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A b stract

It is well-known tha t a charged particle which is moving w ith a  constant accel­

eration emits radiation. There exists a  quantum  analogue of th is effect. A neutral 

polarizable body interacting with a quantum  field and moving w ith an acceler­

ation becomes a  source of quantum radiation. The origin of th is radiation are 

currents induced in the polarizable body by its interaction w ith zero-point fluc­

tuations of the quantum  field. When this body is moving w ith an acceleration, 

such currents generically produce a  non-vanishing flux of energy-momentum. This 

effect is known as the dynamical Casimir effect. The thesis studies this effect for 

special models of a  polarizable body and different types of its accelerated mo­

tion. The first example considered involves the constant accelerated expansion of 

semi-transparent spherical mirror-like surfaces, and specifically considers the cases 

of a single sphere and two concentric spheres. This expansion might model, for 

example, relativistic bubbles expected to  have formed during cosmological phase 

transitions. The second example concerns the quantum radiation em itted from a 

small dielectric body, with small refractive index relative to the vacuum value. For 

comparison, the radiation due to a  small ideal accelerated spherical mirror is also 

investigated. Special attention is paid to studying the quantum  radiation in the 

relativistic regime, where earlier only a  few results were obtained.
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C hapter 1

In troduction

1.1 A n Overview of Quantum  Field Theory in  

Curved Space-Tim e

Quantum mechanics and general relativity are undoubtedly two of the most in­

fluential scientific developments to emerge in the 20th century. In particular, the 

natural extension of quantum  mechanics into quantum  field theory has resulted 

with some of the most accurate predictions of any scientific theory. For example, 

quantum electrodynamics, the  quantized description of the electromagnetic field, 

can successfully predict the value of the electron’s anomalous magnetic moment to  

within one part in 1011 [36]. This leaves no doubt th a t quantum field theory, as de­

scribed by a  perturbation expansion, provides a  description of Nature th a t agrees 

remarkably well with experiment. At the planetary and cosmological scales, gener­

al relativity as a  theory of gravitation is also remarkably successful. For example, 

it accurately predicts the precession of Mercury’s orbit previously unaccounted for 

by Newtonian gravitation, satisfies all known precision tests to date, such as the

1
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deflection of starlight passing near the Sun, and provides the basis for meaningful 

study of black holes and the evolution of the Universe as a whole.

Given the successes of quantum field theory and general relativity, many a t­

tem pts to quantize the gravitational field have been proposed. Unfortunately, no 

one has yet found a self-consistent theory of quantum  gravity. The primary reason 

why is because the basic perturbation approach of quantum field theory becomes 

non-renormalizable when applied to the gravitational field, since the gravitation­

al fine coupling constant has dimensions of (m ass)-2 . This has led many people 

to consider, as a first approximation, the study of quantum field theory within a 

classical gravitational background, where the quantized m atter field is the source 

which induces the curvature of space-time. The general form of this approach is 

[22]

R^ — ^g^R =  8irG{7]w,>, (1.1)

where the left-hand side of (1.1) is the classical Einstein field equation, and (T^J) , 

the quantum  expectation value of the stress-energy-momentum tensor, also in­

cludes m atter sources which are designated as classical fields.

The study of how the zero-point energy interacts with the gravitational field 

via (1.1) receives considerable attention since this theory’s inception, and serves 

to challenge certain preconceived notions about space-time. Probably the most 

noteworthy of them all is the claim that conformal invariance is broken for the case 

of massless quantum fields, manifested by a non-zero trace in the quantum stress- 

energy tensor. Since the trace normally vanishes for massless classical fields, there 

exists w hat is known as a “trace” or “conformal” anomaly within the quantum  

field theory.

2
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Probably the most celebrated single discovery in studying quantum  field theo­

ry in curved space-time is the prediction by Hawking [26] that therm al radiation 

is em itted from a Schwarzschild black hole whose tem perature is inversely pro­

portional to its mass. This work not only solidifies a long-suspected connection 

between black holes and thermodynamics [5], it is widely accepted as a funda­

mental benchmark for confirmation of a  successful quantum theory of gravity on 

theoretical grounds. Unfortunately, there is currently no observational evidence to 

support the existence of Hawking radiation.

Much more promising in terms of experimental confirmation is the prediction by 

Unruh [43, 48] th a t a uniformly accelerated particle detector through a  Minkowski 

vacuum detects a therm al bath  of photon radiation, whose tem perature is pro­

portional to the detector’s acceleration. This is known as the Unruh effect I t is 

physically distinct from Hawking radiation because it concerns radiation due to 

the detector’s acceleration through flat space-time, while Hawking radiation comes 

about due to black hole formation, which necessarily involves a strong gravitation­

al field. However, there is a close relationship [48] between the two effects. This is 

because a continually accelerating observer asymptotically approaches the speed of 

light, which implies [5] th a t the corresponding plane of null rays acts like an event 

horizon, in the sense th a t there are events above it which are causally disconnected 

from the  observer.

1.2 Moving Mirrors

The examples listed above suggest a wide number of avenues available for studying 

quantum  field theory in curved space-time. In general, they involve considering 

how a quantum field couples to  the classical gravitational background under certain

3
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configurations. An im portant field configuration is one which includes the  presence 

of a potential barrier, whose strength may be very large relative to the  propagating 

field. If this barrier is sharply localized in one spatial dimension, then it can be 

called a  boundary. W hen the  potential barrier becomes infinitesimally sharp and 

its magnitude grows infinitely large, the boundary becomes a to tally  reflecting 

surface, commonly known as a mirror.

A research area undertaken by many people is on the interaction between a 

quantum vacuum and a  moving mirror. It is known th a t a  stationary m irror in 

flat space-time creates a  disturbance in the vacuum th a t forces the field modes to  be 

constrained on its surface. The most noteworthy example is of two neutra l parallel 

plate mirrors th a t feel an attractive force proportional to  the inverse fourth power 

of their separation distance. This is the famous Casimir effect, which has been 

the subject of considerable study on how the vacuum energy is affected by non­

trivial topologies. W hen considering moving mirrors, however, it is suggested th a t 

the time-dependent boundary conditions induce the emission of particles from the 

mirror surface in the form of quantum radiation. Considered originally by Moore 

[33] for the case of electromagnetic radiation, moving mirrors in quantum  vacua 

described by quantum  fields result in the dynamical Casimir effect, which forms 

the foundation behind th is thesis work, and is discussed in much greater detail 

later.

1.3 Thesis Research

The purpose of this thesis is to examine the quantum  radiation due to  a  massless 

scalar field em itted from polarizable bodies and moving mirrors in a num ber of 

situations. This basically entails finding the quantum  vacuum expectation values

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for zero-point fluctuations of the field, as well as the quantum stress energy tensor. 

The motivation for this problem comes from a number of intriguing applications 

where processes involving mirrors are considered. In addition to  using the (non- 

relativistic) dynamical Casimir effect to study sonoluminescence [39, 40], there are 

a number of open questions which require studying the dynamical Casimir effect 

in the relativistic domain. In particular, mirrors are intensively used in different 

gedanken experiments with black holes. The aim of these ‘experiments’ is to better 

understand the origin of quantum  radiation from black holes, and the nature of 

different quantum states near black holes. More recently, systems requiring mirrors 

are used for studying the physical nature of generalized black hole physics [44, 45, 

46] and the microscopic origin of black hole entropy [34]. In principle, quantum 

effects in systems with relativistic boundaries may have im portant cosmological 

applications. One example involves considering the creation and expansion of 

bubbles of a new phase during cosmological phase transitions. These applications 

are not considered here. Instead, attention is given to solving concrete problems 

with moving mirrors which allow for a complete analysis. The reason for this is 

that the results previously obtained for problems with four-dimensional relativistic 

mirrors are quite restricted, which is one of the problems when m irror modeling is 

used in the recent gedanken experiments.

Chapter 2 contains a concise account of the background m aterial required to 

formulate the problems considered. This is followed, in Chapter 3, by a study of the 

quantum radiation due to one and two spherical semi-transparent expanding mir­

rors. Chapter 4 then analyzes the quantum  radiation of an accelerated refractive 

body, and is followed in Chapter 5 by a similar study of an accelerated spherical 

mirror for comparison. The essential details of Chapters 3-5 are to  find the field 

and stress-energy tensor vacuum expectation values, and especially describe the

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



radiation fluxes emitted at distances very far away from the original disturbance 

due to the boundary conditions- A conclusion which draws together the results 

and points towards potential future developments from this thesis is then given in 

Chapter 6.

The space-time signature chosen for this thesis is +(d  — 1), where d is the 

number of spatial dimensions, and it is assumed that c =  1 for all subsequent 

computations.

6
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C hapter 2

Background M aterial

This chapter is intended to introduce the prerequisites for understanding how mov­

ing mirrors under various configurations and states of motion affect the  vacuum 

energy associated with a quantum  field. To motivate the  general problem, a knowl­

edge about the properties of zero-point fluctuations in quantum field theory is re­

quired. The tools to then describe these field fluctuations involve knowing how 

to quantize the scalar field, and how to develop the formalism of G reen’s func­

tions to  describe correlations between fields at different space-time events. This is 

contained in Section 2.1. Part of the analysis also requires knowing how quantum  

radiation appears at far distances from the source of emission. In particular, th is is 

considered for polarized sources th a t are accelerated through space. These topics 

are contained in Section 2.2.

One of the conclusions determined in the formulation of quantum  field theory 

in general space-times is tha t two observers may disagree about w hat constitutes 

a vacuum state. That is, one observer may perceive a vacuum described by a 

particular state, while another may detect particles according to the same state.

7
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T he inherent ambiguity of a particle concept which results from this conclusion 

renders it necessary to understand the notion of particle detection. Section 2.3 

gives a  description about Unruh detectors while under accelerated motion. Finally, 

Section 2.4 follows with a more detailed description of the physics behind the 

dynam ical Casimir effect.

2.1 Essential Principles

One of the most significant concepts to emerge from quantum mechanics is zero- 

point fluctuations. T hat is, for a harmonic oscillator system with frequency u) in its 

ground state, there is a non-zero energy E q =  fiuj/2 that cannot be removed [35]. 

This has im portant implications in finding a sensible description of a vacuum, since 

the  common-sense notion th a t a  vacuum is absolute nothingness [1] is inconsistent 

w ith  the previous statem ent.

Indeed, quantum field theory in flat space-time can be decomposed into modes. 

In th is decomposition, the mode amplitudes are equivalent to harmonic oscillators. 

As is known from quantum  mechanics, the creation and annihilation operators for 

an oscillator act on the given state by raising or lowering it by an integer, which 

corresponds to the creation or destruction of a quantum of excitation. Such a 

quantum  is then interpreted as a particle. For example, for the electromagnetic 

field, [1] the elementary quantum  of excitation is the  photon. A vacuum in quantum 

field theory is, therefore, defined as a ground sta te  in which none of the fields 

contain any excitation quanta.

However, this does not imply that the vacuum state has zero energy, since each 

vacuum state contributes a residual zero-point energy [5] of Huj/ 2. In fact, for a

8
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Hamiltonian operator for a scalar field described by

H ~ |  Yl + a*ak) uk
* k

=  £  »««;*, (2.1)

where a\ and a* are the respective creation and annihilation operators, the Hamil­

tonian expectation value for a vacuum state  |0) defined in terms of (2.1) becomes 

infinitely large, since

(0| H  |0) =  -+ oo. (2.2)
Z k

In flat space-time, it is possible to remove the infinite zero-point energy by “normal- 

ordering” the Hamiltonian, whereby the annihilation operators appear to  the right 

of the creation ones. Since energy measurements are only made in relative terms 

with respect to some arbitrary reference point, this procedure is perfectly reason­

able. It follows that the zero-point energy density (on the average) is uniform over 

space and can be ignored. When considering a  curved space-time scenario, howev­

er, this situation becomes much more complicated. This is because the  zero-point 

energy makes a contribution to the stress-energy tensor [5] for the Einstein field 

equations (1.1), so it is necessary to first determine how to isolate the divergences 

in the stress-energy tensor. For this thesis, which involves flat space-time situa­

tions with non-trivial boundary conditions, the  technical details are much simpler. 

This topic is discussed in greater detail later. For the moment, it is necessary to 

first discuss quantization of the scalar field.

9
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2.1.1 Scalar F ield  Quantization

It is convenient to  begin w ith the canonical quantization of a massless scalar field. 

For the sake of completeness, a brief overview is given for the case of a massive 

field in D-dimensional curved space-time. Consideration of the special case of flat 

space-time is given for specific examples in later chapters.

Starting [5] w ith an action S  defined in term s of a Lagrangian density C(x)

S  =  J  C{x) dDx , (2.3)

the most standard form of the Lagrangian density C{x) for a free scalar field <p(x) 

w ith mass m  in the external field is

£{x) =  i^y /-9{x)  \gT{x)Vp<p{x)Vv<p{x) +  (m2 -f- f R {x )) ¥?2(x)] . (2.4)

Here, ^ " (x )  is the contravariant metric tensor, V„ is the covariant derivative 

operator, and g(x) is the determinant of gliu(x). In addition to the mass coupling 

with cp2(x), there is a first-order coupling with the Ricci curvature scalar R(x). 

The constant scalar £ often takes on the values £ =  0 for minimal coupling and 

£ =  (D — 2)/(4(D  — 1)) for conformal coupling. It is possible to add higher-order 

curvature invariants constructed from the Riemann curvature tensor R ^a p  [19], 

bu t (2.4) is the lowest-order form which involves gravitation.

Evaluating the Euler-Lagrange equations w ith respect to <p(x) results in a gen­

eralized Klein-Gordon equation

[□ — m2 — f  .ft(x)] <p(x) =  0, (2.5)

where □ =  In defining a canonical quantization approach [5, 22], the

space-time manifold must allow for the foliation of space-time into hypersurfaces 

E with dimension (D  — 1). The remaining dimension, denoted by co-ordinate x Q

10
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which acts as the time param eter, identifies each £  by xq =  constant [22]. Then the 

norm al derivative defined w ith respect to E is where is a future-directed

norm al vector [5] in the direction of x q .

I t is possible to define an inner product [5, 12] of two solutions <pi(x) and <£2 0*0

by

(V1.V2) =  ~ i  f  [vi(x)n*Vp<pI{x) -  (n ^ V ^ iO )) &{*)] \ l ~ 9n{x )
J  2

=  -*  f  n^cpi(x) V n & (x ) \ J -g ^{x )  d£

=  - n 11 f  J ^ - g ^ i x )  dZ. (2-6)
« /E

where * denotes complex conjugation and g-z(x) is the determinant for the (D — 1)- 

dimensional induced metric on the hypersurface. The special property of (2.6) is 

th a t it is independent of the choice of hypersurface E which can be proven using 

G auss’ law [12], and so integrand J^ =  icpi(x) V  ̂ then a conserved

current [22].

The basic postulate of canonical field quantization is to consider <p(x) as an 

operator which satisfies the equal time commutation relations

^p(x°, x ) ,  <p(x°, x ')] =  0, (2.7)

[7 r (x ° ,x ),7 r (x ° ,x ')]  =  0, (2.8)

[y j(x ° ,* ),7 r (x 0, x ')] =  i 6 D~1(x  — x'), (2 .9)

where x ,  x '  are points on E, and 7r(x°, x )  =  8C/5(p =  yj—g(x)gfi0 (x )V  ̂ ( x 0, x )  is

the  canonical momentum conjugate to <p(x°, x ) ,  where ip(x°,x) = dcp(x°, x ) /d x ° .

11
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The solution to (2.5) can be expanded in terms of a  set of modes uk(x) in the 

form

¥>(*) =  5D [«*«*(*)+<*!«*(*)] > (2-10)
k

where the modes satisfy normalization conditions

(tifcj Ujy) =  5kk‘, =  &kk'i (Wfc, U^./) = 0 .  ( 2 .1 1 )

It then follows th a t ak, a£ satisfy the commutation relations

[®A:> fljfe'] =  [®fc’ =  ^kk’• (2-12)

The creation and annihilation operators with label k  are defined with respect 

to some Fock basis, and satisfy the  conditions

ak \ 0) =  0, (2.13)

ak \nk) =  y/n \(n  — 1)*), (2.14)

4 |n * >  =  v ^ T T |( n  +  l)*>. (2.15)

2.1.2 Zero-Point Fluctuations and Vacuum Polarization

It is mentioned th a t the zero-point energy density in flat space-time does not vary 

with location. Although this appears to be true on a statistical average, it is also 

true tha t there exist fluctuations in the vacuum which have significant measurable 

effects. The emergence of fluctuations in the vacuum can be understood in the 

following way. According to  Heisenberg’s energy-time uncertainty relation [1], it 

is known th a t

A E A t  > (2.16)

12
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where A E  and A t  are the uncertainties in the energy and time measurements, 

respectively. Although it does not hold the same sta tus as the more fam iliar 

position-momentum uncertainty relation, within a relativistic field theory context 

(2.16) is perfectly acceptable, since both  space and time co-ordinates can be treated  

as param eters [lj. For short enough time scales, this corresponds to large energy 

changes, where

A t  ~  10~21s, A E  ~  1 MeV, (2.17)

A t ~  10_24s, A E  ~  1000 MeV. (2.18)

Clearly, th is suggests that particle-antiparticle pairs can spontaneously emerge and 

an n ih ila te  w ith a lifetime in accord with (2.16), and th a t a  non-localization effect 

in space-time exists for space-time due to this uncertainty relation.

It is generally not known to w hat extent gravitation affects the nature of zero- 

point fluctuations [32], particularly when considering uncertainties on length scales 

comparable to  the Planck length Ip ~  10-35 m. Since general relativity is not renor- 

malizable by the standard techniques of field quantization, a  precise understanding 

of the problem is not solvable until a successful theory of quantum  gravity emerges.

From classical electrodynamics [24, 30], it is an experimental fact that, when

some dielectric object is placed in an external electric field, the bound charges 

induce an electric field to counteract it. This implies th a t the dielectric has a net 

polarization P  ~  XeE, where Xe is the electric suspectibility of the medium. It 

follows th a t Gauss’ law in differential form is modified to  become

V • D  =  47rp, (2.19)

where D  =  e E  is the dielectric displacement vector, e =  (1 +  47rxe)eo, and €q is 

the perm ittiv ity  in vacuum. It is evident from (2.19) th a t the polarization has the  

effect of screening the otherwise “bare” charge density.

13
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In  a similar way, the vacuum also becomes polarized [1] due to the zero-point 

fluctuations. For example, a  charged particle in the vacuum becomes exposed 

to  virtual charged particles surrounding it, which serve to screen its “bare” or 

true charge, effectively reducing its strength. The lifetime of such particles of 

mass m  is then on the order of A t  ~  h /m c 2. Clearly, it follows th a t particles 

w ith small m  serve to screen the charge more effectively than ones w ith large m, 

so electron-positron pair contributions dominate over muon pairs in the  overall 

vacuum polarization, since the latter are 200 times as massive. In quantum  field 

theory, it is the “screened” charge which is relevant to measurement, since vacuum 

polarization effects prevent the “bare” charge from ever being detected.

2.1.3 G reen’s Functions

Green’s functions play an im portant technical role in quantum physics, and this 

formalism is used extensively in this thesis. It is, therefore, instructive to give a 

basic overview of this topic and how it relates the central issues of th is thesis in 

studying the moving m irror problem.

It is known that, in m athem atical physics, Green’s functions provide a very 

powerful technique for solving inhomogeneous ordinary and partial differential e- 

quations, subject to either initial or boundary conditions.

To illustrate, consider in schematic form the differential equation [3]

L x ip(x) =  f ( x ) ,  (2.20)

where Lx is a  linear differential operator and f{ x )  is an arbitrary function. Then 

the solution ifi(x) can be w ritten  as the sum of a  complementary function and a

14
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particular function

xp(x) =  ipc(x )+ ip p(x), (2.21)

where ipc(x ) satisfies the  homogeneous equation Lx ipc(x ) — 0, and

ipp(x) = — j  G (x ,x ')  f ( x ' ) d x '  (2.22)

for some two-point function G{x,x'). If it can be shown that

Lx G{x,x') = - 5 ( x - x ' ) ,  (2.23)

then  G(x, x') is a Green’s function. This method of solving differential equations 

is very powerful because it provides a systematic approach towards solving inho- 

mogeneous equations for suitably behaved functions f ( x ) ,  so long as the Green’s 

function and the associated integral in (2.22) exist.

For this thesis, the problems under consideration involve the wave propaga­

tion  of massless scalar fields through space in the presence of a source generating 

the  field disturbance. In this case, the operator Lx can be identified w ith the 

d ’Alembertian Dx =  r f l,ditdl, for wave motion in Minkowski space-time, and /  (or) 

w ith some current source J(x). Then the corresponding equation (2.20) for the 

massless field ip(x) is

Dx V (x) = J(x), (2.24)

where the corresponding condition for (2.23) in D-dimensional space-time is

Ox G(x,x') =  - S D( x - x ' ) .  (2.25)

Then the solution to (2.24) can be written as

<p{x) = M * )  ~  j  G ( x ,x ') J (x ') dDx ’, (2.26)

15
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where (fio(x) is a  solution for the homogeneous equation <pQ (x) =  0.

There is an immediate physical interpretation which comes forth  from (2.26). 

Physical fields propagate inside null cones, and in order to preserve causality, it is 

assumed tha t this property occurs in future-directed null cones. For th is reason, 

G(x, x') must be chosen as the retarded or causal Green’s function  [30]. I t should 

be noted tha t there is also a corresponding advanced Green’s function  by symmetry 

where x 10 > x°, which is usually discarded in classical problems because it violates 

causality.

The Green’s functions and other objects which possess a similar singular struc­

ture play an im portant role in quantum field theory. For quantum  scalar fields 

defined according to  (2.7)-(2.9), the simplest form of Green’s functions are the 

Wightman functions

G * (x ,x ')  =  G ~(x ',x) =  (0 <p(x) tf(z') |0)

=  (2-27)
k

when evaluated using (2.10) and (2.12). The -+-(—) signifies that (2.27) is a positive 

(negative) frequency W ightman function.

It is from (2.27) th a t more complex forms of Green’s functions can be con­

structed. For example, the Pauli-Jordan or Schwinger function, defined as the 

average of a field comm utator relation, is

iG o(x,x ')  =  G+{x,x') — G~(x, x') ~  (0| [<p{x), ip{x')} |0 ) , (2.28)

while the corresponding average of field anticom m utator relations, called Hadamard’s 

elementary function, is

G^^(x, x') =  G+(x,x ') + G ~(x ,x ')  =  (0| {ip(x), <p(x')} |0 ) . (2.29)

16
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Strictly speaking, though (2.27)-(2.29) are called Green’s functions, they only 

satisfy the homogeneous equation

□ r  G{x,x') =  0. (2 .30)

The retarded and advanced Green’s functions introduced earlier are defined as

G r ( x , x ' )  =  — 9(x° — X*0 ) Gq(x,  x ' )  (2-31)

G a (x,  x 1) =  9{x'° — x Q) Go(x,  x'), (2.32)

where the Heaviside step function 9 is

1 x° > 0
9(x°) = 

They, and their average

0 x <  0.
(2.33)

G(x, x') =  |  [Gr (x ,  x ' )  +  G a (x,  re')], (2.34)

satisfy (2.25).

A particularly useful definition of vacuum correlation functions is the vacuum 

average of the time-ordered product of fields called the Feynman Green’s function  

or Feynman propagator

i G f (x,  x') =  (0| T  (<p(x) <p(x')) |0)

=  9(x° -  x'0) G+(x, x') +  9Or'0 -  x°) G~(x, x ’), (2.35)

with the property th a t it takes on the same value when x  and x ’ are interchanged,

and also th a t it satisfies

Ux G f { x , x ' )  =  5d { x - x ' ) .  (2.36)

17
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This Green’s function propagates positive frequencies to the future and negative 

frequencies to  the past.

For quantum  field theory in flat space-time (and more generally in a static 

space-time), it is often convenient to start with a  so-called Euclidean formulation. 

By making a Wick rotation x° —»■ i  r ,  the space becomes described by a Euclidean 

metric. This has the effect of converting the d ’Alembertian Ox into a positive- 

definite Euclidean form □#, where —► 6 ^ .  For many cases, it is possible to 

perform calculations first in the Euclidean formulation and then return the result 

to Minkowski space-time. In these calculations, the Euclidean Green’s function be­

comes im portant, since its analytic continuation to Minkowski space-time coincides 

with the Feynman propagator.

In addition, there are boundary conditions to consider, which serve to restrict 

the set of solutions of interest. To discuss this, consider the Green’s identity

J  [<t>{x') n'ip(x') — ip(x') □ '0 (x')] yj—g{x') dDx'

=  Jc  [*(*-) -  V M  v ;  0(x')] v '- S e M  (2-37)

Letting <f>{x') =  <p{x') and tpix') =  G(x, x'), it is shown that 

<p(x') =  — J  G(x, x') J{x') y j-g (x ')  dPx'

+  jf  [G(x, x') V ^ ( x ')  -  V (x') v ;  G(x, x')] \ / - S s (^ )  <*£». (2.38)

Quite often, two types of boundary conditions are considered. The first type is 

a Dirichlet boundary condition, where GD(x, x') |xeE =  GD( x ,x ' ) |x,€i; =  0. Then 

the first integral on the second line of (2.38) vanishes. The second type is the Neu­

mann boundary condition, for which the normal derivative rr ') !^ ^  =

18
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ntl^ ,llGN (x, E =  0 , where the prime denotes differentiation on x ' .

2.2 N ull A sym ptotic Infinities and the W ave Zone 

Region

Often, it is important to understand the radiation falloff rate at far distances from 

the localized charge distributions causing the radiation emission. It is possible to 

study this for the case of electromagnetism by performing a multipole expansion 

[47] of the field. For the radiation emitted by a set of accelerating charges, the field’s 

asym ptotic nature is then described by an infinite set of multipole coefficients.

This is one way of considering the problem. There is, however, another way 

to accomplish this goal, which involves a transform ation of the space-time itself. 

This is done by introducing a metric conformal transformation in the form

Qnv =  &(x)9(*v, (2.39)

where the conformal factor Q2(x) relates the physical metric g ^ x )  to  a non­

physical one g ^ ix )  by stretching or shrinking the space-time. This effectively 

adjusts the length scale between respective space-time points. By choosing an 

appropriate conformal factor such that the length scale increases with increased 

distance from the source, it is possible to describe infinity as a finite location on 

9nw

To demonstrate this [47], consider Minkowski space-time in spherical co-ordinates 

ds2 =  —dt2 + dr2 +  r2{dd2 +  sin2 6 dip2), (2.40)

where the co-ordinates hold their usual meaning, and introduce advanced and
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retarded null co-ordinates

v = t  +  r, u  =  t  — r. (2.41)

The new metric then becomes

ds2 =  — du dv +  — u)2(d02 +  sin2 6 dip2). (2.42)

The objective here is to consider the wave zone region where u, 6, and p  are

fixed while letting v —> oo. Here, it is possible to apply a conformal transform ation 

to  (2.42) by letting

g ^ x )  =  ^ ( a r ) ^ ,  ft2 =  4(1 +  u2)_1(l +  u2)-1 . (2.43)

By then defining a newr set of co-ordinates T , R  as

T  = tan - 1  v 4- ta n - 1  u, (2.44)

R  = tan - 1  v — ta n - 1  u, (2.45)

the new co-ordinates have ranges

-7T <  f  + R  < 7T, (2.46)

- 7 T  <  T - R < 7 T ,  0 <  R, (2.47)

and the conformally-transformed metric in term s of these co-ordinates becomes 

ds2 =  —d T 2 +  dR2 +  sin2 R  [dB2 +  sin2 6 dp2). (2.48)

This result (2.48) is precisely the metric for the Einstein static universe with the 

co-ordinate restrictions (2.46)-(2.47). It now becomes possible to identify different 

regions of infinity according to the boundaries defined by (2.48) in the following
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I

Figure 2.1: Conformal diagram for Minkowski space-time in two-dimensioned represen­

tation (6 and <p suppressed).

way. First, there is the past time-like infinity i~ a t the bottom  described by 

R  =  0, T  =  —7r, along with the future time-like infinity i+ at the bottom  described 

by R  =  0 ,T  =  x, where all the time-like geodesics run from i~ to z+ . Second, 

there is a spatial infinity i° a t R  =  x, T  =  0, where all the spacelike geodesics 

meet. Third, the outer edges of the manifold are described by three-dimensional 

null surfaces called the past null infinity f j~  and future null infinity . These 

are described by T  =  — x  +  R  and T  = n — R, respectively for 0 <  R  < 7r, where 

the null geodesics follow 45° lines from J ~  to J +.

It now becomes clear from (2.48) that, by a suitable choice of conformal factor 

and making the final co-ordinate change

V  = f  + R, U = T - R ,  (2.49)

th a t the wave zone region for fixed U has a  well-defined boundary on k7 +, and 

allows for a precise formulation of asymptotic behaviour of physical fields by per­

forming a conformal transformation leading to the metric ds2. To illustrate, it

21
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can be shown for the Klein-Gordon equation (2.5) with f  defined for conformal 

coupling that, under a  conformal transform ation [5],

[□ _ m 2 _ {{D _ 2)/4{D _ 1)} ^ (x)

[□ -  m 2 -  {{D -  2)/4(Z? -  1)} £(*)] <£(x)

=  Q.~{D+2)/2{x) [□ -  m 2 -  {(D  -  2)/4(D -  1 )} i?(ar)] <p(x), (2.50)

where

ip{x) =  OS2~D^ 2{x) cp(x). (2-51)

Classical and quantum  scattering problems for massless fields can be described 

using this approach. Consider the field (p in the conformal space, J ~  is a charac­

teristic (null) surface in this space. For given initial data on this surface, which 

are given by coi), where u>,- are angle variables on a unit sphere, it is possible

to solve the evolution equation and determine the field <p everywhere in space­

time. This includes its future null infinity boundary J +, where the field (p takes 

the value <E>+(£/, a;,-). Finding $ +(£/, u>i) for given $ - (V, a;,) can be considered as a 

formulation of the classical scattering problem.

From (2.51), it  follows that the ‘physical’ fields near J*- behave as <p ~  

< £ ± /r (£>-2)/2  This is the standard behaviour of a radiated field in the wave zone. 

Studying the characteristics of radiated fields in the wave zone can then be per­

formed in two equivalent ways: either by direct series expansion of objects in the 

inverse powers of the radial distance r  along future directed null rays, or in terms of 

special limits of these objects on J +. These approaches will not be distinguished 

further. In the following chapters, the objects of interest (that is, energy density

2 2
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fluxes and fluctuations) are calculated directly in physical space, but often use the 

notion of J ± null infinities.

2.3 A ccelerated U nruh-D eW itt D etectors

In the thesis, the m ain discussion is on local observables w ithout considering the 

particle content of the  theory. In other words, we shall analyze how much energy 

is emitted during some interval of time, rather than the num ber of particles ob­

served in this radiation. These two problems, being closely related nevertheless 

require different types of calculations. To calculate particle production requires a 

knowledge of Bogoliubov coefficients, while flux calculations are obtainable from 

Green’s functions. In principle, by knowing a specially chosen Green’s function 

(Wightman positive frequency function), i t  is possible to  also answer questions 

about the particle aspect of the radiation. To illustrate this, a brief discussion of 

the Unruh effect is in order.

It is generally accepted tha t m atter field quantization in a generic curved 

space-time background does not admit a  meaningful particle interpretation. To 

understand why first requires a brief analysis of particles in Minkowski space-time 

[5]. For an inertial observer, the associated vacuum sta te  is invariant under the 

Poincare group of transformations, which also leave invariant the positive frequen­

cy field modes corresponding to it. Therefore, an agreed-upon notion of a vacuum 

state appears, and so observation of a particle by one detector can be conveyed 

unambiguously to all other detectors related by Lorentz transformations.

For detectors in curved space-time [5], however, the Poincare symmetry is not
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available, though the  space-time may have enough symmetry to  allow for a  defi­

nition of “in” and “out” regions, where the field interactions tend to zero. These 

regions can then  be defined to have respective vacuum states, each described in 

terms of distinct sets of field modes. If  the space-time is not stationary, the defi­

nitions of positive and negative frequencies in the past and future regions are not 

equivalent. Therefore, if a particle detector is constructed so th a t it does not reg­

ister particles in the “in” region’s vacuum state, it will detect quanta in the “out” 

region. It appears th a t particle detection is observer-dependent, and the detector 

can be excited even in the Minkowski vacuum in flat space-time, bu t only if it does 

not move inertially.

To illustrate this, consider a model for particle detection proposed by Unruh [43] 

and DeW itt [10]. I t detects a massless scalar field ip. The interaction Lagrangian 

is chosen

-Lint = m(r)(p(x{r)), (2.52)

where m (r ) , the  monopole moment of the  detector a t proper time r , is treated as a

point object, and x^  (r) is the world-line of the detector along a Killing trajectory. 

Let the detector have a discrete set of internal energy levels denoted by eigenstates 

\E), where the ground state corresponds to  E  =  0. W ith respect to  the world-line, 

it is possible to describe m (r) in terms of the  Heisenberg equation or motion

m (r) =  elIiT m(0) e~tHr, (2.53)

where H \ E ) =  E \E ) .  Then the m atrix  elements corresponding to a particle 

detection is given by

{E \m {r)\E ')  =  e^E- E')r (E\m{0) \E ') . (2.54)

Consider the detector when initially prepared in the ground state, and the 

scalar field is in sta te  ip. Then, from (2.54), the transition am plitude from |0, ip)
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to \E,ip') is

A (E , iff |0, rff) =  (E, ip'\T  (exp (* Lint d r )  )  |0, ip) , (2.55)

where T  is again the time-ordering operator. This expression (2.55) can then be 

treated as a  first-order perturbation if the monopole moment is small enough that 

radiative corrections to Liat are negligible. Therefore,

A (E ,  ^'lO, ip) «  i  (E, ip'\ f  m (r)^ (x (r)) d r  |0, ip)
J — o o

=  i  (E\ m(0) |0) eiEr {ip'\ <p(x(r)) \iP) dr, (2.56)
J —OO

and the to ta l probability of the  detector reaching the excited sta te  E  is 

P (E )  =  £M (£ ,V > '[ 0,<W I2

/ O O  r o o
dr j  dr'e~tE{T~T) (ip\(p(x(r)) <p(x(r')) |ip) .

-OO J —oo

(2.57)

From (2.57), the double integral in the total probability is then known as the 

response function

T(.E) =  / “  d r  d T 'e - iB^ G * ( ,p ( x ( T ) ) 'p ( x ( T ' ) ) ) ,  (2.58)
J —oo J—oo

where the positive frequency W ightman function [5] is the correlation function that 

senses the “particle bath” once the detector is in motion. The m atrix element in 

(2.57) indicates the selectivity of transition, which is determined by the internal 

properties of the detector.
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2.4 Dynam ical Casimir Effect

After th is brief introduction, it is possible to discuss the essential ideas concerning 

this thesis, th a t of moving mirrors in flat space-time. It is, however, instructive to 

first briefly discuss some basic principles about stationary mirrors in a quantum  

vacuum, and then discuss the  dynamical case.

2.4.1 Essential Principles

A mirror is a potential barrier sharply localized in space th a t is often (though 

not always, as shown in the  next chapter) treated as a perfectly reflecting surface 

[17]. W hen in the presence of a quantum vacuum, the m irror acts like a potential 

barrier which forces the field modes to become constrained on its surface. This is 

the essence of the Casimir effect, and much literature has been produced on this 

subject since the first discovery. (For discussion, see [37] and references therein.) 

Originally developed as a theory to  explain van der Waals attraction between 

atoms, it became re-interpreted as interactions with the zero-point fluctuations of 

a given field. The resultant Casimir force can be either attractive or repulsive, 

depending upon the m irror’s geometry. For example, the Casimir force is repulsive 

for the case of a single spherical shell, originally considered [6 ] to stabilize a classical 

model of the electron by balancing out the Coulomb force.

Formally, the Casimir energy is a  divergent quantity because all the field modes 

contribute in the infinite mode sum. However, the boundary only significantly 

affects only those modes which occupy a low number density of states, so those in 

a high number density have to  be scaled out to determine the mirror’s effect on 

the energy. In flat space-time, this is possible by subtracting the vacuum energy
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without the mirror. This process of renormalization then renders the Casimir 

energy finite.

The dynamical Casimir effect is a generalization of this phenomenon for a mov­

ing m irror system, in which photon radiation is em itted from the mirror’s surface 

[17] while undergoing non-uniform motion in the presence a  massless quantum  field. 

The physical explanation [8 ] is th a t motion of the m irror induces motion of the 

surrounding field modes; since the mirror’s position is continually changing with 

time, the field modes must accordingly change frequency, causing excitations [8 ] in 

the form of photon radiation for the case of electromagnetic radiation. The actual 

emission comes from fluctuating currents present on the  surface of the m irror [8 , 9]. 

It must be stressed here th a t  the dynamical Casimir effect appears only when the 

m irror undergoes accelerated motion. Clearly, this is because of the equivalence 

between rest frames and uniformly moving frames due to  Lorentz invariance.

Much of the established work on the dynamical Casimir effect involves m irror 

motion in two-dimensional space-time. This is because quantum field theory for 

a  massless field in such a  space-time is conformally flat, and so the computations 

simplify considerably, since it then becomes possible to  map the original problem 

[17] into an equivalent problem  with static boundaries. This results in a very 

general expression for the radiation flux at far distances which is proportional to 

the second derivative of the m irror’s velocity [20, 12]. For space-times of higher 

dimensions, however, the situation is less easily solvable, since they often lack the 

symmetries to simplify the problem.
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2.4.2 Vacuum Field Fluctuations, Stress-Energy Tensor, 

and Renormalization

The m ain objective in this thesis is to calculate the vacuum stress energy tensor 

due to  moving mirrors in various situations. These objects are formally divergent 

and need to be renormalized in order to extract any physical meaning from them. 

Fortunately, there are some well-known methods available to remove these diver­

gences. The one used in this thesis is called point splitting, in which the object 

of interest is first evaluated using a function defined a t x, x ', and then  evaluated 

in the  limit as x' —y x. The Green’s functions defined above provide a  natural 

means to evaluate these vacuum expectation values. The divergences can then be 

removed by renormalization before the limit is taken, leaving a finite result. This 

is reduced to changing G(x, x') by

space-times [5], it can have divergent terms associated with curvature dependences. 

The zero-point fluctuation expectation value is then

For the vacuum stress-energy tensor, it is formally obtained by first varying the 

action (2.3) with respect to the metric such tha t

Gren(x ,x ') =  G(x,x') - G q{x , x '), (2.59)

where Gq(x , x ') is a free Green’s function.

In flat space-time, G § \ x ,  x') is a free Green’s function, while for more general

( S i x ) ) ™  =  ( o i ^ w i o r

T■LflV
2 SS

y /^ g S g f"

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



=  (1 -  2 f ) Vf.cp V v<p +  ^2f -  ^  g ^  ga0 V a<p V P(p

- 2 £<p (V^V,, tp -  g ^  □ cp) +  f  ( r ^  -  i  g ^ R j  <p2. (2.61)

When considering conformal coupling for f , it  follows that =  0. In term s of 

the Hadamard function, it is shown that

( T ^ ( x ) r a = (0| Tftvix) |0)ren

=  lim D ^ G [ l l ( x ,x ' )  (2.62)
x'-*x

where

D v *  =  ( | - f )  +

£ u ■+■ g ^  (D +  D )] -+- — ^Rfu/ — •

(2.63)

The unprimed operator acts on the first argument and the primed one acts on the 

second.
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C hapter 3

Q uantum  R adiation  from  

Spherical Sem i-Transparent 

E xpanding M irrors

Most moving m irror problems considered were in two-dimensional space-time to  

take advantage of certain inherent symmetries tha t simplify computations. Among 

the relatively few in four-dimensional space-time is one [15, 16] which considers an 

expanding spherical mirror system where quantum radiation is emitted off the 

surface. The approach taken is to solve it as a static boundary value problem in 

Euclidean space-time by the method of images to  obtain the Green’s function, then 

Wick rotate the tim e co-ordinate to obtain the solution.

This chapter describes a variation on this original problem by considering semi­

transparent boundaries instead of a true mirror surface. It has relevance in mod­

elling quantum effects of relativistic bubbles likely to have been generated from 

cosmological phase transitions. Because the problem can be solved in arbitrary
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dimensions, the  results are presented in .D-dimensional space time. The steps in 

this chapter [17] are to  first formulate the problem in Section 3.1, which establishes 

the underlying principles. In keeping with the previous work on this topic, [15] 

two models are considered. The first one (Model A) considers the expansion of one 

spherical mirror, while the second one (Model B)  considers two concentric mirrors. 

In Section 3.2, an outline of the Green’s function in D-dimensions is formally given, 

with specific calculations for both models. This is followed by calculations of the 

renormalized zero-point fluctuations and stress-energy tensor expectation values 

in Sections 3.3 and 3.4, respectively. After considering the emission of quantum 

radiation in Section 3.5, the chapter concludes with a brief discussion in Section 

3.6.

3.1 Formulation of th e  Problem

Consider first a  flat space-time metric in Cartesian co-ordinates We write the metric 

of the flat space-time metric in Cartesian co-ordinates as

ds2 = - d T 2 + Y ,{d X i)2 . (3.1)
i=i

where d =  D  — 1 refers to the number of spatial dimensions. By Wick rotating the

time T  —> iXo, the  Euclidean form of (3.1) is

ds% =  ' t i d X t f . (3.2)
fi=o

From (2.25), the Euclidean Green’s function in flat space-time then satisfies

Oe G ( x ,  x ' )  =  — SD(x, x'), (3.3)

which satisfy the necessary boundary conditions, and where

d 82
* * = Y . g x 2 -  (3A)ii=o
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The boundary-free Euclidean Green’s function Gq{x,  x ' )  in Cartesian co-ordinates, 

by definition, vanishes at infinity, and so from (3.2) it takes the form

, r ( f  - 1) i
G q{x , x ) — 47r£,/2 \x — X' | D -2 ’

where

(3.6)
n=o

The zero-point fluctuations expectation value (<£2 (x))ren is then  (2.60) in terms of 

the renormalized Hadam ard function

*') = & ( x ,  x') -  2G0 ( i ,  x ' ) . (3.7)

and the stress-energy tensor is (2.62), where (2.63) in flat space-time is

D ‘“/  ~  G -  v“v , / + G _ D  r,,“/

-  if(V „V „ +  V„,V„). (3.8)

The semi-transparent mirror can be introduced by including in (3.3) a potential 

in the form

Vx = V05d{Z), (3.9)

where E is a time-like d-dimensional hypersurface representing the motion of a 

(d — 1)-dimensional mirror surface. The delta function in the  potential allows for

partial field tran sm ission. When Vq —> oo, the transmission coefficient vanishes,

leaving a perfectly reflecting mirror.

The precise form of (3.9) is dependent upon the configuration of interest. Given 

th a t

R 2 = £ x ?.  (3.10)
1 = 1
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Figure 3.1: The geometry of Model A. Solid lines in the left figure represent motion of 

spherical semi-transparent mirror S  in the space-time. A dash-dotted line in the right 

figure corresponds to the surface E e in the Euclidean space obtained by the Wick’s 

rotation T  —► iXo-

Figure 3.2: The geometry of Model B.  Solid lines in the left figure represent motion of 

spherical semi-transparent mirrors Ei and E2 in the space-time. Dash-dotted lines in the 

right figure correspond to the surfaces E i a n d  E2, e  in the Euclidean space obtained 

by the Wick’s rotation T  —► iX o-
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the single m irror motion o f Model A  described by the surface world-sheet E is

R 2 - T 2 =  ft2, (3 .11)

while for the concentric m irror system of Model B  described by internal and ex­

ternal m irror world-sheets S i  and E 2 , respectively,

R 2 - T 2 =  bf, (3 .12)

R 2 - T 2 =  b2, (3 .13)

where 6X <  62 by assum ption. I t is evident from (3 .10) (3.13) that the mirrors 

are spherical and are moving with constant acceleration a* =  b~l orthogonal to 

the m irrors’ surfaces, since their motion describe hyperboloids in space-time. By a 

Wick rotation T  —> iX 0 , the  £ t- become £e,,-, a  d-dimensional sphere S d of radius

b embedded in a D-dimensional Euclidean space. Therefore, the Euclidean forms

of (3 .11) (3 .13) for S e  , and respectively, are

R 2 + X 2 = b2, (3 .14)

R 2 + X 2 = b2, (3 .15)

R 2 + X 2 = b\. (3 .16)

3.2 Calculation o f Green’s Functions

3.2.1 Green’s Functions in Spherical Co-ordinates

Having re-formulated the  problem in terms of Euclidean space-time, the next step 

is to obtain the D-dimensional Green’s function. Since the boundary now describes 

a d-dimensional sphere, it  is appropriate to re-define the  problem by param etrizing 

the line element d£l\ on a  un it d-dimensional sphere. At this point, it should be
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noted th a t the description below applies to D  > 2 only, and the two-dimensional 

is considered separately as a special case later.

S tarting  with

d n \  =  d&i, (3.17)

dfl2 =  d# 2 -I- sin2 dCl2_x > (n =  2 , . . . ,  d ) . (3.18)

the line element dQd can be written in the form
d

d n 2d = dtfi d d j , (3.19)
tj= i

where

=  diag (1 , sin2 &d(l, sin2 dd-x (••••))) >

yfcid. = yjdet =  sind - 1  sind - 2  -Qd-x ■ ■ • sin d2 • (3.20)

Then the line element (3.2) can be re-written as

d s |  = dp2 + p2 dQ2d , (3.21)

where

R  =  psindd, Xo =  p c o s ,dd. (3.22)

Using this formalism, the Euclidean d ’Alembertian operator for (3.4) is

D e =  7 d ~ p i pdd~p)+ ~ ? ^ d ' (3'23)

where A d is the Laplace-Beltrami operator [7, 38] on S d. The eigenfunctions 

corresponding to S d are generalized spherical harmonics Y(Q) which satisfy the 

eigenvalue equation

Adr ( f i )  =  XY(Q)  (3.24)
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It can be shown [27] that the spherical harmonics on S d are

 o o  =  ^ (3.25)

where

2A +  71 — 1 (A —J— / —f— T2. — 2)!
(A -1)1

1/2

(sin i9) -(n-2)/2

(3.26)

and where P£(x)  is the associated Legendre function of the first kind. The integers 

h , hj ■ • • »Id hi (3.25)-(3.26) which satisfy

Kl| <  h  <  - • • <  Id- 1 5: Id i (3.27)

are equivalent to  the magnetic quantum  numbers in three-dimensional space. It 

follows tha t the generalized spherical harmonics satisfy the normalization

J d f l i .. .dtid yJvtdYid,..ii • Y*vd...vl =  8idi'd *• , (3.28)

and form a complete set of functions on S d. Therefore,

&dYid...h =  —Id (I d + d — 1 )Yid_i1 , 

where, to simplify notation, L  =  Id , W  =  {/<*_!,..., l\}. Then

(3.29)

^d^L W  =  ~ L{L  +  d — , (L >  0), (3.30)

where

J  dQj Yl w {Q) Y*L 'W '( S l ')  = $ L L ' 5 w w  ,

dQd =  d d i . . .  dddy/fid,

(3.31)

(3.32)

S w w  — ?

36
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and

OO __
=  ^ ( n ,n ,) > (3.34)

L = 0  W

is the completeness relation.

The Euclidean Green’s function can now be written in the form

Ge (x , x ') =  f ] '£ G L (p ,p ')Y LW(n ) Y * LW(n ,) 1 (3.35)
L = 0  W

where (3.35) satisfies the equation

(□ e  -  Vcs )GE(xfa) = -6 “ f a x ' ) . (3.36)

Because the  external potential V^B is dependent only on p, it remains invariant

under rotations. Therefore, the  radial Green’s function Gl {p, p') obeys the equation

[dP i f  dp) p ^ 2 L ( L + d - l ) - / V t ( p )

which is self-adjoint, so th a t Gl {p , p') =  Gl (p', p)-

Gl {p , p') =  - 8 { p - f / ) ,

(3.37)

Since the  radial Green’s function Gl has no dependence on the collective index 

W ,  it is possible to sum over W  in (3.35) [38], which leads to

£ l W ( f i ) y * LWr(fi/) =  7?d(2 L +  d - l ) C i d_1)/2 (cos7 ) , (3.38)
w

where 7  is the  angle between and Gl' on the unit sphere S d, C^ - 1 ^ 2 (x) is the  

Gegenbauer polynomial, and

*  =  I Mld 47r(d+ 1) / 2

(3.39)
( d - l )V d ’
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where

v- = f (5 ) '  (3-4o>
is the  volume for the d-dimensional unit sphere.

By writing (x) in terms of the hypergeometric function F (a , 6 ; c; z)

c ^ 1)/2<*> -  % d ~ w  F { ~ L ’L + d - 14 ' - (3 -41)

and noting the normalization condition F(a, b,c;z =  0) =  1, it follows th a t

^ ‘ 1,/2«  -  <3'42>

Then the Euclidean Green’s function is

g e (x,x') =  V d j r ( 2L +  d - i ) g L(p , l, ' ) c i ‘‘- 11/:!(cos7 ),  (3.43)
L= 0

where 7  is a geodesic distance between two points (fi15 . . .  fid) and (tfj, . . .  fid) on 

the unit sphere. It is defined as 7  =  7  ̂ by the following relations

7i =  0 i — 0[ > (3-44)

cos 7 n =  cos fin cos fi’n + sin fin sin fi'n cos 7 n_ i , n = 2 , . . . , d .  (3.45)

An ambiguity in the choice of the spherical co-ordinates connected w ith rigid ro­

tations of space can be used to put $ 1  =  . . .  =  fid- 1 =  0  and ^  =  . . .  =  fid_x =  0 ) 

for any chosen pair of points on the unit sphere.

3.2.2 M odel A

To obtain the radial Green’s function for the single mirror problem, it is necessary 

to solve the homogeneous equation

L  f pd ± _ \  _
dp \  d p )

pd~2 L(L + d — 1) R l = 0 . (3.46)

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For the single mirror, the  potential in (3.37) is

Vx(p) = V05 ( p - b ) (3-47)

Clearly, there are two linearly independent solutions, an increasing one pL+ which 

is regular a t the origin, and a decreasing one p^~ which vanishes a t infinity, where

L + = L ,  L -  =  - { L  + d  — 1).

From here, the radial Green’s function can be constructed for the

{ A - p f -  + A+pL+)(pf)L+, 0 < p f < p < b ,

(3.48)

B f f ~  . 0  <  p' < b < p, (3.49)

(C -  (f/)L- + C+ (p ')i+ ) , 0  < b < f / < p .

The inherent symmetry in the Green’s function determines Gl {p, p') for other pos­

sible relative positions of p and p1.

The radial Green’s function Gl (p, p') is continuous throughout the region, while 

its first derivatives have jum p discontinuities. The form and location of the  jumps 

directly follow from equation (3.37) with potential (3.47). The jum p at p =  p' then 

takes the form

1rd£W p,poi 'dgL{p,p’y
dp p= ( / + 0 dp p = f f -  o (pT  ‘

(3.50)

For p' 7̂  6 , the jum p a t p =  b is

’dgL(p,p')' rd ^ (p ,p ') i
dp p=fc+0 dp p=b—0

=  VQGL(b,p').

By using (3.49)-(3.51), the coefficients in (3.49) are determined to be

1 „  1

(3.51)

a_ = c.+
2  (£  +  & ) ’ 
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A +  —  —
_________ Uo_____________1 _
2 (L +  0d)(L +  fa  +  Uq) ’

C _  =  -
Uo b 2 L + d - l  j

where

2 (L +  & )(L  +  &  +  t/0)

d - 1  6F0
A  =  — . U0 =  — .

For the case when Vo =  0, the relations among (3.49) simplify to

1

(3.52)

(3.53)

A_ =  C+ =  B  = , A + =  CL =  0 (3.54)
2 L +  d — 1

In this limit, the Green’s function G e ( x ,  x ' )  coincides with the free G reen’s function 

(3.5). This can be easily verified by using the relation [38]

1 1 00

\ X - X ' \ * - i  r]d ^ 0^ 2 L  + d - l

where p> =  max (p, p') and p< =  min (p, p').

£  £  of .  , u»-(n) v-w (n'), (3.55)

By subtracting the free Green’s function Go Or, x') from Ge (x , x '), the renor­

malized Green’s function is

G g-(* ,z ')  =  £ £ e r ( A p ' ) i L H ' ( n ) y OT(n , ) 1
£ = 0  W

where

s r ( p ,p ' )  = -
Uo

2(L  +  Pd){L +  j3d +  I/o) 1

' { f ) \  0  <  p, fit < b,

(3.57)
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3.2.3 M odel B

Calculating the Green’s function for Model B  is similar to that of Model A, except 

th a t

V*(p) =  Vj. 5{p -  60 +  V2 S(p -  b2) . (3.58)

It follows that

Q l ( p , p ' )  =  -

(-4- f f -  +  A + f f * )  (j/)L*, 

{b . ^ -  + B ^ p f * ) y ) L*,

C A W 1* ,

0 < p' < p < bi,

0  <  (J <  6 i <  p < b2,

0  <  f t  < bi < b2 < p,

c ~ l (d .  f f -  +  D+ f f * )  { E - y y -  + E +y ) L*), o <  h  < P’ < P <  &*,

i f -  { F . y ) L- + F+y f * ) , 

i f -  (g . ( p ')1-  + G +y f * ) ,

0  <  &1 <  p' < b2 < p,

0  <  bi < b2 < p’ < p.

(3.

After straightforward bu t long calculations, it is shown that

1

2QL blL+d~1

2  {L + p dy
c  = L  +  (3d

2 n L ’

B+ = D+ = U2 1 
2ClL blL+d~l ’

B _ = D.. =
L + fid +  U2 

2 Q l
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E+. — Fa- —
L  -+- fid -+- Ui 

2f2  l
E -  = F - = Ux

2Q.l
b2L + d- X }

G -  = [ L  + Pd

As with Model A, the notational simplifications are

Ux =
bxVr

U2 =
h V 2

1 L
- f t )

2L+d—l

(3.60)

f a  =
d -  1

f 2 i  =  (L  -f- /3d +  Ui)(L -f- fid +  U2) — UiU-iPfi,. (3.61)

Having now obtained expressions for the radial Green’s functions, it is necessary 

to renormalize them by subtracting off the vacuum radial Green’s function Q\ , in 

order to calculate (<p2)na and (T^)ren. To find requires setting Ui = U2 =  0 

from (3.59). As expected, the vacuum radial Green’s function has the same value 

in the inner region (p' <  p < &i), outer region (b2 < p' < p), and intermediate 

region (6 i < p' < p < 62)1 so tha t

1

2 (L + j3d) pl -  p,l+ •

Therefore, it follows that

e r ( A P ')  =  A +(pp')L ,

for the inner region (p1 < p <b{),

G T (p , p ') =

for the outer region (b2 < pf < p), and

1

G -
{ppf )L+ d—l  >

sr(p,p') = Ui (L + Pd + U2)
bjL+d~l

(ppf)L+d~1

(3.62)

(3.63)

(3.64)
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+ U2 (L +  0d + U1) - t e Q =i -  Ux U2 7 l ( j f i i L - i  +  ^ 5 = l )

(3.65)

in the interm ediate region (6X < / /  <  p <  6 2)-

As expected, G£n(p,p?) is a symmetric function of its arguments. It is easy to 

verify th a t when one of the potentials, U\ or U2 , vanishes, expressions (3.63)-(3.65) 

for Q£a reduce to  (3.57). In the other lim it of perfectly reflecting mirrors, when 

Ui = 1/2 =  0 0 , relations (3.63)-(3.65) correctly reproduce the result of [15].

which implies th a t p' = p and angle 7  =  0 . For Model A, this means that, for 

(3.42), (3.43), and (3.57), the result is

3.3 Calculation of ((p2)

3.3.1 M odel A

Finding (<p2)ren amounts to  determining G£n(x, x') in the coincidence limit x' —> x

a ? Y "  =  G r(x ,® ), (3.66)

Uom  I F ^ ( (p /b )2, Uo + ( d — l ) / 2 ), p < b ,  

b < p,

(3.67)

where the function is

= E
OO V 1 ** L

LI (d — 2)! (L +  /3) ‘
(L + d -  2)!

(3.68)
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It can be shown th a t a t the centre p =  0,

< « P  =  0 , ) -  =  (3-69)

and from the properties of hypergeometric functions, tha t (3.67) becomes divergent 

as p -¥  b.

Because the  divergence involves the  behaviour of the series at large L, it is 

possible to  estim ate the leading divergence by setting /? =  1 in (3.68). Then it

follows th a t the  leading divergence of near z =  1 has the  form

~  (d~—~2 )~(1~-- z)d~2' <3 '7°>

Therefore, the  divergent part of {<p2(p =  0 ))ren at p =  6  is

(< P 2 ( p ) > en ~  - p _ x ( d _ 2 )  ( l - x 2 ) d - 2  ’ ^3 ' 7 1 ^

where
f

p/b, p < b ,

x  = (3.72)

b/p, b>  p.

In the lim it as ?7o -4  oc, elementary functions can be used to  express {cp (x))Ten,

so tha t

< « * » -  =  (3-73)

For d =  3, this result directly follows from expression (3.5) of Ref. [15] for the  

Green’s function of a scalar massless field in the presence of an ideal mirror w ith 

the same choice of the surface S  as for Model A. For d ^  3 the result (3.73) can 

be verified by the  method of images found in Ref. [15].
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4-D im ensional Specia l C ase

A specific consideration is given for the four-dimensional form of {<p2)nn, where 

d =  3. In dealing with the  divergent part of the zero-point fluctuations, it is 

evident th a t a relationship exists between it and the singularity of the potential. 

Then, the function F ^  can be written in the form

(3.74)

where h(z, 0) is defined to  be the divergent part. It can be shown that 

H z, 13) =  ^  +  (1 - /9 )1 1 1 (1 -* )  +  ^

+
1 +  0

- ( 2 - 0 ) z  + 0 - 3
2 +  0

(3.75)

9(z,0 ) =  - ( 1  -  0)g(z, 0 ) , (3.76)

s i z ' 0 )  =  + 1 +  0
- c 2 - 0 ) z  +

0 - 3
2 +  0

(3.77)

The first line of (3.75) shows the divergent components of F ^  when 2 = 1 , while 

the second line is included by construction so that the first three terms of its Taylor 

series expansion coincides w ith those of F ^  directly from (3.68). As for (3.77), it 

is convergent at z  =  1. Therefore, it is possible to write (<p2)ren in the form

4tt262 , s2

Uo
(cp(p)2)™ =  H(p,Uo) +  U0G( p , Uo ) , (3.78)
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0 . 6 1.20 .2 0 .8 1 .6 2 . 2

Figure 3.3: —47r262(<p2)ren in 4-dimensional space-time as the function of p/b  for differ­

ent values of the parameter Uo- solid line -Uo =  0.2, dotted line -Uo =  1.0, and dashed 

line -  Uo =  5.0. The dashed and dotted line corresponds to an ideally reflecting mirror 

(Uo =  oo).

where

H{p,Uo) =

h((p/b)2, 1 +  Uq), P < b ,

G(p,U0) =

(b/p)4h((b/p)2, l  + U0), b > p ,

9{{p/b)2, 1 +  U0), P < b ,

(V p)4 <K(Vp)2> 1 +  Uo), b >  p.

(3.79)

(3.80)

The plots of functions H  and G  for different values of Uo are shown in Figures 3.4 

and 3.5.
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0 .40 . 2 0 .8 1.2 1.6 1.8

Figure 3.4: Function H(p, Uo) for different values of the parameter Uo'- solid line -  

Uq =  0.2, dotted line — Uo = 1.0, and dashed line — Uq = 5.0.

1 .60 .4 0 . 6 1.2 1 .4 1.80 . 2 0 . 8

Figure 3.5: Function G(p,Uo) for different values of the parameter Uq: solid line -  

Uq =  0.2, dotted line -  Uo =  1.0, and dashed line -  Uo =  5.0.
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3.3.2 Model B

The zero-point fluctuations for the  concentric mirror problem can be described 

using (3.66), (3.42), and (3.63)-(3.65), resulting in

(^ 2r n =
Vd -y* (L +  Pd)(L +  d  — 2 )!

( d -  2)!£?0 L\ K M , (3.81)

where

CIl b t l ( h

2 L

+  Pd) 1
UX{L + Pd + U2) ^

2 L + d - \

T^l (p) = ' (3.82)

f  P  \  ^+U2(L + pd + Ux) I J - )  -  2UxU2lL

Mi)
2 L + d - l

Ql P*

where Tc. =  (bx/ b 2)2L+d~ l

bx <  p  < b 2 ,

, P >  b2.

From (3.81) and (3.82), it is evident tha t only the L — 0 modes contribute to 

(<£2)ren a t the origin. Therefore, it follows that

( p  (p  =  o ) ) ren =  - r £ r
Vd Pd{U\ +  To) +  UxU2(l  -  To)

b t 1 (Pd + Ux)(Pd +  U2) -  UxU2 l 0 ’
(3.83)

where To =  {bx/ b 2) d- 1

To illustrate a typical behavior of {<p2)nn for the two-mirror problem, Figure 6  

is plotted —47r2b2(<p2) ten in 4-dimensional space-time as a function of p  for different 

values of the param eter Ux and U2, and for 61 =  1 and 62 =  3.
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bl-I.O , b2-3.0, U l-IO , U2-I0 bl-I.O , b2-3.0. UI-IOO. U2-IGO

bl-I.O. b2-3.0, Ul-l, U2-100 bl-I.O. b2-3.0. Ul-lOO. U2-I

Figure 3.6: —47r2&2(<£2)ren in 4-dimensional space-time as the function of p/b for differ­

ent values of the parameter U\ and Ui.
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3.4 Stress-Energy Tensor

It is evident that, because the boundary conditions are only radially dependent, 

they are invariant under the 0 ( d  -+- 1) symmetry group. This suggests th a t the 

renormalized stress-energy tensor has the form

=  diag (e ,p ,. . .  p ) , (3.84)

where e and  p  are functions of p. Then the conservation law

=  0 (3.85)

implies

<3-86>

or equivalently

W hen considering the conformally invariant case, (Tg)ren = e +  d ■ p  =  0, while 

the conservation law (3.86), (3.87) results in

« -  ^ r .  p  -  - 5 ^ r -  (s-M)

From (3.88), it becomes known th a t the renormalized stress-energy tensor for the 

conformal invariant theory is uniquely determined by the symmetry and the  conser­

vation law up to one constant. In a  more general case, it is sufficient to determ ine 

only one function of one variable p, such as e — p.

Using equations (2.62) and (3.8) results in

e — p =  limx'—tx
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where

n = (1-2 e)8,a^-€(a»+aj) + i(8»+a1/), (3.90)

M  =  - ( i - 2 e ) a ) , ^ + e [ ^  +  a j ] , (3.9i)

and the 77 are the generalized angle co-ordinates. (The last term  in the  right-hand- 

side of (3.90) arises because in the spherical co-ordinates =  — p =£ 0.) From 

this formalism, it is possible to obtain the renormalized stress-energy tensors for 

the models considered.

3.4.1 M odel A

From using (3.56), (3.57), and (3.89), it is shown that

+ i j v W f o p ' . T )
U 0 T]d

* ~ P  =  — & T
P -  P 

7 =  0

where

Q±(p,p\i) -  E (£ + /V

W hen acting on Q±, it  is straightforward to  show th a t

[K fpp ')1* ] ^  =  [(1 -  4f) £ i  +  4f£±] p2<1±_1),

[ V C f  1,/2(cos7)] = L+ L _ Md~ i)/2 
~ d ~ ° L (1) .

where (3.95) is obtained from

—  F(a, 6 ; c; 2 )
2 = 0

a&
c

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)
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a property of hypergeometric functions.

Therefore, from (3.94), (3.95), and (3.41), the  relationship obtained is

Uoyd ^  A j  (L + d -  2)!~  A ^  {L + d - 2 ) \
V - ' f h  (L + /3d +  U0) L\ {d — 2)! V&^ ’

where

A%c =  (1 -  4?) L l +  4?£± +  =  L ±  (L± -  1) -  4 ^  ,

6 P w -i«2  L  r r  j  r\(A  om 12 > (3.97)

(3.98)

where the signs +  and — correspond to the  internal (p < b) and external (p > b) 

problems, respectively. Using (3.87), the following expression for e is

U r n d  f ,  (L + d - 2 ) !  ( ? \ L±
2 W - ' , ?  f ^ ( L ± - l ) ( L  +  Pd +  U0) L \ ( d - 2 ) \  \ t ? )  ' K }

It is evident tha t the first two terms (with L  =  0 and L = 1) (3.97) for the inner

problem vanish. Then, in the general case, e — p  ~  p2 for small p, while e remains

finite at p =  0.

For the special case of conformal invariant theory f  =  (d — l ) /4 d, (3.98) 

shows tha t the coefficients A ^ d vanish. I t  then follows that e =  p, while (3.88) 

shows th a t e =  p  =  0 . The result (3.99) is similar to what happens in the case of 

an ideally reflecting m irror considered in [15].

For the minimal coupling consideration £ =  0,

£ ± (£ ±  -  1) ■ (3.100)

In considering the internal (p < b) problem first. In this case,

C * - (3 .101)

Substituting A ^ =0 into (3.97), it is found th a t for p <  b

c - p  = - B U a F « - 2> ((p / b f , U„ + (d + 3)/2) , (3.102)
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where is the function determined by (3.68) and

B  =  % ( d - l ) 2 .

Similarly, for the external (p > b) problem,

_ { d - l ) { L  +  d){L + d - l )
L*=0 ~  2  '

Substituting (3.104) into (3.97), it follows th a t

£ - p  =  — BUo F d+2 ((6 /p)2, Uo + (d — l ) /2 )

(3.103)

(3.104)

(3.105)

The stress-energy conservation equation (3.87) allows for a  way to obtain e, and 

then p ). To do this requires making use of the integral equations for hypergeometric 

functions

*<*>(*,/S) =Jo Cl — 1 (3.106)

f Z d z z a~2 F(a+1\z , /3 )  =  — za~l Fto(z ,  P ) , Jo a — 1
(3.107)

which lead to

e = BUp
26d+1

F « +1H((p/b)2, U0 + ( d +  l ) /2 ) ) ,

2d
(3.108)

For an ideal reflecting mirror, Uq =  oo, the expressions for e — p  and e are greatly 

simplified. By considering the following property of functions F ^  (z, /3)

1
g m { 0 F « > ( z M  = -( 1 _ z)d^

it can be shown that

J B bd~l e =  ± —
2 |62 - p 2 | d ’

(3.109)

(3.110)

e —p =  —B b'd-1
d—1 (3.111)
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The signs ±  in (3.110) correspond to  the inner and outer problem, respectively. 

For d =  3, expressions (3.110) -  (3.111) reproduce the results obtained in [15].

3.4.2 M odel B

Though much more involved in detail, the calculations of e — p  and e for the two 

mirror problem are similar to those of Model A. As  well as requiring (3.94) and 

(3.95), it is necessary to know

K / V 1* ) ] , . ,  =  - k l ^ L - -  fCd2 - ! ) ] -  (3.112)

For this section, only the final results are listed below. For the inner region (p <  &i),

Vd {L +  Pd) {L +  d — 2)! + *n+( \ /O -I -I q\
p  = ~ 7 tk  L i ( d - 2 ) < ------------------------------------------ (3.113)

  Vdd ^  (Zr +  0d) (L + d — 2)! + 'p+f \ /o 11

I  f  0  V 2L U l +  U 2 l L  +  ~L ] _ l  ( 1  -  7 l )

K l (p) =  {L+!3d + Ui)(L  +  Pd + u 2) -  UxU2lL • (3-U5)

For the outer region (p > b2),

. _ v J t 1 ^  (L +  M l L  + d -2)1
=  - j S - Z  £ , (d _  2)! A ^ M .  (3.116)

ndb t l d ^  (L + M ( L  + d - 2 ) \
£ =  £ ! ( d - 2 ) ! ( L  +  d) ■ * « * ! » '  <3'117)

/ . n 2L UiJL + U2 + (1 ~  7L)

K - M  ( - )  (L +  pd +  Ul)(L +  ft, + u2) -  U i V , n  ■ (3'118)
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For the in te r m e d ia te  r e g io n  (62 >  P > h ) ,

e - p  =
W  g 0 h | / _  2)\

(3.119)

e =
“  (L +  d - 2 ) !

V +1 £T0 ^ ( ^ - 2 ) !

^  ^ Z  (p) +  T T ^ T T  (p) -  •*?. * n°r.[{L- ~  1 ) {L+ -  1 ) d + l  L't
(3.120)

The coefficients A ^  in relations (3.113), (3.116) and (3.119) are given by (3.98),

and

d

d +  l  
d

£■ (L +  d — 1 )- K  (d2 — 1)

The notations below are also introduced, whereby

f c Z C p )  =
U i(L  + fo + U2)_________ f b A 21^ ' 1

(L + 0d +  U1)(L + 0d + U2) - U l U2'YL \  p )

n+L{p) = U2 (L + pd + Ul )
(£)

2 L + d - l

(L +  Bd +  U{)(L + 0d + U2) — U1U2JL

2U1U2jl

(3.121)

(3.122)

, (3.123)

(3.124)
(L +  fa  +  U{){L + pd + U2) -  Ui U2j l  '

Expressions for e in each of the  three regions are obtainable by integrating relation 

(3.87).

In considering the conformally invariant theory for this problem, (3.98) indi­

cates th a t =  0 when f  =  £d =  ( d — l)/4d. From (3.114), (3.115), (3.116), and
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(3.117), i t  becomes evident th a t e = p  =  0 in both  in the inner and ou ter regions. 

For the  intermediate region, it can be shown th a t

Ce - p  =

where

_  orr TT r, * ± L  V  (L  + d ~ 2)1C  2Ui U2 r)d d g  L \ { d - 2)1 

( d -  l ) 2
1 L L(L + d — 1 ) 4 -

(L + fo  + Ui)(L + /3d +  U2) -  UxU2lL 

Using relation e =  —d • p, it  follows that

d C
e =

(3.125)

(3.126)

(3.127)
d + 1  pd+1

It is straightforward to verify tha t, in the limit of ideally reflecting mirrors (Z7i, U2 —> 

0 0 ) in 4-dimensional space (d =  3), relations (3.125) -  (3.127) correctly reproduce 

the results of [15].

3.5 R adiation From Mirrors

At this point, it is possible to consider the quantum  radiation from expanding 

spherical mirrors with constant acceleration. The m ain goal here is to  obtain an 

expression for the radiation a t infinity due to such a  mirror. The approach taken 

here is to  start with (<£2)ren and (T^)ren as defined in Euclidean space-time and 

make an  analytical continuation into Lorentzian space-time.
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3.5.1 (£2>"“ at J +

For th is problem, it is sufficient to consider Model B ,  since Model A  occurs in the 

lim it when Ui —> 0. Therefore, the exterior region is

W>-M -  (3.12s,

Using (3.22), it follows th a t

p2 = R 2 + X%. (3.129)

By performing a Wick ro tation X 0 =  zT, this quantity  becomes

p2 = R 2 - T 2 . (3.130)

By letting  u = T  — R  be the retarded time, it follows that a t large R

p2 & - 2 u R .  (3.131)

For th is definition of u, the value u =  0 corresponds to  the moment of the retarded 

tim e when both expanding mirrors reach J +. For a part of J + lying to the 

past of this moment (tha t is outside the mirror), this corresponds to u < 0. It 

happens th a t the leading contribution at J + is given by the term  L  =  0 in (3.128). 

Therefore,

<**>-(«) -  (s -i3 2 >

tfiTo +  U2 +  ^  (1 -  7 0 )

=  ( A  +  f A K / i  +  c y  - 1/1%70 ’ ( 3 ' 1 3 3 )

where 7 0  =  (61/ 6 2)d—l
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For Euclidean space-time, the starting point in the  general expression of (T^)ren, 

is

2 y s < 7 ? > ~  =  ( e - p ) t y S £ , ) +pS£,  (3.134)

where 5 ^  is the Kronecker delta which is non-vanishing only when u corresponds to 

the co-ordinate p. The parentheses around p indicate tha t it is a fixed co-ordinate, 

for which no summation occurs. From (3.134), it becomes evident that, in (X q, R) 

co-ordinates

=  4 { x h  +  R 2p )  ,

TxoK =  (3.135)
r

T r r  =  j  (tfe  +  X - f p )  .

By making a Wick’s rotation X 0 = iT, we get

T i t  =  j  (T 2£ -  R 2p)  ,

T t r  = ~ T R ( t ~ p ) ,  (3.136)
r

T rr  =  ± ( R > e - T * p ) .

For constant u = T  — R  and R  —> oo, it follows th a t

R?
Tt t  ~  —Tt r  ~  Trr «  —  (e — p ) . (3.137)

For large R,  the leading contribution to e —p is given by the L = 0 term in (3.116).

Therefore,

£ -  P «  o" . (3138)
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where U q is given by (3.133) and

.4 ^  =  (d -  1) (d -  1 -  4£d) . (3.139)

Combining these results, it follows that, for T^v in the asymptotic region,

(3.140)
£>d- 1

where IM =  u tfl, u = T  — R  is the retarded time,

(3.141)

and

S d_! =  R 1- 1 v d- 1 (3.142)

is the surface area of a (d— l)-dimensional sphere of radius R. The function B(z, w) 

in relation (3.141) is the Beta function B{z, w )  =  r ( z ) r (u ; ) / r ( 2: +  w ) .

For an ideally reflecting external mirror, U2 =  0 0 , 1Zq =  2 /(d  — 1), so that for

the radiation of such a  mirror in 4-dimensional space-time (d =  3) there is

^  =  - 7 ^ - 4  (1 ~  6 0  • (3-143)du 47t u '

For f  =  0, this result reproduces the result obtained in [15].

By making the substitution u —>■ v = T  + R  in relations (3.132) and (3.140)- 

(3.141) the expressions for (<£2)ren and a t are obtained.
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3.6 D iscussion

To re-iterate, this chapter investigates the quantum  effects generated by spheri­

cal partially transparent mirrors expanding with a constant acceleration in a D-  

dimensional flat space-time. Considering a scalar massless field with an arbitrary 

parameter of non-minimal coupling £, it is demonstrated th a t the choice of pa­

rameter does not affect the field equation and the expectation value of (<£2}"n but 

results in different expressions for the stress-energy tensor. The partially transpar­

ent mirror can be modelled with a 5-like potential in the field equation.

It is dem onstrated tha t the leading terms of (v?2)ren and (T^ )na a t J + has 

quite a simple form, (3.132) and (3.140)-(3.141), respectively. Both expressions 

infinitely grow at u — 0 , the moment of the retarded time when the mirrors reach 

J +. The same divergence takes place a t the moment v =  0 of the advanced 

time when the mirrors start their m otion from J ~ . Both of these divergences are 

evidently connected with the adopted idealization of the problem: an infinite time 

of the accelerated motion. It should be also emphasized th a t since the Euclidean 

approach is used and (ip2)na and (T£)na are obtained by a Wick rotation from 

their Euclidean values, the corresponding quantities in the physical space-time are 

given for a special choice of state of the quantum  field, namely the state which is 

invariant under tim e reflection T  —»• — T

It is im portant to note tha t in Model B  for the conformally invariant case (that 

is, for a  special choice of the coupling £ =  (d — l)/(4d)), the stress-energy tensor 

identically vanishes both inside the inner m irror and outside the  external mirror. 

For the eonformal field in Model A  th is occurs everywhere. As indicated earlier 

(see [15] and [16]), this is a  direct consequence of the eonformal invariance of the 

models. A more general discussion of the properties of the vacuum in Minkowski
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space-time under eonformal transformations can be found in [31] and [32].

A num ber of remarks can be made about {T{f)nn computations in a two- 

dimensional space-time . 1 Because £<*=1 =  0 in two dimensions, the eonformal 

and canonical stress-energy tensors are identical. Therefore, there is no loss of 

generality by considering f  =  0 in this special case. The spherical harmonics 

(which enter for example into the expression (3.35) for the Green’s function) are 

simply functions exp(imr])/y/2ir, and (L, W )  =  m  =  0, ±1, ± 2 , . . . .  For all modes 

with m  ^  0, the general relation (3.65) can be easily verified for the 2-dimensional 

case by setting =  0. The only concerns the mode m  =  0  because it becomes 

logarithmically divergent, as shown by the general solution to  the radial equation 

(3.37) either a t p =  0 or p =  oo. For this reason, in the general case there does not 

exist a radial Green’s function Qm=0(p , p') which remains finite a t both boundaries. 

Fortunately, these zero modes do not contribute to (T^)tea and the corresponding 

ambiguity has no bearing on the problem. The calculations for Model B  give 

e =  p  =  0  inside the inner mirror and outside the outer mirror, while between the 

mirrors there is

e - p  = 2 Ui U2 ^  m y m

« =  t ^  • (3.144)
m=l

where ym = (&i/&2 )2m? and Qm =  (m +  U\){m +  C/2) — U\ U<i ym - Both quantities 

e and p  evidently vanish if one of the  potentials Ui vanishes. This is exactly the 

result which must be expected for Model A.

xWe shall not consider (<p2)nn because of the infrared problem, and so is not well-behaved 

quantity. In particular, (T^)ren is logarithmically divergent at infinity for any value of the mirror 

potential.
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C hapter 4

Q uantum  R adiation from  a 

U niform ly A ccelerated R efractive  

B o d y

A second example of the moving m irror problem considered in this thesis concerns 

the quantum  radiation emitted due to  a uniformly accelerated refractive body. In 

electromagnetism, the presence of a  dielectric has a significant influence on the 

propagation of waves in a medium. For example, given a fast-moving object in 

such a  medium, it is possible to observe Cerenkov radiation [30] when the object 

moves faster than the speed of light in the medium.

The degree th a t an uncharged object becomes polarized is also directly propor­

tional to the dielectric properties of its internal degrees of freedom. When a t rest, 

this body interacts with the electromagnetic field in a way th a t induces a change 

in the to ta l energy of the surrounding vacuum, leading to  the Casimir effect. For a 

polarized body under accelerated motion, the dynamical Casimir effect occurs due
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to  interactions between the zero-point and fluctuations within its dipole moment. 

T his problem has been studied considerably in two-dimensional space-time, espe­

cially when dealing w ith bodies of very high polarizability so that their surfaces can 

be approximated by a reflecting mirror-like boundary. A four-dimensional treate- 

m ent is much less accessible, except in situations where the geometry simplifies 

th e  problem sufficiently.

This chapter considers the effect of quantum  radiation for a small polarizable 

body undergoing uniform acceleration. To simplify calculations, the internal de­

grees of freedom interact with a massless scalar field instead of an electromagnetic 

field. As well, the refractive index n  differs only slightly from the vacuum value of 

n  =  1 , so that a  perturbation expansion in term s of n  — 1 becomes permissible. 

T his leads to a correction of the vacuum Hadam ard function due to the object’s 

acceleration in space.

The organization of this chapter begins w ith a formulation of the problem in 

Section 4.1. This is followed in Section 4.2 by a calculation of the perturbed 

H adam ard function in the presence of a refractive object with small dimensions 

relative to the surrounding vacuum. Calculations of (^ 2)ren and (TMI/)ren in the 

wave zone limit are then  obtained in Section 4.3, followed by a brief discussion in 

Section 4.4.

4.1 Form ulation o f the Problem

4.1.1 A  Refractive B ody in Static Space-Time

The first step is to establish how to describe a  refractive body in the presence of 

a  vacuum region of space-time. To do this, consider a  space-time described by a
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sta tic  metric

ds2 =  —A 2 dt2 -I- 7 ij dx1 dx3 , (4.1)

where by definition A  and 7 y are time-independent. In relation to  (4.1), consider 

another metric ds2 w ith a time-independent function n =  n(rrl), where

A 2
dSn = -------dt2 -I- n j i j  dx1 dx3 . (4.2)n

I t is im portant to note th a t (4.2) is merely a construction designed to  describe a 

space-time corresponding to a refractive medium with index of refraction n. In 

so doing, the ultimate purpose of this construction is to generate a d ’Alembertian 

operator from (4.2) which can be decomposed into an operator □  defined by 

the m etric (4.1) and some operator D(n)  left over that acts like a  corresponding 

source operator for an inhomogeneous wave equation.

To verify that n  is indeed a refractive index, consider the case where (4.2) 

describes null rays, implying

dal =  0 . (4.3)

Then, for a Killing observer moving with proper velocity A, w ith the

Killing vector associated with (4.1) and A 2 =  — , (4.3) leads to

T  =  (4 ’4)dr n

where d r  = A  dt is the propagation time for the null ray, and dl = y j i j  dx{ dxi is 

the proper distance for the metric (4.1). The condition (4.4) verifies th a t null rays 

move with speed 1 /ra <  1 with respect to a static  observer, which is a property of 

a  refractive index.

T he next step is to  describe field modes in the refractive body and somehow 

relate them to the static space-time. For a massless scalar field

□„</> =  0, (4.5)
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where Dn is the d ’Alembertian operator for the metric (4.2). In terms of (4.1), it 

is shown tha t

(4.6)

where

(4.7)

I t  follows that

dip = D(n)  , (4.8)

where D (n ) ip is a source term  for the □ operator, which is perturbative1, according 

to  the condition \n — 1 | 1 .

It is possible to generalize (4.8)-(4.7) to include dispersive media. By letting 

n  =  n(uj) for a monochromatic wave of frequency cj, it follows th a t df  —* —u>2, 

which takes the dispersion into account.

Finally, it is necessary to  find a way to localize the region containing the refrac­

tive medium. Assuming th a t the body is static and rigid, a world-tube described 

by  a three-dimensional surface E can be formed by Killing trajectories passing

through the body’s surface. The four-dimensional region inside is then T, where
1 There is an ambiguity in the form of the metric (4.2). It is possible to multiply the metric 

by any function f(n) for which / ( l )  =  1. This operation modifies the form of the operator 

D (n). In particular, a term proportional VnV would be generated. For a wave of characteristic 

frequency u  it gives a contribution ~  uA n/b  where 6 is a  size of the body. It can be considered 

as a perturbation only if it is much smaller than the leading derivative terms of the unperturbed 

operator which are of the order cj2. For our problem w ~  a where a is the acceleration of the body, 

and ab 1. In order to escape problems connected with the applicability of the perturbation 

approach and to simplify the calculations, the special case /  =  1 is chosen.
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£  =  d r .  It follows th a t the operator (4.7) can be written as

tf(n) =

where ■d is the Heaviside step function.

(4.9)

4.1.2 U niform ly Accelerated B ody

It is now possible to  develop this problem for a uniformly accelerating body moving 

in flat space-time. To begin, let the m etric ds2 be described by the usual Cartesian 

co-ordinates in the  form

ds2 = —dT2 -F- d X 2 + d Y 2 + dZ2. (4.10)

For an accelerating observer moving in the  X —direction with acceleration a, the 

world-line 7  for the  motion is

X 2 - T 2 =  I2 = a~2 , (4.11)

where I is a  characteristic length param eter associated with 7 . For the sake of 

convenience, introduce dimensionless co-ordinates

T  *  Y  Z  , i i n .
* ~  r  x ~  i ’ y ~  i ’ z ~  r  ( ^

By a re-definition of x  and t  in terms of dimensionless Rindler co-ordinates £, rj in 

the form

x  =  ( 1 + f )  cosh 77, t  =  (1 + f ) s i n h 77, (4.13)

the metric becomes

ds2 =  I2 [—(1 -I- f ) 2 dr}2 4- d f2 +  dy2 + dz2] , (4-14)
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which is valid in the wedge x >  |t|. Then (4.11) for 7  takes the form

£ =  0 , (4.15)

while lr\ is the proper time along 7 . The surface 77 =  770 is a plane with a three- 

dimensional flat metric.

It is convenient to parametrize (£, y, z) in terms of spherical co-ordinates ( 0 , 9 , 0)

by

(€,y,z) = (4.16)

where

n* =  (cos 9, sin 6 cos 0, sin 9 sin 0) (4-17)

is a unit vector directed from the origin 0 = y = z = O to the point (£, y, z).

For a small uniformly accelerated body with a size much smaller than I, such 

a body is at rest in the reference frame (4.14), and the surface of the body is 

described by the equation

0  =  0o (9,cp).  (4.18)

The combination of 77 =  770 and (4.18), which defines the surface E identifies the 

position on E at time 770. For the special case when the body is a sphere of radius 

b, 0O = b/l is a constant.
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4.2 Quantum R adiation o f an A ccelerated R e­

fractive B ody

4.2.1 Hadamard Functions and Stress-Energy Tensor

It is shown below how to obtain the solution to (4.8) as a perturbation from the 

source-free solution, which is defined inside the world-tube F. Given th a t D(ri) is 

treated  as a perturbation to solve this problem, the unperturbed field equation is

Dtp =  0 . (4.19)

The Hadam ard function for the Minkowski space-time vacuum is

Go* f a  s') =  (0l<p(x) <p(x') + ip(x') <p(x) |0 )

2ir2l2 s2(x,x ')  ’
(4.20)

where

s (x, x 1) = - ( t - t ' ) 2 + ( x - x ' ) 2 + ( . y - y ' ) 2 + ( z - z T  (4-21)

is the invariant point separation in terms of dimensionless Cartesian co-ordinates

x  and x'.

Consider now the inhomogeneous equation

ncp =  j ,  (4.22)

where j  in schematic form corresponds to D{n ) from (4.8). Its solution is

(p(x) =  (po(x) — lA J  Gq'-{x,x') j { x ' ) d Ax ' , (4-23)
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where the retarded Green function is

G ^ { x ,x ’) =  . (4.24)

By considering the right-hand side of (4.8) as a perturbation and using (4.23), the 

solution is

G (1) (x , x ‘) =  G{o ] (x, x') -I- ( x ,  x ' )  , (4.25)

where

It M ' [ G T ( x , x " ) D " C % \ x ' , x ")

+ G ?(x ' ,x " )  D " G ' i )(x,x'')\ (4.26)

where the notation D"  indicates that the operator D  acts on the argum ent x " .

The notation G£l is also used for — Gq~\ suggesting th a t th is object is 

required for the calculation of physically observable quantities after subtracting the 

contribution of zero-point fluctuations in a boundary-free space-time. It becomes 

self-evident that the integration in (4.26) is performed over the interior of the 

world-tube T, and tha t (<£>2)ren and { T ^ ) ren can be found for G ^ ( x , x f).

4.3 (if2( x ) ) ran and (T^u{ x ) ) na in the W ave Zone

4.3.1 (<p2)nn and (Ttiv)nn on

Having now established the form of the renormalized Hadamard function, it is 

possible to proceed in obtaining (<p2)ren and where the observation point x

is in the wave zone limit. The form for (cp2)ren is defined from (2.60), while {Tfiv)na 

follows from (2.62) and (3.8).
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By the same reasoning as shown in (4.16)-(4.18) to use spherical co-ordinates 

in T, it is convenient to  use spherical co-ordinates to describe points in the wave 

zone region. Therefore, let

where u  is the dimensionless retarded time, and (r, 0 , 4>) are spherical coordinates 

in the inertial reference frame. The wave-zone corresponds to tak ing  the limit 

r -¥  oo with u  and N* fixed.

For the choice of point splitting, it is desirable to consider separations in the t- 

direction by letting

considerably more complicated to find the corresponding energy density flux. By 

definition,

r

N x =  (cos 0 , sin © cos <£, sin 0  sin <J>) (4.27)

r  =  r \  JST =  N {' (4.28)

in Then it is possible to define the separation in terms of a param eter h  so 

that u' — u = f  — t  =  h, or for fixed uq,

u  =  u Q - ~ ,  u  = u q +  ~ .
h , h

(4.29)

Then G<»(x, x') becomes a function of r, JV*, uQ and h, in the form

point
splitted

G(r, u0, N l, h) , (4.30)

and by the sym m etry in its co-ordinates, G is an even function of h.

It is straightforward to simply set h =  0 in (4.30) to  obtain (<̂ 2)ren. It is

d E = R 2{Tuu)na =  r 2 (Tuu)ren =  4-rrr2 lim [Duu G(r, u0, N \  h)] , (4.31)
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where

D „  =  i ( l - 4 0 a * , - i ^  (4.32)

is the differential operator in the new co-ordinates. Since the leading-order term 

of G  is proportional to  r -2 , (4.30) is written in the form

G(r, u0, JV\ h) =  i  [ G i { u q , 0 )  -I- h2 g2(u0, ©) +  0 ( / i4)] , (4.33)

where Qi and Q2 are dimensionless, and I2 is included to restore the correct dimen­

sions. Because the system is invariant under rotations in the ( y , z ) —plane, (4.33) 

cannot have any dependence on 4>. It follows that

te 2)”  ~  ■ (4-34)

d E  1
dUdQ Z2

i ( i - 4 f ) ^ 05 i K , e ) - e 2(«„,e) (4.35)L S uo'

are the formal results for the vacuum fluctuation and energy density flux, respec­

tively.

4.3.2 B oost Invariance

To obtain a more precise description of Q\ and Q2, it is possible to take advan­

tage of the boost invariance symmetry in flat space-time. Given th a t a uniformly 

accelerating body is invariant under boost transformations

t  —► t  =  7 (t +  v x ) ,

x  x  =  j ( x  + v t ) ,

y  =  y , 2  =  2 , 7  =  (1 -  v2) 1/2, (4.36)
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it is necessary to  find the relationship between retarded spherical co-ordinates 

(u, r, 0 ,  $ )  and (u, f, ©, $ ). Then in the wave zone limit, where r  —*■ oo and 

it, 0 , $  are constant, it follows th a t

f  7 r ( l  +  v cos 0 )  4 - 7  ~ U °°S ̂  , (4.37)
'  1 +  v cos 0  v '

u  «  —T-  --- -^r , (4.38)
7 ( 1  -(- v cos @)

tan  © =  — r , $  =  . (4.39)
7  (cos © +  v) v

Because (cp2)r*n is a Lorentz scalar, its invariance under the transform ation (4.36)

implies tha t

Gi(u, ©) =  7 2 (1  + u c o s 0 ) 2 (7i(u, 0 ), (4.40)

where the second term  in (4.37) is absorbed into f.

Having now (4.37)-(4.40), the  invariance condition can be established by a 

variation with respect to v, such th a t

(^ )„_0aa + (^ )„ _ 0a® = ^ [7 2(i + vcose)2Ci(u,e)]

=  2cos©£i(u,  0 ) .  (4.41)

Prom (4.38) and (4.39), where 

(r£)_  © _  ■  _ " e '

it follows th a t

dGx , dGi
d(ln u ) d  ln(sin ©)
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The general solution of (4.43) is then

ft(«.e) =  (4.44)

By following the same procedure as for Qi(u, ©), it  can be shown that

Ch(u,e)  =  ) .  (4.45)
U* \  u  J

4.3.3 Wave Zone Approxim ation

As noted earlier, the field modes in the dielectric are defined within the world-tube 

T. Therefore,

r r r r@o(0,<t>) r
Jr d4x" . . .  =  J d r j j d n j Q p 2A { P , 9 ) d p . . .  = J d iv . . . ,  (4.46)

where A {P ,6) — I + P cos 9, dQ =  sin 9 d9 d<p and Pq defines the boundary of 

the body, as described by (4.18). Then the perturbation operator (4.9) in these 

co-ordinates is

D  =  IjL l U E ,  (4.47)

where

V  =  A - 2d(P0(e,cf>)-p) d°~. (4.48)

Both Green’s functions G™1 and G ^  depend only on the distance s between a 

point in the  wave zone and a point inside or on the boundary of the world tube T. 

From (4.13), (4.16), (4.17), and the definition of the  four-vector ( t , x , y , z ) ,  it can 

be shown th a t

s2(x, x") =  —2r  w — u2 + 2uA  sinh rj +  1 +  2Pnl +  p 2 , (4.49)
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where

w = u + (3 n ± N j_  — F ( tj) A , F{rj) =  sinh tj — N l cosh 77. (4.50)

The vectors n  and N  are defined by equations (4.17) and (4.27), respectively, and 

n±. =  (0, n 2, n3), N ±  =  (0, N 2, N 3). Recall th a t (u, r, ©, 4>) are retarded spherical 

coordinates of the point x  in the wave zone, and (77, /?, 9, <j>) are Rindler spherical 

coordinates of the point x" in the tube T.

Since the leading term  in G£J in the wave zone is 1 / r 2, all terms in (4.49) 

independent of r  are small. Therefore,

s 2 (x, x") «  — 2rw-  , s2{x',x")  w — 2rw+ , (4-51)

where

w± =  W o ±  ^ , Wo = u0 -\-/3 n ±N ± -  F(r)) A . (4.52)

By combining all these results and using (4.33), it follows that 

Gi (Uq, ©) +  h2C?2(w0i ©) +  . . .  =

n 2 — 1 

167T3
f  d \  d(w-) V  ( ^ - )  +  6(w+) t > ( — (4.53)

^W~ /
The ^-function which enters the definition (4.24) of G r0et can be omitted, since a

future-directed null cone em itted from a point in the wave zone never crosses the

tube T.

To explicitly evaluate (4.53), it is useful to  evaluate the integral

I{r}o,h) = J_ood'nS(w- ) di  (4-54)

over the proper time 77. From (4.52), it can be shown that

m  =  ( 4 J B )
1 \w+  J w± w%
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where ( ) ' =  dn{ ), and the substitution

F"(r,) =  F (tj) (4.56)

is made, given (4.50). Because F[rf) is a  monotonically increasing function where

F (± o o ) =  ± 0 0  for © #  0, for any number c there is a unique 77,- such that w0(rj) =  c. 

has a  unique solution for any c. For the purpose of evaluating the integral, it is 

possible to find an 770 and t } ±  such that they satisfy

w0(Vo) =  0 , w0(t}±) =  (4-57)

The next step is to determine 6(w-) in terms of Therefore,

( 4 S 8 )

By substitution of (4.55) and (4.58) into (4.54), it follows that

H m ,h )  =  f 4 o [ ^ F ( " - ) +  ^ <F' (’;- ))2'4] -  ( 4 ' 5 9 )

In order to evaluate

J{Vo,h)  =  s (w ~) +  5 (w +) (4.60)
w ~  j

in (4.53), it is sufficient by symmetry to evaluate (4.59) for the first term  of (4.60) 

and let h —> —h for the second term. T hat is,

J{riQ,h) =  I(j]o, h) +  / ( 770, —h). (4.61)

From (4.61), it becomes evident that only term s with even powers of h contribute 

to the integral.

The key point in evaluating I{r}Q,h) is to  describe F ( t}-) ,  F ' ( t} - )  in term s of a 

Taylor expansion about 770, using h as an order parameter. To ensure th a t (4.59)
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can be evaluated up to  order h2 then requires th a t terms up to  order h5 are kept 

for F(r?_), F'(r)-). Therefore,

F ( tj- )  =  F ( t)0 +  (77-  -  % ))

=  ) ( V - ~ V o ) n
n= 0 n -

=  F0 cosh(77-  — 770) +  Fq sinh(77_ -  770) ,  (4.62)

where F0 =  F(r)0), Fq =  F '(t)0), using (4.56).

From (4.62), it becomes evident that an expression for r\- — 770 in terms of h 

is required. To do this, the equation wq(t]-) = h /2  can be solved where w0(r]-) is 

written in terms of a Taylor expansion

w 0(77- )  =  —A  F0(n) (77-  -  77o)n

=  F0(n)= F ^ (  770) (4.63)

and

77_ =  m + j t j r 2*- (4-64)
k=l K-

The coefficients 2 * are defined in terms of F0j Fq, which need to be evaluated. By 

substituting (4.64) into (4.63), it becomes evident th a t the term s of order h sum 

to h/2 , while higher order terms equal zero identically. In term s of 2*, it follows 

that

1 F0 _  —3(F0)2 +  (Fq)2
21 2AFq ’ 22 4A2(Fq)3 ’ 23 8A3(Fq)5
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3Fo[-5(Fo)2 + 3 ( F a 2]
4

3[35(Fp)4 -  30(Fo)2(F j)2 +  3(F,j)4] 

computed using Maple.

25 32A5(F0')9 ’ (4'65^

By substituting the  expansions into (4.59), it can be shown th a t the final ex­

pression for the integral is

rf m _  F ° s in 2  Q J (Vo, h) 2A2(F^)5
h2

1 +  8A 2 ( F ^  COsh2 7/0 +  COs2 0

— 8 sinh 770 cosh 770 cos 0  — 7 +  4 cosh2 770]] . (4.66)

Therefore, the right-hand side of (4.53) is

Tl2 — 1 „  f0o(6,rf>)
167T3

/
fPo(0,<P) „ T

dQ Jq d,8132 A ' 1 J(77q, h ) . (4.67)

This integral can be solved perturbatively, since j3 <C 1. This can be accom­

plished by solving w0 (770) =  0 , or

F ( t7o) =  A_1G M )(u 0 + 0 n ±N ± ) . (4.68)

By now defining a solution 770 for the equation

F(t7o) =  u0 , (4.69)

then
O

r}o -fjQx i —  (n ±N ± -  u0 cos 6) , (4.70)
f  0

where F '0 = F'(f}0). The result (4.70) shows th a t a linear perturbation about 770

is proportional to  j3, so it is sufficient to  neglect this correction and sim ilar ones

in A (fi,0 ), leading to

(n2 — 1 )V
16?r3/3
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where V  is the volume of the body. Comparison with (4.53) then leads to 

_ . „Fo  sin2 ©
Oi(«0 , e )  =  - B  ° f , )5 , (4.72)

f t ( « o ,e )  =  - g f ° (̂ ) f  ( 4 f | - 3 s i n 2 8 )  , (4.73)

where

=  OfjzHJL. (4 7 4 )
32tr3J3  ̂ }

Finally, to evaluate F q and F q in term s of u 0 and @ ,  first note th a t F q =  u Q to 

zeroth order in fi. To then obtain F q , it is necessary to first solve the equation

F q =  sinh Tjo — sin © cosh rfo =  uq  , (4.75)

and determine 770 =  7]o(uq,cos©), by substituting this value into the definition of 

F q, where

Fq =  cosh 770 — sin © sinh 770 . (4.76)

4.3.4 (cp2)nn and Energy D ensity  Flux

By using relations (4.75) and (4.76), it can be shown that obey the symmetry 

relations (4.44)-(4.45), and can be rewritten in the form

f t ( u , e )  b ^ ,  & ( « ,e )  =  (4 .77)
V r  V r

where z  =  s in© /u , and

2 2
9 l(z ) ~  (^ _j_ £.2 )5 /2  5 92(z) —

z2( 4 - 3 z 2) 
8(1 +  Z2)9/2 ' (4.78)
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Figure 4.1: Plots of functions gi(z) (g 1) and 5 3 (2 ) (3 3 ).

Using equations (4.34) and (4.35) and restoring the dimensional R, U 

acceleration a, and 2  =  sin @/(at/r), it follows th a t

(n2 -  1 )abzg1{z)
<¥>2>r 48?r2R 2U2

= T  — R ,

(4.79)

where

dE  _  {n2 -  l)q &3 „
dUdQ. 12tr2U4  ̂ )#»(*)

, x _  l - 3 2 2/4
93{Z) (1 4  2 2 ) 9/ 2 '

Plots of functions <71 and are shown in Figure 4.1.

By then integrating over angles, the total energy density flux is

(n2 -  l) (a &)3dE
dU 30?tU2 ( 1  -  5O f( a U ) ,

where

f (u )  =
1 4- 4u2 4 - 5u4 4- 10u6

(4.80)

(4.81)

(4.82)

(4.83)(1 +  u2)4

For the sake of comparison, the energy density flux for a uniformly accelerated 

point-like charge can be found in [21, 23].
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4 .4  D iscussion

For a  dielectric body w ith size b <C a-1 , the  expression for the zero-point fluc­

tuations and the to ta l energy density flux are described by (4.79) and (4.82), 

respectively. Both the functions gi(z) and <72(2 ) are regular a t the origin and go 

to  zero a t z  oo. The most immediate features about (ip2)ren are th a t its value 

is independent of the coupling constant £, and th a t it is negative-valued. As for 

dLE/dU, there is a dependence on £ and is negative-valued only for f  <  1/5. I t is 

noteworthy that, for conformal coupling £ =  1/6, there is a small non-zero flux off 

the  dielectric which persists in the wave zone limit.

For both (<p2)ren and dE /dU , there is a divergence of ~  U~2 as U  ~  0. This 

emerges due to the idealization of the problem by assumption th a t the constant 

acceleration occurs for infinite time, which is not realistic.

I t  is useful to repeat the  calculations for the more realistic electromagnetic 

field. While some general features related to the symmetry of the problem should 

be common to both types of fields, certain details such as the angular distribution of 

energy flux may be dependent upon the field spin, which will then yield differences. 

It is especially im portant to  realize that, while the scalar field model has an inherent 

am biguity in definition, the  dependence of the electromagnetic field equations on 

the dielectric and m agnetic properties of the media is uniquely specified.

In consideration of this problem, it is assumed that a uniformly accelerated 

refractive body has zero temperature. It may be possible to consider a  finite 

tem perature extension in the situation when heat is applied to the dielectric body. 

Especially worthy of consideration is a case when the body’s tem perature coincides 

w ith  the Unruh tem perature corresponding to  its acceleration.
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C hapter 5

Q uantum  R adiation o f a 

U niform ly A ccelerated  Spherical 

M irror

A considerable degree of attention is placed on studying electromagnetic radiation 

from a uniformly accelerated charge. Indeed, such investigations form a major 

part of what is considered well-established knowledge of classical electro dynamics. 

The Larmor radiation power spectrum [30] due to non-relativistically accelerated 

charges is a significant example of this cornerstone of classical physics. Not surpris­

ingly, considerable attention is also given to  how quantum electromagnetic fields 

behave due to accelerated charges. The presence of bremsstrahlung radiation [36] 

due to  the sudden acceleration of an electron along with other radiative corrections 

make for im portant examples in this regard.

A similar level of focus is currently given to how moving mirrors interact with 

quantum  fields while under constant acceleration. For a point-like mirror, this
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is well-understood in two-dimensional space-time, where conformal flatness in the 

mirror leads to enormous simplifications in solving the problem. Because the dy­

namical Casimir effect is highly dependent on the geometry of the mirror, it is 

often difficult to solve this type of problem, since the global symmetry attained in 

a two-dimensional space-time no longer exists in higher dimensions. If, however, 

the m irror has a  simple enough shape, then it may be possible to obtain a  solu­

tion th a t allows for study of the geometrical effects on the  quantum  radiation for 

comparison with a strictly point-like mirror. Indeed, such a solution exists for a 

spherical m irror moving with constant acceleration.

This chapter begins with a formulation of the problem in Section 5.1 to under­

stand the  underlying geometrical considerations. This is followed by Section 5.2 

with a  calculation of the vacuum fluctuations present in the wave zone limit due 

to the spherical mirror, while Section 5.3 has a corresponding calculation of the 

quantum stress-energy tensor and energy density flux in the wave zone.

5.1 Formulation of the Problem

5.1.1 Geometrical Considerations

The purpose here is to establish the geometrical considerations for a spherical 

mirror moving with constant acceleration. To do this, begin with the Minkowski 

metric in Cartesian co-ordinates

ds2 = - d T 2 +  d X 2 +  d Y 2 +  d Z 2 . (5.1)
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In order to  describe accelerated motion in the  ^-direction, introduce Rindler co­

ordinates

T  =  p s in h r ,  Z  =  p c o s h r ,  (5.2)

where p  identifies the world-line and r  is the proper time. The new metric is then

ds2 =  —p2dr2 +  dp2 -1- d X 2 -I- d Y 2 , (5.3)

W hen X  = Y  = 0, p =  po becomes the world-line for a uniformly accelerated 

observer with constant acceleration a =  Pq1, while the three-dimensional plane of 

constant r  is a set of events which are simultaneous from the point of view of the 

observer.

In  term s of both Rindler and Cartesian co-ordinates, the boundary condition 

E + of a uniformly accelerated spherical m irror is described by

b2 =  X 2 + Y 2 + (p — po)2 (5.4)

=  X 2 +  Y 2 +  (y /Z 2 -  T 2 -  a -1)2, (5.5)

where b is the mirror’s radius which is smaller th an  the distance to the horizon p0. 

In fact, since (5.5) is invariant under the reflection Z  —> —Z , two surfaces and 

£ _  are described (see Fig 5.1), where the former corresponds to Z  > 0. As the 

m irror gets uniformly accelerated towards J~+, it interacts with the field modes 

which propagate into the future along null surfaces em anating from the m irror. 

The solution is described in terms of the H adam ard function G ^ fa jx ') ,  subject 

to  the  boundary condition

G(1)(:c,:r')|xe£ =  Gw (x, zr')|x'es =  0 . (5.6)

It possesses a symmetry between arguments x  and x' which corresponds to  the 

tim e reversal symmetry T  —> —T . It is possible to  take advantage of this type
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—6

Figure 5.1: Co-ordinate surface describing hyperbolic trajectories corresponding to 

a spherical mirror under constant acceleration in Minkowski space-time. There is a 

reflection symmetry when Z —► —Z, which gives the second hyperbolic surface in the —Z 

half of the co-ordinate space. The Y  co-ordinate is suppressed.

of symmetry by finding the Euclidean Green’s function and performing a Wick 

rotation, as described below. Suppose T  is rotated in the complex plane, where

T  zT . (5.7)

Then the Euclidean m etric is

d s l  = dT2 + d X 2 + d Y 2 + dZ2 , (5.8)

where the  boundary condition is

X 2 +  Y 2 +  (V Z 2 +  T 2 -  a " 1) 2 =  b2 . (5.9)

This surface E# is a  4-dimensional torus S 1 x  S 2 obtained by the rotation of a 

sphere S 2 of the radius b around a circle S l with radius a - 1  (b < a -1 ). (See 

Fig 5.2.) I t is required th a t G e ( x , x ' ) satisfies the equation

V 9
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r—1.4 
M -6

Figure 5.2: Co-ordinate surface describing a  torus for a spherical mirror in Euclidean 

space-time, where the time co-ordinate T  is analytically continued to T  —► iT.  The Y  

co-ordinate is suppressed.

defined in the exterior of the torus Ee and satisfying the boundary conditions

G e (x , x ') |xgE =  G e (x : x ' ) |x/€S =  0. (5.11)

For space-like separation of the arguments, the Hadamard function can be 

obtained from Ge by the Wick rotation

G ^ (x ,x ')  = 2GE(x,x')\T-+-iT,T'->-iT' ■ (5.12)

5.1.2 Euclidean Green’s Function

The Euclidean Green’s function G e ( z , x ' )  coincides with an electric potential at 

a point x created by a point charge at x' in four-dimensional Euclidean space­

time, and in the presence of a conducting surface E^. This problem can be solved
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using the toroidal coordinates, for which the four-dimensional Laplace operator

□f; admits separation of variables. The toroidal coordinates (77, ip, 7 , <p) are then

related to the Cartesian coordinates by

5 (77, 7 ) -8 (77, 7 )

„  csinh77 , _  csinh77 . .Z  =  —  r cos ip, T  =     sin ip , (5.14)
8 (77, 7 ) 5 (77, 7 )

where B{r),y) =  cosh 77 — cos 7 , and c is a constant. The metric (5.8) in these

coordinates takes the form

dsl = ft2 ds2 , Q =  - - - -  - - ,  (5.15)
8 (77, 7 )

ds2 =  di/ 2 +  dS2 , (5.16)

where

dH2 = dr)2 + sinh2 r) dip2 (5.17)

is a metric on a hyperboloid H  and

dS2 =  dy2 -(- sin2 7  d(p2 (5.18)

is a metric on the unit sphere S. The d’Alembertian operator corresponding to 

the metric (5.16) is of the form

□ =  A h + A s , (5.19)

where

Ajy =  d2 +  coth 77 dv + \  d} , (5.20)
' sinh 77 w

A s  =  c£ 4- cot 7  dy +  \  - <%> (5-21)T sin 7  v
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are the Laplace operators on the unit hyperboloid and unit sphere, respectively. For 

this co-ordinate system, a surface of constant 77 describes a torus. By substituting 

(5.13)-(5.14) into (5.9), it is shown tha t

c =  — fi2  , tanhrjo =  \]l — (aft) 2 , (5.22)

where 770 is the value of 7/ corresponding to EE. Points with 77 <  770 lie in the 

exterior of E^.

It proves useful to develop the following expressions for the square of the dis­

tance R? from the origin to the point x =  (X, Y,Z,T), and for the square of the 

distance R 2(x,x') between points x and x'. They are

o cosh 77 + cos 7R 2 = c2 — r—--------- - ,  (5.23)cosh 77 — cos 7

7?2 fV  -  2 c2 (cosh A - c o s  A)
(cosh 77 — cos 7 ) (cosh rf — cos 7 ') ’

where A and A are geodesic distances on a unit sphere S  and a unit hyperboloid

H , respectively. They are defined as

cos A =  cos 7  cos 7 ' 4- cos(4> — 0') sin 7  sin 7 ' ,  (5.25)

cosh A =  cosh 77 cosh 77' — cos(0 — ip') sinh77 s in h 77' . (5.26)

Given th a t ds2 and ds2 are conformally related space-times by (5.15), it can be 

shown th a t the  d ’Alembertian operators are related by

□ -  i j*  =  ST3 -  i f f )  n . (5.27)

For the current problem, R e  and R  for metrics ds% and ds2 given by (5.15) -  (5.16) 

vanish and using (5.27) it is shown tha t

□ G (x, x ')  =  — 7=S(x — x 1) , (5.28)
V 9
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where

Ge (x , x ') =  Q 1(x)Q  1(x') G(x, x ' ) . (5.29)

Having now established the basic formalism, it is possible to now obtain the 

Green’s function G  satisfying (5.28). Expanding over spherical harmonics Y*m 

which form a complete set on the unit sphere, G is written as the mode sum

G (x ,x ’) =  f )  Y .  G l M ) Y i m{q)Y;m(<{)
e=o m = -e

=  ^ E ( 2 i  +  l)G ,(p ,p 'm (c o s A ) , (5.30)
47r 1=0

where Pi(z) is the Legendre polynomial, p, p ' are points on H , q and q' are points 

on S , for x  =  (p, q), x' =  (p', q'), and A is the geodesic distance (angle) between 

q =  (7 , 0 ) and q1 =  (V, <j>') on S  defined by (5.25). The functions Gi(p,pf) are 

2-dimensional Green functions of the operator A h — +  1), which are regular

inside the  disc 0 <  77 <  p0 and obey the Dirichlet boundary conditions a t the

boundary of the disc. Using the Fourier decomposition with respect to the angle

variable ip it follows that

1 00

GitorT) = G U v , r f) , (5.31)
2?r m= —00

where G tm { ih V 1) obeys the equation

+  coth T}^~ -  -~~To------t{ l  +  1 )dp* dp sum 77

satisfying the boundary condition

GimijlOi V ) =  Gim{Vi Vo') =  0 • (5.33)

The required Green’s functions Qim must also be regular a t  77 =  0.
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Linear independent solutions of the homogeneous version of the equation (5.32) 

are the associated Legendre functions Pf* and Q f .  In terms of hypergeometric 

functions F , the Legendre functions are defined as (see [1 1 ], eq. 3.2.3 and 3.2.5)

1 /  7 4* 1 \  ^
p “ (z) =  ( r ^ r )  n ~ v' "  + 1 ;  1  - K ( 1  - z)/2 )  (5-34)

Q i ( z )  =

x F ( i  + j  +  +  j  +  +  (5.35)

for arb itrary  parameters v, n, and complex argument z.

Since t  and m  are independent parameters in the  equation, we shall need the

Legendre functions for both  |m | <  £ and \m\ > £ are required. For the latter case

and for the  standard definition of P™(z), these functions vanish, while T(£ — m  + 

1 )P™ rem ain finite in the lim it of integer i  and m. Therefore, instead of Pj? (z), it 

is more convenient to use the functions

V £(z) =  r ( u - f i  + l ) P ^ z ) , (5.36)

where it is understood th a t these functions are defined by continuity for integer v  

and fi. As well,

p-V-n

“  r W ^ i ) q “ W - (5 '37)

The Vj}(z) and Q£(z) with complex arguments u, n , and z  are analytic functions 

defined in the complex plane z  w ith a cut along the  real axis lying to  the left of 

z  =  1. For integer value fj, =  m , these functions obey the  sym m etry relations

K m(z) =  Q ;m(z) =  Q T (z). (5.38)
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Using relation (3.2.13) of [11], the Wronskian of the functions Vj}(z) and 0%{z) is 

W W W . « ( * ) ]  =  -  < Z ( z )~ V t( z )  =  (5.39)

The functions V™ are regular a t z  = 1, while the  functions

0?(z\z<,) =  (5-40)

are constructed so th a t they vanish at 2  =  z0. B y  letting zq =  cosh 770, the one­

dimensional Green function Qtmirhtf) is then

Qtmiv, rf) =  (cosh 77<) O r  (cosh 77>| 2b). (5.41)

Therefore, by combining the obtained results and using the symmetry properties 

of (5.38), it follows th a t the Euclidean Green function G  is

G (s , i ' )  =  - i j f ; ( 2 « + l ) P , ( c o s A )
®7r e=o

x  ^ 2  Pm C O S[m(0 — ■0')] r r (C 0 S h V<) GT(C0Sh 7/> |Zq) , (5.42)
m =0

where Po = 1 and Pm>i =  2 .

Since the Green’s function must eventually become renormalized, it is necessary 

to find the boundary independent part of G(x, x ') and subtract it off. Using relation 

3.11.4 from [11] there is

J 3  Pm cos[m ( 0  -  0')] ^ T ( z<) Q T M  =
m = 0

Q i (z<z> -  cos( 0  -  0 0  >/(*§. -  1  ){z% -  1 ))  ■ (5.43)

This relation, together w ith the  Heine formula (see 3.11.10 [11])

£  (21 +  1) P ,(f)Q ,(t)  =  - ± ~ ,  (5.44)
1=0  1 1
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leads to

(cosh *7 ~  cos 7 ) (cosh 77' -  cos V)G { x ,x )  =  ------  — — ---------   , (5.4o)
87r2 a 2 (cosh A — cos A)

where A and A are defined by (5.25) and (5.26). This result implies th a t G% related 

to  G° by (5.29) coincides with the vacuum Green function

=  4**K H x,x’) ■ (5'46)

The renormalized Euclidean Green’s function defined as

G te (x , x ') = GE(x ,x ')  -  G%(x,x') (5.47)

then has the series representation

B B '
8  n^c2

D D / 00 OO
G™ { x , x ' )  =  - ^ 3  5 ^ ( 2 £ + 1 ) P £(cosA) £  /3m  cos[m(ifj -  i f / ) ]

£=0 m= 0

(5-48)

where B  =  cosh 77 — cos 7  and B' =  cosh rf — cos y .

5.1.3 Wave Zone Region

After obtaining the Euclidean Green’s function, it is necessary to analytically con­

tinue the final results from Euclidean to Minkowski space-time. To do this, it 

must first be noted th a t a Wick rotation of co-ordinate ip in (5.14), ip —> —iip, 
corresponds to T  —)• —iT  in Cartesian co-ordinates. An immediate problem arises, 

however, in that this leads to \T \/Z  =  | tanh ip| < 1 , and so only covers the right 

R +  and left i?_ wedges of the total Minkowski spacetime.

To cover the wave zone region, located in the upper T+ wedge, requires the 

following procedure. The first step is to shift ip in the form

ip —> 7r/2 — ip . (5.49)

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



After this, by making the following analytical continuation

ip —► iip , 7  —> z* 7 , c —y —ic , (5.50)

and identifying i T  with T, the result is

csinh 7  c s in h 7  .
X  =   -cos <p, Y  = -£} rsm  <p, (5.51)

B{r}, 7 ) fiW .7)

Z  =  S ^ 7 sinh,(’ ' T = ^ r ^  cosh^., (5.52)£ ( 77, 7 ) £ ( 77, 7 )

where £ ( 77, 7 ) =  cosh 77 — cosh7 . From (5.52), it follows that \T \/\Z \  =  | co th^ l > 

1, and so the co-ordinates (X , K, Z, T )  cover the region located outside R±.

The concluding steps are to re-parametrize the space-time in term s of more

physically intuitive parameters. By letting  R 2 = X 2 + Y 2 + Z 2, it is shown that

J sinh2 7  +  sinh2 77 sinh2 ip 
R  =  c  c o s h , -  cosh T ’ (5-53)

T ’ - f l 2 =  2U R  + U* =  c2 cosh ’? +  cosh7 (554)
cosh 77 — cosh 7

where U =  T  — R  is the retarded time coordinate. For U > 0, (5.54) is well-defined 

if 77 >  |7 | . Then, in the limit as R  —> 0 0  w ith U  a  fixed parameter, |7 | —>• 77.

Dividing expression (5.54) by 2R  and using (5.54) in the leading (zero) order, 

it is shown that

v  =  c ^ -  <5-55> 

By defining the spatial co-ordinates in the  form

X  =  R  s in 0 c o s $ , Y  =  £ s in © s in $ ,  Z  =  £ c o s © , (5.56)
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where the angles © and $  specify a  null ray (a generator) of the null cone for u  a 

constant in th e  asymptotic region R —t  oo, then it can be shown th a t

s i n e  -  d b -  #  =  *■ ( 5 5 7 )

Equation (5.55) can be w ritten as

Vi r t —  ^
csin©  ’

Ucoth77 =  — 7 - ,  (5.58)

or equivalently

cosh 77 =  , (5.59)
sj 1 — (csin 0/C / ) 2

As well, for R  —» 0 0 , it follows th a t

c2 cosh 77
cosh 77 — cosh 7  =  — — — . (5.60)

H U

5.2 {(f2) na in the W ave Zone

In the coincidence limit the function GT£n(x, x') is finite and it gives (cp2)nn. There­

fore, it follows th a t

(<?»(*)>“  =  N b  f ) ( 2 €  +  l )  f :  0m [P?*(cosh>j) ]2 (5.61)
£ = 0  m=o ' £ (.cosn rjo)

(cosh 77 —  C O S  7 ) 2
- ----------5 ^ 5 3 -------- • (5-62)

Under analytical continuation (5.49)-(5.50) the expressions which enter under sum­

mation remain unchanged, while the factor N e  is transformed into

(cosh 77- c o s h  7 ) 2 /ErMX
N  =    ' (5 '6 3 )
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Using (5.60) it is shown, in the wave-zone limit, this factor has the asymptotic 

value

c2 cosh2 77
~  Stt2R 2U2 ' 5̂ '64)

Finally, the representation for (<p2)nn in the wave zone is

{<p2(x))na ~  &-k2R 2U2 Zo  ̂ ’ 5̂‘65^

where

00 ° °  O m ( r  \

« ( * ,* )  =  z * '£ ( 2 l + l )  £  A . P ’T M P  t5-66)
<=0 m=0 \Z0)

and

2  =  ,  - 1  ,  Zq =  C O S h T J o  =  ~ T  ,  c  =  \ / - ^ r  -  6 2  . (5.67)
^ 1  -  ( c s i n © / C / ) 2  V O 2

It should be noted that functions of the type Fi(z, zo), apart from constants 

a and b which specify the problem, have dependence only on the combination 

U jsin©. Because of invariance under rotations in the X - Y -plane, there is no 

dependence on 4>. Moreover, the equation (5.5) for E is also invariant under a 

boost transform ation in the T-Z-plane. It is shown in [18] tha t, as the result of 

this symmetry, {<p2)nn near J + must have the form ~  R ~2U~2f  (sin Q/U ). The 

fact th a t the result (5.65) has this form dictated by the symmetry of the problem 

gives an independent test of the correctness of the calculations.

It is also evident that all the dependence on U enters through the dimensionless 

time param eter u = U/c. If the size of the sphere is small, then z0 h ► oo. In th is 

approach, the  asymptotic expansions of the Legendre functions are

7»(*b) ~  ^ 7 = - r  ( " + ! ) ■  fieM > - 1 /2 .  (5.68)

<*(*>> ~  (2 r o T -T f ) ^  • (5’69)
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Therefore,

Q v { z q )  27T

V!t(z0) "  ^ o ^ + ^  +  i H r ^  +  l)]2 ’ / 2eW >  1/ 2 ' (5-7°)

Since the asymptotic of this ratio depends on m, <3>(z, z0) can be written as an 

expansion w ith respect to  b, in the form

*{z,Zo) =  (5.71)

where

Ft(z) =  E A ,  ■ (5.72)
m=0

The leading contribution for small b is proportional to  b, and given by £ =  0 

term in the series (5.72). Notice tha t for integer m,

V[P(z) =  2~m(z2 — l ) m / 2 F  +  1 , m; m  +  1; (5-73)

(see formula 3.6.1.1 of [11]). Using the following property of the hypergeometric

function

F ( 6 ,a ; 6 ; 0  =  (1-<£)"“ , (5-74)

it follows th a t

/ z — l  \  m/^
-  ( m )  - (5 -7 5 )

To calculate V™{z) for I  >  1, the relation
rfprnr

p<+ iM  =  +  (5.76)

can be used. It is true th a t

f z  — l \ m /2
7 T W  =  (z + m ) ( — )  ,

/ z  — 1 \ m / 2
p ”*(z ) =  (3z2 +  3zm +  m2 -  1) (  • (5-77)
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By using Maple, the summation of (5.72) can be performed. It can be shown 

th a t Ft(z) is a  polynomial of 2  of the order 2£ 1 , where the first few harmonics

of Fi(z) are

F0(z) =  2 , (5.78)

Fi(z) =  i (5 2 3 -  222 -  32 +  2 ), (5.79)

F2(z) =  |(6 3 2 4 -  1823 -  7022 +  122 +  15). (5.80)

Using these results, it follows th a t the leading contribution to (<p2(x))T*a for the 

small radius of the m irror b <C a~l is

nhsp
(^ 2(^)>r' n ~  Stt2R 2U2 [1 -  (c sin e/U)2]3/2 ' 5̂'81̂

By using relations (5.65), (5.71), and (5.79), higher order corrections to (^ 2 (x ))ren 

as powers of ab can be obtained.

5.3 Energy D ensity  Flux in the W ave Zone

The calculation of the energy density flux in the wave zone

dE_ = U m 4 r f ( I W r  (5.82)

is similar to  the calculation of {<p2(x))tKn but more involved. First, it is evident 

th a t the analytical continuation of Gna given by (5.48) behaves as

G~ .(x, x.) „  ( s .8 3 )

in the wave zone region. I t  is evident that, when calculating (Tuu )na, it is sufficient 

to keep only derivatives w ith respect to U and U'. All other derivatives effectively
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introduce extra powers of R ~x, and do not contribute to the flux of the energy 

density a t infinity. In the wave zone, it follows th a t

dE
-g j = [ ( i - 2 ( ) d u da. - i c a l  + a ^ ,)]H {u ,u ']0 ) ,  (5.84)

where H(U, Ur‘, 0 )  =  g(U, 0 ,  U', ©, 4>). (H  does not depend on $  since g depends

only on the difference $  — $ '.) Using the analytical continuation of (5.48), it is 

shown th a t

rrrrrrr'.a ', _  ^  « '« ( * . * 'W
( T , )  2 ?  UU’ ’ (5'85)

where

K (z, z '\z0) =  ]T(2£ +  l ) ^ e(z, z'\zQ) , (5.86)
£=0

oo O m(p’n)
T t(z ,z '\z Q) =  T ,P rnV r ( z ) V ? ( z ) £ (5.87) 

m=o yz®)

For simplicity, consider £ =  0 and calculate the canonical energy density flux. It

can be shown that

dz z( 1 — z 2)
dU ~  U (5.88)

Therefore,

where

d u { ^ u ^ )  =  ~ m 'D‘K i z h  (5 -89)

V z = z + (z2 -  l)d z . (5.90)

T he energy density flux can be written as

dE M  (?zA
dU 2irU*
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For small value of the dimensionless param eter ab, the leading term  is given by 

I  =  0 modes and so

~  i f i S . T O T O -  (5.92)
z0 m= 0

According to (5.76),

V ZV [? { z )= V ? (z ) ,  (5.93)

and using (5.72), the  result is

dE M  c2 z4
Fx{z), (5.94)dU 2ttzq U4

where F \(z) is known from (5.79). Combining these results, the leading order 

contribution to the canonical energy density flux in the wave zone is

c2 z4 , . .
dU  47T20 U4

(5z3 -  222 -  3z +  2). (5.95)

At this point, i t  is im portant to note th a t (5.95) has a well-defined physical 

meaning for only a  certain region of Rindler space. This is evident from the 

definition of z  in (5.67), where it can be shown th a t z  oo when U  —»■ c s in 0 . 

Then (5.95) becomes infinitely negative, suggesting th a t an infinite negative energy 

gets radiated away. Furthermore, when U < c sin ©, 2  becomes complex, which 

leads to complex values for the energy density flux. This is clearly unphysical, 

which reflects the need to  introduce the restriction tha t \U\ > \c sin©| for (5.95) 

to  make any sense, where c corresponds to the  sphere’s radius by c = b sinh 770. It 

is also im portant to  note tha t 2  =  1 when sin 0  =  0 or c —> 0, which implies that 

(5.95) is regular for all values of U ^  0 under either condition. Obviously, c -> 0 

corresponds to  the condition that the mirrored surface appears like a point-like 

particle.
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Determining the energy density flux for nonzero f  is somewhat more involved, 

though still straightforward. Evaluating the second-order partial derivatives in 

(5.84), it is shown th a t

â (£7 ^ )  = m ^ K(z) ' (5'96)
where

£z =  3z2 — 1 + 5 z(z2 — l)d z + (z2 — l ) 2d;. (5.97)

It follows from (5.84) and (5.85) that

f l l 7 _4
—  = - ^ [ ( l - 2 0 1 > , V , . - i ( £ z + £ z.)]H {U ,U '-,e), (5.98)

Because £z acts only on V™{z) in (5.92), the sum in (5.98) has to be evaluated 

before taking the coincidence limit. I t can, therefore, be shown tha t

£  M W W K W )  =  2(1 (5.99)
m=0

where q(z) = yj{z — l ) / ( z  +  l). W hen z? —> z, the sum goes to F0(z) = z  as 

expected. By evaluating (5.99) for Sz and taking the coincidence limit, it is shown 

th a t

[£zH (z, z'\zQ)]2,=z = — \5z3 -  3z\ . (5.100)
Z q l j

Then the leading order contribution for the energy density flux in the wave zone 

for nonzero f  is

=  - 4 ^ [ ( 1 - 2« (5*3 - 2*2 - 3* +  2 )

-  (5z3 -  3z)] . (5.101)
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C hapter 6

C onclusion

In this thesis, a  number of systems w ith moving mirror-like boundaries are stud­

ied. For the m irror configurations described in Chapters 3-5, vacuum expectation 

values for zero-point fluctuations (ip2(x )) and the stress-energy tensor (T ^ (x ))  are 

calculated. A t this point, it is useful to  review and compare the obtained final 

results.

In Chapter 3, the  quantum radiation emitted from a single and two concen­

tric spherical semi-transparent expanding mirrors is studied. The formulation is 

done in .D-dimensional Euclidean space-time with static m irrors of d =  D  — 1 

dimensions to describe the accelerated motion of d — 1-dimensional mirrors. The 

semi-transparency of the mirrors is modelled by delta potentials of finite magni­

tude. The renormalized result (3.66), which for the m irror potential Uq —> oo 

leads to (3.71), is an expression consistent with the result obtained by Frolov and 

Serebriany [15] for a  perfectly reflecting mirror with dimension d =  3. A special 

consideration of the d  =  3 case shows that, from (3.72)-(3.78), the convergent 

part of (cp2(x ))ren decays to  zero by a  power of four greater for the region exterior
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to the m irror compared to  the interior. The divergent part of {p2 (x))ren is most 

evident a t the  mirror surface, which is expected because the boundary introduces 

a  first-derivative discontinuity in the first place. The concentric mirror boundary 

case for (<p2 (:r))ren is a considerably more complicated expression given by (3.79)- 

(3.81). I t  is not obvious how to extract a convergent part from (3.79)-(3.80) as 

outlined for the single mirror. However, the associated graphs suggest tha t, for 

a m irror w ith magnitude considerably smaller than the other, the backscattering 

of the field fluctuations due to  it is considerably less pronounced than th a t of the 

other mirror. Again, this is not surprising, since continuity a t the mirrors’ surfaces 

requires th a t the weaker potential allows for greater field transmission than for the 

stronger one.

In calculating the stress-energy tensor for these m irror configurations, it  is 

shown by rotational invariance th a t (Tftl/{x)) can be described in terms of the  en­

ergy density e, defined by (3.82)-(3.86). For the special case of conformal invariant 

theory, where £ =  (d — l ) / 4 d, the stress-energy tensor for a single mirror vanishes, 

which agrees with the results of Frolov and Serebriany [15]. This is also true for 

the concentric mirror problem in the exterior and interior regions. As for the  in­

term ediate region, the results (3.123)-(3.125) are also consistent with the results 

of Frolov and Serebriany [15].

In C hapter 4, the vacuum zero-point fluctuations and stress-energy tensor for 

a uniformly accelerating refractive polarizable body is studied. By assuming th a t 

the refractive index n  is only slightly larger than unity, and that the dielectric 

body of radius b is much less than  the characteristic length scale Z, it is possible to 

obtain expressions for (<p2(^))ren and {T^v{x)) as perturbation expansions relative 

to a  static metric. The results here can be compared with the same quantities 

calculated in Chapter 5 due to a  uniformly accelerating spherical mirror. W hat
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is found between the two sets of calculations is tha t, apart from differences in the 

coefficients, the values (4.79) and (5.79) for (^ 2 (ar))ren in the wave zone both  vary as 

u~2, where u  is the retarded time, with corrections proportional to  z -3 , where z  = 

sin S /u .  As for the energy density flux, the leading order term obtained in Chapter 

5 for non-zero £ (5.98) varies as u~4, while the  corresponding term  in Chapter 

4 (4.82) also has contributions which vary as u~6, it-8, u -10, and  higher order 

corrections in u -1. It is expected that, because of the perturbation approxim ation 

required in finding (4.82), it is likely that more complicated expressions in Chapter 

4 are expected when n >  1.

The examples considered here are chosen knowing that they possess certain 

symmetries to  ensure a tractable solution. In particular, all of them  involve mir­

ror expansion (Chapter 3) or motion (Chapters 4-5) with uniform acceleration, 

in which case the respective boundary conditions are boost invariant. This sym­

metry, along with spherical symmetry, allow for a separation of variables to  solve 

these problems. It is also significant that, after performing a W ick ro tation  into 

Euclidean space, the examples presented are reducible to equivalent electrostatic 

boundary value problems. In Chapters 3-5, it is found that the vacuum expecta­

tion of the energy density flux is negative. This result does not contradict with 

the general expectation th a t the total energy m ust be positive for a  system in flat 

spacetime. I t is expected th a t, for a more physically realistic problem  when a 

mirror is accelerated for only a finite time, the to ta l emitted energy m ust always 

be positive (see, for example, the discussion in [13] and references therein).

An im portant question emerges from studying quantum aspects of uniform 

accelerated motion. From the principle of equivalence, the properties of a  system 

with respect to  a uniformly accelerated observer are the same as properties of the 

same system in a homogeneous gravitational field with respect to an observer at
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rest, provided when the states are chosen w ith this correspondence. However, in 

a  Rindler frame, which is equivalent to a sta tic  gravitational field, the boundaries 

are a t rest with an invariant system under the  discrete symmetry t  —► —t, where t  

is the Rindler proper time. As a result, there are no energy fluxes in this frame, 

which seems contradictory.

A similar problem is discussed in detail for classical radiation of a uniformly 

accelerated charge, and can be found in [23] and the references therein. I t is im­

portant to  consider the  relative acceleration between the em itter and observer in 

order to determine th e  observation of radiation. It is best to make these observa­

tions in the wave zone region far away from the radiative system. For uniformly 

accelerating observers, the wave zone is always located outside of the region of 

space-time covered by the Rindler frame. In order to pass to the wave zone from 

the Rindler wedge, i t  is necessary to cross the  null horizon surface separating the 

regions.

It is noted th a t the  energy density flux calculations in Chapters 3-5 come with 

a negative sign, which implies tha t the m irror surfaces radiate negative energy. 

However, this result is derived when considering the radiation flux for a particular 

instant of retarded tim e U, and does not necessarily suggest tha t the total radiated 

energy E  is negative over a finite time interval. To show whether th e  to ta l energy 

is positive requires the integration of the  flux density over the given retarded 

tim e interval, excluding U =  0, where the  formula becomes singular. I t is not 

immediately obvious from the examples shown in Chapters 3-5 th a t E  is generally 

positive, since the formalism is highly dependent upon the choice of quantum  state, 

and perhaps also on the mirror’s trajectory  through space-time. A more careful 

analysis of this situation for the cases considered may be in order.
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A particularly significant paper [28] discusses the classical radiation of a uni­

formly accelerated charge using a  quantum  approach. Here, it is shown th a t this 

radiation in the wave zone is due to  the zero-frequency modes of the field in the 

Rindler frame. This approach is a departure from the chosen method here, where 

the information about the quantum  field energy density fluxes in the wave zone 

are obtained by a  simple analytical continuation of the observables from the wedge 

covered by the Rindler frame. A possible future direction is to repeat this ap­

proach for the problems considered in the thesis, which would make the analysis 

here much more involved due to  the complexity of the required calculations.
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