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ABSTRACT

The influcnce of nonlinear sound waves and an inhomogeneous plasma flow velocity
on stimulated Brillouin scattering (SBS) in the regime of weak damping is studied. A
local approximation which is based on a driven Korteweg-de Vries (KdV) cquation,
is used to analyse ion acoustic waves produced by a periodic driving term. When the
nonlinear frequency shift of an ion acoustic wave is balanced by the inhomogeneous
effects one expects the autoresonance effect to occur. We have studied this process

using the KdV model and found that autoresonance is irrelevant for SBS evolution.

The complete study of the SBS evolution in inhomogeneous plasmas has been
presented. The SBS reflectivity undergoes convective saturation, and when the damp-
ing rate allows it, the instability shows a subsequent stage of absolute growth. At
saturation SBS produces an oscillatory reflectivity leading to a decrease in the average
reflectivity for an increasing flow inhomogeneity. The flow inhomogeneity causes a
broadening of the frequency spectrum of the reflected light. The competition between
nonlinearity and inhomogeneity of the flow velocity has been analysed for the first

time.
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CHAPTER ONE

INTRODUCTION TO LASER PLASMA
PHYSICS

1.1 Introduction

Plasma physics [1]-[5] is the study of ionized gases, which are often called the fourth
state of matter due to the unique properties of such systems. Plasmas differ from
ordinary gases in that the long range of the Coulomb potential allows for collective
effects. Quasineutrality is an important characteristics of plasmas. The entire plasma
is neutral, yet small scale local charge separation may occur. This local charge density
provides a source for the electric field, which extends over the characteristic length,
called the Debye length, Ap = (T,/47re2noe)%, where e is the electric charge, no, is
the electron number density, and T, is the electron temperature. The screening of
the electric field over the distance Ap, which effectively limits the range of a Coulomb
interaction, is an example of a collective process. A large number of particles are
required in the Debye sphere, Np = %noez\%, for this to occur. When Np > 1 the
plasma exhibits fluid like behavior at the kinetic level. The dynamical evolution of
electrons and ions is influenced by the mean field created by all the particles with a
negligible influence from correlation between discrete particlesi.e. two body collisions.
The above properties are often considered as part of the definition of classical plasmas,
which must satisfy:

Np>1 (1.1)
and should extend over a characteristic length Lo

Ap < Ly. (1.2)



Unmagnetized plasmas [6], {7] can support three linear eigenmodes: ion-acoustic,
Langmuir, and electromagnetic waves. The two electrostatic eigenmodes have the fol-
lowing dispersion relations:

Wi = k2 (1.3)

w? = wf,e + 33 k? (1.4)

where ¢, = ((ZT. + 3T}) / m;)% are the sound speed, T, T; is the electron and ion tem-
peratures respectively, Z is the ion charge, m., m; are the electron and ion masses re-
spectively, wy, = (4meng, /me)% is the electron plasma frequency and vy, = (T, / mc)%
is the electron thermal velocity. Equation (1.3) represents the low frequency ion
acoustic waves and Eq. (1.4) represents the high frequency electron plasma wave or
Langmuir wave. The acoustic mode is just a 'pressure’ wave where the ’pressure’ is
partly exerted by the electric field instead of collisions. The electromagnetic wave’s

dispersion relation has the form:

w? = wse + k? (1.5)
where c is the speed of light.

Electrostatic waves and charged particles interact in a plasma. This interac-
tion results in Landau damping [1], a collisionless process where particles and waves
exchange energy. Particles whose phase velocity is slight.y slower than that of the
wave will interact with it, somewhat analogous to that of a surfer. The wave will
’catch’ the particle and push it along and be damped in the process. A particle that
is moving slightly faster will have the opposite effect on the wave and will lose its
energy and enhance the wave. When the particles have a Maxwellian velocity distri-
bution, fj, there are more slower particles than faster, relative to the phase velocity
of the wave, which leads to a net damping. The Landau damping parameter, vy, has

the following mathematical form in Fourier space [3]:

1rw3 an

T =55 g (1.6)



The general expression of Eq. (1.6) takes the following form for ion acoustic waves:

’7L(k) = ‘/g (1 + %) {‘/?::'e +0%e$p (—-9—;2*:—3'>} k‘CA = ’70k (17)

where 8§ = ZT,/T;. The two terms on the right hand side of Eq. (1.7) correspond to

electron and ion Landau damping respectively.

1.2 Parametric Instabilities

Laser plasma physics deals with the interaction of intense laser pulses with matter.
In our studies the laser beam is simply treated as an energy source for the creation
and heating of plas~ 1s. Laser plasma physics has application in many areas; snch as
laser fusion, generation of x-rays, beat-wave particle acceleration schemes, diagnostic

:n magnetically confined plasmas and basic studies of turbulence.

The laser beam introduces free energy into the plasma, which can result in
many instabilities. One important class of these interactions is known as parametric
instabilities [3], [5], ;7]. A mechanical analog of this instability, a driven pendulum,
is shown in Fig. 1.1. The rotating rod changes the length of the pendulum in a
periodic manner. When the frequency of the driver is exactly twice the frequency of
pendulum, the system will be in resonance, and the small oscillation of the pendulum

will start to grow. Mathematically this condition is:

Wy = 2w1. (18)

where w; is the frequency of the pendulum, and wy is the frequency of the rotating

rod or driver. The pendulum system can gain energy only if friction can be overcome.

Small amplitude oscillations in a plasma vary in time but also propagate in
space, so that a more accurate representation of parametric instability (8], [9] in a

plasma would be the :hree wave coupling process. For example an electromagnetic



Figure 1.1: Mechanical analog of a parametric instability. The rod rotates at a fre-
quency of wg, causing the pendulum to change its length. The system becomes unstable

if wp = 2w, since the amplitude of the pendulum will grow resonantly.

pump wave, (wp, Eo) can play the role of the driver which decays into two daughter
waves. The three modes which participate in this nonlinear interaction are character-
ized by the linear dispersion relation Eq. (1.3), (1.4), or (1.5) and satisfy the following
matcling conditions:

W = Wy + wa, (1.9)

ko = ky + ka, (1.10)

where (I;o,wo), (El,wl), (Eg,wg) are the wave number and frequency of the pump and
iwo daughter waves, respectively. Equations (1.11)-(1.14) show possible matching
conditions, which correspond to the most common parametric instabilities, where
Eq. (1.11) desribes the parametric decay instability and Eq. (1.12) corresponds to
two plasmon decay,

WL = Wa +wp, (1.11)

W = wy, +wy (1.12)



Stimulated scattering instabilities are represented by:
wo = wg, + wp , (1.13)
W = Wy +wo’, (1.14)

where Eq. (1.13) corresponds to stimulated Raman scattering, (SRS), and Eq. (1.14)
describes stimulated Brillouin scattering, (SBS). Instabilities in three wave interac-
tion processes manifest themselves as a transfer of energy from the pump wave into
daughter waves. The feedback loop, for the scattering instability SBS (1.14), is shown
in Fig. 1.2. The growth of the density perturbation, én, from the noise level leads to
a transverse current, énvy, due to the coupling between the density perturbations dn,
and the electron quiver velocity amplitude v, see Fig. 1.2. The oscillatory or quiver
motion of the electrons results from the interaction with the transverse electric field
of an electromagnetic wave. This transverse current is the source for the reflected
electromagnetic wave which produces electron oscillations with a quiver velocity vp,.
Finally the original density perturbations are enhanced by the ponderomotive force

which is proportional to vovp,.

1.3 Stimulated Brillouin Scattering

SBS [10], [11] corresponds to the decay of the pump wave into a backscattered elec-
tromagnetic wave and an ion acoustic wave [5] as shown in Eq. (1.14). This three
wave interaction process is most effective where the following matching conditions are
satisfied:

ko = kob + kA (115)

wp = wo, +wa (1.16)

where (ko,wp), (ko,,wo, ), (ka,was) are the wave number and frequency, of the pump,

backscattered radiation and ion-acoustic waves, respectively. Our discussion is lim-
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Figure 1.2: Symbolic representation of the parametric instability in a plasma.

ited to the backscattered SBS, which is a one-dimensional (1-D) process. The large
difference between the electromagnetic and the ion-acoustic wave frequencies leads to
an approximation of Eq. (1.16) as wpowg,. This allows us to combine the eleciro-

maguetic wave vectors in Eq. (1.15), and with the use of Eq. (1.5):

2
ka o~ 2ky = 22t 1 D0 (1.17)
c Ne
where n, = w?m,/4re? is the critical electron density above which the electromagnetic
wave with frequency wy cannot freely propagate in the plasma. Note that Eqgs. (1.15)

to (1.17) also imply that ko,~ — ko.

The matching conditions of Egs. (1.15) and (1.16) are satisfied everywhere in
a homogeneous plasma. Consider however a more realistic case of an inhomogencous
plasma, which expands with a flow velocity V(z) < c%. The local, Doppler shifted

sound velocity, ca(z) = ¢ + V(z), defines the linear dispersion relation

wa = ca(z)ka(z) (1.18)



where the wave number k4(z) varies in space for a given constant ion-acoustic fre-
quency. In such plasmas the matching conditions (1.15) and (1.16) have different
solutions wo,, and wy at different points along the flow velocity profile V(z), yielding
a continuum of resonance points. Every resonance point in the inhomogeneous plasma
corresponds to a well defined scattered electromagnetic wave and ion mode, satisfying
the resonance conditions, Eqs. (1.15) and (1.16). For the simplified local model of
Ch. 3, where we fix both the frequency wyp — wp, and wave number ko — ko, of the
driving ponderomotive force, the ion response is characterized by a single resonance
point, unless we account for the nonlinear shift of the ion acoustic frequency which

can broaden the resonance region.

SBS [6],(12]-[14] has been a difficult process to study because of its large pa-
rameter space and nonlinear behavior. The standard three wave interaction model
of SBS [5] in a finite homogeneous plasma is a poor approximation to reality. This
model along with most others predicts a saturated reflectivity close to 100% which
differs from experimental results by at least a factor of 10. Experimentalists predict

a value of SBS reflectivity of about a few percent.

The backscattered SBS is essentially a 1-D problem, however in reality the
stimulated scattering can occur in all spatial directions. Several 2-D and 3-D stud-
ies have shown, that for a relatively narrow beam the interaction is dominated by
backscattered SBS with negligible amount of side scattered and forward SBS. For
example in Ref. [16] the results of a nonlinear homogeneous 1-D model, the type of
model used in the present study, have agreed with 2-D simulations for the instability
along the laser beam axis. Similar agreement has been observed in studies with a

Gaussian pump [17] in 2-D.



1.4 The Korteweg-de Vries (KdV) Equation

The KdV (3], [4], [15], [18], [19] equation is used to model nonlinear ion-acoustic
waves. Originally it was derived by two Dutch scientist studying the propagation
of water waves in one direction in a shallow canal in 1895 [18]. The KdV equation
reappeared 50 years later in the important numerical study of a nonlinear system by
Fermi, Pasta, and Ulam {19]. The results of this numerical experiment had important
implication for modern ergodic theory. The KdV equation now appears in the study of
many diverse physical processes, from solid state physics to fluid dynamics to plasma
physics. Zabv:ky and Kruskal in 1965 [20] numerically found its most well known
solution, the soliton. Solitons may appear as a single hump or dent which vanishes
at infinity, and possess the property that they do not lose their shape when colliding

with one another. The KdV equation in plasmas has the following form:

ON ON N8N 18N
S tea—+ =

o T T T s O (1.19)

where N is the piasma density disturbance and c, is a constant sound speed. The
first two terms are simply a propagation equation, the third is the nonlinear wave
steepening term and the fourth is the dispersive term, due to charge neutrality vio-
lation. The soliton is produced by the balance of the nonlinear and dispersive terms.
The driven KdV equation has the right hand side nonzero and as such can not be
solved arzivi':ally using inverse scattering methods or the Béacklund transformation
[15]. Wi . the source is periodic, harmonic decomposition can be used to approx-
imate the KdV equation with a pair of coupled ordinary differential equations, (see

the end of Ch. 2.3.a).



1.5 Motivation

The KdV equation was first coupled to the electromagnetic wave equation in [24].
I intend to extend this work by adding an inhomogeneous flow whick will alter the
ion-acoustic speed. This addition would improve the model another step, and bring it
close: to experimental conditions [21]. The introduction of a flow velocity will allow
many new regions of interest to be studied. The flow gradient would limit the size of
the interaction region and thereby should limit the growth of the sound waves and
reduce the reflectivity due to scattering instabilities. The balance between the flow
gradient and nonlinear term will also allow us to study the process of autoresonance

23], [22).

This thesis is organized in the following way. Chapter 2 introduces a theoreti-
cal model. It shows derivations of an electromagnetic wave equation and the modified
KdV equation, which contains an inhomogeneous flow velocity and nonlinear driver.
Chapter 3 presents a local analysis of the driven KdV equation, where the driver
models a constant amplitude periodic ponderomotive force. This equation is solved
using harmonic decomposition. We have also discussed i Chapter 3 the autoreso-
nance phenomenon. Chapter 4 presents numerical and analytical solutions to the full
system of KdV electromagnetic wave equations in an inhomogeneous plasma. We
have recovered the well known solution by Rosenbluth in the linear regime. New

results for the nonlinear regime are presented.



CHAPTER TWO

THEORETICAL MODEL

2.1 Introduction

The purpose of this chapter is to introduce the basic equations for the physical pro-
cesses discussed in this thesis. We will develope a theoretical model of stimulated
Brillouin scattering in inhomogeneous plasmas. First the electrodynamic wave equa-
tion is derived from Maxwell’s equations, next the driven KdV equation in an inho-
mogeneous medium is derived from the fluid equations and Poisson’s equation. The
driven KdV equation with a fixed amplitude driver, which is discussed in Ch. 3, and

its harmo~ic decomposition [24], [25], [26], [27] is also shown.

2.2 De..vation of the Electroinagnetic Wave Equation

We wish to model plasma perturbations caused by an intense laser beam interacting
with an inhomogeneous expanding plasma. The laser beam will be modeled [12] by

using the electromagnetic wave equation

1824 08%4 4
_gL g2y (2.1)
2 otz 9z c
where A is the vector potential normal to the direction of wave propagation r, ¢ is
the speed of light, J is the current density, and we have chosen the Coulombh gauge.

Ignoring thermal effects, we may use the conservation of canonical momentum to

solve for the normal component of the electron velocity

eA
v = m c. (22)
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We assume a pump wave vector of the form ko = kgé,. Remembering that J =

n.(z)evy, with n.(z) the number density, we can use Egs. (2.1) and (2.2) to get

1824 6°4 4me?
ok —meche(m)A. (2.3)

Using the electron plasma freque: cy, “’3: = dwe’ng, [me, Eq. (2.3) can be rewritten

10°A4 _0°A _ _w, (1 + (2_(_””_) - 1)) A (2.4)

2 ot 02 c? no,

as:

The high frequency variations of the electromagnetic field can be explicitly accounted
for by writing A = ae~™“°! + §* e, where wp is the laser frequency and a is a
slowly varing in the vector potential amplitude. Dropping the small second order

time derivative of @, Eq. (2.4) now has the form:

~ 2;.
—i2w0% —wia - c2%‘-‘- =-wld—wla (M - 1) (2.5)

Defining a=éae/2cy/mT, as the dimesionless vector potential amplitude, Eq. (2.5)
may be rewritten as:

0 209

o Wowp, €4 Oa  (Apwp, \ 0% 2 2 s [n.(x)

g0 ZA T2 4 [ZD%pe ) 22 - = B2 _ .

! Wy, Uth ot * ( Vth ¢ or? + ((4)0 w”‘) a tha 70, (2 6)

(]

where w,, = (47rZe2n0=/m,-)% is the ion plasma frequency, /T./m. is the electron
thermal velocity, Ap = (T /41re2noe)% is the Debye length, and ¢} = Apwy,. Intro-
ducing normalized quantities, which will be used from now on, [t}=1/w,, and [z]=Ap,

Eq. (2.6) becomes,

da 0%a ne(x
5t—+u15§+u2a=uaa( ( )—1) (27)

(]
1o,

where the constants g, - pac? /v, pe = mki/k%, and pz = 1/2(ng,m;i/n.2 me)li ,
:2 = (v3,/c?) (ne/ng, — 1) is the pump wave vector in the plasma, and n, = wim./4re?

is the critical density.
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In the electromagnetic wave equstion charge seperation can be neglected. This allows
us to set en, = —Zen;, so Eq. (2.7) becomes:

@ 9%

‘o T

+ loa = pzabn (2.8)

where we defined én = (ni(z)/ng, — 1).

2.3 Derivation of the Driven KdV Equation in Inhomoge-
neous Medium

The Korteweg-de Vries equation {24] describes the propagation of ion-acoustic waves
in a plasma. In order to model realistic properties of ion-accoustic waves additional
terms must be added to the KdV equation such as Landau damping, inhomogencous
flow and a driver. The deriviation begins from the following system of plasma fluid
equations [3], [28]:

N  3(NU)

Bt + B 0 (2.9)

U _oU 0% (In N)

3t + 9z 0z Ly Oz (2.10)
and Poisson’s equation
0%®
5-2:—2=n0exp(<I>—P)—N. (2.11)

where U is the fluid velocity in units of ¢4, N is the dimensionless ion plasma den-
sity, I'yp = 3T;/ZT, is a small thermal correction, ® is the dimensionless clectrostatic
potential, and P=|a|* the dimensionless ponderomotive potential term. The varibles
have been normalized as such: a=ae/2cy/mT, the vector potential, and <I’=<i>e/T,_. the
electrostatic potential. Equation (2.9) is the continuity equation and represents the
conservation of particles. The Navier Stokes equation, (2.10), has an additional elec-
trostatic force term. The second term on the right hand side of Eq. (2.10), represents

a correction for thermal pressure. In Poissons’s equation, (2.11), the electron density

12



is represented by a Boltzman distribution, and P is the ponderomotive potential pro-
duced by the laser beam. To derive the KAV equation we will switch tc a reference

frame moving with the wave
:L" = kAx — wat, t’ = wgut (212)

where wy = k4(1 +Vp) and V} is the actual expansion velocity at a reference point in

the plasma. In these new coordinates the spatial and temporal derivatives become:

3} 0 0 0 d

—a-; = A-é?, -é-t- = wA('g - 5? . (2.13)
Equations (2.9)-(2.11) now have the form:

ON ON _O(NU) ,

wa( 5 6:c')+’"" 5 =0 (2.14)
oU ou, . U oo d(In N)
wA(-ég- - 3—1:7) + I\,AUax, = —k4 57 —kal'sw a7 (2.15)
, 0%® .

k4 Frrhe ngexp(® — P) — N. (2.16)

We assume that we have an inhomogenous expanding fluid where both no(x) and

V(z) are known. The variables have the following perturbative expansion:

N = ng+enW+en®+... (2.17)
U = Vae®+e® 4. (2.18)
& = e+ ... (2.19)
P = &P 4... (2.20)

where ngy, and V are slowly varying functions of z. Substituting the expansions

(2.17)-(2.20) into Eqgs. (2.9) through (2.11) we get:

ad a
1+ Vo)(B-tT - 5—337)[110 +en P4 .. +
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5?7[(710 +en® +en® 4 )V + eV + P 4 ..)] =0 (2.21)

(1+ VO)(% - 6—(17)(V +evl) + 0D .. + [‘/ + eV 4 2@ 4. P =

2072

—-a—,(e¢>(l) + ¢ 4 ... - P,ha—i; In(np + en® 4 n® +...) (2.22)
(€2p(2) + )] = (no + en'V + 0@ +..) (2.23)

Collecting terms of order ¢ and assuming that Iy, = Q(¢) end A% = O(e) while

1 1 .
3;: ), %’:7—), ?,’; BT = O(€?) the equations reduce to:

onM) v onM)

A+ W)+ nog -+ Vo7 =0 (2.24)
NGO 1 ) .
ng¢ — n) = 0, (2.26)

Rearranging terms we have:

onV) an(l) vV
- S+ (V= W) o e =0 (2:27)
3v(l) av(l) a¢(l)
nop — n‘” = 0. (2.29)

IfV - Vy >~ Q(e), i.e. the plasma expansion velocity V(z) differs by a small amount

from V =V} at the reference point, then
v =g ) = oo = ngg® = n (2.30)

where 6n = n;(x)/no, — 1. To second order in € the Egs. (2.21) to (2.23) reduce to:

)  gn@ @ _ 9n®  J(vMnll) o) 9(nyV)
(1+Vo)( 8t oz + o oz' +V oz’ + az' +AV ar' + oz’

=0
(2.31)
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+V

M §p® M @) 5ol
(1+V0)(3v v _{6V +90 1)8v v }+AV v

ar o7 P) oz’ dz’ oz’
90 1 onV)
_ ;x w2 (2.32)
2 (1)
k4 364"2 = ng¢'? — nop'® + §n0(¢(l))2 —n® (2.33)
T

where AV = V — V= O (¢). Regrouping the velocity terms we can drop terms
proportional to OQ(e3).

an(n) Ne)) ) a(v\l)n(l)) Van(l) + d(neV)

L+ Vo) = 57 t g + — 57 o o =0 (2:34)
1+ %)6;:) 6;’:,)) + %aa": + o) a‘;::) + AV%’;—? = —?%?—) - F,h;ll;%’? (2.35)
k42 a;:,(;) = ng¢® — nop® + %no(¢>(l>)2 —n® (2.36)
Substituting Eq. (2.30) into (2.34)-(2.36), our system becomes:
1+ Vo)%%? - f’_a";f + noa;j) 21110 a(gz)"’ + AV‘Z? + a(g;,V) =0 (2.37)
X BNT
kf%zfll;— = ng2¢® — ng?p®? + %((Sn)2 — non'?. (2.39)
Multiplying Eq. (2.38) by ng and adding (2.37) we get:
21+ Vo)aa? - a;;?) + _7:_06({;53)2 + 3o %V2+
2Avgi’,’ + a(g:}/) = a;(? —Tu aai’,‘ (2.40)

and taking the partial derivative with respect to z, dividing by ny and keeping only
terms of order €2, Eq. (2.39) gives:

k,_f Pon . g ggp® 1 a(6n)? _9n®
no ar's o1 L R o'

(2.41)
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Adding Egs. (2.40) and (2.41), dividing by two and rearranging the terms pro:luces:

66n 1 8(6n)® T, 06n abn k2 336n
1+V; ~th 0% :
(1+ V) ot' 2n0 ox' + 2 o1 +Av or' + 2ng 9’3
19(noV) | modV 2 _ny 6p(2)
2 o7 407 2 ox (242)
Converting back to the lab frame,
0 10 120 7] 1 0
= (—Z"a + ":;'5:;, e HB‘; (2.43)
our equation becomes:
(1+Vo)d6n  (1+Vo)d6n 1 d(én)*> Ty, 86n 4 AV a6n
() at kA oz 2kAn0 oz QkA Oz kA ox
1 8%n 1 9(ngV) L Mo ov? _ ng 3p® (2.44)
21{7,4710 oz3 2kA oz 4k_4 Jr - 2k‘4 or '
Since (1 + Vp)ka/wa = 1 we get:
oén 1 6(5n) d6n Ty, 06n 96n k4% 0%n
ot t ome 2ng rre +(1+V) oz + 2 Jz +av or  2ngy Ox?
10(neV) | medV? Mg op'? .
2 Oz 4 9r 2 Oz (245)

If we assume that %‘-’} and ﬂ%‘ill are < (Of¢€?) we arrive at the modified KdV equation:

dén n 1 9(6n)° 1 Bn _ ngdp®
+(1+V+2F"‘)a Vo 0z om0 2 0%

o (2.46)

This paper will concentrate on the case where density is homogeneous, ng = 1, sce
Appendix B, I'yy ~ 0, and V(z) is a perturbation to the local sound speed. Since p(® =

|a|2 and after introducing linear Landau damping, the equation has the following form:

dén én 18(6n)2 19%n _ 19|

o v 5"+(1+V) Y5 o Y2958 - 3o

(2.47)

where 7-6n = [y, (z — y)6n(y)dy, and y,(z — y) corresponds to the Landau damping

term.
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The set of coulped KdV electromagnetic wave equations have the following

form: )
.0
z-a% + ul-a—(; + poa = pzadn (2.48)
dén 6n 1 8(6n)>  18%n _ 10la
—aT-f")’ bn+(1+V(z )) 5 ox +2 32 - 3 9z (2.49)

where Eq. (2.48) is (2.8) and Eq. (2.49) is (2.47). In the course of the derivation
we have implicitly assumed that the value of k4 < 1 and the expansion velocity V

changes by a small amount in the plasma, | V — Vp |<! 1.

a) Harmonic Decomposition of the Driven KdV Equation

Solving Eqgs. (2.48) and (2.49) is a computationally intensive process. The following
decomposition will give us a simple but approximate method for obtaining stationary
solutions, with little computational time. The harmonic decomposition will be applied
to the local description of SBS, (cf. Ch. 3), which corresponds to the KdV equation
with a constant amplitude driver varying in space and time as a linear sound wave.

The driven KdV equation has the following form:

o6n dén 13(671)2 13%6n

—+y-n+(1+V(z )) 2 e +263:3

It = Psin(kAa: — wapt + ¢0) (250)

where P is a constant, ¢y is an arbitrary phase constant and V(z) is the expansion
velocity. A transformation of variables will allow us to use harmonic decomposition.
The new variables are:

f:x—%ﬁt:z—t; n==z, (2.51)
A

where we have assumed that £ and 7 are the fast and slowly varing variables respec-

tively. The partial derivatives become:

5} 0 o o0 @
%= B %z~ on + % (2.52)
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Thus Eq. (2.50) now has the following form:

A6t . 6 19(6a)* 10360
9 +v- 61+ V(n) B¢ +2 T +§ 588

= Psin(k4&) (2.53)

where we have dropped the small term containing V(m)ﬁ-’. The equation can be

decomposed by using a stationary approximation:

§ii = 3" ba(n)exp(—inka€), b_n = b} (2.54)

[n|=1

This harmonic decomposition results in:

: 3
z(nkA) I;n = 126,,'1, (255)

by -+ 1n - b+ ikanV ()b + 04 Y85, - z
p#n

2

where the / represent a derivative with respect to 7 and in Fourier space 7, = nyky
where 7y is the Landau damping coefficient defined in Eq. (1.7). The first two

harmonics satisfy the following equations:

~, _— ... k3. P
by +m - by +ikaV(n)b1 + ikabiby ~ z—2f-b1 =57 (2.56)
By + 72 - by + 12kAV (n)ba + ika(By)’ — i4k35, = 0. (2.57)

where we have neglected higher order terms to truncate the infinite series. Renormal-

izing b, = b, /2i and rearranging terms, the Egs. (2.56) and (2.57) become:

: . k2 .
by +71 b +ika(V(n) - 7")1), — ikpblby = P (2.58)
. , ik
by + 271 - ba + i2ka(V (1) — 2k3)b2 - 2(b1)* = 0. (2.59)

The linear limit of Eq. (2.58) is just b, = 0. The above approximations are valid so
long as |b3] < |b1]|. Assuming that the spatial derivative is small we may solve for b,
from Eq. (2.55), in terms of b, and b;. These solutions have the following form:

—i3k 4b1by
15+ i3ka(V(n) - 3k%)’

_ ik a(by)?
T 2 +12ka(V(n) - 2k%)

a) b3 =

b) b, (2.60)
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Substituting Eq. (2.60.b) into Eq. (2.60.a), dropping the v's with respect to k4 and
requiring that |bs] < |b;], we get:

b2
I | &1 |

> SV = RNV ) — 2R0) (2.61)

The two possible limits are:

a)V(n) =0  b)V(n) %0 (2.62)

The limit (2.62.a), when substituded into Eq. (2.61), leads to the strong restriction
of
| by | 3Kk5. (2.63)

Limit (2.62.b), when substituted into Eq. (2.61), imposes no new restrictions on b,
since the density perturbations cannot become iarge outside of the resonant region.
The inequality (2.63), for example, implies that the density perturbations, én o b,
must be kept below 7% for a value of k4=0.21kp for the frequency shift approxima-
tion, [29], (30], to be valid. The frequency shift approximation can be obtained by
substituding Eq. (2.60.b) into Eq. (2.58).
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CHAPTER THREE

THE DRIVEN KDV EQUATION:
LOCAL RESULTS

3.1 Irtroduction

The local model [28], [24] is an approximation to the coupled KdV-electromagnetic
wive equations, (2.48) and (2.49). Nonlinear ion-acoustic waves vary on the spatial
svale which is shorter than the wavelergth of the linear sound waves. This is contrary
to the variations of the ponderomotive force amplitude (the right side of Eq. (2.49)),
which is nearly constant over several wavelengths. The local approximation takes
advantage of this scale separation and replaces the driving term on the right hand

side of the KdV equation (2.49) by a periodic force with a constant driver

dén dbn  19(6n)®  18%n
RO = iy =l i =

= Psinlkaz — wat + ¢p).  (3.1)

Equation (3.1) includes a damping term y-én = [ y(z — y)én(y)dy, and the flow V(x).
The flow velocity will be chosen to be a linear function of z defined as V = h(x—1zy)/L
where L is the length of the box, and & the dimensionless gradient parameter, which is
assumed to be less than 1. Equation (3.1) describes the local response of the nonlinear
sound waves to the periodic porideromotive force, which varies in space and time as
a plane linear sound wave, which satisfies the SBS matching conditions (1.15) and
(1.16). The boundary and initial conditions are given in Appendix A, along with the

physical parameters used, except as noted.

Each of the six terms on the left hand side of (3.1) originates from a different
physical process and each can dominate in certain regions of the parameter space.

The first two terms represent the propagation equation and are responsible for the
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movement of the wavelets to the right with speed ¢4 = 1. The third term corresponds
to Landau damping, which determines the maximum amplitude the perturbations
may have at saturation. This result is obtained by dropping all the other terms on

the left hand side, taking the maximum value of the driver, and solving for én:

P P

= (32)

én =

where the characteristic wavelength is defined by k4 and y5(ka)="0ka, (1.7). The
fourth term describes the effect of the inhomogeneous flow velocity, V' (z), and is
responsible for the location of a resonance point. The inhomogeneous flow velocity
limits the region of ion wave excitation. If the density is saturated by the inhomoge-

neous cffects one obtains

P PL

bn = kAV(:L') - hkA(.'II - .’120).

(3.3)

The importance of the above equation, for limiting the value of §n, is only away from
the resonance point £ = zy. The fifth term represents nonlinearity, and is responsible
for wave steepening. It can also saturate the plasma response by producing higher
ion wave harmonics at 2k,4, 3k4, etc. It gives the following limit on the maximum
density perturbations =

The final term on the left hand side corresponds to ion sound wave dispersion. Its

saturation equation takes the following form:

2P

(511,:76?.

(3.5)

A 3-D visual representation of Egs. (3.2) to (3.5) is shown in Fig. 3.1, while selected
2-D slices are shown in Fig. 3.2. In the present examples we have discussed weakly
damped sound waves v, /w4 = v < 0.1. By considering small linear Landau damping

throughout this study, we emphasize the importance of nonlinear and inhomogeneous
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effects on -2 saturation of SBS. In the stationary regime the amplitude én of the
density perturbations varies with the wave number k/kp. In particular, due to a
strong dependance on the wave number, dispersive effects (3.5), (curve a in Fig. 3.2),
are always the most important cause of saturation at large k/kp values. The nonlincar
wave steeping (3.4), (curve c in Fig. 3.2), is most effective in the saturation of SBS
at small k/kp values, i.e. for long wavelength ion acoustic waves. Finally the level of
saturation depends on the value of the driver’s amplitude P. The saturation density
levels are smaller at lower P, Fig.3.2 A and larger for larger P, Fig. 3.2 B. Different
regimes of parameters discussed in Figs. 3.1 to 3.2, will help us in the interpretation

of numerical results from the local simulations and from the full system of equations

Eq. (2.48) and (2.49).

The solution to Eq. (3.1), for the homogeneous plasma (h = 0), is shown in
Fig. 3.3. The increasing part of the density profile at the left hand side is due to
Landau damping, since the perturbation starts from zero. The parameters chosen
in Fig. 3.3 are the same as those in Fig. 3.2 D, where for a vaiue of k4 = 0.21kp
the lowest curve, ¢, which describes nonlinear effects, should saturate the instability
at about én ~ 0.05, (cf. Fig. 3.3). The slight asymmetry in én shown in Fig. 3.3

implies that we are in a weakly nonlinear regime.

3.2 Comparison of the Driven KdV Equation with the Two
Harmonic Model

The reduction of the partial differential KdV equation into a coupled set of first order
ordinary differential equations is an interesting result in itself, since the reduction in
computational time is dramatic, hours versus minutes. The two harmonic approxi-
mation is shown to be in good agreement with the KdV equation. In Ch. 2 we found

the two harmonic approximation [25], [26], Egs. (2.58) and (2.59):

, . K. ..
b, + Yi1by + ika(V — 7")1)l — ikbjby = P (3.6)
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Figure 3.1: 8-D Plot of the parameter space for h = 0.2, £ = L/2, and 7o = —75.

The surfaces a to d correspond to: dispersion, damping, nonlinearity, and the velocity
gradient respectively, they are defined in Egs. (3.2) to (8.5). The smaller the pertur-
bation required to reach the surface the more important the effect will be. The velocity
gradient far from resonance saturates first, d, and is most imporicut near the bound-
aries. Near the resonance point the velocity gradient is not importa=t. If we assume
sme ... and large P, we see that the nonlinear term, ¢, will dominate. Dispersion, a,
not su:prisingly, is only important for large k, while the importance of damping, b,

depends on its strength and the location in the parameter space.
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Figure 3.2: 2-D cross-sections of the parameter space. Curve a corresponds to dis-

persion, b is defined by damping, and c describes nonlinear effects. Plot A shows the

linear parameter space for P=0.00003, and ~y =i.0117. Plot B is the same except

that P has been increased a factor of 10. Plot C is for P=0.0002, and vy =0.03 and

plot D for P=0.0002, and ~y =0.0117.
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Figure 3.3: KdV solution for h =0, P=0.0002, k4 = 0.21, and zo=-75.

by + 271b2 + 12k a(V — 2k3 )by — ff(blf = 0. (3.7)

for the KdV equation where 7 has been replaced by z with the use of Eq. (2.51). To

recover 6n from these equations we use Eq. (2.54). This leads to:

6n = Im(b, exp(ika(z — t)) + 2ibs exp(i2ka(z — t))) (3.8)

where the factor of 2i is due to the normalization chosen earlier. The Egs. (3.6) and

(3.7) each posses a resonant point for their respective harmonic, defined as:

Lk} 2Lk%
oh T2 = Lo+ ==,

(3.9)

.’L‘l=.’l?o+

for the first and second harmonic respectively. Each wavelet moves with speed c4 =1

inside the envelope.

Figure 3.4 shows the full KdV solution in a nearly linear regime. The resonance

region corresponds to the large broad peak. The secondary peaks are due to phase
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modulations produced by the gradient. The two harmonic solution is shown in Fig.
3.5 and reproduces the general features of the KdV equation quite well. The point
of exact resonance, Eq. (3.9), for b; occurs at x; = xg + Lk%/2h=72, likewise 2y =
o + 2Lk% /h=513, zo=-75. The convective term, 2% in Eq. (3.1) or b, in Eq. (3.6),
is responsible for the shift of the peak position to the right of the resonance point.
The small perturbation of the resonance peak is the result of the second harmonic

which has disturbed the symmetric first harmonic.

The nonlinear solution showed that the second harmonic is responsible not
only for the asymmetry but also the phase mismatch in the right side of Fig. 3.6.
The degree of mismatch depends on the nonlinearity and the actual location of the
second harmonic resonance, Eq. (3.9). Comparing Figs. 3.6 and 3.7 shows the good
agreement between the KdV solution and the two harmonic solution. The main peak
in the KdV solution is slightly broader and smoother than the two harmonic solution
due to the influence of higher harmonics and dispersion. The saturation response
predicted by Fig. 3.2 D curve c is nonlinear, as the asymmetry in én implies. Figure.
3.8 and 3.9 show the shapes of the first and second harmonic respectively. The peak
of the second harmonic occurs to the right of the maximum of the first harmonic
because it is driven by the first. This is because the amplitude of the first harmonic
is usual small near the resonant point of the second harmonic and so the maximum
of the second harmonic occurs before its resonance point. Notice that the first and

second harmonics are symmetric but their sum is not.

3.3 Autoresonance

Autoresonance [22], [23] is the effect related to a balance between the nonlinear and
gradient terms which produces an extended resonant region where the perturbations
can grow. As discussed in Ch. 3.1, inhomogeneous and noulinear effects can separately

contribute to the saturation of the density response by creating a mismatch between
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Figure 3.4: KdV solution for P = 0.00005, h = 0.3, k4 = 0.21, and zo = —-75.
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Figure 3.5: Two harmonic solution for 3.4
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Figure 3.6: KdV solution for P = 0.0002, h = 0.3, k4 = 0.21, and xy = —-75.
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Figure 3.7: Two harmonic solution for 3.6.
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Figure 3.8: First harmonic for Fig. 3.7.
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Figure 3.9: Second harmonic for Fig. 3.7.
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the driver and the resonant sound wave. However, it is possible, as pointed out by
Friedland [22], for the nonlinear frequency shift to balance the mismatch created by
an inhomogeneous flow velocity. This cancellation effect extends the resonance region
and can contribute to the enhancement of ion acoustic waves. We will examine this
process within the framework of a KdV equation. This model is more general than
the original studies of Friedland [22] and Friedland and Kaufman {23], which were

based on the simple frequency shift approximation.

The two harmonic approximation used in Egs. (2.58) and (2.59) allows us to
reduce autoresonance to a simple mathematical formula. Consider Egs. (2.58) and

(2.59), with damping and the convective derivative dropped from the second equation

2
By + by + iV — A, — ik abihy = P (3.10)

ZkA

12k a(V — 2k% )by — (bl) = (3.11)

where we remember that 1, = yk4 and | by || b |. This approximation allows us
to combine Eq. (3.10) and (3.11) to produce the frequency shift equation [29], [30]

for by:
ik2| by |*b,
4(2ka(V — %) — 3K3)

: , k2
b, + by +ika(V ~ —2A)b1 - =P. (3.12)

The maximum density fluctuations occur near the resonance point V — k% /2 and so

in the nonlinear term we may drop 2k4(V — k%/2) with respect to 3k3, this leaves

k% i1 by 12
by + by + ika(V — 22)b, 4 b
12k,

. =P (3.13)

We can rewrite b; = B(z)exp(i¢(z)), where both B and ¢ are real. Equation (3.13)

decomposes into its real and imaginary parts as follows

B' + 1B = Pcos(9). (3.14)

B3

B¢ +ka(V — —)B + Ta5; = ~Psin(9). (3.15)
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Assuming that a stationary solution exists and that damping is strong enough so that
we are rapidly attracted to it, we may drop the derivatives, eliminate ¢, and with

V = h(z — zy)/ L, we obtain for =

2 2 2 2
x=z0+'-°-"-L-+;L-{ L 7‘}. (3.16)

oh " R ) 12k T\ KZB? K%

An autoresonance condition is defined as zg + k3L/2h — B2L/ (12hk%) = 0, i.e. a
balance between the inhomogeneous flow and nonlinear terms. Notice that z = z(B?)
so the result is symmetric with respect to the x-axis. Fig. 3.10 shows a typical example
of autoresonance, note that B o b & én by Eq. (3.8). The function becomes triple
valued between ab and de which indicates that an unstable solution may exist. The
top branch shows the possible paths of a right going wave. By reaching point a along
the upper branch, the amplitude of a sound wave is affected by the autoresonance
process. The bottom branch shows the only path a left travelling wave can take. The

usual resonance would have predicted a single valued symmetric curve.

Discrepancies between solutions to the harmonic equations (3.6) and (3.7), Fig
3.11, and the KdV equation (3.1) shown in Fig. 3.12 start at small values of z and
for low amplitude sound waves. We associate this disagreement with the stationary
approximation used in the harmonic decomposition model. The driven KdV equation
contains full spatial and temporal evolution of sound waves and leads to the solution,
Fig. 3.13, which shows a transition from the upper branch to point b, (Fig. 3.10), at
large sound wave amplitudes. The apparent lack of autoresonance effects in the KdV
solution could be related to the stability of the full solution, which follows a single

valued dependance on z in Fig. 3.10.

Finally we would also like to comment on the region of validity of the au-
toresonance phenomena, as it was originally proposed by Friedland [22],[23]. Based
on the harmonic approximation, Eqs. (3.6) and (3.7), we have found that autoreso-

nance can only occur in an extremely narrow region in the parameter space. Defining
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Figure 3.10: Autoresonance curve: The curves between ab and de are unstable and
cannot in reality be observed. A wave travelling from the left will climb the upper
branch till it reaches either a or b at which point it will jump to branch c, likewise
for the negative branch. A wave travelling from the right can jump only at point d,

likewise for the positive branch. The parameters chosen are: o = —8000, k4 = 0.32,

L =18000, h = 0.1, P = 0.00016, and v, = 0.003.
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Figure 3.11: Autorescnance curve: Two Harmonics. The parameters are the same as

those in Fig. 3.10.
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Figure 3.12: Autoresonance curve: KAV. The parameters are the same as those in

Fig. 3.10.
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Figure 3.13: Overlap of Figs. 3.10, 3.11, and 3.12. The discrepancy between Figs.
3.11 and 3.12 is clearly visible, even for small values of x, and is due to the stationary

approzimation used in the two harmonic approzimation.

€ = Vkah(z — zg — Lk% /2h)/L as a dimensionless length, Eq. (3.16) reduces to

2 2
B? L P | L L -
&= BRI \J (EV kAh) B (“"V k,,h) ’ (3.17)
QOur first assumption was that we are rapidly attracted to our solution or:

L dB
71\/5[1—,13 > T | (3.18)

Remembering that dB/d¢ = (d¢/dB)™" and assuming that B < P/7, we obtain:
kah ( —B? P) -

N>-F|=—=x3

L \6kq B (3.19)

Since we always have to satisfy the inequality, even at its maximum, we want to find
the maximum value for the right hand side. Setting the first derivativ. equal to zcro

and evaluating the function at that point we get
LA\-/p2 \~%
> (15) (g—k-A) (3.20)
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where we have dropped the small numerical factor. The second condition states
that we must be able to see the phenomena which requires that points a and b
or similarly d and e in Fig. 3.10, must be widely spaced. Near point 3, {maz =
(12k,)~" \/Z/k_AI;(P/"/I )? which is Eq. (3.17) evaluated at its maximum value of P/v;.
At point b £ is just the right hand side of Eq. (3.19) evaluated at the maximum which

)]

is & = 3/2((L/k,1h)%P2/6kA)i, therefore we have:

1
-1 [ (2Y 3(_L_)%£‘i“
(12k,) kah\ >>2 kah) 6ka) (3.21)
The above reduces to a form which is independent of h,
L[ P23
377 — . 3.22
N <K Q(Gk,q) (3.22)

Summarizing, the three conditions required for autoresonance to occur are:
1 L
L(3kas\? P 1 f P23

where the first condition requires that damping be strong enough to give the quasista-
tionary solution. The second condition makes sure that the frequency shift equation
itself remains valid, see Eq. (2.63). The final condition represents the requirement
that the region between b and c is large enough so that the effect is noticeable. Notice
that there is an upper and a lower limit on damping and this region is rather narrow.
Autoresonance was not found in a region that is consicered physically relevant. To
get the effect it was necessary to reduce Landau damping to y;/ws = v¢ = 0.003, or

three tenths of electron Landau damping. The minimum electron Landau damping

rate predicted by Eq. (1.7), for ZT,/T; — oo, is /7Zm,[8m;k=0.01k.
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CHAPTER FOUR

THE COUPLED KDV-ELECTROMAGNETIC
WAVE EQUATIONS: RESULTS

4.1 Introduction

The numerical solution to the coupled KdV-electromagnetic wave equation, with an
inhomogeneous plasma flow term, will now be presented. In Ch. 3 we have analyzed
solutions to the driven KdV equation where the reflected light and pump wave were
'fixed’, and represented in terms of a constant amplitude periodic driver. SBS now
evolves in time and space from a small seed. The dimensionless KdV-electromagnetic

wave equations were derived in Ch. 2 as (2.48) and (2.49), they are:

.Oa d%a

r-vy + 2w + pea = pzadn, (4.1)
dbn h d6n  10(6n)*  18%n _ 10|’
Ft_+7.6n+(1+f(x—mo)) 6‘:v+§ or 2053 2 9z’ (42,

where v 6n = [y(z — y)6n(y)dy is the linear Landau damping term (1.7}, & is the
dimensionless gradient strength, L is the length of the box, z, is the point of zero
flow velocity, 1 = pac?/vk, ps = mka/k%, and pz = (1/2)(n0em,-/nchc)%. The
boundary and initial conditions are given in Appendix A, along with the physical

parameters used.

Linear growth of SBS occurs in two distinct ways: absolute or convective.
Absolutely unstable modes grow in time at every point inside the box. Convuctive
or spatially growing modes increase their amplitude during propagation. A density
disturbance in a given point in the box will start to grow as the unstable perturbation
approaches, and then once the wave has passed, will start to decay because of damp-

ing. To obtain the growth rates and thresholds for SBS we will solve a homogeneous
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linear dispersion relation. Neglecting nonlinear and the flow terms in the evolution

of the sound waves in Eq. (4.2) we obtain:

.0a 0%

za + /Ll-a—ﬁ + p2a = pzadn, (4.3)
dén On 1 dal?
Bt Fokabn = e (44)

We further simplify Eqs. (4.3) and (4.4) by introducing three resonant SBS modes:

an electromagnetic pump wave and backscattered radiation,

a = ay exp(itkoz) + @o, exp(i(ke,x — (wo, — wo)t)) + c.c. (4.5)

and an ion-acoustic wave,

on = 67 exp(i(kaz — wat)) + c.c. (4.6)

where c.c. stands for complex conjugate. Assuming that the amplitudes, dg,andén,
vary slowly in space and time we may drop their higher order derivatives. The
matching condi* ons, : gs. (1.15) and (1.16) along with Eq. (1.17), allow us to equate
wy, —wp and wy, . ! . pproximate k4 by 2kg and ko, by —ko. With the above solutions

and gathering terms with like powers, Egs. (4.3) and (4.4) become:

.04 . da  eow

z—a—:i - z,ulkA—(-?% = pgdgbii (4.7)
967 o otm -,
'l + Yok 671 + e = —2-k4a0aob. (48)

where we have replaced v.(k4) by 7ok4 from Eq. (1.7). Letting p1k4 = c®ko/woca =
Vao/ca where Vg, represents the group velocity of the reflected SBS wave and u3 =
(1/2)wp, v fwoca. Renormalizing Ay = idg,/ \/&owpev,h [2woca and Ag = 67* [[/agko/kp

and taking the complex conjugate of Eq. (4.8) we arrive at

S — 25t =Tod (4.9)



0A, 0A;

It kad - =T i,
5t + Yoka 2+‘9 0A1 10)
where ‘ .
T, = Wp; Vosc [ Wp, Vinko 3 _ 1 kg voscwp; (4.11)
° 2v/2 vi \ wocakp T 22 N )

and Egs. (4.9) and (4.10) represent the standared parametric instability equations [5].
Introducing an ansatz A; = A; exp(—i(kz—wt)) and A = A, exp(—i(kz—wt)) where
we assume that k is real and w is complex will allow us to solve for the dispersion
relation D(k,w(k)) = 0. The dispersion relation obtained from Egs. (4.9) and (4.10)
is

D(k,w(k)) = (w + % ) (w—Fk+ivks)+T2=0 (4.12)

For the system t> be absolutely unstable [9] requires [31] that both D(k,w) = 0 and
0D(k,w)/0k = 0. Using 8D(k,w)/0k = 0 gives

CA V. .V
k= (w(—ﬁ"—-- )+zﬂ k) 4.13
3V, ” o, Joka (4.13)

Substituting Eq. (4.13) into Eq. (4.12) yields the frequency

Vgo Yoka 24/=Vgyca
= + T (4.14)
V.(Jo +ca Veo +€a

which contains ~n instability threshold [9] of:

r3> G [, Y, A] (4.15)

When the group velocities are parallel, absoluie growtk is not possible. Con-
vective growth may occur if I'} > (70k4)(70,ko,) = 0 since 4y, is zero. The maximum

growth rate [32] is then given by the solution to Eq. (4.12), for wyey = k =0,

L
T = —yoko + [v3k3 +TF|* ~ T (4.16)
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This growth rate may be observed in an absolutely unstable plasma before the fastest
modes have reached the boundaries. Convective instabilities correspond to limited
amplification as compared to absolute instabilities. The absolutely unstable modes
will grow until they are saturated by nonlinear effects or pump depletion. Equations

(4.9) and (4.10) in the stationary approximation have the form

— ik S = pgasa, (417)
abn -1, _ _,
’)’0’0457_1 + —a;- = —Z—k,;aoaob. (418)

Assuming that %6} is small, we solve Eqgs. (4.17" and (4.18) for @, to obtain:

a ( = a ____Ii?ﬁg_ —
() = an(L)exp (~5 2 (2 - 1) ). (4.29)

where @, (L) is the amplitude of the seed at the right side and - 67 has been replaced
by Yoka67i from Eq. (1.7). Equation (4.19) leads to the definition of the gain, Go,

which is ag, at z = 0. The gain is defined as:

_ ,LL;;I&Q |2L _ ’1)2 No, koL

Go = = Yose — 4.20
°7 2mkavo  4udme (1 - ) (4:20)
where |a|* = |ao(z = 0)® = 42, /4v?, = 0.5P,. The gain is the exponent in the

amplification factor for the seed. For an inhomogeneous plasma the gain [34] takes

the following form:

G = #3|‘_10 |2L = ,n_vgscnoe kOL
97 2ukah " 40dne (1 - 2=’

(4.21)

Notice that the homogeneous gain coefficient depends inversely on damping while the

inhomogeneous gain coefticient depends inversely on the gradient instead.

When the group velocities are anti-parallel, the second square root term in

Eq. (4.14), produces another +i since a —i would create damping, this results in a
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maximum absolute growth rate for the undamped system of:
2 VgocA C
Tapsy = Dot & 9T, 4. :
o =Y T, 22

A more exact expression is found in [33], where the analysis includes the spatial
derivatives while damping and the finite system length are taken into account. The

growth rate now becomes:

2P0 ( 1 ) ’)’okA V.
Caps = 1- - = 4.23
b (\/qu VirE) T Tea ) Vg +ea (4.23)

where A = G, /7 should be greater than one.

4.2 Three Wave Model of SBS in Inhomogeneous Plasmas

The present model, Eqs. (4.1) and (4.2), must reproduce the previous results, in
particular the solution by Rosenbluth [34], to the linearized three wave interaction in
an inhomogeneous plasma. An analytic solution to the linearized set of Eqs. (4.1)
and (4.2) was obtained by Rosenbluth in Refs. [34] and [35]. He has shown that a
gradient would limit the size of the interaction region, by disturbing the matching
conditions, Eqs. (1.15) and (1.16), to produce a finite gain coefficient, even though
the plasma was arbitrarily large. A simplification suggested by V. Tikhonchuk where
the propagation of sound waves is neglected, will be used here to recover Rosenbluth’s
solution. This reduces the resulting equation for the backscattered electrostatic field
to a first order differential equation and the inverse Laplace transform of the solution,
allows us to solve for the reflectivity at the left boundary. Dropping the nonlinecar

term in the KdV equation results in the equaticns:

.0 0%

zaa + ""32_; + poa = pgabn (4.24)
dén h n 186n  10|a)
B + Yokabn + (1 + I (z - :L‘o)) B + 2328 ~ 2 9z (4.25)
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We simplify Eqs. (4.24) and (4.25) by using Egs. (4.5) and (4.6) and the matching
conditions, Eqs. (1.15) and (1.16). With the above definitions and after gathering
terms with like powers, Eqgs. (4.24) and (4.25) become:

0dg, . k 0ay,

i?t— 7731 A-BE— = [Jaﬁgaﬁ* (426)
a6 (., (R . KB\).. , 06m i, _ _,
50 + Yokab7 + (zkA (z (z — zg) — —2-)) on + 5 ELAaoaO,,- (4.27)

Dropping the spatial derivative in Eq. (4.27), and applying the Laplace transform,
F(z,p) = J5° exp(—pt)F(t,z)dt, we may solve for 47,

i =
3ka850,

o, = R (4.28)
p+Yoka —ika (% (z = x0) - ‘«f)
Applying the transform to Eq. (4.26) results in:
: . da, .
ipa, — zplkA-a—z- = Uglgbitp. (4.29)

Combining Eq. (4.28) and (4.29) yields a first order differential equation for a,:

~ kg, |5 (2
%ap _ 1k p— 2 [ | — |8 =0. (4.30)
T ka P+7o'CA-‘ikA(%(m"$0)“"§)
Solving Eq. (4.30) for @,(z, p) results in:
. 2\ LGo/T
P+ Yoka — ks (% (L —zo) ~ %")

- _ L
ap(0,p) = @,(L,p) exp (— pk )
H1kA

P+ voka + tka (1‘% + %)
(4.31)

where a,(L,p) represents the value of the seed at tbc right hand boundary, G, is
defined in Eq. (4.21), and Py/2 = |d |? is the electric field intensity at the left bound-
ary. Applying the inverse Laplace transform, F(x,t) = (1/2m%) [ exp(pt)F(z,p)dp,
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results in

&) iGy/m
2

g, (0) __/ dp exp (pt) o (_ pL ) P+ Yoka —tka (% (L — =) —
0 C P+ Wseed pka D+ Yoka + ik, (ﬁ%n + %)
(4.32)

where @,(L, p) has becu replaced by (p + z'w,eed)—l, and wseeq = k4 which corresponds
to the ion acoustic frequency, w = k4(1 + V(x)), at the point where thz flow van-
ishes. Transforming to a dimensionless integ-ation variable, p = iksh/2(1 - p) —
tka (hzo/L + k% /2), results in:

2 y D) 15 4 ox 0 110G g/ T
505(0)=9XP[1—2E<E—(@9+E£))] 1 /CdﬁexP('Pt) [p+w+1] g

h \2 L 2 omi +Q |p+iy—1
(4.33)

where Q=(1 — 2/hk4 (hxo/L + k%/2) + 2wscea/ hk4), t=kah[2(t — L/uik,), and §=
270/h. The solution to Eq. (4.33) requires that all of the poles be included in the
contour integral, which is not too difficult since 4 is always less than one. The refiec-
tivity is equal to R(t) = | Go,(x = 0) |*/| @(z = 0) |°. Figure 4.1 shows a comparison
between the reflectivity from the KdV solution and that predicted by Eq. (4.33). The

agreement in Fig. 4.1 shows that the reflectivity has the expected linear behavior.
4.3 Results of Numerical Simulations

The evolution of SBS in an inhomogeneous plasma is dependent on the combination
of the gradient and damping strengths. We will first discuss SBS in a homogenecous

plasma [24] followed by the weakiy damped inhomogeneous plasma.

The dynamics of SBS reflectivity, in the case of strong damping and a homo-
geneous plasma, which is shown in Fig. 4.2, is given by the solution to the linearized,

stationary Eq. (4.19), since we are below absolute threshold, Eq. (4.15). The net
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Figure 4.1: Comparison between the reflectivity observed from the KdV equation, (dot-
ted line), and the reflectivity predicied by by Eq. (4.33), (solid line). The parameters

choser are h = 0.2, vo = 0.0117, and Py = 0.03.

e-folding is given by

_ag(z=0,t=0))

R =
| @o(z = 0,t =0) |”

exp (2Go) = Ryexp (2Gy) , (4.34)

where Gy is defined in Egs. (4.20) for a homogeneous plasma and Ry = 1076 . The
exponent in Eq. (4.34) should be > 1. The reflectivity predicted by Eq. (4.34) is
1.1 x 1073, which compares with the observed value from the numerical simulation of

0.94 x 1073

The SBS reflectivity from a homogeneous plasma, for weakly damped sound
waves (7o = 0.0117) is shown in Fig. 4.3. The modulations of reflectivity at the early
times are related to the nonlinear evolution of sound waves. They grow to relatively
high amplitudes, Fig 4.4, become nonlinear and change in time propagating from
the left boundary to the right. Until these periodic soliton-like structures, which
originate at £ = 0 reach the right boundary , (i.e. for t < 4000/wy,), and establish

stationary density profiles Fig. 4.4, the reflectivity displays transient time variations.
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Figure 4.2: The reflectivity in the case o) strong damping, for the parameters: h = (),

Yo = 0.08, and Py = 0.03.

The spatial modulations of the density perturbations, Fig. 4.4, at small values of z

have resulted from this dynamical evolution of nonlinear sound waves.

Figure 4.4 shows the large amplitude, nonlinear sound waves propagating to
the right at the late time (¢ = 8196/w,,), corresponding to the stationary plateau
on the reflectivity plot, Fig. 4.3. The density profile is also stationary. Its Fourier
transform is shown in Fig. 4.5. The dominant sound wave at k£ = 0.21k, corresponds
to the resonant mode satisfying the SBS matching conditions Eqgs. (1.15) and (1.16).
Higher order harmonics in Fig. 4.5 are the result of the nonlinear behavior of sound
waves. The biggest amplitude ion acoustic perturbations occur at the left boundary,
Fig. 4.4, where the electromagnetic wave amplitudes are also reaching their maximum,
Fig. 4.6. The stationary plateau of the reflectivity for t > 4000/w,, cannot be
approximated by Eq. (4.19) due to the dominance of pump depletion and nonlinear

effects.

The behavior of SBS for weakly damped ion waves and an inhomogeneous
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Figure 4.3: The reflectivity, for the parameters: h =0, v = 0.0117, and Py = 0.03.
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Figure 4.4: Density at T = 8196, for the parameters shown in Fig. 4.3.
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Figure 4.5: Fourier transform of the density, for the parameters shown in Fig. 4.3.
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Figure .6: FElectric field amplitude ot T = 8196, for the parameters shown in Fig.
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plasma displays many different features as compared to the homogeneous case. Figure
4.7 combines results from the homogeneous (dashed line) and inhomogeneous (dotted
line) runs. It also shows comparison with theoretical results obtained from the three
wave coupling model in inhomogeneous plasmas, Eq. (4.33) ( dot-dashed line), and
analytical theory of absolute instability in the finite inhomogeneous plasma (solid
line), Eq. (4.23) [33]. At first reflectivity shows identical exponential growth in
time for both the homogeneous and inhomogeneous plasma. At the relativay low
reflectivity levels, defined approximately by the inhomogeneous gain, Eq. (4.21), the
reflectivity experiences saturation due to the effect of the inhor.::neou» flow velocity.
The level is in partial agreement with the Rosenbluth theory, Ch. 4.2. However this
analytical result, Eq. (4.21) is only valid in plasmas with no boundaries, which is
certainly different from our numerical model based on finite simulation box. Indeed,
approximately at the time when the first sound waves created at the left side of the
plasma reach the right boundary the SBS starts to grow again with absolute growth
rate, (dotted line), found in Ref. [33]. The growth rate described by Eq. (4.23)
follows closely the numerical results in Fig. 4.7. It is an absolute growth, taking
place at every point in the plasma, as one can see from the electric field profile in
Fig. 4.8 and the density profile in Fig. 4.9, taken at ¢ = 3000/w,,. After this period
of temporal growth the reflectivity reaches a quasistationary state for ¢ > 4000/wy,,
at an average level of about 40% as one can see from Fig. 4.10. By comparing the
plasma results in Fig. 4.10 one can see the important role of the inhomogeneous flow

velocity.

The long time behavior of the SBS reflectivity, Fig. 4.10, in an inhomogeneous
plasma displays an almost periodic oscillations. They can be related to the interesting
evolution of the density perturbations and ponderomotive potential, shown in Figs.
4.8-4.16, at three different moments in time, corresponding to the first broad period
in SBS reflectivity, Fig. 4.10, for 4000 < tw,, < 7000. At the begining, (t=4000/wy,),
the main growth of scattered light occurs at the left boundary, Fig. 4.11, within

47



the region allowed by the velocity gradient, Fig. 4.12. The scund waves reach there
relatively high amplitudes, and start to propagate to the right. The small rate of
damping allows the characteristic triangle like structure of the density perturbations
to propagate the length of the plasma with almost no change in amplitude. However,
when the perturbations leave their original resonance region, they do not satisfy the
SBS matching conditions with the same electromagnetic scattered wave. This results
in the minima of reflectivity, which occur with a period corresponding to the ion wave

crossing time.

An important feature of the reflected light is related to the frequency shift and
the spectral width as seen at the left boundary. This charateristic is often used by
experimentalists to indentify scattering instabilities in plasmas [6]. Figures 4.17 and
4.18 show the frequency spectra of the backscattered light from a homogencous, Fig.
4.3, and inhomogeneous plasma Fig. 4.10, respectively. The spectrum shown in Fig,.
4.17 illustrates typical properties of the homogeneous plasma interaction, i.e. narrow
frequency spread and shift with respect to the pump frequency corresponding to a
single ion acoustic resonance wave. The addition of an inhomogeneous flow velocity

term allows all frequencies between +hw,4 /2 and —hw4 /2 to grow as seen in Fig. <.18.

Figure 4.19 shows a summary of reflectivity from the KdV electromagnetic
wave equations, Egs. (4.1) and (4.2), from several runs for different velocity gradients,
h. Each value of the gradient has two symbols because the top row of symbols
corresponds to average value of the reflectivity for large times, while the bottom row
is the average value of the reflectivity from Eqs. (4.1) and (4.2), corresponding to the
intermediate saturation predicted by the Rosenbluth theory. The deviation from the
solid line, Eq. (4.34), is due to the break down of the linear theory. The evolution of

SBS is not affected when multiple seed waves with random phases are introduced.
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Figure 4.7: Comparison between reflectivities obtained from the homogeneous and

inhomogeneous plasmas. The dashed line is for conditions given in Fig. 4.3 for h =0,

the dotted line corresponds to h = 0.2, while the dot dashed line is Eq. (4.33) and the
solid is Eq. (4.28). Notice that the gradient has lowered the average reflectivity, but

it is not that dramatic. A more detailed picture of the early time development was

shown in Fig. 4.1.
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Figure 4.8: The electric field at T = 3000, at the mid point of absolute growth. The
parameters chosen are h = 0.2, 79 = 0.0117, and Py = 0.03.
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Figure 4.9: Denssity at T = 3000, at the mid poirit of absolute growth, for the paramn-

eters shown in Fig. 4.8.
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Figure 4.10: Comparison between the homogeneous and inhomogeneous reflectivities
for long times of Fig. 4.7. The upper line is for the conditions in Fig 4.3, while the
lower line was Fig. 4.7, (dotted line).
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Figure 4.11: Electric Field at T = 4096, for the parameters shown in Fig. {.8.
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Figure 4.12: Density at T = 4096, for the parameters shown in Fig. 4.8.
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Figure 4.13: Electric Field at T = 5000, for the parameters shown in Fig. 4.8.
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Figure 4.14: Density at T = 5000, for the parameters shown in Fig. 4.8.
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Figure 4.15: FElectric Field at T = 6144, for the parameters shown in Fig. 4.8.
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Figure 4.16: Density at T = 6144, for the parameters shown in Fig. 4.8.
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Figure 4.17: Frequency spectrum of the reflected light from a homogeneous plasma,

for the reflectivity shown in Fig. 4.3.
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Figure 4.18: Frequency spectrum of the reflected light from an inhomogeneous plasma,
for the reflectivity shown in Fig. 4.7, (dotted line). The broadening of the frequency
spectrum is due to the continuum of resonance points, the apparent discreetness is

due to the finite resolution.
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Figure 4.19: Comperison of reflectivity from the KdV electromagnetic wave equations,
Egs. (4.1) and (4.2), for various values of h at selected times. The top row of
repeated symbols corresponds to average value of the reflectivity for large times, while
the bottom row is the average value of the reflectivity taken at the saturation of the

Rosenbluth stage, which is defined by Eq. (4.33).
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CHAPTER FIVE

SUMMARY AND CONCLUSION

A stimulated scattering instability in an expanding laser plasma has been studied.
The investigation has considered the influence of nonlinear sound waves and an in-
homogeneous flow velocity on stimulated Brillouin scattering (SBS) in t'ie regime
of weakly damped ion acoustic waves. The theoretical model consists of an electro-
magnetic wave equation with a nonlinear coupling term and the Korteweg-de Vries
equation (KdV), with an inhomogeneous velocity added to the sound speed. Numer-
ical simulations and analytical calculations have been carried out :a both ihe local
approximation, Eq. (3.1), and for the full system of coupled equations. (4.1) and
(4.2).

The local approximation, in which we have examined the KdV equation with
a periodic driver of a constant amplitude, has been used to investigate the autoreso-
nance process. As formulated by Friedland and Kaufman autoresonance occurs due
to the cancellation between the nonlinear frequency shift of ion acoustic waves and
the frequency shift produced by the inhomogeneous flow. The autoresonance effect,
as predicted by 23], has been observed in the two harmonic approximation Eqs. (3.6)
and (3.7), and shown in Figs. 3.11. It has not emerged, however, from the KdV so-
lution, Fig. 3.12. Even in the two harmonic approximation, autoresonance has not
been found in a region that is considered physically relevant. The minimum sonnd
wave damping rate predicted by Eq. (1.7) isy; = \/;rmz—,-kzo.ﬂlk, while to ful-
fill the autoresonance conditions, Eq. (3.23), it was necessary to reduce the damping
rate to 0.003k. For a small value of the inhomogeneous flow parameter, | h/L |, the

equivalence between a velocity and a density gradient was shown.

We have demonstrated for the first time that the combined effects of an in-

57



homogeneous flow velocity and of nonlinear behavior of sound waves can reduce SBS
reflectivity. We have recovered the theoretical results obtained before [28], for the lin-
ear evolution of SBS. For homogeneous or nearly homogencous plasmas, saturation

can occur due to pump depletion and nonlinear effects or strong damping.

Evolution of stimulated Brillouin scattering depends on the ion wave damping.
In homogeneous plasmas two different behaviors of SBS has been observed correspond-
ing to convective or absolute instability. For a strong enough damping rate so that
the pump intensity is below absolute threshold, Eq. (4.15), reflectivity is described
by the convective gain, Eq. (4.16) and shown in Fig. 4.2. For weak damping and the
pump above absolute threshold, Eq. (4.15), SBS reflectivity grows in time to high
levels, until the instability is saturated by pump depletion and nonlinearity of sound
waves as shown in Fig. 4.3. Characteristic time oscillations in the reflectivity curve,
Fig. 4.3, correspond to nonlinear evolution of sound waves, which vary in time as
they propagate through the plasma. The stationary solution is reached after the ion

acoustic wave transient time, t = L/c4.

The evolution of SBS in the presence of a moderate flow gradient produces
different features as compared to the homogeneous case. At first the reflectivity shows
identical exponential growth in time for both the homogeneous and inhomogencous
plasma, Fig. 4.7. At early times the reflectivity experiences saturation due to the
effect of the inhomogeneous flow velocity, given by Eq. (4.21). As the sound waves
propagate from the resonance point, a stage of absolute growth may occur, given by
Eq. (4.23), if allowed by damping. The long time behavior of the SBS reflectivity is
nonstationary and dominated by the dynamics of the nonlinear density perturbations.
A combination of nonlinear, pump depletion, and flow gradient effects has saturated
SBS . The SBS reflectivity oscillates with a period which is comparable to the the
travel time of sound waves across the plasma. These oscillations are produced by a

characteristic triangle like structure of the density perturbations which propagate the
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length of the plasma with almost no change in amplitude due to small damping rate,
Figs. 4.8 to 4.16. A summary of the results is shown in Fig. 4.19. It demonstrates

that an increase in the inkomogeneous flow decreases the average SBS reflectivity.

The flow gradient also broadens the frequency spectrum of the reflected light,
Fig. 4.18, as compared with the homogeneous case, Fig. 4.17. The frequency broad-
ening is due to the existence of a continuum of resonance points in the inhomogeneous
plasmas. At each point, which is characierized by a different value of a flow veloc-
ity, SBS excites ion acoustic waves of k4 =~ 2kp with slightly different frequencies
wa = 2koca(x). A difference between wy at the left aud right plasma boundaries

defines the width of a scattered light frequency spect:um observed in the simulation.

The velecity gradient in the coupled KdV-electromagnetic wave equaiions im-
proves the theoretical predictions of reflectivity, but the tlieory is not complete enough

to bring it in line with experimental observations.
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APPENDIX A

NUMERICAL CONSIDERATIONS

The numerical solution to Egs. (4.1) and (4.2) requires that we make certain assump-

tions and approximations. The boundary conditions chosen are:

obn  dbén

R

0=i2% 4 ky(2a0 - a) (A1)
—1,-5; ol<Qp — a .

at the left boundary, z = 0, and

0= ig—: — koa — kag, exp (i (2ko [1 — 2K3] t + 60)) (A.2)

at the right boundary, £ = L, where (2" is defined in Eq. (A.3) and ¢, is a small
constant phase. A seeded left going wave . a,, with an amplitude 10~3ay, is introduced

at the right boundary.

A five point finite difference schem is used to discretise Egs. (4.1) and (4.2) in
the center of the box , while a four point dii: -ence scheme is used for the boundaries,
Egs. (A.1) and (A.2). The five point finite differences are accurate to fourth order
while the four point differences are accurate to second order. The nonlinear equations
are integrated in time and iterated for every time step until the desired accuracy is
achieved [36). To prevent the reflected ion waves near the edges of the box some
artifical damping was required. This damping coefficient takes the form as the sum

of two Fermi functions:

1 1
(@) = (1 + exp ("‘—;—fh) * 1+ exp (an_—_r)) (A.3)

Wy
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Figure A.1: Schematic representation of the simulation box

where 7; is the maximum damping rate, w, is the steepness and (z,, Tg) are the center
of the (le;'t,7ight), Fermi functions respectively. Landau damping is implemented in
Fourier space by applying Eq. (1.7). The density is then obtained by using an inverse
Fourier transform and inserting it back into the solver to begin the next time step.

A schematic of the simulation box is shown in Fig. A.1.

Typical parameters of our 1-D plasma are: ng, /n.=0.15, Z=10, T,=1keV,
T;=0.5keV, and xy = 2000. These physical parameters determin a wave vector of k4 =
0.21 and predict a Landau damping rate of 0.0117 X k4 = Y9k 4. If we choose Ag=1.0pm
then L = 4000Ap = 67X, I = 1.5 x 1012 -1(%"—0=72ps, and the inhomogeneous
flow, h = 0.2, is 20% across the plasma. A. Bald'is, C. Labaune, et. al. at Ecole
Polytechnique and O. Willi et. al. at Rutherford Lab, predict a value for the SBS

reflectivity, R, at a few percent.
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APPENDIX B

THE EQUIVALENCE OF THE DENSITY AND
VELOCITY GRADIENTS IIN THE LOCAL
APPROXIMATION

We have found that the results of Ch. 3 can be reproduced if we replace the velocity
gradient by a density gradient. We know that the density inhomogenities are felt
directly by the electromagnetic wave, through the electron plasma frequency (1.5).

We will show that they can also directly affect SBS produced ion acoustic waves.

Density inhomogenities are responsible for the = dependance of Ico(a:') and
ko,(z'), Eq. (1.5), which results in the ko(z') — ko,(z') being approximated by k4(1 +
J =r'D(y)dy), where D(z') represents the density variation in z'. The KdV equation
then takes the following form:

aén d6n  9(6n)’  18%n

7 Tttt 5o

=PIm {exp (i(kA:r;' —wat + / zID(y)d'y + ¢o)) } ,
(B.1)

where v, is Landau damping, Eq. (1.7), P is the constant amplitude driver, ¢, an
arbitrary constant phase, and én is the real density perturbation. If we assume that
D(z') = hka(z' — 20)/L is a linear function of z', Egs. (3.1) and (B.1) can be related

through the following transformation:

’ h, . 2 ’
T==z +§Z(x—x0), t=t. (B.2)

The partial derivatives then transform as follows:

o 0 9 2%h 79
praialrvt ok 1+ T(-’f — xg)) F (B.3)
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where we have only taken the positive root in Eq. (B.3). Substituding Eq. (B.3) into
Eq. (B.1) yields the following expression:

c:;t +yzén + (1 + —(x - :vo)) 450+ gg(w ) (22)

-(1 + —(.'z: - xo)) —— = Psinfkqz — wt) + ¢0), (B.4)

where we have assumed that | /L |< 1, which is always the case. Expanding the
root in front of the convective term in Eq. (B.4) to linear order and taking only the
zeroth order approximation by the other two terms because we do not want to involve

higher order corrections, we get:

oén
ot

+Lén + 1+’—l££:c—a:) 36n+8(6n)2+_1_636n
T L e T oz 2920

Psin {(kaz — wat + ¢o)} (B.5)

which is Eq. (3.1). A direct numerical comparison between the two cases showed

that i - < +irtually no difference.
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