
Learning Agent State Online
with Recurrent Generate-and-Test

by

Abolfazl Samani

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Abolfazl Samani, 2022

Abstract

The concept of state is fundamental to a reinforcement learning agent. The

state is the input to the agent’s action-selection policy, value functions, and

environmental model. A reinforcement learning agent interacts with the en-

vironment by performing actions and receiving observations, resulting in the

agent’s data stream of experience. In many cases, the observations only pro-

vide partial information about the state, and the agent needs to learn the

state directly based on the data stream of experience. We refer to the state di-

rectly learned from the data stream of experience as the agent state. Existing

methods based on gradient descent, including Real-Time Recurrent Learning

(RTRL) and Backpropagation Through Time (BPTT), can learn the agent

state. However, these methods are computationally expensive, making them

unsuitable for online learning of the agent state.

In this thesis, we propose computationally efficient methods based on the

generate-and-test approach to learn the agent state. We study the effectiveness

of our generate-and-test methods for learning the agent state on two partially

observable multi-step prediction problems—the trace conditioning problem and

the trace patterning problem. The trace conditioning problem focuses on the

agent’s ability to remember a cue presented in the past to predict a signal in the

future. The trace patterning problem is an extension of the trace conditioning

problem in which a non-linear combination of observation signals triggers the

arrival of a temporally distant signal. In the trace patterning problem, the

agent must learn non-linear configurations of observation signals to predict

ii

the signal of interest accurately. Our experiments show that the proposed

generate-and-test methods can learn the agent state online and make accurate

predictions in both problems mentioned above.

iii

Preface

No parts of this thesis have been published.

iv

To my wife Tina and our little kitty Millo

for all the joy they bring everyday

v

The road to wisdom? - Well, it’s plain and simple to express: Err and err

and err again but less and less and less.

– Piet Hein

vi

Acknowledgements

During my study at the RLAI lab, I have been mentored by several people, and

I am forever grateful for their support. First and foremost, I wish to express

my gratitude to my supervisor Rich Sutton. Rich is an exceptional scientist

and inspires me in every meeting we have. Rich patiently taught me how to ask

the right questions and design simple yet meaningful experiments. He taught

me not to get excited by what I don’t understand and work on important

and challenging research problems. I feel tremendously lucky to be one of his

students. I would also like to thank Rupam Mahmood and Joseph Modayil

for agreeing to be on my committee and providing insightful feedback. Rupam

helped me to better understand how to design representation search methods

which are the foundation of my thesis. Joseph provided great directions when

I started my research on the predictive representation of state. I thank Adam

White for the discussions we had about finding the right research problems and

designing careful experiments. I would also like to thank Martha Steenstrup for

the great course about scientific writing and all the soccer games we played—

shout out to CS Crackers.

I am grateful to Khurram for his assistance with the step-size adaptation

method used in this thesis. Also, I thank Banafsheh for the discussions about

animal learning problems. I would also like to thank Shibhansh and Parash

for the many great discussion we had about the generate-and-test method.

Finally, I would like to thank all the incredible people at the agent state

meeting, RLAI, and AMII for providing a wonderful environment for research.

vii

Contents

1 Introduction 1

2 Background 5
2.1 Learning Multi-Step Predictions Online 5
2.2 Agent State Architecture . 7
2.3 Generate-and-Test Algorithm 10

3 Animal Learning Problems 14
3.1 Learning to Remember . 14
3.2 Learning Non-Linear Configurations 20

4 Deep Trace Generator 23
4.1 Deep Trace Features . 23
4.2 Experiment Details . 29
4.3 Results . 31
4.4 Parameter Study . 38

5 Imprinting Generator 41
5.1 Imprinting Features . 41
5.2 Experiment Details . 47
5.3 Results . 48

6 Related Work 56
6.1 Generate-and-Test . 56
6.2 Recurrent Neural Networks . 58
6.3 Predictive Representation of State 60

7 Conclusion 62

References 65

viii

List of Tables

4.1 Hyper-parameters and variables description for the deep trace
generate-and-test algorithm. 29

4.2 Hyper-parameters for the deep trace generate-and-test experi-
ments. 31

4.3 List of step-sizes and meta step-sizes used in the experiment. . 38

5.1 Hyper-parameters and variables description for the imprinting
generate-and-test algorithm. 45

5.2 Hyper-parameters for the imprinting generate-and-test experi-
ments. 47

ix

List of Figures

2.1 Abstraction of the agent state and state-update function . . . 9
2.2 The architecture for feature finding in a supervised learning

setting . 12
2.3 The issue of removing a feature by only considering its outgoing

weight . 13

3.1 trace conditioning example . 17
3.2 Example of using the presence representation for predicting the

arrival of the US based on a distant CS 18
3.3 The activity of the MS features after observing the CS 19
3.4 Trace patterning cases for 2 CSs and 1 distarctor 22

4.1 Abstraction of a deep trace feature 25
4.2 Example of the CS activation and a deep trace feature activity

over time . 25
4.3 Abstraction of three direct and indirect deep trace features of

an observation signal . 26
4.4 Example of the CS activation and three deep trace features

activity over time . 27
4.5 Performance based on the Root Mean Squared Return Error for

the trace conditioning experiments 33
4.6 Prediction compared to the return in trace conditioning exper-

iments . 34
4.7 Activity of the top features over the trial 35
4.8 Dependency of the deep trace features early in the training . . 36
4.9 Dependency of the feature in the final trial 37
4.10 Performance of the agent based on MSRE for several step-sizes

and meta step-sizes . 38
4.11 Performance of the agent based on MSRE for various percentage

of protected features . 39
4.12 Performance of the agent based on MSRE for various maximum

number of deep trace features 40

5.1 Example of imprinting feature on two observation signals . . . 43
5.2 Example of 2 CSs and the imprinting feature representing their

non-linear configuration . 44
5.3 Performance based on the Root Mean Squared Return Error for

the trace patterning experiments 49
5.4 Prediction made by the agent using imprinting and deep trace

features compared to the return in trace patterning experiments 50
5.5 Prediction made by the agent using only deep trace features

compared to the return in trace patterning experiments 51
5.6 Activity of a number of deep trace features over the trial when

the activation pattern is present 52

x

5.7 Activity of a number of deep trace features over the trial when
the activation pattern is absent 53

5.8 Dependency of the feature in the final trial 54
5.9 Comparing the weight of the CSs and the imprinting feature

representing the activation pattern 55

6.1 Example of an unfolded recurrent neural network 59

xi

Chapter 1

Introduction

Online continual learning involves learning from an unending data stream of

experience without reusing past data points. An agent interacting with the

world receives feedback in the form of observations of the environment dynam-

ics or outcomes of the actions taken by the agent. The agent then uses the

feedback to adapt its predictions and behaviour accordingly. The world is of-

ten much larger than the agent and inherently non-stationary. Online-learning

agents track the best solution and thus perform better than agents that learn

a fixed sub-optimal solution (Sutton et al., 2007).

A reinforcement learning agent interacts with the environment by taking

actions and receiving observations, making up the agent’s data stream of expe-

rience. The underlying state of the environment is often hidden from the agent,

and the agent only receives observations providing partial information about

the environment state. The notion of state is central to reinforcement learning,

and the agent must learn the state based on the data stream of experience.

The data stream of experience contains everything that the agent could know

about the environment. The natural world is complicated and vast, and intelli-

gent individuals only receive partial information about the world through their

sensory inputs. For instance, objects can be distant and not visible. Despite

that, classical conditioning experiments on animals demonstrate that animals

1

can make accurate long-term predictions, suggesting that they make internal

representations of their data stream of experience.

The state is crucial for a reinforcement learning agent. The state is the

input to the action-selection policy and value functions. For a model-based

reinforcement learning agent, the state is both the input and output of the

environmental model. Traditionally, domain experts designed the state based

on their knowledge of the environment and what they thought was helpful for

the agent to use as the state. However, part of the reinforcement learning

strength is that it can learn directly from the data stream of experience in

real-time with minimal expert interventions. Consequently, we seek online

algorithms to learn state using the data stream of experience. We refer to the

state directly learned from the data stream of experience as the agent state to

distinguish it from the environment state.

Deep learning methods based on gradient descent are often used to learn

the agent state. Most notably, truncated-BPTT and RTRL are two learn-

ing algorithms for training recurrent neural networks (RNNs) to represent the

agent state (Williams and Zipser, 1989; Williams and Peng, 1990). The com-

putational and memory complexity of these algorithms is not ideal for online

learning of the agent state. In contrast, reinforcement learning agents can

learn a large body of value functions in an online fashion with linear com-

plexity (Sutton et al., 2011), and we would like the learning algorithm for the

agent state to exhibit these properties.

Mahmood and Sutton (2013) propose the generate-and-test approach as an

efficient and effective method for learning features online with linear computa-

tional complexity. The generate-and-test approach is based on the idea of rep-

resentation search in which good representations are searched for by generating

candidate features and assessing them through testing. A generate-and-test

algorithm consists of two processes, the generator and the tester. The genera-

2

tor is responsible for feature generation. The tester evaluates the features and

decides which features to eliminate. The computational and memory resources

are limited and valuable, and by removing the least useful features, the tester

opens the capacity for new features to be generated. Mahmood and Sutton

(2013) offer a generate-and-test algorithm for training a feed-forward neural

network and show the effectiveness of the algorithm on a synthetic supervised

learning problem. In order to extend the generate-and-test idea for learning

the agent state, we need to propose novel generators and testers which could

be applied to a recursive neural network and sequential data.

Classical conditioning experiments on animals show that they make asso-

ciations between temporally distant events, allowing them to make accurate

multi-step predictions. Pavlov and Anrep (1927) show that after several pair-

ings, an unconditioned stimulus (US) that is naturally appealing to the ani-

mal, such as food, gets associated with a conditioned stimulus (CS) such as

bell tone. The animal has a natural response to the US, referred to as the

unconditioned response (UR). For instance, the dog would start salivating in

the presence of the food as form a natural response. Interestingly, after several

trials of presenting the bell tone followed by the arrival of the food, the animal

would start salivating after hearing the bell tone in anticipation of the food.

These experiments suggest that animals make an internal state representing

their experiences, enabling them to make multi-step predictions.

Inspired by the classical conditioning experiments, Rafiee et al. (2020) in-

troduce partially observable online multi-step prediction problems. In our

study, we focus on the trace conditioning problem and the trace patterning

problem. In the trace conditioning problem, the agent needs to remember a

CS to predict a temporally distant US—similar to a dog that remembers the

bell tone to predict the arrival of the food. In the trace patterning problem, a

particular combination of CSs results in the arrival of the temporally distant

3

US. For instance, the dog would receive the food only if the bell tone was

present and the light was absent. The agent can no longer rely on the indi-

vidual CSs to make accurate predictions and needs to remember a non-linear

configuration of the CSs to predict the arrival of the US accurately.

This thesis contributes two generators and accompanying testers for learn-

ing the agent state online with linear complexity. We present the architecture

for representing the agent state. As our first contribution, we propose the

deep trace generator to learn deep trace features that keep memories of other

features and observations signals. Deep trace features enable the agent to re-

member events from the past to make temporally distant associations. We

show the effectiveness of the deep trace generator on the trace conditioning

problem. Our second contribution, the imprinting generator, makes imprint-

ing features that represent non-linear configurations of observation signals.

We show that learning imprinting features and deep trace features enable the

agent to simultaneously represent non-linear configurations of observation sig-

nals and remember them to make accurate multi-step predictions in the trace

patterning problem.

The rest of the thesis is organized as follows. In Chapter 2, we cover the

necessary background for the rest of the thesis. We discuss temporal-difference

learning for online learning of multi-step predictions, the architecture of the

agent state, and details of the generate-and-test approach. In Chapter 3,

we present the trace conditioning problem and the trace patterning problem

that we use in our experiments. In Chapter 4, we introduce the deep trace

generator and present our experiments on the trace conditioning problem. In

Chapter 5, we introduce the imprinting generator. We show the effectiveness

of learning imprinting and deep trace features on the trace patterning problem.

In Chapter 6, we discuss related work to the thesis. In Chapter 7, we offer our

concluding remarks and directions for future studies.

4

Chapter 2

Background

This chapter introduces the background knowledge for the following chap-

ters. Section 2.1 defines the multi-step prediction problem and shows how

to learn multi-step predictions online using temporal-difference (TD) learn-

ing. Section 2.2 describes the agent state architecture and shows how to agent

state can be used for learning multi-step predictions. Section 2.3 explains the

generate-and-test approach to representation search and discusses some of the

challenges we need to address to extend the generate-and-test approach for

learning the agent state.

2.1 Learning Multi-Step Predictions Online

The ability to make predictions about signals in the environment can be con-

sidered knowledge, often referred to as predictive knowledge. The agent can

acquire predictive knowledge through interaction with the environment (Sut-

ton et al., 2011). We describe the interaction between the agent and the

environment as an uncontrolled dynamical system. At time step t, the agent

receives the observation ot ∈ Rm, which includes the cumulant Ct, the signal

of interest, and computes the agent state st ∈ Rn. We discuss how the agent

state is computed and learned based on the observation in the rest of this

thesis, but for now, we assume that the agent can compute the agent state

5

and use it to make predictions. Using the agent state st, the agent makes

predictions about the future value of the cumulant denoted by Yt ∈ R. These

predictions are often referred to as nexting predictions since they anticipate

what happens next. Nexting predictions can be formulated as discounted sum

of future cumulants, also known as the expected return (Modayil et al., 2014).

At time step t, the return Gt ∈ R is computed as follows:

Gt
.

=
∞∑
k=0

γkCt+k+1 (2.1)

the discount factor γ ∈ [0, 1] determines the horizon of prediction, which is

how the future cumulants are weighted. The return is used to measure the

performance of the agent based on the Squared Return Error (SRE), which is

computed as (Yt −Gt)
2.

Temporal-difference (TD) learning is a well-known approach to learning

multi-step predictions with bootstrapping—updating the estimates based on

other estimates (Sutton and Barto, 2018). To update the estimate Yt with

semi-gradient TD(λ), we parameterize the estimate Yt with the weight vector

wt ∈ Rn. At each time step the weight vector wt is updated as follows:

δt
.

= Ct+1 + γYt+1 − Yt (2.2)

zt
.

= γλzt−1 +∇wYt (2.3)

wt+1
.

= wt + αδtzt (2.4)

where δt ∈ R is the TD error, zt ∈ Rn is the eligibility trace, λ ∈ [0, 1] is

the decay of the eligibility trace, and α ∈ R is the step-size. In the case of

linear parameterization of the estimate Yt, the estimate can be computed as

Yt
.

= wT
t st and the gradient of the estimate with respect to the weight vector

is computed as ∇wYt = st. Note that the estimate Yt+1 in Equation 2.2 is

computed based on wt instead of wt+1.

The performance of the TD learning methods rely on a carefully selected

6

step-size. Instead of using a single fixed step-size for all the features, we can

adapt a vector of step-sizes. Incremental Delta-Bar-Delta (IDBD) algorithm

learns individual step-sizes for each feature in the supervised learning setting

(Sutton, 1992). Temporal-difference IDBD methods—also known as TIDBD—

generalize IDBD for the TD learning setting (Thill, 2015; Kearney et al., 2018).

Javed (2021) suggests using the implementation of Thill (2015) when learning

with eligibility traces (λ > 0). Each feature sit has a corresponding step-size

αit that is used by the TIDBD(λ) to update the weight wit. At time step t,

each step-size αit is updated as follows:

βit
.

= βit−1 + θδtz
i
t−1h

i
t−1 (2.5)

αit
.

= eβ
i
t (2.6)

hit
.

= hit−1[1− αitsitzit]+ + αitδtz
i
t (2.7)

In which the βi is the parameter we use to change the step-size αi, θ is the

meta step-size, hi is a decaying trace of the current updates, and the operator

[x]+ is x if x > 0 and is 0 if x ≤ 0. The intuition behind TIDBD(λ) is

that if the current weight update is positively correlated with previous weight

updates, it is more efficient to make larger updates in that direction, and we

should increase its corresponding step-size. If the current weight update is

negatively correlated with the previous weight updates, we should decrease its

corresponding step-size.

2.2 Agent State Architecture

In the previous section, we assume that the agent can compute the agent state

based on the observation provided by the environment. In this section we

discuss the architecture for representing the agent state based on the obser-

vations given by the environment. Observations provide partial information

about the environment state, and the agent should learn the agent state based

7

on the data stream of experience. The data stream of experience consists of

actions taken by the agent and observations received from the environment.

The action at time step t is denoted by at ∈ Rd and the observation is denoted

by ot ∈ Rm. The data stream of experience is the sequence

a0,o1, a1,o2, a2,o3, ...

going on forever for the life of the agent. History at time step t contains all

the actions and observations up to time t and is denoted by ht:

ht
.

= [a0,o1, a1,o2, a2,o3, ..., at−1,ot]

where [.] is the concatenation operator. Directly using the history as the

agent state is not ideal as the history grows with time, and we need different

parameters for different lengths of history—no shared parameters. The general

idea is that the state should be a compact summary of the history useful for

predicting or controlling future experiences. Let us denote the agent state at

time step t by st ∈ Rn. Approximating the agent state using the whole history

is not computationally feasible. We prefer the agent state to be computed

incrementally based on the previous agent state st−1 and the most recent

observation ot and action at−1. We refer to this update function as the state-

update function and it is denoted by u:

st
.

= u(st−1,ot, at−1). (2.8)

The abstract view of the agent state is demonstrated in Figure 2.1. The

state-update function u maps the previous agent state st−1 and the most recent

observation ot and action at−1 to the current time step agent state st. The

agent may use the agent state to learn value functions, policy, and environment

model. In the case of learning a multi-step prediction, the agent learn a weight

vector from the current time step agent state st and the most recent observation

8

ot and action at−1. Note that the most recent observation ot and action at−1

are used both in the construction of the current time step agent state st and

computation of the final prediction.

1

1

Figure 2.1: At time step t the agent state st is computed using the previous
state st−1 and the most recent observation ot and action at−1. The agent learns
the outgoing weights wt to learn a prediction of interest. There may also be
an always-on bias bit in the agent state. To learn a multi-step prediction, the
agent may update the weights wt with semi-gradient TD(λ).

Now that we know how the agent state is constructed and used to learn

a multi-step prediction, let us describe the process in details. At time step t,

the previous agent state st−1 and the most recent observation ot and action

at−1 are used to construct the current time step agent state st. For notational

convenience, we define the input as xt = [st−1,ot, at−1] ∈ Rm+n+d, which is

used to compute the current time step agent state st. The current time step

input xt is mapped to the current time step agent state st using the weight

matrix Vt. At time step t, feature sit is connected to xjt with the weight of vi,jt .

The feature sit is computed as follows:

sit =
m+n+d∑
j=0

vi,jt x
j
t .

Note that we refer to the elements of the weight matrix Vt as vi,jt , similar

to how we refer to the features of the agent state st as sit. Let us denote

9

the prediction made by the agent at time step t by Yt ∈ R. Prediction Yt is

computed based on the current time step agent state st and the most recent

observation ot and action at−1. For notational convenience, we define ft =

[st,ot, at−1] ∈ Rm+n+d, which is the agent state augmented with the most

recent observation and action that is used to compute the final prediction.

The augmentation provides direct connections from the observation and action

signals to the final prediction. The final prediction Yt is computed as follows:

Yt =
m+n+d∑
k=0

wkt f
k
t .

Learning the state-update function u corresponds to learning the weight

matrix V. Deep learning methods based on gradient descent, such as RTRL

and BPTT, learn the state-update function, but they are computationally

expensive. Learning the weight vector w with semi-gradient TD(λ) is com-

putationally efficient, and it does not require storing past data points, agent

states, or weights. We seek learning algorithms for the state-update function to

be online and linear in computational complexity and memory. Mahmood and

Sutton (2013) propose a generate-and-test algorithm to learn features online

in a supervised learning setting. In the next section, we explain the idea be-

hind the generate-and-test approach and present some of the challenges when

applying the generate-and-test approach to learn the agent state.

2.3 Generate-and-Test Algorithm

Mahmood and Sutton (2013) study the problem of learning representation in

a fully online setting from an endless stream of data. In such a case, the

computational complexity of learning the representation should not increase

with time. Also, the cost of learning the representation should not exceed the

cost of performing on the task. Mahmood and Sutton (2013) apply a search

approach to learning the representation with the mentioned computational

10

constraints. The proposed search method generates the features that compose

the representation, and their utility on the task is tested. Then, some of

the least useful features are eliminated and replaced with newly generated

features. This approach to searching for the representation is referred to as

the generate-and-test approach.

The generate-and-test approach divides the problem of feature finding into

two sub-problems. The first problem is how to make new features, which is

addressed by the generator. The second problem is how to evaluate the utility

of the features, which concerns the tester. To better understand how the

generator and the tester are used for representation search, let us discuss the

details of the generator and the tester used in Mahmood and Sutton (2013).

Mahmood and Sutton (2013) implement representation search on a syn-

thetic feature finding problem. At every time step t, the binary input vector

xt and the scalar target yt are presented, and the goal is to predict the tar-

get based on the input vector. The generate-and-test approach searches for

features and offers them to the base system. The base system then learns

the weights that map the features to the prediction ŷt. The generator makes

a new feature i by randomly setting the weights V i,j from the input vector

with either −1 or +1. The tester uses the magnitude of the learned weights

to choose which features to eliminate. Figure 2.2 shows the structure of the

system.

11

1 0 0 1 1 1 1 01 11 0

0 11 0 1

Figure 2.2: The generate-and-test algorithm learns the weight matrix V by
searching through the feature space (Mahmood and Sutton, 2013). The base
system updates the feature’s outgoing weights using the Least Mean Squares
algorithm to learn the prediction. The tester uses the magnitude of the outgo-
ing weights to determine which features are least useful. Intuitively, features
with smaller weight magnitude contribute less to final prediction and are better
candidates for elimination.

Mahmood and Sutton (2013) show the generate-and-test algorithm is com-

putationally inexpensive, yet it is effective in learning useful features, enabling

the base system to make accurate predictions. However, we need different gen-

erators and testers to learn the agent state. The agent state uses the previous

time step agent state in its computation (see Figure 3). The generator needs

to be careful of which connections to make. By densely connecting the features

in the agent state with all features in the previous agent state, we can make

the tester’s task unnecessarily difficult.

In Mahmood and Sutton (2013), each feature could be tested independently

of the other features. Intuitively, a feature with a small magnitude of the

outgoing weight is not much responsible for the prediction, and removing it,

would not significantly change the predictions. On the contrary, in our case,

12

Figure 2.3: The tester needs to consider the indirect effect of removing features.
Features that seem useless based on the magnitude of their outgoing weight
may be an integral part of another feature that is directly useful to make the
prediction. Feature si is the input to feature sj and is useful despite having
a near-zero outgoing weight. Removing feature si would impair the valuable
feature sj.

a feature can have a near-zero outgoing weight and be input to an essential

feature with a large outgoing weight. Figure 2.3 illustrates this situation. The

tester should take the connections from st−1 to st into account. The dense

connections from the previous agent state to the current agent state can be

problematic to the point that it becomes challenging to remove a feature.

Therefore, the generator should be cognizant of this issue not to make the

testing process overcomplicated. Similarly, The tester should consider the

effect of removing features on other dependent features. In Chapters 4 and 5,

we introduce methods for generating and testing features to learn the agent

state.

13

Chapter 3

Animal Learning Problems

This chapter introduces two online multi-step prediction problems used in

the rest of this thesis. The first problem, trace conditioning, focuses on the

agent’s ability to remember a cue and represent it to make predictions about

a temporally distant signal. The second problem, trace patterning, requires

the agent to make features representing the non-linear configuration of stimuli

that help the agent predict a signal that is only activated if a particular pattern

of stimuli is presented.

3.1 Learning to Remember

One aspect of partial observability that the agent state needs to address is re-

membering events that happened in the past and representing them in a useful

way for future predictions. Due to limited resources, we can not expect the

agent to remember everything that happened in the past. A more reasonable

expectation is that the agent can only remember a compact summary of the

experiences useful for future predictions. Classical conditioning experiments

have shown that animals can make long-term predictions based on cues pre-

sented in the past, which suggests that the animals form representations that

summarize their experiences.

In classical conditioning experiments, two stimuli with no prior association

14

in nature are presented to an animal in a particular arrangement over sev-

eral trials. Each trial starts with the conditioned stimulus (CS), followed by

the unconditioned stimulus (US). The animal produces a natural response to

the US, referred to as the unconditioned response (UR). After enough trials,

the animal would produce a conditioned response (CR) when presented with

the CS. For instance, a dog would salivate when receiving food as a natural

response. In this case, the food is the US and salivating is the UR. We can

present a tone as the CS to the dog before the arrival of the food. There is no

natural association between the tone and the food; however, presenting them

in this particular order makes the dog associate them and start salivating after

hearing the tone—the salivation is also the conditioned response. Note that

the salivation starts in anticipation of the food and before the food arrives.

There might be a gap between the offset of the CS and the onset of the US

when there is no relevant stimulus available, and experiments show that the

animal still can accurately predict the arrival of the US. This gap is referred

to as the trace interval, and if an agent wants to predict the arrival of the

US, the agent needs to make features that remember the CS to fill the trace

interval gap.

Inspired by these animal experiments, Rafiee et al. (2020) introduce the

trace conditioning problem that enables us to study how the agent can learn

features that help it remember and represent relevant events from the past.

In the trace conditioning problem, the agent needs to predict the arrival of

the US based on a temporally distant CS—with a trace interval gap. The CS

and the US are not the only stimuli in the problem, and there are additional

distractor stimuli that provide no information about the CS or the US. The

agent should ignore the distractor stimuli to conserve computational resources.

Using the trace conditioning problem, we can study two questions. First, since

there are multiple stimuli, which stimuli should the agent remember? Second,

15

how to represent the stimuli to enable the agent to make accurate multi-step

predictions?

Figure 3.1 shows an example of the trace conditioning problem. The CS is

presented at time step 1 and lasts for 4 time steps—the onset of the CS is at

time step 0, and the offset of the CS is at time step 4. The US arrives at time

step 15 and lasts for 2 time steps. The time from the onset of the CS to the

onset of the US is referred to as the inter-stimulus interval (ISI), and in the

example, it is 15 time steps. The goal is to predict the arrival of the US based

on observing the CS. The challenge is that during the time from the offset

of the CS and the onset of the US—the trace interval—there are no relevant

stimuli available. The agent needs to remember the CS that happened many

times before to predict the US accurately.

Prior studies show that the predictions made by animals match the dis-

counted return (Wagner, 1978; Dickinson, 1980), and we can learn these pre-

dictions online using TD methods (Sutton and Barto, 1990). Ludvig et al.

(2012) confirm that the TD-model of classical conditioning can make accurate

predictions compatible with the data observed from animal experiments if the

agent state provides features that represent the gap. Chapter 2 discusses how

the agent could learn a multi-step prediction problem using TD(λ). We can

predict the arrival of the US by learning a multi-step prediction in which the

cumulant is set to be the US. The challenge is how to learn the agent state.

Perhaps the simplest form of representing the agent state is to use the

presence representation. The presence representation has a single binary fea-

ture for each stimulus that indicates whether that stimulus is active or not.

Despite the simplicity of presence representation, the TD-model of classical

conditioning can replicate several of the timing phenomena observed in ani-

mal experiments. The presence representation is unable to represent the gap;

thus, using presence representation, the agent can not accurately predict the

16

0

1

2

0

1

2

0 2 4 6 8 10 12 14 16 18
0

1

2

US

CS

Return

Time steps

ISI

Trace Interval

Figure 3.1: The trial starts with the CS being active for 4 time steps. The US
arrives after 15 time steps and lasts for 2 time steps. The time from the onset
of the CS to the onset of the US is called the inter-stimulus interval (ISI).
The gap between the offset of the CS and the onset of the US is called the
trace interval. During the trace interval, there is no immediate and relevant
observation available to the agent to predict the arrival of the US. The agent
needs to remember the CS and represent it in a useful way for predicting
the US. Studies show that the prediction made by the animal matches the
discounted return, and an agent needs to learn features for the trace interval
gap to make similar predictions.

arrival of the US, especially when the trace interval is prolonged. Figure 3.2

shows an example of the trace conditioning problem and the prediction made

using the presence representation.

In order to fill the gap with features, Ludvig et al. (2012) introduce the

microstimulus (MS) representation which is generated by coarse-coding a de-

caying memory trace of a stimulus. These MS features can extend beyond the

offset of the stimuli and provide features that remember the cue, helping the

agent learn accurate predictions despite not having access to immediate and

17

0

2

0

2

0 2 4 6 8 10 12 14 16 18
0

2

CS

US

Prediction

[0,1][1,0] [0,0] [0,0]

Time steps

Figure 3.2: The presence representation uses the available observations as the
agent state. In the trace conditioning problem, the agent can only make asso-
ciations when the CS or the US is present. However, the agent can not make
accurate predictions for the trace interval since neither stimuli are present.
The feature vector is shown for the duration of the trial. Each stimulus has
one bit in the feature vector indicating its presence. The agent state has no
active features during the trace interval and can not make accurate predictions.

18

relevant stimuli. Figure 3.3 shows the activity of the MS features during the

trial that essentially fills the trace interval gap.

0

1

2

0

1

2

0 3 6 9 12 15 18
0.0

0.2

CS

US

microstimulus

Time steps

Figure 3.3: The MS features are a set of fixed designed features based on
coarse coding of a fading memory trace of a stimulus. The activities of 10
MS features are shown based on a fading memory trace of the CS. The MS
features can fill the trace interval gap and help the agent make predictions of
the US. However, MS features are designed and thus not learnt, making them
unideal to use in the agent state.

Although MS features can remember the CS and fill the trace interval gap,

MS representation has significant shortcomings. In order to get MS representa-

tion to perform well, the experiment designer needs to set specific parameters

for each experiment—different lengths of ISI and arrangement of stimuli may

need drastically different parameters. Besides, the designer needs to choose

the stimuli to make MS features. Although we can make MS features for all

stimuli, it would be unnecessarily computationally demanding when there are

several distractors stimuli. Distractors provide no relevant information for the

prediction, and by making MS features of the distractors, we are wasting valu-

19

able resources that otherwise could help the agent make accurate predictions.

Hand designing the features is not practical, and we seek learning algo-

rithms that can learn the agent state by making features of the relevant stim-

uli and ignoring the distractors. Using the trace conditioning problem, we

can solely focus on the problem of remembering the relevant cue and how to

represent it to enable the agent to make an accurate prediction. In following

chapters, we develop methods to fill the trace interval gap online and learn

multi-step predictions using the learned features.

3.2 Learning Non-Linear Configurations

The trace conditioning problem is a special case in which the agent only needs

to remember a single CS to predict the arrival of the US. Although there

are multiple distractors, none of them provide any valuable information. The

agent can successfully predict the arrival of the US by ignoring the distractors

and focusing on the CS. The trace patterning problem is a more general case in

which patterns in the observation signals trigger the arrival of the US (Rafiee

et al., 2020).

In the trace patterning problem, the US arrives only if a particular pattern

of stimuli is present—referred to as the activation pattern. For example, the

dog would receive food only in the presence of tone and the absence of light.

In order to make accurate predictions, the agent needs to make features that

represent the non-linear configuration of the stimuli. Similar to the trace con-

ditioning problem, distractor stimuli make it harder for the agent to determine

which stimuli to focus on to make predictions.

Generally, there can be multiple CSs, and only a particular ordering and

pattern of active and inactive CSs results in the arrival of the US. To simplify

the problem, we assume that all the CSs and distractors happen simultane-

ously, and for a particular pattern of active and inactive CSs, the US would

20

arrive after ISI. The challenge here is to discover the relevant stimuli in the

presence of the distractors. For instance, imagine an experiment with two CSs,

a light and a tone, and one distractor, an air puff. Figure 3.4 shows all the

possible configuration of the CSs and the distractor. The US only occurs if the

tone is present and the light is absent—regardless of the status of the distrac-

tor. Trace patterning imposes a challenging problem on the agent. The US is

still temporally distant, and the agent needs to remember the cues from the

past. However, even by representing the individual stimulus with MS features,

the agent cannot make accurate predictions.

Finding non-linear relationships of stimuli resembles the XOR problem that

artificial neural networks are recognized for solving. However, when the target

for the prediction is temporally distant, gradient descent-based methods such

as BPTT and RTRL require enormous computational and memory resources

(see Chapter 6). In Chapter 5, we develop methods for generating features that

represent the non-linear combination of the stimuli that enables the agent to

make accurate multi-step predictions.

21

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0 5 10
0
1

0 5 10

CS1

CS1

CS1

CS1

CS1

CS1

CS1

CS1

CS2

CS2

CS2

CS2

CS2

CS2

CS2

CS2

Distractor

Distractor

Distractor

Distractor

Distractor

Distractor

Distractor

Distractor

US

US

US

US

US

US

US

US

Time steps

Figure 3.4: In the trace patterning problem, a particular combination of active
and inactive CSs triggers the arrival of the US. For instance, the dog would
receive food if the tone is present and the light is absent. There may be
distractor stimuli, providing no information about the CSs or the US. In this
example, there are 2 CSs and 1 distractor. The US would arrive if the CS1
is present and CS is absent—regardless of the distractor stimulus. The agent
needs to learn features representing the particular configuration of CS1 and
CS2 and remember them to predict the US accurately.

22

Chapter 4

Deep Trace Generator

In this chapter, we present the first contribution of this thesis, the deep trace

generator. Chapter 3 introduces the trace conditioning problem, which re-

quires the agent to remember the CS to predict the arrival of the US while

ignoring the distractor stimuli. The deep trace generator produces features

that remember the CS and fill the trace interval gap enabling the agent to

make accurate predictions about the US. In Section 4.1, we introduce the

deep trace generate-and-test algorithm. In Section 4.2, we describe the details

of experiments on the trace conditioning problem. In Section 4.3, we report

results of applying the deep trace generate-and-test algorithm on the trace

conditioning problem. Finally, in Section 4.4, we show the robustness of the

deep trace generate-and-test algorithm by varying the hyper-parameters.

4.1 Deep Trace Features

In a partially observable setting, the relevant information needed for current

predictions may be presented to the agent in the past. The agent needs to

remember and represent relevant information in a useful way for future pre-

dictions. We can study this problem in isolation using the trace conditioning

problem. In Chapter 2, we introduce the agent state architecture and briefly

discuss the generate-and-test approach to searching for features. We intro-

23

duce the deep trace generator to address the challenge of remembering events

for future predictions. The deep trace generator produces features that trace

observation signals or other features. We call these features deep trace features.

The deep trace feature si traces xj—either an observation signal or another

feature—by connecting itself from the previous time step with the weight ψ ∈

(0, 1) and xj with the weight 1 − ψ ∈ (0, 1). At time step t, the deep trace

feature sit is computed as follows:

sit = ψsit−1 + (1− ψ)xjt (4.1)

in this update, ψ is the decay rate, and xj is the source of deep trace feature

si. Decay rate determines how quickly the deep trace feature responds to the

source and how quickly it fades away. Deep trace features can retain a memory

of past observation signals or features. Figure 4.1 depicts an abstraction of

the deep trace feature si. The source of the deep trace feature si is oj, and

the decay rate is 0.9. Figure 4.2 shows an example where oj becomes active

at time step 3 for one time step. The deep trace feature si instantly responds

to the change in the observation oj by growing to 0.1—computed based on

Equation 4.1. While oj only lasts for one time step, the deep trace feature si

remembers that oj was active, and due to the fading nature of the deep trace

feature, it also remembers how long has passed since its activation.

Keeping traces of the events helps the agent to remember cues for future

predictions. Existing methods use traces as part of the representation. The

traces that are part of the representation are often referred to as stimulating

traces. Chapter 3 discusses how a trace from the onset of the CS is used

to create MS features. Similarly, Rafiee et al. (2020) investigate tile-coded

traces as part of the representation. These methods heavily inspire deep trace

features, and perhaps a more proper name instead of the deep trace feature

would be the hierarchically generated microstimulus. For simplicity, we use the

24

0.9 0.1

Figure 4.1: The deep trace feature sit traces ojt by connecting itself from the
previous time step–sit−1–with the weight 0.9 and oj with the weight 0.1. At
every time step, the deep trace feature sit is computed based on sit = 0.9sit−1 +

0.1ojt . The deep trace feature sit provides a fading memory of the observation
ojt , which helps the agent remember previous values of ojt .

0

1

2

0 3 6 9 12 15 18

0.0

0.1

0.2

Time steps

Figure 4.2: The observation signal oj becomes active at time step 3 for one time
step. The deep trace feature si traces oj with a decay rate of 0.9. Although
the observation signal oj is only active at time step 3, the deep trace feature
si remembers the activation of the observation signal oj for many more time
steps. The activity of the deep trace feature is shown as it slowly fades away
with time.

25

Figure 4.3: The deep trace features sa, sb, and sc trace oj, sa, and sb, respec-
tively. All of decay rates are set to 0.6. The deep trace features provide direct
and indirect traces of the observation signal oj. Multiple direct or indirect
deep traces features of an observation signal provide rich representation of the
observation signal, helping the agent to summarize its history of interaction
with the environment.

term deep traces feature to refer to hierarchically generated microstimulus.

Deep trace features and eligibility traces are different, despite the similar-

ities in how they are calculated. Deep trace features are part of the repre-

sentation, while eligibility traces are used by the update mechanisms of TD

methods. In fact, deep trace features have eligibility traces when learning the

outgoing weights with semi-gradient TD(λ).

Deep trace features can be the source for other deep trace features. Fig-

ure 4.3 shows three deep trace features and their sources. The deep trace

features sa, sb, and sc trace oj, sa, and sb, respectively—all with the decay

rate of 0.6. Figure 4.4 shows the values of the deep trace features following

the activation of oj at time step 3. The deep trace feature sa is quicker to

respond to the observation compared to the other deep trace features. It is

also quickest to fade away. In essence, all three deep trace features trace the

observation, either directly or indirectly. Multiple direct and indirect deep

trace features provide a rich memory of the observation signals, enabling the

agent to remember a summary of the interaction with the environment.

The deep trace generator needs to decide the source and the decay rate of

the deep trace feature when generating a new deep trace feature. Perhaps the

26

0

1

2

0.0

0.2

0.4

0.0

0.2

0.4

0 3 6 9 12 15 18
0.0

0.2

0.4

Time steps

Figure 4.4: The deep trace features sa, sb, and sc trace oj, sa, and sb,
respectively—all with the decay rate of 0.6. The observation signal oj be-
comes active at time step 3 for one time step. The deep trace feature sa traces
oj and immediately grows to 0.4—since the decay rate is set to 0.6. The deep
trace features sb and sc are slower to grow compared to the deep trace feature
sa but are slower to fade away. The direct deep trace feature sa grows on
the same time step as the observation signal oj is active since the deep trace
feature sat is connected to the same time step observation signal ojt . However,
the deep trace feature sb grows with a delay of one time step as the deep trace
feature sbt is connected to the previous time step deep trace sat−1. For the same
reason, the deep trace feature sc is delayed by one time step to grow compared
to the deep trace feature sb. Direct and indirect deep trace features of the
observation signal oj provide a rich representation of the observation signal.

27

most straightforward approach would be randomly choosing the source and the

decay rate and letting the tester eliminate useless features and protect useful

ones. We study two versions of the deep trace generator. One that gives equal

probability to all features and observation signals when choosing the source of

a new deep trace feature. The other version still chooses the source randomly;

however, the probability of getting selected for each input xi is based on the

magnitude of the outgoing weight, which is computed as follows:

P (selecting xi) =
|wi|∑m+n
j=1 |wj|

. (4.2)

The intuition is that features or observation signals that are directly useful—

since we use the outgoing weight magnitude—are better candidates to be the

source for new deep trace features.

The tester decides which feature to eliminate based on the moving average

of their weight magnitude. Intuitively, features with lower weight magnitude

are less likely to be contributing to the final prediction. The tester is inspired

by the tester proposed by Mahmood and Sutton (2013) with a few modifica-

tions. In Chapter 2, we discuss the challenges of removing features in the agent

state architecture compared to the feed-forward setting. The tester refrains

from removing features that are the source for other deep trace features. Thus,

we ensure that useful features would not lose their source by protecting sources

of the deep trace features. The tester also protects newly generated features

by using the moving average of the weight magnitude as the metric to decide

which features to delete. The moving average of the weight magnitude for the

newly generated features is set to the median of all other features—similar to

the second tester proposed by Mahmood and Sutton (2013). Finally, a top

portion of the features with higher weight magnitude is protected from elim-

ination. This guarantees that the tester would not remove top contributing

features if no feature from the bottom portion is eligible for elimination—due

28

to being a source for other deep trace features. Fortunately, the connections

among deep trace features are highly sparse, making the tester’s job simpler.

We illustrate the pseudo-code for our proposed generate-and-test method in

Algorithm 1. Table 4.1 is the description of variables and hyper-parameters

used in Algorithm 1.

Variable Description

nd current number of deep trace features
cd maximum number of deep trace features (capacity)
gd maximum number of deep trace features to generate
rd maximum number of deep trace features to remove
pd protection ratio of deep trace features
µ weight magnitude moving average decay rate

Table 4.1: Hyper-parameters and variables description for the deep trace
generate-and-test algorithm.

4.2 Experiment Details

To confirm the effectiveness of deep trace generate-and-test, we experiment on

the trace conditioning problem introduced in Chapter 3. The experiment is

a series of trials. Each trial starts with the CS being active for 4 time steps

followed by the US, which lasts for 2 time steps. The time from the onset of

the CS to the onset of the US is called the inter-stimulus interval (ISI). We

experiment with three different ISIs—10, 20, and 30. The maximum number

of deep trace features—capacity of the agent state—for ISI=10 is 100, for

ISI=20 is 200, and for ISI=30 is 300. The time from the onset of the US to

the beginning of the next trial is referred to as the inter-trial interval (ITI). For

each trial, the ITI is uniformly sampled from (80,120). There are ten distractor

stimuli in our experiments that can happen during the trial and lasts for 4 time

29

Algorithm 1: Deep trace generate-and-test algorithm.

Initialize: Set the state-update function u with no initial features by
setting weight matrix V to zero and set nd to 0, and consider the
agent state s0 ∈ Rn as zero

Initialize: Set weight vector w ∈ Rn+m and eligibility trace vector
z ∈ Rn+m as zeros

Initialize: Set hyper-parameters α, θ, λ, cd, gd, rd, µ, and pd as
desired

for each observation ot ∈ Rn and USt ∈ R do
Compute the current state: st = u(st−1,ot)
Update the weight vector wt using TD(λ) or TIDBD(λ)
if nd < cd then

Deep trace generator:
Generate min(gd, cd − nd) deep trace features
for each generated feature i do

Set vi,i to ψ by randomly selecting ψ from (0, 1)
Set vi,j to 1− ψ by selecting the source j randomly
Set nd to nd + 1

if nd = cd then
Deep trace tester:
Partition the features based on the moving average of the
weight magnitude and select the bottom 1 − pd portion of the
features

Set num deleted to 0
for each feature i from bottom 1− pd portion of the features do

if feature i is not a source for other features then
Set the outgoing weight wi to 0
Set the corresponding eligibility trace zi to 0
Set vi,j for all 0 < j ≤ m+ n to zeros
Set num deleted to num deleted + 1
Set nd to nd − 1
if num deleted = rd then

Break out of the for loop

30

steps—including the ITI. The ten distractors provide no information about the

CS or the US and occur randomly with the Poisson rate of 1
10
, 1
20
, 1
30
, ..., 1

100
,

respectively. To measure the agent’s performance, we used the Mean Squared

Return Error (MSRE) over bins of 1000 time steps. At time step t, we can

compute the Squared Return Error (SRE) using (Yt−Gt)
2, in which Gt is the

return (see Chapter 2). Table 4.2 is the list of hyper-parameters used in our

experiments.

Hyper-parameter Value

step-size α 0.01
meta step-size θ 0.01

eligibility trace decay rate λ 0.9
maximum number of deep traces cd 100, 200, 300

maximum number of deep trace features to generate gd 2
maximum number of deep trace features to remove rd 2

weight magnitude moving average decay rate µ 0.99
deep trace feature protection ratio pd 0.5

Table 4.2: Hyper-parameters for the deep trace generate-and-test experiments.

4.3 Results

Each experiment consists of 20000 trials which is more than 2 million time

steps. We report the results of the performance of the deep trace generate-

and-test algorithm in Figure 4.5. Generating deep trace features with random

sources either with equal probability or biasing the probability towards features

and stimuli with larger weight magnitudes can learn effectively. Since we

do not present hyper-parameter studies to show any meaningful differences

between these methods, we do not suggest that one method is better than the

other. We also include the performance for a fixed representation agent, which

uses a fixed set of deep trace features randomly generated at the beginning

31

of the experiment to show the effectiveness of the search process. Figure 4.6

illustrates the prediction made by the agent compared to the return. The agent

predictions match the return, suggesting the agent’s ability to effectively fill

the trace interval gap with useful features.

Figure 4.7 shows the activity of the top 15 features—based on the weight

magnitude—among 100 total features in a sample run with ISI=10. In this

example, most of the top features activities occurred closer to the US. The

prediction right before the US is at its highest, and top features are chosen

based on their weight magnitude, resulting in the top features being highly

active around the US.

The distractor stimuli provide no relevant information about the CS or the

US. The agent should refrain from wasting valuable and limited computational

resources on making features from them. Figure 4.8 shows the dependencies

among the features after only 200 trials—the experiment with 100 total fea-

tures and ISI=10. Most of the deep trace features either directly or indirectly

trace distractors as distractors outnumber the relevant stimuli. Figure 4.9

shows the dependencies among features after 20000 trials. Even though the

deep trace features were generated randomly, most of the deep trace features

directly or indirectly trace the CS or the US through the generate-and-test

process.

32

2,000,000

0.15

0.20

0.25

0.30

0.35

0.40

Root
MSRE

2,500,000
0.1

0.2

0.3

0.4

0.5

2,500,000

0.1

0.2

0.3

0.4

0.5

0.6

Time steps

equal probability
probability based on
weight magnitude

fixed representation

ISI = 20

ISI = 10

ISI = 30

equal probability
probability based on
weight magnitude

fixed representation

equal probability probability based on
weight magnitude

fixed representation

Figure 4.5: The performance of the deep trace generate-and-test algorithm on
the trace conditioning problem over the course of 20000 trials. The perfor-
mance is measured based on the root MSRE over bins of 1000 time steps and
is averaged over 30 runs. The shaded area is the standard error. The subplots
correspond to the three ISI settings—10,20, and 30. The blue lines represent
the generator that gives equal probability to features and stimuli when choos-
ing the source of deep trace features. The orange lines represent the generator
that computes the probability of choosing features and stimuli based on their
outgoing weight magnitude. Both approaches to selecting the source of deep
trace features seem viable options, and comparing the two requires further
studies. The green line represents a fixed set of deep trace features randomly
generated at the beginning of the experiment and never changed.

33

0

2

0

2

0 2 4 6 8 10 12 14

0.0

0.5
TD error

Return
Prediction

CS US

0

2

0

2

0 3 6 9 12 15 18 21 24

0.00

0.25 TD error

Return
Prediction

CS US

0

2

0

2

0 4 8 12 16 20 24 28 32

0.0

0.2

Time steps

TD error

Return
Prediction

CS US

Figure 4.6: The predictions made by the agent match the return in all ISI
settings—10, 20, and 30. The predictions shown are made at the final trial of
the experiment using the features learned by the deep trace generate-and-test
algorithm. The TD error is higher at the onset of the relevant stimuli—the
CS and the US—compared to other times. Note that the prediction before the
arrival of the CS is non-zero as the ITI is sampled uniformly from (80,120).
The agent can predict the arrival of the US of the subsequent trial with a lower
degree of precision.

34

0

1

0

1

0.0
0.1

0.0
0.5

0.00
0.05

0.0
0.1

0.00
0.05

0.0
0.1

0.0
0.1

0.0
0.1

0.0
0.1

0.0
0.1

0.0
0.1

0.000
0.025

0.00
0.01

0.000
0.025

0 2 4 6 8 10 12 14 16
0.0
0.1

CS

US

Time steps
Figure 4.7: The activity of the top features throughout the final trial. The
deep trace features learned by the deep trace generate-and-test algorithm make
a rich representation of the trace interval gap enabling the agent to make
accurate predictions.

35

12

5

13

59

8014

15

316

4

17

10

18

2

19

48

20

105

46

21

22

50

23

106

0

24

25

49

7

26

102

8527

81

28

45

29

30

31

67

33

32

65

40

34

6835

36

37 38

110

101

39

41

42

43

51

107

44

66

83

47

60

76

52

73

53

54

64

95

55

56 57

58

61

62

63

72

69

70 71

874

75

93

77

1

78

79

82

91

84

86

87

88

104

89

90 92

103

94 9697

98 99

100

108

109

111

US CS

Distractors

Figure 4.8: The dependency of the deep trace features early in the
experiment—after 200 trials. The distractor stimuli outnumber the relevant
stimuli, making them more likely to be selected as the source of the deep
trace features. In this stage of the experiment, most of the deep trace features
directly or indirectly trace the distractor stimuli.

36

12

50

24

13

14

76

29

15

11

16

82

37

17

22

95

18

1

19

8020

99

21

90

39

0

23

25

45

26

111 27

28

30

31

35

32

33

41

34

36

44

3840

103

42

83

69

43

46

60

47

71

67

48

56

93

49

92

5152

73

53

54

55

89

101 5758

59

61

62

75

6364

65

78

66

68

70

72 74

77

107

88

79

81

84

85 86

87

91

94

96

97

98

100

102

104

105

106

2

108

109

110

US

CS

Distractors

Figure 4.9: The dependency of the deep trace feature at the final trial—on
the 20000th trial. Most of the deep trace features directly or indirectly trace
the CS or the US—only a small fraction of the deep trace features trace the
distractor stimuli.

37

4.4 Parameter Study

The deep trace generate-and-test algorithm works for a spectrum of step-sizes

and meta step-sizes (see Table 4.3)—for ISI=10 and all other settings are

identical to Table 4.2. We report the agent’s performance based on MSRE

over all time steps in Figure 4.10. The missing data points for TIDBD(λ) are

due to instability in the learning process.

Hyper-parameter Value

step-size α 0.001 0.005 0.01 0.05 0.1
meta step-size θ 0.01 0.025 0.05 0.1

Table 4.3: List of step-sizes and meta step-sizes used in the experiment.

10 3 10 2 10 1

0.015

0.020

0.025

0.030

0.035

TD
θ = 0.1

θ = 0.01

θ = 0.025
θ = 0.05

Step-size or initial step-size

MSRE

Figure 4.10: The agent’s performance based on MSRE over all time steps
averaged over 30 runs on the trace conditioning problem with ISI=10. The
bars correspond to the standard error. Setting the step-sizes and meta step-
sizes can be challenging and require trying various settings. Achieving the best
possible performance is out of the scope of this work, and we only show that
the deep trace generate-and-test algorithm is robust to the choice of step-size
and meta step-size.

38

0 10 25 50 75 90

0.02

0.04

0.06

0.08

0.10

0.12

MSRE

Percentage of protected features

Figure 4.11: The agent’s performance based on the MSRE over all time steps
averaged over 30 runs on the trace conditioning problem with ISI=10. The bars
correspond to the standard error. The x-axis corresponds to the percentage of
features being protected by the tester. At every time step, the tester tries to
eliminate a certain number of features to make space for the generator to make
new features. The newly generated features are protected for deletion, forcing
the agent to consider deleting older but possibly useful features from deletion.
The results suggest that some features need to be protected; otherwise, the
performance is drastically degraded.

Section 4.1 discusses that the newly generated features are protected by

setting the moving average of their weight magnitude as the median of all

other features. On the other hand, the tester is trying to remove a fixed num-

ber of features at every time step. Not protecting a portion of top features

results in the tester removing some of the top contributing features. Thus,

the tester protects a portion of the deep trace features from elimination. Fig-

ure 4.11 shows the agent’s performance for a variety of protected features—for

ISI=10 and all other settings are identical to Table 4.2. Without any feature

protection, the agent’s performance is drastically degraded.

39

50 100 250 500 750 1000

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

Maximum number of deep trace features

MSRE

Figure 4.12: The agent’s performance based on the MSRE over all time steps
averaged over 30 runs on the trace conditioning problem with ISI=10. The
bars correspond to the standard error. The x-axis corresponds to the maxi-
mum number of deep trace features. The agent’s performance improves as we
increase the maximum number of deep trace features. Providing more com-
putational and memory resources improves the agent’s performance as the
deep trace generate-and-test algorithm provides more features and searches
the feature space more quickly.

Computational resources are limited and valuable, and we keep the maxi-

mum number of deep trace features constant, as they can not grow indefinitely.

However, we expect the deep trace generate-and-test algorithm to perform bet-

ter given more computational and memory resources. Figure 4.12 shows the

agent’s performance with a various maximum number of deep trace features.

The deep trace generate-and-test algorithm scales well with the maximum

number of deep trace features.

The hyper-parameters gd and rd control the maximum number of deep

trace features that we add to or remove from the agent state at every step,

respectively. These numbers have been chosen arbitrarily as the other con-

trolling factors are more dominant. Adding or removing a constant number of

deep trace features at every step would eventually get controlled by the agent

state’s capacity or protection measures.

40

Chapter 5

Imprinting Generator

In this chapter, we present our second contribution, the imprinting generate-

and-test algorithm. In the trace conditioning problem, the agent only needs

to remember a single CS. However, in the trace patterning problem, a specific

configuration of multiple CSs triggers the arrival of the US. The imprinting

generator produces imprinting features representing non-linear configurations

in observation signals. The imprinting generator combined with the deep trace

generator can make long-term associations between multiple CSs and the US.

In Section 5.1, we introduce the imprinting generate-and-test algorithm. In

Section 5.2, we describe the details of our experiments on the trace patterning

problem. Finally, in Section 5.3, we report the performance of the imprinting

generate-and-test algorithm on the trace patterning problem.

5.1 Imprinting Features

In the trace conditioning problem, the agent can predict the US accurately by

remembering the CS. The CS is a single observation signal in the observation

vector o, and the agent can remember the CS and make linear features from

the CS to fill the trace interval gap using the deep trace generate-and-test

algorithm. This chapter relaxes the assumption that a single stimulus is all

the agent needs to remember. In the trace patterning problem, there are

41

multiple CSs, and only a particular combination of active and inactive CSs

would result in the arrival of the US. This problem requires the agent to make

features that simultaneously respond to a non-linear combination of stimuli

and remember it for future predictions. The imprinting generator produces

features that respond to a particular configuration of select stimuli. We refer

to these features as imprinting features.

The imprinting feature si responds to a configuration in observation signals

by connecting to select observation signals with either weight of +1 or -1.

The weight +1 or -1 corresponds to whether the observation signal should be

active or inactive in order for the imprinting feature to respond. Note that the

imprinting feature si is not necessarily connected to all the observation signals.

To make the imprinting feature respond to the particular pattern based on the

selected weights, we use the Linear Threshold Unit (LTU) activation function

(as in Sutton and Whitehead (1993)). The imprinting feature si is computed

as follows:

sit =

{
1

∑m
j=1 v

i,j
t o

j
t >

∑m
j=1 v

i,j
t

0 otherwise
(5.1)

We choose the term imprinting since the generated feature recognizes a

specific pattern in the observation signals, and when the agent reencounters the

same pattern, the imprinting feature gets activated. In essence, the imprinting

feature is a snapshot of a pattern that happened to the agent. We can make

imprinting features by including other features as well. By imprinting on a

selection of features and observation, the imprinting feature considers both

the immediate observation signals and what has been summarized already in

the agent state. In this thesis, we explicitly imprint only on the observation

signals and leave imprinting on features for future studies.

Figure 5.1 shows an example of the imprinting feature si connected to the

observation signal o1 and o2 with the weight of +1 and -1, respectively. Using

42

Equation 5.1, the imprinting feature si would be active if and only if o1 is active

and o2 is inactive—regardless of other observation signals since the imprinting

feature si is not connected to those observation signals. Figure 5.2 shows all

the possible cases for o1 and o2 and the resulting US. Imprinting feature si

captures the non-linear configuration necessary to predict the arrival of the

US accurately.

1
-1

Figure 5.1: Imprinting features represent non-linear configurations of obser-
vation signals. The imprinting feature si is connected to observation o1 with
a weight of +1 and the observation o2 with a weight of -1, resulting in the
imprinting feature si becoming active if the observation o1 is active and ob-
servation o2 is inactive.

The challenge for the imprinting generator is when to make imprinting

features and which observation signals to connect. In our implementation, the

imprinting generator makes new features if there is a non-zero activity in the

observation signals—not all observation signals are inactive. It is not easy to

decide which observation signals should be selected for making connections.

Randomly selecting the observation signals and their weights result in 3m

possible imprinting features—m observation signals. The imprinting generator

uses the outgoing weight of the observation signals to the final prediction to

decide which observation signal to include in the imprinting feature. The

intuition is similar to the tester that utilizes the outgoing weights of features

to measure their usefulness. The probability of including the observation oit in

the creation of new imprinting features at time step t is computed as follows:

43

0

2

0

2

0

2

0

2

0

2

0

2

0

2

0 5 10
0

2

0 5 10

CS1

CS2

Imprinting
 Feature

US

CS1

CS2

Imprinting
 Feature

US

CS1

CS2

Imprinting
 Feature

US

CS1

CS2

Imprinting
 Feature

US

Time step

Figure 5.2: In the trace patterning problem, a particular configuration of
active and inactive CSs results in the arrival of the US. In this example, the
US only occurs when CS1 is active, and CS2 is inactive. By just remembering
individual CSs, the agent may not predict the arrival of the US. The imprinting
feature is learned to be activated when CS1 is active and CS2 is inactive.
Using imprinting features, the agent can represent non-linear configurations of
stimuli. In this example, the imprinting feature recognizes when CS 1 is active
and CS2 is inactive. The agent can use the imprinting features to predict the
US accurately.

44

|wi+nt |∑m+n
j=n+1 |w

j
t |
≥ 1

m
+ ε (5.2)

in which ε ∼ N (0, 1
m

) is a small random number, giving observation signals

with comparatively small weight a random chance to be selected. When an

observation oj is selected to participate in the imprinting feature si, the weight

V i,j is set to 1 if the observation is active and -1 if the observation is inactive

at the time step of the feature creation. Using the observation signals at the

current time to choose the weights ensures that the imprinting feature would

be active the next time the same pattern is present. The imprinting generator

makes features representing the non-linear configuration of observation signals,

and the deep trace generator can enable the agent to remember and represent

these imprinting features to make temporally distant associations.

The tester is similar to the deep trace tester. However, the agent state’s

capacity is divided between deep trace and imprinting features, and the testing

process applies to each feature type separately. Otherwise, the deep trace

generator would use all of the capacity. Algorithm 2 describes the details

of the imprinting generate-and-test method when combined with the deep

trace generate-and-test algorithm to learn the agent state. Table 5.1 is the

description of new variables and hyper-parameters used in Algorithm 2.

Variable Description

np current number of imprinting features
cp maximum number of imprinting features (capacity)
gp maximum number of imprinting features to generate
rp maximum number of imprinting features to remove
pp protection ratio of imprinting features

Table 5.1: Hyper-parameters and variables description for the imprinting
generate-and-test algorithm.

45

Algorithm 2: Imprinting and Deep trace generate-and-test algo-
rithm.

Initialize: Set the state-update function u with no initial features by
setting weight matrix V to zero and set nd and np to 0, and consider
the agent state s0 ∈ Rn as zero

Initialize: Set weight vector w ∈ Rn+m and eligibility trace vector
z ∈ Rn+m as zeros

Initialize: Set hyper-parameters α, θ, λ, cd, gd, rd, pd, cp, gp, rp, pp,
and µ as desired

for each observation ot ∈ Rn and USt ∈ R do
if there is non-zero activity in ot and np < cp then

Imprinting generator:
Generate min(gp, cp − np) imprinting features
for each generated feature i do

Select the observation signals using Equation 5.2
Add the feature i if it is a new feature—no duplicates
Set np to np + 1

Compute the current state: st = u(st−1,ot)
Update the weight vector wt using TD(λ) or TIDBD(λ)
if nd < cd then

Deep trace generator (details in Chapter 5)

if np = cp then
Imprinting tester:
Partition the imprinting features based on the moving average
of the weight magnitude and select the bottom 1 − pp portion
of the features

Set num deleted to 0
for each feature i from the bottom 1− pp portion of the
imprinting features do

if feature i is not a source for other features then
Set the outgoing weight wi to 0
Set the corresponding eligibility trace zi to 0
Set vi,j for all 0 < j ≤ m+ n to zeros
Set num deleted to num deleted + 1
Set np to np − 1
if num deleted = rp then

Break out of the for loop

if nd = cd then
Deep trace tester (details in Chapter 5)

46

5.2 Experiment Details

We show the effectiveness of the imprinting and deep trace generate-and-test

algorithm on the trace patterning problem introduced in Chapter 3. In our

setup of the trace patterning problem, there are 6 CSs and 10 distractors. The

CSs and the distractors have a duration of 4 time steps and happen at the

same time. A particular configuration of 3 active and 3 inactive CS triggers

the arrival of US—the activation pattern. The CSs are activated in a way

to make the activation pattern happen in half the trials. Each distractor

occurs independently with a probability of 0.5—simultaneously with the CSs

and other distractors. If the activation pattern happens in a trial, the US

would happen in 10 time steps and remains active for 2 time steps—the ISI is

set to 10. We use MSRE over bins of 1000 time steps to measure the agent’s

performance. Table 5.2 is the list of hyper-parameters used in our experiments.

Hyper-parameter Value

step-size α 0.01
meta step-size θ 0.01

eligibility trace decay rate λ 0.9
discount factor γ 0.9

weight magnitude moving average decay rate µ 0.99
maximum number of deep traces cd 200

maximum number of deep trace features to generate gd 2
maximum number of deep trace features to remove rd 2

maximum number of imprinting cc 60
maximum number of imprinting features to generate gc 2
maximum number of imprinting features to remove rc 2

deep trace feature protection ratio pd 0.5
imprinting feature protection ratio pc 0.5

Table 5.2: Hyper-parameters for the imprinting generate-and-test experiments.

47

5.3 Results

Figure 5.3 shows the agent’s performance based on root MSRE over bins of

1000 time steps. The agent usually learns the imprinting feature representing

the activation pattern in the first few thousand trials. We compare the per-

formance of the agent utilizing both imprinting and deep trace features with

the agent that uses the total capacity of the network—260 features—making

deep trace features. The deep trace features cannot represent configurations in

the observation signals and fail to capture the activation pattern. Figure 5.4

shows the agent’s predictions for both cases of activation pattern being present

and absent after training for 20000 trials for the agent that generates imprint-

ing features. Figure 5.5 shows the predictions made by the agent that only

generates deep trace features. The imprinting generator produces imprinting

features representing the activation pattern. The deep trace generator uses

the imprinting features and produces deep trace features that fill the trace

interval and make accurate predictions of the US.

Figure 5.6 shows an example of the activity of several features when the

activation pattern is present. Figure 5.7 shows the activity of the same set of

features when the activation pattern is absent. Most of the deep trace features

trace the imprinting feature that represents the activation pattern or the US.

There are deep trace features of other stimuli, but they are in the minority.

Figure 5.8 shows the dependency of the deep trace features. A significant

portion of deep trace features is learned to directly or indirectly trace the im-

printing feature representing the activation pattern. Unlike the distractors,

CSs provide useful and relevant information about the arrival of the US. How-

ever, using the imprinting feature representing the activation pattern to make

deep trace features is more promising. Figure 5.9 shows the outgoing weight

of the CSs and the learned imprinting feature representing the activation pat-

48

tern. As the imprinting feature gains weight, the CSs lose their weight since

they are no longer necessary to make predictions about the US.

2,000,000
0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

500,000

Time steps

Root
MSRE only using deep trace features

using both imprinting features and
deep trace features

Figure 5.3: The performance of the imprinting and deep trace generate-and-
test algorithm on the trace patterning problem throughout 20000 trials com-
pared to only using deep trace generate-and-test algorithm. The performance
is measured based on the root MSRE over bins of 1000 time steps and is aver-
aged over 60 runs. The shaded area is the standard error. The agent usually
learns the imprinting feature representing the activation pattern in the first
few thousand trials—before 500000 time steps. The bump early in the learning
curve is where the agent is still searching for the proper imprinting feature.
Using only the deep trace features, the agent cannot learn configurations in
the observation signals and cannot represent the activation pattern; thus, the
agent performance is degraded compared to the agent that also utilizes the
imprinting features. The deep trace features enable the agent to remember
the imprinting features to predict the US accurately.

49

0

1

0

1

0

1

0

1

Imprinting feature
of the

activation pattern

US

0

1

0 2 4 6 8 10 12 14 16
0

1

US

Prediction

Return

Prediction Return

Time step

Imprinting feature
of the

activation pattern

Figure 5.4: The predictions made by the agent match the return in both cases
of the activation pattern being present and absent. The predictions shown
are made at the final trial of the experiment using the features learned by the
imprinting and deep trace generate-and-test algorithm.

50

0

1

0

1

0

1

0

1

0

1

0 2 4 6 8 10 12 14 16
0

1

US

Return

Prediction

Activation
pattern

US

Return
Prediction

Activation
pattern

Time step

Figure 5.5: Using only the deep trace features, the agent cannot represent con-
figurations in the observation signals and thus cannot represent the activation
pattern and make accurate predictions. Note that the activation pattern here
only demonstrates whether the activation pattern has occurred or not. There
is no feature representing the activation pattern in the agent state.

51

0

1

0.0

0.1

0.0

0.2

0.0

0.1

0.00

0.25

0.0

0.1

0.0

0.1

0.0

0.2

0.0

0.5

0.0

0.2

0 2 4 6 8 10 12 14 16
0.0

0.1

US

Time step

Figure 5.6: The activity of a number of deep traces features throughout a trial
with the activation pattern present—after 20000 trials of training. The deep
trace features make a rich representation of the trace interval gap enabling the
agent to make accurate predictions. Most of the deep trace features directly
or indirectly trace the imprinting feature representing the activation pattern.

52

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0 2 4 6 8 10 12 14 16
0.0

0.1

US

Time step

Figure 5.7: The activity of a number of deep traces features throughout a trial
with the activation pattern absent—after 20000 trials of training. Since most
deep trace features directly or indirectly trace the imprinting feature repre-
senting the activation pattern, there is not much activity when the activation
pattern is not present. There are deep trace features of the CSs themselves
that might be active during the trial even though the activation pattern is
absent.

53

77

262

223

78

146

245

79

200

217

80

136

241

81

121

3

82

253

233

83

120

154

84

4

85

255

97 86

87

161

100

88

159

106

89

134

123

90

91

216

117

92

225

142

93

65

94

198

132

95

96

158

260168

243

98

99

116

127

105

101

102

218

103

192

130

104

144

107

201

206

108

109

221

0

110

230

111

147

112

264113

114

115

118

274

119

122

165

173124

125

126

128

129

131

133

135

240

137

138

139

140141

143

261

214

145

148

149

150 151

152 153

237

155

156

205

246

157

160

162

220

163

170

164

166

183167

1

169

171

172

207

174175

176

177

178

179

180

181

182

184

185

186

187188

189

190

191

193

194

195

196

197199

202

203

204

208

209

210

211 212213

215

219

222

224226

227

228

37229231232 234

235236

238

239

242

244247248

249

250

251

252

254

256

257

258

259

263

265

266

267268

269 270

271

272

273

275

276

US

CS Imprinting feature
of the

activation pattern

Figure 5.8: Dependency of the deep trace features at the final trial of the
experiment. Most of the deep trace features directly or indirectly trace the
imprinting feature representing the activation pattern. Some deep trace fea-
tures are tracing the CSs. The CSs are correlated with the US and are useful,
though not as valuable as the imprinting feature of the activation pattern.

54

0 1 2 3 4
1e6

0.2

0.1

0.0

0.1

0.2

0.3

Imprinting Feature
of the

activation pattern

CSs

Outgoing
weight

Time step

Figure 5.9: At the beginning of the experiment, the agent uses the CSs for
predicting the US. However, after the agent learns the imprinting feature rep-
resenting the activation pattern, the CSs lose their outgoing weight. The
imprinting feature is perfectly correlated with the US, but the CSs are not
always a good indicator of the arrival of the US.

55

Chapter 6

Related Work

This chapter discusses existing works related to learning the agent state in this

thesis. In Section 6.1, we discuss approaches based on the generate-and-test

method. In Section 6.2, we summarize methods based on gradient descent for

learning an RNN, and the complications of using the gradient descent. We also

include the recent advancement of addressing the practical and computational

issues. In Section 6.3, we describe methods that directly use the predictions

as the representation.

6.1 Generate-and-Test

Representation search refers to learning the representation by searching through

the representation space. Generate-and-test methods can be considered as

representation search methods as these methods learn the representation by

continually searching for more useful features. Applying search to finding

features and representation has been widely investigated in the supervised

learning setting (Blum and Langley, 1997; Guyon and Elisseeff, 2003; Vam-

plew and Ollington, 2005; Whiteson and Stone, 2006). As in the reinforcement

learning setting, Kaelbling (1993) proposes a generate-and-test algorithm for

learning Boolean functions that represent high performance actions in the en-

vironment. Representation search fits directly with continual learning, and the

56

generate-and-test algorithm offers a fully online representation search method

(Mahmood and Sutton, 2013). Mahmood and Sutton (2013) propose searching

for representation by generating and testing features. Mahmood and Sutton

(2013) show the effectiveness of the proposed generate-and-test algorithm on

a synthetic supervised learning task. The generator produces random LTU

features, and the tester evaluates the utility of the features and eliminates

features with the least utility.

Mahmood and Sutton (2013) propose three testers. The first tester uses the

magnitude of the outgoing weight as the measure for utility. The tester only

considers features with age—time steps since generation—beyond a certain

maturity threshold for deletion to protect the newly generated features. The

second tester keeps a moving average of the outgoing weight magnitude for

each feature—similar to our proposed tester. Finally, the third tester uses the

learned step-size and the magnitude of outgoing weight to measure the utility

of each feature. Learning individual step-size for each feature ensures certainty

in the outgoing learned weight.

The generate-and-test can be used both as an alternative or alongside the

backpropagation algorithm. Dohare et al. (2021) show that the initial random-

ness in the weights is critical to the performance of backpropagation. In con-

tinual learning settings, the backpropagation performance is severely reduced

after the initial randomness in the weights is lost during the training. Dohare et

al. (2021) suggest using a generate-and-test algorithm alongside backpropaga-

tion to mitigate this issue. Similarly, Rahman (2021) uses a generate-and-test

method for fast continual feature discovery.

The Cascade correlation algorithm learns a network by adding features one

by one (Fahlman and Lebiere, 1989). In each iteration, a pool of candidate

features is generated, and each feature is separately trained to maximize its

correlation with the error. The candidate feature with the highest correlation

57

with the error is added to the network, and the rest of the candidate features

are discarded. The Cascade correlation algorithm is similar to the generate-

and-test approach. The generator produces candidate features, and the tester

keeps the one with the highest correlation with the error and eliminates the

rest. Note that after a feature is added to the network, it will no longer get

removed. Unlike the generate-and-test algorithm by Mahmood and Sutton

(2013), the Cascade correlation network is offline.

6.2 Recurrent Neural Networks

RNNs are heavily used in sequence modelling tasks where the most recent

observation is insufficient to perform well on a task. Similar to the agent

state architecture, the hidden state of an RNN feeds back to itself, making it

possible for the RNN to retain information from the past.

The challenge is how to learn the weights of RNNs. The backpropagation

algorithm utilizes gradient descent to learn the weights in a multi-layer feed-

forward neural network (Rumelhart et al., 1986). Similarly, by unfolding RNNs

across time, BPTT learns the weight of an RNN to minimize the prediction

error (Robinson and Fallside, 1987; Werbos, 1988). Figure 6.1 shows how

an RNN is unrolled and effectively becomes a multi-layer feed-forward neural

network. BPTT may become extremely slow as the computational cost of

unrolling scales each time step—at time step t, the unrolling includes all the

time steps from 0 to t− 1.

58

unfold

...

Figure 6.1: BPTT unrolls the RNN to update the weights. The gradients are
computed back in time to make temporally distant associations. The unrolling
becomes computationally more expensive with time since BPTT unrolls back
to the first time step (figure inspired by Olah (2015)).

A well-known approximation to BPTT is truncated BPTT (T-BPTT), in

which the unrolling for the gradient calculation only considers the past T time

steps t−1 to t−T (Williams and Peng, 1990). Since the gradient information

for steps beyond T time steps in the past is ignored, temporal dependencies

further than T time steps cannot be captured (Williams and Zipser, 1989). T-

BPTT is considered one of the online learning algorithms for training RNNs,

but its computational complexity is far from ideal—O(n2h) for n units and

truncation of h.

Another approach to learning the weights of RNNs in online fashion is to

use forward-mode differentiation methods such as RTRL (Williams and Zipser,

1989). RTRL computes the gradient online by updating the Jacobian matrix

of the recurrent cell, which is prohibitively expensive, making it infeasible to

use in practice—time complexity of O(n4) for n units. There have been efforts

to approximate and reduce the computational cost of using RTRL. Tallec and

Ollivier (2018) use stochastic unbiased estimates of the gradient at the expense

of high variance, resulting in poor performance in practice. Mujika et al. (2018)

approximate RTRL using Kronecker product decomposition. Menick et al.

(2020) propose an approximation to RTRL by only tracking the parameters

that have a non-zero influence on the hidden state within a fixed number of

59

time steps. Javed et al. (2021) propose a method to reduce the computational

cost of training RNNs by modularizing the network into columns with scalar

states and tracking the influence of parameters within their columns.

Apart from computational issues, other problems arise when training RNNs

with gradient descent. When the spectral radius of the recurrent weight ma-

trix is greater than 1, the gradient components may increase exponentially.

This problem is referred to as the exploding gradient problem. The vanishing

gradient is the opposite, which means that the gradient components decay ex-

ponentially to 0 and happens when the spectral radius of the recurrent weight

matrix is less than 1. These issues significantly hinder the ability of RNNs to

learn long-term dependencies. Pascanu et al. (2013) propose gradient clipping

to mitigate the exploding gradient problem.

The solution to the vanishing gradient problem is an active area of study.

Alternative recurrent architectures such as Long Short-Term Memory (LSTM)

and Gated Recurrent Unit (GRU) are proposed to alleviate the vanishing

gradient problem (Hochreiter and Schmidhuber, 1997; Chung et al., 2014).

Incorporating skip connections into RNNs can help with the vanishing gradient

problem and capturing long-term dependencies (He et al., 2016; Chang et al.,

2017). The choice of the activation function also plays a role in the vanishing

gradient problem. For instance, the Rectified Linear Unit is less likely to be

affected by the vanishing gradient problem (Glorot et al., 2011).

6.3 Predictive Representation of State

Intelligent agents acquire knowledge about the world by interactions and ground-

ing the knowledge based on predictions about possible future experiences. Sut-

ton et al. (2011) propose using a collection of general value functions (GVFs)

to capture predictive knowledge of the environment. The predictive representa-

tion hypothesis proposes that representation of the state in terms of predictions

60

about the future experiences generalizes well (as in Rafols et al. (2005)). Pre-

dictive representation of the state use this idea and form the representation in

terms of predictions (Littman et al., 2001). There have been several attempts

to implement such a representation learning method which we discuss here.

Sutton and Tanner (2005) propose TD Networks to learn the representa-

tion based on interrelated predictions. TD networks represent the predictive

questions in a network of nodes. Each node represents a single prediction.

The nodes are interconnected, and the connections represent relationships be-

tween predictions and other actions, observations, and predictions (Tanner

and Sutton, 2005a). The agent then uses the predictions learned while inter-

acting with the environment as the agent state. Tanner and Sutton (2005b)

extended TD Networks to include a history of fixed-length past observations.

Sutton et al. (2006) propose forming the predictive questions based on op-

tions, which allows the TD Network to condition a predictive question on a

series of actions instead of only one action. Schlegel et al. (2021) introduce

General Value Function Networks (GVFN) by formulating the hidden state

of RNNs as predictions about the future experience and represent the predic-

tions using GVFs. Schlegel et al. (2021) show that GVFNs are less sensitive

to the truncation parameter compared to traditional RNNs when trained with

T-BPTT.

The central challenge of predictive representation methods is referred to as

the discovery problem (Singh et al., 2003). The discovery problem is concerned

with the choice of the predictions used in the representation—the question

network in the TD networks and the GVFs in the GVFN.

61

Chapter 7

Conclusion

Learning the agent state is essential for a reinforcement learning agent. The

agent state summarizes the agent’s interaction with the environment in a useful

way for predicting and controlling future experiences. In this thesis, we pro-

posed methods for learning the agent state online using the generate-and-test

approach. The idea behind the generate-and-test approach is to continuously

generate features and offer them to the agent for prediction and control, and

then replace the least useful features with newly generated features.

One of the challenges that the agent needs to address is to associate tem-

porally distant events. When the cue for a prediction of interest has happened

in the past, considering the current observation signals would not be enough

to make accurate predictions. We proposed the deep trace generate-and-test

algorithm to learn features that enable the agent to remember past events and

make accurate multi-step predictions. We studied the effectiveness of the deep

trace generate-and-test algorithm on the trace conditioning problem. In the

trace conditioning problem, the agent needs to remember the CS in order to

predict the arrival of the US accurately. Our experiments show that the deep

trace generate-and-test algorithm learns useful features, enabling the agent to

remember the CS for accurate prediction of the US.

In many cases of interest, remembering individual observation signals may

62

not be sufficient to make accurate predictions. For instance, in the trace pat-

terning problem, a particular configuration of active and inactive CSs triggers

the arrival of a temporally distant US. In order to predict the arrival of the

US, the agent must make features representing the specific configuration of the

observation signal and remember the configuration for future predictions. The

imprinting generator produces features that learn non-linear configurations of

observation signals. Our experiments show that the agent can learn non-linear

configurations of the CSs and accurately predict a temporally distant US by

utilizing the imprinting and the deep trace generate-and-test algorithm.

Our generate-and-test algorithms suggest that it is possible to develop

methods to learn the agent state online using the agent’s data stream of expe-

rience. Nevertheless, many aspects and questions are not discussed and remain

for future studies. We only showed that the agent state is used for prediction.

Reinforcement learning agents also may control the future trajectory. It is

interesting to study how to learn the agent state online when the agent also

needs to learn a policy and act in the environment.

In addition to the action-selection policy for controlling the future tra-

jectory, the agent state may be the input to multiple value functions or the

environmental model. Generally, the agent state may have multiple users, and

it is still unclear how to generate features that are useful to multiple users of

the agent state. Likewise, testing the features can be even more challenging

since a feature that seems useless to a particular user of the agent state may

be crucial for another user.

Another exciting aspect of online and continual learning is to deal with

non-stationary environments. The world is ever-changing and vast compared

to the agent and what it can learn. Different parts of the environment may

require drastically different behaviours and predictions, and an online learning

agent needs to adapt its predictions and policy when needed. Future studies

63

are required to understand better how to adapt the agent state when dealing

with such non-stationarities.

Finally, in this thesis, we propose a simple tester that measures feature

utility based on the magnitude of the outgoing weight. Intuitively, features

with larger weight magnitude contribute more to the final predictions than fea-

tures with smaller weight magnitude. Features can be indirectly useful, and

the tester should consider various types of usefulness. To simplify the tester,

we refrain from removing the features that are the basis for other features;

however, it is limiting as the tester only may remove features with no depen-

dent features. Future studies should investigate how to measure the utility of

features more thoroughly.

64

References

Blum, A. L., and Langley, P. (1997). Selection of relevant features and exam-
ples in machine learning. Artificial intelligence, 97 (1-2), 245–271.

Chang, S., Zhang, Y., Han, W., Yu, M., Guo, X., Tan, W., Cui, X., Witbrock,
M., Hasegawa-Johnson, M., and Huang, T. S. (2017). Dilated recurrent
neural networks. arXiv: 1710.02224.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evalua-
tion of gated recurrent neural networks on sequence modeling. arXiv:
1412.3555.

Dickinson, A. (1980). Contemporary animal learning theory. Cambridge Uni-
versity Press.

Dohare, S., Mahmood, A. R., and Sutton, R. S. (2021). Continual back-
prop: Stochastic gradient descent with persistent randomness. arXiv:
2108.06325.

Fahlman, S. E., and Lebiere, C. (1989). The cascade-correlation learning ar-
chitecture, In Advances in neural information processing systems.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural
networks, In Proceedings of the fourteenth international conference on
artificial intelligence and statistics.

Guyon, I., and Elisseeff, A. (2003). An introduction to variable and feature
selection. Journal of machine learning research, 3 (Mar), 1157–1182.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for
image recognition, In Proceedings of the IEEE conference on computer
vision and pattern recognition.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9 (8), 1735–1780.

Javed, K. (2021). Step-size adaptation for TD(λ)–comparing two algorithms.
https://khurramjaved.com/reports/stepsize traces.pdf.

Javed, K., White, M., and Sutton, R. S. (2021). Scalable online recurrent
learning using columnar neural networks. arXiv: 2103.05787.

Kaelbling, L. P. (1993). Learning in embedded systems. MIT press.
Kearney, A., Veeriah, V., Travnik, J. B., Sutton, R. S., and Pilarski, P. M.

(2018). TIDBD: Adapting temporal-difference step-sizes through stochas-
tic meta-descent. arXiv: 1804.03334.

Littman, M. L., Sutton, R. S., and Singh, S. P. (2001). Predictive representa-
tions of state, In Advances in neural information processing systems.

65

https://khurramjaved.com/reports/stepsize_traces.pdf

Ludvig, E. A., Sutton, R. S., and Kehoe, E. J. (2012). Evaluating the TD
model of classical conditioning. Learning & behavior, 40 (3), 305–319.

Mahmood, A. R., and Sutton, R. S. (2013). Representation search through gen-
erate and test, In Proceedings of the 12th AAAI conference on learning
rich representations from low-level sensors, AAAI Press.

Menick, J., Elsen, E., Evci, U., Osindero, S., Simonyan, K., and Graves, A.
(2020). A practical sparse approximation for real time recurrent learn-
ing. arXiv: 2006.07232.

Modayil, J., White, A., and Sutton, R. S. (2014). Multi-timescale nexting in
a reinforcement learning robot. Adaptive Behavior, 22 (2), 146–160.

Mujika, A., Meier, F., and Steger, A. (2018). Approximating real-time recur-
rent learning with random Kronecker factors. arXiv:1805.10842.

Olah, C. (2015). Understanding LSTM networks. https://colah.github. io/
posts/2015-08-Understanding-LSTMs/.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of train-
ing recurrent neural networks, In Proceedings of the 30th international
conference on machine learning.

Pavlov, I. P., and Anrep, G. V. (1927). Conditioned reflexes: An investiga-
tion of the physiological activity of the cerebral cortex (Vol. 3). Oxford
University Press.

Rafiee, B., Abbas, Z., Ghiassian, S., Kumaraswamy, R., Sutton, R. S., Ludvig,
E., and White, A. (2020). From eye-blinks to state construction: Diag-
nostic benchmarks for online representation learning. arXiv: 2011.04590.

Rafols, E. J., Ring, M. B., Sutton, R. S., and Tanner, B. (2005). Using predic-
tive representations to improve generalization in reinforcement learn-
ing, In Proceedings of the international joint conference on artificial
intelligence.

Rahman, P. (2021). Toward generate-and-test algorithms for continual feature
discovery (Master’s thesis). University of Alberta.

Robinson, A., and Fallside, F. (1987). The utility driven dynamic error prop-
agation network. University of Cambridge Department of Engineering
Cambridge.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal
representations by error propagation. In Parallel distributed processing:
Explorations in the microstructure of cognition, vol. 1: Foundations.
Cambridge, MA, USA, MIT Press.

Schlegel, M., Jacobsen, A., Abbas, Z., Patterson, A., White, A., and White,
M. (2021). General value function networks. Journal of Artificial Intel-
ligence Research, 70, 497–543.

Singh, S. P., Littman, M. L., Jong, N. K., Pardoe, D., and Stone, P. (2003).
Learning predictive state representations, In Proceedings of the 20th
international conference on machine learning.

Sutton, R. S. (1992). Adapting bias by gradient descent: An incremental ver-
sion of delta-bar-delta, In Proceedings of the tenth national conference
on artificial intelligence. MIT Press.

66

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sutton, R. S., and Barto, A. G. (1990). Time-derivative models of Pavlovian
reinforcement. In M. Gabriel and J. Moore (Eds.) Learning and com-
putational neuroscience: foundations of adaptive networks, 497–537.

Sutton, R. S., and Barto, A. G. (2018). Reinforcement learning: An introduc-
tion. MIT press.

Sutton, R. S., Koop, A., and Silver, D. (2007). On the role of tracking in
stationary environments, In Proceedings of the 24th international con-
ference on machine learning.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and
Precup, D. (2011). Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction, In Proceedings
of the 10th international conference on autonomous agents and multi-
agent systems.

Sutton, R. S., Rafols, E., and Koop, A. (2006). Temporal abstraction in temporal-
difference networks, In Advances in neural information processing sys-
tems.

Sutton, R. S., and Tanner, B. (2005). Temporal-difference networks, In Ad-
vances in neural information processing systems.

Sutton, R. S., and Whitehead, S. D. (1993). Online learning with random
representations, In Proceedings of the 10th international conference on
machine learning.

Tallec, C., and Ollivier, Y. (2018). Unbiased online recurrent optimization, In
International conference on learning representations.

Tanner, B., and Sutton, R. S. (2005a). TD(λ) networks: Temporal-difference
networks with eligibility traces, In Proceedings of the 22nd international
conference on machine learning.

Tanner, B., and Sutton, R. S. (2005b). Temporal-difference networks with
history, In Proceedings of the international joint conference on artificial
intelligence.

Thill, M. (2015). Temporal difference learning methods with automatic step-
size adaption for strategic board games: Connect-4 and dots-and-boxes
(Master’s thesis). Cologne University of Applied Sciences.

Vamplew, P., and Ollington, R. (2005). Global versus local constructive func-
tion approximation for on-line reinforcement learning, In Australasian
joint conference on artificial intelligence. Springer.

Wagner, A. R. (1978). Expectancies and the priming of STM. Cognitive Pro-
cesses in Animal Behavior, 177–209.

Werbos, P. J. (1988). Generalization of backpropagation with application to a
recurrent gas market model. Neural networks, 1 (4), 339–356.

Whiteson, S., and Stone, P. (2006). Evolutionary function approximation for
reinforcement learning. Journal of machine learning research, 7 (31),
877–917.

Williams, R. J., and Peng, J. (1990). An efficient gradient-based algorithm for
on-line training of recurrent network trajectories. Neural computation,
2 (4), 490–501.

67

Williams, R. J., and Zipser, D. (1989). A learning algorithm for continually
running fully recurrent neural networks. Neural computation, 1 (2), 270–
280.

68

	Introduction
	Background
	Learning Multi-Step Predictions Online
	Agent State Architecture
	Generate-and-Test Algorithm

	Animal Learning Problems
	Learning to Remember
	Learning Non-Linear Configurations

	Deep Trace Generator
	Deep Trace Features
	Experiment Details
	Results
	Parameter Study

	Imprinting Generator
	Imprinting Features
	Experiment Details
	Results

	Related Work
	Generate-and-Test
	Recurrent Neural Networks
	Predictive Representation of State

	Conclusion
	References

