
If debugging is the process of removing bugs, then programming must be the
process of putting them in.

– Edsger W. Dijkstra.
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Abstract

Software can be considered a live entity, as it undergoes many alterations through-

out its lifecycle. Therefore, code can become rather complex and difficult to un-

derstand. More specifically in object-oriented systems, classes may become very

large and less cohesive. In order to identify such problematic cases, existing ap-

proaches have proposed the use of cohesion metrics. While metrics can identify

classes with low cohesion, they usually cannot identify new or independent con-

cepts. In this work, we propose a class decomposition method using an clustering

algorithm based on the Jaccard distance between class members. The methodology

is able to identify new concepts and rank the solutions according to their impact on

the design quality of the system. The methodology was evaluated in terms of as-

sessment by designers, expert assessment and metrics. The evaluation showed the

ability of the method to identify new recognizable concepts and improve the design

quality of the underlying system.
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Chapter 1

Introduction

Software is being developed throughout its life cycle and may constantly change

even well after its release. These changes may be perfective, i.e., changes that im-

prove the software, e.g., by adding new features, corrective, i.e., changes that repair

defects or remove bugs, adaptive, i.e., changes to adapt to changing environments,

e.g., new operating systems or new programming language features, and,preventive,

i.e., changes that improve the maintainability of the software. Furthermore, changes

can occur because the development team or the programming practices may evolve.

Due to these changes the initial design of the system may deviate from its orig-

inal rationale. If the changes are not properly monitored and the design is not

adapted properly some very important design principles may be violated. This vio-

lation results in the appearance of design problems in the code also known as “bad

smells” [10]. To remove bad smells from the code Opdyke [19] proposed the pro-

cess of refactoring. According to this notion, the designer introduces some small

formalized changes to the code which are supposed to solve the design problems

and at the same time preserve the behavior of the program.

This work deals with a specific bad smell called “God Class” [10]. In object-

oriented programming, there is a design principle which suggests that a class should

implement only one concept [18]. From a maintenance point of view, this can also

mean that a class should have only one reason to change. The violation of this prin-

ciple results in complex, unwieldy, inelegant, difficult to understand and maintain

modules, which in the case of object-oriented software may manifest as large and

non-cohesive “God Classes”. This violation can occur in two ways: either a class
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holds a lot of the system’s data in terms of number of attributes (Data God Class

or Lazy Class) or it has a great portion of the system’s functionality in terms of

number and complexity of methods (Behavioral God Class). In the first case, the

designer can either redistribute the attributes of the “God Class” or move function-

ality (i.e., methods) from other classes closer to the data. In the second case, the

designer can either move functionality from the “God Class” closer to the data of

other classes or split the class by extracting a cohesive and independent piece of

functionality [10] [5]. The latter is a refactoring called “Extract Class”.

We aim at identifying “Extract Class” opportunities by employing a clustering

technique. As Tzerpos and Holt [28] suggest, clustering methods have a great po-

tential of being used in various Software Engineering fields. Wiggerts [30] gives

a detailed survey of clustering methods and shows how they are or can be used

for software remodularization. More specifically, clustering methods can identify

conceptually meaningful groups of similar entities [25]. The intuition behind using

clustering in this case is that clusters may represent cohesive groups of class mem-

bers (methods and attributes) that have a distinct functionality and can be extracted

as separate classes.

The identification of a problematic God class and the choice of a specific refac-

toring to improve it are not trivial tasks and can require the investment of substantial

effort by the developers. Even when a case requiring the application of the Extract

Class refactoring has been identified, its actual application to the code base is not

trivial considering the need of ensuring (a) the syntactic correctness of the codebase

and (b) the preservation of the original (i.e., before the refactoring) observable be-

havior of the system. This is why it is desirable to have IDEs support the process of

suggesting on potentially beneficial Extract Class refactorings and applying them.

Unfortunately, such support is not currently available for Extract Class refactorings.

For example, Eclipse1 allows the user to extract only the attributes in a new class

and then move the methods by performing the Move Method refactoring individ-

ually, thus, introducing some unnecessary changes. Therefore, the identification

methodology and the application of the refactoring were implemented in an Eclipse

1At the time the paper was written, Eclipse was in version 3.6.
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plugin that addresses this need; namely, it automatically identifies Extract Class

refactoring opportunities, orders them according to their anticipated benefits to the

system design, and after the developer selects one, it applies it in a fully automated

manner.

The contributions of this thesis are the following:

1. Identification of new concepts. We define a concept as a distinct entity or

abstraction for which a single class provides a description. Using a cluster-

ing algorithm, which has the ability to identify conceptually related groups

of entities, the proposed methodology tries to identify distinct concepts in-

terleaved with one or more other concepts and defined in a single class. The

goal of the method is to distinguish the various concepts and separate them in

different classes. The identification methodology is discussed in Section 3.1

and its ability to identify new concepts is evaluated by human assessment in

Sections 5.1 and 5.2.

2. Behavior preserving refactoring solutions for the identified problematic classes.

When performing refactorings, one has to make sure that the changes will not

affect the functionality of the system or the syntactic correctness of the code.

In these lines, the suggested refactorings are subject to preconditions, which

are discussed in Section 3.1.3, in order to ensure that no problems will be

caused to the system. Furthermore, instead of suggesting a series of refactor-

ings as one optimal solution, the developer has the possibility to select one

refactoring each time and apply them in a stepwise manner. This is because in

Extract Class refactorings, a suggestion might be a good design solution but

might not agree with the developer’s conceptual criteria. This is in contrast

to works discussed in Section 2.2.

3. Ranking of the identified refactoring opportunities based on their impact on

the design quality as measured by the Entity Placement metric [27]. Because

a set of suggested refactorings is provided by the method, it is important to

guide the developers as they decide which suggestion should be preferred.
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To rank the suggestions, the methodology employs Entity Placement, a com-

bined metric that can express coupling and cohesion. In Section 5.3, we eval-

uate its ability to quantify the impact on the design of the suggested refactor-

ing.

4. Automatic application of a selected refactoring, so that it preserves the syn-

tactic correctness of the system and its external behavior. While the identi-

fication of the Extract Class refactoring opportunities is a problem, the ap-

plication of a refactoring is yet another important issue. In order to preserve

the syntax and the behavior of the system, the developer has to check many

things and make a lot of changes across the project, if the refactoring was

to be performed manually. The mechanics for the application of an Extract

Class refactoring are described in Section 3.2.

The rest of thesis is organized as follows.

Chapter 2 presents a review of the related literature. We discuss works that

use metrics, heuristics or visualizations to identify problematic classes in object-

oriented systems, works that use clustering methods or concept analysis to remodu-

larize software systems, recover architecture or transform a system from procedural

to object-oriented and works that employ data mining techniques to identify key

classes in a system.

Chapter 3 describes the identification of refactoring opportunities and the me-

chanics of the application of the suggested refactorings in details. We discuss the

clustering technique used and explain why it was preferred over others. Then, we go

on to discuss in detail the various parameters of the clustering algorithm: distance

metric, distance threshold, linkage method. Then, we talk about the filtering of the

suggested refactorings based on conceptual and behavior preserving preconditions.

The chapter continues with a discussion about Entity Placement: its definition and

how it was used to rank the results. Finally, we present all the changes that need to

be performed to apply an Extract Class refactoring.

Chapter 4 presents the details about the implementation of the Eclipse plugin.

We discuss all the libraries and tools that were required to implement the application
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of the refactorings. The chapter also presents an example of using the tool on a real

project. It describes all the steps from the identification of refactoring opportunities

to the application of the suggested refactorings.

Chapter5 presents the results of the evaluation process. We evaluated the pro-

posed methodology by testing it on various systems. First, it was applied on two

small systems and asked directly the designers for their opinion on the suggested

refactorings. Second, we tried the methodology on JHotDraw (version 5.3), a larger

and more extensively evaluated software. We applied a series of refactorings sug-

gested by the tool and then asked a professional, who specializes in software quality

evaluation, to tell us whether the suggestions constituted good design solutions and

improved the understandability of the system. Third, we measured the impact of the

applied refactorings on the design quality of the system using traditional coupling

and cohesion metrics and compared the results with the entity-placement measure-

ments.

Chapter6 concludes this work, summarizing its main points and the results of

the evaluation process as well as discussing our future plans.
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Chapter 2

Related Work

This chapter reviews the related literature and divides it in three groups. The first

group is about identification of problematic classes with low cohesion or key classes

that have a big portion of the system’s functionality and are intensively maintained.

The second group is about works that have used clustering in software remodular-

ization, architecture recovery or migration of legacy systems. The final group is

about works that identify Extract Class opportunities and suggest extraction solu-

tions.

2.1 Identification of God Classes

Several research works have dealt with the problem of identifying God classes.

Trifu and Marinescu [26] propose a metrics-based method. They define God classes

as “large, non-cohesive classes that have access to many foreign data” and use a

formula based on complexity, cohesion and coupling metrics to determine whether

a class is problematic or not. This method suffers from the fact that the thresholds

for the metrics are empirically or statistically determined and thus may differ from

system to system.

Tahvildari and Kontogiannis [24] propose two quality design heuristics and use

a diagnosis algorithm based on complexity, cohesion and coupling metrics to iden-

tify design flaws. In this case, the thresholds are less tight and vaguely defined

(high/low) and may require human input.

DuBois et al. [7] propose a metrics oriented approach, where their main aim is
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to improve the metrics rather than use them as an identification criterion. For the

identification, they use “guidelines” based on conceptual and macroscopic criteria.

For the God classes, the respective guideline says: “Separate the responsibilities.

Extract those groups of methods and attributes that neither use nor are used by

other methods or attributes”. This method offers no automation whatsoever and the

guidelines are not formalized in a way that would allow a degree of automation.

Finally, Demeyer et al. [5] suggest some conceptual criteria to identify the God

classes. According to this approach, a god class is a low cohesive and memory con-

suming class. It usually has abstract names like “Controller”, “Manager”, “Driver”

or “System”. Any change to the system may lead to a change of this class. It is

often called the “heart of the system”. In most of the cases, it is the hardest class to

maintain.

All of the above methods might be able to identify problematic classes, but

it remains uncertain whether they can produce conceptually correct improvement

suggestions which are meaningful to the designer.

Zaidman and Demeyer [31] propose a method to identify key classes in object

oriented systems based on coupling. They employ HITS,a webmining algorithm.

This algorithm has the ability to incorporate the indirect coupling between classes

in the calculation of the total coupling. This is achieved by calculating the transitive

closure of the class relationships. Their ultimate objective is to improve the under-

standability of the code and help new developers become familiar with a system by

exploring the key classes.

In a similar work, Chatzigeorgiou [4] goes one step further as to illustrate what

would be the effect of decomposing the key class on the overall quality of the sys-

tem. He proposes to redistribute the functionality of the key class to the rest of the

system. While both approaches (Move Method and Extract Class) constitute valid

solutions to the Feature Envy bad smell according to Fowler, in the case discussed

here, the decision whether the entities suggested to be extracted will actually be

extracted in a new class or moved to an existing class of the system is left to the

designer.
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2.2 Clustering in Software Reengineering

In the Software Reengineering literature, there have been many works on remodu-

larizing software systems. Mancoridis et al. [16] propose a novel methodology for

remodularizing a software system. The aim is to produce good clusters in terms of

high cohesion (within the clusters) and low coupling (between the clusters). They

mainly use hill-climbing and genetic algorithms. They produce the Module Depen-

dency Graph based on the source code and then apply clustering on the resulting

graph. They employ the Modularization Quality measure to evaluate the clusters

that the algorithm produces. This measure favors Intra-connectivity and penalizes

Inter-connectivity. After finding a sub-optimal partition using the hill-climbing and

genetic algorithms, they build a hierarchy of the clusters using the Hierarchical

clustering algorithm.

Doval et al. [6] consider the problem of identifying a good partitioning as an

optimization problem. They propose a genetic algorithm as a means to partition

large software systems using as an objective function the Modularization Quality

measure defined in [16]. In a similar work, Shokoufandeh et al. [22] apply a spec-

tral clustering algorithm in order to remodularize a system. They also view this

process as an optimization problem using the Modularization Quality measure as

an objective function.

Sartipi and Kontogiannis [21] propose a semi-supervised clustering framework

for recovering the software architecture. They analyze the source code to retrieve

the component similarity, they cluster the components and, finally, the user assigns

the remaining modules to their closest clusters or reallocates the modules among the

clusters. They employ the maximal association property (i.e., maximum number

of shared features) to introduce two new similarity measures, namely association

between entities and mutual association between components. During the clustering

phase the user may select among a set of main seeds, around which the new cluster

will be built, or manually create a cluster.

van Deursen and Kuipers [29] are using clustering to identify objects in the

concept of migrating legacy systems in object technology. They also use concept
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analysis to solve the same problem and they have identified two shortcomings of

clustering: an element can exist only in one cluster and an element can arbitrarily

go to different clusters in different runs of the clustering algorithm. In the problem

presented here neither issue is a shortcoming. For the first, elements are preferred to

be in only one cluster because attributes and methods should be declared only in one

class. For the second, if an element is equally close to two clusters these clusters

will eventually be merged in a higher threshold value and thus will be presented as

a suggested extraction. Another difference between cluster and concept analysis is

that the latter can identify all possible partitions. Up to a degree this problem is

overcome by running the algorithm for multiple threshold values and merging the

results accordingly.

2.3 Identification of Extract Class opportunities

Simon et al. [23] suggest that visualization techniques can be used to identify Ex-

tract Class opportunities. This methodology defines dependency sets for each type

of class members (attributes and methods) in order to calculate the Jaccard distance

between class members. Using mapping techniques, the entities are visually pre-

sented and then it is upon the designer to decide whether there is an opportunity to

extract a class or not. The issue with visualization is that the real spatial structure

of the classes is unknown. Moreover, visualizing large classes can overwhelm the

designer and make it difficult for him to identify clear partitions. The methodology

proposed in this thesis goes one step further by identifying clusters of cohesive en-

tities and presenting them to the designer ranked according to their impact on the

design of the whole system.

In a recent work, Joshi and Joshi [12] consider the problem of classes with low

cohesion as a graph partitioning problem. They focus on improving class cohesion

by examining lattices based on the dependencies between attributes and methods.

A shortcoming of this method, as identified by the authors, is that for large systems

the lattices can become very complex and thus it is more difficult for the designer

to inspect the lattice visually and identify problematic cases. Moreover, while this
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method focuses on improving the cohesion of a class, it neglects the conceptual

criteria of the suggestions. The classes suggested to be extracted can only contain

methods, which are insufficient to describe a concept. Finally, there is no indication

that the suggested refactorings will not affect the behavior of the program.

Finally, De Lucia et al. [15] propose a methodology that takes into account

both structural and conceptual criteria. They build a weighted graph of the class

methods based on structural and semantic cohesion metrics, which then is split

using a MaxFlow-MinCut algorithm to produce more cohesive classes. However,

the semantic cohesion metric is based on the names of classes and entities which

can be arbitrary and thus the results highly depend on the naming policies used by

the developers of a project. Furthermore, by bipartitioning the graph it is possible

to loose potential clusters. For example, a class might consist of more than two

cohesive subclasses which could not be identified by splitting the class. Finally, the

attributes are not considered during the calculation of the graph, but they are moved

to the extracted class. This might have undesirable effects on the coupling of the

system.

2.4 Remarks

Compared to the works of the first group, the goal of the proposed method is not

to identify God classes. Every class of the system is examined with the aim to

find those classes who can potentially benefit from an extraction, assuming that

more than one distinct concepts are defined in the body of the class. If a suggested

extraction improves the overall quality of the system in terms of cohesion and cou-

pling, it is presented to the user. This way, a good opportunity can be identified

even in a class which did not initially seem a problematic one. Moreover, these

works stop at the identification of the problems and do not suggest any solutions,

while the presented work offers a complete solution from identifying the opportu-

nities to suggesting proper refactorings and finally applying these refactorings in an

automatic manner.

The works in the second group propose remodularization of software modules
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in a higher level, like packages. The proposed method focuses on software re-

modularization on a class level. The criteria appropriate for these two types of

remodularization are different. Classes may be reorganized into packages in order

to have their releases coincide (as new features are requested from them during

maintenance). Or they may be organized according to inheritance hierarchies. On

the other hand, the requirement for reorganizing attributes and methods into new

classes is to better express and communicate the conceptual model of the applica-

tion domain.

Another difference between the philosophy behind these works and the pro-

posed approach, lies in the fact that they suggest a single solution that is close to

the optimal one, which the designer should accept or reject in its entirety. On the

contrary, the proposed method is essentially a stepwise approach, that extracts a set

of refactoring suggestions ranked by an appropriate metric.This offers the advan-

tage of gradual change of a system, allowing the designer to assess the conceptual

integrity of the refactoring suggestions at each step.
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Chapter 3

Methodology

The goal of the proposed methodology is to improve the design and the understand-

ability of an object-oriented system by means of identification and application of

Extract Class refactorings. In this chapter, we discuss in details the identification

methodology including all the issues we had to face with clustering (algorithm,

distance metric, distance thresholds). We also describe how the illegal candidate

classes were eliminated using preconditions and how the suggested refactorings

were ranked using the Entity Placement metric. Finally, we describe the mechanics

for applying an Extract Class refactoring.

3.1 Identification of Extract Class opportunities

The identification of the Extract Class opportunities consists of three parts. Firstly,

dependency information from the code of the examined project is used in order

to calculate distances between class members and then a clustering algorithm is

applied to identify cohesive groups of entities that can be extracted as separate

classes. Secondly, a set of rules is employed which ensure that the classes suggested

to be extracted have a certain degree of functionality and the suggested refactorings

preserve the behavior of the program. Finally, the suggested refactorings are ranked

according to their impact on the design quality of the system.

The identification method is applied to every class of a system regardless of its

cohesion. In this way, there is no need for defining thresholds according to which

a class will be examined or not. After all, a single threshold might not be sufficient
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to identify all problematic classes.

3.1.1 Identification of candidate classes

Although in the process many clustering algorithms were considered, the goal was

to find an algorithm that would require minimum human input and minimum a

priori knowledge on the dataset.

A partitioning algorithm like K-means was considered at first. In this family of

algorithms the aim is to separate the entities in a number of clusters. However, this

requires that the number of final clusters is known beforehand. In the problem of

class partitioning, one cannot be sure about this number. K-means, as it is tradition-

ally used in data mining, requires that the entities are placed in a feature space (i.e.,

space dimensions correspond to the data object attributes). However, the spatial

structure of a class cannot be estimated accurately. This is because it is not known

how many dimensions are sufficient to map class members in space and what these

dimensions represent. Furthermore trying every single possible value for k can de-

teriorate the performance of the methodology dramatically. Partitioning algorithms

are also not robust to noise, i.e., entities that are too far from the others and cannot

be included in any cluster. As it turns out object-oriented classes usually produce

rather sparse similarity matrices (i.e., a lot of zero values) which correspond to a

large amount of noise.

Second, a density-based algorithm was considered since they are more robust

to noise and require no knowledge about the structure of the dataset. The aim here

is to identify dense areas of entities in the dataset. However, these algorithms are

usually more parameterized. A density based algorithm, like DBSCAN [8], needs

two parameters: the ε-neighborhood which defines a radius of a point around which

a dense subgroup (not a cluster) can be defined and theMinPts which corresponds

to the minimum points that need to exist in a subgroup. Then, the subgroups are

iteratively merged to form the dense clusters. While an ε value can be defined like

the distance threshold, it is not clear what the minimum number of entities in a

neighborhood (i.e., the minimum number of members in a class) should be.

Finally, spectral clustering algorithms were considered, since they require no
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input. These algorithms assume the existence of a graph and the aim is to partition

this graph. However, such techniques work better with a weighted graph where

the weight of each edge can be the aggregate number of uses (attribute accesses or

method invocations) between the connected entities. In the Extract Class problem,

the existence of a dependency is more important than its strength. In [22], a spectral

clustering algorithm with unary weights is used, but it is combined with optimiza-

tion techniques. Such option was not preferred since the aim of the methodology

is to suggest a set of good design solutions rather than a single optimal partitioning

solution.

Eventually, a hierarchical agglomerative algorithm was used. This algorithm

works as follows: Firstly, it assigns each entity to a single cluster. In each iteration

it merges the two closest clusters. Finally, the algorithm terminates when all entities

are contained in a single cluster. Eventually, the outcome of the algorithm is a

hierarchy of clusters. To determine the actual clusters a threshold value for the

minimum distance must be chosen as a cut-off value. The hierarchy of the clusters

is usually represented by a dendrogram. An example of a dendrogram is shown in

Figure 3.3. The leaves of the tree represent the entities, the root is the final cluster

and the intermediate nodes are the actual clusters. The height of the tree represents

the different levels of the distance threshold in which two clusters were merged.

In a hierarchical agglomerative clustering algorithm there are two aspects that

one should pay attention to. The first is the linkage method, namely the distance

criteria according to which two clusters will be merged and the second is the dis-

tance threshold, namely the maximum distance above which no more clusters can

be merged.

There are several methods used to determine the closest clusters including the

maximum distance between the members of two clusters (complete linkage), the

average distance (average linkage) or the minimum distance (single linkage). Maq-

bool and Babri [17] also propose the Weighted Combined Algorithm as a linkage

method. This algorithm takes into account the strength of the dependency between

two entities (i.e., the number of times an entity is used by another entity). Although

this approach may be good for remodularization in higher level, in lower levels
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the presence of a dependency is considered to be more important than its strength.

According to Anquetil and Lethbridge [2] complete linkage favors more cohesive

clusters, the single linkage less coupled clusters and average linkage is somewhere

in-between. As this method is based on class member dependencies, the cohesion

of the newly created classes is expected to be of a fair or very good level. In other

words, as all entities will be connected, the algorithm is guaranteed to produce

fairly cohesive classes. Furthermore, cohesion is a controlled variable due to the

distance threshold that will be discussed next. In contrast with cohesion, coupling

is an uncontrolled variable. By selecting the single linkage method, the emphasis is

on coupling so that the newly created class be as loosely coupled as possible to the

original one.

In the methodology, a fixed threshold for the minimum distance is not defined.

On the contrary, the algorithm is applied for several threshold values (ranging from

0.1 to 0.9) and all the possible results are presented to the user. To minimize the

amount of information given to the user, any duplicate suggestion is excluded. A

duplicate suggestion occurs when two clusters, which were produced using a differ-

ent threshold value, contain exactly the same entities. However, similar suggestions

(i.e., when the entities of a cluster are a subset of another cluster’s entities) are not

excluded because it is not certain whether a higher threshold can produce better

results than a lower one or vice versa.

The distance metric used is the Jaccard distance, which according to Anquetil

and Lethbridge [2] produces good results in software remodularization. To define

the Jaccard distance between two class members the notion of entity sets is em-

ployed as defined in [27]. According to this concept the entity set of an attribute

contains all the methods that access this attribute and the entity set of a method

contains all the methods that are invoked by this method and all the attibutes that

are accessed by it. The definition of the entity set is extended so that it also contains

the entity itself. This is done so that the condition dij = 0 iff i = j where dij is the

Jaccard distance between entities i and j is preserved. Without this extension, the

two different entities that access or were accessed by the same other entities (i.e.,

their entity sets were equal) would have a zero distance. Attributes which are refer-
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Figure 3.1: Source Code of a Synthetic Example

ences to other classes are also included in the entity set of a method. A reference is

essentially a pipeline through which foreign entities are accessed. Since the goal of

the methodology is to examine a class as a closed environment references are con-

sidered as local attributes and any foreign entities that might be accessed through

references are excluded from the entity sets of class members. Based on the defined

of the entity sets, the Jaccard distance between two entities α and β with entity sets

A and B respectively is calculated as follows:

dα,β = 1− |A ∩B|
|A ∪B|

(3.1)

3.1.2 An illustrative example

To better understand the methodology, we will illustrate its application on a sim-

ple synthetic example shown in Figure 3.1. This example has a class with four
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attributes:

• a1 =name

• a2 = job

• a3 = officeAreaCode

• a4 = officeNumber

and three methods:

• m1 = changeJob()

• m2 = modifyName()

• m3 = getTelephoneNumber()

Table 3.1 shows the distance matrix for this example and Figure 3.2 shows a graph

representation of the class. In this graph, the nodes represent attributes and methods

and the edges indicate that a dependency exists between two entities. Furthermore,

in this graph representation the length of the edges is proportional to the distances

between the class members. It is clear from the graph that there are two distinct

clusters shown in circles. The methodology identified both clusters. Figure 3.3

shows the dendrogram produced by the clustering algorithm.

Table 3.1: Distance Matrix for the Class of Figure 3.1.
a1 a2 a3 a4 m1 m2

a2 0.4
a3 0.8 0.8
a4 0.8 0.8 0.67
m1 0.6 0.6 1 1
m2 0.6 0.6 1 1 0.5
m3 0.71 0.71 0.6 0.6 0.67 0.67
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Figure 3.2: Graph corresponding to the Class of Figure 3.1.

3.1.3 Eliminating illegal candidate classes

According to Martin Fowler’s definition refactoring is a technique that alters the

internal structure of the system but not its external behavior [10]. To this end, the

proposed methodology makes sure that the classes suggested to be extracted have

a certain degree of functionality and, at the same time, the suggested refactorings

preserve the behavior of the program.

According to the preconditions required for assuring a certain degree of func-

tionality, the class suggested to be extracted should:

• contain more than one entity. A single member cannot describe a concept

sufficiently enough;

• contain at least one method. Data (i.e., attributes) might be sufficient to iden-

tify a concept, but functionality (i.e., methods) is essential for the definition

of a class.

According to the preconditions required for behavior preservation issues, the class

suggested to be extracted should:

• not contain a method that overrides any abstract or concrete method of the

super class of the source class;

• not contain a method that makes any super method invocations;
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Figure 3.3: Dendrogram Resulting from the Application of Hierarchical Algorithm
for the Class of Figure 3.1.

• not contain a method that is synchronized or a method that contains a syn-

chronized block since the move of a synchronized method could create con-

currency problems to the objects of the source class

Violation of the behavior preservation preconditions might introduce compilation

errors to the code or alter the external behavior of the program.

3.1.4 Ranking of the suggested refactorings

To give an estimate of the impact of each suggested solution on the design quality

of the program, a novel metric called Entity Placement [27] is used, in order to rank

the refactoring suggestions and furthermore to filter out the suggestions that have a

negative impact, i.e., deteriorate the entity-placement value of the original system.

Entity Placement is a metric that combines the notions of coupling and cohesion.

It calculates the distances of the entities belonging to a class from the class itself
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(cohesion of the class) divided by the distances of the entities not belonging to the

class from the class itself (the coupling of the class). The entity-placement value for

a system is the weighted average of the class values. The reason Entity Placement

was chosen over traditional cohesion and coupling metrics is exactly its combinato-

rial nature. When performing an Extract Class refactoring it is anticipated that the

cohesion of the system will increase (since a group of strongly related entities is

extracted) and its coupling to deteriorate (because a new class with dependencies to

other classes is introduced). A refactoring is a good design solution if the improve-

ment of cohesion is significantly greater than the deterioration of coupling. Entity

Placement can achieve that as it evaluates the overall design quality of the system

in terms of coupling and cohesion. It is also based on Jaccard distance using entity

sets, thus making it compliant to to the identification method.

In the calculation of EP according to [27], the entity set of an attribute a contains

all the methods that access attribute a, the entity set of a method m contains all the

methods that are invoked by method m and all the attibutes that are accessed by m

and, finally, the entity set of a class C contains all the methods and attributes that

belong to C. Entity sets do not include:

• access methods (getters/setters)

• static attributes and methods

• delegate methods

• library entities

The entity-placement value for class C is the ratio of its average distance from

the entities that belong to class C to its average distance from the entities that do

not belong to class C. The respective formula is:

EntityP lacementC =

∑
ei∈C

distance(ei,C)

|entities∈C|∑
ei /∈C

distance(ei,C)

|entities/∈C|

(3.2)

The entity-placement value for a system is the weighted average of the entity-

placement values of the classes belonging to the system. The formula is:
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EPSystem =
∑
Ci

|entities ∈ Ci|
|all entities|

EPCi
(3.3)

To calculate the EP value without having to actually apply the refactoring on

the source code, it is applied virtually according to the following procedure:

1. Create an empty class entity set.

2. For each extracted entity change its origin class from the source class to the

new class.

3. Update the entity sets of all the entities that access or are accessed by the

extracted entities.

4. Insert the extracted entities in the entity set of the new class.

5. Remove the extracted entities from the entity set of the source class.

Finally, the suggestions are presented to the user sorted in ascending order accord-

ing to Entity Placement; the lower the value, the more positive the impact to the

design quality of the system.

3.2 Application of the Extract Class Refactorings

Refactoring, as defined by Fowler [10], is a local change, which alters the internal

structure of the system’s code base but does not affect its observable behavior. To

ensure that the latter constraint is fulfilled, a set of preconditions is defined that en-

sure - up to a certain degree - the stability of the system’s functionality as discussed

in the previous chapter. At the same time, it must be ensured that the changes

effectuated by the refactoring do not introduce any syntactic errors.

To apply the refactoring Eclipse’s Java Development Toolkit (JDT) was used.

JDT offers the ability to deconstruct the code into the corresponding abstract syntax

tree (AST). Then it is easy to manipulate the tree by adding, deleting or changing

nodes. ASTRewrite (a special JDT class) helps monitor the changes, stores them

in a queue and then performs them directly on the source code. To preview the
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changes the Preview Wizard in Eclipse Language Toolkit (LTK) was used. The

mechanics of the refactoring are summarized in Algorithm 1.

Algorithm 1 Extract Class Mechanics
1: Remove extracted entities from the source class.
2: Create the new class.
3: Add the required import declarations.
4: for all the extracted fields do
5: Add the extracted field in the new class.
6: Create public accessors (getters and setters) for the extracted fields in the

new class.
7: end for
8: for all the extracted methods do
9: if there exists an assignment of a field of the source class or an invocation of

a method of the source class then
10: Add a parameter of source class type to the extracted class.
11: Replace field assignments with setters.
12: Modify the method invocations to source class so that they are invoked

through the introduced parameter.
13: Replace “this” with the parameter.
14: end if
15: if there exists a source class field access then
16: Add a parameter of the same type as the field.
17: end if
18: Modify invocations of any other extracted method, if necessary.
19: Add the method in the new class.
20: if the method is invoked (normal or super method invocation) by a class other

than the source then
21: Leave a delegate of the method in the source class.
22: end if
23: end for
24: Add a reference of the new class in the source class.
25: Modify the accesses of any member of the new class in the source class.
26: Provide public accessors for the attributes of the source class and change the

modifiers of the methods of the source class if necessary.

In the first steps, the algorithm removes the extracted entities from the source

class (line 1) and adds the new class in the same package as the source class (line 2).

Next, the bodies of the extracted methods and the types of the extracted fields are

inspected and the algorithm adds the required import declarations in the new class

(line 3). Next, the extracted fields are added in the new class as private attributes

(line 5) with public accessors (line 6), in order to preserve the encapsulation prin-
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ciple. Before adding the extracted methods to the new class, a few steps must be

taken (lines 8-23). First, if the extracted method assigns a variable or invokes a

method of the source class, it is likely that it may change the state of source class

instances. Therefore, the source class must be passed as a parameter to the new

method when it is added to the newly extracted class, so that the same change can

be feasible (line 10). On the other hand, if an attribute of the source class is only

read, it suffices to add a parameter of the type of the accessed attribute in the new

method (line 16); in this way, the method does not unnecessarily increase the cou-

pling between the source and the extracted class. Because these changes may alter

the method’s signature, the algorithm has to modify the invocations of this method

in the rest of the extracted methods (line 18). As the final step, the newly modified

methods are added in the newly extracted class (line 19).

Having dealt with the changes in the new class, it’s now time to change the

source class as well. First, the algorithm checks if the extracted methods are also

invoked by a third class (other than the source or the new class). If this is true, the

original source method is turned into a method that delegates to the extracted one,

so that its public interface does not change (line 21). Then, a field having the type

of the newly created class is added in the source class (line 24), it is instantiated,

and the accesses of any members of the new class are appropriately modified in

the source class (line 25). For example, if a method’s signature is changed, its

invocations in the source class need to be modified as well. Finally, if a member

of the source class needs to be accessed by the extracted class, public accessors (in

case of attributes) might need to be added and modifiers might need to change (in

case of methods) (line 26).

Revisiting the illustrative example

If this algorithm is applied for the example of Section 3.1.2 the following changes

would happen:

1. The attributes officeAreaCode and officeNumber and the method getTelepho-

neNumber() are removed from class Person.
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2. The class TelephoneNumber is created.

3. The extracted attributes are added to the new class and public accessors are

created for them.

4. The method getTelephoneNumber() is added to the new class.

5. A parameter of type Person is added to the extracted method, because it ac-

cesses the attributes name and job from class Person.

6. The assignments of attributes name and job are replaced by setter invocations

in the extracted method.

7. In the source class, a reference to the new class is added and it is initialized.

8. The extracted attribute accesses are changed appropriately (assignments are

replaced with setter invocations and field accesses with getter invocations).

9. A delegate of the extracted method is left in the source class.

10. Public accessors are added in the source class for the attributes name and job

because the extracted method accesses them.

Figure 3.4 shows part of the changes that happened in the source class via the

Preview Wizard. Figure 3.5 shows the code for the extracted class.
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Figure 3.4: Changes introduced in class Person.

Figure 3.5: The code of class TelephoneNumber.
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Chapter 4

JDeodorant tool extension

In this section, we describe the details about the implementation of the methodology

as an extension for the JDeodorant plugin. We present what toolkits and which

features of the JDeodorant tool were used and how. Finally, we present a usage

scenario where step-by-step instructions are given on how to use the tool and the

state of the examined system (JHotDraw5.3) at each step is presented.

4.1 Implementation of the Eclipse plugin

The implementation of the tool was heavily based on the preexisting infrastructure

of the JDeodorant plugin for the identification of the refactoring opportunitites and

on the JDT and LTK libraries of Eclipse for the application of the refactorings.

4.1.1 Representation of Java elements in JDeodorant

JDeodorant uses a dual system to represent the Java elements in a project. In the

first, elements are named as XXObject (e.g., MethodObject) and in the second as

MyXX (e.g., MyMethod). The Object collection is a representation of the initial

system and its purpose is not to allow any changes to the initial system in order to

produce clean copies for all the virtual applications of the suggested refactorings.

The My collection is the clean copy of the initial system and serves as a lightweight

version of the Object equivalent. It holds only the necessary information for the

dependency between the elements to construct the Entity sets. In this level, the

system can change as the virtual application is performed. After that, the My copy
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Figure 4.1: The JDeodorant Object representation of Java elements.

of the system is discarded and a new one is produced from the initial Object system.

Figure 4.1 shows the relationships between the different Object classes. Each My

class has a direct reference to the corresponding Object class.

4.1.2 Representation of Java elements in JDT

JDT uses two levels to represent Java elements: the Java model and the Abstract

Syntax Tree (AST). The Java model is a high level representation of a Java project

as shown in Figure 4.2. It merely contains information about the structure of the

project and no information about the implementation details (e.g., the bodies of the

methods). For this reason, the AST is employed which decomposes the source code

to the lowest level of detail. Through the AST, the source code can be manipulated.

An interesting feature of AST is the binding information. Each element has a

binding based on its type, e.g., ITypeBinding for types, IMethodBinding for meth-

ods. Bindings contain a large amount of information for elements even if this in-

formation is not visible in the AST node. For example, a binding of a method

invocation contains information about the method declaration, such as its visibility

or the types of its arguments. The binding information is primarily used for match-

ing purposes, for example to match a field suggested to be extracted with a field

access in the code.

There is a direct mapping between the JDeodorant representations and the JDT

representation as shown in Table 4.1. Although there is not a direct reference be-

tween the two representation, JDeodorant offers the ASTInformation, a class that
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Figure 4.2: An example of Java model for a project.

serves as a mediator so the respective AST node can be retrieved from an Object

instance. The ASTInformation is used to make the transition from the identification

to the implementation.

Table 4.1: A mapping between the JDeodorant and the JDT representations.
Java element in JDeodorant Java element in JDT

ClassObject TypeDeclaration
MethodObject, ConstructorObject MethodDeclaration

FieldObject VariableDeclarationFragment
ParameterObject SingleVariableDeclaration

AbstractStatement Statement
AbstractExpression Expression

LocalVariableDeclarationObject VariableDeclaration
MethodInvocationObject MethodInvocation

SuperMethodInvocationObject SuperMethodInvocation
FieldInstructionObject SimpleName

LocalVariableInstructionName SimpleName
ClassInstanceCreationObject ClassInstanceCreation

ArrayCreationObject ArrayCreation
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4.1.3 Tuning the performance in the identification process

The identification process is the most time consuming part of the tool. A few

ways to improve the performance of this process are employed. The first has to do

with the virtual application. Normally, when the virtual application is performed,

the method recalculates the distances between all the entities in order to calculate

the Entity Placement metric and evaluate the impact that the suggested refactoring

would have if it was actually applied. However, in this process there is a big number

of redundant recalculations. Since in the Extract class refactoring only the source

class, the extracted class and their members would change, there is no reason to re-

calculate all the distances. Therefore, during the identification the entities (classes

or members) that have changed are marked and only their distances from the rest of

the system are calculated. This significantly improves the speed of the identification

process.

When the developer presses the identification button a cycle is initiated: first,

the selected project is parsed, then the distances of the initial system are calculated

and finally, the identification is performed. When the developer performs a series

of refactorings on the same project the parsing of the whole project is redundant.

Thus, the tool stores the selection of the project. Moreover, after the application of

a refactoring the classes changed are also stored in the memory. Therefore, when

the developer selects the same project for identification only the changed class are

parsed.

Another way not to improve the performance of the tool but facilitate the user

speed up the process is the ability to select different levels of the project’s structure

to identify refactoring opportunities. The user can apply the identification process

on a whole project, on a package or on a single class. Since the performance of the

tool depends on the number of suggestions, the process is sped up if it is applied on

fewer classes.
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4.1.4 Implementation of the interface

To implement the Eclipse plugin we used the Plugin Development Environment

(PDE). An item was added in the Bad Smells menu introduced by JDeodorant in [9].

The plugin consists mainly by a view with a table where the suggested refactorings

are presented. The table is in a tree-table format, which means that each row is the

root of a tree. The refactorings are grouped by the source class in which they were

identified. The source class is the root of the tree and the refactoring suggestions

are the children.

The rows of the table correspond to candidate refactorings. The columns of the

table correspond to the source class and the resulting entity-placement value if the

suggested refactoring is applied. The table is sorted by the entity-placement value

in ascending order in two levels: in the subresults level and in the groups level. Each

group is assigned the best entity-placement value of its subresults. The suggested

refactorings that produce a worse value than the current system are discarded.

4.2 Usage Scenario in JHotDraw5.3

In this section we present a usage scenario of the tool on the JHotDraw system.

At this point it is assumed that the user has already installed the plugin, launched

Eclipse in the Java perspective and JHotDraw (version 5.3) has been imported in

the workspace. Installation instructions and a video based on this scenario can

be found at [1]. Table 4.2 shows the details of the scenario. Figure 4.3 shows the

Extract Class component of the JDeodorant tool. The parts of the tool are annotated

in the order they appear in the scenario.

The usage of the tool is quite straightforward. First of all, the “God Class”

view needs to be activated by selecting it from the Bad Smells menu, which is in

Eclipse’s menubar. Next, the module to be examined needs to be selected. The

user can select either a project or a package or even a single class to inspect for

extract-class opportunities. For particularly large projects, the last two options can

be used to facilitate the identification process. To select a project simply click it on

the Package explorer. To select a lower level module, expand the project tree and
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Table 4.2: Usage Scenario
Steps Results Comments

1. Select the “Bad
Smells”→“God Class”
menu item.

The “God Class” view opens
in the workspace.

2. Select the “Package
Explorer” → “JHot-
Draw5.3”project → “CH
.ifa.draw.applet” package.

In the “God Class” view, the
identification button is en-
abled.

3. Click the identification
button.

Three progress bars will ap-
pear: Parsing Java project,
Calculating distances and
Identification and virtual ap-
plication of Extract class
refactoring opportunities, in
that order. Once the iden-
tification process has ended,
the table is populated with
suggestions and the “apply”
button is enabled.

4. Click the “expand” icon,
to the left of the second row.

The row is expanded and
the actual suggested refac-
torings appear underneath.

The second row contains
refactorings suggested for
the “DrawApplet” class.

5. Double-click on the first
suggestion of the expanded
row.

The file of the source class
opens in the Java editor and
the entities to be extracted
are highlighted.

If followed, the first sug-
gestion will extract the fol-
lowing entities: fSimple-
Update, fUpdateButton, cre-
ateButtons(JPanel), setSim-
pleDisplayUpdate() and set-
BufferedDisplayUpdate()

6. Select the “apply” button. An input window pops up.

7. Give the name “Dis-
playUpdate” in the input
window.

No change is visible to the
user at this point.

From the extracted entities
it can be seen that the new
class is responsible for the
update of the display. Of
course the choice of the
name lies with the designer.

8. Select the “Preview” but-
ton from the input window.

The preview window ap-
pears.

9. Check the changes in the
preview and, if you agree
with them, select “OK”.

The changes are performed
and the new class file opens
in the Java editor.

After the application of the
refactoring the table is not
updated. You will have to re-
select the “identify” button.

10. To undo the refactoring,
make sure the focus is on the
package explorer and select
Undo from the Edit menu.

The changes will be undone
and the new class file will
close from the editor.
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select the desired package or class. For this example, the whole JHotDraw project

will be selected. JHotDraw is a system with 249 classes, 380 attributes (1.526 per

class) and 2176 methods (8.739 per class).

After selecting the module to be examined, the identification button (with the

“i” icon) is activated in the “God Class” view. Next, the user clicks the button to

initiate the identification process and three progress bars appear (Table 4.2, step 3):

one for parsing the project, one for calculating the Jaccard distances of the initial

system and one for the identification process. In case the same module (project,

package or class) is selected after the application of a refactoring, the tool will only

parse the changed and introduced (new) classes.

After the identification process is finished, the table of the view is populated

and the results are ranked as described in Section 4.1.4. If the user wants to inspect

one of the suggestions, the row of the table that corresponds to the source class

will have to be expanded and then the user should double-click on the row that

corresponds to the suggestion. The class members suggested to be extracted will

be highlighted in the editor. The user can then navigate through the members by

selecting the markers on the right side of the editor. At this point, no changes have

been introduced to the system.

In this example, the table is populated with 35 source classes that are suggested

to undergo extractions. The first suggestion is about the UndoManager class. If it

is expanded, it can be seen that 8 extractions are suggested. If each one of them

is selected and the user browses through the members suggested to be extracted,

it becomes obvious that only two suggestions (1 and 2) are conceptually meaning-

ful. These refactorings are also the best in terms of the Entity Placement metric,

although this is not always the case. The class is about handling undo and redo

activities. Thus, it is obvious that this class already specifies two different concepts.

Refactoring 1 suggests to extract the redo functionality into a new class and refac-

toring 2 to extract the undo functionality. From the rest of the suggestions in this

group, 4 of them (4,5,6 and 7) are subsets of the good suggestions, thus lacking

some members that would complete the suggested concepts. 2 of the remaining

suggestions (3 and 8) contain one more entity which would be better to be left in
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the source class. So, the first two suggestions identify new concepts and improve

the design quality of the system. Here, the choice would be to extract the redo

functionality, since it has a slightly better entity-placement value.

Having selected the refactoring to be applied, the application button is now acti-

vated. If it is clicked, an input page pops up prompting the user to give a name to the

new class. The new class will be called “RedoActivityCollection”. Now, there are

two possibilities: either apply the refactoring directly or preview the changes. If the

“Preview” button is selected, the Preview Wizard will appear. From the top of the

wizard, the user can select the files that changed. In the bottom of the wizard there

is a split pane with the two versions of the class: on the left, there is the original

version and on the right, the refactored version. The changes are marked and can be

browsed using the markers on the right vertical ruler. To apply the refactoring, the

user selects the OK button on the wizard. The refactoring is automatically applied

and the new class opens in the Java editor of Eclipse.

After the changes, the examined system now has 250 classes, 381 attributes

(1.524 per class) and 2182 methods (8.728 per class). As it can be seen the number

of attributes increased because a reference to the new class was added in the source

class. The same happened to the number of methods, since 6 methods had to be

left as delegates. However, the average number of both decreased since we added

a new class. If the identification button is clicked again, in the new results it can

be seen that UndoManager, still exists as a set of suggestions. This is because the

tool would still recommend the extractions about the undo functionality. However,

now the suggestions are further down the ranking and there are better solutions to

be performed.

In order to undo an Extract Class refactoring, the user just has to set the focus on

the Package Explorer and select “Undo Extract Class” from the Edit menu. All the

changes are reverted and the system returns to its previous state. If the identification

button is selected again, the results will be the same as the first time.
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Figure 4.3: JDeodorant in action. 1) The “Bad Smells” menu. 2) The “God Class”
view. 3) The Project Explorer. 4) The identification button 5) The expand icon and
the tree-table format 6) The highlighted editor 7) The apply button 8) The preview
wizard.
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Chapter 5

Evaluation

In this chapter, we present the results of the evaluation on the performance of the

identification methodology. More specifically, we were interested to see if the

methodology can actually identify new concepts which were improperly defined

in another class. Second, we wanted to know if the suggested refactorings would

actually be applied by the developer if they were suggested by a tool. Moreover,

we wanted to confirm that the suggested refactorings have a positive impact on the

understandability of the code and the design quality of the system. Finally, we

evaluated the ability of the Entity Placement metric to quantify the impact of the

performed refactoring to the design quality of the system.

The designer and expert assessment address the first two issues. The third issue

is covered by the expert assessment and the metrics comparison and, finally, the

evaluation of the Entity Placement metric is covered by the comparison of its values

with those of traditionally used cohesion and coupling metrics.

5.1 Designer Assessment

For the first part of the evaluation, the proposed methodology was applied to two

projects and the results were discussed with the designers. For the first project, the

results were discussed between the author, who was also one of the designers of the

project, and another designer of this project. For the second project, the results were

evaluated by the designer of the second project with the help of a developer with

knowledge of the proposed tool. The designers were asked to answer the following
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questions:

1. Can you find a name for the cluster of entities suggested to be extracted?

This will indicate whether the method was able to identify a new concept.

2. Would you apply the proposed refactoring?

5.1.1 eRisk

eRisk is an electronic adaptation of the well-known board game, developed by a

group of undergraduate students as part of a Software Engineering course. As un-

dergraduate students are usually less experienced, the project, as expected, did not

have a high design quality, a fact that posed certain challenges to the method. While

the method was able to recover a large number of problematic cases, there were also

some less meaningful suggestions mainly due to the lack of design discipline. For

example, concepts are not well defined and they are highly coupled with each other.

It was observed that for thresholds higher than 0.7 the methodology just kept

increasing the size of the already proposed clusters thus making them less mean-

ingful. Moreover, suggestions that would cause the entity-placement value of the

system to deteriorate were not discussed. We asked one of the designers of the

project to provide feedback on the suggested refactoring opportunities. The results

are summarized in Table 5.1.

Table 5.1: Results for eRisk
Total Assigned Applied

Suggestions Names

37 28 16

Out of the total 37 suggestions (without duplicates) the designer of eRisk was

able to assign a name to 28 (75,6%) of the suggested clusters. This percentage is

encouraging and can show that the method is able to identify new concepts and

eventually improve the understandability of the code. However, not all of these

classes were finally qualified to be applied by the designer.

In the second question, the designer of eRisk answered that he would apply 16

(43,2%) of the suggested refactorings. The main reason for accepting a suggestion
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was that it actually proposed a new concept, which should indeed be extracted in

a separate class. The methodology also identified two cases where the extracted

entities were completely disconnected from the rest of the class (i.e., they did not

use or were used by any other entity of the class) which is a clear example of

possible extraction.

The designer rejected 6 suggestions on the ground that the proposed change

would not have a significant impact on the design quality or the understandability

of the code. 6 suggestions were rejected because the proposed class did not describe

a separate concept or that such a change would unnecessarily increase the coupling

of the system. Finally, in 7 cases the designer claimed that he would apply the

suggested refactoring if some more entities were included in the extracted class.

However, this problem was solved as the threshold value was gradually increased.

During the application of the methodology on eRisk and the discussion with

its designer, we were able to observe some very interesting by-products. In some

cases, from the classes suggested to be extracted, the designer was able to identify

that some of them could be reused in multiple places. An interesting outcome of

this result was that the proposed classes were more like utilities. While they had a

relatively low correlation to the general concept of the project, they could be used

by several other classes in calculations or initializations.

In several cases, we also observed opportunities to extract an abstract superclass

or an interface. In many of the GUI classes of the system the designer would use

a method that would initialize the attributes of a container (panel or frame) and a

method that would nullify the attributes to release memory resources. While the

methods were slightly different from class to class, they had the same role, thus it

would make sense to extract them in a higher level of the class hierarchy.

Furthermore, we were able to identify opportunities to move entities to another

class instead of extracting them to a new one. This approach was supported by the

fact that the designer assigned a name of an already existing class to the newly ex-

tracted one. Finally, there was a case where the method identified an opportunity to

extract an inner class. While the designer agreed that the extracted entities indeed

constituted a different concept, the application of such a refactoring would dramat-
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ically increase the coupling of the system. Therefore, extracting the entities into an

inner class would retain the original coupling of the system.

5.1.2 SelfPlanner

SelfPlanner [20] is an intelligent web-based calendar application that plans the tasks

of a user using an adaptation of the Squeaky Wheel Optimization framework [13].

It is the outcome of a research project of the Artificial Intelligence Group at the

department of Applied Informatics, University of Macedonia, Greece. It consists

of a planning engine developed in C++ and a client/server application developed in

Java.

SelfPlanner can be considered as a rather mature project, since it has been con-

stantly evolving for more than two years. Its developer is an experienced program-

mer who has a deep knowledge of object-oriented design principles. These facts

justify the small number of Extract Class refactoring opportunities that were identi-

fied for SelfPlanner. More specifically, the application of the methodology resulted

in 18 suggestions (excluding duplicates) with threshold values ranging from 0.3 to

0.7 (using value 0.1 as increment step). Threshold values below 0.3 (i.e., 0.1 and

0.2) and over 0.7 (i.e., 0.8 and 0.9) did not produce any results. Moreover, the appli-

cation of 4 out of the total 18 suggestions would result in a higher entity-placement

value compared to the value corresponding to the current system (i.e., it would de-

teriorate the design quality of the system as measured by Entity Placement metric),

and as a result these suggestions were excluded from the evaluation. The results are

summarized in Table 5.2.

Table 5.2: Results for SelfPlanner
Total Assigned Applied

Suggestions Names

14 12 9

The designer was able to assign a name to 12 (86%) clusters of entities that were

suggested to be extracted as separate classes. The employed clustering technique

was able to capture groups of methods that not only accessed common fields but
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Figure 5.1: The Subject role of an Observer pattern as identified by the tool.

more importantly had relevant functionality. For example, there was a case that the

employed clustering algorithm successfully grouped all the entities which were re-

lated with the functionality of the Subject role in an Observer pattern instance [11].

The grouped entities were actually a field holding the collection of Observers, two

methods playing the role of attach and detach operations, as well as a method play-

ing the role of notify operation [11]. This case is illustrated in Figure 5.1.

From the twelve conceptually meaningful Extract Class refactoring opportu-

nities that were identified for SelfPlanner, the designer supported that 9 of them

(64% in total) would have a positive impact on design quality if they were applied

in source code. According to the designer, the reasons for adopting these specific

refactoring suggestions are that they lead to the creation of new classes with suf-

ficient functionality and at the same time they do not introduce extensive coupling

between the source and extracted classes.
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5.2 Expert Assessment

The second part of the evaluation was performed on the JHotDraw system (version

5.3). We applied 16 of the suggested refactorings and asked a professional in the

business of software quality assessment, to give his expert opinion and answer three

questions for each refactoring:

1. Q1: Does the extracted class describe a new entity?

2. Q2: Would you actually perform this refactoring, if a tool suggested it?

3. Q3: Does it improve the understandability of the code?

Table 5.3: Evaluation Results on JHotDraw5.3
Total Refac-
torings

New Entity Applied Improved
Understand-
ability

16 12 9 9

Table 5.4 presents the expert’s answers for the 16 refactorings applied on JHot-

Draw5.3 and Table 5.3 summarizes the expert assessment. In 12 of the total 16

cases (75%) (cases 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14), the evaluator confirmed

that the classes suggested to be extracted describe a separate concept or entity. An

interesting point here was that the expert identified, on top of the 12 cases, two

more classes that could be used as utility or helper classes (cases 15 and 16). Al-

though, they do not actually describe a new concept they can still be extracted as

new classes. In 9 of the 16 cases (56%) (cases 1, 2, 5, 7, 9, 11, 12, 14 and 15), the

expert agreed that he would perform the refactoring if it was suggested by a tool.

Interestingly, in 3 cases he claimed that he would not have been able to identify the

refactoring opportunities manually. In 9 out of 16 cases (cases 2, 5, 7, 9, 11, 12, 13,

14 and 15), the expert notes that the performed refactorings have a positive impact

on the understandability of the system.

During the evaluation, we discovered a few by-products of the method. In

some cases, the code suggested to be extracted was duplicated in the same or other
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Table 5.4: Expert’s answers for refactorings applied on JHotDraw5.3
No. Q1 Q2 Q3

1. Yes No due to two reasons: 1) I would not have seen
the interconnection between these methods and
2) I would keep the implementation of the undo
and redo functionality similar

Not really since two similar features are imple-
mented in two different ways.

2. Almost, the only strange thing I see is that there
are still two buttons left in the DrawApplet-
class. I would expect a button manager to han-
dle all buttons

Yes (but then including the other buttons). A bit, some non-essential methods are moved
out. However, since the rest of the class is a
bit chaotic this refactoring does not have a big
impact

3. No, it is basically a vector with an init method No. The initialization of the vector is tightly
coupled to the Nodefigure class so extracting
this initialization from this class only creates
confusion.

No, it has a negative impact.

4. No, it would be if the ’SleeperThread’ would
also have been moved, but now it is just a class
that provides initialization for a single field.

No, not without moving the sleeperThread as
well. However, since the private methods that
are extracted are not used I would probably just
remove the complete code.

No impact on the understandability, this class is
still to chaotic to be impacted by this chance.

5. Yes No, because I would not be able to see the con-
nection between the fields and methods. But if a
tool would offer this refactoring I would accept
it.

A bit, although this class is also rather cluttered
so this small refactoring does not really attract
attention

6. A bit, since the fields are never extracted from
the class it is more a initializer-helper-class in-
stead of an entity.

No, the extracted methods are not big, compli-
cated or out-of-place in the old class.

No, it has a negative impact due to the fact that
the extracted methods receive the same argu-
ment twice (this is based as second and third
parameter).

7. Yes Yes, the result is a concrete class that groups re-
lated attributes and makes sure that the original
class is less cluttered.

Yes, although again the impact is not that big

8. A bit I think it is a Set (since items are not in-
serted twice).

No, the refactoring is too small to be useful and
the same result can be achieved by using a stan-
dard construct.

No, it’s confusing to see a construct used as a
different construct.

9. Yes, an ’OverlayContainer’ (or ’Con-
tainerOverlay’)

Manually: no, this is because the impact is not
that high. If a tool would suggest it I would
probably perform the operation

A bit, although the impact is rather low due to
the low number of statements in the classes.

10. Similar to refactoring 8 Same as refactoring 8 Similar to refactoring 8

11. Yes Yes, it is a small and clear concept that can be
re-used elsewhere

Yes, the naming is intuitive and there is less
code to worry about

12. Yes, it encapsulates some concept and hides
away details about an (apparently ugly) hack

Probably, but only if I knew I could use re-use
it somewhere else. Otherwise I don’t think it
would be worth the effort.

Yes, the details of a hack are somewhat hidden.

13. A bit, it encapsulates two fields and their initial-
ization behavior. Unfortunately, I cannot think
of a good description for the extracted entity.

No, this refactoring moves several methods (ad-
dBackground, removeBackground) into the ex-
tracted class without providing access to these
methods from within StandardDrawingView.
This actually changes the API of this class,
which is not desirable.

Yes, although again the impact is not that big
due to the size of the retaining class.

14. Yes, an ImageCache Yes, it can encapsulates the cache-behavior in a
straight-forward manner

Yes

15. It is more of an utility class instead of an entity
(since it does not contain any state)

Yes, it groups together related functionality Yes, by extracting long initialization methods
the original class becomes (a bit) cleaner

16. I do not really see an entity in this new class,
it looks to me like they are helper methods
grouped together instead of a real entity.

Probably not, due to the fact that it creates circu-
lar dependencies between the two classes. This
makes determining what happens in these meth-
ods rather hard.

No, it has a negative impact because of the in-
troduction of circular dependencies.
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Figure 5.2: The two methods, popRedo (suggested to be extracted) and popUndo,
are almost identical.

classes. For example, the class UndoManager contains “undo” and “redo” func-

tionality. The code for both activities is exactly the same. Figure 5.2 illustrates

this example. The tool suggests two extractions: one for the undo and one for the

redo activity. Another approach would be to extract one of them in a new class and

replace both instances of the duplicated code with references to the extracted class.

This type of duplication detection is outside the scope of this tool at this point, but

we are considering it as a potential extension. The proposed changes can be manip-

ulated further by the user to achieve better results. In another interesting case, the

extracted code was totally disconnected from the rest of the class and was not used

anywhere else, indicating possibly dead code that needs to be removed.

Furthermore, we examined a subcase of a specific class (DrawApplet) which

seems to be a problematic one. This class has 42 methods and is used to create

an applet. There were 4 suggestions only for this class and the expert’s opinion on

them was: “Overall, the four refactorings have helped in reducing the complexity

and improving the readability of the DrawApplet-class. After these refactorings are

applied, it is easier to start improving the code by (for example) also removing the

circular dependencies on the DrawingViewHandle-class. Although the refactorings
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are not perfect, they are very valuable in starting up the refactoring of the complete

class. The remaining work can now be done by a novice developer, something which

was not possible with the original DrawApplet class. ”.

5.3 Metrics comparison for JHotDraw5.3

In this part of the evaluation, the impact of the 16 performed refactorings on JHot-

Draw5.3 was measured in terms of coupling and cohesion. The metrics that are

used are popular in literature: Message Passing Coupling (MPC) [14] and Connec-

tivity [3]. The values of these metrics were then compared to Entity Placement.

MPC for a classC is defined as the number of invocations of methods not imple-

mented in class C by the methods of class C. Connectivity for a class C is defined

as the number of method pairs of class C where one method invokes the other or

both access a common attribute of class C, over the total number of method pairs

of class C.

Figure 5.3 presents the progression of MPC (coupling), Connectivity (cohesion)

and the Entity Placement metric. The first value on each chart represents the value

of the respective metric on the initial system. To improve the design quality of

a system, the goal is to reduce the coupling and the entity-placement value and

increase the cohesion of the system.

From the charts, it can be seen that all three metrics follow the expected trends,

which means that the overall quality of the system was improved. However, in cou-

pling a couple of unexpected values can be observed. As far as MPC is concerned,

there are two possible situations. First, entities which still bear some dependencies

with the rest of the source class might be suggested for extraction. In this case, the

coupling is expected to increase (cases 1,2). Second, entities that are completely

disconnected from the rest of the source class may be extracted. In this case, the

coupling will stay the same, but because the number of classes will increase the

average coupling of the system will decrease.

We compared the two metrics with the Entity Placement metric in terms of

correlation. A strong negative correlation between Entity Placement and Connec-
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Table 5.5: Correlation between Entity Placement and MPC and Connectivity
EP-Conn EP-MPC
-0.9935 0.8925

tivity and a strong positive correlation between Entity Placement and MPC were

observed. Thus, it can be argued that Entity Placement is a sufficient metric to

evaluate the effect of Extract Class refactorings.
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(a) Entity-placement value progression.

(b) MPC value progression.

(c) Connectivity value progression.
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Chapter 6

Conclusions

In this work, we proposed a novel approach to improve the design quality of an

object-oriented system by applying Extract Class refactorings. To identify the refac-

toring opportunities, a hierarchical agglomerative clustering algorithm was used

based on the Jaccard distance between class members, because of the ability of clus-

tering algorithms to identify conceptually related groups of entities. The resulted

suggestions are ranked according to the Entity Placement metric. The mechanics of

the Extract Class refactoring were also described so that it preserves the system’s

behavior and its syntactical correctness.

We implemented the methodology as an extension for the JDeodorant Eclipse

plugin. The user can identify and apply Extract Class refactorings in a simple way.

The tool also shows to the user what are the extracted entities by highlighting them

in the Java editor and what are the changes that will be performed using a Preview

Wizard. The use of the tool comprises of simple steps and the interface is intuitive

enough for the user to understand the refactoring. The input required is minimal

which makes the tool suitable to be used by novice users as well. Techniques to

improve the performance have been used so that the identification and refactoring

process is performed much faster than if it was performed manually.

We evaluated the proposed methodology on various systems in terms of assess-

ment by designers, expert assessment and metrics. The evaluation process showed

that the methodology can produce meaningful and conceptually correct suggestions

and extract new concepts. Furthermore, the expert confirmed that a good percent-

age of the proposed refactorings were good solutions that also improved the un-
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derstandability of the code. Finally, it was proved that the suggested refactorings

improve the design of the system in terms of coupling and cohesion and that Entity

Placement is a good evaluator of the impact of the performed refactorings.

In the future, we would like to explore the possibility of combining the identifi-

cation method with others. In some cases, as it was seen in the evaluation process,

the suggestions could have been much better and more complete if the methodology

was combined with others, like code duplication detection techniques. This would

enable the method to identify identical or similar extractions even across classes

and suggest a global solution to improve the design of more than one classes at

once. Another possibility we would like to explore is the use of conceptual metrics

in the methodology. These metrics take into account the names of class members.

Because these metrics are sensitive to naming conventions, it would be better to

use them in the ranking of the results and not in the identification of the refactoring

opportunities, where the dependency information gives sufficiently good results.

We also plan to improve the interface of the tool with visualizations. It is be-

lieved that visualizations are a good tool to increase the awareness of the user. At

the moment, the methodology is a black box to the user. We would like to change

that by visualizing the classes as graphs where the distances and the members sug-

gested to be extracted will be shown, so that the user can better understand why

each extraction is suggested.
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