N )
9: G1 - - - - > 0 ( p a r a m e t e r = d e l t a _ G 1 )
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

*/

# i n c l u d e < s t d l i b . h >
# i n c l u d e < s t d i o . h >
# i n c l u d e < s t d b o o l . h >
# i n c l u d e < m a t h . h >
# i n c l u d e < t i m e . h >

i n t main ( i n t argc , c h a r ∗ argv [ ] ) {
/* C o m m a n d l i n e a r g u m e n t s :

a r g v [ 1 ] = k _ N [ f l o a t ]
a r g v [ 2 ] = k _ G 1 [ f l o a t ]
a r g v [ 3 ] = d e l t a _ S [ f l o a t ]
a r g v [ 4 ] = d e l t a _ N [ f l o a t ]
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a r g v [ 5 ] = N _ i [ i n t ]
a r g v [ 6 ] = t _ e n d [ f l o a t ]
a r g v [ 7 ] = n u m _ r u n s [ i n t ]
a r g v [ 8 ] = d i s t r i b u t i o n s o u t f i l e n a m e [ s t r ]
a r g v [ 9 ] = n u m b e r f o r s a m p l e t r a j e c t o r y to s a v e (0 f o r no s a v e ) [ i n t ]
a r g v [ 1 0 ] = s a m p l e t r a j e c t o r y o u t f i l e n a m e [ s t r ]
a r g v [ 1 1 ] = s t o p at G1 a p p e a r a n c e , e s t a b l i s h m e n t , or f i x a t i o n (1 , 2 , or 3 , u s e 0 o t h e r w i s e )⤦

Ç [ i n t ]
a r g v [ 1 2 ] = m e a s u r e r e l a t i v e to i n i t i a l or t o t a l p o p u l a t i o n (0 f o r i n i t i a l ( d e f a u l t ) , 1 f o r⤦

Ç t o t a l ) [ i n t ]
*/

i n t s a m p l e t r a j = a t o i ( argv [ 9 ] ) ;

i n t r e l t o = a t o i ( argv [ 1 2 ] ) ;

FILE ∗ o u t f i l e e s t f i x = fopen ( argv [ 8 ] , " w " ) ;
FILE ∗ o u t f i l e = NULL;
if ( s a m p l e t r a j > 0) {

o u t f i l e = fopen ( argv [ 1 0 ] , " w " ) ;
}

/* I N I T I A L I Z A T I O N */

// B a r a y n i - H i l l c o e f f i c i e n t s
d o u b l e k = 1 e +7;
d o u b l e n = 2 ;

// r e a c t i o n p a r a m e t e r s c _ i ( m o n o m o l e c u l a r r e a c t i o n s , k _ i = c _ i )
f l o a t k S = 0 . 0 ;
f l o a t k N = a t o f ( argv [ 1 ] ) ;
f l o a t k G1 = a t o f ( argv [ 2 ] ) ;
f l o a t r NS = 0 . 0 6 2 5 ;
f l o a t r SN = 0 . 0 0 3 5 ;
f l o a t r G1S = 0 . 0 ;
f l o a t r G1N = (1 e −6) / 3 ;
f l o a t d e l t a S = a t o f ( argv [ 3 ] ) ;
f l o a t d e l t a N = a t o f ( argv [ 4 ] ) ;
f l o a t delta G1 = 1 / 1 5 6 ;

// s t a t e c h a n g e s f o r e a c h r e a c t i o n
i n t V [ 1 0 ] [ 3 ] = {{+1, 0 , 0} ,

{0 , +1, 0} ,
{0 , 0 , +1} ,
{−1, +1, 0} ,
{+1, −1, 0} ,
{−1, 0 , +1} ,
{0 , −1, +1} ,
{−1, 0 , 0} ,
{0 , −1, 0} ,
{0 , 0 , −1}};

f l o a t t e n d = a t o f ( argv [ 6 ] ) ; // t i m e to s i m u l a t e , h o u r s
i n t num runs = a t o i ( argv [ 7 ] ) ; // N u m b e r of r u n s ( t r a j e c t o r i e s )

// i n i t i a l i z e s t a t e ( n u m b e r of c e l l s f o r e a c h p o p u l a t i o n ) a n d t i m e
l o n g i n t S = 550000;
l o n g i n t N = a t o i ( argv [ 5 ] ) ;
l o n g i n t G1 = 0 ;
d o u b l e t = 0 . 0 ; // h o u r s

// c o n s e r v a t i o n e q u a t i o n s
l o n g i n t N tot = S + N + G1 ;
d o u b l e h i l l = pow( k , n ) /(pow( k , n ) + pow( N tot , n ) ) ;
d o u b l e dNtot dt = k S ∗ h i l l ∗S + k N∗ h i l l ∗N + k G1∗ h i l l ∗G1 − d e l t a S ∗S − d e l t a N ∗N − delta G1 ∗⤦

Ç G1 ;

// P r i n t h e a d e r f o r a p p e a r a n c e , e s t a b l i s h m e n t , f i x a t i o n t i m e o u t p u t f i l e
f p r i n t f ( o u t f i l e e s t f i x , " # S t o c h a s t i c S i m u l a t i o n A l g o r i t h m R e s u l t s ( E s t a b l i s h m e n t / F i x a t i o n ⤦

Ç T i m e s ) \ n #\ n " ) ;

f p r i n t f ( o u t f i l e e s t f i x , " # R e a c t i o n P a r a m e t e r s (/ hr ) \ n⤦
Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n " ) ;

f p r i n t f ( o u t f i l e e s t f i x , " # G r o w t h R a t e s : k _ S = % . 4 f , k _ N = % . 4 f , k _ G 1 = % . 4 f \ n " , k S , k N , ⤦
Ç k G1 ) ;

f p r i n t f ( o u t f i l e e s t f i x , " # S w i t c h i n g R a t e s : r _ N S = % . 4 f , r _ S N = % . 4 f , r _ G 1 S = % . 4 f , r _ G 1 N = ⤦

Ç % . 4 e \ n " , r NS , r SN , r G1S , r G1N ) ;
f p r i n t f ( o u t f i l e e s t f i x , " # D e a t h R a t e s : d _ S = % 0 . 1 f , d _ N = % 0 . 1 f , d _ G 1 = % 0 . 1 f \ n " , d e l t a S , ⤦

Ç delta N , delta G1 ) ;
f p r i n t f ( o u t f i l e e s t f i x , "⤦

Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n #\ n " ) ;

f p r i n t f ( o u t f i l e e s t f i x , " # S i m u l a t i o n P a r a m e t e r s \ n⤦
Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n " ) ;

f p r i n t f ( o u t f i l e e s t f i x , " # B a r a y n i - H i l l : k = % . 0 e , n = % . 0 f \ n " , k , n ) ;
f p r i n t f ( o u t f i l e e s t f i x , " # T i m e ( hr ) : t _ i = % 0 . 1 f , t _ e n d = % 0 . 1 f \ n " , t , t e n d ) ;
f p r i n t f ( o u t f i l e e s t f i x , " # I n i t i a l S t a t e : S = % ld , N = % ld , G1 = % ld , N _ t o t = % ld , d N _ t o t / dt ⤦

Ç = % 0 . 1 0 f \ n " , S , N, G1 , N tot , dNtot dt ) ;
f p r i n t f ( o u t f i l e e s t f i x , "⤦

Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n #\ n " ) ;
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f p r i n t f ( o u t f i l e e s t f i x , " # E S T A B L I S H M E N T / F I X A T I O N T I M E S ( if t i m e is n e g a t i v e it w a s n ’ t f o u n d ⤦

Ç w i t h i n t _ e n d ) \ n " ) ;
f p r i n t f ( o u t f i l e e s t f i x , " # M e a s u r e d r e l a t i v e to : % d \ n " , r e l t o ) ;
f p r i n t f ( o u t f i l e e s t f i x , " # C o l u m n s : R u n ( T r a j e c t o r y ) N u m b e r , G1 t _ a p p e a r a n c e , G1 t _ e s t , G1 ⤦

Ç t _ f i x \ n # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n " ) ;

if ( ( o u t f i l e != NULL)&&(s a m p l e t r a j > 0) ) {
// P r i n t h e a d e r f o r d a t a f i l e
f p r i n t f ( o u t f i l e , " # S t o c h a s t i c S i m u l a t i o n A l g o r i t h m R e s u l t s \ n #\ n " ) ;

f p r i n t f ( o u t f i l e , " # R e a c t i o n P a r a m e t e r s (/ hr ) \ n⤦
Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n " ) ;

f p r i n t f ( o u t f i l e , " # G r o w t h R a t e s : k _ S = % . 4 f , k _ N = % . 4 f , k _ G 1 = % . 4 f \ n " , k S , k N , k G1 ) ;
f p r i n t f ( o u t f i l e , " # S w i t c h i n g R a t e s : r _ N S = % . 4 f , r _ S N = % . 4 f , r _ G 1 S = % . 4 f , r _ G 1 N = % . 4 e \⤦

Ç n " , r NS , r SN , r G1S , r G1N ) ;
f p r i n t f ( o u t f i l e , " # D e a t h R a t e s : d _ S = % 0 . 1 f , d _ N = % 0 . 1 f , d _ G 1 = % 0 . 1 f \ n " , d e l t a S , ⤦

Ç delta N , delta G1 ) ;
f p r i n t f ( o u t f i l e , "⤦

Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n #\ n " ) ;

f p r i n t f ( o u t f i l e , " # S i m u l a t i o n P a r a m e t e r s \ n⤦
Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n " ) ;

f p r i n t f ( o u t f i l e , " # B a r a y n i - H i l l : k = % . 0 e , n = % . 0 f \ n " , k , n ) ;
f p r i n t f ( o u t f i l e , " # T i m e ( hr ) : t _ i = % 0 . 1 f , t _ e n d = % 0 . 1 f \ n " , t , t e n d ) ;
f p r i n t f ( o u t f i l e , " # I n i t i a l S t a t e : S = % ld , N = % ld , G1 = % ld , N _ t o t = % ld , d N _ t o t / dt = ⤦

Ç % 0 . 1 0 f \ n " , S , N, G1 , N tot , dNtot dt ) ;
f p r i n t f ( o u t f i l e , "⤦

Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n #\ n " ) ;

f p r i n t f ( o u t f i l e , " # D A T A ( C o l u m n s : R o w N u m b e r , Time , S , N , G1 , N _ t o t , d N _ t o t / dt ) \ n⤦
Ç # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\ n " ) ;

f p r i n t f ( o u t f i l e , " % d % 0 . 2 0 f % ld % ld % ld % ld % 0 . 2 0 f \ n " , 0 , t , S , N, G1 , ⤦
Ç N tot , dNtot dt ) ;

}

srand ( time (NULL) ) ; // i n i t i a l i z e r a n d o m n u m b e r g e n e r a t o r

i n t s t o p a t = a t o i ( argv [ 1 1 ] ) ;
f o r ( i n t i = 1 ; i <= num runs ; i ++){

p r i n t f ( " T r a j e c t o r y % d r u n n i n g . . . \ n " , i ) ;

// i n i t i a l i z e s t a t e ( n u m b e r of c e l l s f o r e a c h p o p u l a t i o n ) a n d t i m e
l o n g i n t S = 550000;
l o n g i n t N = a t o i ( argv [ 5 ] ) ;
l o n g i n t G1 = 0 ;

d o u b l e t = 0 . 0 ; // h o u r s
l o n g i n t N 0 = S + N + G1 ;

// c o n s e r v a t i o n e q u a t i o n s
l o n g i n t N tot = S + N + G1 ;

d o u b l e h i l l = pow( k , n ) /(pow( k , n ) + pow( N tot , n ) ) ;
d o u b l e dNtot dt = k S ∗ h i l l ∗S + k N∗ h i l l ∗N + k G1∗ h i l l ∗G1 − d e l t a S ∗S − d e l t a N ∗N − ⤦

Ç delta G1 ∗G1 ;

// l o o p c o n t r o l b o o l s
bool G1 app found = f a l s e ;
bool G1 e st f ou n d = f a l s e ;
bool G 1 f i x f o u n d = f a l s e ;

// i n i t i a l i z e e s t a b l i s h m e n t a n d f i x a t i o n t i m e s ( - 1 . 0 is a d u m m y v a l u e )
d o u b l e G1 app = −1.0;
d o u b l e G1 est = −1.0;
d o u b l e G 1 f i x = −1.0;

f l o a t G1 frac = −1.0;

if ( i == s a m p l e t r a j ) {
l o n g i n t row num = 1 ;
w h i l e ( t < t e n d ) {

/* R u n s u n t i l t _ e n d */
// f l u c t u a t e t h e d r u g
if ( ( ( t > 2 4 . 0 )&&(t <= 4 8 . 0 ) ) | | ( ( t > 7 2 . 0 )&&(t <= 9 6 . 0 ) ) | | ( ( t > 1 2 0 . 0 )&&(t <= ⤦

Ç 1 4 4 . 0 ) ) | | ( ( t > 1 6 8 . 0 )&&(t <= 1 9 2 . 0 ) )
| | ( ( t > 2 1 6 . 0 )&&(t <= 2 4 0 . 0 ) ) | | ( ( t > 2 6 4 . 0 )&&(t <= 2 8 8 . 0 ) ) | | ( ( t > 3 1 2 . 0 )&&(t ⤦

Ç <= 3 3 6 . 0 ) ) | | ( ( t > 3 6 0 . 0 )&&(t <= 3 8 4 . 0 ) )
| | ( ( t > 4 0 8 . 0 )&&(t <= 4 3 2 . 0 ) ) | | ( ( t > 4 5 6 . 0 )&&(t <= 4 8 0 . 0 ) ) ) {
// no d r u g c o n d i t i o n
k S = 0 . 3 4 6 6 ;
k N = 0 . 2 6 0 0 ;
k G1 = 0 . 1 7 3 3 ;
r NS = 0 . 0 6 2 5 ;
r SN = 0 . 0 0 3 5 ;
r G1S = (1 e −6) / 3 ;
r G1N = (1 e −6) / 3 ;
d e l t a S = 1 / 1 5 6 ;
d e l t a N = 1 / 1 5 6 ;
delta G1 = 1 / 1 5 6 ;
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}
e l s e {

// d r u g
k S = 0 . 0 ;
k N = a t o f ( argv [ 1 ] ) ;
k G1 = a t o f ( argv [ 2 ] ) ;
r NS = 0 . 0 6 2 5 ;
r SN = 0 . 0 0 3 5 ;
r G1S = 0 . 0 ;
r G1N = (1 e −6) / 3 ;
d e l t a S = a t o f ( argv [ 3 ] ) ;
d e l t a N = a t o f ( argv [ 4 ] ) ;
delta G1 = 1 / 1 5 6 ;

}

// S T E P 1: c a l c u l a t e p r o p e n s i t y f u n c t i o n s a n d t h e i r s u m a _ 0
d o u b l e a [ 1 0 ] = {( k S ∗ h i l l ) ∗S , ( k N∗ h i l l ) ∗N, ( k G1∗ h i l l ) ∗G1 ,

r NS ∗S , r SN ∗N, r G1S ∗S , r G1N∗N,
d e l t a S ∗S , d e l t a N ∗N, delta G1 ∗G1} ;

d o u b l e a 0 = 0 . 0 ;
f o r ( i n t i = 0 ; i < 1 0 ; i ++) a 0 += a [ i ] ;

// S T E P 2: g e n e r a t e u n i f o r m r a n d o m n u m b e r s in u n i t i n t e r v a l , c a l c u l a t e t a u a n d j
d o u b l e r1 = ( d o u b l e ) rand ( ) / ( d o u b l e )RAND MAX;
w h i l e ( r1 == 0 . 0 ) r1 = ( d o u b l e ) rand ( ) / ( d o u b l e )RAND MAX;

d o u b l e tau = (1/ a 0 ) ∗ l o g (1/ r1 ) ;

d o u b l e r2 = ( d o u b l e ) rand ( ) / ( d o u b l e )RAND MAX;
i n t j = 0 ;
d o u b l e a sum = a [ j ] ;
w h i l e ( a sum < r2 ∗ a 0 ) {

j += 1 ;
a sum += a [ j ] ;

}

// S T E P 3: U p d a t e
t += tau ;

S += V[ j ] [ 0 ] ;
N += V[ j ] [ 1 ] ;
G1 += V[ j ] [ 2 ] ;

N tot = S + N + G1 ;
h i l l = pow( k , n ) /(pow( k , n ) + pow( N tot , n ) ) ;
dNtot dt = k S ∗ h i l l ∗S + k N∗ h i l l ∗N + k G1∗ h i l l ∗G1 − d e l t a S ∗S − d e l t a N ∗N − ⤦

Ç delta G1 ∗G1 ;

// p r i n t o u t t h e s a m p l e t r a j e c t o r y r e s u l t s
f p r i n t f ( o u t f i l e , " % ld % 0 . 2 0 f % ld % ld % ld % ld % 0 . 2 0 f \ n " , row num⤦

Ç , t , S , N, G1 , N tot , dNtot dt ) ;

// c h e c k f o r e s t a b l i s h m e n t a n d f i x a t i o n f o r t h e G p o p u l a t i o n s

if ( r e l t o == 1) {
G1 frac = ( f l o a t ) G1/ N tot ;

}
e l s e {

G1 frac = ( f l o a t ) G1/N 0 ;
}

// C h e c k G1 a n d G2 f i r s t a p p e a r a n c e
if ( ( G1 app found == f a l s e ) && (G1 > 0) ) {

G1 app = t ;
G1 app found = t r u e ;

}

// C h e c k G1 t _ e s t a n d t _ f i x
if ( ( G 1 e st f ou n d == f a l s e ) && ( G1 frac > 0 . 0 5 ) ) {

G1 est = t ;
G 1 e st f ou n d = t r u e ;

}
e l s e if ( ( G 1 f i x f o u n d == f a l s e ) && ( G1 frac > 0 . 9 5 ) ) {

G 1 f i x = t ;
G 1 f i x f o u n d = t r u e ;

}

row num++;
}

}
e l s e {

w h i l e ( t < t e n d ) {
/* R u n s u n t i l t _ e n d OR G2 f i x a t e s OR u n t i l a r g v [ 1 1 ] p a r a m e t e r is f o u n d */

// f l u c t u a t e t h e d r u g
if ( ( ( t > 2 4 . 0 )&&(t <= 4 8 . 0 ) ) | | ( ( t > 7 2 . 0 )&&(t <= 9 6 . 0 ) ) | | ( ( t > 1 2 0 . 0 )&&(t <= ⤦

Ç 1 4 4 . 0 ) ) | | ( ( t > 1 6 8 . 0 )&&(t <= 1 9 2 . 0 ) )
| | ( ( t > 2 1 6 . 0 )&&(t <= 2 4 0 . 0 ) ) | | ( ( t > 2 6 4 . 0 )&&(t <= 2 8 8 . 0 ) ) | | ( ( t > 3 1 2 . 0 )&&(t ⤦

Ç <= 3 3 6 . 0 ) ) | | ( ( t > 3 6 0 . 0 )&&(t <= 3 8 4 . 0 ) )
| | ( ( t > 4 0 8 . 0 )&&(t <= 4 3 2 . 0 ) ) | | ( ( t > 4 5 6 . 0 )&&(t <= 4 8 0 . 0 ) ) ) {
// no d r u g c o n d i t i o n
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k S = 0 . 3 4 6 6 ;
k N = 0 . 2 6 0 0 ;
k G1 = 0 . 1 7 3 3 ;
r NS = 0 . 0 6 2 5 ;
r SN = 0 . 0 0 3 5 ;
r G1S = (1 e −6) / 3 ;
r G1N = (1 e −6) / 3 ;
d e l t a S = 1 / 1 5 6 ;
d e l t a N = 1 / 1 5 6 ;
delta G1 = 1 / 1 5 6 ;
}

e l s e {
// d r u g
k S = 0 . 0 ;
k N = a t o f ( argv [ 1 ] ) ;
k G1 = a t o f ( argv [ 2 ] ) ;
r NS = 0 . 0 6 2 5 ;
r SN = 0 . 0 0 3 5 ;
r G1S = 0 . 0 ;
r G1N = (1 e −6) / 3 ;
d e l t a S = a t o f ( argv [ 3 ] ) ;
d e l t a N = a t o f ( argv [ 4 ] ) ;
delta G1 = 1 / 1 5 6 ;

}

// S T E P 1: c a l c u l a t e p r o p e n s i t y f u n c t i o n s a n d t h e i r s u m a _ 0
d o u b l e a [ 1 0 ] = {( k S ∗ h i l l ) ∗S , ( k N∗ h i l l ) ∗N, ( k G1∗ h i l l ) ∗G1 ,

r NS ∗S , r SN ∗N, r G1S ∗S , r G1N∗N,
d e l t a S ∗S , d e l t a N ∗N, delta G1 ∗G1} ;

d o u b l e a 0 = 0 . 0 ;
f o r ( i n t i = 0 ; i < 1 0 ; i ++) a 0 += a [ i ] ;

// S T E P 2: g e n e r a t e u n i f o r m r a n d o m n u m b e r s in u n i t i n t e r v a l , c a l c u l a t e t a u a n d j
d o u b l e r1 = ( d o u b l e ) rand ( ) / ( d o u b l e )RAND MAX;
w h i l e ( r1 == 0 . 0 ) r1 = ( d o u b l e ) rand ( ) / ( d o u b l e )RAND MAX;

d o u b l e tau = (1/ a 0 ) ∗ l o g (1/ r1 ) ;

d o u b l e r2 = ( d o u b l e ) rand ( ) / ( d o u b l e )RAND MAX;
i n t j = 0 ;
d o u b l e a sum = a [ j ] ;
w h i l e ( a sum < r2 ∗ a 0 ) {

j += 1 ;
a sum += a [ j ] ;

}

// S T E P 3: U p d a t e
t += tau ;

S += V[ j ] [ 0 ] ;
N += V[ j ] [ 1 ] ;
G1 += V[ j ] [ 2 ] ;

N tot = S + N + G1 ;
h i l l = pow( k , n ) /(pow( k , n ) + pow( N tot , n ) ) ;

// c h e c k f o r e s t a b l i s h m e n t a n d f i x a t i o n f o r t h e G p o p u l a t i o n s
if ( r e l t o == 1) {

G1 frac = ( f l o a t ) G1/ N tot ;
}
e l s e {

G1 frac = ( f l o a t ) G1/N 0 ;
}

// C h e c k G1 a n d G2 f i r s t a p p e a r a n c e
if ( ( G1 app found == f a l s e ) && (G1 > 0) ) {

G1 app = t ;
G1 app found = t r u e ;
if ( s t o p a t == 1) b r e a k ;

}

// C h e c k G1 t _ e s t a n d t _ f i x
if ( ( G 1 e st f ou n d == f a l s e ) && ( G1 frac > 0 . 0 5 ) ) {

G1 est = t ;
G 1 e st f ou n d = t r u e ;
if ( s t o p a t == 2) b r e a k ;

}
e l s e if ( ( G 1 f i x f o u n d == f a l s e ) && ( G1 frac > 0 . 9 5 ) ) {

G 1 f i x = t ;
G 1 f i x f o u n d = t r u e ;
b r e a k ;

}
}

}
f p r i n t f ( o u t f i l e e s t f i x , " % d % 0 . 2 0 f % 0 . 2 0 f % 0 . 2 0 f \ n " , i , G1 app , G1 est , G 1 f i x )⤦

Ç ;
p r i n t f ( " R e s u l t s : G 1 _ a p p = % 0 . 2 0 f , G 1 _ e s t = % 0 . 2 0 f , G 1 _ f i x = % 0 . 2 0 f \ n \ n " , G1 app , G1 est , ⤦

Ç G 1 f i x ) ;
}

f c l o s e ( o u t f i l e e s t f i x ) ;
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if ( o u t f i l e != NULL) f c l o s e ( o u t f i l e ) ;
r e t u r n 0 ;

}

A.2.3: Python code used to plot individual trajectories produced by my C implemen-
tation of the SSA.
i m p o r t m a t p l o t l i b . pyplot as p l t
i m p o r t a r g p a r s e
p l t . rcParams . update ({ ’ f o n t . s i z e ’ : 10})

p a r s e r = a r g p a r s e . ArgumentParser ( d e s c r i p t i o n=’ G e t d a t a f i l e ’ )
p a r s e r . add argument ( ’ - i ’ , " - - i n f i l e " , d e f a u l t =[ " S S A _ o u t p u t . t x t " ] , t y p e=str , nargs = ’ + ’ , d e s t = ’⤦

Ç I N F I L E ’ , h e l p=’ N a m e of S S A d a t a f i l e (. t x t ) ’ )
p a r s e r . add argument ( ’ - s ’ , " - - s c e n a r i o " , d e f a u l t = [ 1 ] , t y p e=int , nargs = ’ + ’ , d e s t = " S C E N A R I O " , ⤦

Ç h e l p=’ I n t e g e r f o r s c e n a r i o (1 or 2) ’ )
p a r s e r . add argument ( ’ - o ’ , " - - p l o t 1 " , d e f a u l t =[ " S S A _ t r a j e c t o r y . p n g " ] , t y p e=str , nargs = ’ + ’ , d e s t ⤦

Ç = ’ P L O T 1 ’ , h e l p=’ N a m e of t r a j e c t o r y p l o t f i l e (. p n g ) ’ )
p a r s e r . add argument ( ’ - f ’ , " - - p l o t 2 " , d e f a u l t =[ " S S A _ t r a j e c t o r y _ s u b p l o t s . p n g " ] , t y p e=str , nargs = ’⤦

Ç + ’ , d e s t = ’ P L O T 2 ’ , h e l p=’ N a m e of s u b p l o t s f i l e (. p n g ) ’ )
a r g s = p a r s e r . p a r s e a r g s ( )

t = [ ]
S = [ ]
N = [ ]
G1 = [ ]
G2 = [ ]
N tot = [ ]
dNtot dt = [ ]

G1 d N = [ ]
G2 d N = [ ]

counter = 0
# p u l l S S A d a t a
with o p e n ( a r g s . INFILE [ 0 ] , ’ r ’ ) as f :

f o r l i n e in f :
if n o t l i n e . s t a r t s w i t h ( " # " ) :

if counter < 3000000 or counter % 1000000 == 0 :
data = l i n e . s p l i t ( )

t . append ( f l o a t ( data [ 1 ] ) )
S . append ( f l o a t ( data [ 2 ] ) )
N. append ( f l o a t ( data [ 3 ] ) )
G1 . append ( f l o a t ( data [ 4 ] ) )
if a r g s .SCENARIO [ 0 ] == 2 :

G2 . append ( f l o a t ( data [ 5 ] ) )
N tot . append ( f l o a t ( data [ 6 ] ) )
dNtot dt . append ( f l o a t ( data [ 7 ] ) )

e l s e :
N tot . append ( f l o a t ( data [ 5 ] ) )
dNtot dt . append ( f l o a t ( data [ 6 ] ) )

t r y :
G1 d N . append ( f l o a t ( data [ 4 ] ) / f l o a t ( data [ 3 ] ) )
if a r g s .SCENARIO [ 0 ] == 2 :

G2 d N . append ( f l o a t ( data [ 5 ] ) / f l o a t ( data [ 3 ] ) )
e x c e p t :

G1 d N . append ( 0 . 0 )
if a r g s .SCENARIO [ 0 ] == 2 :

G2 d N . append ( 0 . 0 )

counter += 1

# m a k e p l o t s
f i g 1 = p l t . f i g u r e ( f i g s i z e =(5 ,4) )
p l t . x s c a l e ( " l o g " )
p l t . y s c a l e ( " l o g " )

p l t . x l a b e l ( " t ( hr ) " )
p l t . y l a b e l ( " c e l l s " )
# p l t . t i t l e (" S S A R e s u l t s ")

p l t . p l o t ( t , S , l s = " - " , l a b e l = " S " )
p l t . p l o t ( t ,N, l s = " -. " , l a b e l = " N " )
p l t . p l o t ( t , G1 , l s = " : " , l a b e l = " G " )

if a r g s .SCENARIO [ 0 ] == 2 :
p l t . p l o t ( t , G2 , l s = " - - " , l a b e l = " G2 " )

p l t . l e g e n d ( l o c=" b e s t " )

p l t . g c f ( ) . t e x t ( 0 . 0 3 , 0 . 9 2 , " A ) " , weight = ’ b o l d ’ )

p l t . t i g h t l a y o u t ( )
p l t . s a v e f i g ( fname = a r g s .PLOT1 [ 0 ] , dpi = 100)

# f i g 2 = p l t . f i g u r e (2 , f i g s i z e = ( 1 6 , 1 2 ) )
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# p l t . s u b p l o t ( 4 , 3 , 1 )
# p l t . x s c a l e (" l o g ")
# p l t . y s c a l e (" l o g ")
# p l t . y l a b e l (" S ")
# p l t . p l o t ( t , S )

# p l t . s u b p l o t ( 4 , 3 , 2 )
# p l t . x s c a l e (" l o g ")
# p l t . y s c a l e (" l o g ")
# p l t . t i t l e (" S S A I n d i v i d u a l R e s u l t s a n d R a t i o s ")
# p l t . y l a b e l (" N ")
# p l t . p l o t ( t , N )

# p l t . s u b p l o t ( 4 , 3 , 3 )
# p l t . x s c a l e (" l o g ")
# p l t . y s c a l e (" l o g ")
# p l t . y l a b e l (" G1 ")
# p l t . p l o t ( t , G1 )

# if a r g s . S C E N A R I O [ 0 ] == 2:
# p l t . s u b p l o t ( 4 , 3 , 4 )
# p l t . x s c a l e (" l o g ")
# p l t . y s c a l e (" l o g ")
# p l t . y l a b e l (" G2 ")
# p l t . p l o t ( t , G2 )

# p l t . s u b p l o t ( 4 , 3 , 5 )
# p l t . x s c a l e (" l o g ")
# p l t . y s c a l e (" l o g ")
# p l t . y l a b e l (" N _ t o t ")
# p l t . p l o t ( t , N _ t o t )

# p l t . s u b p l o t ( 4 , 3 , 6 )
# p l t . x s c a l e (" s y m l o g ")
# p l t . y s c a l e (" s y m l o g ")
# p l t . y l a b e l (" d N _ t o t / dt ")
# p l t . p l o t ( t , d N t o t _ d t )

# p l t . s u b p l o t ( 4 , 3 , 7 )
# p l t . x s c a l e (" l o g ")
# p l t . y s c a l e (" l o g ")
# p l t . y l a b e l (" G1 / N ")
# p l t . p l o t ( t , G 1 _ d _ N )

# if a r g s . S C E N A R I O [ 0 ] == 2:
# p l t . s u b p l o t ( 4 , 3 , 8 )
# p l t . x s c a l e (" l o g ")
# p l t . y s c a l e (" l o g ")
# p l t . x l a b e l (" t i m e [ hr ] " )
# p l t . y l a b e l (" G2 / N ")
# p l t . p l o t ( t , G 2 _ d _ N )

# p l t . s a v e f i g ( a r g s . P L O T 2 [ 0 ] )

A.2.4: Python code used to calculate first appearance and genetic fixation times from
the results produced by my C implementation of the SSA.
i m p o r t m a t p l o t l i b . pyplot as p l t
i m p o r t a r g p a r s e
i m p o r t numpy as np

p a r s e r = a r g p a r s e . ArgumentParser ( d e s c r i p t i o n=’ G e t d a t a f i l e ’ )
p a r s e r . add argument ( ’ - i ’ , " - - i n f i l e " , d e f a u l t =[ " S S A _ o u t p u t . t x t " ] , t y p e=str , nargs = ’ + ’ , d e s t = ’⤦

Ç I N F I L E ’ , h e l p=’ N a m e of S S A d a t a f i l e (. t x t ) ’ )
a r g s = p a r s e r . p a r s e a r g s ( )

f i x 1 = " N / A "
e s t 1 = " N / A "
e s t 1 f o u n d = F a l s e
f i x 2 = " N / A "
e s t 2 = " N / A "
e s t 2 f o u n d = F a l s e

done1 = F a l s e
done2 = F a l s e

counter = 0
# p u l l S S A d a t a
with o p e n ( a r g s . INFILE [ 0 ] , ’ r ’ ) as f :

f o r l i n e in f :
if n o t l i n e . s t a r t s w i t h ( " # " ) :

data = l i n e . s p l i t ( )
t = f l o a t ( data [ 1 ] )
G1 = f l o a t ( data [ 4 ] )
G2 = f l o a t ( data [ 5 ] )
N tot = f l o a t ( data [ 6 ] )

p o p f r a c 1 = G1/ N tot
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p o p f r a c 2 = G2/ N tot

if e s t 1 f o u n d == F a l s e a n d p o p f r a c 1 > 0 . 0 5 :
e s t 1 = t
e s t 1 f o u n d = True

if done1 == F a l s e a n d p o p f r a c 1 > 0 . 9 5 :
f i x 1 = t
done1 = True

if e s t 2 f o u n d == F a l s e a n d p o p f r a c 2 > 0 . 0 5 :
e s t 2 = t
e s t 2 f o u n d = True

if p o p f r a c 2 > 0 . 9 5 :
f i x 2 = t
done2 = True

if done1 a n d done2 :
b r e a k

counter += 1

p r i n t ( " \ n G 1 E s t a b l i s h m e n t t i m e : { } \ n G 1 F i x a t i o n t i m e : {} " . f o r m a t ( est1 , f i x 1 ) )
p r i n t ( " \ n G 2 E s t a b l i s h m e n t t i m e : { } \ n G 2 F i x a t i o n t i m e : {} " . f o r m a t ( est2 , f i x 2 ) )

A.2.5: Python code used to create the first appearance and fixation probability dis-
tributions shown in Chapter 2.
i m p o r t m a t p l o t l i b . pyplot as p l t
i m p o r t numpy as np
i m p o r t a r g p a r s e
p l t . rcParams . update ({ ’ f o n t . s i z e ’ : 10})

p a r s e r = a r g p a r s e . ArgumentParser ( d e s c r i p t i o n=’ G e t d a t a f i l e ’ )
p a r s e r . add argument ( ’ - i ’ , " - - i n f i l e " , d e f a u l t =[ " S S A _ o u t p u t _ t i m e s . t x t " ] , t y p e=str , nargs = ’ + ’ , ⤦

Ç d e s t = ’ I N F I L E ’ , h e l p=’ N a m e of S S A d a t a f i l e (. t x t ) ’ )
p a r s e r . add argument ( ’ - s ’ , " - - s c e n a r i o " , d e f a u l t = [ 1 ] , t y p e=int , nargs = ’ + ’ , d e s t = " S C E N A R I O " , ⤦

Ç h e l p=’ I n t e g e r f o r s c e n a r i o (1 or 2) ’ )
p a r s e r . add argument ( ’ - o ’ , " - - p l o t " , d e f a u l t =[ " S S A _ d i s t r i b u t i o n s . p n g " ] , t y p e=str , nargs = ’ + ’ , ⤦

Ç d e s t = ’ P L O T ’ , h e l p=’ N a m e of d i s t r i b u t i o n p l o t o u t f i l e (. p n g ) ’ )
a r g s = p a r s e r . p a r s e a r g s ( )

G1 app = [ ]
G1 est = [ ]
G 1 f i x = [ ]
G2 app = [ ]
G2 est = [ ]
G 2 f i x = [ ]

# p u l l S S A d a t a
num traj = 0
with o p e n ( a r g s . INFILE [ 0 ] , ’ r ’ ) as f :

f o r l i n e in f :
if n o t l i n e . s t a r t s w i t h ( " # " ) :

data = l i n e . s p l i t ( )

if f l o a t ( data [ 1 ] ) >= 0 :
G1 app . append ( f l o a t ( data [ 1 ] ) )

if f l o a t ( data [ 2 ] ) >= 0 :
G1 est . append ( f l o a t ( data [ 2 ] ) )

if f l o a t ( data [ 3 ] ) >= 0 :
G 1 f i x . append ( f l o a t ( data [ 3 ] ) )

if a r g s .SCENARIO [ 0 ] == 2 :
if f l o a t ( data [ 4 ] ) >= 0 :

G2 app . append ( f l o a t ( data [ 4 ] ) )
if f l o a t ( data [ 5 ] ) >= 0 :

G2 est . append ( f l o a t ( data [ 5 ] ) )
if f l o a t ( data [ 6 ] ) >= 0 :

G 2 f i x . append ( f l o a t ( data [ 6 ] ) )

num traj += 1

# c a l c u l a t e s t a t i s t i c s a n d m a k e h i s t o g r a m s
f i g = p l t . f i g u r e ( f i g s i z e =(4.5 , 3 . 5 ) )

# a p p e a r a n c e
p r i n t ( " G1 t _ a p p f o u n d f o r {} o u t of {} t r a j e c t o r i e s " . f o r m a t ( l e n ( G1 app ) , num traj ) )
if l e n ( G1 app ) > 0 :

p r i n t ( " G1 t _ a p p M e a n : " , np . mean ( G1 app ) )
p r i n t ( " G1 t _ a p p S T D : " , np . std ( G1 app ) )
p r i n t ( " G1 t _ a p p N o i s e : " , np . std ( G1 app ) /np . mean ( G1 app ) )

weights = np . o n e s l i k e ( G1 app ) / 100000
# p l t . t i t l e ( r " $ G $ $ t _ { a p p e a r } $ ")
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p l t . y l a b e l ( r " $ P _ {\ t a u } $ " )
p l t . x l a b e l ( " t ( hr ) " )
p l t . h i s t ( G1 app , b i n s = 20 , weights = weights , c o l o r = " g r e y " , l a b e l = " M e a n = { : . 3 f } hr \ n C V ⤦

Ç = { : . 3 f } " . f o r m a t ( np . mean ( G1 app ) , np . std ( G1 app ) /np . mean ( G1 app ) ) )
# p l t . l e g e n d ( l o c =" b e s t ")

p l t . g c f ( ) . t e x t ( 0 . 0 0 1 , 0 . 9 2 , " A ) " , weight = ’ b o l d ’ )
p l t . g c f ( ) . t e x t ( 0 . 6 7 , 0 . 8 5 , " M e a n = { : . 3 f } hr \ n C V = { : . 3 f } " . f o r m a t ( np . mean ( G1 app ) , np . std (⤦

Ç G1 app ) /np . mean ( G1 app ) ) , bbox = d i c t ( b o x s t y l e=’ r o u n d ’ , f a c e c o l o r=’ n o n e ’ , e d g e c o l o r=’⤦
Ç b l a c k ’ ) )

p l t . t i g h t l a y o u t ( )
# p l t . s a v e f i g ( f n a m e = ’ S S A _ l o w N f i t n e s s _ a p p e a r . p n g ’ , d p i = 3 0 0 )
p r i n t ( " \ n " )

f i g = p l t . f i g u r e ( f i g s i z e =(3.5 , 2 . 5 ) )
p r i n t ( " G1 t _ e s t f o u n d f o r {} o u t of {} t r a j e c t o r i e s " . f o r m a t ( l e n ( G1 est ) , num traj ) )
if l e n ( G1 est ) > 0 :

p r i n t ( " G1 t _ e s t M e a n : " , np . mean ( G1 est ) )
p r i n t ( " G1 t _ e s t S T D : " , np . std ( G1 est ) )
p r i n t ( " G1 t _ e s t N o i s e : " , np . std ( G1 est ) /np . mean ( G1 est ) )

weights = np . o n e s l i k e ( G1 est ) / 100000
# p l t . t i t l e ( r " $ G _ 1 $ $ t _ { e s t } $ ")
p l t . y l a b e l ( r " $ P _ {\ t a u _ { e s t }} $ " )
p l t . x l a b e l ( " t ( hr ) " )
p l t . h i s t ( G1 est , b i n s = 20 , weights = weights , c o l o r = " g r e y " , l a b e l = " M e a n = { : . 3 f } hr \ n C V ⤦

Ç = { : . 3 f } " . f o r m a t ( np . mean ( G1 est ) , np . std ( G1 est ) /np . mean ( G1 est ) ) )

p l t . g c f ( ) . t e x t ( 0 . 0 0 1 , 0 . 9 2 , " H ) " , weight = ’ b o l d ’ )
p l t . g c f ( ) . t e x t ( 0 . 5 5 , 0 . 7 7 , " M e a n = { : . 3 f } hr \ n C V = { : . 3 f } " . f o r m a t ( np . mean ( G1 est ) , np . std (⤦

Ç G1 est ) /np . mean ( G1 est ) ) , bbox = d i c t ( b o x s t y l e=’ r o u n d ’ , f a c e c o l o r=’ n o n e ’ , e d g e c o l o r=’⤦
Ç b l a c k ’ ) )

p l t . t i g h t l a y o u t ( )
# p l t . s a v e f i g ( f n a m e = ’ S S A _ h i g h _ e s t . p n g ’ , d p i = 3 0 0 )
p r i n t ( " \ n " )

f i g = p l t . f i g u r e ( f i g s i z e =(4.5 , 3 . 5 ) )
p r i n t ( " G1 t _ f i x f o u n d f o r {} o u t of {} t r a j e c t o r i e s " . f o r m a t ( l e n ( G 1 f i x ) , num traj ) )
if l e n ( G 1 f i x ) > 0 :

p r i n t ( " G1 t _ f i x M e a n : " , np . mean ( G 1 f i x ) )
p r i n t ( " G1 t _ f i x S T D : " , np . std ( G 1 f i x ) )
p r i n t ( " G1 t _ f i x N o i s e : " , np . std ( G 1 f i x ) /np . mean ( G 1 f i x ) )

weights = np . o n e s l i k e ( G 1 f i x ) / 100000
# p l t . t i t l e ( r " $ G _ 1 $ $ t _ { f i x } $ ")
p l t . y l a b e l ( r " $ P _ {\ t a u _ { f i x }} $ " )
p l t . x l a b e l ( " t ( hr ) " )
p l t . h i s t ( G1 fix , b i n s = 20 , weights = weights , c o l o r = " g r e y " , l a b e l = " M e a n = { : . 3 f } hr \ n C V ⤦

Ç = { : . 3 f } " . f o r m a t ( np . mean ( G 1 f i x ) , np . std ( G 1 f i x ) /np . mean ( G 1 f i x ) ) )

p l t . g c f ( ) . t e x t ( 0 . 0 0 1 , 0 . 9 2 , " B ) " , weight = ’ b o l d ’ )
p l t . g c f ( ) . t e x t ( 0 . 6 7 , 0 . 8 5 , " M e a n = { : . 3 f } hr \ n C V = { : . 3 f } " . f o r m a t ( np . mean ( G 1 f i x ) , np . std (⤦

Ç G 1 f i x ) /np . mean ( G 1 f i x ) ) , bbox = d i c t ( b o x s t y l e=’ r o u n d ’ , f a c e c o l o r=’ n o n e ’ , e d g e c o l o r=’⤦
Ç b l a c k ’ ) )

p l t . t i g h t l a y o u t ( )
# p l t . s a v e f i g ( f n a m e = ’ S S A _ l o w N f i t n e s s _ f i x . p n g ’ , d p i = 3 0 0 )
p r i n t ( " \ n " )

# if a r g s . S C E N A R I O [ 0 ] == 2:
# p r i n t (" G2 t _ a p p f o u n d f o r {} o u t of {} t r a j e c t o r i e s ". f o r m a t ( l e n ( G 2 _ a p p ) , n u m _ t r a j ) )
# if l e n ( G 2 _ a p p ) > 0:
# p r i n t (" G2 t _ a p p M e a n : " , np . m e a n ( G 2 _ a p p ) )
# p r i n t (" G2 t _ a p p S T D : " , np . s t d ( G 2 _ a p p ) )
# p r i n t (" G2 t _ a p p N o i s e : " , np . s t d ( G 2 _ a p p ) / np . m e a n ( G 2 _ a p p ) )

# p l t . s u b p l o t (3 ,3 , i )
# p l t . t i t l e ( r " $ G _ 2 $ $ t _ { a p p } $ ")
# p l t . y l a b e l (" c o u n t s ")
# p l t . x l a b e l (" t i m e ( hr ) ")
# p l t . h i s t ( G 2 _ a p p , b i n s = 10 , l a b e l = " M e a n = { : . 3 f }\ n S T D = { : . 3 f }\ n N o i s e = { : . 3 f } " .⤦

Ç f o r m a t ( np . m e a n ( G 2 _ a p p ) , np . s t d ( G 2 _ a p p ) , np . s t d ( G 2 _ a p p ) / np . m e a n ( G 2 _ a p p ) ) )
# p l t . l e g e n d ( l o c =" b e s t ")

# i += 1
# p r i n t ( " \ n ")

# p r i n t (" G2 t _ e s t f o u n d f o r {} o u t of {} t r a j e c t o r i e s ". f o r m a t ( l e n ( G 2 _ e s t ) , n u m _ t r a j ) )
# if l e n ( G 2 _ e s t ) > 0:
# p r i n t (" G2 t _ e s t M e a n : " , np . m e a n ( G 2 _ e s t ) )
# p r i n t (" G2 t _ e s t S T D : " , np . s t d ( G 2 _ e s t ) )
# p r i n t (" G2 t _ e s t N o i s e : " , np . s t d ( G 2 _ e s t ) / np . m e a n ( G 2 _ e s t ) )

# p l t . s u b p l o t (3 ,3 , i )
# p l t . t i t l e ( r " $ G _ 2 $ $ t _ { e s t } $ ")
# p l t . y l a b e l (" c o u n t s ")
# p l t . x l a b e l (" t i m e ( hr ) ")
# p l t . h i s t ( G 2 _ e s t , b i n s = 10 , l a b e l = " M e a n = { : . 3 f }\ n S T D = { : . 3 f }\ n N o i s e = { : . 3 f } " .⤦
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Ç f o r m a t ( np . m e a n ( G 2 _ e s t ) , np . s t d ( G 2 _ e s t ) , np . s t d ( G 2 _ e s t ) / np . m e a n ( G 2 _ e s t ) ) )
# p l t . l e g e n d ( l o c =" b e s t ")

# i += 1
# p r i n t ( " \ n ")

# p r i n t (" G2 t _ f i x f o u n d f o r {} o u t of {} t r a j e c t o r i e s ". f o r m a t ( l e n ( G 2 _ f i x ) , n u m _ t r a j ) )
# if l e n ( G 2 _ f i x ) > 0:
# p r i n t (" G2 t _ f i x M e a n : " , np . m e a n ( G 2 _ f i x ) )
# p r i n t (" G2 t _ f i x S T D : " , np . s t d ( G 2 _ f i x ) )
# p r i n t (" G2 t _ f i x N o i s e : " , np . s t d ( G 2 _ f i x ) / np . m e a n ( G 2 _ f i x ) )

# p l t . s u b p l o t (3 ,3 , i )
# p l t . t i t l e ( r " $ G _ 2 $ $ t _ { f i x } $ ")
# p l t . y l a b e l (" c o u n t s ")
# p l t . x l a b e l (" t i m e ( hr ) ")
# p l t . h i s t ( G 2 _ f i x , b i n s = 10 , l a b e l = " M e a n = { : . 3 f }\ n S T D = { : . 3 f }\ n N o i s e = { : . 3 f } " .⤦

Ç f o r m a t ( np . m e a n ( G 2 _ f i x ) , np . s t d ( G 2 _ f i x ) , np . s t d ( G 2 _ f i x ) / np . m e a n ( G 2 _ f i x ) ) )
# p l t . l e g e n d ( l o c =" b e s t ")
# p r i n t ( " \ n ")

# p l t . t i g h t _ l a y o u t ()
# p l t . s h o w ()

A.2.6: Python code used to create the plots in Chapter 2 showing the probability of
a genetic mutation occurring before population extinction.
i m p o r t m a t p l o t l i b . pyplot as p l t
i m p o r t numpy as np
p l t . rcParams . update ({ ’ f o n t . s i z e ’ : 10})

r e s u l t s d i r = " / h o m e / j g u t h r i e / c L a b / R E S E A R C H / S - N - G / g i t _ f i l e s / S - N - G / f i n a l _ r e s u l t s / d S _ d N / "
# d i r s = [ ’ d f 1 ’ , ’ d f 1 .5 ’ , ’ d f 2 ’]
d i r s = [ ’ d f 2 ’ , ’ d f 4 ’ ]
f i l e n a m e s = [ ’ / k N _ 0 . 1 7 3 3 . t x t ’ , ’ / k N _ 0 . 2 0 2 2 . t x t ’ , ’ / k N _ 0 . 2 3 1 1 . t x t ’ , ’ / k N _ 0 . 2 6 0 0 . t x t ’ , ’ / k N _ 0⤦

Ç . 2 8 8 9 . t x t ’ , ’ / k N _ 0 . 3 1 7 8 . t x t ’ , ’ / k N _ 0 . 3 4 6 6 . t x t ’ ]

d f 1 v a l s = [ 0 . 9 9 9 8 9 , 1 , 1 , 1 , 1 , 1 , 1 ]
# kN v a l u e s u s e d
kN vals = [ 0 . 1 7 3 3 , 0 . 2 0 2 2 , 0 . 2 3 1 1 , 0 . 2 6 0 0 , 0 . 2 8 8 9 , 0 . 3 1 7 8 , 0 . 3 4 6 6 ]

means = { " d f 1 " : [ 0 . 9 9 9 8 9 , 1 , 1 , 1 , 1 , 1 , 1 ] ,
" d f 2 " : [ ] ,
" d f 4 " : [ ] }

s t d s = { " d f 1 " : [ 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ,
" d f 2 " : [ ] ,
" d f 4 " : [ ] }

# p u l l S S A d a t a
f o r d i r in d i r s :

# u s e d to s t o r e t _ a p p e a r a n c e d a t a f r o m t h e f i l e s
tapp data = [ [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] ]
f i l e n u m = 0

d i r e c t o r y = r e s u l t s d i r + d i r
f o r fn in f i l e n a m e s :

with o p e n ( d i r e c t o r y+fn , ’ r ’ ) as f :
f o r l i n e in f :

if n o t l i n e . s t a r t s w i t h ( " # " ) :
tapp data [ f i l e n u m ] . append ( f l o a t ( l i n e . s p l i t ( ) [ 1 ] ) )

f i l e n u m += 1

f o r data in tapp data :
data chunks = [ data [ : 1 0 0 0 0 ] , data [ 1 0 0 0 0 : 2 0 0 0 0 ] , data [ 2 0 0 0 0 : 3 0 0 0 0 ] , data [ 3 0 0 0 0 : 4 0 0 0 0 ] , ⤦

Ç data [ 4 0 0 0 0 : 5 0 0 0 0 ] ,
data [ 5 0 0 0 0 : 6 0 0 0 0 ] , data [ 6 0 0 0 0 : 7 0 0 0 0 ] , data [ 7 0 0 0 0 : 8 0 0 0 0 ] , data [ 8 0 0 0 0 : 9 0 0 0 0 ] , ⤦

Ç data [ 9 0 0 0 0 : 1 0 0 0 0 0 ] ]
tapp = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]
f o r i in r a n g e ( l e n ( data chunks ) ) :

f o r sim in data chunks [ i ] :
if sim >= 0 :

tapp [ i ] += 1
tapp [ i ] = tapp [ i ]/10000

means [ d i r ] . append ( np . mean ( tapp ) )
s t d s [ d i r ] . append ( np . std ( tapp ) )

p l t . f i g u r e ( f i g s i z e = ( 4 . 5 , 3 . 5 ) )
p l t . e r r o r b a r ( kN vals , means [ ’ d f 1 ’ ] , y e r r = s t d s [ ’ d f 1 ’ ] , c o l o r = ’ r e d ’ , l i n e s t y l e = ’ -. ’ , ⤦

Ç l i n e w i d t h = 1 , e l i n e w i d t h = 2 , c a p s i z e = 6 , l a b e l = ’ $ f _ {\ d e l t a } = 1 $ ’ )
p l t . e r r o r b a r ( kN vals , means [ ’ d f 2 ’ ] , y e r r = s t d s [ ’ d f 2 ’ ] , c o l o r = ’ b l u e ’ , l i n e s t y l e = ’ - ’ , ⤦

Ç l i n e w i d t h = 1 , e l i n e w i d t h = 2 , c a p s i z e = 6 , l a b e l = ’ $ f _ {\ d e l t a } = 2 $ ’ )
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p l t . e r r o r b a r ( kN vals , means [ ’ d f 4 ’ ] , y e r r = s t d s [ ’ d f 4 ’ ] , c o l o r = ’ g r e e n ’ , l i n e s t y l e = ’ - - ’ , ⤦
Ç l i n e w i d t h = 1 , e l i n e w i d t h = 2 , c a p s i z e = 6 , l a b e l = ’ $ f _ {\ d e l t a } = 4 $ ’ )

p l t . x l a b e l ( " $ k _ N $ (/ hr ) " )
p l t . y l a b e l ( " $ P _ G $ " )
# p l t . g r i d ()

p l t . l e g e n d ( l o c = ’ b e s t ’ )
p l t . ylim ( ( 0 , 1 . 1 ) )
p l t . g c f ( ) . t e x t ( 0 . 0 3 , 0 . 9 2 , " A ) " , weight = ’ b o l d ’ )
# p l t . t i t l e (" S u r v i v a l P r o b a b i l i t y , C i d a l d _ N = 2 * 0 . 1 7 3 3 , 1 0 0 0 0 R u n s E a c h ")
p l t . t i g h t l a y o u t ( )
p l t . s a v e f i g ( fname = ’ S S A _ s u r v i v a l . p n g ’ , dpi = 300)

A.2.7: Python code used to compare the fixation times found from the ODE and SSA
methods.
i m p o r t m a t p l o t l i b . pyplot as p l t
i m p o r t numpy as np
p l t . rcParams . update ({ ’ f o n t . s i z e ’ : 10})

dN = [ 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 . 0 ]
ODE = [ 1 4 4 . 6 3 , 7 1 . 9 , 4 7 . 9 2 , 3 5 . 9 9 , 2 8 . 8 6 , 2 4 . 1 2 , 2 0 . 7 6 , 1 8 . 2 6 , 1 6 . 3 3 , 1 4 . 8 4 ]
SSA = [ 1 3 8 . 9 , 7 1 . 9 1 , 4 8 . 6 2 , 3 6 . 7 4 , 2 9 . 5 8 , 2 4 . 7 8 , 2 1 . 3 2 , 1 8 . 7 4 , 1 6 . 7 4 , 1 5 . 1 6 ]
s s a s t d = [ 8 . 4 9 , 5 . 4 4 , 3 . 9 3 , 3 . 0 4 , 2 . 5 0 , 2 . 1 1 , 1 . 8 , 1 . 5 8 , 1 . 4 2 , 1 . 2 7 ]

p l t . f i g u r e ( f i g s i z e = ( 4 . 5 , 3 . 5 ) )
p l t . p l o t (dN, ODE, marker = " o " , l i n e s t y l e = ’ ’ , l a b e l = " O D E " )
p l t . e r r o r b a r (dN, SSA , y e r r=s s a s t d , e c o l o r = ’ b l a c k ’ , fmt = ’ x ’ , l a b e l = " S S A " , e l i n e w i d t h = 1 , ⤦

Ç c a p s i z e = 3 , m a r k e r s i z e =5)
p l t . x l a b e l ( " $ \ d e l t a _ N $ (/ hr ) " )
p l t . y l a b e l ( r " $ \ t a u _ { f i x } $ ( hr ) " )
# p l t . g r i d ()

p l t . l e g e n d ( l o c = ’ b e s t ’ )
# p l t . g c f () . t e x t ( 0 . 0 3 , 0 . 9 2 , " A ) " , w e i g h t = ’ b o l d ’)
# p l t . t i t l e (" S u r v i v a l P r o b a b i l i t y , C i d a l d _ N = 2 * 0 . 1 7 3 3 , 1 0 0 0 0 R u n s E a c h ")
p l t . t i g h t l a y o u t ( )
p l t . s a v e f i g ( fname = ’ O D E _ S S A _ c o m p _ G i _ 1 . p n g ’ , dpi = 300)
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