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Abstract

The problem of missing data is omnipresent in a wide range of real-world

datasets. When learning and predicting on this data with neural networks,

the typical strategy is to fill-in or complete these missing values in the dataset,

called impute-then-regress. Much less common is to attempt to directly learn

neural networks on the missing data, without imputing; one such approach,

called NeuMiss, introduces a novel layer in the network but can be finnicky

to train. In this work, we explore two simple augmentations that make it

simple to use standard neural network architectures: augmenting the input by

concatenating a missingness indicator and introducing synthetic missingness.

Synthetic missingness involves masking additional input attributes; this simple

data augmentation technique expands the dataset, but surprisingly has not

been explored. We show that both of these augmentations improve prediction

performance across several datasets, and levels of missingness.
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Chapter 1

Introduction

Neural networks (NN) have proven to be very powerful and highly effective at

learning complex functions and relationships, especially for high-dimensional

datasets with huge amounts of data. But, most NN training procedures assume

complete data, where no inputs are missing. However, in many scenarios of

practical interest, curated datasets contain missing data. What that entails

is that some inputs might contain missing values. The problem setting of

inference from inputs with missing values is known as “missing data”.

There are a number of ways that missing data have been handled. The

most common approach is what is known as the two-stage approach- impute

then regress. This means that the dataset is first imputed with a meaningful

value using a strategy of choice and then handed over to the neural network

for learning and prediction on the complete data. Some of the most used

approaches for handling the incomplete dataset include single and multiple

imputation methods, partial omission of the data, and complete case analysis,

where machine learning models are run on an updated datasets where partic-

ipants with any missing data are fully excluded [21]. These methods and how

effective they are will be discussed in the next chapter in detail.

There is recent work, however, that tries to directly learn on missing data

without imputing first. An example would be the NeuMiss architecture which

uses a mask element on its first 4 blocks- called Neumiss blocks, which are

element-wise multiplied with the neurons in order to perform an operation of

layer or neuron skipping across the blocks. Although their technique is clever
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and aims to directly learn on incomplete datasets, the architecture itself is

quite complex, hard to optimize, and does not generalize well, as seen later in

our experiments in Sections 5.1 and 5.2. This could be the reason why it has

not yet been widely adopted.

In this work, we explore two simple ideas that make it easy to use any

existing neural network architecture with missing data: concatenation and

synthetic missingness. Concatenation is essentially stacking a binary indica-

tor with every input vector x and passing this new stacked vector into the

neural network for learning. This indicator contains an extra piece of infor-

mation of whether an input feature is present (0) or missing (1). This naive

method can be seen to perform quite well, irrespective of its simplicity. Syn-

thetic missingness is adding missingness to the dataset during training in a

way that the neural network learns on a new missingness pattern during every

mini-batch and across all epochs. Surprisingly, though this idea is simple, it

has not yet been proposed. These two methods combined give us our CatSyn

algorithm which can be seen to surpass performance when compared against

older common techniques, as well as newer methods and architectures in Chap-

ter 5.

The main contributions of the thesis are as follows:

1. Introducing CatSyn, a novel simple approach to learn on missing data

directly with neural networks. In particular, the idea of synthetic miss-

ingness is novel, as well as the combination of synthetic missingness with

concatenation.

2. An empirical study investigating synthetic missingness and concatena-

tion, compared to a current state-of-the-art approach to learn directly on

missing data with neural networks (NeuMiss), as well as a few standard

impute-then-regress approaches. We conduct experiments with different

levels of missingness, conduct an ablation study to understand the role

of concatenation and synthetic missingness, and design two specific stud-

ies to particularly highlight when concatenation should help and when

synthetic missingness should help.
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Chapter 2

Overview of Missing Data
Strategies

In this chapter, I first introduce the problem setting and then survey existing

results.

2.1 Problem Setting

Let X ∈ Rn×m be a data matrix consisting of n data points and m features.

The j -th feature of the i -th data point is denoted as X {i,j}. Data is labeled

as missing when certain values/features of a dataset are not present, denoted

as a mask matrix M ∈ {0, 1}n×m.

This missingness could be due to a number of reasons which include the

user not providing the values intentionally- in the case of a survey; maintenance

issues such as mechanical or electronic failures during the acquisition process

corrupting the data; or even human error [29].

Therefore, if M {i,j} is an indicator for the j -th feature of the i -th sample,

X {i,j} is the observed value and finally, X * {i,j} is the ‘true’ value (possibly

unobserved) then, missingness can be formally defined into 3 categories and

those are:

• Missing Completely at Random (MCAR)- Missingness of data

points is completely random and unrelated to both the observed and un-

observed data. The probability that a value is missing is not dependent

on the values themselves. There is conditional independence between M
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and X.

P(M {i, j} = 1) = P(M {i, j} = 1|X {i, :})

• Missing at Random (MAR)- This occurs when there is some rela-

tionship between the values that are missing and the ones present. There

is a pattern and the missingness can be explained by the variables that

we have complete information on. Hence, the probability that a value is

missing is dependent on the value of the observed variables.

P(M {i, j} = 1|X {i, :})

• Missing Not at Random (MNAR)- When the missingness does not

fall in the above 2 categories, it is viewed as MNAR. This is when even

though there is a structure to the missingness, the observed values fail

to explain it. Thus, the probability that a value is missing is dependent

on the underlying true value of the variable that may itself be missing

or unobserved.

P(M {i, j} = 1|X∗ {i, :})

Imputation is the process of filling in the missing values, given the observed

variables. In our work, our focus is on the prediction part of supervised learn-

ing. Supervised learning can be thought of as an instance of imputation, in

the sense that the targets are the unobserved variables that we need to infer

or predict, given the other available variables. This example is an extremely

specific setting since we are assuming that all the variables are present during

te training phase and only missing during testing.

Usually solutions dealing with missing data problems go through the two-

stage approach which includes:

Stage 1: Fill in the missing values.

Stage 2: Use the newly completed data for prediction.
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However, this work focuses on a more direct method with handling missing

data. Our approach and main goal is to learn a classifier that naturally handles

incomplete data and can also learn to predict well with it.

2.2 Overview of Existing Methods

The problem of missing data is ever-present in most real-world datasets and

handling this phenomenon correctly and tactfully is very crucial when working

with machine learning models in order to give unbiased and optimum results.

Quite a lot of research in the form of surveys and reviews have gone into details

about all the approaches that have been implemented so far with this topic in

various domains [7], [9]. However, our focus on this paper will be only on a

subset of those, most pertinent to this work.

Papageorgiou et al. (2018) talks about the steps that are important when

dealing with missing data in scientific research. Those are firstly, to take the

necessary actions to minimize the amount of missing data wherever possible;

secondly, to understand the reason behind the missingness; and finally apply-

ing the appropriate methodology to get the best possible conclusion. They

later go on to mention how single imputation (SI) and complete case analysis

(CCA) are the most preferred methods for handling missing data but they

might not always be the best choice since they usually lead to invalid infer-

ences [22]. Single imputation is when the features that are missing are replaced

with a single value which best represents the missing value- that could be the

mean; the predicted value from a regression equation; or even the value from

running a kNN algorithm [37]. Similarly, complete case analysis is another

popular approach for this problem wherein the rows/columns with incomplete

data are completely removed in order to get a dataset which is complete [4],

[24].

Among the most widely used single imputation methods, also called uni-

variate imputation, are the following which we have also implemented in our

research. In these strategies, the values that are used as replacement have

been either been specified or chosen by us, such as some constant, or are some
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statistical measurement of the chosen feature such as mean/median/mode.

Zero imputation- This is the method where the missing values in an input

matrix are replaced with 0’s since a neural network cannot work with NaN

values. In this way, the dataset is completed and can somehow still be able

to train and learn on the input. Even though this is a very naive approach

and usually produces results that are not too accurate since 0 values do not

contribute too much meaning and can also clash with natural 0s in the dataset,

it is still widely used in practice due to it’s simplicity in application [30], [34].

Mean imputation- This is one such method in which the mean of all the ob-

served values of a single feature is computed and that value is then imputed for

all the missing values of that feature. There are quite a few major drawbacks

to this dangerously simple algorithm such as it not being able to preserve the

relationship among the variables, and that it can lead to an underestimate of

the standard error. However, for our case of MCAR, the estimate of the stan-

dard error preserves the mean of the observed data and it remains unbiased

[11], [16].

Another popular approach is multiple imputation, which can be thought of

in 3 distinct steps: imputation, analysis and pooling of results. This method

is more robust and usually performs better than the previously mentioned

simpler ones but it is slightly more complex and needs to be handled with

more care [19]. Its sophistication comes from the fact that it generates many

datasets, each with its own replacement values for the missing data, and the

final imputed value is a combined average of the multiple results. This allows

the uncertainty due to missingness to be appropriately considered. However,

there are papers that have conflicting thoughts and observations on this partic-

ular imputation method. One paper by [10] discusses how multiple imputation

is the optimal solution since it does not disregard any information while re-

pairing the problem of systematic dropout at the same time, but is still hardly

used because of the reluctance of applied researchers due to all the misconcep-

tions surrounding this method. [15] refutes the previous paper’s rebuttals and

stresses on those misconceptions and states that CCA is preferable over mul-

tiple imputation because they provide unbiased results and is more efficient.
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Additionally, there is also multivariate imputation (MI), where algorithms

use the entire set of available features to estimate the values that are missing.

The MI strategy that we have used in our research is the iterative imputation

package from scikit-learn. The reason for using scikit-learn’s imputer is that

apart from the imputer itself, the machine learning framework provides feature

transformation, data manipulation, pipelines, and machine learning algorithms

which all integrate smoothly. With just a few lines of code and adjustment,

we can impute, normalize, transform, and train our model on any dataset

[3]. Their implementation of IterativeImputer was inspired by the R MICE

package (Multivariate Imputation by Chained Equations) [31], but differs from

it by returning a single imputation instead of multiple imputations.

Iterative imputer from scikit-learn, which is a MI method, works quite

differently than the single or multiple imputation methods described above.

For our research, we have chosen the order to be ascending, meaning the

feature chosen first will be the feature with the least missing values and so

on. It initially initializes the missing values with the value passed for initial

strategy, which in our case was the mean. The imputer then uses an estimator,

which is Bayesian Ridge by default, at each step of the round-robin imputation.

During each round of the process, a particular feature column is treated as the

target variable y while the rest of the columns are the predictor variables x.

The NaNs are then predicted for each feature and this process is repeated at

most the number of times defined in the algorithm, which in our case is 20.

But it is not necessary that it would go on for this many times since there is a

built-in early stopping criterion present. This early stopping kicks in when the

difference between the previous iteration prediction and the current iteration

prediction is smaller than a specified threshold [23] [14].

Apart from these more known approaches, a graph-based framework, called

GRAPE, has been proposed that does both feature imputation as well as

label prediction using a graph representation learning. Under this particular

framework, the feature imputation is formulated as an edge-level prediction

task and the label prediction as a node-level prediction task. These tasks are

then solved using Graph Neural Networks [36].
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Another new distinct method named Generative Adversarial Imputation

Nets (GAINS) by [35] uses a generative model for imputation and the most

interesting difference in their paper is that they used a ”Hint Matrix” when

training the Discriminator. This was the only paper we found where the

missingness information was somehow used in the training process of the NN.

Similarly, one more paper proposed a principled architecture- NeuMiss Net-

works [18], whose originality and strength comes from using a new type of mask

on top of each of its layers, which is a missingness indicator vector. The pa-

per shows that their approach gives good predictive accuracy with both the

number of parameters and computational complexity while being completely

independent of missing data patterns. This new architecture is based on a

Neuman-series approximation of the optimal predictor. This network creates

an indicator vector of [0,1] for every layer, where every layer is equal to the

number of features in the dataset. This binary missingness indicator is used

as the mask and element-wise multiplied in every single layer to create their

novel network.
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Chapter 3

Proposed Approach

Our problem setting is to learn directly on missing data using neural networks.

We believe that we can do better by learning a direct function that inputs the

available features plus extra missingness information rather than doing the

basic two stage approach of imputation and handing off to the network.

In this work, we propose a simple and easy to use strategy called CatSyn

algorithm, where we concatenate the missingness information and also add

synthetic missingness into the dataset to help train the network and get even

better results than more advanced learning approaches. What the terms con-

catenation and synthetic missingness mean will be explained in the following

segments.

3.1 Concatenation Method

Concatenation of two matrices is a naive yet somehow not a very popular

approach of dealing with missing data. In this algorithm, the input data is

stacked with a binary vector for every x with information about which features

are missing, which we are calling the indicator (I). We assume that the data

has been marked with the missing features using a NaN. These NaNs are then

replaced with a 0, hence ultimately being a case of zero-imputation. This

choice was explicitly made so that we are essentially not computing those

connections and are instead dropping them for the feature values that are

missing. But, before the imputation takes place, the NaNs are also used to

detect which values are missing and this knowledge is used in creating the
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indicator vector. The indicator is binary since it contains information of which

features are missing (1) and which are not (0). In this way, the neural network

gets two pieces of information at once inside its network from which it can

then learn and train better conditioned on this extra information. This can

be better visualized with the help of Figure 3.1.

Figure 3.1: A simple diagram of how our Concatenation (Cat) method works

In order to get an insight of how the indicator is working, lets assume that

we have a weight matrix W and another one M. For every feature, there are

2 values- the original feature input x i and its corresponding indicator m i.

If the feature is available, then the indicator is 0 and the weight W of the

given feature is being used. Otherwise, since the input value is 0 itself, that
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multiplied with a weight W will also amount to 0 and hence the indicator 1

is multiplied with another weight matrix M.

Therefore, it is either:

(X i ∗W ij)

if available

or

(I i ∗M ij)

if missing

3.2 Synthetic Missingness

Synthetic data is data that has been artificially created instead of acquired

from real-world events. They are created algorithmically and used for more

robust training of the neural networks and machine learning models. They are

hugely beneficial since they help create a diverse and large amount of training

data without having to spend massive amounts of money and time [33].

Similar to the above meaning, in our synthetic missingness scenario, we

have introduced a function that takes in the training data in batches and

introduces an extra artificial missingness of a fixed percentage for every batch.

This is repeated for every epoch during the training phase. In this way, the

model trains on different patterns of missingness for every run, enabling it to

learn on a more diverse training data, leading the model to be more robust

and for the learning to be more diverse and thorough.

This can be thought of as a data augmentation strategy where we are

adding a fixed percentage of artificial missingness to our data sample every

time during its training phase, thus creating and learning on new datasets

repeatedly.
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Algorithm 1 Update Synthetic

Require: X train batch, y train batch, perc missing
Pass X train batch and perc missing into Simulate Missingness
Calculate new gradients using a standard regression or classification loss
Update parameters according to the Adam optimizer

Algorithm 2 Simulate Missingness

Require: X train batch, perc missing
Ensure: perc missing = 0.5
For every {i,j} in X:

with 50% probability, set X {i,j} = 0 and M {i,j} = 1

Return X train new

12



Chapter 4

Experimental Design

Our primary goal in our experiments is to understand the behaviour of CatSyn

across a variety of missingness levels. Therefore, for simplicity in this initial

study, we take complete datasets and introduce artificial missingness, allowing

us to control how much missingness we introduce. Additionally, we start with

completely random missingness (MCAR). Note that we actually expect direct

methods to be most effective outside the MCAR setting, but nonetheless,

MCAR is a sensible first step.

Thus, for the purpose of our research, we have taken complete datasets,

with only one of them having some slight natural missingness to it, and manu-

ally added in 5 fixed percentage missingness levels in order to have more control

over our experiments and environment. The levels are 5, 10, 20, 40 and 80 per-

cent so that we could visually see how the performance of our model dropped

with this increasing level of missingness of total features in the dataset. The

reason for us choosing greater number of missingness levels in the initial 50%

was due to that assumption being more realistic. We would assume to see

more real-world datasets with inherent missingness in it with levels closer to

and less than 50% rather than more since then those datasets would be quite

difficult to work with if the number of missing features exceeded the ones that

are available. Another set of experiments had one fixed level of missingness

in the dataset, which we kept at 50%, in order to compare our proposed ap-

proach against the other baselines and newer ones. This level was a choice

made because if we only had to experiment with 1 level, we wanted it to be
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a level where there was a 50-50 chance of a feature being present or missing.

This missingness information will then be included in a a binary matrix which

will be passed into the network as well during training so that the NN can

learn conditioned on that extra information. This binary matrix, also called

our indicator, consists of 0s and 1s where 0 means non-missing feature and 1

denotes missing.

Additionally, we have used four such complete real-world datasets for our

research- the built-in toy Breastcancer dataset (Wisconsin- diagnostic) from

sklearn [23] but it can also be found in the UCI repository [32], Spambase and

Letter Recognition datasets from UCI Machine Learning Repository [6] [13]

[26], and Pima Indians Diabetes dataset from Kaggle [28] [27].

The first Breast Cancer classification dataset consists of 569 samples in

total, 212 of which are male and the rest 357 are female. This simple data has

30 features in total and the target is to identify each sample into 2 classes,

either malignant or benign.

The next two UCI datasets of Spam and Letter Recognition have 4601 and

20000 samples respectively, where the former has 57 features and the latter

contains 16. The target of the Spambase dataset is to classify a sample as spam

or not spam whereas for the letter dataset, the final result is a classification of

whether the sample is a letter between A-Z.

The final smaller Diabetes dataset taken from Kaggle consists of 768 sam-

ples and 8 features in total. It could primarily be found in the UCI ML repos-

itory but is no longer available due to permission restrictions. Several con-

straints were put on these instances when being chosen from a larger dataset.

In particular, all samples were are female patients of 21 years of age or older

and of Pima Indian heritage. The objective of this dataset is to diagnosti-

cally predict where a patient has diabetes or not. This was our only dataset

which contained approximately 10% natural missingness to it when patients,

either intentionally or unintentionally, left values empty when asked certain

questions such as BMI, Insulin levels, etc. Those values were pre-processed as

0s in the dataset.

A summary of our classification datasets used for this research can be seen
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in Table 4.1:

Dataset Instances Attributes Attribute Type
Breast Cancer 569 30 Real

Diabetes 768 8 Numeric
Spambase 4601 57 Integer, Real

Letter Recognition 20000 16 Integer

Table 4.1: Dataset Summary

The research question that we are trying to answer for this thesis is if

we can provide a better classifier in the presence of missing data with neural

networks. The results that we got while comparing our naive Cat approach

when combined with synthetic missingness was encouraging. However, a lot

of deductions, decisions and experiments had to be made and run before we

were able to fix on this algorithm as our final proposed approach of CatSyn.

For our architecture, the choices that were constant throughout were firstly,

in order to create our model, we have used the JAX API [5] to fully customize

our NN. Secondly, the layers have ReLU [1] activation function in the hidden

layers and the Softmax activation [8] [25] in its final layer. Finally, Adam

optimizer [17] has also been added when our datasets seemed to perform better

with it. On the other hand, using mini-batches were not our initial plan while

starting out with the smaller datasets of Breast cancer and Diabetes but it

later seemed to enhance the performance for the slightly bigger Spambase and

Letter Recognition data. Hence, mini-batch gradient descent was then used

for our neural network’s training and learning during our final experiments.

All these design choices are also current state-of-the-art for neural network

learning.

We carried out two sets of experiments- one had varied levels of 5 miss-

ingness percentages and the other had one level fixed at 50%, both sets of

experiments ran with 3 step sizes for each dataset. All our algorithms that

contained synthetic missingness had a fixed 50% synthetic missingness intro-

duced to them across all experiments. This level for MCAR synthetic was

chosen since it was a perfect middle-ground for having equal number of miss-

ing and available variables.
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The first set of experiments ran for 10 runs each. However, since we were

experimenting on 5 different missingness levels and with 3 step sizes of 0.001,

0.0001, and 0.00001, that led to a total of 150 outcome combinations. The step

size for each missingness level was chosen according to the average of the last

5% of validation loss values. The learning rate that gave the lowest average

validation loss for each missingness level was chosen for that missingness per-

centage and the accuracy values with that particular learning rate were used

for the plotting of the results. This process was used for all the datasets and

experiments.

Our second set of experiments for the boxplots had just one single fixed

missingness level which was set at 50%. The step sizes for these experiments

were also chosen the same way as the previous experiments, in an external

queried way. The second set of experiments ran for 40 times each and for

every single run, both the neural network (NN) initialization and the dataset

splitting were done from scratch.

The network that we chose to create for this research consisted of 2 fully

connected hidden layers of size 64 each. 64 as the size of the two hidden

layers seemed appropriate and large enough for the datasets that we were

using for our research. After seeing an increase in the loss function for a

few of the experimental results when running for 2000 epochs each, we made

the executive decision of adding in early stopping to our model. This early

stopping was based off of the loss of a validation set after the training was

completed on the entire training set in mini-batches. However, we made sure

to not let early stopping kick in until the model had at-least trained for 50

epochs. This was repeated for every run. Early stopping on the validation loss

helped boost the performance of quite a few of our results and improved our

accuracies overall. In order to initialize our weights, we used an initializer for

uniformly distributed orthogonal matrices with a scale of 0.1, and for the biases

we used a constant initializer which we set to 0 [12]. Orthogonal was chosen

since they typically tend to have faster convergence and are more consistent

across runs [2].

The fixed missingness percentage(s) are introduced into our dataset at the
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beginning so that the missingness pattern remained the same throughout and

it essentially replicated a dataset that had inherent missingness in it. The

missingness is created by randomly selecting features to be NaN. How many

of them would be NaN would depend on the percentage that has been decided

for that dataset. These NaNs are then used when creating our indicator vector

where it locates the NaNs and outs a 1 in place for those features when creating

the binary matrix and puts a 0 everywhere else. For our Diabetes dataset

which had some 10% natural missingness to it in terms of certain features

having 0 values, we made sure that our indicator took those into account and

also represented those features as 1s.

Our experiments consisted of imputation methods described in Section 2.2

of this thesis: zero-imputation, mean imputation and an iterative imputation

technique. Zero imputation is a single imputation process that involves replac-

ing a NaN with zero. Mean imputation, also known as a uni-variate imputation

strategy, involves replacing a NaN with the mean of a feature (column). The

multivariate iterative imputation uses the strategy given by scikit-learn which

imputes missing values as a function of other features in a round-robin fashion

[23]. It estimates each feature from all the others that are present and hence, is

a much more practical and realistic way of imputing missing features because

the iterative nature of the algorithm gives a close estimate of what the value

could have been as opposed to a constant guess. In addition to the details in

Section 2.2, it is worthwhile to note that we specifically selected the following

options- using the mean of a feature as its initial strategy, Bayesian Ridge

as the estimator at each step of the round-robin imputation with maximum

iterations of 20 and an early stopping criterion which kicked in if a specified

threshold was met.

The novel NeuMiss architecture was also set up and run alongside our im-

putation strategies for comparison purposes in order to see if our proposed

approach’s performance would trump these other methods or not. It is essen-

tially a neural network where its first 4 layers are called neumiss blocks and

each neumiss block is a standard linear layer. Its only non-linearity comes

from using a masking element in the layers. This masking element is put on
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top of each layer and element-wise multiplied with the neurons and this creates

an algorithm that can either do layer skipping or neuron skipping across the

neumiss blocks. Their code can be found on their Github repository and we

have taken help duplicating their architecture and results from there [20].

Finally, since we claimed at the start that we believe direct methods to

be most effective in settings where data is not completely missing at random

(MCAR), we carried out 2 more experiments where data was just missing

at random (MAR), meaning that there is a relationship between the values

missing and the ones present. Very few papers have tried implementing sce-

narios where data is MAR for their research, but we took inspiration from

the methodologies of those that did and designed our MAR function. Our

intuition while creating this function was that MAR often happens at extreme

values of a feature. Thus, we chose a certain number of causal features from our

dataset randomly, arranged the samples according to that feature and dropped

out some of the other features around it in certain pre-determined percentage

of samples. In this way, the missingness of the dropped out dependent features

is in some way related to the extreme features for that sample.

Algorithm 3 is a simple pseudo-code to help understand our implementation

of this setting.

Algorithm 3 Simulate feature MAR

Require: X, perc samples, perc features
Ensure: perc features = 0.2
Randomly select 20% of features of X to be causal
Label the rest of the features as dependent features
w is sampled from a uniform random distribution between -2 to 1
Dot product of w is applied with causal indices and then values are sorted
Randomly drop out 20% of dependent features from given perc samples of
sorted samples
Update the indicator with missingness information in X
Return X new

The first set of experiments ran for 5 seeds each where the MAR was fixed

as a range of 5, 10, 20, 40 and 80 percent. The learning rate from the 3 given-

0.001, 0.0001, and 0.00001 were chosen according to the lowest validation loss

for each missingness level. Only the Cat and simple zero-imputed NN was run
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for this set since we wanted to see how effective just concatenation is under

this MAR setting.

In the second set of experiments, we have carried out another MAR setting

where we assumed that data is usually more complete during the training,

and hence only applied 10% MAR to the training set. During deployment

however, situations are more chaotic and data can usually be more lost and

mismanaged, and thus MAR was set to 50% for the test set. Initially, we

start off with a complete dataset with no missingness in it. Then we introduce

10 and 50 percent missingness MAR to the train and test set respectively,

the same way and with the same intuition that we have done for the previous

experiment. After that our algorithms are each run on the NN model where the

Syn variants also have an extra 50% MCAR synthetic missingness introduced

to them during training. Each of these algorithms ran for 20 seeds each.

These MAR results will be discussed in the next chapter in details along

with graphs for better visualization.
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Chapter 5

Results and Discussion

In this chapter, we go on to discuss the results that we got from our experi-

ments and show graphs in the form of box and whisker plots and line graphs

to better visualize them. We have divided the chapter into 3 sections, each

with their own set of experimental results. The first part is a comparison

study between our proposed algorithm CatSyn versus some of the previous

approaches that have been used and defined as state-of-the-art in an MCAR

setting. The second section discusses our findings in an ablation study, again

under MCAR, that we created on the utility of concatenation when combined

with synthetic missingness. The final section is based on an MAR setting,

where we discuss the basic concatenation approach under MAR and dig fur-

ther and also investigate our proposed approach CatSyn under our simulated

extreme-feature based MAR.

5.1 Overall Results

At a glance, our proposed algorithm CatSyn can be seen to perform the best

among the other previous ones when the fixed missingness level has been set

at 50 percent as seen in figure 5.1. The red boxes of BreastCancer and Letter

specifically, can be seen to achieve a much higher accuracy than the other

algorithms, as seen in green and blue boxes. Even for the other remaining

datasets, our proposed approach is drawn higher than the older approaches.

These box and whisker plots are drawn against the baseline which is our simple

zero imputed NN and hence, the test accuracies are relative.
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A statistical test has also been carried out on these results and the paired

T-test results can been found in tables 5.1 5.2 5.3 and 5.4. A paired t-test is a

statistical test used to compare the means of two related groups or conditions.

It’s often used when the aforementioned two sets of data are somehow paired

or matched and we want to determine if there is a significant different between

the means of those two. The tables here show that with a p-value less than

0.0001 for all the algorithms, the results are highly unlikely to have occurred

by random choice alone, thus the null hypothesis is rejected.

A box and whisker plot is essentially a graphical and standardized way of

displaying the distribution of quantitative data. They can be used to identify

outliers or anomalous data points; to understand the range of data; and to

determine if data is skewed or not. The box itself is formed between the 25th

and 75th percentiles of the data- which in our case are the test accuracies,

with the median being shown as a horizontal line across the middle of the

rectangle. The two extended lines from this box, called whiskers, are basically

the minimum and maximum values of the inter-quartile range and anything

outside of this range are called outliers which are shown as diamonds.

CatSyn VS P value Mean Difference Conclusion
NN < 0.0001 0.155 statistically significant

Iterative < 0.0001 0.060 statistically significant
Neumiss < 0.0001 0.355 statistically significant

Table 5.1: Paired T-tests between CatSyn and older approaches on the Breast-
Cancer dataset. Mean difference is CatSyn accuracy minus algorithm accuracy.

CatSyn VS P value Mean Difference Conclusion
NN < 0.0001 0.032 statistically significant

Iterative 0.0009 0.021 statistically significant
Neumiss < 0.0001 0.036 statistically significant

Table 5.2: Paired T-tests between CatSyn and older approaches on the Dia-
betes dataset. Mean difference is CatSyn accuracy minus algorithm accuracy.

Quite a few different kinds of experiments were carried out with the 4 clas-

sification datasets mentioned throughout this thesis. At first, our main target

was looking at how all the different algorithms performed when compared to
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Figure 5.1: Comparison Study of our proposed algorithm CatSyn against pre-
vious methods. The datasets all have 50% fixed missingness in them. The box
plots are drawn against the baseline which is our simple zero-imputed NN.
CatSyn can be seen to outperform the rest of the methods.

CatSyn VS P value Mean Difference Conclusion
NN < 0.0001 0.014 statistically significant

Iterative < 0.0001 0.018 statistically significant
Neumiss < 0.0001 0.217 statistically significant

Table 5.3: Paired T-tests between CatSyn and older approaches on the Spam-
base dataset. Mean difference is CatSyn accuracy minus algorithm accuracy.

CatSyn VS P value Mean Difference Conclusion
NN < 0.0001 0.108 statistically significant

Iterative < 0.0001 0.073 statistically significant
Neumiss < 0.0001 0.107 statistically significant

Table 5.4: Paired T-tests between CatSyn and older approaches on the Letter
dataset. Mean difference is CatSyn accuracy minus algorithm accuracy.

each other and on the same machine learning model. That included the naive

zero and mean imputation approaches along with a fairly new iterative impu-

tation and the concatenation method. Added with those four baselines was

a reasonably new state-of-the-art method called NeuMiss architecture. The
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mean imputation performed almost exactly the same as our iterative imputer

and hence will not be visualized in the main results but can be found in the

Appendix A section of this research.

The first set of experiments that we carried out was to answer our hypothe-

sis of whether our simple CatSyn algorithm could perform better in comparison

to the previous approaches of zero and iterative, which are our baselines, and

the novel architecture NeuMiss. Therefore, the experiment consisted of 5 fixed

missingness levels that were manually introduced into the datasets. Then, the

4 algorithms were run on the same machine learning model and the results

were recorded and can be seen in figure 5.2.

The methods can be seen to often perform quite similarly, but sometimes

can be quite different as well. The latter case would be for the 2 smaller

datasets of BreastCancer and Diabetes. The standard errors for these graphs

are much higher than the other larger two datasets of Letter and Spambase.

The algorithms, except NeuMiss, train quite similarly for BreastCancer but

during testing, CatSyn performs far better than the basic zero-imputed NN

and scikit-learn’s iterative imputer. The second smallest dataset of Diabetes,

has the most differences among the algorithms during training as well as test-

ing. This might be due to the fact that it’s the only dataset among the 4

with some natural missingness to it, around 10%. However, CatSyn can still

be seen to outperform all the others. That is also the case for the 2 larger

datasets which train and test very closely with much overlapping but CatSyn

still trumps over the rest.

Neumiss, even though claimed to be a state-of-the-art architecture for deal-

ing with missing data, can be seen to be the most difficult to optimize among

all of the datasets during both the training and testing phase.

The train accuracies for these algorithms with our proposed approach Cat-

Syn can be visualized in figure 5.3. It can be very clearly seen from the 4

newer graphs with CatSyn that our 2 augmentations have a highly promising

improvement to results.
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Figure 5.2: Comparison Study of our proposed algorithm CatSyn against pre-
vious approaches. These test accuracy vs missingness level graphs show that
CatSyn performs far better than the older methods plus Neumiss on these four
datasets.

5.2 Utility of Concatenation and Synthetic Miss-

ingness

Now we test if both concatenation and synthetic missingness improved per-

formance, by doing an ablation study. We compare the vanilla NN with zero

impute (NN), adding concatenation only (Cat), adding synthetic missingness

only (NNSyn) and both (CatSyn). These test and train accuracy against

missingness level graphs graphs can be seen in graphs 5.5 and 5.6.

These box and whisker plots show that overall adding synthetic missing-

ness helps boost results significantly and then combining in the concatenation

with that gives our algorithm that slight edge needed to outperform the other

methods in 3 out of 4 datasets as seen in 5.4. Again, these plots are drawn
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Figure 5.3: Train Accuracies of our Comparison Study with CatSyn

against the baseline which is our simple zero imputed NN.

Their corresponding paired T-tests can be found in tables 5.5 5.6 5.7 and

5.8 to prove their statistical significance. NNSyn can be seen to perform quite

similarly to CatSyn in some datasets and this can be seen in two of the tables

where their p-value between CatSyn and NNSyn can be seen to not be not quite

and even not at all statistically significant for the BreastCancer and Diabetes

datasets respectively. However, CatSyn is quite different and superior in its

results with the harder and larger Spambase and Letter datasets where their

statistical difference is extremely significant.

Even though the train accuracies of the first 2 datasets- BreastCancer and

Diabetes, can be seen to be quite uniform, the test accuracies prove that

overall synthetic missingness has the most impact in their performances. For

the first row, NNSyn can be seen to perform slightly better than CatSyn for
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Figure 5.4: Ablation Study of our proposed algorithm CatSyn against the
naive concatenation (Cat) approach and a basic synthetic variant (NNSyn).
The datasets all have 50% fixed missingness in them. The box plots are drawn
against the baseline which is our simple zero-imputed NN which does not
contain any synthetic missingness in it. CatSyn can be seen to perform better
and have a slight edge in 3 out of 4 datasets.

CatSyn VS P value Mean Difference Conclusion
NN < 0.0001 0.155 statistically significant
Cat < 0.0001 0.073 statistically significant

NNSyn 0.0791 -0.011 not quite statistically significant

Table 5.5: Paired T-tests between CatSyn and other approaches in our Abla-
tion Study on the BreastCancer dataset. Mean difference is CatSyn accuracy
minus algorithm accuracy.

CatSyn VS P value Mean Difference Conclusion
NN < 0.0001 0.032 statistically significant
Cat < 0.0001 0.029 statistically significant

NNSyn 0.4068 -0.006 not statistically significant

Table 5.6: Paired T-tests between CatSyn and other approaches in our Ab-
lation Study on the Diabetes dataset. Mean difference is CatSyn accuracy
minus algorithm accuracy.
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CatSyn VS P value Mean Difference Conclusion
NN < 0.0001 0.014 statistically significant
Cat < 0.0001 0.012 statistically significant

NNSyn 0.0003 0.009 statistically significant

Table 5.7: Paired T-tests between CatSyn and other approaches in our Ab-
lation Study on the Spambase dataset. Mean difference is CatSyn accuracy
minus algorithm accuracy.

CatSyn VS P value Mean Difference Conclusion
NN < 0.0001 0.108 statistically significant
Cat < 0.0001 0.064 statistically significant

NNSyn < 0.0001 0.043 statistically significant

Table 5.8: Paired T-tests between CatSyn and other approaches in our Abla-
tion Study on the Letter dataset. Mean difference is CatSyn accuracy minus
algorithm accuracy.

most of the missingness levels. However, the standard error bars for these

2 algorithms, meaning the shaded regions for red and blue, are overlapping

enough for these smaller datasets that we can infer that they are basically

performing quite similarly. Moreover, for the bottom row larger datasets, all

the methods seem to train and test comparably, but adding concatenation to

synthetic missingness seems to very important, especially in the Letter dataset

where CatSyn outperforms the rest by quite a large margin. Neumiss, once

again, proves to be the hardest to train and tests the poorest.

5.3 Effects of Missing-at-Random (MAR) on

proposed algorithms

In this section, we look at some other experiments with our most complex

and largest dataset- the Letter dataset. In order to thoroughly understand

the performance of our different approaches under the effects of MAR with

different experimental settings in place, we carry out 2 new experiments and

investigate further.
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Figure 5.5: Ablation Study of our proposed algorithm CatSyn against other
basic and synthetic variants. These test accuracy vs missingness level graphs
prove that adding synthetic missingness to datasets overall boosts perfor-
mances significantly and adding concatenation approach on top of that (Cat-
Syn) can be seen to help improve results further for more meaningful and
larger datasets.

5.3.1 Investigating Concatenation under MAR

Here we investigate the effects of a Missing-at-Random (MAR) setting on

two of our algorithms- the zero-imputed neural network and the concatena-

tion method. Our intuition behind this particular setting of MAR was that

missing-at-random often happens at extreme values of a feature. Therefore,

the missingness of the dependent features are somehow related to the causal

features for each sample.

We omitted synthetic missingness from this particular experiment because

our current approach introduced an MCAR synthetic missingness, and so intro-

duces a distribution mismatch. We expect this MCAR synthetic missingness
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Figure 5.6: Train Accuracies of our Ablation Study with CatSyn

to do more poorly than adding no synthetic missingness to address this MAR

setting.

It can be clearly seen in the graphs 5.7 that Cat performs far better at all

levels of missingness than the basic zero-imputed NN. Cat strictly dominates

and gets even better with higher missingness levels when data is MAR. The

x-axis of the line graphs define percentage of total samples that have fixed

MAR missingness introduced in them.

5.3.2 Investigating CatSyn under MAR

The results for these experiments are surprisingly clear and different for each

of the algorithm. Even though there is a difference in data distributions here

due to there being both MCAR and MAR missingness combined in the Syn

variants, the difference in the MAR missingness proportions seemed to have
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Figure 5.7: Comparison study of basic zero-imputed dataset (NN) against the
naive concatenation (Cat) approach. The simple yet deceptively uncommon
Cat approach seems to perform far better than the baseline under the Missing
at Random (MAR) setting with increasing levels of missingness.

trumped that abnormality and overall improved results. Concatenation seems

to have a big impact on performance, meaning our NN is actually learning on

the missingness information well and can somewhat detect the MAR pattern.

With the Syn variants, the higher MAR percentage in the test data seems

to not be an issue for the neural network, since MCAR synthetic missingness

patterns combined with a low fixed MAR missingness in the training data have

made it susceptible to recognizing newer and higher missingness levels. The

results shown in figure 5.8 are what we would’ve expected and proves that our

proposed algorithm CatSyn can outperform other methods in more complex

and meaningful missing data problems.

The statistical test results are also shown in table 5.9. All the methods

are quite different from each other and when compared against CatSyn, also

extremely statistically significant.

CatSyn VS P value Mean Difference Conclusion
NN < 0.0001 0.159 statistically significant
Cat < 0.0001 0.101 statistically significant

NNSyn 0.0056 0.031 statistically significant

Table 5.9: Paired T-tests between CatSyn and other approaches in our Ab-
lation Study on the Letter dataset under MAR. Mean difference is CatSyn
accuracy minus algorithm accuracy.
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Figure 5.8: Comparison study of our proposed algorithm CatSyn against our
other methods in an ablation study under the MAR setting. It is evident from
the plot that both synthetic and concatenation helps improve results quite
significantly when data is missing-at-random and have different missingness
levels during training and deployment.
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Chapter 6

Conclusion and Future Work

We propose a new algorithm CatSyn in this research, which works well as a

direct approach to handling missing data with neural networks. Our research

also focuses on understanding previous approaches that have been widely used

and implemented and compares them against our own approach in both a

comparison and ablation study. We have shown that not only does introducing

synthetic missingness in the training data alone helps boost performance in the

presence of missing data in small to large datasets, but that these surprisingly

naive ideas of concatenation and synthetic missingness together also improve

neural network performances significantly.

However, there are some limitations to this work that we believe can be

explored further in the future. Apart from MCAR, we have only exploited the

MAR setting briefly, but we believe a thorough investigation of MAR would

lead to some interesting discoveries. We have also only used datasets which are

more common, almost complete, and used in previous missing data works, but

experimenting with more diverse and larger real-world datasets which have

natural missingness in them might make this research more interesting and

detailed. Future work can also focus on experimenting with different levels of

synthetic missingness introduced during training, as opposed to just 50%, and

looking at results across a range. The size of the neural network can also be

enlarged in terms of number and size of hidden layers.

32



6.1 Ethical Implications of our Work

Working with missing data across a range of domains such as machine learning,

statistics, and even general research, can raise quite a few ethical implications.

Addressing these implications properly is essential to ensure that analyses and

decision-making processes are fair and just while also being accurate and unbi-

ased. To address these ethical implications, professionals working with missing

data should follow established best practices, communicate openly about their

methods and assumptions, and be mindful of the potential consequences of

their decisions on individuals and communities.

More specifically, imputing values when working with missing data, can be

concerning and be ethically unacceptable in certain situations and domains.

Some examples of such domains include medical diagnosis and treatment, crim-

inal justice and sentencing, national security and intelligence or even child wel-

fare and protection. In such cases, the key is to thoroughly assess the ethical

risks associated to the imputation, consider any alternatives, and make sure

that imputation practices align with ethical principles, that it is transparent

and can be accounted for. Collaborating with experts in both ethics and the

domain can help navigate these sophisticated ethical considerations.

Our approach CatSyn and use of zero-imputation as the imputation strat-

egy can help mitigate these ethical problems for quite a few of these domains

since we are not essentially trying to guess any of the information that is miss-

ing and/or may be sensitive. Since our main goal is not to fill in the missing

information with a meaningful value, thus essentially giving away any highly

sensitive or private information, but just make predictions with whatever data

we do have available, it takes away a lot of the dangers of unfair or harmful

outcomes. However, this approach should still be used with a lot of caution

and after careful consideration of the nature of the data, its context, and the

intended use of the predictions.
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Appendix A

Background Material

Mean imputation was also carried out for all the experiments but with the

simple datasets, it was often seen to perform similarly, if not identical, to our

iterative imputer and hence the results can be found here in this section of my

thesis. The optimum step size for each missingness level for these results have

been chosen according to the training loss.

For the comparison experiments with our proposed algorithm CatSyn and

the other previous approaches, the test and train accuracies against our 5

missingness levels can be found in figures A.1 and A.2.
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Figure A.1: This test accuracy vs missingness level graph shows how Cat-
Syn performs against other more commonly used methods used for handling
missing data. Mean imputation has been added here in place of iterative impu-
tation since they can be seen to perform almost identically for these datasets.
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Figure A.2: Train Accuracies with our proposed algorithm CatSyn

39


	Introduction
	Overview of Missing Data Strategies
	Problem Setting
	Overview of Existing Methods

	Proposed Approach
	Concatenation Method
	Synthetic Missingness

	Experimental Design
	Results and Discussion
	Overall Results
	Utility of Concatenation and Synthetic Missingness
	Effects of Missing-at-Random (MAR) on proposed algorithms
	Investigating Concatenation under MAR
	Investigating CatSyn under MAR


	Conclusion and Future Work
	Ethical Implications of our Work

	References
	Appendix Background Material

