Bl e

& Canada. e

Canadian Theses Service Service des thdses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the

ality of the original thesis submitted for microfilming.

very effort has been made to ensure the highest quality of
reproduction possible.

H are missing, contact the university which granted
the degree.

Some Mraoes may have indistinct print especially # the
origi

es were typed with a poor typewriter ribbon or
if the -.-ngfaogsiiy sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-330 (r. 80/04) ¢

AVIS

La qualité de cette microforme dépend grandement de |a

qualité de la thése soumise au microfiimage. Nous avons

:put fait pour assurer une qualité supérieure de reproduc-
ion.

Sl manque des pages, veuillez communiquer avec
Funiversité qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont é1é dactylogra-
phiées a laide d'un ruban usé ou si funiversité nous a fad
parvenir une photocopie de qualité intérieure.

La reproduction, méme partielle, de cette microforme es!

soumise & la Loi canadienne sur le drott d'auteur, SRC
1970, ¢. C-30, ot ses amendements subséquents.

Canada

THE UNIVERSITY OF ALBERTA

Probabilistic Analysis of Search

BY

Liwu Li

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND
RESEARCH IN PARTIAL FULFILLMENT OF THE REQUIREMENT
FOR THE DEGREE OF Doctor of Philosophy

DEPARTMENT OF Computing Science

Edmonton, Alberta

SPRING 1989

i+l

National Library
of Canada

Bibliothéque nationale
du Canada

Canadian Theses Service

Otiawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L’auteur a accordé une licence irrévocabie et
non exclusive permettant & la Bibllothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de queique maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thase. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-52867-2

Canadi

THE UNIVERSITY OF ALBERTA

RELEASE FORM
NAME OF AUTHOR: Liwu Li
TITLE OF THESIS: Probabilistic Analysis of Search
DEGREE FOR WHICH THIS THE IS WAS PRESENTED: Doctor of Philosophy

YEAR THIS DEGREE GRANTED: 1989

Permission is hereby granted to the University of Alberta Library to reproduce sin-
gle copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or otherwise reproduced without the author’s written per-

mission.

Permanent Address:

CC/#58, Southem Small Road
The District of the Red Bridge
Tianjin, China

Dated: /‘IY[‘#\7

ooooo

1 shot an arrow in the air,
1t fell to earth 1 know not where.
Henry Wadsworth Longfellow

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research, for acceptance, a thesis entitled Probabilistic
Analysis of Search submitted by Liwu Li in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

M. Newborn

Date: 27F /7

Dedicated to
my Dad and Mom,
Zeng-Xiang Li and Feng-Xien Chen Li

Acknowledgements

The author would like to take this opportunity to thank the people who helped make
this work possible. My first acknowledgement goes to my supervisor Professor Tony
Marsiand for his guidance and encouragement. Second, I would like to thank the other
members of my examining committee: Drs. Macki, Nyland, Dobosiewicz and Culberson
for their helpful comments, and professor M. New> «n =0 A4, ;ill University for being
the external examiner and taking the time to read and cotuniw'T.. On mMy thesis.

This research would not have been possible without financial support from the
Department of Computing Science at The University of Alberta, and the Natural Sciences
and Engineering Research Council (NSERC) of Canada.

Finally, I would like to thank my brothers and sister for making my education possi-
ble. Special thanks are due to my wife, Shiying, for her love and for giving me a reason

to finish this work.

-vi-

Abstract

The performance of decision making in computer game playing programs is deter-
mined by the search algorithm in their inner loops. This thesis invoives several aspects
of the special Al area, computer game playing, which include game t - modeling, search
pathology investigation, pruning efficiency analysis, and position evaluation representa-
tion. It focuses on the application of probability.

A new probabilistic model for game trees is proposed. In this model, node value
dependence is simulated with conditional probabilitics. This model eliminates some
curious properties of the existing models, and its flexibality reflects the great variety of
real games. Some interesting properties of this model are derived. One of them makes it
possible for both the root and terminal nodes to have the same probability to take the

same scorec.

The minimax pathology that searching deeper makes the backed-up values more
random is investigated for the new model. It is shown that for a certain class of games,
minimax search does reduce the error propagation. Formulas are also derived for com-
puting the probabilities of making a correct decision when an obvious evaluation func-
tion is used. The calculation provides strong evidence to support the relation between

minimax search benefit and node value dependence.

The commonly used game tree scarch algorithm, the alpha-beta pruning algorithm,
is analyzed for more practical game trees. Recursive equations for the average number of
visited terminal nodes are derived. In this way, the effect of node value dependence on
the pruning efficiency can be analyzed.

The alpha-beta pruning algorithm can also be generalized for probability-based
game tree search when the strength of a node is described by a probability distribution.

-wvii -

The new algorithm inherits some good properties from its point-value version. Secveral

variations of this algorithm are presented, one of which is the "degeneration” of this

probability-based algorithm into s range-based one.

- vii -

Table of Contents

(oL Y ol W 1 L s 1L mae————— U 1
1. AN OVEIVEIEW ..o eevesesssssssesossssssssssansessasesse s e sesis s s s 1R SRR RS e 1
IR (2 LT o LR S 9
3. OULINE Of CRAPIETSoccccccerasvrrereseessssesssssseass s i s s s s s 13
Chapter 2 Ncde-Dependent Minimax Game THEES ..ooonnveenensrerernrssamsssn i snusssssssnss 15
1. Game TIEe MOGCLINGoccoemnririsrsssassassenscssssssssssss s st oo s st 15
2. A New Model for GAmE TTEEScovmmmmnccimemsimimssssss sttt s 19
3. Probabilities for Terminal Win POSItIONSc.cooovmicmmimmmimimmisssisenmssssss 28
4. The Average Number of Terminal Win POSIONS ..cooovunnsirsmmssssnsessss e 33
S. Comparison with Other Dependence DESCIPUONS ...ovvonrrrrerresssssnresessissssrsimisssssnenee 35
6. Comparison with Indeperdent Game TrEESowwrmmmmrssssemssssmss s 36
7. Generality Of the NEW MOGCIooovovvirrminiisssrssssrssmsssmssmsssssssssssss s s e 39
Chapter 3 An Investigation of Minimax PRtROIOEY ..ccccooevnvmmnrennamnrnnsirsssnsssssssssssss 41
1. Minimax Pathology and Node-Value DEPENACNCEccoevrmmmmmmmmmssssssmsnsnsesssees 4]
PR TS R R T T LR LT —————EELE 43
3. Special Cases for Multi-Valued EVAIUALONoccvvrereeecnnnsnccnmssensimmesssesssssessssssssasssess 52
4. Mathematical Calculation for Decision MaKingccmmsissccssmmisisisssss 61

-iX -

Chapter 4 Pruning Efficiency for Node-Dependent Game Trees 72

1. Alpha-BetR PRUNINGccoeviiiintniiinine tnnstscssesnsssnusesssasstsnenstssssnsesssssnisssssnans 72

2. Tight Window PrURingccounmesenenennnmnsimsncnnsssmsescssimsasssiismense s 76

3. Some Properties of Alpha-Beta Pruningccoeeeiennnsciniinnnniennen 78

4. Pruning EMCIENCYcccvviiiiiiinininniine et sennsesssnssssasasstsssssssssssasnesenss 80

S. Best CaSe ANAlYSIS ccccoees wonnnniciniiesieness e s sttt st easar s 89

6. Numerical RESULLScooocviiieiiieiiece et s s s sres st st saases 91

7. Analysis for More General Dependent Game Treescocoocvieneneciiniiecacnes 94
Appendix to Chapter 4: Solutions for Wy and Lyc.coceenininiccininencncninnencnnnns 98
Chapter S Probability-Based Game Tree Pruning ... 100
1. Probability EVAIURUONccccouieniiiiiinniniiinniiie e srnssseneniesesnesensssass oo 100

2. A Representation Method for Probability Distributionscccccvevenieniennee. 102

3. Probability-Based Alpha-Beta Pruningccovueeieineneneniennnnenenscnnneesnnnes 107

4. Generalization of Standard Alpha-Beta Pruningccoevevenvnnninnncninnennens 111

5. APPLICALONSooovrereiririiieninimni s s it as e s rese e e sbessnas e sasasasnanss 117

6. Pruning EffiCIENCYcocviiviririirineccnntnni et essnesssnnnesaseresssnessesesnsnsans 121
Chapter 6 ConCluSIONScoiiivnininiicnisssensssesssssssssasssressssssssenes 124
1. CONTIDULONSc.ccouevirnrrceeniniintenssrisssessstesisesestesesessssisssssesessssesssrssnesasass 124

2. FUUIE WORKcoooereercecenanscsssssssennssstsnsasasssnsenssesussssessssssessos sossensssessassssssssses i26
REFEIENOES ...t eesessssasnsssassasiassssisbsssssse e et sastssasasnsssrensassen 128

List of Figures

Fig. 1.1 AGame Tree of HEight 4ccocvniiuimninmennisnmnnisinnsinssimsenssnns: 3
T4a 2.1 4 Board-Splitting Game and Its Game Treeccccoeunerivnces Crversssennesntsasrenes 18

Fig. 2.2 Two Game Trees Generated with Pannmeters po = 0.5,

F1204, f2m0.3 et s 24
Fig. 2.3 The CurvesforP, =po= % -;— and -5—2_-1

ON £ 1-f 2-PHANE oot s s 32
Fig. 3.1 A Subtree of HEight 2 ...t s 45
Fig. 3.2 The Benefit of Minimax Back-Upcccovuviiimmiiniiicnnniininne, s1

Fig. 3.3 Two Dependent Game Trees Generated with

Fig. 3.5 Two Dependent Game Trees Generated with

Parameters £ 1 0, £ 23 0 oot 60
Fig. 4.1 A Binary Uniform Tree of Depth 1oocoviinmniimiinniniississis st 7
Fig. 4.2 The Computation for W (k, f 1, £2) e sennsnssisnanss 85
Fig. 4.3 The Computation for L (A, £ 1, £ 2) wcviemniimnminisiissinissnssecssincsssusissnssssse: 86

-xi -

List of Tables

Table 2.1 Some Combinations of fand f2 fOr Py =Pg ccecerrcrnimninnianiineniienennncns 32
Table 2.2 The Average Numbers of Terminal Win Nodesccooviimienienienicinans 35
Table 3.1 The Probabilities for Correct Decision with h =9and f 1=/ 3 ceceeervnene. 69

Table 3.2 The Probabilities for Correct Decision with & =9 and

F1 L2 et st e 69
Table 3.3 The Probabilities for Correct Decision with & = 10ccvoiiiccnnnnnninnnes 70
Table 4.1 The Numbers of Visited Terminal Nodes (P, =p ¢=0.333) ...ccoovvrcurcnnnee 93
Table 4.2 The Numbers of Visited Terminal Nodes (Py=p ¢~0.5) ..occevveveenevanninncs 93
Table 4.3 The Numbers of Visited Terminal Nodes (P, =p ¢=0.618)cccccccenrueee. 94
Table 5.1 The Number of Terminal Nodes in Ten (d, n)-Random-Trees 123
Table 5.2 The Number of Terminal Nodes Visited by P_ABccccecvieernnnninnenn. 123
Table 5.3 The Efficiency of P_AB for Different (d, 1)ccocovevevivenvncnnvrnnsinnnnnans 123

- xii -

Chapter 1

Introduction

1. Anr Overview

Significant problems of decision-making in adversary settings like stock-market
investment and military management are ubiquitous in modern society. Aside from
being interesting and entertaining problems in their own right, games like chess and GO
bear close resemblance to a wide variety of more important problems, including transla-
tion, logical deduction, symbolic computation, battlefield decision making, and carth-
quake prediction. In any of these fields, skillful performance requires thought; and satis-
factory solutions, although generally attainable, are rarely trivial. The games provide
well defined rules and have afforded a public testing ground for new algorithms and data
structures, which aim at speeding up the decision-making process as well as organizing
expert knowledge. The advantage of studying games is that both decision-making and
adversary settings can be realized without considering the complexity of the particular
domains. The progress in computer game playing demonstrates the power of man-
machine cooperation for solving thesc challenging problems, and the techniques
developed exhibit their potential use in decision-making for other artificial intelligence
problems. Computer game playing has been justified as a valid scientific pursuit. As a
result, computer game playing has gained more and more attention from Al rescarchers.

Along with an introduction to the topic of game tree search, some important prob-
lems that have arisen in the area of computer game playing will be presented in the fol-
lowing. These problems have been discussed by many authors in this area, but there are

no simple solutions for them. As a matter of fact, some of these problems have been a

focus of dispute. In this presentation, an effort is made to emphasize the difference of

some views scattered in the literature.

1.1. Game Tree Search and Probabilistic Analysis

The two-person zero-sum perfect information games, which il be dealt with in
this thesis, can be characterized by a set of "positions” and a set of rules for moving from
one position to another, where the players move alternatively. In computer game play-
ing, a game tree is the most often used data structure in organizing positions. For a
game, the game tree is a rooted tree that consists of nodes, which represent positions, and
branches, which connect positions with possible continuations.! The two players, called
Max and Min, take strict alternate turns to move. The nodes in the tree are classified as
Min nodes and Max nodes, which correspond to the positions that are the tumns for player
Min and Max, respectively, to move. Shown in Fig. 1.1 is an example game tree, where
Max nodes are represented with squares, and Min nodes are represented with circles. The
degree of a node is the number of its successors. A leaf node has a degree of 0. The
height of a node is the maximum number of moves from the node to a leaf node. The
depth of a node is the number of moves from the root node to it. In Fig. 1.1, the degree
of each interior node is 2, the depth of each leaf node is 4, and the height of the root node
is also 4.

1. In fact, if each position is represented by exactly one node, a directed graph is derived from
this tree by identifying the nodes which represent the same position. Following the literature (1],
no atlempt will be made 10 distinguish nodes that represent the same position. In other words, it is
assumed that all nodes in a game tree represent different positions.

height depth
4 0 B Max node
3 1 (X () Min nodes
2 2 [[[]] Max nodes
1 3 O 0 O 0O O ¢ () () Minnodes
0 4 DOOO0O0O00O0000O0uUy Max nodes

Fig. 1.1 A Game Tree of Height 4

The game tree is an explicit representation of all the possible plays from an initial
position of the game. The purpose of game tree search is to find the best move for the
players. Because it is rarely possible to exhaust a game tree, the basic method used in
computer game playing is bounded look-ahead combined with the use of evaluation func-
tions. The explored part of a game tree is called a search tree. The nodes of a search tree
are divided into two classes; one consists of the nodes at the current search frontier,
which are called terminal nodes,? and the other consists of the interior nodes. The value
associated with a terminal node is estimated by an evaluation function. The values asso-
ciated with the interior nodes are calculated in a bottom-up fassion. The process of
expanding a game tree, evaluating the nodes at the frontier, and then rolling back the
evaluations is known as game tree search. As in the literature, when it is not necessary

to distinguish the terminal nodes in a search tree from the leaf nodes in the corresponding

2. Note that these terminal nodes do not necessarily represent the terminal positions of the
gune.mlymeleafnodesofmegmuummndbmueposiﬁons.

game tree, the term game tree is used to refer to the search tree, and the terms leaf node
and terminal node are used synonymously. In this case, we can assume that the computer
game playing program searches the complete game tree. This assumption is often used
when we analyze game tree search procedures.

Since the performance of computer game playing programs is mainly determined by
their search methods, computer game playing needs to develop game tree search tech-
niques. Many different game tree search strategies have been proposed, and some of
them have been successfully encoded in game playing programs. At the same time, the
comparison and analysis of these strategies has become a significant problem, which
helps choose a best suitable search algorithm for a game playing program. Some
phenomena also emerge in computer game playing and deserve to be studied. Theoreti-
cal research for computer game playing has been recognized as an important topic of

artificial intelligence.

Along with the study of computer game playing, probability theory has proven to be
useful in analyzing game tree search methods and in studying their related phenomena,
although it sometimes gives disappointing and questionable results. For example, to test
the efficiency of game tree search procedures, a standard model, which is usually a proba-
bilistic one, is needed to represent games. Deeper searching is widely believed to
increase the probability of making a correct decision in computer game playing, but the
studies of some probabilistic models contradict this assumption. In efficiency analysis,
the expected number of visited terminal nodes has been recognized as a standard for
judging different game tree search algorithms. Probabilities can also be used to describe
the strengths of game positions in game tree search. These research topics, which
demonstrate the use of probability in the area of computer game playing, will be studied
in this thesis.

1.2. Probabilistic Models for Game Trees

For computer game playing, a standard model for game trees is essential to compar-
ing different game tree search procedures. The model should be simple enough so that it
is easy to understand and set up. It should also reflect the character of real games. Most
of the analyses of game tree search procedures have been based on probabilistic models.
The popular model is the random uniform minimax game tree, which will be called an
independent (random) game tree in this thesis. An independent game tree is defined by
randomly assigning a value from a fixed set for each leaf node in a uniform tree. This
model has been thoroughly studied and extensively used although it has some curious
properties. For example, Pearl [2] pointed out that if each of the leaf nodes is assigned a
win-loss status with properties po and 1 - p, respectively, the root node is almost a sure
win or a sure loss, depending on whether p 4 is higher or lower than some fixed probabil-
ity. Another related property was described by Nau [3) as biasing: when a minimax
search in an independent random game tree is done to an odd depth, all moves tend to
look good for one player, and when a minimax search is done to an even depth, all moves
tend to look bad for the same player. Note that these odd properties are not so prevalent
in the game trees of common games like chess, checkers and GO. It is obvious that some
new model for game trees is needed to eliminate, or at least reduce, these strange proper-

ties.

Since the independence between terminal node values in game trees seldom occurs
in practice, some attempts have been made to introduce dependence between sibling node
values into uniform trees. The simplest description for node-value dependence is
encoded in the rotal dependency model [4], which has the following property for all inte-
rior nodes g : for any two successors g; and g; of node g, all of the terminal nodes fol-
lowing g; either have greater values than all terminal nodes following g;, or they all have

lesser values. But the common method of modeling dependence between node values

randomly attaches weights to the branches of a uniform tree [4-6]). For the so called
branch-dependent game tree, the sum of the weights along a path from the root node to a
terminal node is assigned to the terminal node as its static value, which will be estimated
by the evaluation function in practice. In some branch-weight assignments, the set of
weights varies with the depth of the branches in the tree [4]; in others, this set does not
[5,6]. Here, another view of this dependence modeling approach can be provided. The
values are assigned to the nodes of a uniform tree from the root towards the terminal
nodes in the following way. First, the root node is assigned the value 0. After an inte-
rior node is assigned a value, say v;, each branch following the node will receive a value,
say v,y , randomly, and the successor node following the branch will be assigned the sum
v, +v,,. This top-down manner of assigning values to terminal nodes distinguishes the
branch-dependent game trees from the independent random game tree, where the termi-
nal nodes are randomly and independently assigned with values.

1.3. Minimax Pathology

Since it is usually not feasible to do a complete search of a large game tree, heuristic
strategies are extensively exploited so that the game trees are only explored to some lim-
ited depth. Search-deeper strategy is a successful principle for computer game playing,
and all existing game playing programs do better by increasing their search depth to
improve their quality of decision-making. But the existing investigations do not support
it, on the controrary, they produce negative results [6,7). The phenomenon that the
deeper we search, the worse we play is usually called minimax pathology. Some attempts
have been made to explain it. For example, to show the reduction in the error probability
by look-ahead, Beal assumed a clustering effect in a uniform game tree that a fraction of
the nodes at any level were grouped into families, and all members of a family had the
same value [8]. As pointed out by Pearl [1, p. 349], the impact of these perfect correlated

node clusters could be inferred from the study of "traps.” He ascribed the absence of
minimax pathology in common game playing to the fact that common games do not pos-
sess uniform structure but are riddled with early terminal positions. To verify his conclu-
sion, independent random game trees were modified by assuming each node had a
nonzero probability ¢ of being a real "terminal,” or trap. In fact, no matter how small ¢
is, the percentage of the terminal nodes eliminated from the uniform tree by the trap
assumption, which is

(qn? + (1-q)nxgn®' + --- + (1-9) n¥xgn%n*

+1
=qx1-(l—l)‘
1-(1-q)
=1 -(I-Q)d+l,

where n and d are the degree and height of the uniform tree, respectively, tends to be
100% when the height d increases. The above formula is derived as follows. For the
root node, which has a probability of ¢ of being a trap, an expected number gn* of termi-
nal nodes are eliminated. The expected number of nodes at depth one, which are not
eliminated by the "trap” root, is (1-¢)n, and each such node has about qn"" terminal
nodes to be eliminated by the trap assumption. Therefore, the expected number of termi-
nal nodes that follow the traps at depth one is (1-¢)n xgn®~!. By induction, the expected
number of terminal nodes that are traps at depth d is (1-¢ ¥ n¢xgn®. Summing up the
above derived numbers of the terminal nodes that are eliminated by applying the trap
assumption to different levels, we can get the total number of the terminal nodes elim-
inated from a uniform tree of depth d. By the above analysis, in a sufficiently high uni-
form tree, the trap assumption implies that almost all the terminal nodes can be evaluated
exactly. Therefore, the trap assumption implies an unusually strong visibility improve-
ment, which was denied by Pearl himself as an explanation for the search deeper benefit
in common game playing. It is obvious that if the percentage of exactly evaluated termi-

nal nodes increases with the increase of the depth of uniform trees, the evaluation func-
tion will make fewer errors when searching deeper. Drawing heavily on this kind of
evaluation improvement, partial benefit of searching-deeper was derived by Pearl (1].

1.4. Analysis of Alpha-Beta Pruning

The alpha-beta algorithm is a game tree search procedure commonly used by com-
puter game playing programs. It is equivalent to a depth-first brute-force game tree
search in the sense that each chooses the same move as the best one when searching the
same game tree. Brute-force means that all the nodes in the game tree must be visited in
a depth-first traversal. But the alpha-beta algorithm prunes subtrees off the game tree by
knowing that they cannot lead to a better position. The efficiency of alpha-beta pruning
has been extensively studied for different models. These models can be classified into
two categories: uniform trees having independent terminal node values and uniform trees
having branch-dependent terminal node values. Variations of the first category include
the model studied by Knuth and Moore [4], where all the terminal node values are
different from cach other and independent of each other. The game tree studied by
Newborn [9] belongs to the second category, where the 2 moves available at an interior
node are assigned with the values 1, - - -, n, respectively. Itis interesting to note that for
different models, the analysis of the alpha-beta algorithm presents different results. Since
the existence of value dependence between related positions in games like chess, check-
ers and GO is acknowledged by almost every author in this area, the analysis for the
models that incorporate branch-value dependence into game trees could lead to more reli-
able results than for the game trees in the first category. This incorporation would also
introduce extra difficulty in the analyses, which was exhibited by the work of Newbom
(9}

1.5. Using Probability as the Evaluation Result

Another application of probability is in the representation of evaluation results.
More appropriate representation methods have been developed to account for the inaccu-
racy in the evaluation. One such method is the range representation of evaluation pro-
posed by Berliner [10]. The upper and lower bounds of a range for a node is the optimis-
tic and pessimistic estimate of its strength, respectively. In Berliner's B* algorithm, a
node is pruned when its optimistic estimate is proved to be icwer than the pessimistic
estimates of all contending alternatives. Palay [11] proposed using distributions, rather
than ranges, to quantify the uncertainty in estimatins the srergth of game positions. He

also improved the B* algorithm with a distribution-based algorithm.

2. Terminology

To study the behavior of a computer game playing program, the values that are
assigned to the nodes of a game tree by the rules of the game must be differentiated from
the values assigned to these nodes by the evaluation function employed by the program.
The former values are called game values or merit values, and are represented by a func-
tion

o:V-D,
and the latter, called the wrilities,? and represented by
¥Y:V D,
where V is the set of nodes in the game tree, and D is the set of possible values for the
positions. In fact, these two functions are often the extensions of partial functions
oV D,
and

3. In the litersture of computer game playing, the terms merit value, utility, strength and score
ofien mean the same thing — heuristic evaluation resukt, all correspond 1o the notion of utility
here.

10

yv:V-D,
respectively. The function ¢ is defined for the leaf nodes in a game tree . .ctermined
by the game rules. With chess as an example, the leaf nodes can be in one of three sta-
tuses — win, loss and draw. If we specify D as the integers between -1000 and 1000, the
status of a terminal position g might be described by ¢(g) = 999, -999 or 0. Another
choice of D, which will often be used in this thesis, is D = (1, -1, 0}, with ¢(g) = 1, -1,
and 0 to represent the status of win, loss and draw, respectively. After the partial function
¢ is determined for all the leaf nodes in a game tree, under the assumption that both
players play their best, it can be extended to the function

®:.V-oD.
Since usually a complete game tree cannot be exhausted by a computer game playing
program, the partial function is defined for the nodes on the search frontier of the game
tree rather than for the leaf nodes. After the utilities of the search frontier nodes are
evaluated, the function Wy can be extended to the function ¥ for their antecedents,

¥Y:.V-oD.
Note that the correlation between ¥ and @ determines the quality of the computer game
playing program. It will be seen that the evaluation error probability is measured with

respect to the discrepancy between the two functions.

The extension from function ¢ to @, or from y to ¥, can be described by two
different methods, which are called minimax and negamax, respectively. The two
descriptions are equivalent in that they will propose the same move as the best choice for
the same game position. But sometimes one method may simplify some concepts more
than the other. In Chapters 2 through 4, a minimax description is exploited; while
negamax description is used in Chapter S.

In the minimax description, the game value ¢(g) for a leaf node g is determined by
the game rules from the point of view of onc player, for example, Max. For a leaf node

11

8. the game value ®(g) is determined by
D(g)=¥3g).
For an interior node g, the game value ®(g) is determined according to the successors’
values and the player who will make a move at the position. More specifically, if g is a
Max node
O(g) = max(D(g;) I g; isachildof g };
if g is a Min node
®(g) =min({d(g;) | g isachildof g }.
In the minimax description, given the evaluation results w(g) for terminal nodes g,
which are their utilities, the function ‘¥(g) can be determined similarly: if g is a terminal
node,
¥(g) =w(g):
if g is an interior Max node, the utility ¥(g) is defined as the maximum of its succes-
sors’ values,
Y(g) =max(¥(g;)!g; isachildofg };
if g is an interior Min node,
¥(g)=min{W¥(g;)!g; isachildof g }.
Usually, the determination of the function V(g) from function (g) is a part of the work
of the computer game playing program, which is called the minimax back-up.

In the negamax description, the game value ¢(g) for a leaf node g is determined by
the game rules from the point of view of the player who makes a move at the correspond-
ing position. For a leaf node g, we have

() =63)
For an interior node g , the game value @(g) is determined according to the successors’
values by first negating these values, and then taking the maximum. This process can be

described as

12

O(g) = max(-O(g;) g isachildofg).
In negamax description, given the evaluation results, utilities w(g), for search frontier
nodes g, the function W(g) can be determined by the negamax back-up process in the
following way. If g is a terminal node,

Y(g)=v(e)

If g is an interior node, the utility V(g) is defined as the maximum of the negated succes-
sors’ utilities,

¥(g) = max{-¥(g;) g isachildof g).

Bi-valued game trees are often used in the literature for studying game tree search.
In a bi-valued game tree, each leaf node g is assigned a game value ¢(g), which is either
win or loss, that is ¢(g) € (win, loss). For a node g, we will use the propositions &(g)
= win, win(g) and &(g) = | to describe the same status of node g , the propositions &(g)
= |oss, loss(g) and ®(g) = 0 also have equal meaning.

The notation g; has been used to represent the i th child of node g in the above pan-
graphs. Another notation for representing the successors of a node g is the "Dewey
decimal system"” {4): The root node corresponds to the empty integer sequence, and the
ith child of a node g, which is represented by a series of nonnegative integers, are
represented by g.i. Therefore, if g is a node, both g; and g.i may be used to indicate its
i th successor.

Probability theory concepts will be used to describe the properties of game trees.
The notation Pr{E] is used to represent the probability of event £. The notation
Pr{E | C] represents the probability for event E given condition C. The notation P, (v)
is used as an abbreviation for the probability Pr{i®(g) =v] foranode g.

13

3. Outline of the Presentation

The next chapter provides the motivation for introducing node-value dependence
into the model of game trees. A new model is described along with some of its special
properties. Hence, the chapter also contains a discussion of, and comparison with, previ-
ous work in game tree modeling. |

The focal point of Chapter 3 is the minimax search pathology. First, the problem of
whether or not minimax search benefits decision-making is studied for bi-valued evalua-
tions. By benefit we mean that searching deeper will back up a more reliable value than
the sutic evaluation. A discussion based on different measures of node-value depen-
dence and error probability is presented. Then, mathematical formulas are developed for
computing the probabilities of making a correct decision when searching to different
depths in a game tree with a "piece-counting” evaluation function. The numerical results
are used to illustrate the relation between minimax search pathology and node-value
dependence.

Chapter 4 analyzes the performance of the alpha-beta pruning algorithm when
node-value dependence is taken into account. The analysis is exemplifier. with bi-valued
binary game trees. Recursive equations for the average number of visited terminal nodes
are derived and solved. The effect of node-value dependence on the pruning efficiency is
discussed. The method for determining the average number of visited terminal nodes in a
multi-valued » -ary game tree is also described there.

In Chapter S, an efficient search scheme, depth-first traversal, is introduced into
probability-based game tree search, where the evaluation function returns probabilities
for the merit value of a node. It is shown how a-f bounded windows are used to cut off
some subtrees from search. This generalized algorithm inherits some good properties
from its point-value version. Several variations of this algorithm are also presented.

14

Simulations are used there to show that the probability-based alpha-beta pruning algo-

rithm can be exploited to effectively prune the search of some subtrees.

Finally, this thesis concludes with a summary of its contributions and describes

some possible future work.

Chapter 2

Node-Dependent Minimax Game Trees

1. Game Tree Modeling

The idea of studying simplified examples is characteristic of most basic research in
artificial intelligence. Game trees are useful in describing many kinds of decision-
making situations. One of the motivations behind studying games, or their associated
game trees, is that they simulate the decisions and t+ {versary. For this reason game
trees have been a subject of considerable investigatnm v *n 1 artificial intelligence and
in decision analysis.

Making a decision on a game tree involves searching the tree to compute the utility
values for the nodes of the tree. Since the number of nodes in the tree usually grows
exponentially with the depth of the tree, it is not feasible to do a complete search of a
large game tree. Almost all game playing programs use variants of the look-ahead
minimax heuristic. Involved in this process are two major computational efforts: generat-
ing a reasonable part of the game tree and evaluating the nodes at the frontier. Once the
type of static evaluation function to be used for the frontier nodes has been determined,
the search effort is directly proportional to the number of frontier nodes that are generated
and evaluated. That number has become a standard measure of the complexity of game
tree search procedures [1].

There is a variety of real games. Since it is impractical to test every game tree
search procedure against a re.l game or its game tree, standard models for game trees
should be used to compare game tree search methods. A few probabilistic models for
game trees have been proposed to measure the complexity of different game tree search

15

16

procedures. In this section, a commonly used model is described. Parallel to this
description, a new probabilistic model for game trees will be introduced in the next sec-
tion.

The simple but commonly used model for game trees is the independent (random
uniform) game tree, which was called random uniform tree in the literature [1].
Definition 2.1. A tree in which
(a) all interior nodes have exactly n successors, and
(b) all bottom positions (or leaf nodes) are at depth d
is called a uniform wee of degree n and depth d.
A uniform tree which satisfies the additional condition

(c) the merit values assigned to all leaf nodes are independent identically distributed
random variables
is called a node-independent random uniform game tree, or simply, independent (random

uniform) game tree. g

The independent game tree is used to represent a class of board-splitting games,
which are two-player zero-sum perfect-information games [6). The board-splisting
games are played on a chess board measuring n [92] by a (421, rather than 8 by 8, for
some integer d > 0. The initial configuration of the playing board for a game is con-
structed by assigning each square of the board a random value from a fixed set, for exam-
ple, {0, 1}. Two players move in strict alternation. A move for the first player consists of
dividing the board into n equal pieces vertically, and choosing one. A move for the
second player consists of dividing what is left of the board into n pieces horizontally, and
choosing one piece. The play continues in this manner until only one square is left. The

value of this final square isd\escmcformephyetwhomaded\eﬁrstmveind\egm.‘

4. In some of the liscrature (6], the value is interpresed as the score for the player who made the

17

For the node va.ue set (0, 1}, values O and 1 mean loss and win for the first player,
respectively. Every game in the class takes d moves to play no mater what moves the
players choose. In the game tree of such a board-splitting game, the root node represents
the initial configuration of the complete board, each interior node has n successors,
which correspond to the n smaller pieces, and the leaf nodes cotrespond to the board
squares. Fig. 2.1(a) illustrates a board splitting game with n = 2 and d = 4. The
corresponding game tree is depicted in Fig. 2.1(b). It is easy to set up the one-one
correspondence between the squares on the playing board and the leaf nodes in the game

tree. In the following, all the board-splitting games are illustrated with their game trees.

Given an instance of an independent game tree, by the correspondence between the
squares on the playing board and the leaf nodes in the uniform tree, we can figure out the
initial configuration of the playing board for the corresponding board-splitting game.

last move. This interpretation facilitates some recursive calculation, and will be used in Chapter 3.

0
TT{T[0
{11
1
T 1] 8
T 10
| T
T X'O‘
] O[T
(a)
1]
(0) (1)
0] 1) 1] 1]

© ©®© @O O O O O O
e oiameomtiaielil
(®)

Fig. 2.1 A Board-Splitting Game and Its Game Tree

18

19

The player who makes the first move in the above described games is named Max,
and his opponent, Min. Assuming the two players play their best, since Max's strategy is
to lead the game towards squares with higher values, while Min’s strategy is to lead the
play towards terminal positions with lower values, each node of the game tree can be
assigned a merit value based on the merit values of the leaf nodes by the minimax pro-
cess. Since the merit value backed-up to a node by the minimax process depends only on
the backed-up values of its successors, it is immediately observed that, by condition (c),
the backed-up values of all nodes at the same depth in an independent game tree are also
independent identically distributed random variables. This is the reason that these game

trees are called node-independent game trees.

As observed by Nau[6], in games such as chess or checkers, positions are often
characterized as "strong” or "weak". Strong positions are likely to be win nodes, and are
likely to have higher utility values then. Since board positions change incrementally, the
merit values of sibling nodes are likely to be similar. But in independent random game
trees, the merit values of sibling nodes are independent of each other. To eliminate this
diversity between the independent game trees and the game trees of common games such
as chess and checkers, some proposals have been presented in the literature. As indicated
in Section 1 of Chapter 1, these methods first randomly decide branch values, then make
use of these values to generate the leaf node values. In the next section, a new model for

game trees is presented, which introduces node-value dependence in a different way.

2. A New Model for Game Trees

To model the dependence among the merit values that sibling positions in a game

can take, conditional probabilities for the merit values of sibling nodes will be introduced

S. Since in this thesis only the dependence and independence between node values, rather than
branch values, are emphasized, the descriptive word "node” is often omitted.

20
‘nto uniform trees. These probabilities are conditioned on the parent’s values.

Definition 2.2. A uniform game tree of degree n and depth d that satisfies the following

additional conditions

(d) the root node is randomly assigned a merit value v from some fixed set S with some
probability distribution Po(v)forv € S, and

(¢) for an interior Max node g, the successors’ merit values @(g;) (1<i<n) are ran-

domly determined by a set of conditional probabilities

Pr(®(@g)=v), ®@)=vy ", D@)=V | P@)=Vol, Q@1
wherev; € S for0<i <n,and

(f) for an interior Min node g, the successors’ merit values &(g;) (1<i<n) are ran-

domly determined by a set of conditional probabilities

Pr®(g ="y, DE =V, .. DEn)=’y | D@0l 22)

wherev’; € S for0si <n

is called a node-dependent uniform minimax game tree, or simply, dependent (minimax)

game tree. O

Informally speaking, the definition of dependent game tree simulates the process of
game designing. We can imagine that to design a game, first, the initial configuration of
the game should be designed, and then, a set of rules should be determined to transform a
position into other positions. The condition (d) describes the initial configuration and
corresponds to the initial configuration design; the conditional probabilities in (¢) and (f)
transforms the probabilities for the possible merit values of a position to the probabilities
for the merit values of the successors, and "describe” the set of game rules. Therefore,

the dependent game tree determines the merit values for the nodes in it in a top-down

21

manner, which was exploited by the branch-dependent game tree. In fact, definition 2.2
can be regarded as an improvement of the branch-dependent game tree. As described in
Section 1 of Chapter 1, to determine the leaf merit values in the branch-dependent game
tree, the value for a node is the sum of its parent value and the value of the branch lead-
ing to it, which is determined randomly. Here, the randomness is replaced by the condi-

tional probabilities for the successors’ values.

In a dependent minimax game tree, the merit values of leaf nodes are no longer
independent of each other. The probability distributions for these values are determined
by the probability distribution of the root value, and the conditional probabilities
specified in conditions (¢) and (f). In addition to completeness, the sets of conditional
probabilities (2.1) and (2.2) must satisfy some consistency requirements, which are
specific to game trees and described as follows. By the definition of minimax, a Max
node g has a merit value ®(g) = v if and only if all its successors have merit values less
than or equal to v, and at least one successor’s value is vo. Therefore, the conditional

probabilities in (2.1) must satisfy the following requirements:

v;avoforall0Si Sn => Pr{®(g)=v,, Dg2)=v3, ..., D@ Va | D@)=v(] =0,
V; >Vg forsome(0<i Sn => Pf[o(g 1)‘—'-'\' 1 0(82)=V2. ery 0(3,.)=V,l | w)=Vo] =0,
where the symbol => means propositional implication. The conditional probabilitics in

(2.2) must satisfy some similar propositions.

The dependent minimax game trees are also related to a class of two-player zero-
sum perfect-information board-splitting games. These games have the same playing rule
as the games described in Section 1; but the initial configuration ' W~ *~ned in a
different way. The values of the board squares are determined by the pmalubility distri-
bution for the root node merit value and the conditional probabilitie .2.1) 8 J)in
the following way. First, randomly assign the root node of the unifor:. h merit
value v € S with probability distribution Po(v). As soon as the merit valuc &(g) of an

22

interior node g is determined, the merit values of its successors are randomly selected
according to the merit value ®(g) and the conditional probabilities imposed by condition
(e) when g is a Max node, or by condition (f) when g is a Min node. Based on the one-
to-one correspondence between the leaf nodes of the uniform tree and the squares of the
playing board, each square of the game board can be assigned a unique value from §..

The dependent game trees have some interesting properties, which are missed by the
model of an independent game tree. For the sake of simplicity, the degree n will be fixed
to 2, the merit value set S = (0, 1}, and the final value O means loss for the first player
and 1 means win. It will be assumed d = 2k for some integer k 2 0. In other words, bi-
valued binary uniform game trees of even heights will be used to reveal some properties
of the dependent game trees. For these game trees, the probability Po(1) specified in
condition (d) of definition 2.2 will be denoted as po. For the bi-valued binary dependent

game trees, some conditional probabilities are trivial:

for a Max node g

Pr(®(g,)=0, ®(g)=0 | B(g)=0]=1;
for a Min node g

Pr(®(g =1, O(g)=1 | O)=1]=1.
In addition to these conditional probabilities, the conditions (¢) and (f) for a bi-valued
binary dependent game tree will be specified by
(¢’) For an interior win Max node g, the two successors’ merit values @(g,;) and ¥(g,)
are randomly determined by the conditional probabilities
Pr(®@g =1, ®@)=11 ®@g)}1]=1,,
Pr(9g =1, &g =0 | d(g)=1]= 2(1-1 1),

Pr(9(g =0, g =1 | Bg)=1]= 2(1- 1))

23

with0Sf, S 1
(f") For an interior loss Min node g, the two successors’ merit values (g ,) and ®(g,)
are randomly determined by the conditional probabilities
Pr[®(g =0, B(g =0 | O(g)=0] = £ 5,
Pr(®(g =1, (g =0 | B(g)=0] = 3-(1 -1 7),
Pr(9(g =0, B(g)=1 | B(g)=0) = >-(1 =1)
with0S f,S 1.

The parameters f ; and f ,, presented in the above definition, describe the dependences of
successor values and are called dependent factors. It is obvious that both successors g,
and g, of a node g take the value 1 (or 0) with the same probability. As a result, all the
leaf nodes in a dependent game tree have the same probability to receive merit value 1
(or 0). This fact implies that the merit values assigned to the leaf positions are identically
distributed random variables. An instance of a dependent minimax game tree can be gen-
erated with three parameters, po. f, and f 5. Note that p is actually the probability that
the player Max wins the game. In Fig. 2.2, two instances of a dependent minimax game
tree are shown, which were generated with parameters po = 0.5, f; =0.4 and £, = 0.3.
The root node merit value of the game tree in Fig. 2.2(a) is 0, and the root node of the
game tree in Fig. 2.2(b) has a merit value 1.

0] 1] 0] 0]
© ©® OO O © O @O
01NP1OLIAOaEeie eIyl

(a)

0] 1] 1]
OH © © © © O © O
OeItjeiolteiejeitutejt .
®)

Fig. 2.2 Two Game Trees Generated with Parameters po =0.5, f| =04, f, =0.3

A common consensus on the dependence between sibling node merit values in game
trees is that if a parent has a high merit value, then all its successors tend to have high
merit values. As quoted earlier, Nau [6] indicated that in games such as chess or check-
ers, the utility value of a node is usually positively correlated with the utility value of its

25

parent. Since the utility value is an approximation to the merit value, the merit values of
sibling nodes, the merit values of parent nodes and successor nodes are likely to be simi-
lar. For the dependent minimax game trees, suppose a Max node g has merit value 1.
Then at least one of its successors, say g,, must have merit value 1. For this case, the
statement that all successors tend to have high merit values can be modeled with the
requirement that node g , is more likely to have merit value 1 than 0. Similarly, if a Min
node g has a merit value 0, one of its successor must have the merit value 0, and the pro-
perty that all successors likely have similar merit values is reflected by the requirement
that the other successor tends to have merit value 0. These requirements are described by

the following concept.
Definition 2.3. For a dependent minimax game tree, if the conditional probabilities in
(¢’) satisfy the condition

Pr(d(g=1 | Dg)=1, B(g)=1] > Pr(®g=0 | D(g)=1, &g =1), (2.3)

the Min nodes in this game tree are positively correlated. Similarly, if the conditional
probabilities in (f°) satisfy the condition

Pr[®(g)=0 | B(g)=0, &g)=0] > Pr(®(g =1 | D(g)=0, B =0}, (2.4

the Max nodes in this game tree are positively correlated. If both the Max and Min nodes
are positively correlated, this game tree is said to be positively correlated. O
Since for Max nodes g, we have

Pr(®(@g =1 | ®@g)=1, Dg)=1]=Pr(®g=1 | Bg)=1, &(g,)=1],
Pr(®(@)=0 | O(g)=1, B(g;)=1] =Pr[d(g)=0 | &(g)=1, &(g,)=1,
and for Min nodes g,

26

Pr(®(g,)=1 | &(g)=0, ®(g7)=0] = Pr[D(g2)=1 | (g)=0, O(g)=0],
the conditions (2.3) and (2.4) are equivalent to
Pr(®(g =1 | ®(g)=1,B(g)=1] > Pr(®(g)=0 | B(g)=1, (g =],

and

Pr(®(g)=0 | O(g)=0, ®(g)=0] > Pr[D(g)=1 | O(g)=0, D(g)=0],

respectively. As shown by the following lemma, the property of positive correlation is
determined by the dependent factors £, and f 5.

Lemma 2.1 The Max (Min) nodes in a dependent minimax game tree are positively corre-

lated if and only if the dependent factor f 3 > -;- (of,f1> % respectively).

Proof.
Let g be a Min node. Note that

Pr(®(g =0 | ®(g)=0)
= Pr [®(g,)=0, D(g)=0 | B(g)=0] + Pr[D(g =1, D(g)=0 | O(g)=0]

1
=f,+ '2-\1 -f2
1
=i(l+f2)-

We have

Pr[®(g =0 | &(g =0, P(g2)=0]
. Pr[®(g)=0, O(g)=0 | (g)=0]
Pr(®(g2)=0 | &(g)=0)
2f,
1+f,°

Pr(®(g)=1 | (g =0, B(g;)0)

27

= 1 - Pr(®(g =0 | &(g =0, B(g)=0]
1-f,
1+f2

Therefore,

Pr (g 2)=0 | (g)=0, B(g)=0] > Pr[D(g =1 | &g =0, &(g ,)=0),
if and only if

2f 5 1-f2
l+f2 l+f2'

which is equivalent to

1
f2>3.

Similarly, it can also be proven that the Min nodes are positively correlated in the
dependent minimax tree if and only if
fl>%.
O
By the proof of Lemma 2.1, it can be seen that the degree of positive correlation in
dependent game trees can be manipulated by adjusting their dependent factors f | and f ,.
Before continuing the discussion of the properties of dependent game trees, we
point out that the node-value dependences expressed in conditions (¢’) and (f°) can be
regarded as a restriction on the following more general dependences:
(¢’") For an interior win Max node g, the two successors’ merit values &(g,) and ®(g,)
are randomly determined by the conditional probabilities
Pri®(g =1, @)=l | ®@g)=l]=/,,

Pr(®(g)=1, D(g)=0 | O(g)=1]=z,
Pr(®(g,)=0, (g)=1 | dg)=1]=1-f,~-2,

28

withf,+2,S1
(") For an interior loss Min node g, the two successors’ merit values (g,) and O(g)
are randomly determined by the conditional probabilities
Pr(®(g)=0, B(g)=0 | O(g)=01 =17,
Pr(®(g,)=1, ©(g)=0 | &(g)=0)=1,,
Pr(®(g,)=0, Bg)=1 | B(g)=0]=1-f3-23
withf,+2,S 1.
By specifying f 1. f 2, 2; and z, that satisfy, for example, 2, >1~f, ~z,and z; >
1 - f ;- 2,, ordered dependent game trees can be constructed. By ordered game tree we
mean that in a depth-first traversal, the best move for the player Max is likely o be
visited before the worst one. These game trees could be used to verify the relation
between the efficiency of a game tree search procedure and the measure of node ordering
presented in a game tree. For the sake of simplisity, we will focus on the binary depen-
dent game trees that satisfy conditions (¢*) and (f°) rather than (¢’’) and (f°).

3. Probabilities for Terminal Win Positions

In a dependent game tree, the probability for a node to take the merit value 1 is
determined by the three parameters, po, f | and f ; of the game tree. Since this probabil-
ity is determined recursively in a top-down manner, a formula for it can be derived. The
quantity to be computed is P, , the probability that player Max can force a win at a node
at depth 2k in a dependent minimax game tree with parameters po, f | and f ;. Let O,
denote the probability that Max can force a win at a node at depth 2k + 1. P, and Q, are
calculated prior to constructing any instance of the game tree. By condition (¢')
presented in Section 2, if a Max node g is assigned merit value 1, the probability that a

successor is assigned merit value 1 is

f,+%(1 —f;)-%(l'rf,);

29

if g is assigned O, the probability that a successor is assigned merit value 1 is 0. There-

fore, we have

1
Qr =51 +f1)Py. (2.5)
If a Min node is assigned merit value 1, the probability that a successor is assigned merit
value 1 is 1; if the Min node is assigned 0, the probability that a successor is assigned

merit value 1 is %(1 = f 7). Therefore, we have

Pen=0r+ 2(1=F M- 0= 5 (1410 + 3~ f3 26)
By (2.5) and (2.6), the recurrence equation for P, can be derived:
Pra= A+)A+f P+ 20 -1) @

for k 20, where P = p, is the probability that the root node is assigned merit value 1.

The equation (2.7) can be solved by cases. If f| = f, = 1, by (2.7), we have P, =
po for any k 2 0. Therefore, we will assume f, + f 2 <2 in the following. For the sake

of notation simplicity, denote
1 1
x =Z(l+f,)(l+f2) and y =-2-(1 -f2.

For k 2 0, equation (2.7) can be solved by
Proy=xPp +y
=x2P, * Xy +y

=xk+lPo+xky +xl-1y + 04y

l‘xk’l
zpoxk+l+x(s)

In other words, the probability that player Max can force a win at a node of depth 2k is

1 (14 X1+

1- %mf DA+ 2)

Py = po(14f 14 D + 3012 @8)

if not both f | and f , are equal to 1.

Formula (2.8) describes the probability for the leaf nodes in a dependent game tree
of height 2k to take merit value 1, which is the function of parameters po, f; and f5,
where f | + f 2 < 2. A property of the dependent minimax game trees can immediately be

derived from this formula.

Lemma 2.2. For any 0 < pg < 1 and k 20, there are dependent factors f y and f 5, 0< f; <
1,0 < f, < 1, such that the probability P, that a leaf node in a dependent game tree of
height 2k with parameters po. f | and f , is assigned value 1 is equal to p,,.

Proof.

In fact, the values of dependent factors f, and f, that satisfy this lemma can be

obtained by solving the equation

1- (%(1+f.x1+fz»‘

1- %(Hf D(4f)

Po=Polg(14f X1+ D + %(Ffz)
which is equivalent to

1
E’(l'fz)
1"‘1"(1+f1)(1+fz)

Po=

For any value f 5 with 0 < f ; < 1 and value po with

3012 01D
1 <po< 1 =1,
- (140141) 1= (141141)

31

1
-z'(l-f 2
since the quantity is continuous and increasing with f,, a value f,

l—%(1+f (1+f5)

with 0 < f, <1 can be found so that

1
) 5(1"}'2)
pO- 1 *
l-z(l+f X1+ 9)
1
E(l"fz)
Since lim ————— =0, forany powith 0 <py <1, valuesof f; and f, with0 < f,

£V (14)

<1and 0 < f, <1 can be found which satisfy

1
3(1-f2)

Po= O

1= (14 (14)

As an example with probability po = 1/3, 1/2 and (¥5 - 1)/2, some combinations of
f, and f, for which a leaf node at depth 2. s merit value 1 with probability pq are
shown in Table 2.1. In Fig. 2.3, the corresponding curves for which both the leaf nodes
and the root node have merit value 1 with the same probability p o are drawn on (f |, f »)-

plane. Each point of the curves corresponds to a combination of f | and fa

Table 2.1 Some Combinations of f and f , for P, =pg

Po= 0.333 po=0.5(l) Po =0.618
i f2 f1 f2 I f2
0.000 0.600 | 0.000 0333 | 0055 0.133
0.102 0633 | 0.143 0.400 | 0.176 0.200
0200 0.667 | 0273 0467 | 0.284 0.267
0294 0.700 | 0391 0.533 | 0.382 0.333
0.385 0733 | 0.500 0.600 | 0.624 0.533
0472 0767 | 0551 0.633 | 0.691 0.600
0.556 0.800 | 0.647 0.700 | 0.753 0.667
0636 0833 | 0.736 0.767 | 0.810 0.733
0.714 0.867 | 0.818 0.833 | 0.863 0.800
0.789 0900 | 0.895 0900 | 0912 0.867
0.862 0933 | 0931 0933 | 0957 0933
1.000 1.000 | 1.000 1.000 | 1.000 1.000

"l

Fig. 2.3 The Curvesfor P, =pg=

N

1
3’

v5-1

and ———

2

h

on f-f -Plane

32

13

4. The Average Number of Terminal Win Positions

The average number of win leaf nodes, in a dependent minimax game tree of height
2k for some integer k > 0 is determined not only by the probability po, which is the pro-
bability that the player Max wins d_\e game, but also by the dependent factors f, and f,.
Define R, as the average number of win nodes at depth 2k, and T, as the average number
of win nodes at depth 2k + 1. Note that the average number of loss nodes at depth 2k is
22k — R, , and the average number of loss nodes at depth 2k + 1 is 2%+1_T,. Since the

nodes at depth 2k are Max nodes, each win node has an average number of
1
2(fl+—2-(l—f,))=l+f,
win successors, and each loss node cannot have any win successors, we have

Ty =Ry (1+ 1))
For a win node at depth 2k + 1, which is a Min node, both of its two successors must be
win nodes, and a loss node has 2x—;-(l—f) =1~ f , win successors on average. There-
fore, if there are T, win nodes at depth 2k + 1, the average number of win nodes at depth
2k +2is
Ren =2Ty + Q* =T)1 - f) =T (1 +) + 21 - f).
The recursive equation for R, is

Rpn =R+ f 1 +f)+2%*1(1 -

Since R g = p, the solution for this recursive equation is

1- (-}(1+f,xl+fz»"
1- %(l+fl)(l+f2)

whenf+f,<2. Iff,=f5=1,itis casy to deduce that P, =4*p.

R, =po((1+f D(1+f * +2%71(1—f)

29)

In fact, the solution R, in (2.9) can also be derived from the solution for P, in (2.8).

Since P, is the probability that a node at depth 2k is a win node in a dependent minimax

34

game tree and there are 22 podes at depth 2k in a binary uniform tree, the average

number of win leaf nodes in a dependent minimax game tree of height 2k is

L= (14 X141

2% Py = po((+f DA+ P27 (11) : \
1- -Z(l+f,)(l+f2)

whenf, +f,<2.

By formula (2.9), the average number of win leaf nodes can be changed while keep-
ing the probability for the player Max to win the game unchanged. Because of this pro-
perty, two dependent game trees can be constructed, which correspond to two different
combinations of pg, f, and f 5, so that the first game tree has more chances for the player
Max to win, but the second is likely to have more win leaf nodes in a game tree. The first
game tree can be generated with parameters po = 0.618, f | = 0.4, f, = 0.6; the second
game tree corresponds to pg = 0.5, f | = 0.6, f, = 0.4. The data shown in Table 2.2 can
be used to illustrate this phenomenon. Although, for parameters po = 0.618, f; =04, f,
= 0.6, the root node of a game tree has more chances to be assigned merit value 1, it is
possible that there are fewer win leaf nodes in this tree than in the game tree of the same
height that has parameters py = 0.5, f | = 0.6, f , = 0.4. This phenomenon can be related
to the fact that the initial configuration design and the rule design are indeed two separate
tasks for a game design. We can imagine that the game designer has a predefined proba-
bility for a player to win the game. The probability may be 0.5 if the game is to be fair,
or a little greater than 0.5 if the advantage of making the first move is taken into account.
In the rule design, different rules will generate different outcomes. These outcomes
should reflect the relation between a position and its successors. This relation
corresponds to the values of f, and f 5, which are the "specifications™ for the successor
merit values when the merit value of the position is given. Note that the number R, of

win leaf nodes in a dependent game tree of height 2 with parameters po = 0.5, f | = 0.6,

35

f 2 =0.4 is less than that number for the dependent game tree with pg = 0.618, /| = 0.4,
f 2=0.6. This observation implies that the probability p o has more effect on merit values

of the shallower nodes, the conditional probabilities £, and f; have more effect on that
of the deeper nodes.

Table 2.2 The Average Numbers of Terminal Win Nodes

0.500 0.6 0.4j1.720
0.618 0.4 0.6]1.879

91.278{358.063|1416.461|5630.472 | 22442.657

1193.187]4697.800 | 18623.322

5. Comparison with Other Dependence Descriptions

As noticed by Knuth and Moore [4], if the evaluation function was based on the
piece count in a chess game, all the positions following a blunder would tend to have low
scores for the player who lost more pieces. They proposed the total dependency model o
account for such dependences. In this model, for an interior node g and any two of its
successors g; and g;, all of the leaf nodes in the subtree rooted at g; cither have greater
merit values than all leaf nodes in the subtree rooted at g;, or they all have lesser merit
values. The situation that one move decides all of the relative strengths of the terminal
positions is also rarely seen. A more accurate description should be that if a position g is
stronger than another position g’, the positions following g are probably stronger than
those following g’. In terms of binary game trees, for Max nodes g and g’, if the proba-
bility p for the first node to have merit value 1 is greater than the probability p’q for g°,
then the successors of the former are more likely to have merit value 1 than the succes-

sors of the latter. In fact, the probability for a successor g; of g to have merit value 1 is

36

%(l + f 1)Po» Which is greater than the probability for a successor g°; of g to have merit

value 1, which is %(1 +f)p'e A similar conclusion can be made for Min nodes. By

this observation, it can be seen that dependent game tree can be regarded as a less res-
tricted version of the total dependency model.

Another method of modeling dependence between node merit values randomly
attaches values to the branches, sums up the branch values along a path from the root
node to a leaf node, and assigns the leaf node with this sum. For example, in an n-ary
uniform tree, Knuth and Moore [4] proposed to assign to each of the n branches directed
from an interior node at ply £ a distinct value from the set (1/n*, 2n%, ..., n/n*), and
Fuller er al. [5] proposed to assign (1, 2, ..., n} to the branches directed from a node.
This method simulates game playing tactics, but it is very difficult to exploit this model
in analyzing game tree search procedures. Only a few papers have addressed these
branch-dependent game trees. The difficulty is related to the fact that the leaf node merit
values are the algebraic summations of the branch values along the paths from the root
node to the leaf nodes, while the merit values @(g) for nodes g in the tree are backed up
with minimax process. This incompatibility makes recursive analysis of branch-
dependent game trees very difficult, if not impossible. As shown by the results of
Newborn [9), the performance of alpha-beta pruning is difficult to be derived for the trees
of depth four.

6. Comparison with Independent Game Trees

Most of the analyses of game tree search procedures have been based on indepen-
dent game trees or their variations. Some of them have distinct leaf node merit values
[4]). some allow ties between terminal positions [12). They also have been extensively

exploited in theoretical research on computer game playing [6,7]. These trees have

3

attracted a lot of attention because of their regularity and simplicity. But these charac-
teristics also cause some problems. First, it is impossible to create a game tree of arbi-
trary height where the root node has reasonable probabilities for the different merit

values. Let P* be the solution of equation
C xl4x-1=0

in the range 0 < x < 1. In fact, this number dictates the behavior of binary independent
random uniform trees {2, 3). For the bi-valued binary independent game trees, if the pro-
bability p’, that each leaf node receives merit value 1 is slightly greater than P*, Max is
almost assured a win if the tree is long enough; whereas the player faces an almost sure
loss when the probability is less than P*. For example, for a tree of height 10, if p'g =
0.5, the chance that player Max wins a game, which is the probability that the root node
in the independent game tree takes merit value 1, is only 1.95%; when p’g = 0.7, the
chance increases to 98.5% [2]. Therefore, the analysis of game tree search procedures
has to be tested against the independent game trees that have p’q = P*. This probability
implies that the root node is assigned merit value 1 with the probability P*. Thus, prior
to playing the game, each player is assured a predefined probability, and this probability
is biased against one player. In real games like chess and checkers, no player is very con-
cerned with being the second player. The chance for the first player, who starts the game,
to win the game is generally conceived as about 0.5, or slightly larger. Therefore, to gen-
erate more convincing test data for game tree search procedures, the probability that the
root node is assigned merit value 1 should be something around 0.5. As shown above,
this is very difficult to implement in an independent game tree. But this is not a problem
for the dependent game trees at all, since the probability for the root node to take merit
value 1 does not depend on the successors.

As shown in Lemma 2.2, for each probability po. an infinite number of combina-
tions of values for the dependent factors f , and f , can be found so that in the dependent

38

game trees with these dependent factors, both the root node and the leaf nodes have the
same probability, p, to be assigned with merit value 1. Based on the observation that
the probability for a player to win a mid-game should not be much different from the pro-
bability that the player wins the initial game, the probability for the root node to take
merit value 1 should be equal to that for an interior node to take that merit value in an
ideal game tree model. As shown by Lemma 2.2, the node-dependent game trees can
attain this property by setting the dependent factors f, and f 5, which do not depend on
their heights. This property can not be simulated by independent random uniform trees,
unless pg = (V5 — 1)/2. Therefore, dependent game trees provide a flexible model for

different games.

As pointed out in several papers [4, 6], lack of dependence between the sibling node
merit values is rarely seen in real games. Therefore, if a game tree search procedure is
tested against independent random uniform trees, the reliability of the testing result is
doubtful for common games. As to be shown in Chapter 4, the dependence between
sibling node merit values and between parent and successor node merit values, which is
reflected by different settings of f | and f 2, does affect the pruning efficiency. Since the
existence of this sort of dependence in common games is almost universally accepted, the
relation between the dependence and the pruning efficiency deserves to be studied, and
the model of dependent game tree provides a new basis for testing game tree search pro-

cedures.

It should also be pointed out that the flexibility of setting dependent factors f y and
f, might reflect the great variety of games. In addition to their different initial
configurations, the degrees of position dependence are important characters of these
games. No one believes that making a wrong move in some games is usually as serious
as loosing the queen in chess. In chess, usually the sirengths of all the positions follow-
ing the loss of queen is severely reduced. Therefore, differcnt games would have

39

different degrees of dependence, and different setting of dependent factors could be used
to model them.

7. Generality of the New Model

Although only bi-valued binary trees have been used so far to illustrate the proper-
ties of this new model of game trees, the results obtained in this chapter can be general-
ized for multi-valued n-ary trees. For example, given the probability distribution P o(v)
and the two sets of conditional probabilities which are defined in the conditions (d), (¢)
and (f) for a node-dependent game tree (cf. Definition 2.2 in Section 2), a set of recursive
equations for the probabilities P, (v) that are the probabilities for a node at depth 2k t0
take merit values v € S can be established. To make all the nodes at the same depth
have the same probability to take a merit value v € S, we assume that if a vector (vy, v,

-+, v,) is a permutation of another vector (w,, w,, - * *, w,), then the conditional pro-
babilities specified by (2.1) satisfy
Pri®@)=v1, DEgI)=va - P@a)=Va | @)=Vl
=Pr(®(g)=w,, D@ =wa, - . Dga W, | D)=V,
for any node g and domain value vg€ S, and the conditional probabilities specified by
(2.2) satisfy a similar requirement. As in Section 3, we can derive a set of equations

Pk(V)= Zaw-P,_,(i)+b,.f0tv € S,
i€S

where a,; and b, are constants that are determined by the domain value v and the condi-
tional probabilities defined in conditions (¢) and (f). Let matrix A = (a,;), and column
vector B = (b,). The above equations can be represented by

Py, =AP, +B,
where column vector P, = (P, (v)). Since this linear recursive equation can be solved if

the matrix (I — A) is non-singular, the formulas for P, (v) can be derived, which is a func-

40

tion of integer k, probability distribution function P o(v) and the conditional probabilities
defined in (e) and (f). By these solutions, the properties for the given multi-valued 7 -ary
node-dependent minimax game tree, which are similar to those presented in Sections 3
and 4, can be derived. Therefore, the node-dependent minimax game tree is a general

model for game trees.

Chapter 3

An Investigatio of Minimax Pathology

1. Minimax Pathology and Node-Value Dependence

Heuristic look-ahead search is a successful technique for computer game playing,
and there is a universal agreement that increasing the depth of the search improves the
quality of the decision [13,14]. However, the investigation presented in the literature
[6,7, 15) showed that, given a certain theoretical model of the errors made by an evalua-
tion function, there exicts an infinite class of game trees which are pathological in the
sense that as long as (.. search does not reach the end of the game (in which case, a
correct decision is, ...2sved), searching deeper will not increase the probability that a
correct decision is made, vut will instead cause the decision to become increasingly ran-
dom. By assuming a uniform game tree model, Beal [15] demonstrated that the probabil-
ity of error would not be reduced with minimax backing-up, and fixed-depth backed-up
values were less trustworthy than the static values. A class of board-splitting games
which are called Pearl’s games were used by Nau (6] to demonstrate the existence of
minimax search pathology. By computation, it is shown that Pearl’s games are patholog-
ical when the obvious evaluation function is used. When minimax backing-up is
exploited in independent uniform game trees, Pearl (7] showed that the minimax process
introduces a spurious noise, which may cause the pathology phenomenon: the deeper
search degrades the quality of the decision. The conclusion in the literature is that
minimax backing up cannot reduce the errors preseated in static evaluation, and several
explanations have been proposed for the successful minimax search in chess or other
game playing.

41

42

It is notable that almost all the existing results on minimax pathology have been
derived under the condition that sibling nodes in a game tree are independent of each
other.® The probabilistic model of dependent minimax game tree provides a new basis for
observing the minimax process. In this chapter, the problem of whether or not minimax
search benefits decision making is studied for this model. First, the minimax search error
is investigated for bi-valued evaluation functions with dependent game trees. The cases
with extremal values of dependent factors are studied with respect to decision making.
Mathematical formulas are developed for computing the probabilities of making a correct
decision when searching to various depths in the games with a piece-counting cvaluation
function. By a piece we mean a 1-square in the comesponding position. The numerical
results obtained from these formulas are used to show the effect of node-value depen-
dence on minimax pathology.

In this investigation, it is essential to distinguish a search tree, the explored part of a
game tree, from the game tree itself. In fact, we are going to study the relationship
between the evaluation results for the terminal nodes of the search tree, which are defined
as utilities, and the merit values for the leaf nodes in the game tree, which represent the
terminal positions of the game and can be evaluated accurately. Therefore, the terms ter-
minal and leaf nodes, search tree and game tree have different connctations in this

chapter.

We will use a class of board-solitting games, which are called node-dependent
games, or D-games. These D-games have the same playing rules as Pearl’s games and
Nau's games, which were described in Section 1 of Chapter 2, but their game trees are
node-dependent, independent and branch-dependent game trees, respectively. To make

6. An exception is Nau's game [6), which b:. a branch-dependent game tree. But no

mathcmatics formula has been established 10 describe the behavior of the minimax search with
respect o making correct decision. Only Monte Carlo simulation is presented there.

43

the recursive calculation of some probabilities easy and independent of the height of

game trees, we will assume that the player who makes the last move is the player Max.

2. Benefits of Minimax Search

The problem of whether or not a deeper search increases the probability of making a

correct decision is studied with a bi-valued evaluation function here.

2.1. Error-Propagation Patterns

Assume G is a bi-valued binary dependent minimax game tree with dependent fac-
tors f ; and f ,, and imagine G as a search tree. Each terminal node y in the search tree
is assigned a utility by the bi-valued evaluation function, with y(g) =1 or y(g) =0t
indicate a strong or weak position. Based on the fact that when determining the utility of
a position, most evaluation functions employed by computer game playing programs do
not examine the features of other positions, we assume that the utility of a node g is
independent of the merit value of the sibling node of g when the merit value of g i~

given.

Evaluation errors are made when value y(g) = 1 is assigned to a terminal node g
which is in reality a loss, @(g) =0, and vice versa, a value of W(g’) = 0 to a win node g".
The utilities of nodes at higher levels in the search tree G are caliculated by minimax pro-
cess. In this way, the evaluation function actually assigns a unique value, which is either
Y(g) =1 or ¥(g) =0, to each node g in the search trec. This value would constitute

somewhat unreliable prediction on the merit value of the position.

Shown in Fig. 3.1 is a subtree of G, where the root node g is a Max node at depth
2(k-1). For convenience, the nodes g, g.1,8.2,8.1.1,8.1.2, 8.2.1 and g.2.2 are called
node 1 through node 7, respectively, the symbol '¥; is used 1o denote the utility of node i
for 1Si <7, and @; denote the merit value of node i for 1 <i <7. Using these nota-

44

tions, the propagations for both ® and ¥ follow the minimax back-up. More specifically,

we have
win
D1 = {oss
win
D2= loss
win
D3 = loss

if ®,=win or ®,=win
if ®,=loss and ®,=1loss;

if ®,=win and ;= win
if ®,=loss or ®;=1loss;

if ®,=win and ®,=win
if ®,=loss or ®,=loss;

1if ‘l‘2=lor\l’,=l

¥ = [o if ¥,=0and ¥,=0;

1 if ¥,=1and ¥s=1
= 0 if ¥,=0or ¥;=0;

[1if Wg=1and ‘¥,=1
= 0 if ¥y=0or ¥,=0.

45

Fig. 3.1 A Subtree of Height 2

Here, we assume that the search frontier is not higher than node 4. The informed-

ness of the evaluation function ¥ at a node i is quantified with two parame™

o, =Pr(¥; =11 ®; =loss]

B, =Pr[¥; =0 | ®, =win]
fori =1, ---,7. Since @, and O, (D,, D5, B¢, and D7) are identically distributed ran-
dom variables, it is reasonable to assume @, = 0y, By = By (@ =05 = Qg =09, B4 =Ps =
Bs = B7). The dependent factors f | and f ; are involved in calculating error propagation.
Here, error propagation means the calculation of a, and B, given oy and Be. But first, ay
and B, will be calculated. In the calculation of error propagation, we make use of the
equation

Pri¥;=v, | ®; =vy,®; =vy] =Pr[¥; =v, | D, =v,),
where nodes i and j are sibling nodes like nodes 4 and 5, and the values vy, vy, and vy €
{0, 1). The above equation is derived by
Pri¥;=v, | ®; =v,,0; =v,]

46

Pr(¥; =v,,®;=v,y,® =v;]
Pr(®; =vy, ®; =v;]
Pr[¥; =v,®;=v3 | ®; = v |Pr[®; =v,]
Pr(®; =v,®; =v;]
Pr[¥; =v; | @, =vJPr[®; =v3 | ®; =v, JPr[D; =v,]
Pr(®; =v,0; =v,]

=Pr[¥; =v, | @, =v,].
Since node 2 is a Min node, by the propagation rules for ® and ‘¥ and the definition of
dependent factor f ,,
a, =Pr{¥,=1 1 ®y=loss]
=Pr{¥,;=¥5=11| &, =loss]
=Pr{¥;=W¥s5=11| @, =Dg=loss IPr{®, = Ds=loss | O, =loss]
+Pr(¥Yy;=¥=1| &, =win, ®5 =loss |Pr{®,= win, O = loss | O, =loss]
+Pr(¥,=¥5=11 @4 =loss, Os = win |Pr{®, = loss, ®s= win | O, =loss]
=Pr{¥; =1 | O =loss |Pr{¥s=1 | Os=loss]f ,

+Pr{¥,=11 &4 =winPr[¥s=1 Id>5—loss]l

2(l-fz)

+ P =1 | &, =loss |P¥s = 1 | g = win]—

2 (1 -fl)

= aff 3 +ag(l =Bl = f 2),

B, =Pr{¥,=0 | ®;=win]
=Pr{Wy=¥5=0| &y =win]
+Pr{¥,=1,¥=0|®y=win]
+Pr{¥,=0,¥s=1 | ®y=win]
=Pr{W,=¥5=01 @, =®g= win|
+Pr{¥,=1,¥=01|0=Ds=win]
+Pr{¥,=0,¥=11|0y=Ds=win])

47

=Pr{¥,=0 | ®,=win]Pr{¥5=0 | ®5=win]
+Pr{¥,=11®,=win]Pr{¥s=0 | ®5=win]
+Pr{¥,;=0 1 ®y=win|Pr{¥s=1 | ®g=win]
= B3 +2P4(1 - By
Since node 1 is a Max node,
o, =Pr¥;=11®, =loss]
=Pr{¥,=¥;=11 ® =loss]
+Pr{¥,=1,¥;=01 ® =loss]
+Pr{¥,=0,¥;=1 1 ®, =loss]
=Pr{¥,=¥;=11 Oy =Dy =loss]
+Pr{¥,=1,¥;=0 1 ®;=dy=loss]
+Pr{¥,=0,¥;=1 1 ®y;=Py=loss]
=Pr{¥,=11 ®y=loss JPr{¥3=1| ®3=loss]
+Pr{¥;=1 | ®,=loss |JPr[¥3=0 | ®3=loss]
+Pr{¥,=0 | ®,=loss|Pr{¥3=1 | ®3=loss]
= of + 20,(1 - @)
- [ar2+aa-poa-12]'
+2[adr 2+ a1 -Bot ~£2)) [1- odf 2~ a1 -Bo1 /)|
and
B, =Pr{¥;=01 ®, =win]
=Pr{¥,=¥3=0 | ®;,=win]
=Pr{¥,=¥;=0 | ®;=®y=win|Pr{®, =®;=win | ®, =win|]
+Pr[¥,=¥;=0 | ®;=win, ®; =loss |Pr{®; = win, ®; = loss | &, =win|
+Pr[¥,=¥3=0 | ®;=loss, ®; = win |Pr{®, = loss,, O3 = win | &, =win]
=Pr{¥;=0 | ®;=win]Pr{¥;=0 | ®3=win]f,

48

+Pr{¥;=01 @, = win |Pr[¥;=0 | °3=1055]‘;'(1 -1

+ Pr{¥,=0 | ®=lossPr{¥;=0 | ¢3=win]—;—(l-f1)

=B+ B0 —0)(1 = fy)
2
= [342+ 234(1-34‘] I

+ [542'*2[34(1 '94)] [1 - adf 23— a1l - By(1 —fz)](l -1

Denoting & = a4, B = B4, &' = t; and ' = B, the derived equations are

o= [a’fzm(l - B)1 —fz)]2

+2 [a2f2+a(1 -p —fz)] [1‘021'2—(1(1 -B)1 'fz)] (3.1

B= [B’+2B<n -B)]zfl

+ [ﬁ2+2[3(1-ﬁ)] [l -o?f -l "B)(l"fz)](l “F. (3.2)

The values of a and P indicate the probabilities that an error is made at depth 2k, while
o' and B reflect the error probabilities after the evaluation results are rolled back to depth
2(k~1). Therefore, formulas (3.1) and (3.2) indicate the evaluation error propagation pat-

tern for a bi-valued binary dependent game tree with dependent factors f | and f ,.

2.2. Benefit Analysis of Minimax

The problem of benefit of minimax search can be described as whether the follow-

ing relation holds:
a<of <P (3.3)

In fact, the answer depends on 1t . specific values of a, B, f, and f . For some combina-

tions of these values, the answer ' nositive, for some others, the answer is negative. To

49
establish (3.3), we need to find the values of &, B, £ and f , so that

[a2f2+ a(l =-B)1-f2)]2

(34)
+2 [a2f2+a(l-ﬂ)(l —fz)] [l-azfz-a(l -pa -fz)] <a,

[+ 280-)) 7,

+ [+ 26a-p) [1-o2f2-a0-px1-rp)a-r0<p 3.5

If f , is sufficiently close to 1, then 1~ f 5 can be regarded as 0, and inequality (3.4) can
be reduced to

at+20¥(1-ad) < a,
or

ad+2a(l-a?) < 1.

It is obvious that when « is small, for example, a = —;— the above inequality holds.

When f, is sufficiently close to 1, then 1 - f can be regarded as 0, incquality (3.5) can

be reduced to
2
[B2+280-m) <8
ie.,
BB +2(1-P)’< 1.
Since

lim B(B + 2(1 - B))* =0,
lim BB + 2(1 - B
there is a B > 0, for example, p = %, such that the above inequality holds. These argu-

ments imply that for some values of a, B, f; and f ,, the inequalities (3.4) and (3.5) do
hold.

50

As a conservative assumption, let the probabilities that the evaluation function
misestimates a node at depth 2(k—1) and a node at depth 2k be the same.’ The above
analysis implies that if the game tree is strongly correlated (f, and f are sufficiently
close to 1), and the estimation error measures & and P are small enough, the values
backed-up from depth 2k are more reliable than the values obtained by estimating at
depth 2(k—1). In other words, for these values of a, B. f, and f ,, pathology does not
present itself in minimax search. This kind of benefit from minimax search is illustrated
in Fig. 3.2, where a series of points are drawn on the a-B-plane. The first point at (0.3,
0.2) represents the evaluation error probabilities, & = 0.3 and B = 0.2, at depth 2k in a
dependent minimax game tree with f, = f, = 0.7. The following eight points represent
the backed-up errors at depths 2(k-1), ---, 2(k-8), respectively. Finally, the error
disappears at depth 2(k—j) with j > 14. Therefore, if the search tree G has a height 2k
with k > 14, the static evaluation error incurred at the search frontier almost disappears
when the evaluation results are backed up to the root node. These data were obtained by
setting f, = f, = 0.7 and iteratively calculating o’ and B’ with the formulas (3.1) and

(3.2).

7. In common games, generally speaking, since the visibility will be increased by searching
doeper, the probability that an evaluation function misestimates a node at deeper levels will be re-
duced.

Sl

Ba
03l (a=0.3, =0.2)
03

Fig. 3.2 The Benefit of Minimax Back-Up

On tr.2 other hand, some values of &, B, f, and f , can be found so that

(2400 -pa -2’

(3.6)
+2[a2f2+a(1-B)(l-f2)] [l—azfz—a(l—ﬁ)(l -fz)] >a,

[+280-m) 7,

+ (24280 -9 [1-0tr2-a-pa-fa}a-10>8 (37)

In fact if f, is sufficiently close to 0, then 1 - f, can be regarded as 1, inequality (3.6)

can be reduced to
a¥(1 - B)* +2a(1 -B)(1 —a(l - B)) > a,

which is equivalent to

52

a(1-pP+2(1 =Byl —a(1 -B) > 1.
Since lim [a(l =B +2(1 -B)1 -l -b))] =2(1-P)ifp> l, some o and f ; can
a—0 2
be found so that the above inequality and the inequality (3.6) holds. If f, is sufficiently

close to 0, then 1 -f, can be regarded as 1, along with the assumption that f; is

sufficiently close to 0, inequality (3.7) can be reduced to

(B2 + 280 -B]a-aa-py>B
which is equivalent to
[B+2(1-b)](1 —a(l-B) > 1,

Since when B = —§- B+2(1-B)>1,avalueof B> —;— and a sufficiently small a can be

found so that the above inequality holds. Therefore, there are values of a, B, £, and f,
for which both inequalities (3.6) and (3.7) hold. This conclusion implies that if the pro-
babilities for an evaluation function to misestimate a node at depth 2(k—1) and a node at
depth 2k are the same, deeper search with minimax back-up will deteriorate the evalua-
tion quality for some D-games and evaluation functions.

In summary, it is shown that both pathology and "health” can appear in minimax
searches. Whether or not pathology occurs in a game depends on both the node value
dependence and the accuracy of the evaluation function. Notice that this conclusion is

different from the points presented in the literature to date [6, 7, 15].

3. Special Cases for Multi-Valued Evaluation
Let g be a node in the game tree of a board-splitting game like Pearl’s game, Nau’s
game or D-game, and g, and g, be the successors of g. If g, has more 1-squares in its

board configuration than g, it would seem more likely that g, is a win position® than

8. A win position (node) g is a position (node) with (g) = 1.

33

that g, is a win position. As pointed out by Nau [6], the number of win-terminal posi-
tions, or 1-squares, contained in a game position is a reasonable estimate of the strength
for the corresponding node in board-splitting games. In the remainder of this chapter, the
number of 1-squares in the position of a node g will be denoted by y(g). which is the
utility of the position corresponding to g if g is at the search frontier.

In this section, the D-games with the dependent factors f | and f ; equal 10 Qor | are
studied. If f, = 1, the successors’ values for a win Max node g are totally correlated so
that

D) =1<=>D(@gy=1,
where the symbol <=> is the bidirectional propositional implication; similarly, if f; = 1,
the successors’ values for a loss Min node g are totally correlated so that
D(g,)) =0 <=>(g,) =0.
The extremal value f, =0 implies that for any Max node g,
D(g) =1=>D(gy) =0,
D(gy)=1=>d(g))=0;
and f , =0 implies that for any Min node g,
D)) =0=>d@gy) =1,
D) =0=>d(g)) = 1.
It will be shown that some of these extremal values do not cause minimax pathology.

When f, = 1, each interior win Max node has two win successors. Based on this
fact, we prove that a win node will have more 1-squares in its configuration than a loss
node at the same height A, where h can be any natural numbers. This property implies
that searching deeper in a dependent game tree with f| = 1 will not decrease the proba-
bility of making a correct decision.

54

Lemma. 3.1. For a D-game that is generated with f, = 1, the evaluation function y can
be used to choose the correct move with a search to depth d for any d 2 0.
Proof. By induction on the height A of nodes in the dependent game tree, it can be
proved that the utility w(g) for win node g is greater than y(g’) for a loss node g° at the
same height &, and all the win nodes at the same height have the same number of 1-
squares in their corresponding configurations. When & = 0 or 1, this conclusion is trivi-
ally true. Suppose the conclusion is true for A < H, and g and g’ are win and loss nodes
at height H, respectively. If g and g’ are Max nodes, since f, = 1, both successors of g
are win nodes; both successors of g’ are loss nodes. By the induction hypothesis, we
have

V(g)=V(g) +V(E) >V(E')+ vEg')=vE)
If g and g’ are Min nodes, since g is a win node and g’ is a loss node, both successors of
g are win nodes, and at least one of successors of g’ is a loss node. Therefore,

V@) =@ +V(Eg) >vE')+VE')=vQE)
Note that, by induction hypothesis and f, = 1, all win nodes g at height H have the same

number of 1-squares in their configurations, which is 2y(g ;).

Let the terminal nodes have height A, and a win node at height # have N, 1-squares
in its configuration. Since a loss node on the search frontier has less than N, 1-squares in
its configuration, it can be seen that a move leads w0 a win node if and only if the
backed-up value is equal to N,, and a move leads to a loss node if and only if the
backed-up value is less than N,. Therefore, the player at the root node can correctly
choose a move by evaluating nodes at the search frontier w:th function ¥ and minimax
backing up the evaluations. Since A can take any value between 0 and Hg - 1, where H

is the height of dependent game tree G, the lemma follows. O

35

It can also prove that when f; = 1, an observation similar to that presented in the
proof of Lemma 3.1 holds. In fact, if f ; = 1, all the leaf nodes in the minimax game tree
following a loss node must have value 0. Fig. 3.3 shows two subtrees the roote of which
have a height 4, which can be generated by dependent factor £, = |. Note that since the
root node of the first subtree has a merit value 0 and f, = 1, all of its leaf nodes are
assigned value 0. Therefore, the evaluation function ¥ can always lead to best moves in

minimax search of dependent game trees with f = 1.

56

()]
Fig. 3.3 Two Dependent Game Trees Generated with Parameters f | # 1, f ;= 1

When f , =0, each interior win Max node has exactly one win successor; when f ;=
0, each interior loss Min node has exactly one loss successor. Based on this fact, it can
be proved that in a dependent game tree that is generated with f = f; = 0, a win node
will have more 1-squares than a loss node at the same height, and all win nodes at the

same height have the same number of 1-squares in their configurations, and so are all loss

57

nodes at the same height. These properties imply that searching deeper in a dependent
game tree which is generated with f | = f , = 0 will not decrease the probability of mak-

ing a correct decision at the root n..4-

Lemma. 3.2. For a D-game that is generated with f | = f ; = 0, the evaluation function y

can be used to choose the correct move with a search to depth ¢ for any integerd 2 1.

Proof. By induction on the height & of nodes in the dependent minimax game tree, we
prove that the utility Ww(g) of a win node g is greater than w(g’) of a loss node g’ at the
same height, and all the win (loss) nodes at the same height have the same number of 1-
squares in their corresponding configurations. In fact, when 4 1, this conclusion is trivi-
ally true. Suppose the conclusion is true for A < H,and g and g’ are win and loss nodes
at height H, respectively. If g and g’ are Max nodes, exactly one of the two successors
of g is a win node, and both successors of g* are loss nodes. By induction,

v(g) = V(g +V(Eg2) > V(") +v(Eg') = vE')
If g and g’ are Min nodes, since g is a win node and g’ is a loss node, both successors of
g are win nodes, and exactly one of successors of g° is a loss node. Therefore,

V(Eg) = V(@) + V(g2 > VE') + V(@) = v(E)
Let e (e;) denote the number of 1-squares in the configuration of a loss (win) node at
height h—1. By induction, we can show that if nodes at height & are Max nodes, all win
nodes g at height A have the same number of 1-squares in their configurations, which is
eo + ¢, and all loss nodes at height A have the same number of 1-squares, which is 2e,
if nodes at height A are Min nodes, all win nodes g at height A have the same number of
1-squares in their configurations, which is 2¢,, and all loss noucs at height & have the

same number of 1-squares, whichis eg + €.

Let the terminal nodes have height &, and a win (loss) node at height & have N,

(O,) 1-squares in its configuration. By the above observation, it is easy to sec that a

58

move leads to a win node if and only if the backed-up utility value is equal to N, , and a
move leads to a loss node if and only if the backed-up utility value is O,. Therefore, the
player at the root node can correctly choose the move by evaluating nodes with function
v at the search frontier and minimax backing up the evaluations. Since A can take any
value between 0 and Hq — 1, where H is the height of dependent game tree, the lemma

follows. O

The examples shown in Fig. 3.4 (Fig. 3.5) can be used to illustrated that for f, = 0
and f,#0 (f, #0 and f ; = 0), some dependent game trees can be generated which have
win node g and loss node g’ at the same height with

V@) <w@).
In other words, the property presented in Lemma 3.2 does not hold for f | =0 and f ;=0
(f, =0 and f , =0), and minimax search with evaluation function ¥ may generate wrong

decisions. This phenomenon will be observed in Section 5.

(b)
Fig. 3.4 Two Dependent Game Trees Generated with Parameters f ; =0, f, #0

Y

000000000000000C

Fig. 3.5 Two Dependent Game Trees Generated with Parameters f | #0, f,=0

61

4. Mathematical Calculation for Decision Making

Let G be a dependent game tree, and suppose node g has height A(g). The depth d
urility value of g for integer d > 0 is defined by
y(g) if d=0
e (g)= {min(ey_(8,).€4-1(87) if d>0and g is a Min node
max (e4_1(8 1), €4-182)) if d>0and g is a Max node.

Choosing a move at g using a depth d search means choosing the child of g that has the
best depth d-1 utility value (so that the nodes at depth d relative to g determines the
decision that is to be made at g). By the "best” value we mean the highest value if Max
is to move at node g, or the least value if Min is to move. If both children receive the
same value, then the player must choose one of them randomly. It is obvious that the
probability of making a correct decision depends on the accuracy of the depth d-1 utility
values of g; and g,. In the following, we discuss how to compute the probability of

making a correct decision in D-games.

4.1. Computation of Probability Distributions for Utilities

By the construction of D-games, the nurrher of squares in the configuration for node
g is 2*®, which is the maximum possible value of y(g). From the definition of the

dependent factor f ,, if g is a Maxnode and h(g)=h >0,
Priy(g)=i | h(g)=h,win(g)]

= S Privg =i Vg ini | h(g)=h, win(g)]
Jj=0

= 3 (Pry(g)=j, V@)=i—i | h(g)=h=1, h(g)=h-1, win(g,), win g 2)]

J=0
x Pr[win (g,), win(g,) | win(g))
+Priy(g)=/, ¥@2)=i—j | h(g)=h-1, h(g)=h-1, win(g), loss(g)

62

x Pr{win (g,), loss (g3 | win(g))}
+Priy(g)=/, W@=i—j | h(g)=h-1, h(g)=h~1,loss (g,), win(g,)]
x Pr(loss (g), win(g,) | win(g)])

= Z‘Z(Prlw(81)=j | k(g)=h~-1, win(g,)IPr(W(g)=i—j | h(@2=h-1, win(glf,

j=0
+Priy(g,)=j | h(g)=h-1, win(g)IPr(y(g)=i=j | h(g)=h-1,loss(g)](1-f,))
and

Priy(g)=i | h(g)=h,loss(g)]

= Y Priy(g)=/, v(g=i—j | h(g)=h,loss(g)]
j=0

= Y Priy@)=/, W@ =i | h@)=h=1, h(g;)=h~1,10ss (g,), loss g)]
=0

= SPriv(g > | h(gy)=h-1,loss(g)IPrv(@=i—j | h(gz)=h-1,loss(g2).
j=0

Similarly, when g is aMinnode and h(g)=h >0,
Priy(g)=i | h(g)=h,loss(g)]

= ¥ (Priv(g =), W@ =i=i | h(g)=h,loss(g)]

=0

= ¥ (Priv(g)=/, W@ I=i~j | hgy)y=h-1, h(g=h-1,loss g), loss (g)]

j=0
x Pr(loss (g), loss (g,) | loss(g)]

+Pry(g)=j. W@)=i—j | h(g)=h=1, h(g)=h—1, win(g,), loss (g2)]
x Pr(win (g), loss (g) | loss(g)]

+Priy(g)=j, ¥@2)=i-j | h(g)=h-1, h(g2)=h—1,loss (g,), win (g)]
x Pr[loss (g,), win(g,) | loss(g)])

= T (Priv()=j | h(g)=h-1, loss (g DIPr[W(go)=i—s | h(g)=h-1,l0ss(g)f ;

=0

+Prlyg =i | h(g=h=1, win(g)IPr V(@)=i—j | h@)=h—" .. ' =f))

and

Priv(g)=i | h(g)=h,win(g)]

= S Priv(g)=/, W@=i—j | h(@)=h-1,h(g)=h=1, win(g,), win (g)]
j=0

= T Priv(g.)=i | h(g)=h-1, win@ DIPrly@g)=i~j | h(gz)=h~1, win(g)].
j=0

The initial conditions for the above probabilities are
Priy(g)=C ! h(g)=0, win(g)] =0, Priy(g)=! | h(g)=0, win(g)} =1,
Pr{y(g)=0 | h(g)=0,loss (g)] =1, Pry(g)=1 | h(g)=0,loss (®)] = 0.

For any given dependent minimax game tree, the probability distributions for the utilities

can be recursively calculated by the above formulas.

4.2. The Probability of Making Correct Decision

Suppose a player is to choose a move at some node g of height A in a D-game by
searching to depth d with h 2 d. If one of g s children (say, g,) is a win node and the
other (g5) is a loss node, then we can define a correct move to be the move to g, if the
player is Max, or to g, if the player is Min. Since we are only interested in the probabil-
ity of making a correct decision in the case where it makes a difference what move is

made, a correct move is not defined if both children are win or loss nodes.

Since player Max moves to the node of highest utility and player Min moves to the
node of lowest utility, a correct move will be made if e4_1(g1) > €4_1(82). and an
incorrect decision will be made if e,_,(g,) < €4_1(82). If e4_,(8) = €4_,(82), the player
must choose among g, and g , at random, whence the probability of correct decision will

be 1/2. Hence the correct decision at g is

D(d,h) =Prley_,(8,) > 84-1(82)] + ’;‘Pfled-l(g 1) =84-182)
2‘ 1

. , 1 .
= ¥ (Prles_1(81)2j+1. 8418,) + 5 Prleg_1(81)=84-1(82)=JD-
)= 2

As in Nau [6), if we define

mw(i,d,h)=Prles(g)2i | h(g)=h, win(g)]
and

mi(i,d,h)=Prles(g)2i | h(g)=h,loss(g)],

then

D(d,h)
2
= Z(mw(j+l.d—l,h-l)(ml(j.d-l.h—l)-ml(j+l.d—l.h—l))
j=0
+ %(mw(j.d—l,h—l)—-mw(j+l,d—l,h—l))(ml(i.a'-l.h-—l)-—ml(j+l.d-l.h—-l)))
pall
=3y %(mw(j.d-l.h—l)+mw(/+l.d-l.h—l))(ml(j.d—l.h-l)—ml(j+l,d—l.h—l)).
1=0

We now discuss how to compute mw and ml. Since y(g) is never greater than 2k,

mw(2*,0, h) =Pr{y(g)=2* | h(g)=h, win(g))
and

ml(2*,0, k) = Pr(w(g)=2" | h(g)=h,loss@)]
for h =0, 1, 2, These values can be computed by the formulas presented in Section
S.1. And, then

mw(i,0,h)=mw(i+1,0,h)+Pr{y(g)=i | h(g)=h, win(g)],
ml@i,0.h)=ml(i+1,0,h)+Pr(y(g)=i | h(g)=h,loss(g)],

fori =2*~1downto 0.
Suppose h is even, g is a node of height &, and positive integerd <h. Since g isa
Min node, we have
mwi(i.d,h)
= Prle, (g)2i | win(g)]
=Prles_1(81)2i, €4-1(82)2i | win(g,), win(g))]

65

=Prle4_1(g)2i | win(g)l
=mw(i,d-1, h-1).
Since node g is a loss node if and only if at least one of its successors g, and g; is a los-
node, we have
ml(i,d,h)
=Prle (g)2i | loss(g)]
=Prley_1(81)2i, €4-1(8)20 | loss(g,), loss(g2)]
x Pr[loss (g), loss (g2) | loss (g)]
+Prle,_,(81)2i, e4_(8)2i | win(g,), loss(g,)]
x Pr{win(g,), loss (g2) | loss (g)]
+Prie,_1(81)2i, e4-1(8)2i | loss(gy), win(g2)]
x Pr[loss(g,), win(g3) | loss (g)]
=Prle,_1(g)2i | loss(g))f

+Pres_i(g)2 | win(g))]Prleg_1(82)2i | loss(gz)]%(l -f2)

+Prey_i(g)2i | loss(g,)]Prles_y(g2)2i | win (gz)l—;—(l -f2)
=mli,d=-1, h=1)}f 3 +mi(i,d-1, h=lymw(i,d~1, h-1)(1 - f ».
Suppose h is odd instead of even, then g is a Max node, so ¢4(8) < i if and only
€4-1(8) < i and e4_,(g2) < i. Now g is a win position if and only if either g, or g is a
win. Therefore,
mw(i,d, h)
=1-Prle,(g8)<i | win(g)]
=1 - (Prles_,(81)<i, eq-1(g2)<i | win(gy), win(g2)]
x Pr{win (g,), win (g5) | win(g)]
+Prles.1(81)<i, eq_1(g2)<i | win(g)), loss g2)]

x Pr[win (g;), loss(g4) | win(g)]
+Prie, (g)<i, eq4_1(82)<i | loss(gy), win(g)]
x Pr[loss (g), win (g) | win(g)))
=1 - (Prleg_y(gy)<i | win(@g*f,

+Prleg(g)<i | win(@ DIPrleg_(g2)<i 'lOSSQz)]%(l-fl)

+ Prieg 1(g)<i | loss (g DIPrleg-1@)<i | win @) 51 - 11)
=1-((1-mw(i,d-1, h=1)%f,
+(1=mlG,d=1, h=1))(1 =mw (i, d-1, h=1))X1 - f)).
Now g is a loss position if and only if both g, or g, are loss nodes.
miGi,d,h)
=1-Prley(g)<i |loss(g)]
=1-Prleg_,(8))<i.eq-1(g2)<i |loss(g,), loss(g2)]
=1-Prleg@))<i ! loss(g)]
=1-(1-mi(i,d=1, h-1))2
Thusforh =0, 1,...d =0,h andi =0, .., 2", mw(i,d,h) and mi(i,d, h) can be

recursively computed.

4.3. Numerical Results

A program was written to implement the above formulas. For some different values
of dependent factors f | and f ,, the probabilities of making a correct decision at the root
node with search to various depths d were calculated. The probabilities for a dependent
game tree of height 9 with dependent factors f, = f, = i/10 for 0 Si S 10 are listed in
Table 3.1. As proved by Lemmas 3.1 and 3.2, when f, =f,=0o0rf, =f, =1, the
evaluation function can determine the correct move for any search depth d. But when f,

= f , = 0.1, pathology is present, since since searching to depth 2 is worse than to depth 1,

67

i.c., one move search is worse than the static evaluation. As the dependent factors
increase, the pathology gradually disappears. The last row of Table 3.1 lists for each
column in the table a sum, called pathology sum or PS, which is calculated in the follow-
ing way that if D (d—1,9) > D (d,9) for 0 < d < 8, then this pathological depth d search
contributes D (d-1,9)-D (d,9) to the sum. Pathology sum is used here as an approxi-
mate indication of the degree of pathology present in a game. When f, = f, = 0.1, the
pathology sum rises sharply to a peak and, then, drops equally quickly. After rising to
the second peak, the pathological sums decrease strictly along with the increase of f | and
f2. When f =f,>0.5, pathology totally disappears.

Data were also collected for the dependent factors f, = i/10, f, = (10-i)/10 for
0<i < 10. The data are presented in Table 3.2. When f, = 1 or f 3 = 1, the pathological
sum is zero and there is no pathology in minimax search. This phenomenon is also
described by Lemma 3.1. Note the extremely large pathological sums for dependent fac-
torsf,=08,f,=02and f, =09, f, = 0.1, which are 0.122 and 0.206 respectively. In
real games, since both players apply the same set of rules, the node dependence with f
>> f, or vice versa that f, << f, should not appear. In other words, the difference
If ; = f 5} between the dependent factors for a real game should be relatively small. Since
a player does not include the obvious bad move into a game tree, the game trees actually
established in the computer have a strong positive correlation. The corresponding node-
dependent game tree should have large f, and f,. This explains why computer game
playing programs can avoid minimax pathology and do better by searching decper.

More data are shown in Table 3.3, which contains the probabilities of making a
correct decision in dependent minimax game trees of height 10 with various depth search.
For this experiment, the dependent factors f, and f, force both the root and the leaf
nodes to have the same probability, 0.5, to take value 1. Generally speaking, the pathol-

68

ogy sums also decrease along with the increase of dependent factors. Twenty-one
different values for f , have been used in this calculation, the difference between an adja-
cent pair of f , is 0.033 or 0.034; the corresponding values of f, range from 0 to 1. Nite
that there are only nine of the twenty-one columns where minimax search exhibits
pathology. In these nine "pathological” columns, only 17 pairs of adjacent data contri-
bute non-zero values to the pathological sums. Since there are 189 pairs of adjacent data
in Table 3.3, we can say that minimax search pathology is an uncommon event, which
harasses only games with less positively correlated sibling node values and disappears

when searching deeper.

Table 3.1 The Probabilities for Correct Decision with A =9and f, = f,

T
d |f\=f | f 1=f 3 f 1= 2 1= 2| L1 2| S 1= 2|/ 2 S a1 2| = 2|2
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1.0
111.000|0.637|0.679|0.743 | 0.816 | 0.883 | 0.937 | 0.973 | 0.992 | 0.999 | 1.000
211.000!0.634]0.674]0.738 | 0.813 | 0.884 | 0.942 | 0.979 | 0.996 | 1.000 | 1.000
311.000]|0.641|0.684|0.756|0.840 | 0.915 | 0.966 | 0.991 | 0.999 | 1.000 | 1.000
411.000)]0644|0.68410.753]0.836]0.9140.968 | 0093 | 0.999 | 1.000 | 1.000
$11.000]0.680|0.744 | 0.829 | 0.910 | 0.966 | 0.991 | 0.998 | 1.000 | 1.000 | 1.000
611.000]|0.655]|0.770 |1 0.874 | 0.940 | 0.977 | 0.994 | 0.999 | 1.000 | 1.000 | 1.000
711.000]|0975]|0.976 | 0.984 | 0.991 | 0.997 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000
811.000!1.000]1.000]|1.000|1.000|1.000{1.000} 1.000 | 1.000 | 1.000 | 1.000
911.000]1.000{1.000]1.000|1.000| 1.000 | 1.000 ; 1.000 | 1.000 | 1.000 | 1.000
PS| 0.000 | 0.028 | 0.005 | 0.008 | 0.007 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

Table 3.2 The Probabilities for Correct Decision withh =9and f | +f ;=1

dfif2 N2\ f2\ O || fa\ N falh | S|)]
001.0(0.109/0208(0.30.7|0.40.6|0.50.5/0.60.4{0.70.3|0.8 0.2{090.1{1.00.0

1] 1.000] 098210945 |0.915| 0.895 | 0.883 | 0.879 | 0.884 | 0.904 | 0.950 | 1.000
2| 1.000 | 0.989 | 0.948 | 0.915 | 0.894 | 0.884 | 0.885 | 0.896 | 0.923 | 0.971 | 1.000
31 1.000]| 1.000 | 0.994 | 0.974 | 0.945 | 0.91S5 | 0.887 | 0.867 | 0.864 | 0.910 | 1.000
411.000! 1.000 | 0.996 | 0978 | 0.947 | 0.914 | 0.887 | 0.874 | 0.883 | 0.943 | 1.000
s | 1.000 | 1.000 | 1.000 | 0.998 | 0.989 | 0.966 | 0.927 | 0.881 | 0.844 | 0.858 | 1.000
6| 1.000 | 1.000 | 1.000 | 0.999 | 0.995 | 0.977 | 0.938 | 0.899 | 0.862 | 0.893 | 1.000
711.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 0.984 | 0.939 | 0.838 | 0.833 | 1.000
8110001 1000)!1.000} 1000|1000 1000|1000} 1.000 | 1.000 | 1.000}| 1.000
9110001 1000 1.000|1.000| 1.000 | 1.000 | 1.000 { 1.000 | 1.000 | 1.000 | 1.000
Ps| 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.029 | 0.122 | 0.206 | 0.000

Table 3.3 The Probabilities for Correct Decision with k = 10and pg = 0.5

70

d| fif2 fif2 f1f2 f1f2 f1f2 f1f2 f1f2
0.000 0.333]0.073 0.36710.143 0.4000.209 0.433]0.273 0.467|0.333 0.500{0.391 0.533
—— _— — ——————
1 0.643 0.665 0.697 0.733 0.772 0.809 0.845
2 0.684 0.703 0.732 0.767 0.805 0.841 0.874
3 0.673 0.693 0.722 0.756 0.793 0.830 0.865
4 0.751 0.770 0.797 0.830 0.865 0.898 0.927
5 0.737 0.763 0.793 0.826 0.861 0.894 0.924
6 0911 0.922 0.935 0.949 0.963 0974 0.983
7 0.959 0970 0.977 0.983 0.988 0.991 0.994
8 1.000 0.999 0.999 0.999 0.999 0.999 0.999
9 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PS 0.025 0.017 0.014 0.015 0.016 0.015 0.012
d| fif2 N/ ff2 ffa f1f2 fi1f2 f1f2
0447 0.567 |0.500 0.600]0.551 0.633|0.600 0.667|0.647 0.7000.692 0.733(0.736 0.767
1 0.877 0.905 0.928 0.948 0.963 0975 0.984
2 0.904 0.929 0.949 0.965 0.977 0.986 0.992
3 0.898 0.926 0.949 0.967 0.980 0.989 0.995
4 0.951 0.968 0.981 0.989 0.994 0.997 0.999
5 0.949 0.968 0.982 0.990 0.995 0.998 0.999
6 0.990 0.994 0.997 0.999 0.999 1.000 1.000
7 0.996 0.997 0.998 0.999 1.000 1.000 1.000
8 1.000 1.000 1.000 1.000 1.000 1.000 1.000
9 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PS 0.008 0.003 0.000 0.000 0.000 0.000 0.000

71

IRV !

g

AV

oooooooooo

/2

..........

oy gmg gt gnet omd gemg et pund guad g

—_— 'l

N2

q
01111111’1 [

/2

388888888¢ ¢

0
1
1
1
1
1
1
1
1
0

fif2

..........

f1f2

0.778 0.800|0.818 0.8330.857 0.867 [0.895 0.900]0.931 0.93310.966 0.967 | 1.000 1.000

2582888888 8

123456789w

PS

Chapter 4

Pruning Efficiency for Node-Dependent Game Trees

1. Alpha-Beta Pruning

In computer game playing, alpha-beta pruning is a commonly used technique for
speeding up search processes. Knuth and Moore [4] credit the idea of pruning some
nodes from the search process to McCarthy and his group at MIT, and trace back this
search reduction method to 1958. The first formal treatment of this topic appears to be
Brudno’s 1963 paper [16). This algorithm determines the utility of the root node of a
game tree by traversing the tree in depth-first order and skipping all those nodes that can

no longer influence the backing-up of utility ‘¥(g) for the root node g .

In this chapter, we assume y(g)=¢(g) for each te:minal node g. Therefore,
Y(g)=d(g) for every node g in a game tree. In fact, this assumption implies that the
alpha-beta algorithm searches the game trees to their bottoms. In this way, we can con-
centrate on the efficiency of the algorithm without being concerned by the accuracy of the
evaluation functions. Another assumption for this chapter lets the root node of each

game tree be a Max node. This assumption is customarily adopted in the literature.

The alpha-beta algorithm is called with three parameters: g, which is the node to be
visited, and alpha and beta, which are integers with alpha < beta. The range [alpha,
betal is usually called a search window, or simply, a window {17). In alpha-beta pruning,
the reduction of the game tree search is achieved by a node passing down to its succes-
sors the current value backed-up so far and a successor using these values as pruning
bounds. For a minimax game tree, the alpha-beta pruning algorithm is defined by the fol-

lowing recursive procedures, taken from Knuth and Moore [4]: if node g is a Max node,

72

integer procedure F1(g : Max node; alpha, beta: integer):
integerm,i,t,n;
begin determine the successor nodes g1, ..., 845
if n =0 then F1 := y(g) else
begin m := alpha;
fori :==1ton do
begin 1 := F2(g;, m, beta);
ift >m thenm :=¢;

if m 2 beta then return Fl :=m;

end.
end;
'f g is a Min node,
integer procedure F2(g : Min node; alpha, beta: integer):
integerm,i,t,n;
begin determine the successor nodes g 1, ..., ga s
if n = 0 then F2 := y(g) eise
begin m := beta;
fori :=1ton do
begin: :=F1(g;, alpha, m),
ift <mthenm :=¢,
if m < alpha then return F2 :=m;

end;

F2:=m;

74

end;

end.

In the above procedures, the evaluation function y(g) provides the utility for terminal
nodes g . These procedures are proved to be correct in the sense that the call Fl(g, —eo,
+oo) for a Max node g or F2(g, —oo, +<o) for a Min node g always retumns the utility ‘¥(g)
for the node g, which is the value assigned by the minimax process {4]). More generally,
it can be shown that:

Fi(g, alpha, beta) < alpha, if \¥'7) < alpha,

Fi(g, alpha, beta) = ¥(g), if alpha <\¥'(g) < beta, 4.1)

Fi(g, alpha, beta) 2 beta, if Y(g) 2 beta,
where i = 1 1i g is a Max node, otherwise, i =2. These conditions imply that

Fi(g, —oo, +00) ='¥(g).

The efficiency of alpha-beta pruni..g has been studied in several papers. The paper:
written by Fuller ef al. [5] and K.iuth and Moore (4] uAdress the problem of searching a
uniform game tree of degree n and depth d with alpha beta pruning under the as*ump-
tion that the n¢ merit values assigned to the terminal nodes are all distinct and random.
A gen:ral formula for the average number of terminal nodes examined by the alpha-beta
pruning algorithm was developed by Fuller ez al. [5). This formula, however, is compu-
tationally intractable and leads to undesirable errors for large trees since it involves, in
particular, a 2d - 2 nested summation of terms with alternating signs and requires on the
order of n? steps for its evaluation. A simpler version of the full alpha-beta pruning not
considering the possibility of deep cut-offs was studied by Knuth and Moore [4]. Baudet
[12] took into account both shallow and deep cut-offs, and developed a formula to com-
pute the average number of terminal nodes examined by the alpha-beta algorithm in an

independent uniform tree of degree n and depth d, where ties are allowed among the ter-

75

minal nodes. An analysis of the effici.ncy of alpha-beta pruning was conducted by
Newborn [9] for a branch-dependent game tree. The analysis for this model is very
difficult, did not even obtain the exact formula for game trees of depth four [9]. In sum-
mary, four schemes have been proposed for the analysis of alpha-beta pruning in the
literature to date. All four schemes consider a uniform tree of degree n and depth d.
Scheme 1 simply .ssigns a different number to each of the n¢ terminal nodes at random.
The second scheme, which is exploited by Baudet [12], randomly assigns the values from
a finite set to the terminal nodes of the unifoi-u game . *~, and allows ties among these

nodes. The third scheme, proposed by Knu = ~d Maoce 4], assumes that the values are

not independent, but dependent on the b » - - a5 follows: randomly assign a
weight value fron .-~ ,/a*, 2/n%, .., n/n") 10 each of the n branches directed from
anode g ai dept . - let the score of a terminal node be equal to the sum of the

weights of the br. -« along the path from the root node to that terminal node. The
branch-dependent game tree model proposea by Fuller er al. [5] is identical with the
third scheme with the exception that the set {1, 2, ..., n } replaces the set { nk, 2nk, ..,
n/n*}. Newbom made use of branch-dependent game trees in analyzing alpha-beta

pruning [9].

Here, a different game tree model, the node-dependent minimax game tree, is used
to analyze the alpha-bewa algorithm. First, the effect of the initial search window on the
efficiency of alpha-beta pruning is discussed. It is pointed out that the so called best case
analysis presented in the literature to date applies only to the largest search window with
alpha = —eo and beta = +eo. Under the assumption of alpha-beta pruning with an
appropriate search window, we derive the recursive equations for the average number of
terminal nodes visited in a bi-valued binary node-dependent game tree. The effect of
n. 'e-dependence on the pruning efficiency is analyzed. Finally, the analysis method is

generalized for multi-valued n -ary dependent minimax game trees with n 22.

76

2. Tight Window Pruning

The search window for the root node is usually set to [—ee, +oo] in the literature
when analyzing the efficiency of alpha-beta pruning [4,9], even if the range of the
evaluation function is a finite set [12]). Under the assumption that the root node value is
not equal to +ee, the lower bound for the number of terminal nodes vi.:ted by the alpha-
beta algorithm in a uniform game tree of degree n and depth d is

ald) ypld2l_ (4.2)

It will be shown that using a search window other than [—ee, +oo] for the root node, a
differert lower bound for the number of visited terminal nodes can be derived. A bi-
valued binary game trec of depth 1 is she wn in Fig. 4.1. Let the root node be a Max node
and its left child have a value 1. If *' < root node is visited with window [—ee, +e°], both
the left and right successors must be visited, and formula (4.2) gives the number
21172} 4 2TV21 _ 1 = 2. But for this bi-valued tree, if the root node is visited with win-
dow 10, 1], the right child is pruned from the searct “iow only one terminal node is
examined by the aloha-beta pruning algorithm, chis observation stands in contrast to for-
muia (4.2) and improves the pruning efficiency. Therefore, if the range of the evaluation
function is a finite set (i}, iy, ..., ig}, where iy <ip <..<i the window (i, i,], rather
than [—ee, +<0), should be used for the root node in an alph -.cta search. In this case, the

window [i,, iq] is called the tight window.

7

Fig. 4.1 A Binary Uniform Tree of Depth 1

The fact that executing the alpha-beta algonthm with a tight window [iy, ij] can
return the minimax value of the root node is simply derived from the conditions in (4.1).
In fact, when the minimax valuc ‘¥(g) of the root node g satisfies

i sY@)sig,
by (4.1), it can be derived that
Fi(g,iy.ig)=Y¥@).
.e., the alpha-beta pruning algorithm with tight search window can correctly back up the

minimax value of the root node.

A tight window for an alpha-beta search is best in that it always visits fewer nodes
than other windows, this observation is summarized by the following lemma. In the proof
of this lemma, we use the fact that if a window contains another one, an alpha-beta search
with the first window either reiurns the same result as with the second window, or returns
a value that is not contained in the second window. This conclusior about the alpha-beta
algorithm is simply implied by the condition (4.1).

Lemma 4.1 For a game tree, if window [alpha,, beta] contains window (alpha,, beia,]
as a subset, the execution of the alpha-beta aigorithm with the first window will visit all

the nodes visited with the second window.

78

Proof. Assume two executions of the alpha-beta pruning algorithm, one with window
lalpha ,, beta] and the other with window [alpha ,, beta ;] for the root node of a uniform
tree. By induction, it can be proved that if a node g is visited by both executions, the
window used to visit g by the first execution contains the window used by the second
execution. Assume g is the first node that does not satisfy this proposition, and g’ is its
clder brother, the backed-up values for which in the two executions determine the rela-
tion between the visiting windows for g. Since the visiting window for g’ in the first
ex~cution contains that in the second execution, the backed-up value v'; for g’ in the first
execution either is equal to the backed-up value v’5, or is not in the window in the second
execution. By the conditions of (4.1), we can deduce that if g’ is a Min node, v’y SVv’,,
atnerwise, v’y 2 v'5. Therefore, the two backed-up values for g° cannot change the rela-

u.c nship between the two windows used to visit g, a contradiction.

The above argument implies that, if a node is visited by the second execution, it
must de visited by a non-empty window by the first execution, i.e., it must be visited by

the first execution. [

Ry the above discussion, the best window for the alpha-beta algorithm is determined
by the smallest and the largest possible utility values. For oi-valued dependent minimax
game trees, the search window fc ' the root node will be set to [0, 1] rather than [—ee, +eo].
The alpha beta pruning algorithm will be analyzed with respect to this window. This
analysis is different from the traditional methods [1, 4,9, 12].

3. Some Properties of Alpha-Beta Pruning

In this section, some notations are inadoduced, and a necessary and sufficient condi-
tion for a node to be visited by the alpha-beta algorithm, which was presented by Baudet
in the context of negamax [12]), is described in terms of minimax and bi-valued binary

game trees.

79

While the utility valuss W(g) deal with the static aspect of a game tree, the quanti-
ties that will be introduced deal more with the dynamic aspect of the tree when being
searched by the alpha-beta algorithm. For a Max node g; atdepthd 2 1, we define

Y@ if j=2
C(gj)g 1 otherwise ;
for a Min node g; at depth d 2 1, we define
¥@,-1) if j=2
c@)= |o otherwise .
The quantity ¢ (g) accounts for the information provided to node g by its elder brother, if
any. Forany node g =j, - - * j; atdepthd 2 1 in a game tree, two quantities are directly
assigned to the node by the alpha-beta algorithm, if the node is visited. Fori =1, ..., d,
letg(i)=,, - Jj;. Wedefine
a(g)=max {c(g(@i))]iisodd,0Si sd},
B(g)= min (c(g@)) i iseven, 0Si sd},
where the node g (0) represents the root, and c (g (0)) = 1 by convention. It is convenient
to define a(g (0)) =0 and B(g (0)) = 1.
The following lemma justifies the notations just introduced. It is adapted from

Theorem 2.1 of Baudet [12], where the root node is visited with window [—e, +oo].

Lemma 4.2 [12, Theorem 2.1]. Assume that. initially, the root node, denoted as root , of a
bi-valued game tree is explored by the alpha-beta algorithm through the call

Fl(root, 0, 1).
A node g in e game tree is visited by the alpha-beta algorithm if and only if a(g)=0
andB@g)=1. (0O

The above lemma implies the following lemma about bi-valued trees.

80

Lemma 4.3 If a Max (Min) node g is visited by the alpha-beta algorithm with window (O,
1], the first successor g, must be visited L'y the alpha-beta algcrithm with the same win-
dow, and the second successor g, is visited by the alpha-beta algorithm if and only if
Y@ =0(r¥g)=1).

Proof

Just note that

c(gy) =0, a(g,) =max(a@), c @), B@1) = B@&)
if g is a Max node, and

c@)=1,a(g) =a@g) Bg, = min(BE). c@)))
if g is a Min node. If the visiting window for g is [0, 1), i.e., a(g)=0, B(g) =1, the
visiting window must be [0, 1] for g,. and g, must be visited by the alpha-beta algo-
rithm. If node g is a Max node and W(g) =1,

a(g) = max(a(g), c(82): =3(g)=1,
and node g, is pruned by the alpha-beta algorithm. ir node g is a Max node and ¥'(g) =
0.

a(g) = max(ag), c(82) =0, By =Bl =1,
and node g, will be visited by the alpha-beta algorithm. A similar argument holds for
Minnodeg. (O

4. Pruning Efficiency

Here, the complexity of the alpha-beta pruning algorithm is measured by the
number of terminal nodes visited in a game tree, and the game tree used to analyze this
algorithm is a bi-valued binary dependent minimax game tree with parameters p, f , and
f 2. The quantity to be computed is W(h, f, f3) (L(h, f.f2)) which is the average
number of terminal nodes examined by the algorithm in a denendent minimax game tree

of height & =2k with a win (loss, respectively) root node and dependent factors f | and

81

f 2. The average number of terminal nodes visited by the alpha-beta pruning algorithm in
a dependent minimax game tree with parameters po, f, and f ; will be
PW . fr.f)+ (L =pol(h.fy.f2)

The analysis is recursive from the root node towards the terminal nodes. In fact,
only three adjacent levels of the dependent minimax game tree are involved in the discus-
sion. Let the three levels be at heights 2k, 2k~1 and 2k -2, respectively. If a node g at
height 2k is a win node, the possible merit value assignments for its children g. 1 and 8.2
are 1 and 1,0 and 1, and | and O, which are shown in Fig. 4.2(a), (b), and (c), respec-
tively. For th= assignment of 1 and 1 for 8.1 and g.2, the possible merit value assign-
ment for the nodes g.1.1, g. 1.2, g.2.1 and g.2.2, which are at height 2k~2,is 1, 1, 1 and
1. This merit value assignment is denoted as w / in Fig. 4.2(a). Since the probability for
the merit value assignment 1 and 1 of g.1 and g.2 is f,, the probability for the ment
value assignment w! of g.1.1, g.1.2, 8.2.1 and 8.2.2 is f |, which is also shown in Fig.
4.2(a). Similarly, all the other possible merit value assignments, which are denoted as w2
through w 7, for the nodes g. 1.1, g. 1.2, g.2.1 and g.2.2 are listed in Fig. 4.2(b) and (c).
The probabilities for these assignments are derived from the fact that g is a win Max
node and f, and f , are dependent factors. If the root node g is visited with window (0,
1], according to Lemma 4.3, for the assignment w 1, nodes g.1.1 and g. 1.2 are visited,
for the assignment w2, nodes g. 1.1, g. 2.1 and g.2.2 are visited, for the assignment w3,
nodes g.1.1,g.1.2, g.2.1 and g. 2.2 are visited, for the assignment w4, nodes g. 1.1, 8. 2.1
and g.2.2 are visited, for the assignments w5, w6, and w7, nodes g.1.1 and g.1.2 are
visited. According to the probabilities for the merit value assignments w1, ..., w7, the
quantity

Wh.f1.f2
=f2Wh-2.1\.f2)

+ %(1 —F O QW =2, f 1 D +Lh=2 1. f)

82

+ 3 ~f g A= fDOWh-2f 1,1 D+ LKh-2.11.f)

+ 2 ~f Dy =fDEWh-2.11,f D+ L*h-2.f1.f)

+ (=1) W B2 1.1

+ra-f .)ga —fD2W(h=2,f1.f2)

R %(1 _fl)%(l —fD2W(h=2,f1.f 2

-2+ }(1 ~f O =f W2 f 1. f)+ %(1 —fOL(A=2,f 1o f D).

If the root node g is a loss node, both of its children, g.1 and g.2, must be loss nodes.
The possible merit value assignments for the successors of its children, g.1.1, g.1.2,
¢.2.1 and g.2.2, are listed in Fig. 4.3. The probability for each assignment can be
4crived from the fact that g is a loss Max node and f; and f ; are the dependent factors,
and is listed at the right side in Fig. 4.3. If the root node g is visited with window (0, 1],
by Lemma 4.3, for assignment /1, nodes g.1.1 and g.2.1 are visited, for assignment /2,
nodes g. 1.1, g. 1.2 and g. 2.1 are visited, for assignment /3, nodes g.1.1 and g.2.1 are
visited, for assignment /4, nodes g.1.1, g.2.1 and g.2.2 are visited, for assignment /5,
nodes g. 1.1 and g. 2.1 are visited, for assignment /6, nodes g. 1.1, 8.1.2,8.2.1 and g.2.2
are visited, for assignment /7, nodes g. 1.1, g. 1.2, and g.2.1 are visited, for assignment
[8,nodes g. 1.1, g.2.1 and g. 2.2 are visited, for assignment /9, nodes g.1.1 and g.2.1 are
visited. Therefore, the average number of terminal nodes visiied for assignment /] is
2L (h-2,f . f), the average number for [2 is W(h-2,f,f2) + 2L (h=2,f |, [). the
average number for 13 is 2L (h-2. f y, f), the average number for [4 is W (h=2, f,, f1)
+ 2L (h=2, f, f), the average number for IS5 is 2L (h-2, f, f), the average number
for 16 is 2W(h=2,f,.fp + 2L(h=2,f.f7). the average number for [7 is
Wh=2,f1.f2) + 2L(h=2,f,,f), the average number for I8 is W(h-2,f,,f3) +

83

2L (h=2, f 1, f 2), the average number for /9 is 2L (h~2, f |, f 2). According to the proba-

bilities for the assignments, the quantity
L(h'f I'fz)
=f32UL(h-2.11.)

+ %u —F) AW =2 f 11 D+2LA-2f1.f D)

+ %(l—fz)szL(h-z.fpfz)

1

+ ‘2'(1 ‘fz)fz(w(h‘z'fpfz)+2L(h“2'f1of2))

+ %(1 ~ff 2L(h=2.f 1. f)

+ 7}(1 ~FPOW =2 f 1. f) +2L(A=2.f 1. f)

1

+ z(l ~fDXWh=2,f [+2L(h=2.f . f2)

1

+ 50 ~FDPW =2, [+2L(h=2,f 1.)

+ %(1 ‘fz)zu(h-z»f]’fl)

=2L(h=-2,f 1. fN+ (A ~fIW (=21, f)

wl:

(a)

®)

84

[

0.5(1 -£,)
0.25(1 = f,)(1 = /3)

0.25(1 -f,)(1 -13)

85

wS: 1 1 0.5(1-£,),
wG: 1 1 1 0 0.25(1 —£,)(1 = f;)
w7: 1 1 0 1 0.25(1 —£)(1 = fy)

(c)

Fig 4.2 The Computation for W (h, f 1,f 2

86

1 f3

12: 1 0 0 0 0.5(1 -£,)f,
13: 0 1 0 0 0.501 -£,)f>
I4: 0 0 1 0 0.5(1 - f,)f,
I5: 0 0 0 1 0.5(1 - f,)f>
l6: 1 0 1 0 0.25(1 - f »)?
17: 1 0 0 1 0.25(1 - f »)?
18: 0 1 1 0 0.25(1 — f p)?
19: 0 1 0 1 0.25(1 — f »)?

Fig. 4.3 The Computation for L(h, f,, f,)

For the sake of notation simplicity, let W, =W, f,fo)and L, .(h.f.[2s

where h =2k . Then, the recursive equations for W, and L, are

W, =2+ -}{(1 -f)A=fIIW_ + %(1 -l
Ly=2Ly +(1 - f W, ;. “3

87

The equations of (4.3) can be solved by cases. If f, =1, f » 1, the first equation of
(4.3) iraplies
W, =2W,_,.
Since Wy =1, we have W, = 2%, Replacing W, in the second equation, we have
L, =2L,_;+(1-fp2*!
=22, ,+(1=f 2 + (1= f)2t!

=26Lg+ k(1 - f2t!
=241+ 2(1-f).
If f,#1, f,=1, the second equation of (4.3) implies
L, =2, ,.
Since Ly =1, we have L, = 2*. Replacing L, in the first equation, we have
W, =2W,_, +(1 - f)22
=22, + (1 =f 2t 2+ (1-f 242

=2¢Wo+ k(1 - f2t?
=2k(1 +§(1 ~f).
If fy =f,=1, wehave
Wy =2W, |, Ly =2y,

Since Wy = L = 1, the solution for (4.3) is
W, =2L, =2
In the following, it is assumed that f , # 1 and f 5 # 1. By the first equation of (4.3), the

following equalities can be derived

Ly, = (%(1 -f)' W, -2+ -i—(l =)0 =f W)

and

1 -
L,= (?(1 —fO Wy -+ '}(1 =Ll =fIW,).
Replacing L, _, and L, in the second equation of (4 3), the recursive equation for W, is
Wia= @+ 5= XL=f W,
=2W, -2+ 7“-(1 —f X1 =f Wy + %(1 —f (1= fDWaey,
which is

Wi =@+ 5 (1=f (1= £ Wy +4W,., =0. (4.4)

By the second equation of (4.3), the following equalities can be derived

Wi =(1-f) Ly - 2L,),
and

W =(1-f) Leay — 2Ls).
Replacing W, _, and W, in the first equation of (4.3), the recursive equation for L, is
Ly - 2L,

=2+ %(l - =f L =2y) + %(1 - =fIyy,

which is
1
Lk*ﬂ - (4 + :(l -f lxl 'fz))Lt + 4Ll—l =0 (45)

Since the boundary conditions for recursive equations (4.4) and (4.5) are
1
Wosl,W‘=2+-l-(l-fl)(l ~f+ 301
and

Lo’ l,L1=2+(l-fz).

respectively, these equations can be solved and the solutions are as follows. When

89

/1 #1andf =1, the solution for W, is

W, = Ax} +Bx},

where
=1 [1s+<1 —F A =f D+ =f)1 =f P +32(1 = F -fz))m]
x=7 [16+(l —f =)= =f)1 =P +32(1 - £) -fz))m]

A=f 5=
20 -f DA =f NP +32(1=F X1 =f)’

1
A=—+
2

(A=-fXS-f2) .
2(1-f M= PP +3201 = f YA - fF Y2’

1
B=—-
2

the solution for L, is

Ll =A le +le§’
where

A=-f 1 XT+fy
2(1- £ X1 = £ P +3201 - £)1 = f)2’

Al=%+

A=f XT7+1D)
20 =-f XI=F P +320-F A =f 2

1
B|='2——

The details of solving these recursive equations are described in our Appendix to this

chapter.

S. Best Case Analysis

Let w, (/,) be the lower bound for the number of terminal nodes in a bi-valued uni-
form tree of degree n and height A that are visitea by the alpha-beta pruning algorithm
when the root node has value 1 (0, respectively).

90

Lemma 4.4 For a bi-valued uniform tree of degree and height A, the alpha-beta algo-
rithm visits at least n |*/2] terminal nodes, i.c.,
min (w,,) =n 2],
Proof. When height A = 0, the root node is the only terminal node, therefore,
| wo=lg=1.

If A > 0 and the root node g is a Max node, one successor with utility 1 can estab-
lish W(g) = 1. It is obvious that if g has a udility 1, the minimum number of terminal
nodes will be visited by the alpha-beta algorithm only when g. 1 has utility 1. This obser-
vation implies

Wy =W,).
To establish (g) = 0, all successor nodes must have utility 0. By Lemma 4.3, all suc-
cessor nodes must be visited by the alpha-beta pruning algorithm, and this fact implies

Iy =ndy_;.

If A > 0 and the root node g is a Min node, then one successor with utility 0 can
establish W(g) = 0. This fact implies that if and only if g. 1 has utility 0, is it possible
that the minimum number of terminal nodes be visited by the alpha-beta algorithm. This
observation implies

Iy =1y,
To establish ¥(g) = 1, all successor nodes must have utility 1. By an observation similar
to Lemma 4.3, all successor nodes must be visited by the alpha-beta pruning algorithm,
and this fact implies

Wy =RWy .

The above recursive equations for w,, and I, imply that w,, = n*'2, 1, =n*2 when h

is even, and w, =n®*12 |, = n*~1Y2 when & is odd, and the lemma follows. a

By the proof, it can be seen that the lower bound is tight since the alpha-beta algo-

91

rithm visits this number of terminal nodes in some bi-valued uniform tree of degree n
and height .

By the solution of (4.3), which is presented in Section 4, it can be seen that only
when £, = f, = |, the average number of terminal nodes visited by the alpha-beta algo-
rithm in a bi-valued binary node-dependent minimax game tree attains this smallest one.

Theorem 4.1 For a bi-valued binary dependent garrw 'rec 2 ~ven height with 0 <pg < 1,
the alpha-beta algorithm visits the minimum average - . “.0er of terminal nrder .. *ven
heightifand only if f | =f = 1.

a

6. Numerical Results

We now turn back to the bi-valued binary game trees. As shown in Section 3 of
Chapter 2, for a probability p,, there is an infinite number of value pairs for f, and f,
which force both the root and the terminal nodes in a dependent minimax game tree with
parameters p o, f | and f ; have the probability p to take value 1. Also shown there is the
fact that these values of f, and f , are positively correlated, i.e., for the value pairs, a

larger value of f | corresponds to a larger value of f 5.

The first column in the following tables lists some of these value pairs for £, and f ,
with respect to pg = 1/3, 1/2, (V5 — 1)/2, respectively, in increasing order. The solution
of recursive equations (4.3) relates the pruning efficiency of the alpha-beta algorithm to
the node-value dependence in a game tree. The remaining columns list the expected
number N, of terminal nodes in a dependent game tree of height & = 2k with parameters
Po. £ and f ; that are visited by the alpha-beta algorithm. These expected numbers are
calculated by the solutions of W, and L, , presented in Section 4, and formula

Ny =poW; + (1-poll;.

92

In Table 4.1, there are thirteen rows, which correspond to thirteen pairs of values of
dependent factors f | and f 4, such that both the root node and the terminal nodes have the
same probability 1/3 of being assigned value 1. It can be observed that as the dependent
factors f, and f , increase in value, the average number N, of terminal nodes visited by
the alpha-beta pruning algorithm in a dependent game tree of hes,.it 2k decreases. When
f1=f2=1, for a win (loss) root node, all the terminal nodes have the status of win (loss,
respectively), the alpha-beta algorithm visits the least number of terminal nodes. In
Table 4.2, the average numbers N; of terminal nodes visited by the alpha-beta pruning
algorithm correspond to the dependent factors so that both the terminal nodes and the
root node take the status win with a probability of 1/2; in Table 4.3, the numbers N,
correspond to the dependent factors for both the root and terminal nodes to have a proba-
bility of (V5 = 1)/2 to take the merit value 1. It is readily seen that in each column in
these tables the average number of visited terminal nodes N, is in decreasing order.
Based on these tables, we can draw the conclusion that the more positively correlated a
dependent minimax game tree is, the fewer terminal nodes will be visited by the alpha-
beta algorithm. This observation implies that the alpha-beta pruning efficiency is posi-
tively related to the node-value dependence presented in the game trees. As shown by
Theorem 4.1, when f = f, = 1, the alpha-beta algorithm visits the smallest number of

terminal nodes.

Based on the data presented here, we can propose a conjecture: Given two depen-
dent game trees of the same height that are described by parameters py, f |, and f ; and
Po. f'1and f'5, respectively, if £, 2 £} and £, 2 f°5, the alpha-beta algorithm will visit
fewer terminal nodes of the first tree than of the second tree.

Table 4.1 The Numbers of Visited Terminal Nodes (P, =p ¢=0.333)

I [Ng N, N, N Nio
0.000 0600 | 336.804 | 848.163 | 2130.25> | 5341.391 13378.685
0.102 0633 | 204.676 | 727925 | 1792.969 | 4407.904 | 10822.912
0.200 0.667 | 257.997 | 625.099 | 1510.439 | 3641.954 8768.616
0.294 0.700 | 226.134 | $38.195 | 1276.744 | 3021.797 7140.220
0.385 0.733 | 198.209 | 463.350 | 1079.583 | 2509.253 5821.685
0472 0.767 | 173.711 | 398.933 913.157 | 2084.982 4751.422
0.556 ©0.800 | 152.185 | 343.456 772.711 1734.173 3884.346
0.636 0.833 | 133.305 | 295.679 653.990 | 1443.183 3178.702
0.714 0867 | 116.289 | 253.358 550.688 | 1194.555 2586.827
0.789 0900 | 101.179 | 216.417 462.096 985.154 2097.426
0.862 0933 87.495 | 183475 384.343 804.363 1681.937
0932 0.967 75.205 | 154.287 316414 648.686 1329.449
1.000 1.000 64.000 | 128.000 256.000 512.000 1024.000

Table 4.2 The Numbers of Visited Terminal Nodes (P, =p ¢=0.5)

f f2 N N, Ng Ny Nio
0.000 0.333 | 409.457 | 1093.859 | 2920.010 | 7791.51S | 20785.256
0073 0.367 | 365.669 959.918 | 2517.813 | 6600.938 | 17300.845
0.143 0.400 | 327.544 845.400 | 2180.099 | 5619.049 | 14478.126
0.209 0.433 | 294410 747.522 | 1896.264 | 4807.583 | 12184.323
0.273 0.467 | 264.730 661.266 | 1650.203 | 4115.608 | 10260.308
0.333 0.500 | 239.133 5§88.083 | 1444.834 | 3547.465 8706.293
0.391 0.533 | 216.308 523.841 1267.392 | 3064.316 7405.565
0.447 0.567 | 195.803 467.000 | 1112.744 | 2649.588 6305.986
0500 0.600 | 177.883 418.075 981.669 | 2303.461 5402.339
0.551 0.633 | 161.870 374983 867.898 | 2007.418 4640.765
0.600 0.667 | 147.474 336.763 768.371 | 1752.019 3992.932
0.647 0.700 | 134.688 303.302 682.488 | 1534.813 3449933
0692 0.733 | 123.256 273.780 607.722 | 1348.263 2909.882
0736 0.767 | 112.800 247.118 541073 | 1184.139 2590.472
0.778 0.800 | 103.510 223.740 483.403 | 1044.020 2254.055
0.818 0.833 95.218 203.123 433.165 923.458 1968.190
0.857 0.867 87.636 184.493 388.305 817.092 1719.034
0.89S 0.900 80.754 167.789 348.582 724.086 1503.918
0931 0.933 74.636 153.108 314.062 644.182 1321.222
0966 0.967 69.062 139.877 283.300 $73.773 1162.051
1.000 1.000 64.000 128.000 256.000 512.000 1024.000

93

Table 4.3 The Numbers of Visited Terminal Nodes (P, =p =0.618)

h fa N N, Ng Ny Ny
008S 0.133 | 442.547 | 1217.544 | 3349.377 | 9213.380 | 25343.176
0.117 0.167 | 397.765 | 1076.272 | 2911938 | 7878.126 | 21313.416
0.176 0.200 | 358.778 955.301 | 2543.537 | 6772.119 | 18030.374
0.232 0.233 | 324.532 850.702 | 2229961 | S845.427 | 15322.688
0284 0.267 | 294.641 760.691 1964.011 | 5070.970 | 13093.182
0334 0.300 | 268.201 682.274 | 1735811 | 4416.456 | 11237.317
0.382 0.333 | 244612 613.300 | 1537.954 | 3857.10S 9674.082
0427 0.367 | 223.745 $53.069 | 1367.449 | 3381.514 8362.886
0470 0.400 | 205.261 500.447 | 1220.531 | 2977.366 7264.043
0511 0.433 | 188.756 454.053 | 1092.661 | 2630.171 6332.152
0.55' 0.467 | 173.641 412.088 978.442 | 2323.956 5521.096
0588 0.500 | 160.519 376.089 881.650 | 2067.651 4850.48S
0624 0.533 | 148.568 343.693 795.587 | 1842.501 4268.540
0.658 0.567 | 137.851 314943 720.029 | 1647.000 3768.858
0691 0.600 | 128.161 259.25S 653.313 | 1476.420 3338.050
0723 0.633 | 119.338 266.119 593.885 | 1326.159 2962.799
0.753 0.667 | 111.46S8 245.667 541.858 | 1195.908 2640.780
0.782 0.700 | 104.352 227.389 495.863 | 1082.005 2362.257
0810 0.733 97.889 210.945 454.900 981.588 2119.203
0837 0.767 91.995 196.090 418.242 892.579 1905.821
0.863 0.800 86.685 182.843 385.885 814811 1721.286
0.888 0.833 81.882 170.976 3571717 746.472 1560.673
0912 0.867 77534 160.333 331.664 686.295 1420.530
0935 0.900 73.540 150.896 309.269 633.995 1299.934
0957 0933 70.149 142.519 289.584 588.470 1195.967
0979 0.967 66.891 134.786 271.604 547.316 1102.946
1.000 1.000 64.000 128.000 256.000 512.000 1024.000 J

7. Analysis for the More General Dependent Game Trees

The analysis method just presented is a general one in that it can be applied 1 the

multi-valued n -ary dependent game trees. We will show that the recursive equations for
the average number of terminal nodes visited by the alpha-beta algorithm in these trees

can also be derived. Based on these equations, the calculation of this number is reduced

to matrix multiplication. If the n-ary dependent game tree is bi-valued, the recursive

equations can be solved.

]

First, assume a bi-valued n -ary dependent game tree G with height A = 2k and n 2
2, where the merit value of the root node is described by a probability p,. For an interior
Max node g, the successor values @(g;) (1<i<n) are randomly Jetermined by a set of
conditional probabilities

Pr(®(g)=v,, D)=y, - O =, | D(g)=Vl (4.6)

for an interior Min node g, the values @(g,;) (1Si<a) are randomly determined by
another set of conditional probabilities

Pr(®(g)=v'), D@ I=V'z, ... Dga)=v'y | D)=V'y), 4.7)

where (v, Vg, ..., Vg, Vo) AN (V' V'3, s Via, V'g) € S**1, S = (0, 1). As in Section 4,
define W, (L,) as the average number of terminal nodes in G visited by the alpha-beta
algorithm with window (0, 1] when the root node of G has a merit value 1 (0, respec-
tively). When the root node g of G has a merit value (g) = 1, the probabilities for each
possible merit value assignment of the children of g can be determined using the condi-
tional probabilities of (4.6). The probabilities p,; for merit value assignments w i of the
successors of the children of node g can be determined by the conditional probabilities of
(4.7). For each such merit value assignment wi, the nodes at height 2k -2 visited by the
alpha-beta algorithm and their merit values can be determined. If there are r;; win nodes
and s ,; loss nodes at height 2k -2 to be visited by the alpha-beta algorithm for the assign-

ment w i, the following equation can be derived

Wi =221 (riWeoy +51l)s
[}

which is equivalent to
W, =aWy_1 +bols-1. 4.8)

for some real number ag and by. Similarly, If the root node g of G has a merit value

d(g) = 0, an equation
Ly=a\Wy_ +b\Ly.y, (4.9)

where a, and b, are real numbers, can be derived. Note that recursive equations (4.8)
and (4) can be solved by the method presented in Section 4.

Now assume that G is a multi-valued a -ary dependent minimax game tree, its root
node value is described by a probability distribution Po(v) with v @ S, and for an inte-
rior Max node g, the successor values &(g;) (1Si <n) are randomly determined by a set
of conditional probabilitics

Pri®(g)=v,, ®@g)=vy * gy)=v, | B(g)=vo): (4.10)

and for an interior Min node g, the values @(g;) (1<i <n) are randomly determined by
another set of conditional probabilities

Pr(®@)=v'), BED=V'2, .. DEa)=’y | B(g)=V'g), @11

where (v}, Vg, ..., Vp, Vo) AN (V'}, V'3, ..., 'y, Vo) € S**), and the merit value setis S =
{iy, -+, ig) for some q 22. Assume all the subranges of [i, iy] are listed as [s,,. ')
with ISm<M and i| S 5,y <S'y, Siy. Let[sy,s"y)= (i), ig). andlet V,(j, m) with 1Sj<q
and 1Sm <M denote the average number of serminal nodes visited by the alpha-beta algo-
rithm with window [s,,, 5’] in G when the root node g of G has a merit value i;. By
the conditional probabilities of (4.10), the probability for each possible merit value
assignment of the children of g can be derermined when the merit value of the root node
g is given. Then the probabilities for the merit value assignments of the successors of
the children of node g can be determined by the conditional probabilities of (4.11). For
each such merit value assignment, the nodes at height 2(k-1) visited by the alpha-beta
algorithm along with the visiting windows and their merit values can be determined. In
this way an equation of the following form can be established

97

Vibom)= X JimeViat,7)
1si<q. 1S SM

for1Sj<q,1Sm SM, where J,,, are real numbers. Define matrix V, = [V,(1, 1),

L V@)y, VLM, e, V(@ M), vector Jim = Uimipe s
"jﬂwl- 'ijw’ ...'ijul’mdredmmj,u". ...’J“. 'JJ'M’ e
J). Since J is independent of the height 2k of the game tree, we have

V,=JV,,.
Since the boundary condition of the equation is Vo =1, - -+, 1)7,
Ve=Jtv,

The average number v, of terminal nodes visited by the alpha-beta algorithm in the
multi-value n-ary dependent game tree of height & = 2k can be calculated by

v, =PIV,
where vector P =[P (i), - -, Polig), 0, - - -, 0]. In other words, the average number of

visited terminal nodes can be calculated by matrix multiplications.

The analysis method for dependent game tree has been generalized for multi-value
n-ary trees, where n > 2. These generalized cases are defined by more parameters than
the bi-valued binary tree. Given these parameters, we can also produce some tables simi-
lar to Tables 4.1-4.3. These tables can be used to analyze the performance of the alpha-
beta algorithm. The analysis could provide some insight about the speed of a computer
game playing program that emploies the alpha-beat algorithm as its inner search loop
procedure.

98

Appendix to Chapter 4: Solutions for W, and L,

There are two methods, charateristic root and generating function, for solving equa-
tion (4.4), which can be found in the book of Mott er al. [18). First, its solution can be

related to the solutions of the following equation of x:
1
xz—(4+2—(l ~f)1=f)x +4=0,
which ae

x = %[16+(1 FO(=)+ =f 0 —1 P +3201=f 1)1 'fz))m]

xy= 1 (164 1=F U= £ -0 = £ X1 = £ 207+ 320 = 0t - £ 12

Therefore, the solution for W, is
W, =Ax} +Bxi,
where A and B are constants to be determined by the boundary conditions
Wo=1,W, =2+ %(l -f3-12).

The constants A and B can be solved by

A+B=1

i 4.12)
Ax, +Bx2=2+j4—(l -f3-f2.

The solution to (4.12) is

A=-l—+ (A-f)G6-12
2 - - 2 - - 12
200 -f A =f))Y+32(1-f1X1-f2)
8__1__ A=-f)5-f2)
T2 _ _ 2 _ _ 2
20 -FPA=fD)+32(1 - X1-f2.

Similarly, the solution for L, is

L, =Ax} +B x4,

(A=-f)XT+Sy
+ - 2 172
20 = KL= f P +321 =f)1 = f)
B _1_ A-f1IX7+f)
P72 - =f)P 4320 =~ (0 -)2

I

N —

A1=

3

The second method for solving (4.4) is based on reducing tt order of the recursive
equation (4.4). Note that a real number C can be found so that equation (4.4) is
cquivalent to

4 4
wk+l - —é-Wk = C(Wk - -(-:—Wk_l).
In fact, C is the solution of equation

C+ -é- =44 %(1 —f1 =12

The solutions to the above equation are

Ci= [16+0-FA-FD+(@ - £ -1DP +320- 00 -1 2]
[16 +(=F)0 =F) = (= F)= F P +32(1 - f) -fz))m].

4.13)

1
C2=—8-

Therefore, equation (4.13) is equivalent to

4 : 4
- =W, =Ci{(W, - W,
Win C, W, =Ci (W, C. Wo)
Since 4. C,, we have
C,
W1 = CaW, =CH(W, -CW).
Similarly,

Lysy = Caly =C1(Ly =Calo).
By the boundary conditions, the above linear recursive equations can be solved, and the

details are omitted here.

Chupter §

Probability-Based Game Tree Pruning

1. Probability Evaluation

In game tree search, the utilities of the "horizon” nodes or terminal nodes in the
search tree are evaluated to gain the best available information. There have been three
methods of describing the evaluation results. The simplest but most inflexible method
uses point-values, such as material-balance, to measure the merit value of a position. In
the second method, upper and lower bounds are used to describe the possible merit
values [10]. Palay suggests using a distribution function to describe the possible loca-
tions of the merit value of a node in the game tree[11]. In contrast, the point-value
representation of merit value totally ignores our uncertainty about the merit value. It
forces us to make a conclusion on the merit value of a position even when it is unclear.
Another representation, range, also suffers from similar problems. For example, two
positions cannot be distinguished if their corresponding ranges are the same. Probability
distribution is a good alternative for describing the possible locations of the merit value
of a position. The game tree search with probabilities or probability distributions as
evaluation results will be called probability-based game tree search.

In computer game playing, move choice, or decision making, is based on game tree
search. The study of probability-based game tree search is essentially independent of the
study of decision making. The former focuses on gaining more information with less
cost, the latter, on analyzing the gained information. If the uncertainty about the merit
value is to be reflected in the evaluation, which is described with probabilistic distribu-
tion or probabilities, the search process must back up distributions from terminal nodes to

100

101

the root. In computer game playing, the best-first search strategies [10, 11} combine deci-
sion making and game tree search naturaily; the depth-first game tree search leaves the
problem of decision making open. The existing probability-based move choice criterion,
like the function dominance-level employed by algorithm PB* (11}, can be applied to the
probabilistic distributions backed up by depth-first search; if the decision cannot be
made, some heuristics, like iterative deepening [19] or some other selective deepening,
can be used to guide the depth-first search to gain more information. As a matter of fact,
because of its lower space requirement and lighter operating overhead, depth-first game
tree search is almost universally used in computer game playing programs. The study of
probability-based depth-first search could lead to some heuristics for selective deepening
and so reduce the errors and costs in game tree search. The depth-first search of game
trees where the terminal nodes are evaluated with probability distributions, offers an
interesting study of its own.

Since alpha-beta pruning is such a popular and powerful technique, it is tempting to
apply it in probability-based game tree search. All the prior discussions about alpha-beta
pruning have been restricted to point-value game tree search. The problem of how to
apply the alpha-beta pruning technique to probability-based game tree search will be
addressed in this chapter. First, an evaluation representation method is presented, and a
probability-based alpha-beta pruning scheme is proposed for that method. The result
shows that even though the merit value of a node is described by probabilities rather than
a point-value, a-B bounded windows can still be used to cut off the search of some nodes.
It can be proven that probability-based alpha-beta pruning is optimal in the sense that for
some ordering of the successor nodes in a search tree, it will search the least number of
terminal nodes to get the probabilities that describe the root position of the search tree. It
is shown that the probability-based alpha-beta algorithm can be viewed as a generaliza-
tion of the alpha-beta pruning employed by point-value scarch algorithms[4]). Several

102

variations or applications of the probability-based algorithm are also presented. One of
them applies alpha-beta pruning to range-based game tree search. The heuristic informa-
tion available at interior nodes of a search tree can also be used to improve the a-B
bounds. It also shows how alpha-beta pruning can be incorporated into probability-based
best-first search. Finally, the efficiency of this probability-based game tree pruning tech-
nique is tested with a C-language program which generates random trees.

2. A Representation Method for Probability Distributions

The representation method for probability distribution functions proposed by Palay
[11] is to represent each distribution by a fixed set of points. This set of points can be
chosen in one of two ways. One way of preselecting points is to choose a set of values
from the domain of the distributions, and represent a distribution by the probabilities for
these values. The second way is to choose a set of points from the range of the distribu-

tion [0, 1), and represent the distribution by the corresponding domain values.

In practice, an expert consulted for determining an evaluation function, or for some
other expert system design, can only provide the probabilities for some individual possi-
ble outcomes, rather than a complete continuous probability distribution function. Based
on this observation, the merit value ®(g) of a position g will be described as a discrete
random variable, and probability functions, rather than prooability distributions, will be
used to describe the evaluation results. The domain of the utility values is a finite integer
interval [-i, i, for an integer i > 0. The merit value @(g) of a position g is described by a
set of probabilities, or a probability function P,, such that P, (v) is the probability that

the merit value (g) is equal to v, for any v € [-i, i]. A list of integer-real number pairs,
<y, Py(v)>, vy, Pp(v9)>, ...y <V, Py (vy)>, (5.1

is used to represent the probability function. The data structure (5.1) is called a VP-list if

P,(v;) >0, foreach j = 1,...k. Inthe following, the terms probability function and VP-

103

list are used synonymously. Usually, the first components of the pairs in a VP-list are in
the ascending order, i.e., v, <v,,, forz = 1, ..., k~1, and the domain of the utility value of
a position is supposed to be a finite integer range [—i, i), where i >0 is an integer.

There are several advantages when the evaluation results are represented as proba-
bility functions, or VP-lists. First, only the domain values for which the probabilities are
positive will appear in a VP-list. This requirement can reduce the space used for
representing probability distributions with a preselected set of domain values, since many
probabilities may be 0 or 1. The following is an example of the probability distribution

representation[11]. Given a distribution

0 ify <0
F(v)={v/100 if0sv <100 (5.2)
1 ifv >100,

assume that the domain of the distribution is the range from -1000 to 1000. For each
value v such that v < 0, the corresponding probability is zero; similarly, for each value v
such that v > 100, the corresponding probability is one. Therefore, if the presected set of
domain values that are used to represent this distribution are evenly distributed in the
range [-1000, 1000}, for 95% of the points the distribution function will have the trivial
value—O or 1. To reduce this space waste, Palay suggests on improvement([11] that only
the values v for which the distribution F (v} is greater th~n zero and less than 1 will be
stored. In fact, this method may not reduce the potential wasted space in more general

situations. For example, in the distribution

(v+1000)¥10 ifv < =995
F(v)= {05 if 995 < v 995,
0.5+(v-995¥10 ifv > 995,

for all the domain values v except v = -1000 and 1000, the corresponding distribution

104

values F (v) are greater than 0 and less than 1. In the probability function representation
method, it is easy to recognize that for all the values v between -995 and 995 the proba-
bilities P (v) = 0, and these values are not included in the VP-list. Note that this kind of
distribution could be used very often for computer game playing. For example, if the
only feature that can be recognized for a game position is a trapped piece, since the
material value v’ of this piece is fixed, the domain values for which the probabilities are
not equal to 0 may be —v’ and 0 only, where the domain value O represents the estimation
that the trapped piece will not be lost.

To keep enough information in a distribution or VP-list, the representation should
be accurate, or it should include enough domain values for which the probabilities are not
equal to 0. Making use of the distribution (5.2) as an example, suppose the preselected
set of domain values for the distribution are all the integers that are divisible by 100.
Since all the important information about the distribution occurs between 0 and 100, the
actual nature of this distribution is lost; this fact is observed by Palay{11]. Although the
effect of this problem can be alleviated by increasing the number of preselected domain
values, the space requirement will also be increased and this method cannot solve the
problem caused by the "blindly" preselected set of domain values. In a VP-list, since all
the domain values correspond to positive probabilities, every pair in it contains some use-
ful information. This fact implies that VP-list will make full use of the space occupied
by it, the more items it has, the more information is included in it. The VP-list represen-
tation is also flexible. For example, if we want to reduce the number of pairs in a VP-list,
we can compare the distance between each pair of values and combine two pairs <v;, p; >
and <v; .y, Pis1> into <(V; +V;,1)/2, p; +P; 1>, if their domain values v; and v;,, are the

closest.

Another distribution representation method suggested by Palay(11] is choosing a set
of points from the range [0.0, 1.0] of the distributions. This representation method also

105

suffers from some problems of inaccuracy and inefficiency. In this representation, only
the domain values for which the corresponding distribution has a value in the preselected
set of range values will be kept. Therefore, when multiplying two different distributions
to back up them, we have to make use of interpolation to calculate extra values. Interpo-

lation will result in both inaccuracy'and inefficiency.

By the above analysis, it can be seen that although the VP-list representation for
probability functions uses two numbers for a domain value, because both of the two
numbers play some meaningful role in probability back-up, this representation method
provides a relatively accurate and efficient data structure to organize the probabilities.

The negamax game tree search method described in Section 2 of Chapter 1 will be
exploited in this chapter, so that one player’s winning will be another’s loss, and vice
versa. In probability-based game tree search, the operands are probability functions, and
this reversed viewing method can be reflected by the function P_NEG . Let P, be the
VP-list describing the possible locations of the merit value @(g) of position g. The pro-
bability P_NEG (P, Xv), for any v € [-i, i], is defined as the probability that the random
variable -®(g)isequal to v:

P_NEG (P, Xv)=Pr[-®(g)=v].
Therefore, if a player is making use of a probability function P to represent the merit
value of a position, the opponent will make use of P_NEG (P) to describe that same posi-
tion. By the definition of P_NEG , it is easy to deduce the following formula:

P NEG(P)v)=Pr(®(g)=-v]=P(-v)

for any v € [-i, i]. The above equations imply that if a merit value is represented from
the point of view of one player by a VP-list

V1 P12 V2 P22 woos Vs Pr >
then it will be described by the opponent as

Vi D>y SV s D=1 o0 SV, P12

106

In other words, to get the probability function for the opponent, just change the sign of
the domain value component of each pair in the VP-list.

Searching a game tree means backing up the probabilities of the terminal nodes to
the root position. The back-up from its successor positions 21, 82, ... §, 10 a node g can
be described by function P_MAX , the operands of which are also probability functions.

..P

For the probability functions P, ., P gn» P_MAX can be defined in the following

s T g2
way:
Whenn =1,
P, =P _MAX (P;))=P,;
whenn =2, forany v € [-i, i},

Py(v)= P_MAX (P“. Py Xv)

v-l v-l
=Py (V)Pga(v) + Py, (v) T Pyy(t) + Pyy(v)'2 Pyt

(£ o]

whenn 23,
Py, =P_MAX (P;,, Py, ... Pg,)
=P_MAX (P_MAX (Pg,, Py, ... Pg,).
Similar formulae can be used to define another function—P_MIN, which is used to
describe the complement operation of P_MAX :
Whenn =1,
P_MIN(P,,))=P,,;
whenn =2, foranyv € [-i,i],

P_MIN (Py,, Py)(v)

=P, (P + Py () T PO+ T Py

t=ve t=vel

107

whenn 2 3,

P_MIN(P,,, Py s Pyn) = P_MIN(P_MIN (P, . Py, Py,).

3. Probability-Based Alpha-Beta Pruning

Two concepts will be used in the pruning process game trees that returns the same
value as the exhausted search. The lower bound of a probability function P, denoted as
lower_bound (P), is defined as the smallest domain value v € {-i, i] for which P (v) # 0;
the upper bound, upper_bound (P), is the greatestv € [-i, i] for which P(v) » 0.

Proposition 5.1. Given two probability functions P, and P ,,

(1) if lower_bound (P,) 2 upper_bound (P), then
P MAX(P,,Py)=P,;

(2) if
lower_bound (P ,) < upper_bound (P)
and
lower_bound (P ;) < upper_bound (P),
then
P MAX(P,,Py=»P,
and

P MAX(P,,P)#P,.

Proof. By the definitions of lower_bound , upper_bound and P_MAX . g

Suppose the current state of a node g is described by P, in the alpha-beta search
and that of one successor node g; is described by P, i The current state of g will be

described by
P_MAX (P,,”_NEG (P, i)

108

The property of operation P_MAX presented in Proposition 5.1 suggests that only if
lower_bound (P,) 2 -lower_bound (P, ;) can the search of the remaining successors of g;
be cut off. Based on this observation, a probability-based alpha-beta algorithm can be
designed.

The standard alpha-beta pruning technique analyzed in Chapter 4, which uses a-f
bounded windows to limit the backed-up point-values, will be generalized for
probability-based game tree search. The lower bounds of the probability functions that
describe the current states of the ancestor nodes will be used in setting the cut-off bounds
a and P before searching a node; these bounds are also improved dynamically when
searching the subtree rooted at the node.

Algorithm 5.1. Probability-Based Alpha-Beta Pruning Algorithm.

The recursive function P_AB(g : node; a, P: integer) will return a VP-list, the upper
bound of which is less than or equal to B and the lower bound greater than or equal to a..
In this function, two local variables (TPO and TP1, respectively) maintain the current
state of position g and that of the successor being explored. The special VP-list <v, 1>

with a single integer-real pair represents a probability function that takes value v with
probability 1.

function P_AB(g : node; a, B: integer): VP-list;
var

TPO, TP1: VP-list;

j: integer;
begin

1. if g is a terminal node then

109

return P_MIN (P_MAX (P, <a, 15), <B, 1>);
comment: Probability function P, is obtained by evaluating g
from the corresponding player’s viewpoint.

2. determine the successor positions, g |, ..., §a. 0f g, where a > 0;
3. TPO :=<a, 1>;
4. forj :=1ton do

begin
5. TP1 := P_NEG (P_AB(;, -B, -a));
6. TPO := P_MAX (TPO, TP1),
7. o := lower_bound (TPO)
8. ifa=p

then return TPO,

end;
9. return TPO,
end.

The properties of function P_AB proposed in the following lemma, which general-
izes the conditions (4.1), will be used to prove the above algorithm.

Lemma 5.1. If P, is the probability function that describes the strength value of a posi-
tion g in a negamax game tree search, and integers a < B, then

P_AB(g, a, B) = <a, 1>, if upper_bound (P,) S a

P_AB(g. &, B) = P_MIN (P_MAX (P,, <at, 15), <B, 1>),

if upper_bound (P;) > a. and lower_bound (P,) < B;

110

P_AB(g, o, P) = <B, 1>, if lower_bound (P,) 2 B.
Proof.
These three loop invariant statements can be summarized by the following generali-
zation, .
P_AB(g, , B) = P_MIN (P_MAX (P, <a, 15), <B, 1>).
The separation of this statement is just for convenience in proving Theorem 3.1 later.
Lemma 5.1 will be proved by induction on the height of position g in the search tree.
If the height of g is O, statement 1 will retumn a probability function
P_MIN (P_MAX (P, , <&, 1>), <, 1>).
Therefore, the loop invariant is true for a terminal node g .

Suppose that the lemma is true for all nodes of height less than A, and g is a posi-
tion whose height in the search tree is A. In the for statement of function P_AB, state-
ment S returns a probability function

TP1 = P_NEG (P_MIN (P_MAX (P, ;, <-B, 1>), <-a, 1>))

= P_MIN (P_MAX (P_NEG (P,))), <a, 1>), <B, 1>)).

If lower_bound (TP1) is equal to P for some j, by the definition of the backed-up stre:gth
value, we must have lower_bound (P,) 2 . Therefore,

P_AB@g,a, B) = P_MIN (P_MAX (P, <a, 1>), <B, 1>)

= <f, 1>.

This justifies the return of statement 8. Otherwise, we can prove

P_MIN (P_MAX (P,, <a, 1>), <, 1>)

= P_MIN (P_MAX (P_MAX (P_NEG (P,). ... P_NEG (P,)), <, 1), <, 1>)

= P_MAX (P_NEG (P_MIN (P_MAX (P, ,, <-B, 1>), <-a;, 1>)), ...,

n
P_NEG (P_MIN (P_MAX (P,,.. <-B, 1>), <-a,, 1>))),

111

for any integers a, ..., @,, where a = a; S @, < ... S a,, = max(lower_bound (P,), @).

Hence the lemma is proved. a

By the above lemma, given a position g as the root of a search tree, probability function
P, can be calculated by calling
P_AB(g, -i, +i).

Theorem S.1. For any position g, function call P_AB(g, -i, +i) will retum a probability
function that describes the strength value of g . O

Note that in function P_AB we can replace statement 1 by
if g is a terminal node then

return P,,
provided we change statement 8 into

ifa2p

then return TPO.

But statement 1

return P_MIN (P_MAX ((P,), <a, 1>), <B, 1>)

made the proof of Lemma 5.1 easier, and it usually returns a VP-list with tighter bounds.

4. A Generalization of Standard Alpha-Beta Pruning
Probability-based alpha-beta pruning algorithm, in fact, is a generalization of the
standard alpha-beta algorithm analyzed by Knuth and Moore{4)]. If the evaluation result
for each terminal node g is a point-value, i.c.
Py(v)=1
for some domain value v, then the function P_AB has a form that is essentially the same
as the algorithm F2 encoded by Knuth and Moore[4]. Therefore, our probability-based

112

alpha-beta algorithm will have similar properties to the point-valued version. In particu-
lar, since for any search tree there always exists an ordering of nodes for which the
alpha-beta algorithm examines the fewest terminal nodes, an equivalent property must
exist for the probability-based version.

Theorem 5.2. Probability-based pruning is optimum in the sense that for any search tree
and any algorithm, denoted as algorithm X, that computes the probability function for the
root position, there is a way of ordering successor nodes so that every terminal node
examined by the probability-based alpha-beta pruning method under this reordering is
also examined by the algorithm X.

Before proving the theorem, let us introdmce .. sywbol A into the functions P_NEG,
P_MAX and P_MIN . The symbol A stands for usdcexsmined value for which the expres-
sions backed up by the game tree search is simplified by the following equations:

AXr =3AAXA=A,

A+IDALA+ADA,
where x and + are the arithmetic multiplication and addition, 7 is a non-zero real number,
and ¢ is any real number. When the symbol A is multiplied by O, the result is O and the
symbol A will not be rolled up. Then the "probability function” P, for a node g in the
given search tree will be defined as follows:

If g is a terminal node left unexamined by algorithm X, for each value v € (-i, i]
P,(v)=2

if g is an examined terminal node, then P, is determined by the evaluation function

of algorithm X;

if g is an interior node, then

P, = P_MAX (P_NEG (P,,),P_NEG (Pyn)).

113

If there is only one value v € [-i, i] for which P (v) = A, then let

P,(v)=1-F P, ().
juv

By induction on the height of a node g in the given search trec, we can prove that if
function P, (v) = A for some v € [-i, i], then different probability functions can be
assigned to the unexamined terminal nodes to get different backed-up probability func-
tions for the node g. The appearance of symbol A in a probability function P, means
that algorithm X cannot solve the game tree rooted at node g, because by assigning
different probabilities to unexamined terminal nodes, P, will be changed.

For each such generalized probability function P, two integer ranges, C, and U,,
can be defined so that the lower bound of C, is the minimum domain value v for which
P,(v)# X and P, (v) >0, and the upper bound of C, is the maximum domain value v for
which Pg(v) # A and Py(v) > 0. Similarly, the lower bound of U, is the minimum
domain value v for which P,(v) = A, the upper bound of U, is the maximum domain
value v for which P, (v) = A. Note that for a position g, one, but not both, of the ranges

C, and U, may be empty.

Lemma 5.2. For a node g, if both the ranges C, and U, are not empty, then one of the

following two situations must be true.

lower_bound (C,) > upper_bound(U,),
or
lower_bound (U,) > upper_bound(C,).
Proof.
By induction on the height of the position g in the given game tree, and the details
are omitted here. a

114

The above lemma characterizes the structure of the probability function P, for any
position g . In fact, we can prove that if the range U, is nonempty, then for any v € U,,

we have

P,(v)=A
For any such value v, P, (v) can assume at least two (in fact, infinitely many) different
probabilities by independently varying the probability function of an unexamined termi-
nal node.

According to the ranges U, and C,, we will say that the position g is solved,
semi -solved or live if the range U, is empty, not empty and not equal to [-i, i], or equal
to [-i, i), respectively. Note that the algorithm X computes the probability function for
the strength value of a position only if the status of the corresponding node is solved.

Lemma 5.3. For any solved interior node g in the given tree, one of its successors g,
must be a solved node such that the upper bound of C,, is less than or equal to the lower
boundofU,j.fOt allj#t.

Proof.

Without loss of generality, suppose node g has only two successors, g and g,.
First, let us assume both ranges U,, and U,, are non-empty. We will show that this
assumption will lead 1o a conclusion that node g is not a solved position.

Let Uy, =[!), u,) and U, =I5, u3), and suppose 4 S 4. Then

P_MAxP_NEG (P,,), P_NEG (Pg))(v) =
for any v € [-uy, -/;]. This shows that g cannot be solved by algorithm X.

Now assume range U, is empty and U,, is not empty. If the upper bound of C,, is

greater than the lower bound of U,,, the probability function P, will have
Py(-c)) =)

115

and
Py(—c,+1)=A4,
where ¢, is the upper bound of the range C,,. Therefore, we must have ¢, < /5, and this

implies the conclusion presented in Lemma 5.3. O

If the range U, is understood as the uncertain part of the domain range (-i, i) for
the position g , we will say that the alpha-beta algorithm P_AB(g, &, B) visits the certain
part of position g when the intersection of the two ranges [o, B] and U, consists of at

most one integer, which is either @ or p.

Lemma 5.4. If algorithm P_AB visits an interior solved node g, then there is an order-
ing of the nodes under g such that P_AB will visit a successor g; of g only if the algo-
rithm X visits it, and when P_AB visits g;, P_AB will visit its certain part.
Proof.

Let P_AB visit g, first, as determined by Lemma 5.3. Nose that g, is such a solved
node that the upper bound of C,, is less than or equal to the lower bound of U, i for all
J #t. Then the reset of a and B will make P_AB ecither visit the certain part of a succes-

sor, g; (j#¢), or return from g . a

Lemma 5.5. If algorithm P_AB visits the certain part of a interior node g, there is an
ordering of the nodes under g such that P_AB will visit a terminal node under g only if
that terminal node is visited by algorithm X.
Proof.

This lemma is proved by induction on the height of g in the given search tree. In
the following, it is assumed that g is visited with a window [a, B]. By Lemma 5.4, we

can suppose position g is semi-solved and, for simplicity, it has only two successors g,

116

and g,. If both of the ranges U,, and U,, are subsets of (-upper_bound (U,),
-lower_bound (U,)], when algorithm P_AB visits g, or g,, P_AB will also visit the cer-
tain part, and the lemma is true by the induction hypothesis. If one of the ranges, for
example, U,,, is not contained in [-upper_bound(U,), -lower_bound(U,)), then,
because
P_NEG(P;)=P_MIN (P,,, P,,),
we must have
-lower_bound (U,) < upper_bound (U,).
This fact implies
-B 2 upper_bound (U,,)
and
Pg,(v)=0

for any v € (upper_bound(U,,)+1, i), or -a < min(lower_bound (U,),
lower_bound(U,,)). In the former case, if P_AB visits g, first, then P_AB will visit the
certain part of node g, with window [-B, -at}, and the function P_AB(g;, -B, -a) retumns
<-B, 1>. Therefore, P_AB will prune g,. In the latter case, the visiting window (-, -a}
does not intersect with either of the two ranges, U,, or U,,. This proves the lemma.
O

Lemma 5.5 implies that there is an ordering of successor nodes in the given search
tree such that if P_AB visits the certain part of a node g that is visited by algorithm X,
then P_AB will visit only those nodes under g that are also visited by algorithm X. We

now turn to the proof of Theorem 5.2.

Proof of Theorem 5.2.

Because the root position g, of the given tree must be a solved node, P_AB(go. -i,

117

t) visits the certain part of go. By Lemma 5.5, Theorem 5.2 follows. O

Since a search tree is finite, there mnst be an algorithm, say A, that visits the least
number of terminal nodes among all the algorithms that solv the search tree. Theorem
5.2 implies that by ordering successors in the search tree, P_AB will visit only those ter-
minal nodes that are visited by the algorithm A. Therefore, by reordering successor
nodes in a search tree, the algorithm P_AB will visit the least number of terminal nodes

among all the algorithms that solve the tree.

S. Applications

Some variations or applications of the probability-based alpha-beta algorithm P_AB
are now presented. It is expected that the algorithm P_AB will have as many applica-
tions as its point-value version, as studied by Knuth and Moore[4). For example, P_AB
can be used in the iterative deepening search version for point-value game tree
search[19}, and also to other well-studied alpha-beta pruning based algorithms{17]. Only
three examples of the applications of P_AB will be bricfly described here.

5.1. Range-Based Game Tree Search

In range-based game tree search, the merit value ®(g) of a position g is described
by a range [/, 4], where [and u are the lower and upper bounds of all possible merit
values of g [10). If g is a terminal node in the search tree, the bounds are returned by an
cvaluation function; otherwise, they will be backed-up from its successors g 4, ..., g, by

u =max(=l,,...,—l,) and | =max(-uy, ..., =iy),

where g, ..., 8, are described by the ranges [{,, u,], ..., [/, 4,], respectively.

The probability-based alpha-beta algorithm can be directly used as a range-based
one if we assume that the merit value ®(g) for any terminal node g is uniformly distri-
buted among the values of the range [/, 4], and then ignore the probabilities of the values

118

between the lower and upper bounds of the backed-up probability function for the root
position. In this way, the range for the possible merit values of an initial position can be
backed up by P_AB. Since the formulas for the operations of range-based game tree
search are much simpler than those for probability operations, the following range func-
tions R_NEG,R_MAX and R_MIN can be substituted for P NEG , P_MAX and P_MIN

in the function P_AB
R_NEG([l,u))=[-u,-1],
R_MAX (1, u,), ... ln, 4y])) = [max (I, ..., Iy), max (u,, ..., 4y)]
R_MIN (I, u,). ... Iy, u, D) =[min(l,, ..., I), min (i, ..., 4,)]

to get the so called range-based alpha-beta pruning algorithm R_AB. Note that this
range-based algorithm makes use of depth-first traversing to search a tree, and so is
different from B*{10].

function R_AB(g : node; a, P: integer): range;
var

TRO, TR1: range;

j: integer ;
begin
1. if g is a terminal node then

return R_MIN (R_MAX R, (a, a)), [B. B]);
comment: Range R, is obtained by evaluating g
from the corresponding player’s viewpoint.

2. determine the successor positions, gy, ..., 84, 0f 8, where n > 0;

119

3. TRO:=[a,a];
4. forj :=1ton do

begin
5. TR1:=R_NEG(R_AB(;, -B, -a));
6. TRO:=R_MAX(TRO, TR1);
7. a:=lower_bound(TRO)
8. ifa=p

then return TRO;

end;

9. return TRO;

5.2. Informed Game Tree Search

Ibaraki[20] recently proposed an "informed" game tree search model based on the
availability of some heuristic information, embodied as upper bound, U_bound (S), and
lower bound, L_bound (g), on the merit value of an interior node g. The utilization of
this kind of information has been recognized as a key factor for designing good game-
playing programs(20](17]). The heuristic information available at interior nodes can be
used in probability-based alpha-beta pruning by replacing the statement 3 of P_AB with
the following series of statements:
31 a ;= max(a, L_bound(S));
32 B :=min(B, U_bound(S))
3.3 ifa=p then return <f, 1>;

34 TPO :=<a, 1>;

120

Because the new window after the execution of statement 3.4 is usually a proper subset
of the parameter window, this narrower window can be used to prune more nodes.

5.3. Probability-Based B*—PB*

The generalization of B* algorithm, PB*[11], makes use of a best-first search stra-
tegy. Since relatively reliable bounds for a serminal position can be generated with some
such technique as the null-move([21], we can suppose that the expansion of a terminal
node in the best-first search, and back-up of information from its successors will not
increase the upper bound or decrease the lower bound of the possible merit values of the
expanded node. This assumption is similar to the one employed by Ibaraki(20).

It can be proved that PB* works in the model proposed in Section 2 as well. Asa
matter of fact, the probability-based alpha-beta pruning technique can be incorporated
into PB* to cut off some nodes from the scarch. In PB*, the following three operations
are repeated until a best-move is found: find a potential best node, find a path from the
root position of search tree to a terminal, and expand the terminal node. Suppose a node
g is called with a search window [a, B]. When we choose one node g, from the succes-
SOTS g1, ..., 8, Of a node g according to the ProveBest or DisproveRest strategy (cf. [11]),
the probability function

P =P_MIN (P_MAX (P_NEG (P_MIN (P,,, ..., P;), <o, 1>), <B, 1>)
can be used to set a new a by
o := lower_bound (P).

If a = B, then the node g; should not be searched and a new strategy should be chosen;
otherwise, the node g; will be visited with search window [-B, -a]. When a node g is
expanded, each successor g; is examined as above, and if a = B, the successors will not
be included in the search tree. In this way, both the search time and the memory required
to store the search tree will be reduced.

121

6. Pruning Efficiency

Random trees can be used to assess the pruning efficiency of algorithm P_AB.
Given integers d and n, a random tree can be generated so that each interior node has
less than n successor nodes and the tree consists of at most d levels. The lower and upper
bounds of the probability function for the merit value of each node is also generated ran-
domly. An assumption is that the root position of each such random tree has a
preselected probability function for its merit value. Therefore, using a variation on an
carlier scheme [17], the probability function (or its bounds) for the root position is gen-
crated first, followed by the probability functions for the successor positions. To gen-
crate consistent probability functions for the successor nodes, if a node g has lower and
upper bounds / and u respectively, one of the successors is randomly chosen and its
upper bound is set to the minimum upper bound -/. The minimum lower bound -u is
similarly assigned to another successor. The lower bounds of other successor nodes will
be determined by randomly choosing integers between -u and i, and the upper bounds by
choosing integers between -/ and i, where i is the domain bound. Since the lower
bound and upper bound of a successor are chosen randomly and independently, the
former may be greater than the latter; if this is so, the two bounds are exchanged.

For the efficiency experiment on the probability-based alpha-beta pruning scheme,
ten random trees were generated for each combination of d and n, where d =5, ..., 8 and
n =4, .., 7. Here, the domain value i was set to 6, i.c., the domain of the probability
functions was the integer range [-6, 6). With these settings, Table 5.1 presents the total
number of terminal nodes for each set of ten trees. In the recursive function P_AB, pro-
bability functions are passed as parameters, but only their lower and upper bounds are
used in the pruning. In this case, since only the bounds of the probability functions are
used, P_AB reduces to the range-based pruning algorithm, R_AB. For our test data, the
number of terminal nodes visited by P_AB (or R_AB) for each combination of d and n

122

is shown in Table 5.2. Table 5.3 presents the efficiency of the pruning and also shows
that the relative efficiency, as measured by the fraction of terminal nodes that are pruned
by P_AR, increases as either the width or depth of search tree increases. Informally

speaking, the larger the search tree, the greater the fraction of nodes that will be pruned
by probability-based alpha-beta.

Table 5.1. The Number of Terminal Nodes in Ten (d, n)-Random-Trees

Bepth "Width Limit ()
(d)
4 s 6 7
5 323 919 1943 2022
6 623 2865 5621 9827
7 | 2149 9529 21820 30402
8 | 3537 26371 70289 220723

Table 5.2. The Number of Terminal Nodes Visited by P_AB

Depth Width Limit (n)
@
4 3 6 7
5 250 692 1100 1044
6 538 1481 3074 3827
7 1371 5110 10076 11528
8 2593 14268 29867 72564

Table 5.3. The Efficiency of P_AB for Different (d, n)

"Depth Width Limit (n)
@
4 5 6 7
5 22 24 43 48
6 13 48 45 61
7 36 46 53 62
8 26 AS 57 67

123

Chapter 6

Conclusions

1. Contributions

This thesis studies computer game playing. It provides some new results for the
topics of game tree modeling, minimax pathology investigation, pruning efficiency
analysis, and position evaluation representation. It focuses on the application of probabil-
ities. These results are summarizid in the following paragraphs.

In Chapter 2, a new probabilistic model, called node-dependent minimax game tree,
for game trees is proposed. In this model, the node-value dependence is described with
conditional probabilitics. Instead of randomly assigning merit values 0 leaf nodes,
which has been commonly done, the root node of a uniform tree is assigned a merit value
randomly first, then the values of leaf nodes are randomly determined by the conditional
probabilities in a top-down manner. In a node-dependent minimax gome tree, ine values
of leaf nodes are no longer independent of each other, although they can be ideatically
distributed random variables. The node-dependent minimax game tree has some interest-
ing properties, which can be utilized 10 simulate real games. These properties are not
present in an independent random uniform game tree. They are exemplified with bi-
valued binary dependent minimax game trees. An interesting property is that for any real
number po with 0 < pg < 1, pairs of values of depeadent factors £, and f 3, which are
defined as conditional probabilities, can be found so that both the root and the leaf nodes
have the same probability pg to receive value 1 (or 0). By varying the dependent factors
in a game tree, the first player Max may have more chances 10 win the game but there are
fewer win leaf nodes in the ree. The flexibility of node-dependent minimax game trees

124

125

reflects the great variety of real games.

Chapter 3 investigates the curious phenomenon of minimax pathology, which
appears in theoretical study but seldomly in practice or can be avouded, is investigated. A
class of two-player zero-sum perfect-information board-splitting games, which are
related to dependent minimax game trees, are used to obtain some new observations.
First, minimax search error is modeled with bi-valued evaluation functions. It is shown
that for some games and evaluation functions, minimax back-up reduces the error propa-
gation. In other words, for some combinations of the measures of node-value depen-
dence and evaluation errors, the probability for making a wrong decision at the root node
is reduced by a deeper search. This gives a positive proof that minimax back-up can
benefit game tree search. Mathematical formulas are developed for computing the proba-
bilities of making a correct decision in node-dependent trees when searching to different
depths with a piece-counting evaluation function. The caiculation provides strong evi-
dence of a relationship between minimax pathology and node-value dependence. The
analysis results imply that the strong correlation of the sibling node values in real games

is a good explanation for the success of minimax search.

Chapter 4 presents a new method for analyzing the efficiency of the most commonly
used game tree search algorithm, the alpha-beta pruning algorithm. This method works
on the node-dependent minimax game trees and follows a top-down recursive pattern.
The effect of a tight window on the efficiency of alpha-beta pruning is also discussed.
Under the assumption of alpha-beta pruning with tight window, recursive equations for
the average number of terminal nodes visited in a bi-valued binary node-dependent game
tree are derived. The analysis of the effect of node-valuc dependence on the pruning
efficiency is based on their solutions.

In Chapter S, the efficient search scheme, depth-first traversal, is introduced into
probability-based game tree search. It is shown that when the utility of a node is

126

described by probabilities, a-B bounded windows can be used to cut off some subtrees
from search. It is also shown that probability-based alpha-beta pruning can be viewed as
a generalization of the standard alpha-beta game tree search algorithm and that it inherits
some good properties from its point-value version. Several variations of probability-
based alpha-beta game tree pruning are presented, one of which is the "degeneration” of
this probability-based algorithm into a range-based one. It is indicated that this
probability-based game tree pruning technique would have as many applications as its
point-value version. Probability experiments are used to show that i can be exploited to

effectively prune the search of some subtrees.

2. Future Work

In this thesis, the new game tree model, the node-dependent minimax game tree, is
essentially a mathematical model. No attempts have been made to relate its parameters
to real games like chess, checkers and GO. An open problem is how to quantify the con-
ditional probabilities of the node-dependent minimax game trees for these real games. In

this way, the relationship between this new model and real games can be revealed.

The node-dependent minimax game trees have been discussed for analyzing the
alpha-beta algorithm and investigating minimax pathology. There are many other game
tree search algorithms. How to analyze other game tree search algorithms with the
dependent game trees is a problem to be solved.

Although the node-dependent game tree has a good property that influence of the
probability for the root node to take a merit value on the probability for a terminal node
to take the merit value is decreased along with the increase of the height of the tree, we
still can introduce more randomness into this model. One of the possible improvements
introduces some randomness into each ievel. In this way, the effects of upper level nodes
could be reduced. This randomness introduction is another new problem. For another

127

possible improvement, we can delay the merit value determining for the nodes at several
upper-levels, and randomly choose merit values for the nodes at an interior level.

As shown in the last chapter, the probability-based alpha-beta pruning algorithm
exploits depth-first search in a game tree. A natural problem is how to make use of the
probabilities provided by evaluation function to conduct a more “intelligent" search. In
other words, the search front should be determined by the probabilities of the current leaf
nodes in the search tree rather than by a predefined depth limit. If the methods of the
probability-based B*, presented by Palay [11] and the probability-based alpha-beta prun-
ing algorithm, presented here, could be combined, both the search efficiency and search
quality could be increased.

128

References

1.

10.

11.

J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving,
Addison-Wesley Publishing Company, Reading, Massachusetts, 1984,

J. Pearl, Asymptotic Propertics of Minimax Trees and Game-Searching
Procedures, Artificial Intelligence 14, (1980), pp. 113-138.

D. S. Nau, The Last Player Theorem, Artificial Intelligence 18, (1982), pp. 53-65.
D. E. Knuth and R. W. Moore, An Analysis of Alpha-Beta Pruning, Artificial
Intelligence 6, (1975), pp. 293-326.

S. H. Fuller, J. G. Gaschnig and J. 1. Gillogly, Analysis of the Alpha-Beta Pruning
Algorithm, Departinent of Computer Science Report, Camegie-Mellon University,
July 1973.

D. S. Nau, An Investigation of the Causes of Pathology in Games, Arificial
Intelligence 19, (1982), pp. 257-278.

J. Pearl, On the Nature of Pathology ‘- ~ me Searching, Artificial Intelligence 20,
(1983), pp. 427-453.

D. F. Beal, Benefits of Minimax Search, Advances in Computer Chess 3, (1982),
pp. 17-24.

M. M. Newbom, The efficiency of the Alpha-Beta Search on Trees with Branch-
dependent Terminal Nodes Scores, Artificial Intelligence 8, (1977), pp. 137-153.

H. Berliner, The B* Tree Search Algorithm: A Best-First Proof Procedure,
Ariificial Intelligence 12, (1979), pp. 23-40.

A. J. Palay, Searching with Probabilities, Pitman Advanced Publishing Program,
Boston, 1985. Also, Ph. D. Thesis, Department of Computer Science Report,
Carmnegie-Mellon University, 1983.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

129

G. M. Baudet, On the Branching Factor of the Alpha-Beta Pruning Algorithm,
Artificial Intelligence 10, (1978), pp. 173-199.

M. M. Newborn, Computer Chess: Recent Progress and Future Expectation, in
Information Technology, J. Moneta (ed.), 1978, pp. 189-192.

K. Thompson, Computer Chess Strength, in Advances in Computer Chess 3, M. R.
B. Clarke (ed.), 1982, pp. 55-56.

D. F. Beal, An Analysis of Minimax, Advances in Computer Chess 2, (1980), pp.
103-109.

A. L. Brudno, Bounds and Valuations for Abridging the Search of Estimates,
Problems of Cybernetics 10, (1963), pp. 225-241. Translation of Russian original
appearing in Problemy Kibernetiki 10, pp. 141-150.

T. A. Marsland, A. Reinefeld and J. Schaeffer, Low Overhead Al matives to
SSS*, Arrificial Intelligence 31, (1987), pp. 185-199.

J. L. Mott, A. Kandel and T. P. Baker, Discrete Mathematics for Computer
Scientist, Reston Publishing Company, Inc., Reston, Virginia, 1983.

D. J. Slate and L. R. Atkin, Chess 4.5-The Northwestern University Chess
Program, in Chess Skill in Man and Machine, P. Frey (ed.), Springer-Verlag, 1977,
pp. 82-118.

T. Ibaraki, Generalization of Alpha-Beta and SSS* Search Procedures, Artificial
Intelligence 29, (1986), pp. 73-117.

D. Beal, A Generalized Quiescence Search Algorithm, Artificial Intelligence, (to
appear) , 1988. Also, Experiments with the null move, Advances in Computer
Chess S, Elsevier, pp. 65-79.

