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Abstract

This report describes a method for the analysis of
slab-column connections at ultimate load which uses a truss
analogy to model the flow of forces between the slab and
column. Although general in application it is developed in
detail for the case of a flat plate to edge column
connection under combined shear and moment. The slab is
unreinforced for shear and moment is about an axis parallel
to the free edge.

A new mechanism to explain the punching phenomenon is
proposed. This mechanism describes punching as the failure
of the slab to confine concrete compression forces out of
the plane of the slab.

The model is calibrated with results of 48 interior
slab-column connection tests under shear load only. It is
then used to analyze 43 edge connections from 8 separate
investigations yielding excellent agreement between test and
predicted results.

It is concluded that the capacity of a slab-column
structure is defined by the lesser of two essentially
independent capacities. These are the local slab-column
connection strength and the overall slab strength as

determined by yield-line or similar analysis.
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Chapter 1

Introduction

1.1 Description of Problem

The reinforced concrete flat plate is an economical and
popular structural system. It consists of a two-way slab of
uniform thickness cast monolithically with columns. Beams,
drop panels and capitals are not used.

The flat plate has a number of advantages over other
forms of reinforced concrete slab construction.

1. Simplified formwork speeds up construction and allows
the flying of forms, thus reducing labour costs.

2. In high-rise residential buildings, the underside of the
slab may be finished so as to provide an acceptable
ceiling for the floor below.

3. In commercial buildings, mechanical and electrical
services are not obstructed by beams, drop panels or
capitals.

One of the major problems with flat plates is their
susceptibility to 'punching' failures. These are local
failures of the slab-column connection in which the column
together with a portion of the slab push through the slab.
The unpredictable nature of this type of failure is a major
drawback to flat plate construction.

Much of the work to date has dealt with interior
columns under vertical load only (no net moment tranferred

between the slab and column). With moment tranferred between



the slab and the column, however, the vertical load capacity
of the»connection is reduced. The combination of shear and
unbalanced moment is unavoidable at edge and corner column
locations. It occurs at interior columns as well, as a
result of unequal spans, patterned loading or lateral
loading.

While some reasonably accurate procedures have been
developed for the prediction of punching strengths under
balanced loading, efforts to extend them to cases of
combined shear and moment have met with limited success.
Design procedures tend to be extremely conservative with the
result that designers may opt for beams, drop panels,
capitals or some form of shear reinforcement, thereby
forgoing many of the advantages of the flat plate. A
reliable method for predicting the ultimate behavior of a
slab-column connection, without shear reinforcement, under
any combination of shear and moment would permit the

increased use of this economical structural system.

1.2 Scope

This thesis develops the components of a general
analytical model for the prediction of local or punching
failures of slab-column connections. The approach uses a
truss analogy to describe flow of forces within the
connection at ultimate load.

A comparison is made between model predictions and the

results of forty-three edge column tests. Edge column tests



- were chosen beacause they provided a wide range in test
apparatus, specimen scale and moment-shear combinations.

All edge column tests used here conform to the
following criteria:

1. the unbalanced moments were about an axis parallel to
the free edge of the slab.

2. slabs contained no shear reinforcement or beams.

3. slabs had no large perforations near columns.

4. normal weight concretes were used throughout.

None of these criteria is a result of some inherent
limitation of the analytical model. The model is capable of
handling moments about any axis as well as interior and
corner slab-column connections. Slabs with beams, shear
reinforcement and perforations are not treated although it
will be seen that these cases do not present any conceptual

hurdles.



Chapter 2

Background
A general analytical model for a slab-column connection
should predict both the ultimate capacity of the connection
and the mechanisms by which load is carried. This chapter
outlines the reasons for using a truss analogy.

Information regarding the behavior of slab-column

connections near failure is reviewed. Some of the elements
of existing analytical models are assessed in terms of how
well they conform to observed behavior. From this it is
concluded that the truss analogy is the most promising

approach for modelling a slab-column connection.

2.1 Description of Failure

The term 'punching' is often used to describe the
failure of a slab-column connection. It is associated with a
particular collapse mechanism in which the column together
with an attached portion of slab push through the slab. The
slab breaks along a sloping surface which extends from the
compression side of the slab at the face of column to the
tension side of the slab at some distance from the column.
The average angle of the failure surface relative to
horizontal is usually between 25° and 30°.

For cases of balanced load (no net moment transfer
between the slab and the column), the inclined surface
surrounds the column. The result is the classic punching

failure surface in the shape of a truncated cone or pyramid.



Cases of unbalanced load have a combined failure mode
although they are still often described as punching. The
punched region is confined to the area near the more heavily
loaded face of the column. The two adjacent side regions
show extensive torsional cracking while the area near the
opposite face may show little or no distress. Figure 2.1
illustrates three typical punching failures as seen from
above. Note that there is a striking similarity between the
failure of the edge column and the that of the interior
column under combined shear and unbalanced moment.

Punching failures follow a fairly predictable sequence

‘) gescribed four basic stages

of events. Masterson and Long

in the punching failure of an interior column.

1. Flexural and shear cracks form in the tension zone of
the slab near the face of column.

2. Slab tension steel close to the column yields.

3. Flexural and shear cracks extend into what was the
compression zone of the concrete.

4. Failure occurs before yielding extends beyond vicinity
of column. Masterson and Long assumed punching was
caused by a rupture of the reduced compression zone in
the slab.

2) adds further

The state-of-the-art report by Regan(1
details to this description. Near ultimate load, strain
gradients in the slab near the column are extremely steep.
Concrete strains are further concentrated at column corners.

Steel strains are highest in bars which pass through the
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column although there may be strains sufficient for yielding
in bars which do not. Efforts to predict punching failure on
the basis of some limiting strain criteria so far have not
been successful.

From the shape of the failure surface, it might appear
that diagonal cracking of the concrete plays an important
role in punching failures. However, test results indicate
that such cracking forms at loads in the order of 50% to 70%
of ultimate. Furthermore, a slab-column connection in this
cracked state is very stable since it may be unloaded and

reloaded without affecting ultimate capacity.

2.2 Requirements of General Analytical Model

) grouped existing analytical models for shear

Hawkins
and moment transfer in slab-column connections into three
categories.

1. Models based on a linear distribution of shear stress on
some critical section. This is perhaps the simplest
approach and is favoured by most design codes.

2. Models based on beam analogies. Beam analogies describe
a slab-column connection as the junction of orthogonal
beam elements contained within the slab. The net
shear-moment capacity of the connection is assumed equal
to the sum of the shear, torsional and flexural
capacities of these beam elements. Several beam

analogies have been proposed and their differences lie

largely in the method by which shear and torsional



strengths are calculated and in the degree of
redistribution allowed between beam elements.

3. Models based on plate theory. In addition to simple
elastic plate models, this classification includes more
sophisticated approaches which can account for cracking
and plastic behavior such as finite element analyses.
All of these models assume that the reinforcement can be
adequately described as a thin membrane rather than
discrete bars.

In a detailed discussion of these models, Van Dusen ‘%"’

outlined several of their weaknesses. His discussion,

together with the known characteristics of a punching

failure, provides some guidance for the development of a

general analytical model.

2.2.1 Shear Strength

All linear stress distribution models and most beam
analogies assume vertical load is carried by shear stress on
some critical section. The critical section is a vertically
oriented surface at some distance from the face of column. A
nominal shear stress based upon the applied loads and the
geometry of this section is calculated.

The description of a punching failure suggests that it
is unlikely that vertical load on a slab-column connection
is controlled by shear stress on some vertical plane. This
stress state requires a diagonal tension field in the

concrete., However, diagonal cracking at a relatively early



load stage should preclude the tension field. At the very
least, the area of concrete available to participate in this
mechanism ought to be confined to the uncracked region in
the compression zone of the slab at the face of the cclumn.
In spite of this, most critical sections are placed at some
distance from the column and the area of the critical
section is based on the depth of the reinforcement rather
than the thickness of the compression zone.

A more plausible source of shear strength is an
inclined compression field in the concrete. Together with
steel tension ties, this approach is often referred to as a
truss model. Truss models are currently recognized by
CAN3-A23.3 in its general provisions for shear and torsion
in beams. Not only does this mechanism provide a load path
for shear forces in the presence of diagonal cracking, it
explains the role that flexural reinforcement plays in

determining shear strength.

2.2.2 Reinforcement

While it is generally agreed that flexural
reinforcement has an effect on the shear strength of a
slab-column connection, some analytical procedures neglect
it completely. Those which do not, usually assume a smooth
distribution of slab reinforcement. This idealization has
three main drawbacks. First, slab reinforcement is discrete.
At collapse, a bar either crosses a failure surface or it

does not. An average density of reinforcement does not
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account for this. Secondly, reinforcement is often
irregularly spaced making smooth distributions difficult to
define. Finally, given design moments and sheérs based on
smoothly distributed reinforcement, there is no clear
indication as to where a particular bar is best placed.

It would be desirable to treat slab reinforcement as a
series of discrete bars rather than an average density. By
considering reinforcing bars individually, an analysis would
not be limited to any particular reinforcing pattern. The
designer would be given a clear idea as to how the placement
of reinforcement affects the behavior of the connection.
Furthermore, large variations in steel strains, even among

bars passing through the column, could be accounted for.

2.2.3 Critical Section

Except for analytical solutions such as finite element,
most methods of analysis require the definition of some
critical section. For linear stress distribution models,
this is the surface upon which nominal shear stresses are
based. For beam analogies, the critical section defines the
geometry of the beams which frame into the connection. In
either case, there are fundamental problems associated with
the assumption of any particular critical section.

The shape of the failure surface changes with the ratio
of moment to shear. This being the case, it is hard to
imagine why a critical section which attempts to describe

the punching phenomenon should also be relevant to a
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torsional failure in the side regions of a slab-column
connection under unbalanced moment. Van Dusen suggested that
this problem might be'remedied by making the critical
section a variable of the model. To some extent, this is the
approach taken by Zaghloolu1h

There also arises the question of what to do with slab
discontinuities, such as reinforcing bars, which are located
at or very near the assumed section. In the case of
reinforcement, a popular solution is to use distributed
reinforcing ratios rather than discrete bars. This, however,
amounts to covering up one inaccuracy with another. Perhaps

a better solution is to determine an effectiveness of

reinforcement based upon its proximity to the column.

2.2.4 Variables

At minimum, a slab-column connection which is
“unreinforced for shear can be defined by the following
variables.
1. The overall geometry of the connection.
2. The concrete strength.
3. The strength of the flexural reinforcement.
4, The placement of the flexural reinforcement.
Any analytical model which is expected to predict both
ultimate capacity and behavior must account for variations
in any of these parameters.

As output, the analytical model should provide a

complete range of load combinations which will cause
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collapse. A failure envelope for all possible ratios of
moment to to shear is required. In addition to this, the

magnitude of in-plane forces may have to be accounted for.

2.3 Truss Model Approach

One of the conclusions reached by Van Dusen was that
the behavior of a slab-column connection might be predicted
with a truss model. He proposed the truss model for an edge
column illustrated in Figure 2.2. This is believed to be the
only reference in the literature which uses a truss model to
describe the flow of forces in a slab-column connection.

Van Dusen did not develop the model beyond a conceptual
stage and his assessment of it was strictly qualitative. He
noted that the configuration of concrete compression struts
is in good agreement with observed crack patterns. Shear is
carried by the vertical components of the inclined concrete
struts, a mechanism which is not hampered by the formation
of diagonal cracking. Moment is developed by conventional
flexure but the amount of flexural steel which can be
developed is partly dependent on the amount of transverse
reinforcement.

Van Dusen foresaw two major difficulties in developing
the truss model. The first of these was in estimating the
actual stress within each strut and the critical failure
stress with wHich to compare it. His other concern was in
establishing limits for the inclination of the compression

struts. In addition to these problems, it should be noted
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that the truss configuration proposed by Van Dusen can model
only a narrow range of moment to shear ratios. Some means of
extending the model to handle a complete range of
shear-moment combinations is required. Finally, existing
truss models for beams rely on shear reinforcement to
provide necessary transverse tensile forces. A truss model
for a slab-column connection which has no shear
reinforcement requires some different mechanism to handle
the tensile forces which are out of the plane of the slab.
In spite of its lack of quantitative support, the truss
model is considered to be the most promising approach to the
problem of shear and moment transfer in slab-column
connections. It describes the flow of forces within a
connection in a way which is consistent with observed
cracking and it provides a physical mechanism by which
flexural reinforcement participates in providing shear
capacity. In subsequent sections, the truss model is
developed into a usable analytical tool for slab-column

connections which are not reinforced for shear.



Chapter 3
Elements of the Truss Model
Truss models can be used to describe the behavior of any
slab-column connection at ultimate load. In Chapter 4, the
particular case of the edge column will be considered. The
basic components and mechanisms described in this chapter
are general and may also be used to construct interaction

diagrams for interior and corner columns.

3.1 Model Components

The model consists of a three dimensional space truss
composed of concrete ‘compression struts and steel tension
ties. The arrangement of reinforcing steel and fan-like
compression fields proposed by Van Dusen is broken down into
individual bar-strut units,

There are two types of compression struts:
1. those parallel to the plane of the slab (in-plane or

anchoring struts) and

2. those at some angle (a) to the plane of the slab

(out-of-plane or shear struts).

3.1.1 In-Plane or Anchoring Struts

Four anchoring struts are shown in Figure 3.1. Each is
equilibrated by two mutually perpendicular reinforcing bars.
One bar passes through the column, parallel to the axis
about which the unbalanced moment is acting and the other is

some distance from the column. The bars and struts lie in a

15
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plane parallel to the plane of the slab. Through this
mechanism, bars at some distance from the column are able to
exert moment on the connection by flexure.

The compression strut meets the column face at the
front corner of the column. Equilibrium of the entire
bar-strut assembly is satisfied by summing moments of the

bar forces about this point.

3.1.2 Out-of-Plane or Shear Struts

As a starting point, consider the force diagram for a
corbel illustrated in Figure 3.2(a). Three quantities are
significant in determining the geometry of this force
triangle. They are the strut angle (a), the magnitude of the
tensile force in the steel tie and the magnitude of the
compressive force in the concrete strut. Satisfaction of
equilibrium constrains any one of these guantities to be a
function of the other two. Furthermore, a is predetermined
because the loading point coincides with the conjunction of
the tensile and compressive forces. If a local failure in
reinforcement anchorage does not govern,; then the ultimate
capacity of the corbel is defined by either the failure of
the compression strut or the tension tie, whichever comes
first.

The ultimate capacity of a shear bar-strut unit in a
slab-column connéction (shown in Figure 3.2(b) ) is in part
determined by the same variables which govern a corbel.

There are, however, added complications not present in a
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typical corbel. In general, the point of load application in
a slab will not coincide with the junction of the tensile
and compressive force. As a result, a is not preset by the
position of the load. Even more important is the fact that
the shear or vertical component of the compression strut is
no longer equilibrated at the bar-strut junction by the
applied load. There exists a force component out of the
plane of the slab which must be balanced by some form of

tension field within the concrete.

3.1.3 Shear Steel

For a corbel, the amount of steel participating in the
tension tie is clearly defined. This is not the case for a
slab-column connection. Therefore, a certain amount of steel
must be assumed capable of developing a compression strut
into the column by virtue of its proximity to the column.
This steel is designated as shear steel (A,,). Superscripts
of 'T' and 'B' will refer to top and bottom mat
respectively.

It seems reasonable to assume that the shear steel
includes all steel passing through the column. In addition,
it is felt that steel within 4, of the column is at least
partly effective in developing a compression strut,
depending upon its distance from the column face. Therefore,
A, is assumed eqgual to the sum of all steel passing over

the column periphery plus a fraction of that steel within d,

of the column face. This fraction decreases linearly from
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unity for a bar at the column face to zero for a bar located

d, from the column face.

3.2 Ultimate Conditions

Criteria are required to establish the ultimate
capacity of a bar-strut combination. Two failure modes have
been identified, namely the failure of the tension tie or
the compression strut. In the particular case of a shear
strut however, the presence of an out-of-plane force at the
bar-strut junction which is not equilibrated by the external
load at that point creates an additional possibility. There
may be a failure in which the out-of-plane component of the
compression strut exceeds the confining strength of the

slab.

3.2.1 Primary Assumption

It is assumed that the shear steel will always reach
yield. Therefore, a compression failure of the concrete
strut will never govern. This is a significant departure
from conventional truss models in which the determination of
compression strut geometry and the resulting concrete
stresses is considered of major importance. Furthermore, it
is almost certainly false if the connection is reinforced
heavily enough,

Two points, however, justify the assumption:
1. Most of the existing test data show that steel in the

immediate vicinity of the column yields prior to
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failure. This suggests that the conditions which lead to
the compression strut capacity defining ultimate
capacity are not typical of slab-column connections.
Predicting compression failure of concrete would rely on
an extensive set of assumptions, both to estimate the
axial stresses within the struts and to define some
critical concrete stress with which to compare them. The
dubious accuracy of this procedure coupled with the
observation that compression failure of concrete is not
ductile make this a failure mode to be precluded rather
than described. It is likely that limitations on the
density of reinforcement in a slab-column connection
will be required to ensure that the compression struts

do not govern.

3.2.2 Strut Capacities

As a consequence of the above assumption, the ultimate

capacity of an in-plane bar-strut unit is limited only by

the yield of the participating reinforcing bars. No attempt

is made to check the stresses within the concrete

compression strut.

In the case of a shear bar-strut unit, the bar force

alone is not sufficient to define the ultimate capacity. The

angle of the compression strut is vital to determining its

contribution to shear. The ultimate capacity is reached with

the bar at yield and « at some critical value.
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3.3 Calibration of «a

To complete the description of a shear strut, some
means of estimating « is required. A non-dimensional,
empirical approach similar to that commonly used in
hydraulic engineering is taken. Those parameters which are
felt likely to affect a are assembled in a non-dimensional
term. This term is then related through experimental results

to «a.

3.3.1 Factors Affecting «a

Section 3.2 presented a new explanation for shear
failure in which the slab is unable to contain the
out-of-plane component of a shear strut. From geometric
considerations, tana is equal to the ratio of the
out-of-plane component to the in-plane component of the
compression strut. Since A, is always assumed to reach
yield, the in-plane component of a compression strut is
equal to the yield force of its attendant tie back steel.
The maximum out-of-plane component is some function of the
ability of the slab to confine the bar. Three parameters can
be used to describe this confining strength:
1. the tributary width of each reinforcing bar (s),
2. the cover of the reinforcement (d') and
3. the strength of the concrete.
The particular concrete strength in qQuestion is most likely
the tensile strength. However, the tensile strength of

concrete is not consistently reported by investigators nor
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is it generally recognized by building codes as a basis for
design. Therefore, it will be assumed proportional to yEf|

(with appropriate units of stress).

3.3.2 Interior Column Tests

Since only shear struts are affected by «, the ideal
test set-up for estimating it would be one where only shear
struts are present. Bar spacings in the region of the column
should be reasonably constant., Furthermore, the point or
points of load application on the slab should be remote from
the column in order to separate the confining strength of
the slab from the confining effect of the load.

The literature contains many test results on interior
columns which fulfill these requirements. These tests
consist of slabs supported on the perimeter with axially
loaded columns in the middle.

In order to apply the model to any slab-column
connection, a method of assessing conditions on a particular
column face is required. By treating each face
independently, the effects of column rectangularity and
asymmetry of reinforcement, geometry or loading will be
accounted for automatically. For the purposes of
calibration, however, there must not be differences between
the four column faces of each test. Therefore, only square

column tests are used.
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3.3.3 Procedure

For each test, the experimental measure of tana is
taken as the ratio of the failure load to the total area of
‘top mat shear steel (A],) times its yield strength. This is
plotted against a non-dimensional factor K.

Originally, K was taken as the ratio of the product of
s, d, and /f: to the yield force of one bar. However, some

(s) reported

geometric effects were anticipated. Hawkins et al
reduced apparent shear strengths with increased column
rectangularity. To preserve the independence of each column
face, this effect was accounted for by adding the
dimensionless factor of c/d,, where ¢ is the column
dimension perpendicular to the bar being considered and 4,
is the effective depth of the slab. Finally, a maximum ratio
of s to d' was found beyond which increases in s did not
increase tana. For regular bar spacings, this ratio is
approximately equal to six. Therefore, the effective
tributary width on either side of a reinforcing bar is one
half of the centreline spacing to the next bar in the same

mat, to a maximum of 3d'. In the expression for K, s is

replaced with s, .. The resulting definition for K is:

Sege X d' x‘/ﬁ

B x £, x (c/d,)""

bar

The power of 0.25 for was arrived at by trial and error.
Figure 3.3 shows a plot of tane against K. It suggests

a function which passes through the origin and
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asymptotically approaches a value of unity. The function was

assumed to be of the form:

n
tana = 1.0 - e

Performing a regression of the interior column data (in
Imperial units) against this form of function produced the

following results.

0.95 and

+))
]

1.09

=]
n

The regression equation is shown in Figure 3.4. To provide a
more convenient design eqguation, the value of n was set to
unity, resulting in the following equation (shown in

Figure 3.4).

tana = 1.0 - e 22K (s1)
or
tanea = 1.0 - e 8K (Imperial)

where stresses are in MPa for SI units and ksi for Imperial
units. The design curve closely follows the regression curve
for lower values of K and is slightly conservative for

higher values.
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3.4 Summary

| All of the elements required to assemble a truss model

for any slab-column connection have been defined. Briefly,

these elements are:

1. an in-plane or anchoring strut which provides a
mechanism for increasing the flexural moment transferred
to the column at the expense of shear capacity on the
side faces.

2. an out-of-plane or shear strut which accounts for shear
and, on the front column face, flexure.

3. a method of estimating «, required to set the geometry
of each shear strut.

In Chapter 4 these components are used to develop the
shear-moment interaction for the particular case of the edge

column.



Chapter 4
Shear-Moment Interaction at an Edge Column

The model components outlined in the preceding chapter are
of general application. In this chapter, they are used to
develop an interaction diagram for the particular case of an
edge column.

For convenience, the following designations are applied
to the various bars contributing to A_,. Superscripts of 'T'
and 'B' still refer to top and bottom mat steel
respectively. Additional superscripts of '1' and '2' refer

to bars perpendicular and parallel to the free edge.

4.1 Preliminary Considerations

Figure 4.1 shows a shear-moment interaction curve for
an edge slab-column connection. It is similar to a column
interaction diagram. Four basic control points (A, B, C and
D) are defined on the interaction diagram. Each has an
inverse counterpart (A', B', C' and D') in which the
directions of the net shear and moment vectors are reversed.
For clarity, a distinction will be made between shear struts
which oppose the downward movement of the slab relative to
the column (gravity shear struts) and shear struts which
oppose the upward movement of the slab relative to the
coiumn (uplift shear struts).

The control points A, B, A' and B' mark the boundaries
of two distinct types of interaction behavior. Between A and

B and between A' and B' are regions of shear-moment

27
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BI

=

Figure 4.1 Typical Interaction for Edge Column

interaction on the side faces. The utilization of the shear
steel perpendicular to the free edge remains constant.
Between B and A' and between B' and A, there is a reversal
of the orientation of the shear struts tied by the shear
steel perpendicular to the free edge. This could be
described as a shear-flexure interaction on the front face.
Control points C, D, C' and D' describe the intermediate
stages of the shear-flexure interaction.

Three quantities are calculated for any point on the
interaction diagram. They are the ultimate shear (V,), the

shear moment (M,) and the flexural moment (M,).
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4.1.1 Sign Convention

For the purposes of constructing an interaction
diagram, the following sign convention will be used for
shear and moment:

1. a shear resulting from downward loading of the slab and
an upward reaction by the column is positive.

2. an unbalanced moment which causes tension at the top
surface and compression at the bottom surface of the
slab is positive.

This sign convention is consistent with those of other

shear-moment interaction diagrams presented in the

literature. The practical range of shear-moment combinations

is in the upper right quadrant of the diagram.

4.1.2 Ultimate Shear (V)

V, is the net out-of-plane component of the concrete
compression struts. The horizontal component of each strut
is defined by the yield force of its attendant reinforcing
bar. The vertical component is limited by the strut angle.
To account for possible variations in yield stress, area of
bar and strut angle, each shear bar-strut unit is treated

individually. Therefore, V, is the summation of these

u

individual vertical components.

4.1.3 Shear Moment (M)
In order to estimate M,, it is necessary to make some

assumptions as to where each strut acts relative to the
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column in plan. All compression struts act somewhere on the
column perimeter. Any shear strut equilibrated by a
reinforcing bar crossing the face of the column is assumed
to be centred on that bar. Shear struts developed by steel
between the column face and d, from the column face are
assumed to act at the front corners of the column.

Given the above distribution of shear struts around the
column perimeter, it is possible to calculate the shear
moment by summing moments of the vertical components of the
struts about some axis parallel to the free edge of the
slab. For the purposes of this investigation, moments are
summed about the column centreline although the choice of
axis is somewhat arbitrary. It matters only that the
interaction diagram and the applied moments in the structure

be calculated about the same axis.

4,1.4 Flexural Moment (M)

In general, any developed steel perpendicular to the
"free edge produces moment by direct flexure. In addition to
shear steel, this developed steel includes bars
perpendicular to the free edge which are tied to the column
by virtue of in-plane struts. If this steel is denoted as A,

then M; can be approximated by the expression:

For ease in calculation, j is taken as a constant equal to
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0.9. Note that the flexural contribution to the unbalanced
moment is independent of both the position of the axis about

which the shear moment is calculated and the value of «.

4.2 Control Points A and A'

At point A, all top mat shear steel is utilized in
equilibrating gravity shear struts. Its counterpart, A',
occurs when all bottom mat shear steel equilibrates uplift
shear struts. Both A and A' are described schematically in
Figure 4.2. These points are similar to a conventional
corbel and set the limits for shear capacity of the
connection,

Point A defines the maximum gravity shear capacity of

the slab column connection.

T
sV

v = zla,, x £, x tan(a)]
Since only shear steel is developed to the column, A, is
equal to Al giving:

M, = Al x £ x 0.9 x d,

sv ¥

4.3 Control Points B and B'
Under unbalanced moment, the slab attempts to rotate
relative to the column about an axis parallel to the free

edge. The position of this axis varies with the ratio of
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moment to shear. Control points B and B' describe a
condition in which the axis is located in the slab at a
distance from the free edge, slightly greater than column
dimension (c,). These two control points are illustrated in
Figure 4.3..

At control point B, as at A, the steel which makes up

T1
sv

A_ ties gravity struts, However, all of Aﬁ between the free
edge and the front face of the column is equilibrating
in-plane struts. This provides the maximum anchorage for top
steel perpendicular to the free edge to develop flexurally
at the expense of all gravity shear strut capacity on the
side faces. Any bottom shear steel parallel to the free edge
resists the rotation of the slab relative to the column by
developing uplift shear struts. This increases the shear
contribution to unbalanced moment but there is a further
reduction in the net shear capacity for the connection.

At point B', the axis of rotation is in the same
position as it was at point B but the direction of rotation
between the slab and column is reversed. As a result, on the

side face, AY is tied to in-plane struts while Al steel

sV
equilibrates gravity struts. On the front face, uplift shear

struts are tied by AZ.

4.4 Control Points C, C', D and D'
Throughout the interaction between points A and B, the
orientation of the shear struts tied by Ag remain constant.

However, between points B and A' and between points B' and
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A, the orientation of these shear struts on the front face
of the column is reversed. A two-stage transition between
between gravity and uplift shear struts on the front column
face is proposed.

The flexural stage (control points C and C') is
illustrated in Figure 4.4. At this stage, the shear struts
on the front face have rotated so that they are parallel to
the slab and contribute to flexure only. No shear struts are
tied'by steel perpendicular to the free edge. However, the
flexural contribution of this steel is at the maximum |
defined by either point B or B'.

The inverted shear stage (control points D and D') is
illustrated in Figure ¢.5. This stage is analagous to a |
simply supported truss since, on the front face of the
column, uplift shear struts are not tied by bottom bars and
gravity shear struts are not tied by top bars.

The procedure already developed for estimating « cannot
be applied to the inverted shear strut. Although the
out-of-plane force component must still be confined by some
- form of tension field in the concrete, it is no longer clear
what depth of concrete participates. Furthermore, the
horizontal component of the strut is not necessarily related
to the yield force of any bar.

A simple procedure is to assume that the ultimate
capacity at control points D'and D can be approximated by
using the capacities of the adjacent control points A and A’

repectively. The ultimate shear capacity at point D' is
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assumed equal to that of point A. The ultimate moment at D'
is assumed equal to the shear moment at A. Similarly, the
capacity at control point D is defined in terms of A'.
Therefore, in moving either from A to D' or from A' to D,
only the flexural component of M, is lost. It will be shown
later that, although this procedure is not based on any

physical mechanism, it usually gives conservative results.

4.5 Interaction Between Control Points

From point B through C and D to A' and from point B'
through C' and D' to A, the interaction diagram is defined
by straight line interpolation between the control points.
All that remains is to develop the interaction from point A
to B and from point A' to B'.

The slab-column connection may be viewed as having an
overall symmetry about the plane of the slab. If the slab is
reinforced with identical mats top and bottom, then the
interaction diagram will be point symmetric. Since only the
- directions of moments and shears are reversed, a procedure
developed for the interaction diagram between points A and B
can also be used between points A' and B'. The development
of this procedure for the region of interaction diagram
between points A an B will be presented here.

The proposed transition between points A and B accounts
for the effects of discrete reinforcement. A number of
intermediate stages are defined and straight line

interpolation is used between them.
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A new stage is reached wherever the slope of the
interaction diagram changes. This occurs when:

1. the in-plane struts complete the fléxural development of
a top bar perpendicular to the free edge or

2. a top bar parallel to the free edge is fully utilized by
an in-plane strut or

3. a bottom bar parallel to the free edge is fully utilized
by an uplift strut.

Note that part of the yield force of a particular bar can be

used to equilibrate an out-of-plane strut while the balance

equlilbrates an in-plane strut.

To proceed with the interaction diagram starting at
control point A, the top bar which is closest and parallel
to the free edge develops an in-plane strut first. Once it
is fully devoted to an in-plane strut, then either the next
closest top bar is developed in a similar fashion or the
bottom bar closest and parallel to the free edge develops
uplift. Since both the in-plane strut and the uplift strut
enhance moment capacity at the expense of shear, some
criterion is required to determine the order in which they
develop.

It is felt that the interaction diagram must be convex.
Therefore, the mechanism (in-plane or uplift) which develops
first will be the one which is the most efficient at

developing moment at the expense of shear.
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Bar 2
a
Bar 1
b
e‘I
Bar 3
€,

Figure 4.6 Anchoring Efficiency

Consider the arrangement shown in Figure 4.6. Bars 1
and 3 are in the top mat; bar 2 is in the bottom mat. «, and

a, are the strut angles associated with bars 1 and 2

respectively.

For bar 1, a unit bar force of AF transferred from a
shear strut to an anchoring strut produces a decrease in

shear (AV,) equal to:

Av, AF x tana,

The increase in moment capacity (AM,) about the column

centroid is equal to:
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AM, = AF x €i1/e, x 0.9 x d, + AV, x b

For bar 2, the corresponding decrease in net shear is:

Aav,

AF x tana,

and the increase in moment is:

AM, = AV, x (a + Db)

The ratios of incremental moment to decremental shear for

the two bars are:

0.94.%/e,
AM, / AV, = tana, + b
‘ O.9dse‘/e2 . . L.
The term “Yana. s the anchoring efficiency of bar 1. If
1

it is greater than 'a', then the development of an in-plane
strut will precede the uplift at bar 2.
Appendix I contains a numerical example of the

construction of a complete shear-moment interaction diagram.



Chapter 5

Edge Column Tests
Forty-three individual slab-column connections from eight
separate investigations are considered here. These include
both single and double column tests with a wide variety of
boundary conditions. The sampling, though not exhaustive,
provides a diverse set of data with which to test the
proposed model. The test specimens ranged in scale from % to
fullsize. Reinforcement details for each connection are
provided in Appendix II. Table 5.1 summarizes the test

results. A brief description of each test follows.

5.1 Single Column Tests
There are two types of single column test:
1. those in which loads are applied to the column and
distributed by the slab to its boundaries and
2. those in which loads are applied to the slab at a fixed
distance from the column.
These two testing methods are not equivalent. Although both
fix the ratio of moment to shear, the second method also
dictates the manner in which internal forces may be
distributed through the slab. By providing only displacement
control on the boundary, the first method allows the slab
some freedom in determining its own force distribution along
the boundary.
There are several advantages to single column tests.

They are relatively inexpensive and permit testing of full

40
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scale specimens. The experimenter has complete control over
all loads and can isolate their effects.

The disadvantages to single column tests centre around
a concern that they do not realistically model a slab-column
connection. The effects of boundary conditions, confinement
and in-plane forces are largely ignored in single column
tests. Load redistribution is not possible. The importance
of these effects with respect to the ultimate capacity of

the connection has not been established.

5.1.1 Stamenkovié and Chapman

19 .
(19) conducted an extensive

Stamenkovi¢ and Chapman
series of tests of interior, edge and corner columns under a
variety of loading conditions. A schematic diagram of their
apparatus for an edge column is shown in Figure 5.1. Slabs
were 3 in. thick and 36 in. square. Loading was applied
through the column stubs which were 5 in. square.

The boundary conditions were not well defined. The slab
was supported on 16 steel tie rods which passed through the
slab and were clamped in place by means of nuts. It is
unclear how much rotational and lateral restraint they
provided.

Six specimens were tested with moment to shear ratios
ranging from zero to «. The geometric similarity of the
specimens allows some assessment of how well the analytical

model predicts the shape of the shear-moment interaction

diagram. In Figure 5.2, the test results are plotted against
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(after Stamenkovié and Chapman)

Figure 5.1 Stamenkovié¢ and Chapman: Test Apparatus
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Figure 5.2 Stamenkovi¢ and Chapman: Interaction Diagram
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an intéréction diagram which assumes a concrete cylinder
strength of 4000 psi and a steel yield of 71.9 ksi. The
procedure used in constructing this diagram is outlined in
Appendix 1I.

The mechanics of the model preclude simple scaling of
the test results in order to account for differences in
material properties. The following procedure was used to
estimate equivalent test ré%ults which would have been
measured had the specimens had identical material
properties. For each test, a point on the interaction
diagram with the same ratio of moment to shear is found. An
equivalent test result is calculated by mutilpying the
values of shear and moment from the interaction diagram by
the corresponding test to predicted ratio (see Tables 6.1

and 6.2).

5.1.2 Zaghlool

Zaghlool(”)

conducted a series of tests concentrating
on edge and corner columns. Columns ranged in size from 7
in. to 14 in. square. Edge column slabs were 38 x 72 x 6 in,
As in the tests of Stamenkovié¢ and Chapman, load was applied
through the column stubs. Figure 5.3 shows the test set-up
used. The boundaries were simply supported with uplift
pefmitted.

A total of eight edge column tests were made., Four of

these were on geometrically similar specimens under varying

moment to shear ratios. In Figure 5.4, these four results
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(after Zaghlool)

Figure 5.3 Zaghlool: Test Apparatus
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Figure 5.4 Zaghlool: Interaction Diagram
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are plotted against a complete interaction based on a steel
strength of 69.0 ksi and a concrete cylinder strength of
5000 psi. Test results were plotted using the same procedure
that was described for those of Stamenkovié¢ and Chapman.
With the remaining four specimens Zaghlool varied slab
reinforcement and column size. There is some doubt as to the
placement of reinforcement in test number Z-IV(4). It would
appear that the high level of reinforcement in both the
column and slab required that the bars actually touch. As a
result, test Z-IV(1) was the most heavily reinforced of all

the slab-cclumn connections considered.

5.1.3 Kane

Kane'”' tested four specimens with rectangular columns
loaded through the slab at fixed eccentricities. Slabs were
approximately 700 x 400 x 50 mm. His test set-up is shown in
Figure 5.5. In each test, 60% of the load was eccentric to

the centreline of the column. The principal variable was the

distribution of the reinforcement.

5.1.4 Hanson and Hanson

%) tested one edge column specimen

Hanson and Hanson
(illustrated in Figure 5.6). The column was 6 in. square and
the slab dimensions were 48 x 45 x 3 in. A single line load
was applied to the specimen by means of a steel beam bearing

on the slab. The stiffness of the steel section probably had

the effect of reducing the two-way action of the slab.
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(after Kane)

Figure 5.5 Kane: Test Apparatus

K:;:> (after Hanson and Hanson)

Figure 5.6 Hanson and Hanson: Test Apparatus
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5.2 Double Column Tests

Several investigators have been concerned that the
effects of in-plane forces, boundary conditions, confinement
and load redistribution might be so significant as to
invalidate the single column test. Although double column
tests may be an'improvement in modelling over the single
column tests, there remains the problem of separating the

above effects so that they may be included in analysis.

5.2.1 Regan

*) conducted an extensive test program which

Regan''
included interior, edge and corner columns plus wall
supported slabs. His test apparatus for edge columns SE1
through SE8 is shown in Figure 5.7. Specimens SE9, SE10 and
SE11 were larger with 10 loading points instead of 8. All
slabs were 125 mm thick. Variables included distribution of
reinforcement, column aspect ratio and column size. Specimen
SE3 is excluded from this presentation since it contained
shear reinforcement.

A unique feature of these tests was the absence of any
bottom reinforcement parallel to the free edge. Also of
interest are the low values for p., in tests SE2, SE6 and
SES through SE11, While all tests were described as having
punching failures, SE2 and SE9 through SE11 were said to
have a strong flexural influence. This is interpreted as

meaning that the slab showed considerable distress prior to

failure.
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In those cases where the unfailed end of the specimen
appeared to be in good condition, a re-test was performed.
This consisted of supporting the slab at an intermediate
point and loading the intact column to failure. For these
tests, the restraint afforded by the previously failed
connection was negligible so the unbalanced moment was taken

to be zero.

5.2.2 Scavuzzo, Gosselin and Lamb

16, 8, 2
t16. 8, 2) each tested four

Scavuzzo, Gosselin and Lamb
specimens with essentially identical loading and support
conditions (illustrated in Figure 5.8). All slabs were 63 mm
(2.5 in.) thick. Specimens were subjected to cycles of both
gravity and lateral loads prior to being failed under
gravity load only. To model slab continuity, rotations on
the long side edges were restrained by means of attaching
steel hollow sections. These hollow sections projected below
the plane of the slab. Each was tied to its counterpart on
the other side of the slab. In order for this procedure to
prevent edge rotations, an in-plane tensile force of unknown
magnitude is induced in the slab.

The primary objective of these three investigations was
to examine the frame action of a slab-column system.
Deflections, rotations and moment and shear distributions
under service loads were paramount. Ultimate capacities were

of secondary importance. As a result, the actual failure

loads of some specimens were not recorded. For these cases,
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the last reported shear and moment values along with the
approximate percentage of ultimate load are given in

Table 5.1.

5.2.2.1 Scavuzzo

Only test S-1 by Scavuzzo is included in this paper.
Tests S-2, S-3 and S-4 by Scavuzzo all contained some form
of shear reinforcement. Test S-1 was described as having a
punching failure.

It is interesting to note that shear reinforcement did
not appear to increase the ultimate capaéities of the
specimens. All four specimens failed at nearly identical
shears and moments. However, the post-failure capacities of
the shear reinforced specimens were greatly enhanced. The
difference in post-failure behavior between Scavuzzo's test
S-1 and his tests $-2, S$-3 and S-4 is analagous to that

between tied and spiral columns.

5.2.2.2 Lamb

Of the four tests conducted by Lamb, two (L-3 and L-4)
had edge beams and are therefore excluded from this
investigation. Specimens L-1 and L-2 each had the same
extremely light reinforcement layout.

Although specimen L-1 was described as having a
punching failure at the edge column location, this was
preceded by extensive cracking in the slab. Specimen L-2
failed by punching at the interior column but Lamb felt that

the condition of the slab at the edge column indicated near
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failure.

5.2.2.3 Gosselin

Gosselin tested four specimens with drop panels,
accounting for his larger values of t in Table 5.1.
Reinforcement patterns and drop panel dimensions were the
major variables. Two of the specimens (G-3 and G-4) failed
by punching at the interior column. Since there was no
indication that the edge column regions were near ultimate,
these two tests have been excluded from this investigation.

Tests G-1 and G-2 each failed at the edge column.
Specimen G-1 had a punching failure accompanied by
considerable cracking of concrete and yielding of steel.
Specimen G-2 was described as having a rotational failure.
This also involved extensive cracking and yielding but there

was no clearly defined punching failure surface.
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Chapter 6

Discussion of Results

6.1 Accuracy

The usual measure of accuracy for an analytical model
is the ratio of test to predicted result. However, Van Dusen
states that an analytical model should not be judged solely
upon the quality of test to predicted ratios. A good model
should also provide an understanding of the mechanisms at
work and be able to predict the behavior of a specimen under
a wide range of conditions.

One of the reasons for selecting the truss model in the
first place was that it predicted both the pattern of
concrete cracking and the shape of the failure surface.
Furthermore, the mechanism developed for the failure of a
shear strut, namely the pushing of the tension mat of
reinforcement out of the plane of the slab, is in agreement
with observations of test specimens.

With the above comments in mind, consider the test to
predicted ratios listed in Tables 6.1. and 6.2. The tests
have been divided into two categories:

1. zero moment tests (vertical load only) and

2. shear-moment tests (unbalanced moment present).
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Table 6.1 Summary of Analytical Results:
Zero Moment Tests

Ref. Mark Test /Pred pr, (%) pl}fy/f;
19 V/E/1 1.18 L1.44 0.245
21 z2-V(5) 1.03 2.00 0.271
13 SE1(R) 1.10 1.30 0.176

SE2(R) 1.23 0.90 0.097
SE5(R) 1.28 1.22 0.130
SE6(R) 1.17 0.94 0.140
SE7(R) 0.91 1.15 0.142
SE8(R) 1.09 1.25 0.143
SE9(R) 0.98 0.91 0.104
SE10(R) 1.05 0.91 0.106
SE11(R) 1.00 0.91 0.085

Table 6.2 Summary of Analytical Results:
Shear-Moment Tests

Ref. Mark Test/Pred| oo (%) pxxfy/fL £/,
21 Z-1vV(1) 0.68 3.19 0.556 -
z-v(1) 0.96 2.13 0.294 -
2-v(2) 0.97 2.44 0.285 -
Z2-V(3) 1.04 2.47 0.303 -
z-v(4) 0.92 2.13 0.266 -
" 2-V(6) 0.90 2.13 0.324 -
z2-vI(1) 1.10 1.60 0.292 -
3 D15 0.90 2.18 0.256 -




Table 6.2 Continued
Ref. Mark Test/Pred| o7 (x) | pgxf,/fe | £u/f,
19 C/E/1 1.09 1.52 0.216 -
C/E/2 1.12 1.%2 0.289 -
C/E/3 1.10 1.52 0.275 -
C/E/4 1.02 1.52 0.271 -
M/E/2 1.02 1.52 0.282 -
7 K-1 1.02 2.03 0.323 -
K-2 0.94 1.99 0.266 -
K-3 1.03 1.99 0.231 -
K-4 0.92 1.99 0.345 -
14 SE1 0.99 1.72 0.232 1.59
SE2 1.48 0.25 0.027 1.52
SE4 0.95 1.54 0.278 1.59
SES 1.05 1.22 0.130 1.59
SE6 1.13 0.66 0.100 1.61
SE7 0.90 1.14 0.143 1.61
SE8 0.84 1.81 0.207 1.59
SES 1.20 0.68 0.078 1.59
SE10 1.23 0.68 0.079 1.59
SE11 1.31 0.68 0.063 1.59
16 S-1 1.04 1.03 0.102 1.44
8 L-1 (86%) 0.98 0.35 0.040 1.45
L-2 (92%) 1.20 0.35 0.032 1.45
2 G-1 (85%) 1.11 0.47 0.046 1.43
G-2 (83%) 1.15 0.67 0.064 1.43
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6.1.1 Zero Moment Tests

In order to assess the quality of test to predicted
results, the zero moment tests should be considered
separately because the accuracy of predictions for these
tests depends upon how well the capacity of the inverted
shear strut can be estimated. The results of this
investigation were obtained by assuming that the shear and
shear moment capacities of control points A and A' are
maintained at their adjacent inverted shear stages (control
points D' and D respectively). Test to predicted ratios for
zero moment tests range from 0.91 to 1.28 with an average of
1.09 and a standard deviation of 0.11, suggesting that the

capacity of the inverted shear strut was underestimated.

6.1.2 Shear—-Moment Tests

For the shear-moment tests, the capacities predicted by
the truss model are generally in good agreement with test
results. Test to predicted ratios for 23 tests, from a total
number of 32, lie between 0.84 and 1.13. The 9 remaining
specimens include 2 each by Lamb and Gosselin, 4 by Regan
and 1 by Zaghlool. For the tests by Lamb and Gosselin, exact
test to predicted values cannot be calculated since ultimate
loads were not reported. It is safe to say that the true
test to predicted ratios for these 4 tests should be
considerably greater than those reported in Table 6.2, which
means that the truss model gives very conservative estimates

of ultimate strength for these specimens. As well, Regan's
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SE2, SE9, SE10 and SE11 all had failure loads well in excess
of that predicted. Zaghlool's 2-1V(1), however, failed at
only 68% of its predicted capacity. It will be seen that
these apparent aberrations can not only be explained but

they in fact support the validity of the truss model.

6.1.3 Density of Reinforcement

The accuracy of results predicted by the truss model is
expected to depend on the density of reinforcement for three
reasons.

1. The true value of the flexural moment arm (jd) changes
with variations in the reinforcing ratio. Since the
model assumes a constant j equal to 0.9, predictions
should overestimate heavily reinforced and underestimate
lightly reinforced test specimen capacities.

2. Extremely light reinforcement may allow the steel to
strain harden. While this presents no conceptual problem
for the model, there is some difficulty in assessing the
dégree of strain hardening. Neglecting it should lead to
conservative predictions for lightly reinforced
specimens.

3. Heavy reinforcement would cause a compression failure of
the concrete strut before the steel reaches yield. This
would result in test to predicted ratios less than 1.0,

A term p_,, is used to describe the density of shear
steel. In general, p,, is equal to the ratio of the area of

shear steel to the product of the perimeter of the
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slab-column junction and the effective depth of the slab. In
order to describe the density of reinforcement on any
particular column face, the same superscripts that are used

for A, are applied to p,, so that:

T _ sy
Psv = ¢, x d

where c, is the column dimension parallel to the free edge.
Values of p,, may be multiplied by the ratio of £, to £ to
provide a reinforcing index for shear.

For the zero moment tests, values of p., and p;,x £,/fC
_are given. Although they provide some indication as to how
heavily a connection was reinforced, no real relationship
between either of these two parameters and test to predicted
ratios is suggested. The capacity of gravity inverted shear
struts is at least partly dependent on Ag but the term pL
does not account for this.,

For the shear-moment tests, it is felt that the
conditions at the front face of the column are paramount in
determining the behavior of the connection. Therefore, the
term nﬁi is used to estimate the governing density of
reinforcement for these tests.

Figures 6.1(a) and 6.1(b) plot test to predicted ratios
against pg,expressed as a percentage and the reinforcing
index based on pg repectively. The results of Lamb and
Gosselin are not included since failure shears and moments

for these tests were not provided.
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Both plots show essentially the same trends. For values
of p.. between about 1.0% and 2.5% (shear reinforcing index
between 0.1 and 0.4) the truss mbdel gives excellent
predictions of test results. However, for pg less than 0.7%
(index less than 0.1), test to predicted ratios are
significantly greater than 1, In addition, for test 2-1v(1)
where pg exceeds 3.0% (index exceeds 0.55), the model
overestimates ultimate capacity by a wide margin,

For the lightly reinforced specimens, the most probable
cause of enhanced ultimate capacities is strain hardening of
the steel. Failure descriptions for all of these tests
indicate extensive cracking and deformations of the
specimen. Yielding of steel passing through the column was
recorded at relatively low levels of load. All of this is
consistent with strain hardening of the reinforcement and it
can be seen from the ratios of f, to f, in Table 6.2 that
the steel had sufficient post-yield strength to account for
the increased test to predicted ratios.

The unconservative prediction in the case of the
heavily reinforced specimen is believed to be a result of
compression failure of the concrete. This would place an
upper limit on pg in the order of 3% for connections under
combined shear and moment. The corresponding reinforcement
index would be somewhere between 0.4 and 0.5. At this
reinforcing density, failure is caused by crushing of the
concrete. The confinement failure mode no longer governs.

Although some criteria for analyzing a compression failure
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could be developed, the required density of reinforcement is
outside the practical limits for flat slabs, as was
anticipated in the preliminary assumptions in Chapter 3.

The model assumes that the steel stress at failure is
equal to the yield stress. Figure 6.1(b) clearly indicates
the tests for which this assumption was not accurate. Those
with reinforcing indices less than 0.10 (tests SE2, SE9,
SE10 and SE11) had steel stresses at failure exceeding
yield. For these lightly reinforced spécimens, there is a
marked correlation between reinforcing index and test to
predicted ratio. Although exact values of test to predicted
ratios cannot be calculated, the tests of Lamb and Gosselin
appear to confirm to this trend as well.

A statistical measure of the accuracy of the model
should be based only on those shear-moment tests in which
strain hardening of the reinforcement or compression failure
of the concrete was not a factor. Therefore, tests SE2, SE9,
SE10, SE11, L-1, L-2, G-1, G-2 and 2-1V(1) should be
excluded from the sample. For the remaining 23 tests, the
model must yield accurate predictions if it is to be deemed
valid. For this sample, the average test to predicted ratio

is 1.00 and the standard deviation is 0.081.

6.2 Classification of Failure

2) stated that the failure of a slab-column

1
Regan(
connection is not easily categorized as either shear

(punching) or flexural. He summarized prevailing thought by
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describing some failures as undeniably shear dominated and
others as essentially flexural with punching occurring as a
secondary phenomenon. In support of this, he presented a
series of load deflection diagrams ranging from highly
ductile, folding failures of a slab to brittle punching
failures.,

The categories of shear and flexural failure modes are
misleading. A better system of classification would be to
consider local connection failures as opposed to overall
slab failures. Both types of structural collapse may be
either ductile or non-ductile,

Folding failures of the slab occur when the strength of
the slab-column connection exceeds the capacity of the slab
to deliver load to the connection. Techniques such as yield
line analysis already exist for describing this type of
failure. Local connection failures are distinct from overall
slab failures in that they involve the breaking away of the
column and a portion of slab from the rest of the slab.
Although they are not part of the same classification as
slab failures, it is not hard to imagine cases in which the
overall slab strength and the local connection stréngth are
so close that it is hard to distinguish the actual failure
mode. Nevertheless, the ultimate load of a test specimen is
governed by the lesser of these two independent failure
capacities, namely the slab strength or the connection

strength.
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6.3 Ductility

Ductility at ultimate is not as easily predicted for a
slab-column connection as it is for a beam. Yielding of
reinforcement, usually considered synonymous with ductile
behavior in reinforced concrete, is common in the vicinity
of the column and yet failure may be described as sudden and
non-ductile. Conversely, the punching mode of failure cannot
be viewed as inherently non-ductile since it frequently
occurs after extensive cracking and deformations. The truss
model suggests a solution to this paradox since it makes
yielding of the reinforcement and the punching mode of
failure compatible. Although yielding of the reinforcement
is necessary for ductility, the mechanism of failure is at
least as important.

The interaction diagram describes a series of different
failure mechanisms. The amount of reinforcement needed to
cause a non-ductile failure may change depending upon which
mechanisms dominate. In the vicinity of control points B and
B', the slab undergoes extreme rotations with respect to the
column. Shear struts of opposite orientation are adjacent to
each other while in-plane strut development is maximum,
suggesting large strain discontinuities. These circumstances
are conducive to extensive cracking in the slab prior to
failure. Conversely, near control points A and A', the
rotation between the slab and the column is near zero. Shear
strut are all of the same orientation, leading to a classic

punching type failure with limited cracking.
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6.4 Material Properties

In Chapter 3, it was suggested that the tensile
strength of the concrete was probably more relevant than the
compressive strength in determining the strut angle. The
term vI., which is generally considered proportional to the
tensile strength, was used to calibrate a. This indirect
approach limits the application of the calibration to cases
of normal weight concrete which have not had their tensile
strengths enhanced by additives. This is an unnecessary
limitation which could be avoided by using some tensile
strength measure for the concrete (say split cylinder) in
lieu of V.. Unfortunately, most of the tests used to
calibrate « in this investigation did not report tensile
strengths of the concrete.

All reinforcing steel used in the test specimens
included here had reasonably well defined yield plateaus.
The effects of using strain hardened reinforcement such as

cold drawn wire are not known.,

6.5 Scale Effects

Several investigators have attempted to evaluate the
.effects of using small scale specimens. Some have argued
that if scaled specimens are used, then material properties
(in particular, concrete strengths) should be based on
similarly scaled samples.

There are two objections to this line of reasoning.

First, it is believed that one of the main factors which
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contribute to the scale effect in compression strength tests
is the lateral end confinement provided by friction between
the cylinder or cube and the testing machine. This
frictional restraint is not a factor in the testing of a
slab-column connection. Secondly, the scale effects for
compression tests disappear for specimens over a certain
size. Therefore, even if scale effects could be accounted
for with scaled down compression tests, it is not possible
to determine which size of cylinder or cube should be used.
This is because 'scale' is not an absolute measure. A U
scale model may still be large enough so that its material
properties show no scale effect.

In this investigation, the 150mm by 300mm cylinder test
(f.) is taken as the standard for concrete strength. For
those tests in which concrete strengths were based on cube
tests (f.), the following equations were used to provide

equivalent cylinder strengths. The first expression,

(11)

suggested by l'Hermite and reported by Neville ', gives the

ratio of f. to 150 mm cube strength. The second equation
accounts for the effect of using a 100 mm cube instead of a
150 mm cube. It is based on Figure 8.19 of Neville's book.

f! d
— 0.76 + O.210gm—%%%%— (f.u150 in psi)

fcu150

f - fcu100
cu150 = 1.04
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6.6 Boundary Conditions and In-Plane Forces

Despite a wide range in boundary conditions and
in-plane forces in the shear-moment tests, the truss model
maintains a high degree of accuracy. This suggests that, for
these tests, the slab boundaries were far enough removed
from the failure regions so as not to affect the ultimate
behavior. Therefore, because of their greater flexibility in
controling loads and improved economy, single column tests
may be better than double column tests for the purpose of
evaluating the ultimate capacity of a slab-column
connection,

In-plane forces were certainly present in all double
column tests although their magnitudes were not always
reported. It is possible that, for the more lightly
reinforced specimens, in-plane forces played a
proportionately greater role at ultimate and are partly
responsible for the increased capacities of these specimens.
However, it appears that for most specimens, their effects
were small enough to be neglected at ultimate.

Ultimate capacity, however, is not the only quantity
significant to design. A fundamental question, beyond the
scope of this investigation, is what ratio of moment to
shear is actually present in a slab-column connection just
prior to collapse. This question cannot be addressed without
accounting for moment redistribution. Likewise,
load-deflection characteristics are expected to be highly

dependent on boundary conditions and in-plane forces. None
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of these problems can be realistically examined with single

column tests.

6.7 Aspects of Testing

The mechanisms of the proposed truss model require a
re-examination of experimental procedures. The importance of
providing exact inforﬁation regarding placement of
reinforcement is highlighted. Average reinforcing ratios
taken across large sections of slab are not relevant to a
highly localized connection failure.

The model attaches much greater significance to the
parameter d'. Unless extreme care is taken when placing
reinforcement, small absolute variations in 4' will produce
large percentage errors. This is especially critical for
small scale specimens.

The position of load application is significant to the
failure capacity of the specimen. If a loading point is
'close enough to the column, it will enhance the strength of
the shear struts by providing confinement to the
out-of-plane forces. It is necessary to remove this load
effect in order to assess the strength of the connection

alone.
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6.8 Further Applications of Model

6.8.1 Generalization of Model

The most obvious extensions to the proposed model would
be the treatment of interior and corner columns. In fact, by
virtue of the technigue used to calibrate the model,
interior columns under balanced moment have already been
dealt with., It is felt that neither corner columns nor
interior columns under unbalanced moment will present any
major difficulties. Two other extensions will be required
before the model can be transformed into a design procedure.

The first of these is the treatment of siabs with
holes. Depending upon their location and size, slab holes
can have two effects. Holes close to the column reduce the
area of concrete available to carry compression. This may
increase the density of shear reinforcement sufficiently to
cause a compression failure. The model treats this problem
by maintaining limits on p_,. Holes whiéh are farther from
the column reduce the area of concrete available for
confinement of out-of-plane forces. This can be accounted
for by altering the effective tributary width (s,,) of the
affected bars.

Another important extension will be the treatment of
shear reinforcement and concretes with enhanced tensile
strength. Shear reinforcement presents no conceptual hurdle
for the model. It provides additional confinement for

out-of-plane forces. However, there may be problems in
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developing some types of shear reinforcement. The test
results of Scavuzzo suggest that failure can occur before
the shear reinforcement is sufficiently strained to
participate in carrying load. Additives, such as fiber
reinforcement, which affect the tensile strength of the
concrete without affecting the compressive strength require
a re-calibration of a. Some direct measure of tensile

strength should be used instead of V..

6.8.2 Beams

If the truss model is valid for flat plates, then it
should also apply to slabs with beams and to beams
themselves. Truss models are already being used for beams
with shear reinforcement. The confinement failure described
in Chapter 3 provides an approach for assessing the strength
of beams without shear reinforcement. A unified and
consistent treatment of shear in reinforced concrete may be

attainable.

6.8.3 Relationship to Bar Development
- There are marked similarities between the method used
in Chapter 3 to estimate a and various plasticity approaches

. 1 .
{6, 15) It is

for the estimation of bar development lengths.
quite possible that the angle of each individual strut is,
in fact, a function of the development length of its

attendant reinforcing bar.



Chapter 7

Summary and Conclusions

The following four conclusions are central to this thesis.

1.

Many of the assumptions made by existing methods for the
analysis of a slab-column connection are not in
agreement with the observed behavior. As a result, most
of these methods cannot be expected to produce
consistently accurate predictions of failure loads.
Moreover, they are not general analytical tools. For
example, a model calibrated for interior column
locations is inadequate for edge and corner column
locations.

The truss model accounts for all aspects of observed
slab-column connection behavior. The model, calibrated
for interior column tests, is used successfully to
predict the failure loads of a wide variety of edge
column tests.

The truss model presents a new explanation for punching
failure. The punching phenomenon is described as a
failure of the slab to contain the out-of-plane
component of compressive forces within the concrete.
This new failure mode is in agreement with observations
of test specimens. |

Attempts have been made to classify slab-column failures
as being dominated by either shear or flexure. This

approach masks the true nature of such failures. It is

‘more descriptive to use the categories of local

72
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connection failures and overall slab failures. The
ultimate capacity of a slab-column system is defined by

the lesser of these two independent capacities.
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Appendix I: Detailed Calculations for Interaction Diagram

Stamenkovié and Chapman test apparatus

-All dimensions in

inches. Same mats top

0

and bottom.

i 4, = 2.2 d' =0.8
S o c, = c, = 5.0
A £ = 4000 psi
__ 3 £, = 71.9 ksi

A, = 0.0767 sq.in.

(=]
o

2.7 ’ Ay * £, = 5.52 kips

Apo, * £, x 0.9d, = 10.92 in.kips

Shear Steel:

ATl = A% = 2+ 2(1 - 220) = 2.18 bars

AT = a3 = 4 bars
Strut Angles:

- Seer X A" x VI
tana = 1 - e 0. 85K K = —eit ‘/_—c e
Bper x £, x (c/4,)

Bar A Serr = 2.88 K = 0.681 tana = 0.439
Bar B Segr = 3.12 K = 0.737 tana = 0.466
All others Segt = 3.0 K = 0.709 tana = 0.453
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Interaction

Control Point A

V, = 5.52 (2x0.439 + 2x0.466 + 2,18x0.453) = 15.43 kips
M, = 15.43x2.5 - 2x5.52(3.75x0,439 + 0.5x0.466)

= 17.84 in.kips
M, = 2.18 x 10.92 = 23.80 in.kips

Flexural steel = 4 bars:

fraction of bar 2 to be anchored = %4% = 0.909

fraction of bar A required for anchoring strut
_ 2.0 x 0,909

395 = 0.485
V, = 15.43 - 2x0.485x5,52x0.439 = 13,08 kips
M, = 13.08x2.,5 - 2x5,52(0.515x3,75x0.439 + 0.5x0.466)
= 20.78 in.kips
M = 4 x 10.92 = 43.68 in.kips

All of bar A used for anchoring strut:

3.75-0.485

5.0 = 4,77 bars

flexural steel = 4 + 2 x

V, = 15.43 - 2x5,52x0.439 = 10.59 kips
M, = 10.59x2.5 - 2x5.52x0.5x0.466 = 23.89 in.kips
M, = 4.77 x 10.92 = 52.08 in.kips

Check anchoring efficiency of bar B:

0.9d4,°"/e,  0,5x0,9x2.2
tana, ~ 5,0x0.466

Therefore, uplift at A precedes in-plane at B, Bar A’

= 0.425 < 3.25

used for in-plane strut; Bar A" used for uplift strut.
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.Mf

Vv, = 10.59 - 2x5,52x0.439 = 5.74 kips

M, = 5.74x2.5 + 2x5,52(3,75x0.439 - 0.5x0.466)
= 29,95 in.kips

M, = 4.77 x 10.92 = 52.08 in.kips

Bar B used for anchoring strut:

flexural steel = 4.77 + 2 x °é5 = 4.97 bars

V, = 5.74 - 2x5.52x0.466 = 0.604 kips
M, = 0.604x2.5 + 2x5.52x3,75x0.439 = 19.67 in.kips
M, = 4.97 x 10.92 = 54.27 in.kips

Control Point B

v, = 0.604 - 2x5,52x0.466 = -4.54 kips

M, = -4.54x2.5 + 2x5,52(3,75x0.439 + 0.5x0.466)
= 9,39 in.kips

M, = 4.97 x 10.92 = 54.27 in.kips

Control Point C

V, = -2x5.52(0.439 + 0.466) = -9.98 kips

M, = -9.98x2.5 + 2x5,52(3.75x0.439 + 0.5x0.466)
= ~4.23 in.kips
= 4,97 x 10.92 = 54.27 in.kips

Control Point D

~-15.43 kips

<
"

Vv, at point A' = -V  at point A

-17.84 in.kips

=
]

M, at point A’ -M, at point A

=
i

= 0.0



Appendix I1: Reinforcement Details

The following pages describe reinforcing details for each
edge slab-column connection used in this study. Source
materials include original project records and theses as
well as reports in technical journals. Not all of these
documents are complete in their description of the
specimens. In those cases where dimensions could not be
verified by thé experimenter, photographic records of crack
patterns and reinforcement prior to casting were used to
estimate bar positions. What follows represents a
compilation of the best available information regarding the

description of each specimen.,
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Stamenkovi¢ and Chapman

Six specimens detailed here. Same mats top and bottom. All
dimensions in inches.

1.25 3.25 3.0
d, = 2.2
da' = 0.8
t = 3.0
o c, = ¢, = 5.0
- dp,, = 5/16
Ay, = 0.0767 sqg.in.
o Material properties
« given below.
<
o
- 4 —=
[22]
(after Stamenkovié and Chapman)
Mark | £ £,
(psi) (psi) (ksi)
V/E/1 5200 4225 71.9
C/E/1 5580 4570 65.0
C/E/2 4700 3780 71.9
C/E/3 4930 3980 71.9
C/E/4 4980 4030 71.9
M/E/2 4800 3870 71.9



81

15 70 64 Kane
A total of four
specimens are detailed
- here. Same mats top and
0 bottom. All dimensions
are in mm. Same size of
flexural reinforcement
used in all specimens:
dbar = 6
o A, = 28.3 sqg.mm
f, = 480 MPa
© K-1:
- - t = 51
d, = 41 da' = 10
c, = 100 c, = 68
f.u150 = 38.5 MPa
£, = 30.2 MPa
20 74
o~
(o)}
K-2:
te = 48
d, = 38 da' = 10
c, = 114 ¢, = 75
feuiso = 45.0 MPa
f, = 35.9 MPa
(]
(o]
~
_ wy
—_

(after Kane)
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20

74

60

67

83

3p

20

74

179

t = 48
d, = 38 a' = 10
c, = 114
c, = 75

foyi50 = 51.0 MPa
f, = 41.2 MPa

(after Kane)



1.3, 2.5 2.5 2.5 Scavuzzo: S-1
Same mats top and
" bottom. All dimensions
~ in inches.
t = 2.5
N \J
% a, = 1.95 @' = 0.55
c, = 6.0 c,=4.0
" 4y, = 0.226
~ A, = 0.04 sq.in.
f, = 55 ksi
o £, = 5530 psi
- o
(after Scavuzzo)
1.5 3.0 3.0 3.0

Hanson and Hanson: D15

3.0

Same mats top and
bottom. All dimensions

in inches

3.0

t = 3.0
4, = 2.25 d' = 0.75

c, =¢, = 6.0
dpa, = 0.375 (#3 bar)
A, = 0.11 sq.in.

3.0

f, = 53 ksi
= 4510 psi

3L0
.
[

(after Hanson and Hanson)
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Regan

A total of ten double column tests by Regan are detailed
here. All dimensions are in mm. For each specimen, the left

hand sketch shows the
hand sketch shows the
dimensions are common

t = 125mm
For specimen SE2:
t = 125mm

top mat reinforcement while the right
bottom reinforcement. The following
to all specimens except SE2:

d, = 98mm d' = 27mm

d. = 10imm d' = 24mm

S

Three different sizes of bar were used as flexural
reinforcement in the slabs. They are:

Type dbar At:uir fy
{mm} (sq.mm) (MPa)
D8 8 50.3 480
D10 10 78.5 500
D12 12 113.1 480
90
175
Top 90 Bottom
100 90
-7’
100 90
100 20
90 -
100
90
- 100 —
90
o 0 N SE1: (dimensions in mm)
o~ o~
[Ta ¥ - r—d

(after Regan)

c, = 300 c, = 200
fcui00 = 44.6 MPa ft, = 35.5 MPa
All bars type Di12.
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? 90

Top 200 90 Bottom

4 © 90

D12 i 90
Toars B 200

90

D12
bard

90

43

=t

o

0 200

E—Sl 90

90

SE2: (dimensions in mm)
K c, = 300 ¢, = 200

(Ta)

(] o~ [q\]
A, =y A
A A A

fouroo = 54.6 MPa £ = 44.4 MPa

(after Regan)

Top | 175 175 Bottom
100 -’T
175
100
100
175
100
- 100 175 —_—t - —
100
50 125 125 125 SE4: (dimensions in mm)
F—k f— K + c, = 200 c, = 300

feutoo = 34.3 MPa f. = 26.6 MPa
All bars type D12,
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Top

Bottom

210
385
210
120
210
120
120
50 125 | 125 125 SE5: (dimensions in mm)
_,{f_,l‘-——,e___*——-dg c, = 200 ¢, = 300
f.100 = 55.2 MPa  f, = 44.9 MPa
(after Regan) All bars type D12,
M
Top Bottom
140
D12 Fi ) -
bars
400 140
9
o |k
| 140 33
1 9
(O]
(=l R)
= 150 140
)
- - $50 mot— - - T
4 b
[Ya} wn vy . . .
bg o~ ) o o SE6: (dimensions in mm)
D # ¥ c, = 200 c, = 300
| foro0 = 40.0 MPa  f. = 32.9 MPa

[+



87

— ¢
Top Bottom
200 250
.l Pyl
b4 A
D12 { Y
—¢
bars 170 m
& 250 | ale
olu Ala
—~f
Alo 130 . -
AV
70
_ } 70 250 -
T %
° 5
o 4 a 90 SE7: (dimensions in mm)
— —f
Loy v Ty y c, = 200 ¢, = 300
A A A A
feuroo = 49.5 MPa  f' = 39.8 MPa

(after Regan)

Top Bottom
210
385
210
/
120
210
120
o « Q Q
A v v SE8: (dimensions in mm)
F—¥ F—F———k ¢, = 300 ¢, = 100

feuioo = 52.0 MPa f. = 42.1 MPa
All bars type D12,
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Top Bottom
290
400
290
200
200 290
200
290" — 1

75 125 125 125
Ll % ke
7 (after Regan)

N
Y
-
N

SE9, SE10 and SE11: (dimensions in mm)

c, = c, = 250 All reinforcement type D12,
Material properties listed below.

Mark fcu100
(MPa)

SES 51.8

SE10 50.9

SE11 62.5

fl
(MPa)

41.9
41.1
51.5



Zaghlool
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A total of eight specimens are detailed here. All have same
mats top and bottom. All dimensions in inches. '

L-75 5.33,2.33 2.33 3.0 3.0
L
~t
P
<1
A
F
~F
™
~r
o
o
(28]
~
o
—_ o
o~
o
[aa]
~
Mark £!
(psi)
z-v(1) 4980
7-v(4) 5080
Z-V(5) 5100
2-v(6) 4540

z-v(1), z2-v(4),
Z2-v(5) and Z-V(6):

dp,, = 0.5
(#4 bar)
A, = 0.2 sq.in.

Material
properties
listed below.

(after Zaghlool)

(ksi)

68.7
63.4
69.0
69.1
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z-v(2): (dimensions in inches)

t =6 d, = 4.75 da' = 1.25

d. = 0.5 (#4 bar) A, = 0.2 sqg.in.

bar bar

£, = 68.7 ksi £t = 5870 psi

(after Zaghlool)

.33
2
2

7

3

3
2.33

2,33
2

2

2,
2




2-v(3):

(dimensions in inches)

= 4,625 a' = 1.375

Bars passing through column:
dpar = 0.5 (#4 bar) Ay, = 0.2 sqg.in.

bar

Remaining bars in slab:
dpar = 0.625 (#5 bar) Ay, = 0.31 sq.in.

£, = 68.9 ksi f. = 5620 psi

(after Zaghlool)

Le75 5,33, 2.33 2.33 3.0 3.0

3.4

3.4

2
4

3.4

2.33]2.33}12.33

91
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2-1v(1): (dimensiens in inches)

4.75 da' = 1.25

dy,, = 0.5 (#4 bar) A, = 0.2 sqg.in.

f, = 69.0 ksi £, = 3965 psi

(after Zaghlool)

wn ~ o~
~ — — o o
- — o )
3.4
3.4
3.4
1.5
— 0.5
1.5




Z-vi(1):

93

(dimensions in inches)

= 4.75 da' = 1.25

= 0.5 (#4 bar) A

bar

= 0.2 sqg.in.

£, = 69.0 ksi £ = 3770 psi

Y [

(after Zaghlool)

1,75 3.5 3.5 3.5 3.0 3.0

3.4

3.4

3.4

3.4

3.4

3.5

3.5

3.5




Gosselin

Two specimens are detailed here.
Each had the same bottom mat
(shown only once). All
dimensions are in mm. Same size
of flexural reinforcement used

[a] [Ta) [TaY T2l wny
o~ r~ ~ ~ ~
L . in all specimens:
A Pl
dp,, = 5.8
115 Ay, = 25.8 sg.mm
£, = 375 MPa
Top 115 G-1:
t = 79
115 4, = 65 d' = 14
c, = 225 c, = 150
£, = 38.1 MPa
G-2:
t = 95
(after Gosselin) d, = 81 a' = 14
c, = 225 c, = 150
f. = 39.0 MPa
NN N & " o 2 <
o~ ~ r~ ~ ~ — — —
75
125
75
Top 75 Bottom 125
75
75 125
75
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Lamb

Two geometrically similar specimens are detailed here. All
dimensions in mm.

c, = 225 c, = 150 .

Gpar = 5.8 Ap.e = 25.8 sg.mm f, = 395 MPa
L-1: f. = 34.7 MPa
L-2: f. = 43.8 MPa
(after Lamb)
["a} wy [Yal o
(] — o~ o~ o ~r
—~ — ~— — — ~
L e
L L
125 125
%4 .
Top 125 Bottom 125
125 125
74
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