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Abstract 

The paper discusses how systems biology is working toward complex accounts that integrate 

explanation in terms of mechanisms and explanation by mathematical models—which some 

philosophers have viewed as rival models of explanation. Systems biology is an integrative 

approach, and it strongly relies on mathematical modeling. Philosophical accounts of 

mechanisms capture integrative in the sense of multilevel and multifield explanations, yet 

accounts of mechanistic explanation (as the analysis of a whole in terms of its structural parts 

and their qualitative interactions) have failed to address how a mathematical model could 

contribute to such explanations. I discuss how mathematical equations can be explanatorily 

relevant. Several cases from systems biology are discussed to illustrate the interplay between 

mechanistic research and mathematical modeling, and I point to questions about qualitative 

phenomena (rather than the explanation of quantitative details), where quantitative models are 

still indispensable to the explanation. Systems biology shows that a broader philosophical 

conception of mechanisms is needed, which takes into account functional-dynamical aspects, 

interaction in complex networks with feedback loops, system-wide functional properties such as 

distributed functionality and robustness, and a mechanism’s ability to respond to perturbations 

(beyond its actual operation). I offer general conclusions for philosophical accounts of 

explanation. 

Keywords: Systems biology, integration, mechanistic explanation, mathematical models, 

mechanisms 
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1. Introduction 

Current philosophical accounts of integration and integrative explanations can be seen as a 

philosophical alternative to reduction and reductive explanation (Brigandt, 2013a; Brigandt & 

Love, 2010, 2012b; Plutynski, this issue). By assuming that the knowledge from several fields 

can be logically deduced from a more fundamental (lower-level) theory, the model of theory 

reduction proved unable to capture the complex relations among biological ideas. Initial accounts 

of integration conceptualized the non-reductive yet systematic relations among fields as being 

provided by particular theories (so called interfield theories; Darden & Maull, 1977; Maull, 

1977), but nowadays broader accounts are available, which do not require theories to be central 

epistemic units for all of biology (Brigandt, 2010; Leonelli, this issue; O'Malley, this issue). One 

approach is to use the notion of a mechanism, which is currently popular in philosophy of 

science (Machamer et al., 2000; Glennan et al., 2002; Craver & Darden, 2005). 

For various branches of experimental biology, including molecular biology, cell biology, 

and neuroscience, accounts of mechanistic explanation have proven fruitful, among other things 

because they are able to articulate the nature of multifield, multilevel explanations—as opposed 

to purely reductive explanations—given that different disciplines can contribute to the 

elucidation of a mechanism and mechanisms involve the interaction of entities on several levels 

of organization (Bechtel, 2006; Craver, 2007; Darden, 2005). Moreover, mechanisms are 

discovered in a piecemeal fashion, and mechanistic research may alternate between downward, 

reductive episodes and upward, integrative episodes (Bechtel, 2010, this issue; Craver, 2005). As 

a result, such philosophical accounts pay attention to discovery and the change of knowledge and 

research strategies and thereby address not only the product of science (e.g., a finished 

explanation) but also the practice and dynamic process of science (Brigandt, 2013a, 2013b; 

Gerson, this issue; Griesemer, this issue). 

Systems biology is nowadays thriving, and it is clearly an integrative and interdisciplinary 

approach. It attempts to explain complex biological systems using a variety of conceptual and 

experimental resources. The focus is on system-wide behavior rather than the properties of a few 

isolated components or causal pathways of a system. Due to the availability of information about 

a plethora of molecular and cellular entities provided by functional genomics, proteomics, and 

metabolomics projects, systems biology nowadays has a clear molecular-mechanistic face. At the 
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same time, the characteristic feature of systems biology is its reliance on mathematical models 

(Wolkenhauer & Muir, 2011). This may be at odds with philosophers’ conceptualization of 

mechanistic explanation as the explanation of a whole in terms of its physical parts, including the 

spatial organization of and qualitative interactions among parts. Philosophical accounts of 

mechanistic explanation have usually been silent about how a mathematical model could 

contribute to an explanation at all; in fact, causal-mechanistic accounts have been developed as 

an alternative to traditional models of explanation as derivation from quantitatively formulated 

laws (Brigandt, 2013a; Craver, 2007). Yet systems biology does appear to explain using 

equations and quantitative models (Baetu, in press; Fagan, 2012). 

In this paper, I argue that among its many other integrative aspects, systems biology is 

working toward an integration of mechanistic explanation and mathematical explanation, i.e., a 

kind of explanation that includes both reference to spatial parts and mathematical equations. This 

calls for a broader philosophical conception of what a mechanistic explanation is. My thesis is in 

line with Bill Bechtel’s and Adele Abrahamsen’s notion of ‘dynamic mechanistic explanation’ 

(Bechtel, 2011, 2012, this issue; Bechtel & Abrahamsen, 2010, 2011), but will go beyond 

previous accounts in two ways. First, given that mechanists such as Carl Craver (2007) have 

highlighted the difference between merely modeling and explaining a phenomenon, rather than 

just indicating that mathematical modeling plays some epistemic role, I specifically argue that 

mathematical models are indispensable ingredients of some explanations in molecular biology. 

In fact, while it is trivial that a mathematical representation is needed when accounting for the 

quantitative aspects or precise temporal dynamics of a system, I will point to several qualitative 

phenomena to be explained where a quantitative explanation is still required. Second, beyond the 

example of circadian rhythms discussed by Bechtel and Abrahamsen, I address systems biology 

as a larger domain and survey several cases that illustrate why equations can be explanatorily 

indispensable. 

The following section gives a brief overview of systems biology. Section 3 provides a 

general account of how mathematical equations can have explanatorily relevance, but also of 

when a mathematical model can omit mechanistic detail and still be explanatory. Section 4 

surveys several cases from systems biology that illustrate both that its mathematical models are 

developed and tested based on molecular-mechanistic information, and that there are qualitative 

explananda necessitating a quantitative explanation. In addition to drawing implications for 



Systems Biology and the Integration of Mechanistic and Mathematical Explanation 4 

philosophical accounts of mechanistic explanation and explanation in general, the concluding 

section will also use the case studies to call for a broader ontological conception of mechanisms. 

2. Systems biology 

Systems biology is not so much a (single) field, but may better be described as an 

(interdisciplinary) approach. For systems biology studies a variety of phenomena from different 

domains, including biochemical systems (e.g., enzyme activity regulation and flux in metabolic 

pathways), cellular processes (e.g., gene regulation, protein transport, signaling pathways, the 

cell cycle, and apoptosis), cell-cell interaction such as cell-cell signaling, as well as cell 

differentiation and organismal development (Boogerd et al., 2007b; Kitano, 2001; Klipp et al., 

2010; Noble, 2006). Even an individual scientist may deal with cases from various biological 

domains in her overall research. While most of the phenomena studied by systems biologists are 

processes taking place within single organisms or even single cells (Helms, 2008), there is also 

research pertaining to the interaction of microorganisms or the distribution and transfer of genes 

across whole microbial communities (e.g., using data of metagenomics projects), so that systems 

biology can have connections to ecology (Crawford et al., 2005; Jansson et al., 2012). Studies on 

(changes in) gene regulatory networks are germane to evolutionary biology (Davidson, 2006; 

Davidson & Erwin, 2006; Linksvayer et al., 2012; O'Malley & Soyer, 2012). Of course, research 

on the workings of biological systems also has medical applications in view, most notably in the 

context of cancer biology (Faratian et al., 2009; Kitano, 2004b; Patel & Nagl, 2010; Wang, 

2010), and such broader technological applications as synthetic biology (Fu & Panke, 2009). 

Generally, what makes a study an instance of ‘systems biology’ is that aims at understanding a 

relatively complex biological system, at least a complex pathway or often a complex network of 

biological entities. Rather than merely studying the structural organization of a system (e.g., the 

spatial relations of entities), systems biology is about the functional dynamics of biological 

systems, i.e., accounting for the temporal change of various entities or studying the systemic 

results of biological processes. 

Methodologically, mathematical modeling is a major aspect of theorizing and practice in 

systems biology, given that mathematical equations and computer simulations are best able to 

represent the dynamic behavior of complex systems and determine the outcome of such behavior 
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(and in addition to this capture quantitative aspects). Differential equations can be used to 

describe how the level of some entities change in response to the activities of other entities 

across time (and across space, if partial differential equations are used), which could be the 

concentration of a metabolite resulting from direct biochemical interactions, or the transcription 

level of a gene regulated by other genes (mediated by RNAs and proteins). Some models are 

non-deterministic and incorporate stochastic factors, and the mathematical analysis of networks 

has become an important approach (Alon, 2007). (Many of the mathematical and computational 

tools can also be found in other disciplines, such as physics and engineering; see Hooker, 2011.) 

Systems biologists tend to endorse a pluralistic methodological approach by recognizing the need 

to use a variety of theoretical and experimental tools and ideas (Bruggeman et al., 2002; 

O'Malley & Dupré, 2005; Westerhoff & Kell, 2007). Scientific models are conceived as 

necessarily partial representations of reality, so that many models are needed and different 

accounts are developed for different purposes, integrating different items of empirical data and 

different mathematical models. Many systems biologists take a non-reductionist stance by 

assuming that biological processes cannot be understood in terms of genes alone (Noble, 2006) 

or by endorsing the notion of distributed functionality as opposed to localized control by certain 

entities (Krohs & Callebaut, 2007; Moreno, 2007; Wolkenhauer & Muir, 2011). 

In systems biology, bottom-up approaches start with information about a limited number of 

molecular components and attempt to predict or explain the effects resulting from their 

interactions, e.g., the system behavior or emergent features. Top-down approaches, in contrast, 

proceed from a system’s overall behavior and attempt to analyze it, e.g., by breaking system 

functionality down into functional components. Krohs and Callebaut (2007) distinguish three 

‘roots’ of systems biology in terms of how much information they deliver about component 

dynamics, system dynamics, and component structure. First, pathway modeling has a tradition of 

studying enzyme kinetics, the flux in and regulation of metabolic pathways, and also signaling 

pathways. Such models are in particular used in bottom-up studies. The second root, biological 

cybernetics, is a top-down approach as it offers a theoretical framework for analyzing system 

dynamics and information processing on a relatively abstract level. While these two roots of 

systems biology have a longer history, nowadays ‘omics’ projects (including transcriptomics, 

proteomics, and metabolomics) provide a wealth of structural data about a plethora of molecular 

components of cells. Beyond the computational representation and the statistical analysis of such 
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data, a more theoretical framework such as systems biology is to be developed to make 

biological sense of this data and offer principles that explain complex organismal processes 

(Karr et al., 2012). Generally, current technologies provide data on the structure, movement, and 

activity of many molecular entities, with the resolution of a single cell or even a single molecule, 

which gives systems biology a clear-cut molecular-mechanistic character. 

Systems biology is an integrative approach, where even single studies may use empirical 

information from different biological domains and levels of organization (Noble, 2002). Given 

that philosophers tend to construe mechanistic explanation as a replacement to traditional models 

of explanation as derivation from mathematically formulated laws, of particular relevance for 

this essay is that systems biology appears to integrate mechanistic and mathematical styles of 

explanation, by using information about concrete molecular and other structural components and 

making mathematical modeling a central theoretical tool. 

3. No dichotomy between mechanistic explanations and mathematical models 

Philosophical accounts of mechanistic explanation have been developed as an alternative to the 

traditional idea of scientific explanation as the derivation from laws, e.g., the deductive-

nomological model (Brigandt, 2013a). In molecular biology and related areas, there are hardly 

laws, and instead research consists in the discovery of mechanisms, i.e., the breaking of a whole 

into its concrete structural parts (Bechtel & Richardson, 1993). Rather than being able to 

logically deduce an explanandum from laws and other premises, explanatory understanding 

results from mentally simulating how a mechanism’s components are organized and interact so 

as to bring about the phenomenon to the explained (Bechtel & Abrahamsen, 2005). The presence 

of different philosophical models of explanation does not entail that explanation in terms of 

quantitative principles and in terms of mechanisms have to be incompatible. However, Rasmus 

Winther (2006) views what he calls formal biology (which explains using mathematical theories) 

and compositional biology (which explains a whole in terms of its parts) as distinct styles of 

theorizing used in different fields. And as a developer of a detailed theory of mechanistic 

explanation, Carl Craver (2006, 2007) has repeatedly emphasized the difference between a 

model merely representing phenomena (and permitting predictions) and a model actually 

explaining. For Craver, a mechanistic account explains, while he deems several mathematical 
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models from cognitive science and neuroscience to be phenomenological, i.e., the models 

describe a phenomenon but fall short of explaining it (Craver, 2006, 2007, 2008; Kaplan & 

Craver, 2011).1 

Philosophical proponents of mechanistic explanation do not deny that mathematical models 

can explain, even in the domain of molecular and experimental biology. However, beyond 

mathematical models being in some cases an important representational tool (and having other 

non-explanatory epistemic functions; Bogen, 2005), the new mechanists have not investigated 

what significance the use of equations and mathematical analysis have for the purpose of 

explanation, in particular what a mathematical model can contribute to some explanations (but 

see Baetu, in press; Bechtel, 2012, this issue; Brigandt, in press; Fagan, 2012; Levy, in press; 

Levy & Bechtel, 2013). I take up this task, by first offering some general philosophical 

considerations on when a particular equation is indispensable to a given explanation in a 

mechanistic context. In the subsequent case studies from systems biology, I lay out the 

explanatory contribution of some mathematical models, illustrating how accounts in systems 

biology integrate explanation in terms of mechanisms and explanation by mathematical models. 

While philosophical accounts have created a picture of mechanistic explanation as the analysis of 

a whole in terms of its structural parts and their qualitative interactions (e.g., binding, activating), 

I point to instances where functional dynamics and quantitative relations are essential to the 

explanation (even for some qualitative explananda). A stereotypical portrayal may suggest that a 

mechanism consists of a fixed stock of entities, has structural parts in a spatial organization, that 

the activities among the parts are qualitative, that there is a linear causal sequence from start to 

termination state, and that the mechanism’s properties boil down to its actual organization and 

operation. Beyond the epistemological issue of explanation, in the concluding section I will use 

the case studies to discuss what important ontological features about mechanisms are left out by 

such a stereotypical construal. 

                                                 
1 Craver has also stated that some who view explanation as involving the derivation from laws or quantitative 

principles have problems with capturing the distinction between a mere representation and an explanation (Craver, 

2008, p. 1024; Kaplan & Craver, 2011, pp.608-609). In a previous paper (Brigandt, in press), I construed Craver as 

taking in general a quite skeptical stance towards the explanatory credentials of mathematical models; however, 

some of my remarks were a misinterpretation of Craver’s discussions. 
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3.1. How equations can be explanatorily indispensable in mechanistic accounts 

How can a mathematical model of a molecular system be explanatory in the first place? In a 

nutshell, an equation (containing several variables) explains when it represents a causal relation 

among biological entities or their properties (Kaplan & Craver, 2011), but to explicate this basic 

idea we have to make use of James Woodward’s (2003) theory of causation. For his account is 

formulated for quantitative generalizations, and he has applied it to the notion of a mechanism. 

The guiding principle is that a causal relation A→B in principle permits one to change B by 

experimentally manipulating A, whereas an intervention on B does not lead to a change of A, 

respecting causal asymmetry. Woodward (2003) represents putative causes as variables that may 

take quantitative values, and possible causal relations are equations involving variables (he 

includes examples from physics and economics). His central notion is ‘invariance under 

intervention,’ as A is a cause of B only if the quantitative relation between A and B is invariant 

under some interventions on A. The idea is that while an intervention on A changes the value of 

B, the relation among A and B is thereby not broken. In fact, one can change B by manipulating 

A precisely because the causal relation is still intact. Invariant generalization is Woodward’s 

proxy for laws of nature, as his goal is to develop an account of explanation for scientific 

domains where there are no laws. A universal law holds across an enormous range of conditions. 

A generalization may be invariant under a quite limited range of changes, but this still serves the 

purpose of effective causal intervention. The actual value a of variable A is a cause of B having 

value b even if the quantitative relation between A and B would only hold under a small range of 

counterfactual departures from value a. Thus, a prediction from a generalization can be an 

explanation if the generalization is counterfactually robust. 

Let me illustrate this with an example germane to systems biology. In metabolic pathway 

analysis, the reaction rate of many enzymes involving one substrate behaves according to 

Michaelis-Menten kinetics. That is, in a reaction where substrate S is turned into product P, the 

reaction rate, which is the rate of change in product concentration [P], is the following function 

of substrate concentration [S]: 

)]([

)]([)](
max tSK

tS
v

dt

tPd

M 


[
 

The maximum reaction rate vmax and the Michaelis-Menten constant KM are constants specific to 
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the type of enzyme. This equation is invariant under a substantial range of interventions on the 

substrate concentration, as a change in [S] yields a change in the reaction rate in accordance with 

the above equation. While vmax and KM are formally represented as constants because one given 

enzyme is considered, the equation also holds if these parameters are changed, corresponding to 

an intervention on the enzyme’s structure that changes its reaction constants. In this fashion, 

mathematical models from systems biology represent causal-mechanistic features.2 Woodward 

(2002) has likewise applied his account to mechanisms, laying out conditions “for a 

representation to be an acceptable model of a mechanism” (p. S375). One condition is 

‘modularity,’ the situation where different components are independently changeable, just as [S] 

and KM in the above example. Modularity means that different variables or different equations 

represent non-overlapping parts of an overall causal network, so that some such parts can be 

changed without thereby changing other parts. 

Woodward’s theory offers an account of when a particular step in an overall process is 

causal, but not all of the causes in a system have to be represented in an individual explanation. 

Which aspects of a biological process that is extended across time and contains entities on 

several levels of organization are of explanatory relevance depends on the particular 

explanandum. Furthermore, while Carl Craver (2007) assumes that the explanandum 

phenomenon determines what the mechanism’s components are and (given his ontic conception 

of explanation) that this fully yields what features are of explanatory relevance, I view 

explanations tied to various epistemic criteria of explanatory adequacy, which are explicitly or 

often tacitly used by scientists. There can be substantial disagreement among biologists about 

research agendas and the appropriateness of explanatory frameworks, reflecting epistemic 

assumptions that not only rule some accounts as incomplete explanations, but as failing to 

provide the explanatory relevant considerations altogether (Brigandt & Love, 2010, 2012a). But 

                                                 
2 Craver views mathematical models of limited explanatory capacity on the grounds that “Nothing in the 

equations … captures the difference between mere temporal sequences and causal relationships … mathematical 

dependencies cannot be equated with causal or explanatory dependency relations. The equations must be 

supplemented by a causal interpretation” (Craver, 2008, p. 1027). This is a bit of a straw man as a causal 

interpretation is always part of the mathematical model and provided by the researchers developing the model. In the 

below case studies from systems biology we will see that sets of equations are often developed from a prior causal 

network diagram. 
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such difficulties will not be of further concern here, as for my purposes it suffices to show in the 

cases from systems biology considered that a particular explanandum demands in any case a 

mathematical model. I use the following criterion of explanatory relevance: 

(ER) A component of an account representing causal features (including a mathematical 

equation) is explanatorily relevant, if omitting it or changing it results in an account from 

which the particular explanandum does not follow any longer. Features that are not 

explanatorily relevant for the explanandum at hand (and the criteria of explanatory 

adequacy) are to be excluded from the explanation. 

This criterion is general and holds for any ingredient of an explanation, but let me briefly 

illustrate how it can make mathematical features relevant. The cycle of a eukaryotic cell consists 

of different phases, where various checkpoints ensure that the progression to a new phase occurs 

only if the important cellular processes of the current phase have been completed. On the 

molecular level, the cell cycle progression is regulated by the synthesis and degradation of 

various cyclins, resulting in oscillating levels of cyclins, which activate different kinases, and 

systems biologists have modeled different aspects of this. Upon cell division, the cell is in the G1 

phase, which (unless the cell cycle rests by entry of a G0 phase) is succeeded by the S phase 

during which DNA synthesis takes place. One condition for the G1 to S phase progression is the 

cell having regained a particular size upon the prior cell division. Barberis et al. (2007) 

mathematically investigate why the underlying molecular processes result in the presence of such 

a critical cell size. Their model uses ordinary differential equations to captures 53 interactions in 

a complex network of molecular events, such as gene transcription, mRNA translation or 

degradation, the formation or dissociation of protein complexes, and their transport from the 

cytoplasm into the nucleus. On the authors’ analysis, the critical cell size required for the G1/S 

progression is an ‘emergent’ property of this regulatory network. This means that this property 

cannot be foreseen by a consideration of the basic structure of the causal network, but only by 

the mathematical modeling of the network’s quantitative interactions and the resulting complex 

dynamics, so that without such equations (and their quantitative parameters) the explanandum 

does not follow, making them explanatorily indispensable according to my criterion ER. The 

case studies in Section 4 analyze in more detail how mathematical models can be explanatorily 

relevant, and I point to several qualitative explananda that still mandate a quantitative 

explanation. 
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In some cases precise quantitative values of a mathematical model can be explanatorily 

significant (e.g., if the system behavior is highly sensitive to quantitative variation in initial 

conditions), but criterion ER cuts both ways and entails that not every quantitative detail is 

relevant. If the explanandum can be derived not only given a model’s precise parameter values 

(representing the actual quantities in nature) but still follows under a range of values, what 

explains is the fact that the parameter values are within a particular range, since being inside vs. 

outside of this range makes the difference to the explanandum (Strevens, 2008). Consequently, 

the second part of ER makes explicit that in such a situation a proper explanation does not 

adduce the precise value but the value range. A similar point holds for non-mathematical, 

mechanistic detail. While a mechanist like Craver (due to his focus on constitutive explanation) 

advocates the explanatory virtues of breaking entities into their components (Craver, 2006; 

Kaplan & Craver, 2011), on my account a causal factor does not have to be broken into its lower-

level components if the latter do not make a difference to the explanandum, so that adducing the 

higher-level cause suffices. Even on the same level of organization, mathematical models in 

systems biology often represent a relation among two entities while omitting the intermediate 

entities and mechanistic interactions mediating this relation. A gene regulatory network 

represents quantitative relations among the activity levels of different genes, without detailing 

intermediate entities such as mRNAs and proteins or the structure of the genes (see Section 4 for 

concrete examples). Arnon Levy and Bill Bechtel (2013) point out that proponents of 

mechanistic explanation are often biased toward concrete, mechanistic detail, and argue that they 

fail to appreciate the relevance of abstraction, e.g., by omitting mechanistic detail while still 

capturing some relevant structure of a network. In a similar vein, Levy (in press) discusses how a 

mathematical model can usefully abstract by aggregating the effects of many individual 

molecular events. 

In this context, my criterion ER clarifies what is at stake. Not only is abstracting away from 

some molecular-mechanistic detail legitimate, if doing so does not make a difference to the 

explanandum, but these details ought to be omitted as they are not explanatorily relevant. 

Abstraction and idealization may make a model more simple and more general (in that it has 

more concrete instances), but the real issue is that abstraction makes a model explanatory in the 

first place, given that upon proper abstraction and idealization the model adduces precisely those 

factors that are explanatorily relevant, given the explanandum (Putnam, 1975; Strevens, 2008). 
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This is at variance with Craver’s (forthcoming) ontic account of explanation, as Craver states 

that idealization is solely an issue about representation (how well a model represents reality) but 

not of relevance to the issue of explanation. 

3.2. ‘Predictive’ models in systems biology 

Carl Craver (forthcoming) distinguishes between predictive models that do not explain and 

mechanistic models. Any correlation can be used for the purpose of probabilistic prediction, but 

this falls short of causation which is needed to underwrite explanations. Within systems biology, 

given the quantitative modeling context, there is indeed a good deal of talk about ‘prediction,’ 

‘predictive modeling,’ and the virtues of having ‘predictive frameworks.’ However, in many 

cases what is meant is the availability of genuinely explanatory models, as a common criterion is 

that predictions also hold for manipulated systems, i.e., the prediction from the mathematical 

model (with changed parameter values or other changed features) match the features of the 

experimentally manipulated or otherwise modified real system. As discussed in Section 3.1, 

tracking the effects of (possible) manipulations is to get at causes. What many models in systems 

biology capture are not just manipulations at the surface, but changes of specific molecular 

components internal to the system, most prominently mutants whose modified genes lead to 

changed gene products and molecular pathways (Fisher et al., 2007). The case studies in the 

following section will illustrate in more detail how ‘prediction’ from mathematical models in 

systems biology often gets at the internal causal structure of biological systems and thereby offer 

mechanistic explanations.3 

There is a reason for aiming to capture internal structure and function. For systems biology 

is not just curiosity driven research that aims at an intellectual understanding of nature:  

The main [aim of systems biology], of course, is to understand more general principles underlying 

                                                 
3 “… the structure of the model should somehow reflect the underlying mechanisms in the biological system. 

… In a systems biology setting, the focus is on the understanding of the underlying biological mechanisms, and not 

just on achieving an optimal predictor of a given system output. We have highlighted this difference through the 

usage of the term explanation, rather than the term hypothesis, which is the typical choice in a statistical hypothesis 

testing setting.” (Cedersund & Roll, 2009, pp. 904 & 918, my emphasis) 
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the behaviour and mechanistic workings of the complete biological systems that sustain life. … A 

second aim then is the ability to understand the inner workings of particular living systems… A third 

aim derives from the ability to make predictions about the possible future behaviour of the system on 

the basis of changes we might make to our models. … A related, fourth aim of modelling is the use 

of the model for technological or therapeutic purposes.  (Westerhoff & Kell, 2007, p. 48) 

As this quote indicates, one reason for developing explanatory models is that systems biology 

has medical applications in view. Enhanced therapeutic treatment (e.g., the use of drugs in cancer 

treatment) requires the ability to predict the effects of a particular therapeutic intervention. An 

understanding of a system’s causal structure and operation permits the explanation of its current 

features (be they normal, be they pathological, in the case of a person), but it also permits 

inferring what the effects of a change to the system would be, including a change done for 

therapeutic purposes. Despite its reliance on mathematical models, systems biology is in 

continuity with molecular biology, where explanations are causal-mechanistic explanations and 

are often developed for medical and technological aims (Bechtel, this issue). 

While mechanists such as Craver are worried that too many mathematical models black-box 

a system without representing its internal causal workings, as the we will see in the case studies 

below, models in systems biology are developed from a significant amount of molecular-

mechanistic information obtained by prior experimental research, e.g., networks that lay out the 

structure of causal connections among various genes and proteins, and data about quantitative 

interaction rates. Such models are then tested, e.g., whether they successfully predict the effects 

of experimental manipulations to the system, which provides clues as to whether the 

mathematical model needs to be refined or revised. Overall, systems biologists gain explanatory 

purchase precisely by developing accounts that integrate mathematical models with molecular-

mechanistic information, in line with the general thesis of this essay: 

Computational models that reproduce and predict the detailed behaviours of cellular systems form 

the Holy Grail of systems biology. They require decades of work to integrate mathematical-

modelling efforts, data on molecular-interaction networks and information on the physics of cellular 

structures.  (Kitano, 2006; see also Mogilner et al., 2012). 
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4. Cases from systems biology: qualitative explananda requiring equations 

I now present several case studies that illustrate the interplay of mechanistic explanation and 

mathematical modeling in systems biology. Apart from showing that such mathematical models 

are based on experimental data about molecular mechanisms and that they are causal by often 

capturing the effects of interventions internal to the system, some of the cases indicate that 

models in systems biology combine several levels of organization. While it is quite trivial that a 

quantitative explanandum (e.g., a system’s precise and complete temporal dynamics) would 

require a quantitative account, my focus is on qualitative phenomena that necessitate an 

explanation involving a mathematical model. Each of the below four subsections addresses a 

different such qualitative explanandum. 

4.1. Bistability: apoptosis 

Not only do the cells of multicellular animals divide, differentiate, and possibly migrate, but 

some of them undergo apoptosis, i.e., programmed cell death. Unlike the externally inflicted 

death of a cell in the case of necrosis (due to toxins or trauma), which results in inflammation, 

apoptosis is a process controlled by this cell, involving a collapse of the cytoskeleton, the 

disassembly of the envelope of the nucleus, and the fragmenting of the genetic material, 

eventually resulting in the formation of an apoptotic body that is engulfed and destroyed by cells 

of the organism’s immune system. Apoptosis occurs in many tissues and beyond the removal of 

damaged cells is in fact essential for the very formation of morphological structures in animal 

development (Abud, 2004). In the limbs of land vertebrates, separate digits form by initially 

generated soft tissue being removed in between the developing digits by means of apoptosis; and 

in mammals, the ducts of mammary glands are created by selective cell death. The development 

of the nervous system not only involves neuronal pruning, where an individual synaptic 

connection is eliminated, but a neuron with all its connections can be removed by apoptosis. 

Apoptosis is also of substantial medical relevance as the pathological occurrence of apoptosis is 

a factor in autoimmune diseases, ischemic damage, and neurodegenerative diseases, e.g., the 

apoptotic death of motor neurons in amyotrophic lateral sclerosis. Furthermore, the progression 

of cancer tissues is significantly enhanced by the formation of tumor cells with a defective 
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apoptotic mechanism. 

Due to its important role in normal development and disease, the mechanism of apoptosis 

has been subject to extensive experimental research (Elmore, 2007). On the molecular level, 

apoptosis is initiated by signaling cascades in a cell’s cytoplasm involving among other things 

several different caspases, which are family of cysteine proteases. In response to DNA damage 

or lack of nutrients or oxygen, apoptosis can be triggered from within a cell starting by a signal 

at the mitochondria via the so-called intrinsic pathway. Apoptosis can also be triggered from the 

outside, as a cell may have cell surface death receptors, and when a specific ligand binds to a 

death receptor, inside the cell this initiates the signaling cascade of the ‘extrinsic’ pathway. There 

are interactions among these pathways, see Fig. 1. C9→C9*, the reaction from caspase-9 to 

activated caspase-9 initiates the intrinsic pathway and C8→C8* initiates the extrinsic pathway, 

while in each case C3→C3* subsequently executes apoptosis. 

Different aspects of the overall apoptosis mechanism have also been mathematically 

modeled by systems biologists (Lavrik, 2013). Some models try to capture the effects known 

from experimentally induced changes to a cell’s apoptotic mechanism, such as the 

overexpression or inactivation of genes coding for proteins involved in apoptosis. Such gene 

products could be the target for medical therapies, if it is thereby possible to increase or 

decrease—depending on the medical condition—the likelihood of apoptosis execution in specific 

cells. Fussenegger et al. (2000) model the temporal dynamics of caspase activation using 

molecular data and ordinary differential equations, in the case of apoptosis triggered by both 

intracellular and extracellular signals. Their simulation-based predictions of whether various 

manipulations (including joint manipulations such as the overexpression of two genes) increase 

or decrease the activity of caspases executing apoptosis matches known experimental results, 

which increases the likelihood that this model is realistic and accounts for the causal working of 

the apoptosis mechanism (see Section 3.2). 

The qualitative explanandum I want to focus on is bistability. Bistability is the situation 

where a chemical or biological system is in either of two states, where despite the possibility of 

switching between the two states each state is stably maintained across a range of background 

fluctuations internal or external to the system. In the case of apoptosis, the bistability pertains to 

the apoptosis state and the normal, live state of the cell. The issue is that once apoptosis is 

initiated, it has to be reliably terminated, since as soon as a relevant part of the cell’s structure 
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(e.g., its DNA) is damaged, the cell could not function properly even if apoptosis was halted. At 

the same time, apoptosis should be commenced in special circumstances only; so the cell’s live 

state is to be maintained in the face of substantial noise in external and internal signals. 

[Insert Fig. 1 and Fig. 2 about here. Two figures belong together and can be put next to 

each other (the size can be reduced), e.g., Fig. 1 above the left text column and Fig. 2 above the 

right text column on the same page, or Fig. 1 above Fig. 2 in one column.] 

The mathematical model by Eissing et al. (2004) analyzes bistability. Based on the network 

of biochemical pathways downstream of the death receptor stimulus shown in Fig. 1, the 

researchers developed two dynamical models of the extrinsic pathway, fitting the parameters to 

quantities experimentally known from cell populations. The extended model uses eight ordinary 

differential equations to represent causal relations among eight different proteins. Fig. 2 presents 

one result of this modeling, depicting how C8* (activated caspase-8, which is produced in 

response to the stimulus from the death receptor) impacts C3* (activated caspase-3, whose 

presence leads to apoptosis execution). What this shows is that at low concentrations of C8*, the 

concentration of C3* remains 0, so that no apoptosis results; yet once the C8* concentration 

crosses a threshold, after a time-lag the C3* concentration increases fast and is maintained at a 

stable level, so that apoptosis is carried out. The question of why there is a C8* concentration 

threshold in the first place is a qualitative explanandum, as is the more general question of why a 

cellular system is bistable with a live and an apoptosis state. The model represents the live state 

in part by low C8* and C3* concentrations, and the apoptosis state by high C8* and C3* 

concentrations (the low and the high horizontal plateaus in Fig. 2, respectively). Beyond 

experimentally establishing that there is a threshold, explaining why there is a threshold requires 

understanding the dynamic operation among the system’s components. From a non-mathematical 

mechanistic account—a consideration of the mechanism’s structural organization and qualitative 

interactions as shown in Fig. 1—one cannot foresee threshold behavior. Instead, an explanation 

of the presence of a threshold and bistability must involve equations capturing the quantitative 

relations among components and the mathematical modeling of the resulting system behavior 

(given that the behavior is nonlinear resulting in an all-or-nothing outcome), so that my criterion 

ER from Section 3.1 entails the equations’ explanatory indispensability. 

There is more to bistability analysis, as apart from accounting for how it is possible to 

switch from one state to the other, qualitatively different one, one needs to show that each state is 
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stably maintained in the face of cellular noise. Explaining stability under a range of variation in 

parameter values again requires mathematical modeling. The Eissing et al. (2004) study 

discussed does such an analysis (for more details see Eissing et al., 2005), as do other systems 

biological studies of bistability in the context of apoptosis (Bagci et al., 2006; Cui et al., 2008; 

Ho & Harrington, 2010). The bistability modeling by Legewie et al. (2006) includes both the 

extrinsic (death receptor initiated) and intrinsic (mitochondrion initiated) apoptosis pathway. 

Bistability is a general phenomenon, and systems biology addresses bistability in different 

domains, including biochemical reaction networks, cell cycle progression, cell differentiation, 

and cancer onset (Shiraishi et al., 2010; Wilhelm, 2009). 

4.2. Pattern formation and spontaneous symmetry breaking 

Organisms exhibit various spatial patterns, from body surface patterns such as the fur coloration 

of mammals or sea shell color patterns (Fig. 4, upper half) to the complex three-dimensional 

patterns of anatomical structures that originate during the organism’s development, such as the 

intricately branched network of mammalian lungs. In addition to a plethora of experimental 

studies of developmental mechanisms, pattern formation has also been mathematically modeled 

(Murray, 2003; Schnell et al., 2008). Even if the explanandum phenomenon is not the overall 

developmental process but merely the resulting structural pattern, dynamical models are a part of 

the explanation. There are several different basic types of models (Morelli et al., 2012), and here 

I focus on a particularly prominent class of models—reaction-diffusion equations.  

Reaction-diffusion systems are nonlinear partial differential equations (representing change 

in space in addition to time) which contain terms representing chemical reactions and terms 

describing the spatial diffusion of reaction products. A common subclass is activator-inhibitor 

systems, which have two molecular substances at their core. By means of positive feedback, the 

activator enhances its own production—locally increasing its concentration—and it also 

enhances the production of the inhibitor, which due to its higher diffusion rate acts in 

surrounding regions and there inhibits the production of the activator. Over time this process can 

lead to spatial waves of substance concentrations and the formation of stable patterns, such as 

regularly spaced dots or zebra stripe patterns (Murray, 2003). First proposed by Alan Turing 

(1952), over most of their history reaction-diffusion models have offered speculative, how-
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possibly explanations of biological pattern formation, as the underlying molecular substances 

and interaction properties were unknown. But nowadays experimental evidence for the presence 

of activator-inhibitor systems exists, for example the interaction of pigment cells in zebrafish 

(Nakamasu et al., 2009), palate growth in mice (Economou et al., 2012), and the regeneration of 

hair stem cells in mice and rabbits (Plikus et al., 2011). 

[Insert Fig. 3 about here. The size can be reduced so that it does not take up more than one 

text column.] 

A systems biology study that nicely illustrates the interplay between molecular-mechanistic 

research and mathematical modeling is Salazar-Ciudad and Jernvall’s (2002) account of teeth 

development in mice and voles. The cusp number and positions of a tooth are quite distinctive, 

so that dentition is used as a criterion for taxonomically distinguishing different mammalian 

species. (Aimed at shedding light on the developmental basis of anatomical variation within and 

across species, the mathematical model by Salazar-Ciudad and Jernvall can generate teeth with 

different cusp numbers, positions, and overall shape.) Generally, teeth develop based on the 

signaling among epithelial and mesenchymal tissues, where the tooth crowns form from a 

number of epithelial signaling centers called the enamel knots. Salazar-Ciudad and Jernvall 

(2002) proceed from prior experimental data about relevant regulatory networks in which several 

genes influence each other’s expression (see Fig. 3A). From this more complex causal network, a 

basic activator-inhibitor system is abstracted (Fig. 3B), an issue which also illustrates that a 

‘reaction-diffusion’ model does not require that the activator and inhibitor substances directly 

interact as part of a chemical reaction. Instead, the activator can be a protein secreted by a cell, 

which binds to a receptor of adjacent cells and there triggers a signaling cascade that impacts the 

regulation of the gene coding for the inhibitor. (Likewise, the substance diffusion need not take 

place in a homogeneous medium, but can be a substance gradient across cells.) Apart from 

omitting the genes, mRNAs, receptors, and signaling pathways by which the activator and 

inhibitor proteins mechanistically interact, the model abstracts away from further intermediate 

entities of the causal network, e.g., the protein DAN. This omitting of molecular-mechanistic 

detail is licit assuming that it does not alter the functional interaction and dynamics of the 

activator and inhibitor. If so, by my criterion ER such for the target phenomenon explanatorily 

irrelevant detail ought to be excluded from the explanation (Section 3.1). Thus, a mechanistic 

account of how an effect is produced (citing all intermediate steps and structural interactions) and 
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an explanation of why it occurs are not identical. 

The labels ‘activator’ and ‘inhibitor’ pertain to the mutual influence among these two 

substances, but each of them can either upregulate or downregulate downstream genetic 

pathways, where in the present case the activator has the downstream effect of suppressing 

epithelial growth and inducing epithelial cells to differentiate to form an enamel knot, while the 

inhibitor promotes growth and suppresses knot differentiation (Fig. 3B). The computational 

model predicts the activator and inhibitor distributions and the three-dimensional tooth shape 

across time (Fig. 3C). This prediction is then compared with empirical, in vivo data (Fig. 3D). 

Not only does the model prediction align with the shape of developing teeth in mice, but the 

predicted activator and inhibitor distributions broadly conforms to the in vivo expression patterns 

of p21 and Fgf4, respectively, seen at different developmental stages of mice and voles, which 

supports the idea that the mathematical model is sufficiently realistic. In addition to gene 

regulation by molecular signaling, the improved model by Salazar-Ciudad and Jernvall (2010) 

takes into account the mechanical forces that tissues exert on cells. This model is compared to 

empirical data about the large variation in tooth shape found within the species of ringed seals. 

According to these mathematical models of tooth development, large morphological differences 

can often be achieved by small developmental changes. This shows that the correct mechanistic 

explanation of why a tooth with a certain cusp number and position develops requires the use of 

a mathematical model with precise parameter values. 

[Insert Fig. 4 about here. The size can be reduced so that it does not take up more than one 

text column.] 

It is less straightforward to locate a qualitative explanandum in studies on teeth 

development, but sea shell coloration patterns are a suitable case. These patterns develop based 

on stochastic factors and vary across individuals, so that the details of an individual’s pattern are 

not a meaningful explanandum. But there are basic motifs recurring across individuals, 

highlighted by arrows in Fig. 4 (in the case of the species Tapes literatus). During shell growth 

new material is added to the outermost ridge, so that in the figure the development was from top 

to bottom. Two separate dark color substance waves, travelling downwards and creating two 

lines along the shell, will intersect where in most instances both of them continue, but 

occasionally only one wave survives the collision of two waves, so that two lines merge into one 

(uppermost arrow). Sometimes a single substance wave spontaneously splits into two waves 
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(lowermost arrow in upper half of Fig. 4). There is also the situation where the wavefront 

suddenly breaks down along a whole ridge and a fresh pattern starts (other arrows in upper half 

of Fig. 4). Such basic motifs are qualitative explananda, and the activator-inhibitor model of 

Meinhardt (2009) is able to generate them, as shown in the lower half of Fig. 4. 

A drawback of Meinhardt’s (2009) models of sea shell coloration patterns is that these 

merely are how-possibly explanations, as the underlying molecular entities and interactions are 

not known. A mechanistically more realistic type of case is accounts of the development of the 

vertebrate limb, which has been subject to extensive experimental research, in particular in 

chicken. There are also mathematical models of limb skeleton development, which use reaction-

diffusion equations and have been developed based on molecular data (Hentschel et al., 2004; 

Newman et al., 2008; Newman & Müller, 2005). These models are able to reproduce the most 

generic aspects of the shape of the different bones and their relative position in the limb. Zhu et 

al. (2010) present a mathematical model which not only replicates the normal development of the 

basic skeletal features of the chicken wing, but also different instances of modified development, 

including the experimental removal of the (causally crucial) apical ectodermal ridge at the tip of 

the growing limb bud at different points in early development, and the expansion of the early 

limb bud either by tissue graft or as seen in two different genetic mutants. This suggests that the 

theoretical model gets at causal aspects of the mechanism studied, by capturing the effects of 

interventions internal to the system (Section 3.2). The mechanistically realistic mathematical 

modeling of limb skeleton development is also of medical relevance in the context of bone 

disorders (Newman & Bhat, 2007). 

A phenomenon of interest in the context of reaction-diffusion systems is spontaneous 

symmetry-breaking. Known from physics, but also of relevance in many molecular and cellular 

biology contexts (Li & Bowerman, 2010a, 2010b; Soriano et al., 2009; van der Gucht & Sykes, 

2009; Weiss et al., 2003), symmetry breaking occurs when extremely small stochastic 

fluctuations in a system eventually lead to the crossing of a threshold that determines which of 

two branches of a bifurcation (in possible states of the system) is taken. Due to symmetry 

breaking, a reaction-diffusion system can go from a nearly homogenous state to the spontaneous 

emergence of a stable and distinct structural pattern. An analysis of the system’s components and 

qualitative interactions—along the lines of the traditional philosophical vision of mechanistic 

explanation—could not explain how a heterogeneous pattern can be created from a homogenous 
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starting point, so that equations are explanatorily indispensable in this case according to my 

criterion ER. This holds more generally for complete explanations of development, as one needs 

to account for how relatively undifferentiated tissues give rise to the highly structured anatomical 

patterns of organisms. 

4.3. Synchronized oscillations: the vertebrate segmentation clock 

Cellular oscillators are cells in which the expression-level of one or more genes oscillates with a 

regular period, resulting in corresponding oscillating concentrations of gene products. One type 

of case are circadian rhythms, which are oscillations with a period of about 24h found in animals, 

plants, fungi, and even cyanobacteria. They are endogenously maintained and entrainable by 

outside signals (e.g., daylight). Circadian rhythms have been philosophically discussed by 

William Bechtel and Adele Abrahamsen, who have stressed the role of mathematical modeling 

(Bechtel, 2010; Bechtel & Abrahamsen, 2010, 2011), pointing out that a quantitative model is 

needed to explain that the mechanism’s components and organization can generate oscillations 

(Bechtel, 2012, this issue). Apart from highlighting that the presence of oscillations is a 

qualitative explanandum, I discuss a different case of cellular oscillators—the vertebrate 

segmentation clock—because it includes accounting for synchronized oscillations across cells 

and illustrates the multilevel nature of the research. (A yet further type of case is oscillations that 

are part of the cell cycle; for mathematical models see Ferrell et al., 2011; Yang & Ferrell, 2013.) 

Vertebrates are segmented animals, with segment numbers ranging from 30 in some fish to 

hundreds in snakes. In the developing, yet largely undifferentiated early embryo, distinct 

segments originate first as somites, which then guide the formation of vertebrae and ribs. 

Interestingly, individual somites develop one after the other from the embryo’s head to its tail in 

a regular rhythm (until the species-specific number is reached). Many molecular aspects 

underlying somite formation have been elucidated, e.g., by the analysis of mutants with defective 

segment formation, with zebrafish being the best explored model organism (Dequéant & 

Pourquié, 2008; Oates et al., 2012). The basic mechanism consists in the interaction of two 

processes: the segmentation clock consisting in synchronized cellular oscillations in the tissues 

where somites form, and a wavefront of a molecular substance moving with constant speed from 

the embryo’s head to tail (where additional somites yet have to form). When the wavefront 
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passes by oscillating cells, it arrests their clock at the current stage of the cycle, so that the 

temporal pattern of the clock is transformed into a repeated spatial molecular pattern along the 

embryo’s longitudinal axis. Basically, when the wavefront passes by cells that happen to be at 

one particular point of the clock cycle, this defines the spatial boundary of the next segment to 

differentiate, so that segments of equal length form one after the other, where the segment length 

is the speed of the wavefront times period of the clock (30min in zebrafish, 2h in mice, and 5h in 

humans). 

[Insert Fig. 5 about here. The size should not be reduced too much, and the figure will have 

to take up both text columns.] 

Fig. 5 shows some of a mouse cell’s components involved in generating oscillations. Even 

though individual studies often focus on one aspect of somite formation, ideally this research 

addresses several levels of organization including interaction among components on different 

levels. What needs to be accounted for is how molecular processes within an individual cell 

results in gene activity oscillations, how based on cell-cell signaling the oscillations of different 

cells are synchronized so as to result in the segmentation clock as the synchronized oscillation in 

whole tissues, and how the wavefront substance molecularly interacts with the segmentation 

clock so as to lead to the formation of a new segment boundary and a new somite. Some of these 

processes have also been mathematically modeled (Baker & Schnell, 2009; Baker et al., 2008; 

Mazzitello et al., 2008; Santillán & Mackey, 2008). 

In the case of oscillations within an individual cell, mathematical models are gene regulatory 

network accounts that use differential equations to describe how a change in the level of mRNAs 

(produced by oscillating genes) impacts the concentration of proteins, some of which regulate 

gene transcription. While a non-mathematical mechanistic account can point to all the entities 

involved and their organization and qualitative interactions (whether they upregulate or inhibit 

one another), this is insufficient to explain the generation of oscillations, even in the case of one 

gene’s activity. Consider the mouse gene Hes1, whose oscillating transcription has been 

documented by real-time imaging studies (Masamizu et al., 2006). Fig. 5 reveals that the protein 

produced by Hes1 inhibits the expression of Hes1, so that there is a quite direct negative 
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feedback loop.4 One can imagine how a negative feedback loop can produce oscillations, 

however, whether the period of the oscillation remains constant and whether feedback results in 

damped oscillations that fade out or in sustained oscillations depends on the interaction 

parameters, so that the explanation has to involve some of this quantitative detail. And one has to 

explain why Hes1 oscillates in its actual mechanistic context, which beyond the presence of one 

feedback loop includes several other genes influencing the transcription of Hes1 (Fig. 5). 

Predicting the effect of network interactions—and thus explaining why Hes1 regularly 

oscillates—is impossible without the analysis of a mathematical model. Indeed, many of a mouse 

cell’s genes oscillate, where the genes of the FGF pathway and of the Notch pathway all oscillate 

in phase, while the different genes of the Wnt pathway (see Fig. 5) are in antiphase to this 

(Dequéant et al., 2006). This phenomenon likewise requires a mechanistic explanation involving 

a mathematical account. Goldbeter and Pourquié (2008) offer such a quantitative model of the 

synchronization among the FGF, Notch, and Wnt pathways. 

A further question is why the oscillations of different cells are in synchrony. One ingredient 

of the mechanism is cell-cell signaling by means of the Notch receptor, but an explanation of 

synchronization necessitates a mathematical treatment. Many such mathematical models are 

phase oscillator models, which treat each cell as one oscillator with a certain phase, abstracting 

away from the complex details of how the oscillation is generated within each cell (so that the 

model need not know about some of the complex mechanism and interaction quantities within a 

cell). The model represents how the phases of different cells influence each other with a time-

delay, showing that the interaction among adjacent cells results on overall synchrony among all 

cells (Morelli et al., 2009). On my account, abstracting away from such internal mechanistic 

workings of cells is legitimate, and even required to capture only those features that are 

explanatory, if the explanandum is the synchronization but not the generation of oscillations 

(Section 3.1). Mathematical modeling can go in hand with experimental studies manipulating the 

                                                 
4 Fig. 5 is quite schematic and shows the four oscillating genes Hes1, Hes5, Hes7, and Hey2 (all of which 

engage in negative feedback) together. Likewise, the proteins produced from some genes (dark ovals and rectangles 

to the right of mRNAs) are depicted within the nucleus, even though they are actually generated in the cytoplasm. 

So for a protein such as HES1 to inhibit a gene’s expression, it first has to be transported from the cytoplasm into the 

nucleus (Oates et al., 2012). 
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synchronization mechanism, e.g., changes to the timing of Delta-Notch signaling, where the 

mathematical model is able to capture the effects of such an experimental perturbation (Riedel-

Kruse et al., 2007). The phase oscillator model of Herrgen et al. (2010) predicted how the 

segmentation clock period would change in a novel zebrafish mutant, a prediction that was borne 

out upon the creation of the mutant. Such borne out prediction about experimental interventions 

internal to the system increase the plausibility that the models capture actual causal structure 

(Section 3.2). From experimental studies it is known that individual oscillating cells move so as 

to change their relative positions, and that synchronization is recovered upon perturbation that 

initially destroy synchrony. Uriu et al. (2010) mathematically show that synchronization can be 

maintained under random cell movement, and that such movement actually reduced the timespan 

of reestablishing synchrony following perturbation. 

The questions of why a gene’s activity shows sustained oscillations of a regular period, why 

several of a cell’s genes oscillate in phase or antiphase, why the oscillations across cells are 

synchronized, and why embryonic segments of equal length develop are all qualitative 

explananda. I have argued that knowledge of the mechanism’s components and their qualitative 

interactions is insufficient to predict that regular oscillations will occur.5 In line with my criterion 

ER the mechanistic explanation must include equations that model the system’s dynamic 

behavior resulting from quantitative interactions in the actual, complex network so as to show 

that oscillations result. Accounting for why the oscillation has a particular period in a certain 

species (e.g., 120min in mice) likewise requires a quantitative explanation. 

4.4. Robustness, a distributed functional process 

Robustness is a biological system’s property to maintain some of its features and functioning 

                                                 
5 Robins and Craver (2009) discuss oscillations in the analogous context of circadian rhythms. Even though 

they indicate that the “aspects of the circadian rhythm phenomenon that must be accounted for by any adequate and 

complete explanation” includes “the intrinsic timing of the clock” (p.44), their mechanistic account merely mentions 

entities, activities, and their organization (including feedback loops and duration of steps). While the mechanism’s 

components and organization—as features in nature—do ontologically bring about the phenomenon to be explained 

(oscillations), Robins and Craver neglect that a mechanistic explanation must epistemically show how (or at least 

that) the explanandum follows—be it by mentally simulating the operation or in this case by mathematical analysis. 
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despite modifications internal or external to the system (Kitano, 2004a). Often robustness is not 

an accidentally present, passive happening, but an evolved ability where the organismal system 

actively responds to disturbances, so as during embryonic development to permit the reliable 

generation of the adult phenotype in the face of perturbations to development, and subsequently 

to maintain functioning and an adaptive phenotype in a changing environment. To be sure, also 

tumor tissues can acquire robustness so as to not to respond to cancer therapies, making the study 

of robustness medically relevant (Kitano, 2004b). There is also robustness to genetic 

modifications. While this is most commonly known from experimental knockout studies, where 

the deactivation of a gene implicated in a molecular pathway surprisingly does not yield a 

changed phenotype, robustness to genetic change is also of evolutionary significance, as it 

enhances the accumulation of genetic variation within populations (for a discussion of the 

evolutionary role of robustness see Brigandt, in press). Robustness occurs on various levels of 

organization, from the genetic code and the structure of RNAs and proteins, up to more complex 

organismal subsystems (Wagner, 2005b). Individual metabolic pathways and larger metabolic 

networks can be robust in that the overall metabolic flux is maintained even if the reaction rate of 

individual enzymes is significantly decreased. In the case of a robust gene regulatory network, its 

low-level phenotypic product, for instance a spatial pattern of signaling molecules across tissues 

(eventually giving rise to anatomical structures), forms regardless of whether some the network’s 

genes are altered or deactivated. 

While experimental studies are a major tool to show a system’s robustness (Baggs et al., 

2009 use small interfering RNAs to influence the expression of various genes), mathematical 

modeling can also be helpful. Exhaustively demonstrating that a system is robust to changes in 

several components—each across a given range—would require that all possible component 

state combinations be considered. It is not feasible to experimentally produce all these modified 

systems, but in a mathematical model different factors can be independently varied to a 

quantitative degree and one can analyze the effect of any number of modifications. Beyond 

showing that a system exhibits robustness, the issue of interest given the main thesis of my paper 

is that in many cases the explanation of why the system is robust necessitates a mathematical 

account. A system’s robustness in some properties with respect to certain modifications can 

count as a qualitative phenomenon to be explained (at least the explanandum is not the temporal 

change in all of the system’s quantitative properties). Some mathematical approaches attempt to 
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infer a network’s robustness from the topology of causal relations (Barabási & Oltvai, 2004). A 

network of the scale-free type, where there are few nodes with many connections, is likely to be 

robust to the elimination of individual nodes (Greenbury et al., 2010; Jeong et al., 2000). 

However, often the biological impact of modifications cannot be inferred from gene network 

topology alone, so that an actual explanation of robustness involves the dynamical modeling of 

the perturbed system’s behavior based on experimental data about quantitative interactions and 

gene function rates (Siegal et al., 2007). 

Here are some systems biology studies of robustness that integrate mathematical modeling 

and experimentally obtained mechanistic information. In some unicellular organisms whose 

genome has been sequenced and molecular functioning has been well-characterized, including 

the bacterium Escherichia coli and the eukaryotic yeast Saccharomyces cerevisiae, the 

robustness of metabolic networks has been mathematically modeled (Edwards & Palsson, 1999, 

2000a; Smart et al., 2008). Edwards and Palsson (2000b) show that the rate of two different 

enzymatic reactions in E. coli can be reduced to 15% and 19%, respectively, of the optimal rate, 

without significantly diminishing the system’s overall metabolic flux (whereas upon further 

individual reaction rate reduction the system’s flux drops rapidly). In contrast, for a third 

reaction, the threshold rate above which overall metabolic flux is largely unaffected is 70%. A 

quantitative explanation has to be given as the system’s response to change (with changes to 

different reactions having a different impact) depends, among other things, on the quantitative 

rates of the various reactions in the metabolic network. 

The nematode Caenorhabditis elegans is among the six most prominent animal model 

organisms. The vulva (in hermaphrodites) is known to develop in a robust fashion. While the 

laser ablation of individual cells was one of the first experimental methods for investigating the 

impacts of developmental perturbations, nowadays accounts of the robustness of vulva 

development can rely on data about molecular pathways and signaling networks (Braendle & 

Félix, 2008; Milloz et al., 2008). Based on information about gene interactions, Fisher et al. 

(2007) present a mathematical model of vulva development, which is additionally supported by 

the subsequent experimental verification of two model-derived predictions (one of which is 

about a mutant and thus an experimental intervention). The computational model sheds light on 

the mechanistic basis of stable cell fate patterns which underlie robust development. 

As is well-known, many experimental studies of the fruit fly Drosophila melanogaster 
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pertain to the molecular interactions and networks involved in the formation of the basic body 

axes and the different body segments in early embryonic development. One instance of 

robustness is the segment polarity gene network, which determines in each body segment its 

anterior and posterior end, by different genes being expressed in different parts of a segment. 

The classical study by von Dassow et al. (2000) mathematically modeled this mechanism 

involving 48 interaction parameters representing such features as gene transcription rates, decay 

rates of gene products, and the degree of cooperative interaction among entities jointly affecting 

gene transcription. Their analysis shows that a functional network results in about 90% of 

random interaction parameter value assignments, so that the gene regulatory system is robust to a 

large number of modifications. More recent accounts incorporate additional molecular detail into 

their quantitative models to yield clues about different mechanistic aspects underlying the 

robustness of the segment polarity network (Albert & Othmer, 2003; von Dassow & Odell, 

2002). The mathematical model of Ingolia (2004) yields that the segment polarity gene 

expression pattern to be eventually produced forms a stable steady state that is due to the 

presence of distinct expression states for each cell, corresponding to different cell types. (Such 

distinct, stable cell states are an instance of bistability, which was discussed in Section 4.1.) 

Positive feedback among components—which is a qualitative, topological property of a gene 

regulatory network—is a necessary condition for the existence of distinct stable states. Ingolia, 

however, argues that feedback topology is not sufficient, as different stable states are present 

only if the interaction parameters satisfy certain inequalities. Thus the explanation of robustness 

has to include quantitative information about the interactions of gene network components. 

An earlier step of Drosophila segment formation involves gap genes, each of which defines 

a larger region of the embryo (by being expressed therein), where the deactivation of a gap gene 

results in the corresponding body segment’s loss (resulting in a ‘gap’). The mathematical model 

of the gap gene regulatory network by Manu et al. (2009a, 2009b) is based on and tested by data 

from high precision gene expression studies. It explains the robustness of gap gene pattern 

formation by showing that gap gene expression patterns form dynamical attractors, i.e., states 

toward which the system evolves and tends to return to even if temporarily removed from such 

an attractor state by perturbation. (For a review of mathematical models pertaining to different 

aspects of Drosophila spatial patterning and segmentation see Umulis et al. 2008.) 

In some instances robustness results from redundancy, where two copies of a structure are 
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present so that the loss of one structure does not have any impact (Dean et al., 2008). But even in 

the case of a duplicated gene, there often have to be functional amendments, as an active 

mechanism has to turn on the second gene copy which is normally not expressed (Baggs et al., 

2009; Kafri et al., 2005). Usually robustness is not just due to structural redundancy, but is a 

distributed functional process in that the overall system undergoes various functional changes to 

compensate for the loss of one component (Ihmels et al., 2007; Wagner, 2005a, 2005b). A case 

in point are such gene regulatory networks where the inactivation of one gene leads to 

compensatory function changes in several other genes of the network, which can be due to the 

network containing several feedback loops so as to buffer against perturbations (Li et al., 2009). 

Another way of obtaining distributed robustness is by means of exploratory behavior, in which 

several of a system’s parts search for their target (Kirschner & Gerhart, 2005). An example is 

how the individual shape of a eukaryotic cell is produced by each of the many microtubules 

growing and shrinking in an exploratory fashion, until some of their lengths are stabilized by a 

signal from without the cell. Exploratory behavior yields robustness, as even in the case of a 

disturbance the target will eventually be found, and it is a process whose functioning is 

distributed throughout a system. In many instances of distributed robustness, how a single 

perturbation results in the actual system-wide response (which has to be considered to 

understand why the robust feature is still produced) cannot be explained without a consideration 

of the complex system’s various interactions and the resulting system functioning, which makes 

a mathematical model necessary. 

In Section 3.1, I indicated that the reductive decomposition of a mechanism’s component is 

not always required. If the component is explanatorily relevant—if changing it would lead to a 

change in the surrounding mechanism’s features to be explained—but the component’s lower-

level constituents do not make a difference to the particular explanandum, then according to my 

criterion ER the explanation should cite the component but not its constituents. The component 

exhibiting robustness is a clear way in which this can be the case, as a change in the component’s 

constituents does not make a causal difference to the component’s robust property (that is 

relevant to the explanation). In addition to the points on explanation (e.g., the indispensability of 

quantitative modeling) made so far, the next section will use robustness and distributed system 

functioning to draw some lessons for philosophical views on the nature of mechanisms. 
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5. Toward a broader conception of mechanisms and explanation 

Apart from illustrating how models in systems biology are developed based on and tested by 

molecular-mechanistic data, my case studies have focused on the explanatory relevance of 

mathematical models. Before returning to this and offering more general philosophical remarks 

on explanation, I extract points from the cases that mandate a broader philosophical conception 

of mechanisms. These may well be features that philosophers would not object to (and that 

biologists naturally take to be aspects of mechanisms), but they point to the drawbacks of 

stereotypical philosophical characterizations of what a mechanism is and highlight issues in need 

of more detailed philosophical investigation. 

5.1. Mechanisms 

Philosophers focus on a mechanism’s qualitative organization and its component’s qualitative 

activities, e.g., binding, opening, activating (Bechtel, 2011; Boogerd et al., 2007a). Yet the 

components of mechanisms have quantitative properties and undergo quantitative changes. This 

is obvious in such biochemical cases as the concentration of a metabolite and the specific 

reaction rate of an enzyme, but even the activity of a gene is not an all-or-none affair, but a gene 

produces a certain number of transcripts per unit of time. How a gene’s transcription rate differs 

across cells or changes within a cell across time is experimentally measured by genome-wide and 

real-time expression studies and was of theoretical relevance to the different models of gene 

regulatory networks mentioned throughout Section 4. In fact, several transcription factors may 

jointly influence the activity of one gene, where such cooperative interaction can transform a 

transcription factor concentration to gene expression rate curve that is shallow (for a single 

transcription factor binding) into a threshold-like curve where quantitative differences yield a 

qualitative effect (Wang et al., 2009). A quantitative change in cell-cell signaling resulting in a 

qualitative cellular response is one basis for the complexity of cellular and developmental 

processes. My case studies have also pointed to other instances where quantitative features 

matter to the properties resulting from system behavior. 

A pictorial representation of a mechanism may suggest that it consists of a fixed stock of 

entities (that move and interact), but one should not neglect the disappearance of entities and the 
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generation of novel entities as characteristics of a mechanism. Many components of a 

mechanism are transient, with biochemical reactions rapidly transforming one molecule into a 

different kind of molecule and breaking down entities into smaller molecular components. 

(Baetu, in press, points out that a system’s functioning is not so much due to the stable presence 

of entities, but to shortlived molecules that are replaced by molecules of the same type.) 

Apoptosis illustrates that even entities above the molecular level such as whole cells can vanish 

during the operation of a mechanism. As mentioned in Section 4.1, the controlled death of cells 

and removal of particular tissues is instrumental in the formation of anatomical structures during 

normal development. Conversely, apart from new activities and behaviors being produced (e.g., 

gene activity oscillations), new structures, even a new type of structural entity can be generated 

within a mechanism. Some biochemical and molecular processes result in a new kind of protein 

internal to a cell; and cell division followed by cell differentiation can generate a novel cell type. 

When a mechanism’s operation is described as consisting of “regular changes from start or 

set-up to finish or termination conditions,” where “what makes [the mechanism] regular is the 

productive continuity between stages … represented schematically by A→B→C” (Machamer et 

al., 2000, p.3), such a stereotypical characterization creates the impression that every mechanism 

consists in a single, linear causal sequence. To be sure, causal pathways may branch or merge, 

and in fact form complex networks of interactions among various components. Molecular 

biologists have come to recognize the importance of this, as witnessed by discussions of ‘gene 

regulatory networks’ and the recent terminological shifts from ‘metabolic pathway’ to ‘metabolic 

network’ and from ‘signaling pathway’ to ‘signaling network.’ Many researchers emphasize that 

since there is ‘cross-talk’ between what deemed to be separate pathways, the larger network 

needs to be studied (Barabási et al., 2011; Fraser & Germain, 2009; Jørgensen & Linding, 2010; 

Layek et al., 2011; Wing et al., 2011). Furthermore, the organization of causal interactions is not 

unidirectional and acyclic, but mechanisms have feedback loops (Bechtel, 2011). This complex 

topology of causal and functional relations has to be taken into consideration because it is crucial 

for the mechanism’s actual behavior and the resulting higher-level properties. In the above case 

studies, we have seen feedback loops to be vital for activator-inhibitor systems producing 

particular spatial patterns (Section 4.2), the generation of regular genetic oscillations (4.3), and 

the robustness of many gene regulatory networks (4.4). 

While philosophical accounts have centered on the structural and spatial aspects of 
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mechanisms, such as the structure of interacting components and their spatial organization, my 

discussion has highlighted the functional aspects of mechanisms, which are of utmost importance 

to systems biology. There is distributed functionality, where a biological system is not controlled 

by a limited number of privileged entities or activities, but where the dynamics of how the 

system behaves and is functionally regulated is of a more holistic nature (Krohs & Callebaut, 

2007; Moreno, 2007; Westerhoff & Kell, 2007).6 Section 4.4 discussed that robustness is often a 

distributed process, for instance when a gene’s activity is part of a gene regulatory network, yet 

the deactivation of this gene does not make a difference to the network operation’s final 

outcome, due to compensatory changes to the activities of other genes throughout the network. 

This raises problems for philosophical accounts that assume that a mechanism can be broken into 

separate components (Mitchell, 2009). James Woodward (2002, 2003) lays out the condition of 

modularity as the in principle possibility of manipulating one component without impacting the 

behavior of others (see Section 3.1). Yet a system with distributed functionality does not exhibit 

modularity in the strict sense. Carl Craver (2007) extends Woodward’s notion to even define 

what the components of a mechanism are, where something is a component only if manipulating 

it would make a difference to the mechanism’s characteristic feature. But in the case of a robust 

gene regulatory network, changing the structure or activity of individual genes does not make 

such a difference—and without components there is no mechanism by the lights of standard 

philosophical accounts. Of course one can distinguish different genes as different structures, but 

the issue at hand is the (separable) functional contributions of mechanism components. What the 

phenomena of distributed functionality and robustness show is that sometimes the components of 

a mechanism cannot be clearly individuated (which also entails that the boundary between the 

mechanism and entities not belonging to the mechanism is blurry). 

For the simple reason that a mere how-possibly mechanistic account does not actually 

explain (Craver, 2006, 2007), philosophers have focused on the actual organization and the 

actual, regular operation of a mechanism. But there are also dispositional properties of a 

mechanism. A case in point is robustness, which pertains to how the mechanism would respond 

                                                 
6 In metabolic pathways without any bifurcations, the sum of all flux control coefficients is one, so that even in 

such a simple linear system a change in the reaction control at one step entails reaction rate changes at other steps / 

enzymes (Fell, 2007). 
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upon perturbation. Michael Behe’s (1996) ‘intelligent design argument’ against evolution relies 

on the notion of irreducibly complex molecular systems, which are systems where the removal of 

any part leads to the system ceasing to function (Brigandt, 2013b, in press). Robustness is the 

opposite of irreducible complexity; and apart from showing Behe’s vision of the nature of 

molecular systems to be misguided, robustness more generally highlights the flexibility and 

adaptability of many biological mechanisms. Thus, beyond the actual organization and operation 

of a mechanism, properties of a mechanism to be taken into consideration by philosophers 

include the mechanism’s modified organization and modified operation. 

5.2. Explanation 

Robustness is not only a property of some systems, but an issue that research in systems biology 

deems in need of study and explanation. This bring is us from the ontology of mechanisms to the 

epistemological topic of explanation. In the case studies I have argued that there are even 

qualitative explananda about mechanisms whether the explanation must include quantitative 

information or at least mathematical models. The qualitative phenomena discussed were 

bistability (Section 4.1), spontaneous symmetry breaking and qualitative aspects of spatial 

patterns (4.2), regular oscillations and synchronized oscillations (4.3), and robustness (4.4). 

There are two related reasons for why mathematical modeling is needed. First, according to my 

criterion ER from Section 3.1, if omitting features from a mechanism representation does not 

entail the explanandum any longer, or if changing some features implies different system 

properties than the ones to be explained, then those features must be included in the explanation. 

Sometimes such explanatorily relevant features can only be computationally or mathematically 

represented, for example, if the complex topology of an interaction network is explanatorily 

relevant, or if system behavior is sensitive to quantitative parameters (Section 4 presented several 

examples of this). Second, beyond representing the different ingredients of a mechanism—the 

entities, activities, and their organization—an explanation has to show how (or at least that) the 

explanandum phenomenon results from this. Mental simulation is typically unable to track the 

causal effects of complex feedback loops or the impact of nonlinear interactions, so computer 

simulation or the mathematical analysis of a model is indispensable for the explanation. Systems 

biologists may emphasize ‘emergent properties’ (Bhalla & Iyengar, 1999; Boogerd et al., 2005; 
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Boogerd et al., 2007a; Ihekwaba et al., 2005; Westerhoff & Kell, 2007). This does not 

presuppose a strong ontological notion of emergence, and rather means that a system’s 

qualitative properties arise only upon the dynamic operation of the system and that these 

qualitative features cannot be foreseen from the complex system’s components and their basic 

interactions (Mitchell, 2012). This type of emergence still is scientifically important as it entails 

the need to study the mechanism’s complete organization—not just its structural, but also its 

functional organization—and to use a mathematical account. 

While emphasizing that models in systems biology are developed from molecular data, my 

case studies also indicated that such models abstract away from a good deal of mechanistic 

detail. Many models in systems biology describe functional relations among entities, without 

representing their structure, which is the case if the focus is on the impact of system functioning 

and not on how individual functions are brought about by the structure of molecular entities. 

Moreover, a gene regulatory network model captures how a gene’s expression changes as a 

function of other genes’ activity, but omits the mechanistic entities and activities mediating this, 

e.g., mRNAs and proteins. According to criterion ER, this is legitimate if omitting these features 

makes no difference to the dynamics of the system modeled, or at least no difference to the 

outcome of the system’s operation to be explained. In fact, explanatorily non-relevant features 

should be excluded, so that such idealization is mandated and makes the model explanatory in 

the first place. This position is at variance with Carl Craver’s (forthcoming), who deems 

idealization to be an issue about representation (how realistic a description is), but irrelevant to 

explanation. 

Many contemporary philosophers accept a pluralism about the types of explanation 

(Brigandt, 2013a). The criticism of the deductive-nomological model did not lead to its 

replacement by a single model of explanation. In addition to causal-mechanistic explanations 

known from molecular and experimental biology, philosophers may acknowledge that there are 

explanations based on mathematical models, for instance as found in evolutionary biology and 

ecology. Different types of explanation need not be relegated to different disciplines (pace 

Winther, 2006). Mechanistic types of explanation in terms of physical parts and explanations 

using mathematical models can be found in molecular biology, and systems biology shows that 

there are even individual explanations that combine both types of explanation, enhancing the 

plurality among the kinds of explanations.  
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Individual explanations can be very complex. In actual science explanatory contributions are 

continuously added to the overall account, which can often be deemed to be complete only 

relative to criteria of explanatory adequacy that have been chosen in a certain context so as to 

address only some aspects of a complex phenomenon (Brigandt & Love, 2012a). Furthermore, 

an overall explanation can consist of a plethora of explanatorily relevant items of knowledge. 

These can pertain to different levels of organization (being provided by different scientific 

fields), with some being empirical data and other more theoretical accounts. Some of the 

explanatory components can be of a quite different type, for example, structural knowledge 

about physical entities as well as mathematical equations about functional dynamics. For such 

reasons, one lesson is that some explanatory accounts are so complex that they do not consist in 

and cannot be captured by a single representation. It may thus be better to speak of an overall 

explanatory account or framework than of one explanation. The deductive-nomological and 

related models of explanation assumed that an explanation consists of two sets of statements, the 

explanans and the explanandum, that stand in a certain relation (Hempel, 1965; Hempel & 

Oppenheim, 1948). While such a philosophical theory of explanation aimed at laying out 

conditions for what makes a set of statements an explanans, the complexity of explanatory 

accounts in science shows in my view that no such simple philosophical account is possible. 

In my argument that certain mathematical models from system biology are explanatory I 

heeded Craver’s (2007) admonition that not every representation or prediction is an explanation. 

However, this does not entail that explanation can be treated independently of other 

epistemological notions such as description, prediction, scientific inference, and confirmation. 

For philosophy of science has moved away from exclusively studying the content of science, and 

come to address discovery and the practice of science (Brigandt, 2013a, 2013b). And in their 

practice, biologists use different representations and pursue different scientific aims in 

combination (Green, 2013). While some mathematical models are not meant to be explanatory 

and merely describe, a single model may well be developed and used for many purposes at the 

same time: description, prediction, discovery, and explanation. A model with explanatory 

capacity may also describe relations among data with as high a degree of precision (and 

mathematical simplicity) as possible. Its predictions can be used to test a hypothesis, so as to 

serve the purpose of confirmation. But it can also be used for heuristic and practical functions, as 

the analysis of a modeled system’s behavior may reveal unforeseen results, so as to open new 
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conceptual spaces or to provide guidelines for the next steps in experimental discovery (Wimsatt, 

2007). One representation may be used for explanatory and other scientific purposes, but even in 

their research geared toward the generation of an explanatory account, scientists make use of 

many individual representations, some of which are non-explanatory. Since the scientific activity 

of explaining is related to other activities such as predicting, confirming, modeling, and choosing 

theoretical and experimental strategies, philosophers cannot study discovery, confirmation, and 

explanation in isolation from each other. Since in scientific practice, explanations and other 

representations are jointly used, philosophical theories of explanation have to be related to other 

epistemological notions, including description, prediction, standard, and method. 
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Fig. 1. Pathways on which Eissing et al. based their models of apoptosis (grey area is the 

extrinsic, death receptor initiated pathway mathematically modeled; from Eissing et al., 2004). 
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Fig. 2. Bistable behavior in the extended apoptosis model (from Eissing et al., 2004). 
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Fig. 3. Modeling the development of mammalian teeth. An experimentally obtained 

molecular network (A) forms the basis of a simplified activator-inhibitor system (B). The 

mathematical model’s prediction of the three-dimensional tooth shape and the activator 

and inhibitor distributions across developmental time (C) is compared to empirical 

information in mice (D); EK = enamel knot (from Salazar-Ciudad & Jernvall, 2002). 
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Fig. 4. Sea shell coloration pattern in Tapes literatus (upper half), and 

Meinhardt’s simulation using an activator-inhibitor model, where the arrows 

denote motifs also present in the real shell (from Meinhardt, 2009). 
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Fig. 5. The segmentation clock in mice. Apart from components involved in the synchronization 

with another cell (top), the figure shows three major signaling pathways (FGF, Notch, and Wnt) 

underlying the generation of oscillations (from Dequéant & Pourquié, 2008; the area with light 

background in lower half is the cell nucleus containing oscillatory genes and their mRNA 

transcripts; dashed lines are interactions inferred from other species or microarray data). 


