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ABSTRACT 

Previous studies of the grey wolf (Canis lupus) using microsatellites have showed 

strong population structure despite the high mobility of individuals. I re-assessed 

the structure of North American grey wolves by genotyping 132 wolves at a 

genome-wide set of >26 000 single nucleotide polymorphisms (SNPs), and found 

less population structure, a strong pattern of isolation by distance, and determined 

that gene flow between subpopulations relates to prey specialization. To assess 

how accurately smaller data sets assign individuals, I analyzed sub-sets of SNPs 

and found that small marker sets varied greatly in estimates of subpopulation 

assignment, and showed high discordance with assignments determined when 

using all 26k markers. Finally, using a genome scan to detect natural selection I 

identified SNPs in three genes that may have undergone directional selection, 

contain variation with observed phenotypic consequences in other mammal 

species and may be related to adaptation in grey wolves. 
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Chapter 1 

General Introduction 
 

Grey wolf taxonomic history  

Grey wolves (Canis lupus; Linnaeus, 1758; henceforth “wolves”) are large 

predators, extant across the northern hemisphere, and are recognized as having 

been the most widely distributed of all wild terrestrial mammals (Nowak 2003; 

Mech and Boitani 2004b) before extirpation from much of Europe (Boitani 1995), 

the contiguous United States, and Mexico (Mech 1970). Grey wolves are 

members of the Canidae (dog) family of the order Carnivora. While the oldest 

recovered canid fossil dates to around 40 million years ago (mya) during the 

Eocene (Wang and Tedford 1994), extant canids are thought to share a common 

ancestor as recently as 12 mya (Wayne et al. 1991). Grey wolves are highly 

derived within the canid phylogeny, and are the most closely related species to the 

domestic dog, which is hypothesized to have been derived from grey wolves 

during one or more domestication events (Savolainen et al. 2002; Vilà et al. 2005; 

vonHoldt et al. 2010) that occurred between 15-100 kya (Vilà et al. 1997; 

Savolainen et al. 2002). In fact, the taxonomic status of the dog as a distinct 

species (Canis familiaris; Linnaeus, 1758), rather than a subspecies of grey wolf 

(Canis lupus familiaris; as per Wozencraft 1993), is still under debate. According 

to a phylogeny of the Canidae generated using ~15k bp of mitochondrial and 

nuclear sequence (Lindblad-Toh et al. 2005), the grey wolf’s closest wild relative 

is the coyote (Canis latrans), a smaller North American predator which diverged 

from the grey wolf in the Lower Pleistocene, ~1–1.5 Mya according to fossil 

evidence (Nowak 1979).  

 Extant grey wolves are currently recognized as being composed of 15-20 

subspecies across Eurasia and North America (not including the domestic dog; 

Nowak 2003). Previously, as many as 24 subspecies of grey wolf have been 

recognized in North America alone (Hall 1981), but this number has since been 
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reduced to five subspecies by Nowak (1995). Nowak (1995) suggested that 

separation into different refugia during a previous glacial period led to the extant 

subspecies. Subspecies recognition in these and other studies has been based on 

skull morphology distinction. It is thought that these subspecies also correspond 

to multiple waves of ancestral wolves that invaded North America via the Bering 

land bridge, after their likely predecessor, Canis mosbachensis evolved into Canis 

lupus in the Old World (Nowak 2003). This re-colonization pattern has resulted in 

“centrifugal evolution,” (sensu Groves 1993) with subspecies showing increasing 

morphological divergence the farther they are from the point of entrance at Alaska 

(Nowak 2003). Further, Nowak (2003) suggests that some New World subspecies 

are more closely related to some of the Old World subspecies than to certain 

subspecies on their own continent, and vice versa. While grey wolves evolved 

into their current form in Eurasia, Canis lepophagus, which is thought to be the 

most recent predecessor of modern wolves and coyotes (Kurtén and Anderson 

1980), evolved originally in North America before some individuals travelled to 

Eurasia. 

 

Grey wolf characteristics and life history 

In North America, grey wolves inhabit Canada, Alaska, and a few small 

areas in the contiguous USA, with Canada containing the greatest number of 

wolves of any country, an estimated 50-60 000 (Boitani 2003). Wolves are the 

largest of all canids, and can weigh as much as 62kg (Mech and Boitani 2004b). 

Wolves display diverse pelage colour patterns, with a continuous spectrum 

ranging from black to white, which may also include brown, grey, and red hairs 

(Gipson et al. 2002; Mech and Boitani 2004b). Coat colours have been observed 

to vary significantly with geography, and a distinct northeast/southwest cline has 

been observed in several studies, following an environmental gradient of arctic 

tundra to boreal forest in northern Canada (Gipson et al. 2002; Musiani et al. 

2007). The tundra contains a significantly higher percentage of white and light 

coloured wolves than the forest, which shows increasing numbers of black or dark 
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individuals to the south and west. This colour differentiation is believed to have a 

selective advantage, better allowing wolves to blend in with their local 

surroundings and thus making them harder to detect by prey (Jolicoeur 1959). 

Grey wolves exhibit a variety of diets, and will catch prey ranging in size 

from snowshoe hares (Lepus americanus) to bison (Bison bison), depending on 

temporal and geographic availability. While stable wolf populations may require 

the presence of large ungulates for sustenance (Mech 2005), and most of their diet 

consists of prey, wolves are not obligate hypercarnivores. They have even been 

seen scavenging through garbage (Peterson and Ciucci 2003), although such 

behaviour is more typical of coyotes, which, unlike wolves, tend to thrive near 

human settlements (Mech and Boitani 2004a).  

Wolves are a highly social species, and are often found in packs that 

contain as many as 42 individuals (Mech and Boitani 2003). Packs usually consist 

of a dominant breeding pair of individuals, their offspring, and other relatives that 

either originated in other packs or remained with their natal pack into adulthood, 

although almost all wolves will eventually disperse from their natal packs (Mech 

and Boitani 2003). Packs are usually very territorial, and can occupy home ranges 

as large as 4300 km2 (Mech et al. 1998), depending on pack size and availability 

of food (Mech and Boitani 2003). However, some wolves that feed primarily on 

migratory prey such as barren-ground caribou (Rangifer tarandus groenlandicus; 

e.g. Parker 1973; Walton et al. 2001) or saiga antelope (Saiga tatarica; Mech and 

Boitani 2003) migrate with their prey and do not maintain permanent territories. 

While seasonal migration events can occur over > 500 km (Walton et al. 2001), 

individual wolves have been observed to travel > 800 km when dispersing away 

from their natal packs (Fritts 1983; Wabakken et al. 2007), although dispersal 

distances are typically significantly less than this and likely depend on the 

availability of unoccupied territory (Mech and Boitani 2003).  

Despite their ability to disperse such large distances, grey wolves typically 

exhibit significant population genetic structure at continental scales, even when 

sampled across a continuous distribution (see Pilot et al. 2006; Carmichael et al. 
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2007). They are significantly more structured than the only other circumpolar 

canid, the arctic fox (Alopex lagopus; Carmichael et al. 2007). Such population 

structure, however, does not appear to be a result of simple geographic distance, 

since neither study found evidence of strong of isolation by distance (IBD) in grey 

wolves even at very large scales (Pilot et al. 2006; Carmichael et al. 2007). 

Rather, differing ecology seems to predict population structure significantly better 

than simple geographic distance. Pilot et al. (2006) found that population structure 

was strongly correlated with climate, habitat, and diet in eastern European wolves. 

Similarly, Carmichael et al. (2007) and Geffen et al. (2004) found that habitat 

type explained a significant amount of variation in genetic distance between 

subpopulations of wolves in North America, and Musiani et al. (2007) found that 

prey type (migratory vs. non-migratory) and habitat type (boreal forest vs. arctic 

tundra) explained a significant proportion of genetic variation at a smaller scale 

within North America. 

 

SNP identification and genotyping 

For the past fifteen years, population geneticists have relied primarily on 

microsatellite markers in order to assess population structure, genetic variability, 

census sizes, and paternity, as well as to map quantitative trait loci. Microsatellites 

have many features to recommend them for such uses: they are relatively cheap 

and quick to develop and analyze, they are abundant in mammals and fish (Neff 

and Gross 2001), they often amplify across species, they can be highly 

polymorphic and they are generally considered selectively neutral (Vignal et al. 

2002; although this assumption is often incorrect). Additionally, there are several 

available models of evolution designed specifically to reflect microsatellite 

mutation, including the stepwise mutation model (Kimura and Ohta 1978) and the 

two-phase mutation model (di Rienzo et al. 1994). However, alongside all the 

benefits of using microsatellites, there are a number of drawbacks. First, when 

evaluating microsatellites, it is not possible to account for unexpected mutations. 

For instance, because of their high mutation rate, there is a risk of size homoplasy 
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(Pompanon et al. 2005): since microsatellite alleles are evaluated based on size, it 

is assumed that alleles of the same length share identical sequence and are 

identical by descent. Both of these assumptions can be broken without detection, 

leading to erroneous conclusions. Alternatively, if there is a mutation near the 3’ 

end of the priming site of one allele, this allele will not readily amplify, and 

individuals with such alleles will appear to be homozygous for their alternate 

allele. Further, there is the issue of allelic dropout, whereby shorter alleles are 

preferentially amplified, which can make heterozygous individuals appear to be 

homozygous at the shorter allele. Additionally, due to the high allelic 

polymorphism of most loci, microsatellites are prone to sampling error in that 

they may provide an inaccurate estimate of allele frequencies in data sets with a 

limited number of samples (Ruzzante 1998), yielding results that will complicate 

accurate assessment of population structure. There is also the issue of 

ascertainment bias: since loci with high polymorphism are selected for use, rather 

than randomly selected loci, heterozygosity at microsatellite loci is not a good 

predictor of overall genetic diversity, as assessed by re-sequencing introns (Väli et 

al. 2008).  

Because of the many drawbacks of using microsatellites, the decreasing 

cost of large-scale genetic analyses, and the increasing availability of genomic 

resources, it is desirable to find a marker that is able to overcome some of the 

limitations of microsatellites, and single nucleotide polymorphisms (SNPs) have 

been suggested as a marker that should prove to be highly useful in population 

genetics (Morin et al. 2004). In brief, a SNP is a single variable nucleotide site 

within a species’ genome, usually having only two alleles. Ideally, the less 

common allele should occur at a frequency that is ! 1% (Vignal et al. 2002), 

indicating that the polymorphism persists within the species and is not simply a 

chance mutation that will be subsequently lost. SNPs have several advantages 

over microsatellites for use in genetic studies. First, SNPs are probably the most 

common genetic polymorphism (Brumfield et al. 2003), and therefore the most 

abundant marker in the genome, allowing for a greater density of markers for use 

in genome-wide analyses such as population genomics or disease association 
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studies, and more accurately representing genetic diversity within a genome. 

Further, SNPs can be processed at a much higher throughput level than 

microsatellites. Using microarray technology, ~500 000 SNPs can be genotyped 

in an individual at once (e.g. Novembre et al. 2008), ~4 orders of magnitude 

greater than is possible for simultaneous microsatellite genotyping. Second, the 

mutational process surrounding SNPs is conceptually simpler. While there are 

several models appropriate to explain microsatellite evolution, it is difficult to 

assess which model is most appropriate for a given data set. There is only one 

model commonly used to explain SNP evolution, the infinite site model proposed 

by Kimura (1969), whereby a mutation occurs only once at any nucleotide site. 

This model is highly appropriate because SNPs have a low mutation rate (~10-8 

per generation), so usually have only two possible states and are unlikely to 

undergo mutational reversals (Brumfield et al. 2003). Third, because of their low 

allelic polymorphism, SNPs do not suffer from sampling error (see above), which 

should make them better for detecting population structure in a limited number of 

individuals. However, this means that each locus is less informative, and in fact 

simulations suggest that up to 10x more binomial markers than multi-allelic 

markers (such as microsatellites) may be required to accurately estimate genome-

wide variability (Mariette et al. 2002). That said, this lack of power is easily 

compensated for through the far greater number of SNPs that can be genotyped. 

Additionally, because the genomic coverage offered by SNPs is so great, they are 

an ideal marker to use when looking for statistical signatures of selection, or 

markers associated with a specific phenotype.  

Before SNP profiles can be evaluated in any organism, multiple 

individuals must be (partially) sequenced in order to locate SNPs in the genome, 

and to determine flanking sequence so they can be individually interrogated. 

There are numerous methods for accomplishing this, all of which involve either 

targeted sequencing or random sequencing of genomic regions (Slate et al. 2009). 

For studies of non-model species, where there is little available sequence data, 

and likely limited funding, the exon-priming intron-crossing (EPIC) targeted 

sequencing approach is commonly used (e.g. Aitken et al. 2004). This is done by 
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designing primers from the ends of neighbouring exons (determined from 

sequence of a closely related species, and thus likely conserved), and using them 

to amplify and sequence the intronic regions between them in the target species. 

Introns are more likely to contain SNPs than exons, because they are generally 

less functionally constrained (Slate et al. 2009), but of course whether coding 

SNPs are preferred or not will depend on what questions they will be used to 

address. Another increasingly common method for SNP detection involves the 

random sequencing of pooled cDNA (DNA derived from reverse transcription of 

mRNA) from multiple individuals on a high-throughput sequencer, such as the 

454 GS FLX, in order to generate expressed sequence tags (ESTs). Due to the 

high degree of coverage obtainable with the 454 sequencer, SNPs within protein-

coding genes can easily be detected by comparing overlapping sequences using 

specialized software such as PolyBayes (Marth et al. 1999) or QualitySNP (Tang 

et al. 2006). Because hundreds or thousands of genes are sequenced 

simultaneously, this approach can yield many more SNPs than the EPIC 

approach, up to many thousands of SNPs at a time (e.g. Gore et al. 2009). 

Alternatively, if no high-throughput sequencer is available, sequencing of 

randomly generated amplified fragment length polymorphisms (AFLPs) can be 

done in order to discover SNPs in any organism, regardless of the availability of 

sequences or other genetic tools (e.g. Roden et al. 2009). Ultimately, the method 

used for discovering SNPs will be based on three main factors: 1) availability of 

previously generated sequence data, 2) number, location (genic vs. non-genic), 

and type (coding vs. non-coding) of SNPs desired for research, and 3) available 

funds and tools.  

Whichever method is used for discovering SNPs, one needs to be aware of 

a potential problem when locating SNPs: ascertainment bias, which refers to a 

bias in how SNPs are detected. For instance, if a group of SNPs to be used to 

assess genetic variability is screened from one population, researchers may miss 

SNPs that are fixed in this population, or are at too low a frequency to detect. 

Such a bias will alter the frequency spectrum, the distribution of frequencies at 

which SNP alleles occur in a group of individuals (Nielsen et al. 2004). This can 



 

 8 

affect results obtained when trying to assess overall genetic diversity, divergence 

times, migration rates, population structure, or when looking for signals of 

selection (Morin et al. 2004; Nielsen et al. 2004). However, ascertainment bias 

can be avoided by using samples from all populations that will be studied when 

generating SNPs, and it is sometimes possible to correct for ascertainment bias, if 

enough is known about the ascertainment scheme (Brumfield et al. 2003).  

Once it has been decided which SNPs will be interrogated for a given 

project, a method for genotyping must be decided upon. Like SNP discovery, 

many possible methods for SNP genotyping exist. If relatively few loci are to be 

genotyped, there are several methods for genotyping a single SNP at a time. A 

good example is the TaqMan assay (from Applied Biosystems), performed with a 

real-time PCR thermocycler. Because the TaqMan assay is PCR-based, it can be 

used for multiplexing in order to genotype several (<10) SNPs in one reaction. At 

the opposite end of the spectrum is genotyping using microarrays that can be 

purchased, either pre-made or custom-designed, from companies such as 

Affymetrix and Illumina. As previously mentioned, microarrays can genotype 

many thousands of SNPs at once. Each microarray is divided into thousands of 

partitions, with each partition containing the probe for one SNP allele. By adding 

a fluorescent dye to amplified DNA, hybridized DNA will give off light where it 

hybridizes, and by comparing the amount of light given off at each site on the 

array, individuals can be genotyped concurrently at all SNP loci being 

interrogated. Unfortunately, because so many SNPs are genotyped at once, 

hybridization conditions are not specific to each SNP, so some SNPs hybridize 

more easily than others. In order to minimize the mis-calling of genotypes due to 

nonspecific hybridization, there are usually multiple copies of each probe, spread 

out over different locations on the array, to try to reduce any bias in hybridization. 

While the cost per SNP for genotyping is much lower for microarrays than with 

most other SNP genotyping methods, microarrays are nonetheless very expensive, 

and require specialized equipment in order to hybridize DNA to them, and to scan 

afterwards in order to evaluate fluorescence. As is the case with SNP detection, 

the appropriate method for SNP genotyping will vary with each project, 
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depending on the number of SNPs to be genotyped, as well as available time and 

funds. 

 

Population genomics 

Traditional population genetics is the study of microevolutionary forces, 

namely mutation, genetic drift, selection, and gene flow, assessed by comparing 

allele frequencies of neutral markers within species and populations. This has 

been done for many years using a relatively small numbers of loci that require 

little or no development, such as restriction fragment length polymorphisms 

(RFLPs), later followed by amplified fragment length polymorphisms (AFLPs), 

and eventually microsatellite loci, which require additional time and money to 

develop, but are multi-allelic and co-dominant, and so offer greater discrimination 

on a per marker basis. Population genomics is an extension of this kind of 

analysis, using a large amount of genome-wide genetic data (such as SNPs, or 

possibly AFLPs) to answer population genetics questions more specifically and 

robustly. An important distinction between the two fields is that with the large 

amount of data used, population genomic studies have the power to distinguish 

genome-wide genetic effects (such as bottlenecks and inbreeding) from locus-

specific effects (such as mutation, recombination, and selection) (Black et al. 

2001; Luikart et al. 2003; Stinchcombe and Hoekstra 2007). This is highly 

important because only neutrally evolving loci (i.e. loci that exhibit genome-wide 

patterns) will accurately inform estimates of demographics, population structure 

and migration, and having a set of neutral loci allows for a comparative 

assessment of mutation and recombination, as well as statistical detection of 

selection in loci that do not appear to be evolving neutrally.  

Luikart et al. (2003) suggested a thorough schematic for conducting a 

population genomics study, which can be simplified to the following general 

methodology: sample many individuals and genotype them at many loci, look for 

outlier loci using statistical tests, estimate demographic parameters using the 
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neutral loci, and determine causality of outlier loci. The main issues to note with 

sampling are that, depending on the study questions, a large number of samples is 

preferable and often requisite, and individuals should be sampled at regular 

geographic intervals, without using prior assumptions about populations or 

breeding groups. Genotyping should be done with as many loci as possible, 

spaced broadly throughout the genome. Isolating outlier loci from the rest of the 

data set is often an analytically challenging aspect of a population genomics 

study, so I will briefly discuss how outlier loci, or loci that are candidates for 

selection, are identified. 

An increasingly used approach to take when looking for functional 

genotypes is to look for loci that exhibit statistical evidence of selection, rather 

than looking for associations between specific phenotypes and genotypes. There 

have been several methods proposed for doing this, the simplest of which is to 

look for loci that are outliers in between-group FST distributions. The theory, 

postulated by Lewontin and Krakauer (1973), is that loci linked with genes 

undergoing directional selection should differ highly in allele frequencies between 

groups in comparison to neutrally evolving loci, or loci linked to genes 

undergoing balancing selection. Of course, there is no guarantee that outliers are 

under directional selection, as high FST values may simply be caused by genetic 

drift between groups, but this method will highlight some loci that merit further 

investigation. For studies with few genetic markers, there is available software 

that simulates a null distribution of FST values, such as Beaumont and Nichols’s 

(1996) FDIST. However, this is not ideal, because the simulated null distribution 

can be biased by poorly estimated population demographics or structuring 

(Excoffier et al. 2009), and so it is preferable to use a large set of markers in order 

to obtain an empirical distribution of FST values. This allows for an empirical 

(sensu Teshima et al. 2006) genome scan. 

There are two other main types of methods to look for selection in a set of 

loci, based on the frequency spectrum and linkage disequilibrium (LD) 

respectively. Tajima (1989) first proposed the use of the frequency spectrum to 
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identify loci that deviate from neutrality, measured with a statistic that he 

proposed (d). He hypothesized that loci that are in LD with a selected gene or 

marker would exhibit low minor allele frequencies relative to other loci in the 

genome. The selected locus would drag individual alleles at nearby neutral loci 

into high frequency, reducing the frequency of the other alleles at these loci. Such 

low-frequency neutral alleles would return to higher frequency only after 

recombination broke up that particular linkage block over many generations. 

However, using Tajima’s (d) to look for selection is unadvisable if the 

demographic history of the study organism is unknown, because it is difficult to 

distinguish between recent selection and a recent bottleneck using this test: both 

scenarios have the effect of reducing the number of available alleles in past 

generations (Simonsen et al. 1995). Another caveat is that the frequency spectrum 

cannot be used to detect selection in loci that have swept to fixation, because a 

monomorphic locus is not necessarily indicative of directional selection. Finally, 

Tajima’s (1989) d will have little power to detect selected loci in systems where 

there is strong ascertainment bias, because as previously mentioned, 

ascertainment bias can result in relatively few loci with low minor allele 

frequencies being used in the study system, which will skew the results.  

Fortunately, the LD-based methods are not affected by a skew in the 

frequency spectrum, although they are still sensitive to assumptions about 

demographics. LD methods, such as the integrated haplotype score (iHS; Voight 

et al. 2006) or the linkage disequilibrium decay (LDD) test (Wang et al. 2006) 

look for areas in the genome that exhibit high LD, under the assumption that these 

areas are undergoing positive selection which would cause increased LD. Because 

LD tends to decay over time, LD-based analyses work best at finding loci that 

have undergone recent selection, although they can still detect selection at 

recently fixed loci. A potential problem is that most LD-based analyses require 

knowledge of the phase of the genotypes, that is, knowing which chromosome 

from a chromosomal pair each allele is on. While this is not an issue when using 

sequence data, phase is not known for genotype data. However, phasing can be 

estimated using maximum likelihood (Excoffier and Slatkin 1995) or Bayesian 
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(Scheet and Stephens 2006) frameworks. Lastly, most LD-based methods rely on 

an estimate of the underlying recombination rate (Nielsen 2005), and if this rate is 

inaccurate, then the results from these tests may be unreliable.  

No matter which method is used to detect loci under selection, the results 

obtained usually require further investigation on an individual level. For those 

lucky enough to have a sequenced genome available for a closely related species, 

the genome browser provided by the Genome Bioinformatics group of UC Santa 

Cruz (http://genome.ucsc.edu/cgi-bin/hgGateway) can be valuable for examining 

the genomic context of markers that show evidence of selection. For instance, if 

you know the location of a SNP, you can search for it in the genome browser and 

look for nearby genes, which may give some indication of what phenotype the 

detected locus could be affecting. Alternatively, if such resources are unavailable, 

you could BLAST (Altschul et al. 1990) the sequence surrounding the marker in 

question (if known) at NCBI, to see if it has any significance in another study 

system.  

 

Thesis goals 

The theoretical benefits of using SNP loci rather than microsatellites for 

population genetic studies seem clear: much higher genomic coverage, the ability 

to more accurately detect population structure from small sample sizes, and the 

ability to discover loci that have undergone, or are undergoing, selection. 

However, it remains to be empirically documented what the benefits of using a 

large SNP data sets are when studying wild populations. To date, most large-scale 

SNP studies (i.e. studies with > 10 000 loci) have involved human populations, 

where there are hundreds of available samples, and 500K+ markers, ascertained 

within and between human populations. For non-humans, large-scale SNP studies 

have focussed on economically important organisms such as cattle (Bos 

primigenius; e.g. Pant et al. 2010), domestic dogs (vonHoldt et al. 2010) and 

domestic sheep (Ovis aries; Kijas et al. 2009), which also have many available 
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samples, and many thousands of SNPs ascertained within each species. While 

studies of wild populations have also been conducted using SNP arrays, no 

within-species comparison has approached the scale of the studies of 

domesticated animals. Generally, wild animals have been genotyped on arrays 

developed for a related domestic species, so the number of useable, polymorphic 

SNPs is dramatically reduced [e.g. 2-3% of SNPs in bison genotyped on a cattle 

SNP array, (Pertoldi et al. 2009) and wild sheep species genotyped on a domestic 

sheep array, (Kijas et al. 2009)]. Thus, it has not yet been possible to evaluate the 

benefit of possessing a large SNP data set for determining population structure, 

since no wild population has been genotyped at a large number of markers, and all 

domestic animals have been intentionally segregated. Additionally, because 

studies of wild populations generally have fewer loci, most studies looking for 

selection have had to rely on simulated null distributions in order to detect 

outliers.  

I aim to expand on what has been learned about wolf population structure 

from microsatellite studies by genotyping a wild population of wolves using the 

Affymetrix Canine Mapping Array version 2. This array contains probes for ~127 

000 SNP loci, and has already been used to successfully genotype a global panel 

of > 200 grey wolves and > 900 domestic dogs at ~48 000 SNP loci, in order to 

infer the primary location of dog domestication (vonHoldt et al. 2010). Because 

wolves and dogs are so closely related (see above), a much larger proportion of 

loci can be successfully genotyped on this array in grey wolves than has been the 

case for other cross-species SNP array studies.  

Using this array, I genotyped grey wolf samples from across North 

America, in order to re-assess population structure using a high-density marker. 

This will allow me to compare the results obtained from large-scale SNP typing to 

those obtained from the panel of 14 microsatellites used by Carmichael et al. 

(2007). Using this approach in Chapter 2, I pursue three goals: 1) expand 

understanding of grey wolf population structure through the use of a high-density 

genetic marker, 2) outline the differences observed through the use of many SNP 
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markers rather than a small microsatellite data set and 3) evaluate how many 

SNPs are required in order to accurately assess population structure.  

In Chapter 3, I look for evidence of positive selection in this population, in 

the hope of identifying genes that are important to phenotypic variation within 

North American grey wolves. Because wolves live in diverse habitats (Geffen et 

al. 2004), and population structure seems to be highly influenced by ecological 

factors (see above), it is likely that wolves in different subpopulations possess 

habitat-specific genetic adaptations to their surroundings. Because I am working 

with a large set of SNP markers, I perform an empirical genome scan to look for 

SNPs that are under selection between subpopulations. I look at the extreme 

outliers of the distribution and identify SNPs that may be under selection and 

identify nearby genes. Finally, I discuss why these genes might be important for 

phenotypic differentiation across this range. 
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Chapter 2 

Population structure of North American grey wolves 
 

Introduction 

With the development of molecular markers, the field of empirical 

population genetics has taken off in the past 30 years. More recently, the ease of 

development, high polymorphism, and low cost of microsatellite markers has 

enabled the study of many non-model species, which in turn has yielded much 

insight into microevolutionary processes. Beyond illuminating dispersal, mating 

systems and large-scale phylogeographic patterns, population genetics can also be 

applied to epidemiology for monitoring the development and spread of pathogens 

(e.g. Nübel et al. 2010), and for livestock breeding programs through the mapping 

of quantitative trait loci. 

 Large-scale studies of human populations are becoming increasingly 

common, with researchers genotyping hundreds of individuals at hundreds of 

thousands of SNP loci. The amount of data collected dwarfs what was possible 

only a few years ago (e.g. ~197 000 SNPs; Novembre et al. 2008), and 

progressively larger panels of markers are still being created (e.g. the Affymetrix 

Genome-wide Human SNP Array 6.0, with > 900 000 SNPs and > 900 000 probes 

for copy number variation). It was the sequencing of the human genome (Venter 

et al. 2001) that has allowed for the development of these vast sets of markers, 

and such large numbers of markers are not available for any other species. 

However, sequencing efforts continue in model and non-model species, so the 

genomic resources for other species are ever increasing. 

The sequencing of the domestic dog genome (Lindblad-Toh et al. 2005) 

enabled the development of a canine SNP microarray containing ~ 127 000 SNPs, 

which has recently been used to examine the genetic diversity and infer origins of 

domestic dogs (vonHoldt et al. 2010), and this same array can also be used to 
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successfully genotype species as divergent as coyotes, jackals, and African wild 

dogs (vonHoldt et al. in prep). But while these studies aimed to quantify species 

differences and evolutionary history, they were not designed to evaluate within-

species genetic variation in relation to natural population distribution. 

In this chapter I made a preliminary assessment of the benefits of using a 

large marker set instead of a small set of microsatellites for studying population 

structure in grey wolves. I have genotyped > 130 wolves sampled from across 

northern Canada and Alaska using these canine SNP microarrays, and I used this 

data to re-evaluate the population structure of North American wolves. I made 

basic comparisons between results from the SNP data and previous results from 

microsatellite data, looking at isolation by distance, population structure and 

differentiation within and between subpopulations, exploring biological and 

theoretical reasons behind discrepancies. I also made comparisons between the 

observed population structure and previously proposed subspecies distributions. 

Additionally, I evaluated the relative performance of different numbers of 

SNP markers when assigning individuals to subpopulations. STRUCTURE 

(Pritchard et al. 2000) is a commonly used computer program that assigns 

individuals to genetic clusters and evaluates admixture between these clusters, but 

there is currently no objective method with which to evaluate the resulting 

individual assignments. By comparing the results from STRUCTURE runs using 

different-sized subsets of SNPs, I provided an estimate of the number of SNP 

markers needed to assign individuals accurately and to precisely evaluate 

admixture.  

 

Methods 

Sample selection and genotyping 

The samples that were genotyped were selected from a set of > 2000 grey 

wolves used in previous studies (Carmichael et al. 2007; Musiani et al. 2007) with 
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an additional 30 tissue samples obtained from the University of Alaska Museum 

(Fairbanks, AK), based primarily on location, and secondarily on the quality of 

tissue. 45 samples were previously genotyped on a customized genome-wide 127k 

Affymetrix Canine Mapping Array (version 2) for use in a study of dog 

domestication (vonHoldt et al. 2010). To supplement these samples, an additional 

110 wolves were selected as candidates for genotyping with the intention of 

maximizing the breadth of sampling across northern Canada and Alaska. In 

addition to the above criteria, ten wolves from the Alexander Archipelago in the 

Alaskan Panhandle were selected for genotyping because wolves on these islands 

have been previously defined as a subpopulation distinct from mainland wolves in 

adjacent mainland British Columbia (Weckworth et al. 2005; Muñoz-Fuentes et 

al. 2009). Ten wolves were selected so that wolves from this area were adequately 

represented in the data set.  

DNA was extracted using a QIAamp DNA mini kit (QIAGEN) following 

standard protocol and quantified using a Nanodrop 1000 (Thermo Scientific, 

Wilmington, Denver). Samples with 260/280 readings < 1.8 or an insufficient 

quantity of DNA were discarded, and samples with 260/230 readings < 2.0 were 

cleaned up by ethanol precipitation prior to processing. 87 samples (plus 5 

duplicates) were genotyped on the SNP array following the Affymetrix 

“GeneChip® Mapping 500K Assay” protocol. Before the hybridization step, 

sample volumes were reduced to 35µL by heated evaporation in order to allow the 

entire volume of each sample to be hybridized to a single array. Samples that 

could not be successfully prepared (due to low concentration of DNA or failure 

during preparatory procedure; n = 23) were discarded prior to array hybridization.  

After hybridization and scanning, genotypes were called using BRLMM-P 

software provided by Affymetrix (Affymetrix technical report; 

http://www.affymetrix.com/support/technical/whitepapers/brlmmp_whitepaper.pd

f). In order to ensure only reliable genotype calls were used in the analysis, three 

quality control measures were taken. SNPs with < 95% call rate, heterozygosity > 

70%, or minor allele frequency (MAF) < 5% across the entire data set were 
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removed. All X-chromosome SNPs (n = 1996) were discarded because the data 

set included males. A total data set of 27 931 SNPs were retained for analysis. To 

evaluate consistency of protocol and genotyping calls, five samples were fully 

processed and genotyped in duplicate. Genotype calls between duplicated samples 

were found to differ at < 1.2% of SNP loci, with > 80% of the discrepancies 

involving an uncalled genotype in one sample rather than a disagreement between 

called genotypes. Because of the potential for linkage disequilibrium to bias 

results, sliding windows of ten SNPs within each chromosome were evaluated for 

high correlation (r2 ! 0.5) using PLINK v.1.06 (Purcell et al. 2007). If any pair of 

SNPs in any 10-SNP window was observed to have r2 ! 0.5, one SNP was 

randomly removed by PLINK. This pruning yielded a reduced data set of 26 221 

SNPs (henceforth referred to as LD-pruned) that are not in high LD due to close 

proximity.  

 

Population structure 

In order to determine the population structure of North American grey 

wolves, STRUCTURE (Pritchard et al. 2000; Falush et al. 2003) was used to 

identify genetic clusters of individuals. STRUCTURE uses a Bayesian Markov 

chain Monte Carlo (MCMC) algorithm to group individuals into a pre-determined 

number of clusters (K), and the likelihood of the result [Ln P (D|K), where D is 

the genotype data] is evaluated, and can be compared between runs using different 

values of K. Under the admixture model, admixture proportions are then obtained 

for each individual from the run with the highest Ln P (D|K). For this analysis 

STRUCTURE was run with 20 000 burn-in iterations and 5 000 sampling 

iterations of the MCMC for K = 1 through 10 with correlated allele frequencies 

(as recommended by the authors) for the entire set of samples using the LD-

pruned data set. The admixture ancestry model was selected, which allows 

different genes within an individual to be inherited from different genetic clusters. 

This is the preferred model for this study system because of grey wolves’ known 

ability to migrate long distances and because the sampling of individuals across 
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the landscape was evenly distributed, with few obvious a priori subpopulation 

boundaries or barriers to gene flow. Each run was performed five times, and the 

run with the highest Ln P (D) for each K value was compared in order to 

determine the best value of K, as suggested by Pritchard et al. (2000) and Faubet 

et al. (2007). STRUCTURE was then re-run three times with K fixed at this value 

with the number of sampling iterations increased to 10 000 in order to recover the 

best admixture proportions, and the run with the highest Ln P (D) was selected. 

Individuals that had > 75% assignment to a single genetic cluster were considered 

to be part of a subpopulation. 

In addition to the above Bayesian method examining population structure, 

I performed a principal components analysis (PCA; Patterson et al. 2006). PCA 

provides a quick way of summarizing multi-dimensional data into more easily 

interpreted components, which can then be plotted on a scatter chart. This 

technique has been used extensively in recent human genetics literature (e.g. Lao 

et al. 2008; Novembre et al. 2008; Bishop et al. 2009; Silva-Zolezzi et al. 2009), 

where studies include hundreds or thousands of individuals genotyped at 500K+ 

SNP loci, because it is much quicker than computation-heavy Bayesian clustering 

algorithms like STRUCTURE. To perform PCA, I used the program 

SMARTPCA within the EIGENSTRAT software package (Price et al. 2006) 

using the 132-individual, LD-pruned SNP data set. The values for the first two 

principal components were plotted to identify distinct groups of individuals. 

Subpopulations determined using STRUCTURE were superimposed to see if they 

were confirmed by PCA. 

To measure the degree of genetic differentiation between clusters I 

calculated Weir and Cockerham’s (1984) !, analogous to Sewall Wright’s (1951) 

FST (and henceforth referred to as FST), across all clusters and between each pair 

of clusters using a script written by J. Novembre. To assess the amount of 

variation in inter-individual identity-by-state genetic distances (DIBS; calculated 

using PLINK) within subpopulations vs. between subpopulations, I performed an 

analysis of molecular variance (AMOVA) using ARLEQUIN v.3.11 (Excoffier et 
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al. 2005). A total of 10 000 permutations of the data set were performed to assess 

significance.  

 

Subpopulation structure 

While the number of individuals used in this study was small relative to 

the scale of the sampled area, because so many markers were used I wished to 

determine whether it was possible to detect finer population structure within 

subpopulations. To investigate this, I ran STRUCTURE analyses on each 

subpopulation determined from the previous step. Data subsets consisting of all 

individuals assigned to each subpopulation were input into separate 

STRUCTURE runs with K values of 1-5, to see if further structure could be 

detected. As before, the LD-pruned data set was used, and STRUCTURE was run 

with the admixture model and correlated allele frequencies. Because sample sizes 

were reduced compared to running the entire population at once, STRUCTURE 

was run five times for 20 000 burn-in cycles with 20 000 subsequent iterations, 

with the run scoring the highest Ln P (D|K) used to select the most appropriate K 

value.  

 

Isolation by distance 

To look for evidence of isolation by distance (IBD), Mantel tests (Mantel 

1967) were performed to compare DIBS with pair-wise geographic distances 

calculated using GENALEX v.6 (Peakall and Smouse 2006). The Mantel analysis 

was performed with the vegan v. 1.15-4 package (Oksanen et al. 2009) in R (R 

Development Core Team, 2009) using 1000 permutations to test the correlation 

between genetic and Log10–transformed geographic distance.  

To make comparisons with microsatellite data, a subset of wolves also 

genotyped with 14 microsatellite loci by Carmichael et al. (2007) was analyzed 

separately with a Mantel test. Then, an allele-sharing distance (analogous to DIBS) 
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between each pair of these 61 individuals was calculated from the microsatellite 

data using the MICROSATELLITE TOOLKIT (Park 2001). A separate Mantel 

test was run using the allele-sharing distances for these 61 individuals. 

To evaluate the relative effect of geographic distance compared to 

population structure on DIBS, partial Mantel analyses (Smouse et al. 1986) were 

performed. For these analyses I used only individuals assigned to a single 

subpopulation. I constructed an additional distance matrix, where individuals 

assigned to the same subpopulation were coded to have a distance of 0, and those 

from different subpopulations were coded with a distance of 1. Two sets of 

analyses were run. In the first, subpopulation assignment distance was held 

constant, in order to evaluate the importance of geographic distance to DIBS after 

accounting for population structure. In the second, geographic distance was held 

constant, in order to determine the importance of population structure on DIBS after 

accounting for geographic distance.  

Additional Mantel analyses were run for all individuals within each 

subpopulation to look for evidence of IBD on a smaller scale and within similar 

environments. For clusters containing wolves separated by large water barriers 

(segments of ocean, but not rivers), partial Mantel analyses were also performed. 

To do this, additional distance matrices were constructed to control for whether 

each pair of wolves was separated by a water barrier (distance = 1) or not 

(distance = 0), so that the effect of a water barrier would not influence the 

correlation between geographic and genetic distances. 

 

Comparison of SNP data sets and microsatellites for determining population 

structure 

To determine the relative ability of different amounts of SNPs to correctly 

assess population structure, ten random subsets of each of 5000, 1000, 500, 140, 

98, and 56 SNPs were generated. The latter three numbers were picked because 

they are ten, seven, and four times (respectively) the number of markers used by 
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Carmichael et al. (2007) to assess population structure, and so could be used for 

comparison purposes with results from microsatellite data. All 132 wolves were 

run in triplicate in STRUCTURE with only the genotype data from each SNP 

subset and with a fixed K value (determined during assessment of population 

structure; see above). This allowed comparison between the results obtained from 

SNP subsets to those from the complete LD-pruned data set, under the assumption 

that the latter data set would provide the most accurate results. Due to the reduced 

number of markers, each size of data subset was run for an increased number of 

burn-in iterations (50 000, 100 000, 200 000, 400 000, 500 000 and 1 000 000 

iterations respectively) and sampling iterations (50 000, 200 000, 500 000, 1 000 

000, 1 200 000, and 2 000 000 iterations respectively). Amongst each triplicate set 

of runs, assignments for each subset were taken from the replicate with the 

highest Ln P (D). These assignment matrices were then run alongside the LD-

pruned 26K assignment matrix in the program CLUMPP (Jakobsson and 

Rosenberg 2007) in order to permute the cluster assignments (which are randomly 

labelled in STRUCTURE) to match across all the runs. For this calculation, the 

GREEDY algorithm was selected (to minimize time consumption vs. running a 

complete search) with 10 000 random input orders. Finally, two metrics were used 

in order to determine the ability of each subset of SNPs to correctly identify 

population structure. The first measure I calculated was the “clusteredness” (G) of 

each individual within each run, as defined by Rosenberg et al. (2005). 

Clusteredness measures the degree to which individuals are assigned to a single 

cluster (clusteredness = 1) rather than being assigned equally to all possible 

clusters (clusteredness = 0) and is calculated across a group of individuals as  
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where I is the total number of individuals, K is the total number of clusters, and qik 

denotes the admixture coefficient of the ith individual in the kth cluster. 

Compared to just using the highest assignment proportion of each individual, the 

clusteredness value is reduced if the remaining assignment is evenly broken up 

amongst other clusters. This distinction is significant because when 

STRUCTURE is unable to detect population structure in a data set (either due to 

lack of power or a true lack of structure), it will tend to assign each individual 

equally to all K clusters (Rosenberg et al. 2005). Additionally, this measure 

corrects for K so that K does not directly influence clusteredness values. 

Clusteredness was calculated for each individual in each individual SNP subset, 

and then averaged across all subsets with the same number of markers. 

A second metric was devised to evaluate the similarity between the results 

from any data subset and the complete 26k LD-pruned data set. It was calculated 

similarly to the clusteredness, with minor modifications, whereby the admixture 

coefficient from the complete LD-pruned data set was used instead of the 1/K 

term, and the 

! 

K
K "1

 term was removed. It will be referred to as discordance (d), 

and was calculated across individuals as 
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where qiks is the admixture coefficient of the ith individual in the kth cluster 

estimated using a data subset (s), and qikc is the admixture coefficient of the ith 

individual in the kth cluster using the complete LD-pruned 26k data set (c). The 

main term is divided by  in order to scale the measure between 0 and 1. 

Discordance is calculated in such a way that mis-assignment is more highly 
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penalized if it is concentrated in a single cluster, rather than broken up amongst 

several clusters. Thus, individuals that are strongly assigned to a to a single 

incorrect cluster show greater discordance than individuals that incorrectly appear 

to have a mixed genetic background.  

Next, the subset of wolves also genotyped by Carmichael et al. (2007) (n = 

61; henceforth referred to as the 61-individual data set) was run in STRUCTURE 

(with admixture and correlated allele frequencies) with the LD-pruned SNP set for 

K = 1 to 7. As before, five replicates were run for each value of K in order to 

determine the most appropriate value. Then, this subset of individuals was run in 

triplicate in STRUCTURE with K fixed for each of the SNP subsets, using the 

same number of burn-in and sampling iterations as with the 132-individual data 

set. Last, the microsatellite data for the 61-individual data set was run 3 times in 

STRUCTURE with K fixed for 1 000 000 burn-in iterations and 2 000 000 

sampling iterations, in order to evaluate how well this microsatellite data set was 

able to determine population structure relative to SNP data sets of varying sizes. 

Discordance and clusteredness were calculated for the runs with the highest Ln P 

(D) for each SNP data subset and for the microsatellite data.  

 Finally, I tested the correlation between clusteredness and discordance, by 

comparing the mean discordance for each individual across subsets of the same 

number of SNPs, and the clusteredness score of each individual assessed using the 

complete LD-pruned SNP set (henceforth referred to as best-estimate 

cluteredness). To evaluate the significance of the correlation, Spearman’s rank 

correlation coefficient was calculated for each comparison. This was also done for 

the microsatellite results. 
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Results 

Population structure 

STRUCTURE runs of the entire set of individuals reached an asymptote in 

Ln P (D|K) at K = 5 (Fig. 2-1). I therefore used K = 5 genetic clusters for 

subsequent analysis. The five clusters are geographically coherent (see Fig. 2-2a), 

and increasing K past 5 yielded no additional clusters to which individuals 

assigned strongly (i.e. ! 75%). Five subpopulations (totalling 87 wolves) 

containing individuals that assigned ! 75% to a single genetic cluster were named 

according to their geographic origin: Pacific, Forest, Arctic, Baffin Island, and 

Atlantic. All five subpopulations were geographically discrete (Fig. 2-2b). 

Using PCA, the same geographically coherent groups appeared distinct 

according to their scores on the first two axes, PC 1 and PC 2 (Fig. 2-3). The first 

and second axes accounted for 5.6% and 4.3% (respectively) of the observed 

genetic variation. There was high congruence between the STRUCTURE 

subpopulation assignments and their pattern of clustering by PCA. Unassigned 

individuals were generally intermediate between the subpopulation pairs most 

highly represented in their genomes.  

Genetic differentiation measured among all subpopulations was moderate 

with global FST = 0.131. Pair-wise FST ranged from 0.065 between Forest and 

Arctic subpopulations to 0.199 between Baffin Island and Coastal Islands 

subpopulations, with mean pair-wise FST = 0.125. The Pacific subpopulation 

appeared most distinct by this measure, showing high FST estimates when 

compared to all other subpopulations (Table 2-1). A considerable amount of 

genetic variation (19.5%) was partitioned between subpopulations (AMOVA, P < 

0.0001 after 9999 permutations) leaving 80.5% of the variance within 

subpopulations. 
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Subpopulation structure 

The amount of substructure detected using the LD-pruned data set varied 

between subpopulations, but did not seem to depend on the number of individuals 

sampled or the area of land a given subpopulation inhabits. For the Forest 

subpopulation, which encompassed the largest area (see Fig. 2-2b) and the 

greatest number of individuals (n = 46 wolves), there appeared to be K = 3 

subclusters. Two main genetic subclusters were aligned along an east/west 

gradient (Fig. 2-4a), with an additional third subcluster comprising the two wolves 

from Riding Mountain National Park. In the Arctic subpopulation (n = 9) 

STRUCTURE recovered two genetic subclusters (Fig. 2-4b). The wolves from 

Victoria and Banks Islands near the mainland formed one subcluster, and the 

wolves up in the high arctic, from Devon and Ellesmere Islands were admixed 

with a second genetic subcluster. The Pacific subpopulation (n = 8) was best 

represented at K = 2, with the two genetic subclusters aligned along an east/west 

split (Fig. 2-4c). Wolves near the coast formed one cluster, while wolves farther 

from the mainland were primarily composed of the second cluster. Neither the 

Baffin Island (n = 8) nor the Atlantic subpopulation (n = 16) showed evidence for 

substructure past K = 1 (data not shown).  

 

Isolation by distance 

Across all individuals (n = 132) there was a significant correlation 

between geographic distance and DIBS (r = 0.595; Mantel test P = 0.001 after 1000 

permutations). This correlation was stronger among wolves located more than 

~300km apart than it was among those separated by shorter geographic distances 

(Fig. 2-5a). When this dataset was reduced to 61 individuals that were typed for 

microsatellite loci, there was a similar correlation between geographic distance 

and DIBS  (r = 0.623; P = 0.001) that remained weaker at short geographic 

distances (Fig. 2-5b). However, the correlation observed using the microsatellite 
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data was considerably weaker (r = 0.397; P = 0.001) at all geographic distances 

(Fig. 2-5c). 

 I used partial Mantel tests to separate the effects of subpopulation 

designation and geographic distance using the subset of 87 wolves that assigned 

strongly to subpopulations. The correlation between geographic distance and DIBS 

after correcting for subpopulation designation was moderate (partial Mantel test; r 

= 0.438, P = 0.001). Similarly, there was a moderate correlation between 

subpopulation assignment and DIBS after controlling for geographic distance (r = 

0.463, P = 0.001). 

Patterns of IBD within subpopulations were variable. There was a 

significant correlation between geographic distance and DIBS in the Forest 

subpopulation (Mantel test; r = 0.594; P = 0.001), the Atlantic subpopulation (r = 

0.529; P = 0.001) and the Arctic subpopulation, even after correcting for water 

barriers (partial Mantel test; r = 0.381; P = 0.012). However, there was not a 

significant correlation between geographic distance and DIBS in the Baffin Island 

subpopulation (Mantel test; r = 0.039; P = 0.403) or in the Pacific subpopulation 

after controlling for water barriers (partial Mantel test; r = 0.073; P = 0.318). 

 

Comparison of SNP data sets and microsatellites for determining population 

structure  

For STRUCTURE runs with the LD-pruned SNP set, the 61-individual 

data set appeared to asymptote in Ln P (D|K) at K = 3 (Fig. 2-6), so this value was 

used to assess subsets of SNPs and microsatellite data. The clusters outlined were 

quite similar to the Arctic, Forest, and Baffin Island clusters recovered from the 

full data set (Fig. 2-7). The most noticeable difference was that the individuals on 

the east coast of the mainland assigned strongly to the Forest cluster, rather than a 

distinct Atlantic cluster. At K = 4, there was some distinction between these 

Atlantic samples and the rest of the Forest individuals, but the Atlantic individuals 

were still highly admixed (data not shown). 
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Mean discordance decreased with increasing number of SNPs, and the 

variation in mean discordance was best explained with an inverse-power best-fit 

line in both the full 132-individual data set (r = 0.994; Fig. 2-8a) and the subset of 

61 microsatellite-typed wolves (r = 0.992; Fig. 2-8b). Clusteredness on the other 

hand did not follow a simple pattern. In the complete 132-wolf data set, mean 

clusteredness initially increased quickly with increasing number of SNPs before 

peaking in subsets of 500 SNPs, after which mean clusteredness decreased 

gradually as data subsets increased further in size (Fig. 2-8c). A similar pattern 

was observed in the 61-individual data set, but mean clusteredness peaked in 

subsets of 98 SNPs (Fig. 2-8d). Variance in both measurements tended to 

decrease as the number of SNPs in a subset increased. 

Across both data sets, there was a significant negative correlation between 

the mean discordance of an individual and the best-estimate clusteredness in 

marker sets with > 56 SNPs (P < 3.55 * 10-7). The strength of the correlation 

increased between subsets of 98 (r = 0.512 for 132 individuals; r = 0.505 for 61 

individuals) and 500 SNPs (r = 0.906; r = 0.941), and then decreased in the 1000- 

and 5000-SNP subsets.  

In the discordance measurement, the score for the 14-microsatellite data 

set fell in between the means of the 56-SNP and 140-SNP subsets, and in 

clusteredness the value was in between the means of the 56-SNP and 98-SNP 

subsets. Similarly, there was a negative correlation between discordance in the 

microsatellite data and best-estimate clusteredness (r = 0.423; P = 1.67 * 10-3), but 

the correlation was weaker than in all SNP subsets with > 56 markers. 

 

Discussion 

 Through the use of SNP markers I have found significant genetic structure 

in the North American grey wolf population with evidence for five 

subpopulations, but a large number of individuals (n = 45) are highly admixed 

between two or more subpopulations. I observed moderate genetic differentiation 
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between these subpopulations and found a strong pattern of isolation by distance 

across the entire population and within several subpopulations. Finally, I found 

high discordance between genetic cluster assignments when using small data sets 

and the entire set of SNPs, and in particular found evidence that highly admixed 

individuals show particularly high discordance when assigned with small data 

sets. The implications of the different results are discussed separately below. 

 

Population structure 

While I inferred that there are five main subpopulations of wolves across 

the study range, Carmichael et al. (2007), who sampled wolves across a range that 

was almost identical, found evidence for eight subpopulations of wolves. The 

contrasting pattern I observed has biological explanations, but there are also 

statistical reasons explaining why the pattern is not the same between these 

studies, and I will address these first.  

Most of the subpopulations I recovered using SNP data were also 

recovered by Carmichael et al. (2007): Pacific, Arctic, Baffin Island, and Atlantic 

subpopulations. However, Carmichael et al. (2007) also detected two distinct 

mainland tundra subpopulations, as well as two forest subpopulations. My results 

on the other hand showed that mainland tundra wolves (wolves northeast of the 

tree line, visible in Fig. 2-2a) are highly admixed, containing large admixture 

proportions of both Forest and Arctic subpopulations (Fig. 2-2b), and that the 

boreal forest contains a continuous subpopulation of wolves. A discrete mainland 

tundra cluster does not appear in STRUCTURE runs until K = 7, and even then 

individuals in this cluster are still highly admixed, as are many Forest wolves 

(data not shown). Additionally, there is no evidence from the PCA of a mainland 

tundra subpopulation or two separate Forest subpopulations. There are a couple 

possible explanations for the reduced number of subpopulations. Carmichael et 

al.’s (2007) sample set was much larger (~2000 individuals) than the sample set 

used in this study (132 samples), but the distribution of their samples was similar 
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to the distribution of my samples. However, the sampling distribution in this study 

is more even than that of Carmichael et al. (2007), in which there were numerous 

individual capture locations where tens of animals were sampled. In this study 

there are only six locations with multiple individuals sampled, each with " 5 

individuals. Therefore, it seems likely that the discrepancy in population structure 

may be caused by uneven sampling and/or localized patterns of spatial 

autocorrelation (see Schwartz and McKelvey 2009) in Carmichael et al.’s (2007) 

study, rather a lack of samples in this study.  

Additionally, the discrepancy in structure detected could be the result of 

the markers used (microsatellites vs. SNPs) and their ascertainment. 

Microsatellites are highly variable and the specific microsatellites used for 

genotyping are usually chosen because they exhibit a large number of alleles, and 

therefore over-represent genomic diversity (Brandström and Ellegren 2008). On 

the other hand, all SNPs in this data set have only two alleles, and the only SNPs 

removed from the data set were those with a minor allele frequency < 5%. 

Additionally, there is much greater genomic coverage offered by these SNPs, and 

so it is probable that this SNP data set more accurately depicts genome-wide 

diversity than microsatellites. Thus, the greater structure of North American grey 

wolves suggested by Carmichael et al. (2007) may be due to an over-estimation of 

genetic diversity as well as uneven sampling. 

A new finding from this study is that the wolves found on the mainland 

arctic tundra (northeast of the treeline in Fig. 2-2a) do not form a distinct 

subpopulation, but are highly admixed between Forest and Arctic subpopulations. 

This admixture can be explained by wolves in the arctic tundra (both on the 

mainland and the islands) relying primarily on caribou for food (Parker 1973; 

Walton et al. 2001). Carmichael et al. (2007) and Musiani et al. (2007) found a 

strong correlation between population structure in wolves and primary prey type: 

mainland tundra wolves that prey upon barren-ground caribou rather than non-

migratory prey [such as elk (Cervus canadensis), deer (Odocoileus virginianus; 

O. hemionus), or moose (Alces alces) found in the boreal forest] formed distinct 
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subpopulations. Barren-ground caribou herds have been observed migrating as far 

as 1200km (Anand-Wheeler 2002), and mainland herds move from tundra to 

forest and back again on an annual basis, giving birth on the tundra during 

summer and retreating south of the treeline for the winter (Hall 1989). Grey 

wolves from the tundra have long been thought to follow them during their semi-

annual migrations (Walton et al. 2001). This has recently been confirmed using 

satellite telemetry (Musiani et al. 2007), with wolves observed following the 

caribou into the forest during the winter, and then back up onto the arctic tundra 

during the summer.  

Barren-ground caribou inhabit the mainland tundra (northeast of the 

treeline) as well as adjacent islands including Baffin Island and the southern half 

of Victoria Island, and have been observed migrating between the islands and the 

mainland (Hall 1989; Anand-Wheeler 2002). Carmichael et al. (2001; 2008) 

inferred that the annual migration of the Dolphin-Union caribou herd between 

Victoria Island and the mainland increased gene flow between Victoria Island and 

mainland tundra wolves. It is therefore not surprising that the wolves of the 

mainland tundra appear highly admixed, as their main source of food travels 

between the ranges of three wolf subpopulations identified in this study (Arctic, 

Forest, and Baffin Island). Since wolves in this area follow their prey’s annual 

migration, many opportunities exist for mainland tundra wolves to mate with 

wolves from the boreal forest as well as the arctic islands. In addition, wolves 

from more northern islands show less admixture with both Forest and Baffin 

Island subpopulations than do mainland tundra wolves. These islands (Devon, 

Ellesmere, and Banks) are inhabited by Peary caribou (Rangifer tarandus pearyi), 

rather than barren-ground caribou. Peary caribou undergo annual intra-island 

migration, but there have been few observations of inter-island migration and they 

do not inhabit the mainland (Hall 1989). As such, the wolves on these islands are 

likely more sedentary than wolves that prey on barren-ground caribou, and do not 

likely cross subpopulation boundaries on a yearly basis. Forest and Arctic 

subpopulations also had the lowest pair-wise FST across the entire population, 

despite occurring in different biomes and having a large water barrier between 
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them. Only two pair-wise subpopulation comparisons within biomes were 

possible, and both groupings (Forest vs. Atlantic and Baffin Island vs. Arctic) 

exhibited a lower pair-wise FST (0.072 and 0.116 respectively) than the mean pair-

wise FST (0.125), but greater FST than between Arctic and Forest subpopulations. 

This low genetic differentiation is likely a result of high gene flow between Arctic 

and Forest subpopulations mediated by the annual migration of the highly 

admixed mainland tundra wolves following their prey. 

Surprisingly, the wolves on Baffin Island showed only a small amount of 

admixture with other subpopulations, despite the near-ubiquitous presence of 

barren-ground caribou (Figure 2-2a). This is likely because migration of the 

caribou on Baffin Island largely occurs within the island. Only small numbers of 

caribou from the northwest of the island have been observed travelling to the 

mainland (Hall 1989), possibly because there is only a short stretch of water 

across which Baffin Island is adjacent to the mainland (the Fury and Hecla Strait). 

There is likely little contact between mainland wolves and the majority of the 

Baffin Island subpopulation as few wolves would travel between Baffin Island 

and the mainland while following caribou. Corroborating this, Carmichael et al. 

(2008) found greater genetic distance between north Baffin Island and mainland 

wolf subpopulations than between south Baffin Island and mainland wolf 

subpopulations. This explains why the Baffin Island subpopulation remains 

largely internally homogeneous and appears distinct from the Arctic 

subpopulation despite their close proximity and similar habitat. 

Carmichael et al. (2007) were unconvinced of the presence of a legitimate 

subpopulation of wolves off the coast of the Alaskan panhandle in the Alexander 

Archipelago; contrarily, I have found strong evidence that this subpopulation is 

real and not simply the by-product of having over-represented a small geographic 

area as previously suggested. First, this subpopulation of wolves appeared distinct 

in STRUCTURE analyses when K = 2, suggesting these wolves are more 

genetically distinct from the rest of the samples than any other genetic cluster. 

This was confirmed with the pair-wise FST analyses. Second, this group of wolves 
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appeared distinct in PCA analysis, and occupies a significant portion of the first 

principal component. Unlike STRUCTURE, PCA does not group individuals into 

breeding subpopulations, and the results are not biased by sampling density or 

inaccurate allele frequencies. Last, I genotyped two individuals that assigned > 

50% to this subpopulation from Vancouver Island, which is over 400km south of 

the Alexander Archipelago and separated from it by water barriers, again 

indicating that this genetic cluster is not the result of over-sampling. Collectively, 

this suggests that there is a strong differentiation between Pacific wolves and the 

rest of the subpopulations at a continent-wide scale. This finding agrees with 

Weckworth et al. (2005), who found significant distinction between wolves on 

coastal Alaskan islands and mainland forest wolves when assessed using 11 

microsatellites. Similarly, Muñoz-Fuentes et al. (2009) found strong 

mitochondrial genetic differentiation between wolves found on opposite sides of 

the Coast Mountains, which separate interior and coastal British Columbia. Given 

that the climates and available prey types on opposite sides of the Coast 

Mountains are distinct (Muñoz-Fuentes et al. 2009), my result supports the 

hypothesis that large-scale grey wolf population structure is strongly influenced 

by ecological factors (Pilot et al. 2006; Carmichael et al. 2007).  

 Finally, Carmichael et al. (2007) found that North American grey wolf 

population structure based on microsatellite loci did not match the distribution of 

morphological subspecies described by Nowak (1995). The different structure 

proposed here supports this conclusion with two exceptions. The distribution of C. 

l. occidentalis proposed by Nowak (2003; Fig. 2-9) is very similar to the 

distribution of the Forest subpopulation described here (Fig. 2-2b) and the 

distribution of C. l. arctos closely matches that of the Arctic subpopulation. This 

correlation, however, is contradicted by the finding that the distribution of C. l. 

nubilus contains Pacific, Atlantic and Baffin subpopulations, as well as the highly 

admixed individuals of the mainland tundra. These subpopulations all show 

substantial allele frequency differentiation (Table 2-1), further refuting their status 

as a single subspecies. Thus, while SNP data in this study support the C. l. 
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occidentalis and C. l. arctos subspecies classification, my results do not support 

C. l. nubilus as a genetically distinct subspecies.  

 

Genetic differentiation across subpopulations 

Wolf subpopulations across northern North America appear moderately 

differentiated, with global FST = 0.131 and mean pair-wise subpopulation FST = 

0.125. However, these results are upwardly biased, since highly admixed 

individuals were not included in this analysis. In comparison, Roy et al. (1994) 

estimated a mean FST = 0.167 across seven North American wolf subpopulations 

genotyped at ten microsatellite loci. This estimate is higher than the mean FST = 

0.131 I observed, but is remarkably close to the estimates from the SNP data set. 

While my samples are spread out across almost the entirety of Canada and 

Alaska, Roy et al. (1994) sampled wolves from discrete areas, which will further 

skew FST values upwards relative to the sampling scheme in my study, accounting 

for the small discrepancy between our results. 

In contrast, Carmichael et al. (2001) found a wide range of pair-wise FST 

values (0.009 – 0.188) between subpopulation pairs in the Canadian northwest, 

sampled both on the islands and on the mainland, suggesting high genetic 

differentiation between arctic islands wolves and mainland wolves. In contrast to 

this study, the scale of their analysis was much smaller, and subpopulation 

delineation was based solely on capture location, rather than results from 

clustering algorithms. Interestingly, all wolves sampled in their study were within 

or between the ranges of the Arctic and Forest subpopulations identified in this 

study, which have the lowest pair-wise FST of all subpopulation pairs (FST = 

0.065). The high FST values estimated by Carmichael et al. (2001) could be the 

result of an over-estimation of genomic diversity (Brandström and Ellegren 2008) 

or sampling error (Ruzzante 1998), both of which can result from the use of 

microsatellite markers. Similarly, the very low values observed between other 
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subpopulation pairs are likely an artifact of subpopulation assignment because the 

groupings used do not necessarily represent meaningful population structure. 

More recently, Aspi et al. (2009) estimated "ST = 0.151 between a pair of 

Russian and Finnish wolf populations separated by < 200km. This value is 

comparable to FST values between Pacific and Atlantic subpopulations (0.166), or 

between Atlantic and Baffin Island subpopulations (0.144), which is surprising, 

since these subpopulation pairs are separated by > 3000km of over-land distance 

and occupy different biomes. Aspi et al. (2009) explain their high genetic 

differentiation by speculating on possible human-caused barriers in the form of 

Soviet-era fences and contemporary hunting. My result of comparable FST values 

between subpopulation pairs that are considerably farther apart, separated by 

intervening wolf subpopulations, and occupying different biomes suggest that the 

genetic differentiation calculated by Aspi et al. (2009) is also overestimated. This 

is confirmed by Aspi et al.’s (2009) AMOVA analysis, which showed that ~15% 

of genetic variation occurred between the Russian and Finnish populations. This 

is less than the variation occurring between North American wolf subpopulations 

(~20%), and again indicates that their estimation of "ST is likely exaggerated. 

Because previous studies have used microsatellite markers, sampling bias 

and an over-estimation of genetic diversity may have skewed FST values, so that 

some populations of wolves have looked more genetically distinct than they truly 

are. The use of a more even sampling scheme, combined with a marker more 

appropriate for assessing genetic diversity and a more sophisticated method of 

subpopulation delineation has provided estimates that are significantly lower than 

in some previous studies, suggesting that grey wolf subpopulations are more 

similar than previously documented.  

 

Subpopulation structure  

From the investigation of subpopulation structure it is clear that this large 

SNP data set is capable of showing fine-scale resolution in the data. However, 
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substructure was not evident in all subpopulations, and may depend on the 

ecology and geographical features of the subpopulation in question. This can be 

illustrated with the Forest subpopulation. Containing the largest number of 

individuals over the greatest physical area, I hypothesized that there would be a 

high amount of substructure within this subpopulation. The east-west divide 

observed matches the findings of Carmichael et al. (2007) who found two distinct 

Forest subpopulations with an east/west divide, and is not surprising given the 

scale of the subpopulation, with the two most distant individuals being separated 

by > 3500km. More surprising is that the additional cluster detected by 

STRUCTURE was only found in large proportions in two wolves from Riding 

Mountain National Park, and accounts for < 60% of their assignment. These 

wolves show little pair-wise genetic differentiation with DIBS = 0.149, 

approximately half of the mean DIBS (0.280) for this subpopulation. Thus, it seems 

that STRUCTURE identified individuals that may be from the same pack, and do 

not represent additional geographic structure within this subpopulation. Further, 

based on analyses including coyote and domestic dog samples, these two 

individuals appear to be partially admixed with coyotes (vonHoldt et al. in prep.), 

which would also account for their strong distinction within this subpopulation. 

Overall, the Forest subpopulation of wolves is relatively homogenous, as the main 

pattern of differentiation is clinal rather than discrete. Wolves have been observed 

migrating very large distances (> 800km, Fritts 1983; > 1000km, Wabakken et al. 

2007), and the habitat across this area is fairly homogenous, with most of the 

subpopulation occupying the boreal forest biome. Because the habitat occupied by 

these wolves is continuous and because no major barriers to gene flow exist 

within this subpopulation it is logical that such a highly mobile animal showed 

only a gradient in genetic differentiation across this large area.  

Both Pacific and Arctic subpopulations showed substructure that can be 

attributed to water barriers. In the Pacific subpopulation, all individuals are 

geographically close, but individuals closer to the mainland formed a distinct 

genetic cluster, and individuals farther from the mainland assigned highly to a 

second cluster. Similarly, in the Arctic subpopulation, individuals closest to the 
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mainland (on Victoria and Banks islands) formed one genetic cluster, whereas 

those in the far north on Ellesmere and Devon islands showed admixture with a 

second cluster. These Arctic groups are much farther apart than those of the 

Pacific subpopulation, and yet the Pacific subpopulation showed stronger internal 

differentiation (see Fig. 2-4b, Fig. 2-4c). These patterns indicate that water 

barriers may reduce gene flow as suggested by Carmichael et al. (2001), but that 

the strength of water barriers varies between different areas. The water separating 

Arctic individuals is frozen for much of the year, so wolves would be free to 

travel between the nearer and farther islands, albeit across a very long distance. 

However, in the Alexander Archipelago where the Pacific wolves are located, the 

water does not freeze over the winter but is very cold year round and so may act 

as a strong barrier to gene flow despite the short geographic distance separating 

individuals. These findings highlight the importance of local geographic features 

to genetic differentiation between wolves, and emphasize that the effect of similar 

features may differ between regions. 

 

Isolation by distance 

 I found evidence for IBD based on a significant correlation between DIBS 

and Log10-transformed geographic distance. This trend is weaker at distances < 

300km, meaning that short-range distance has little effect on differentiation. This 

finding is consistent with wolves’ ability to disperse long distances, and indicates 

that there is a high amount of gene flow occurring within the North American 

wolf population at relatively short distances. This suggests that while 

subpopulation differentiation occurs over large scales, it is unlikely to occur 

across small distances without some meaningful barrier to gene flow. A further 

implication is that there should be transition zones between subpopulations, 

containing genetically mixed individuals. This is confirmed by the large number 

of highly admixed individuals observed (n = 45; Figure 2-2a). 
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I found that geographic distance was significantly correlated with DIBS 

even after controlling for population structure, in contrast to recent research 

indicating that geographic distance is not a strong factor underlying wolf genetic 

differentiation on a continent-wide scale (Pilot et al. 2006; Carmichael et al. 

2007). Most analyses of IBD use population-based statistics such as Nei’s (1972) 

DS and FST. These analyses rely on estimated allele frequencies and averaged 

geographic distances and so may yield high noise when compared to individual-

based analyses. However, Musiani et al. (2007) found no evidence of spatial 

autocorrelation across 14 microsatellite loci in wolves of the boreal forest and 

arctic tundra. Thus, the discrepancy may also be caused by the use of 

microsatellite markers in previous studies, rather than just the type of analysis per 

se. This is consistent with the microsatellite data across a common set of 61 

wolves, which indicates that the stronger IBD observed in this study is (at least in 

part) a result of the markers used rather than some idiosyncrasy of the data set or 

the sampling scheme. The weak correlation observed is a result of the weak power 

of microsatellites to detect IBD, reflected in high noise across all geographic 

distances (Fig. 2-5c). Microsatellites generally have a high number of alleles 

(Vignal et al. 2002), and this will cause high noise and variation in allele-sharing 

distances when compared to SNPs, which only have two alleles. This was 

certainly the case in this study, as the number of alleles observed in each 

microsatellite marker ranged from 4-10, with a mean of 8.5. This high relative 

noise in microsatellite data was exacerbated by the fact that many more SNPs than 

microsatellites were genotyped, which resulted in more precise estimates of 

genetic distance between individuals when SNP data were used. Together, these 

differences may explain why IBD appears strong in this study but not in previous 

studies. Regardless of the relative importance of marker type vs. analysis type, it 

is likely that previous studies have underestimated the importance of geographic 

distance to large-scale population structure in grey wolves. 

IBD was also observed within most subpopulations. The Pacific 

subpopulation did not show IBD, but this is unsurprising given that all individuals 

were < 300km apart. An anomaly is the Baffin Island subpopulation, which also 
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did not show evidence of IBD. There are no water barriers within this 

subpopulation, nor are the comparisons biased by a large number of individuals 

that are < 300km apart. The lack of IBD may be related to the movement of 

barren-ground caribou on Baffin Island. Because Baffin Island wolves follow 

barren-ground caribou as they migrate throughout the year, their recorded capture 

locations may not be meaningful representations of their home ranges, so a 

significant amount of noise in IBD plots is expected. 

 The presence of IBD is confirmed by the reduced structure I have 

observed compared to Carmichael et al. (2007). I have detected fewer genetic 

clusters (five vs. eight), and a large number of individuals (~1/3 of the samples) 

that are highly admixed between two or more clusters. The high genetic continuity 

across this population reflects the higher IBD detected using SNP data and 

confirms the utility of using high-resolution genetic data to examine population 

structure. 

A concern when assessing population structure is that where there is 

significant IBD, clustering algorithms (such as STRUCTURE) can spuriously 

detect multiple subpopulations rather than indicating that there is a single 

breeding population, even if there truly is only one genetic cluster of individuals 

(Guillot et al. 2009). Despite the significant IBD observed in these wolves there is 

evidence that the results from STRUCTURE accurately represent population 

structure. The partial Mantel analyses showed a higher correlation between 

subpopulation assignment and DIBS than between pair-wise geographic distance 

and DIBS, despite the noise in the simplistic subpopulation-assignment distance 

matrix (i.e. because all distances are either “1” or “0”). This indicates that while 

geographic distance is highly influential, the genetic clusters determined by 

STRUCTURE are meaningful entities, and not simply arbitrarily selected groups 

of individuals.  
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Comparison of SNP data sets and microsatellites for determining population 

structure  

As expected, I found that using a larger number of markers to determine 

population structure significantly improved assignment estimates (see Fig. 2-8a, 

2-8b). By using the STRUCTURE assignments from the complete 26k data set as 

an approximation of correct subpopulation assignment, I evaluated the relative 

performance of STRUCTURE when run with subsets of SNP data, using a 

measure of discordance. Discordance was small and varied little across larger 

subsets of SNPs, but increased dramatically and varied widely across very small 

SNP subsets, indicating that smaller data sets may do a poor job of estimating 

total genomic diversity within individuals. This increase in discordance (and 

variation in discordance) with a decrease in markers can be interpreted as an 

increase in statistical noise caused by poor genomic coverage. This is 

conceptually similar to the effect of incomplete lineage sorting in phylogenetic 

analyses. Much as using only a small number of genes to infer a phylogeny can 

yield inaccurate or imprecise results, with conflicting phylogenies generated by 

different genes (e.g. Rokas et al. 2003), inferring population structure using a 

small number of markers yielded inaccurate results that varied substantially across 

data sets of the same size. By increasing the number of markers used, assignments 

improved asymptotically, getting decreasingly closer to the (assumed) correct set 

of assignments. 

I found that mean discordance and the number of SNPs used to evaluate 

population structure appeared to have an inverse power law relationship. Thus, as 

the number of markers increased, the improvement in assignments relative to 

smaller data sets decreased. This was expected, as any increase in SNP markers 

brings the total information content closer to that in the complete 26k data set, and 

so the relative improvement decreases. In both 132-individual and 61-individual 

data sets I observed very low mean discordance when 5000 SNPs were used to 

evaluate population structure (0.034 and 0.019 respectively), and variance in this 

measure was very small. Mean discordance remains relatively low even when 
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only 500 SNPs (~2% of the complete data set) are used (0.106 and 0.064 

respectively). Running STRUCTURE with < 500 SNPs however yielded 

substantially more discordant results; with 140 SNPs, discordance increased 

dramatically with means of d = 0.165 and 0.131, and a single subset of SNPs 

showing d = 0.256 in the 132-individual data set. This indicates that 500 SNPs 

may approximate a reasonable balance between expense (in terms of genotyping) 

and accuracy in assignment.  

Surprisingly, clusteredness did not simply increase with the number of 

markers across the range, and that after reaching a threshold, actually decreased 

with increasing markers (see Fig. 2-8c, 2-8d). That is, in small SNP subsets, 

individuals appeared to be highly admixed. This admixture initially decreased 

with increasing data but eventually stopped, and then admixture slowly increased 

with the number of markers used. This indicates that small SNP subsets lack the 

power to strongly assign individuals to the appropriate genetic cluster, but slightly 

larger subsets may show greater genetic differentiation between individuals than 

is accurate. These SNP subsets have strong power to discriminate between genetic 

clusters but have relatively poor resolution compared to the complete set of 

markers, and are less able to identify admixture. This finding was confirmed by 

the observed negative correlation between individuals’ best-estimate clusteredness 

and mean discordance across SNP subsets of the same size. A significant negative 

correlation was found in all but the smallest SNP subsets and was strongest in 

SNP subsets containing 500 SNPs across both 132- and 61-individual data sets. 

This means that discordance is driven primarily by individuals with mixed genetic 

ancestry and suggests that with all but the largest SNP data sets admixed 

individuals will be highly mis-assigned. Indeed, across 500-SNP subsets, some 

highly admixed individuals from the 132-individual data set showed mean 

discordance values in excess of 0.3 (data not shown), which is approximately 

three times the mean d = 10.6 across all individuals, and greater than the mean 

discordance observed across 56-SNP subsets. This result has implications for any 

study where the accurate estimation of admixture is of critical importance, such as 

the detection of hybrid zones for conservation purposes (Allendorf et al. 2001), 
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assessing gene flow between sympatric species (e.g. Ochieng et al. 2008), or 

describing the evolution and spread of antibiotic resistance in bacteria (Hanage et 

al. 2009). 

To my knowledge, this is the first study to assess the performance of data 

sets composed of differing numbers of SNPs for the purposes of determining 

population structure. However, the number of SNPs necessary to estimate 

inbreeding and relatedness in zebra finches has recently been evaluated (Santure 

et al. 2010). Santure et al. (2010) observed a strong correlation between 

relatedness estimates based on 771 SNPs and pedigree data, but found that little 

improvement in genetic relatedness estimates was achieved by using subsets of 

their SNP data with > 500 markers. This is similar to the trend observed in this 

study. While I observed more accurate assignment and admixture using > 500 

SNPs, the relative improvement in discordance was markedly less than the 

improvement observed by augmenting smaller data sets. The fact that 500 SNPs 

appears to approximate a threshold in both studies cannot be extrapolated to state 

that a 500 SNP data set will provide equally good results for all studies and 

species, but it does indicate that for many population genetics studies (where 

accurately assessing admixture is not highly important) genotyping individuals at 

several hundred SNP loci should yield sufficiently reliable results. 

Something I was unable to explore is the effect that the number of 

samples, the sampling scheme, and the number of detected clusters had on the 

power of SNP subsets to accurately assigning individuals. I observed lower 

absolute discordance values in the 61-individual data set than the 132-individual 

data set, but this result was confounded by the fact that STRUCTURE was run at 

a different K value for each data set. Additionally, the clusteredness peaked at 

different sizes of SNP subsets across the different data sets, but this measurement 

too was confounded by K. Finally, the 61-individual data set was not randomly 

selected from the complete set of individuals, and so their distribution across the 

sampling range was more clumped than the full data set. This may in turn have 

led to lower detected levels of admixture, and thus lower discordance when 
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subsets of SNPs were used to assign individuals. A complete understanding of the 

interaction between all these factors would require increased sampling across this 

range, so that the influence of each factor could be evaluated separately. This 

means that despite the very strong correlation between mean discordance and 

number of markers in a SNP subset, it is not possible to estimate the absolute 

amount of discordance for a given number of markers for other data sets.  

In both discordance and clusteredness, the results from the microsatellite 

data set had values that fell in between the mean values of the 56-SNP and 140-

SNP data subsets for the 61-individual data set. This suggests that ~4-10x as many 

SNPs as microsatellites are necessary to obtain a similar level of accuracy when 

assessing population structure. This inference is comparable to the results of 

Mariette et al. (2002), who estimated based on simulations that up to 10x as many 

bi-allelic AFLP markers as microsatellites are required to estimate genomic 

diversity. Unfortunately, because the variance in discordance and clusteredness 

between SNP subsets with < 500 markers was fairly large, this estimate is 

imprecise. A more precise estimate of the equivalent number of SNPs per 

microsatellite marker will require genotyping individuals at a greater number of 

microsatellite loci so that multiple sets of microsatellites can be analyzed in order 

to determine the variance in their discordance and clusteredness. Additionally, 

there will necessarily be variance between any comparison of SNPs and 

microsatellites due to the wide range of the number of alleles observed in different 

microsatellites, and it is unclear what influence ascertainment scheme may have. 

Despite these caveats, my result should provide a useful comparison point for 

researchers considering using SNP markers rather than microsatellites for 

population genetic analysis. 

 

Conclusions 

 In the course of this chapter, I have re-assessed the population structure of 

North American grey wolves, and evaluated a large set of SNP markers for their 
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use in population genetic analyses commonly used to evaluate wild species. While 

the analyses performed here are by no means exhaustive from a population 

genetics perspective, they provide significant insight into the behaviour of large 

sets of markers when subjected to traditional population genetic analyses. 

 Based on SNP data, North American grey wolves exhibit significantly 

higher isolation by distance than reported in previous studies. This finding 

suggests that previous assessments of IBD may lack power due to the relatively 

low resolution and high noise of smaller marker sets. Significant IBD has resulted 

in reduced genetic structure compared to microsatellite-based analysis, with fewer 

subpopulations detected and a high number of admixed individuals. Despite that, 

this study confirms the presence of several previously inferred subpopulations, 

and verifies the genetic distinction of a subpopulation of wolves found on islands 

off the Pacific coast. Notably, I have found that prey-specialization on migratory 

barren-ground caribou in the mainland tundra appears to have caused wolves 

across this large region to become highly genetically admixed rather than 

genetically distinct. Finally, I found that the structure observed here only partially 

agrees with the subspecies designations of Nowak (1995), indicating that 

subspecies designations based on skull morphology do not necessarily reflect 

underlying genetic differentiation. 

 There is high resolution in the genetic data, and I was able to detect 

genetic structure at a subpopulation level to the extent that I identified genetic 

subclustering in a subpopulation of only eight individuals. However, not all 

subpopulations show such distinct substructure, and two of the five detected 

subpopulations show no substructure at all. This highlights the idiosyncratic 

nature of population structure, and indicates that genetic structure may be highly 

contingent on local ecological and geographical features.  

 Finally, I have found high variation in subpopulation assignments based 

on marker sets containing fewer than 500 SNPs. While there are diminishing 

returns to increasing the number of markers used for assignment, I find that the 

use of relatively small sets of markers (as is common in population genetic 
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studies) may yield assignments with a high amount of inaccuracy, especially in 

populations with many admixed individuals. This finding showcases the need for 

continuing development of genetic markers for non-model organisms, because the 

potential to mis-characterize genetic structure when using < 500 SNPs appears to 

be significant. Additionally, even if the mean assignment is relatively accurate, 

there is still high potential for imprecision in individual assignments, and high 

inaccuracy in the assignment of admixed individuals.    
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Table 2-1. Mean pair-wise FST comparisons between five subpopulations of 
wolves, calculated across 26 221 SNPs. 

subpopulation Arctic Atlantic Baffin Forest Pacific 

Arctic 0.000     

Atlantic 0.110 0.000    

Baffin 0.116 0.144 0.000   

Forest 0.065 0.072 0.103 0.000  

Pacific 0.167 0.166 0.199 0.111 0.000 
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Figure 2-1. Number of clusters (K) vs. likelihood [Ln P (D|K)] for STRUCTURE 
analyses of 132 grey wolves using 26 221 SNPs with the admixture model. Each 
point represents the highest value of Ln P (D|K) obtained from across five 
replicate STRUCTURE runs with 20 000 burn-in cycles followed by 5000 
sampling iterations. 
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Figure 2-2a. Capture location and assignment of 132 grey wolves from Canada 
and Alaska. Each individual is represented with a pie chart, showing their 
admixture proportions for each of five genetic clusters determined from 
STRUCTURE analysis of 26 221 SNPs. The tree line, separating boreal forest and 
arctic tundra biomes, is shown in brown. Individuals from the same capture 
location were slightly displaced to aid visualisation.  
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Figure 2-2b. Capture location and assignment of 87 grey wolves from Canada and 
Alaska highly assigned to one of five subpopulations – Pacific (red), Forest 
(green), Arctic (orange), Baffin Island (dark blue) and Atlantic (light blue). Each 
individual is represented with a pie chart, showing their admixture proportions for 
each of five genetic clusters determined from STRUCTURE analysis of 26 221 
SNPs. The tree line, separating boreal forest and arctic tundra biomes, is shown in 
brown. Individuals from the same capture location were slightly displaced to aid 
visualisation.
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Figure 2-3. The first two principal components (PC 1, PC 2 respectively) from a 
PCA of 26 221 SNPs in 132 North American grey wolves. Subpopulation 
assignment determined using STRUCTURE analyses are shown. The amount (%) 
of genetic variation explained by each component is listed in parentheses.  
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Figure 2-4. Capture location and assignment of a) 46 wolves from Canada and 
Alaska identified from the Forest subpopulation, b) nine wolves from Canada 
identified from the Arctic subpopulation and c) eight wolves from the Alexander 
Archipelago of southern Alaska identified from the Pacific subpopulation. Each 
individual is represented with a pie chart, showing their admixture proportions for 
each of three (a) or two (b, c) genetic subclusters as determined from 
STRUCTURE analysis of 26 221 SNPs. Four arctic islands are labelled in b): 
Victoria Island (VI), Banks Island (BI), Devon Island (DI), and Ellesmere Island 
(EI). The tree line, separating boreal forest and arctic tundra biomes, is shown in 
brown (a). Individuals from the same capture location were slightly displaced to 
aid visualisation.  
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Figure 2-5. Correlation between pair-wise Log10-transformed geographic distance 
and a) identity-by-state genetic distance between 132 wolves calculated from 26 
221 SNPs, b) identity-by-state genetic distance between a subset of 61 wolves 
calculated from 26 221 SNPs and c) allele-sharing distances between a subset of 
61 wolves calculated from 14 microsatellites. A linear best fit for each correlation 
is shown, and the proportion of the variation in genetic distance explained by 
Log10-transformed geographic distance is reported (r2).  
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Figure 2-6. Number of clusters (K) vs. likelihood [Ln P (D|K)] for STRUCTURE 
analyses of 61 grey wolves [previously genotyped by Carmichael et al. (2007)] 
using 26 221 SNPs with the admixture model. Each point represents the highest 
value of Ln P (D|K) obtained from across five replicate STRUCTURE runs with 
20 000 burn-in cycles followed by 10 000 sampling iterations. 
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Figure 2-7. Capture location and assignment of 61 grey wolves previously 
genotyped by Carmichael et al. (2007). Each individual is represented with a pie 
chart, showing their admixture proportions for each of three genetic clusters 
determined from STRUCTURE analysis of 26 221 SNPs. The tree line, separating 
boreal forest and arctic tundra biomes, is shown in brown.  
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Figure 2-8a, b. Mean discordance plotted as a function of number of markers, 
comparing the number of markers used in randomly generated data sets to mean 
discordance of STRUCTURE assignment from assignment estimated from the 
complete 26 221 SNP data set for (a) all 132 wolves, and (b) the subset of 61 
wolves genotyped by Carmichael et al (2007). An inverse-power regression line 
has been plotted in black, and the variation in mean discordance explained by this 
line is reported (r2). Error bars show the range of mean discordance values from 
across ten replicate data subsets for each number of SNPs. 
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Figure 2-8c, d. Mean clusteredness plotted as a function of number of markers, 
comparing the number of markers used in randomly generated data sets to mean 
clusteredness of STRUCTURE assignments, as well as the clusteredness value 
observed when all 26 221 markers were used for (c) all 132 wolves, and (d) the 
subset of 61 wolves genotyped by Carmichael et al. (2007). Error bars show the 
range of mean clusteredness values observed from across ten replicate data 
subsets for each number of SNPs (not including complete 26 221 SNP data set). 
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Figure 2-9. Original geographic distribution of wolves in North America, showing 
the two species and five subspecies recognized by Nowak (1995): 1, C. l. arctos 
(arctic wolf); 2, C. l. baileyi (Mexican wolf); 3, C. l. lycaon (eastern wolf); 4, C. l. 
nubilus (plains wolf); 5, C. l. occidentalis (northwestern wolf); 6, C. rufus (red 
wolf). Obtained from Nowak (2003), © 2003 by The University of Chicago. 
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Chapter 3 

A genome scan to detect selected genes in North 

American grey wolves 

 

Introduction 

 In the previous chapter I explored the uses of a large SNP data set for 

studying the population genetic structure of grey wolves. Population genetic 

analyses are routinely performed on wild populations using microsatellites and do 

not require the use of large panels of markers to get informative results. There are, 

however far fewer studies that have tried to find the genetic basis of phenotypic 

adaptations. Isolation of functional genetic variation has frequently involved 

mapping specific phenotypes onto quantitative trait loci (QTL; Slate et al. 2005). 

This approach requires not only a relatively large set of markers (usually either 

microsatellites or AFLPs in wild species) with which to map the variation in the 

genome, but also knowledge of the pedigree and specific individual phenotype 

measurements. Depending on the species of interest, phenotypes may be difficult 

to acquire and pedigree data may not be obtainable. Additionally, QTL analyses 

often lack the power (i.e. genomic coverage) necessary to pinpoint the specific 

gene(s) controlling a trait of interest, and thus require further research in order to 

isolate the functional gene(s).  

 With larger sets of markers and an increasing number of annotated 

genomes, it is now feasible to take a reverse approach to linking genetic and 

phenotypic data. By genotyping a number of individuals at many loci, it is 

possible to scan for signals of selection within the genome, locate genes near the 

selected loci, and relate these genes to previously observed phenotypic variation. 

Such genome scans have been used extensively to study selection in human 

populations (e.g. Nielsen et al. 2005; Sabeti et al. 2007; Pickrell et al. 2009), with 

findings including selection for genes controlling lactase synthesis (Nielsen et al. 
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2005) and skin pigmentation (Sabeti et al. 2007). Recently, this strategy has also 

been applied successfully to non-humans including cattle (Gautier et al. 2009) and 

domestic dogs (vonHoldt et al. 2010). 

In this chapter, I applied a genome scan to a wild population of North 

American grey wolves to identify specific genes that may have undergone 

selection in this population. Of the various types of methods used to detect signals 

of selection (reviewed in Chapter 1), I used an empirical FST-outlier method. This 

method makes direct comparisons of the FST-values of all SNPs between groups 

of individuals in order to detect loci that show high allele frequency 

differentiation across populations. The idea behind this method [first proposed by 

Lewontin and Krakauer (1973)] is that any locus that has undergone directional 

selection and varies across groups should show higher allele frequency 

differentiation between these groups than neutral loci. By comparing the 

differentiation at many markers, outliers of this distribution can be interpreted as 

candidates of selection. An FST-outlier genome scan of this nature was applied 

successfully by Akey et al. (2002) to a set of ~28 000 SNPs genotyped across 

three human populations and has recently been used by vonHoldt et al. (2010) to 

detect signals of artificial selection in domestic dogs. By comparing allele 

frequency differences between genetic subpopulations of wolves (identified in 

Chapter 2, Fig. 2-2b), my goal was to locate genes that have undergone adaptive 

selection in North American grey wolves. Specifically, because ecological 

variables have been found to influence wolf population structure (Geffen et al. 

2004; Pilot et al. 2006; Carmichael et al. 2007; Musiani et al. 2007), I expected 

that by looking for directional selection between subpopulations, I would find 

genes that could be linked to differing ecological selective pressures related to 

(for example) habitat, prey, and climate. 
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Methods 

Detection of FST outliers between subpopulations 

  One way to identify markers that appear to be under directional selection 

is to select markers with allele frequencies that differ strongly between groups of 

individuals that are believed to be under different selective pressures. In order to 

detect candidates of directional selection in my data set, I grouped wolves into 

five subpopulations based on the results from Chapter 2 (Fig. 2-2b). Only wolves 

that had > 75% assignment to a single genetic cluster (n = 87) were analyzed. This 

way, I was confident in subpopulation assignment and avoided biasing allele 

frequencies with highly admixed individuals. Using a script written by J. 

Novembre, Weir and Cockerham’s (1984) ! (henceforth referred to as FST) was 

calculated for each of 27 931 SNPs in the full data set between each pair of 

subpopulations, and across the concatenated group of all five subpopulations. 

SNPs within the top 2% of FST values between subpopulation pairs or across all 

subpopulation pairs were considered outliers, yielding a total of 11 different sets 

of outlier loci. Where there were multiple SNPs with identical FST values between 

subpopulation pairs, these SNPs were ranked secondarily by their global FST 

value. 

  

Detection of directional selection on outlier loci 

Based on the assumption that outlier loci would contain an excess of SNPs 

affected by directional selection (Lewontin and Krakauer 1973), I expected to see 

an excess of SNPs contained within genes (henceforth genic SNPs) in each set of 

outliers. To determine which SNPs were genic, the ENSEMBL Perl API was used 

to query the ENSEMBL database (EMBL-EBI and the Wellcome Trust Sangar 

Institute; http://www.ensembl.org/index.html). If a SNP was found within an 

intron or an exon of an annotated human gene it was classified as genic, with all 

remaining SNPs classified as non-genic. Because few dog genes have been 

annotated to date, assessing the genic status of these SNPs from homologous 
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human genes should provide a better overall estimate of the proportion of genic 

SNPs. 

 To determine if there was an enrichment of genic SNPs in each set of 

outlier loci, I performed a one-sided conditional exact test (Agresti 2002) in order 

to control for the ascertainment of each SNP. This test is similar to Fisher’s exact 

test, but instead of comparing across a two-dimensional matrix, this test adjusts 

for a third dimension of the matrix. In this instance, I tested to see if there was a 

difference in the proportion of genic SNPs between the complete data set and each 

set of outlier loci, within each ascertainment category (grouped by species: “dog”, 

“wolf”, and “other”). All tests were performed using the standard stats package in 

R 2.9.2 (R Development Core Team 2009). Because I looked for differences 

across 11 different sets of outlier loci, a Bonferroni correction (Rice 1989) was 

applied so that P-values < 0.0045 were considered significant. 

 

Identification of candidate genes 

 To identify specific loci that may have undergone selection, I examined 

the genomic context of the ten SNPs at highest FST between each subpopulation 

pair and across all subpopulations, which I will refer to as candidates of selection. 

Using the UCSC Genome Browser (Genome Bioinformatics group of UC Santa 

Cruz; http://genome.ucsc.edu/cgi-bin/hgGateway), I determined if there was any 

gene annotated for domestic dogs or other species at a homologous region within 

1000 bases on either side of each candidate SNP, with the assumption that a SNP 

within 1000 bases of a gene would likely be in linkage disequilibrium (LD) with 

that gene. In this way, I aimed to identify genes that appeared to have undergone 

strong directional selection in North American grey wolves. 
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Results 

Detection of outlier loci and directional selection 

Pair-wise estimates of FST across subpopulations are tabulated in Table 3-

1. These values ranged from FST = 0.065 between Arctic and Forest 

subpopulations to FST = 0.200 between Pacific and Baffin Island subpopulations. 

The global FST calculated across all subpopulations was 0.132. Eleven sets of 

outliers were selected as the 558 SNPs showing the highest FST between each 

subpopulation pair and across all subpopulations. 

 Across the 27 931 SNPs from the full data set, I found that 26.84% of 

SNPs were genic. Across all 11 sets of outlier loci, none showed a significant 

increase in the proportion of genic SNPs compared to the full data set (One-sided 

exact conditional test, 1 d.f., P ! 0.0087; Table 3-2).  

 

Identification of candidate genes 

 Eleven sets of candidate loci were selected as the ten SNPs showing 

highest FST in each pair-wise and the global FST comparison. Across all pair-wise 

subpopulation FST comparisons, I found that 25/100 SNPs showed up as candidate 

loci between >1 pair of subpopulations. Of the remaining 75 unique SNPs, I found 

that 24 SNPs were not within 1000 bases of an annotated gene, EST, or predicted 

dog gene. Ten SNPs were within 1000 bases of a predicted gene or an expressed 

sequence tag. This left 41 SNPs located within 1000 bases of a gene annotated in 

other species. Two of these SNPs were found within the same gene, and two of 

the 40 identified genes have been annotated in domestic dogs. These 40 genes 

were considered candidates of selection and are tabulated along with a brief 

description of any known function (recorded in OMIM and/or EntrezGene) in 

Table 3-3. From the global comparison, the ten SNPs with the highest FST values 

were found within the candidate SNPs derived from pair-wise comparisons of 
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subpopulations. Thus, no new candidate SNPs or genes were found by including 

global FST comparisons. 

 

Discussion 

Using an FST-outlier genome scan I did not find evidence for directional 

selection amongst outlier loci, because there was no significant enrichment for 

genic SNPs in any set of outliers. However, by examining the genomic context of 

the extreme outliers to identify genes that have potentially been historically 

selected, I determined that 41 out of 75 unique SNPs were found within 1000 

bases of a gene annotated in another species. Following, I explore the possible 

reasons I did not find a signal of selection in the outlier loci, and the implications 

for selection on three particular genes identified near candidate SNPs. 

 

Detection of directional selection on outlier loci 

  Recently, vonHoldt et al. (2010) used the FST-outlier approach employed 

here to look for genes that were important in the domestication of dogs from grey 

wolves. By comparing allele frequencies of ~44 000 SNPs (genotyped using the 

same microarray) between dogs and grey wolves, vonHoldt et al. (2010) found a 

higher proportion of genic SNPs in the top 5% of FST values. Because I used only 

the SNPs with the highest 2% of FST values, I expected to see high enrichment for 

genic SNPs in these outlier loci. However, despite looking at sets of more extreme 

outliers, I did not find an excess of genic SNPs, suggesting that the FST outliers 

did not contain a significantly higher proportion of selected loci than the entire 

data set. I believe the lack of signal observed can be explained by various aspects 

of the data set and limitations of empirical genome scans that resulted in low 

power to detect selection in this data set which are discussed below. 

 Although easy to apply, empirical genome scans for detecting selection 

often have a high type I error rate (Teshima et al. 2006) that can be exacerbated 
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by several factors. First, based on simulated sequence data, Teshima et al. (2006) 

found that empirical scans have a high false-discovery rate (i.e. non-selected 

alleles appear as outliers) when selection acts on standing (i.e. previously neutral) 

variation, compared to when a new allelic variant is selected. Because most SNPs 

interrogated on the microarray were ascertained from domestic dogs (~98% of the 

SNPs considered here), this is likely to be a concern. North American grey wolves 

are not considered to be the progenitor of the domestic dog (Savolainen et al. 

2002; vonHoldt et al. 2010), and fossil evidence indicates that grey wolves have 

been present in North America since the Illinoian Stage of the Pleistocene (Kurtèn 

and Anderson 1980), which occurred between 130 000 – 300 000 years before 

present. This suggests that the genetic variation in dog-ascertained SNPs that are 

polymorphic within North American grey wolves is ! 130 000 years old. Thus, 

relative to the time-scale of selection between these subpopulations (< 12 000 

years, after the receding of glaciers during the Holocene) these SNPs likely 

represent standing variation. It is believed that artificial selection usually acts on 

standing variation (Innan and Kim 2004), but it is unknown to what extent natural 

selection acts on new mutations compared to standing variation (Innan and Kim 

2004; Hermisson and Pennings 2005): therefore it may be the case that much of 

the selection that has occurred between these wolf subpopulations is not 

represented in this data set.  

Although these SNPs themselves represent ancient variation, it is possible 

that some are in LD with new mutations. In that case, these SNPs could also 

represent recent variation, which would not increase the false-discovery rate. 

However, it is not obvious how often such linkage is likely to occur in this data 

set. Assuming that wolves have a genome approximately the same size as that of 

the domestic dog (~2.45 Gb; Lindblad-Toh et al. 2005), this data set of 27 931 

SNPs has a coverage of one SNP for every ~88 000 bases in the grey wolf 

genome. Because LD extends only a short distance in wolves (< 10 kb; Gray et al. 

2009), much of the variation in the grey wolf genome is not detectable with this 

data set. Thus, the ascertainment scheme of these loci may have reduced the 
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power to detect selection in this data set, but the extent to which this has 

influenced the results is unclear.  

 Second, Teshima et al. (2006) discovered that population bottlenecks can 

also lead to an increase in the false-discovery rate. This may be important because 

Leonard et al. (2005) determined that the North American wolf population has 

undergone a dramatic reduction in population size within the past 200 years, 

resulting in a significant loss of genetic diversity. This suggests that the wolves in 

this study may have been affected by a recent bottleneck, which would therefore 

increase the amount of false positives detected in the genome scan. 

 Another limiting factor in this study is the size of my subpopulations, 

since three of the five subpopulations contained fewer than ten individuals. While 

allele frequencies of markers with few alleles are less likely to be biased by 

estimation from a small number of individuals (Ruzzante 1998), there is still 

potential for inaccurate allele frequencies with so few individuals. This would 

lead to inaccurate FST values, further increasing the number of false positives in 

the outliers. This is supported by the relatively high proportion of genic SNPs 

observed in the outlier SNPs between Forest and Atlantic subpopulations 

(30.82%), which were the only subpopulations with more than ten individuals. 

While not statistically greater than the proportion of genic SNPs in the complete 

data set (26.84%), it was the highest observed proportion of genic SNPs across all 

subpopulation comparisons, and was the only comparison that would have been 

considered significant without Bonferroni correction (One-sided conditional exact 

test, 1 d.f., P = 0.021). Thus, it appears that the lack of power observed is at least 

partially caused by small sample size. 

 Combined, the above considerations suggest that statistical concerns have 

limited my ability to detect selection in this data set. This result emphasizes the 

difficulty of assessing selection in wild populations even when using a large set of 

markers. In particular, if population demographics are unknown or if the available 

markers were not ascertained in the species of study, false positives in the data 

may obscure a signal of selection, as appears to have happened in this instance. 
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Further exploration of selection in this population may get better results by using 

other types of genome scans. In particular, scans based on haplotype structure, 

such as the Cross Population Extended Haplotype Homozygosity method (Sabeti 

et al. 2007; successfully employed by vonHoldt et al. 2010) may be more 

successful at detecting outliers that show evidence of directional selection, 

because inferences based on haplotypes rather than individual SNPs are less 

affected by ascertainment bias (Lohmueller et al. 2009). 

 

Identification of candidate genes 

 Since I did not observe evidence for directional selection across SNPs in 

the tail end of the FST distribution within this population, it is likely that many of 

these loci exhibit high allele frequency differences due to genetic drift. This does 

not imply, however, that none of the SNPs within the extreme end of this 

distribution have been selected. In fact, of the 40 genes found near candidate 

SNPs, three have been associated with major phenotypic changes in other 

mammal species (ADCY8, ASIP, and DYM), all of which show very high allele 

frequency differentiation between Arctic and Forest subpopulations (Fig. 3-1).  

 vonHoldt et al. (2010) found several SNPs surrounding ADCY8 (adenylate 

cyclase 8; OMIM accession 103070) that showed evidence for directional 

selection between dogs and wolves. This gene is implicated in memory formation 

in humans (de Quervain and Papassotiropoulos 2006) and behavioural 

sensitization in mice (Wei et al. 2002), leading vonHoldt et al. (2010) to speculate 

that this gene may have played an important roll in early dog domestication. 

Behaviour, prey type, and genetic structure have been linked in wolves [e.g. 

wolves that prey upon barren-ground caribou do not maintain home ranges 

(Musiani et al. 2007)] and it is possible that this gene, which appears to affect 

memory formation, is somehow related to the different prey types available to 

Forest and Arctic subpopulations (see Discussion in Chapter 2). ADCY8 does not 

however appear to be related to prey specialization on the migratory caribou of 
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the mainland tundra because wolves on the mainland tundra (not included in the 

FST analyses due to high admixture) show a mix of genotypes seen in both Arctic 

and Forest subpopulations at this locus (data not shown). Any possible selective 

advantage conferred by a possible functional variant of this gene awaits further 

research. 

DYM (Dymeclin; OMIM accession 607461) is a gene that is involved with 

bone and cartilage development. Mutations in this gene have recently been 

discovered to cause two developmental disorders leading to dwarfism in humans 

(El Ghouzzi et al. 2003; Neumann et al. 2006). In addition to being a candidate 

for selection between Forest and Arctic subpopulations, the intronic DYM SNP 

was found as an outlier between Arctic and Baffin subpopulations, Arctic and 

Atlantic subpopulations, and all subpopulations combined. This suggests that 

there may be a selective pressure on this gene in the Arctic subpopulation that is 

not experienced elsewhere. Supporting this is a study on grey wolf cranial 

morphology by Mulders (1997), who found that wolves exhibit a gradient of 

increasing skull size starting in the high arctic going southwest into the boreal 

forest. Notably, skull size was highly correlated with mean prey mass (Mulders 

1997). Wolf size has previously been correlated with prey size (Schmitz and 

Lavigne 1987), and thus it is possible that the smaller available prey in the arctic 

selects for smaller wolves. Unfortunately there are no studies of overall wolf size 

across the boreal forest and arctic tundra, but the observed difference in skull 

sizes suggests there may be a difference in overall skeletal size between these 

subpopulations. While this is only a speculative correlation, it is possible that a 

functional difference in the DYM gene is related to a difference in skeletal size in 

these subpopulations. 

 More so than for the preceding two genes, there is corroborating evidence 

that the ASIP gene may have been under selection within this wolf population. 

Mutations in ASIP have been found to strongly affect light versus dark coat 

colouration and/or patterning in many mammal species including deer mice 

(Peromyscus maniculatus; Linnen et al. 2009), Soay sheep (Ovis aries; Gratten et 
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al. 2010), red foxes (Vulpes vulpes; Våge et al. 1997) and domestic dogs 

(Berryere et al. 2005). Coat colour varies significantly across the range of North 

American wolves, and recent studies have shown a strong difference in coat 

colour frequencies between wolves that live in the boreal forest and wolves that 

live in the arctic tundra (Gipson et al. 2002; Musiani et al. 2007). Tundra wolves 

are predominantly white, but in the forest a large proportion of wolves are black 

or grey, and this is thought to have adaptive significance for concealment from 

prey (Jolicoeur 1959). This distinction in coat colour corresponds to the 

differences I observed in the allele frequency of the SNP found within the ASIP 

gene, which was at high FST between boreal forest wolves (Forest and Atlantic 

subpopulations) and wolves found in the arctic tundra (Arctic and Baffin Island 

subpopulations; data not shown). Additionally, this SNP showed no 

differentiation in allele frequencies (FST ~ 0) between subpopulations within both 

forest and tundra habitats (data not shown). Thus, it is possible that the candidate 

SNP detected in this study is in linkage disequilibrium with or contained within 

different functional alleles of the ASIP gene. 

I did not, however, find an association between individual coat colour and 

genotypes at this SNP in my sample of wolves. A subset of 29 of the wolves I 

genotyped were also genotyped by Musiani et al. (2007), and had coat colour 

data; however, I did not observe a correlation between phenotype [either “dark” or 

“light” as determined by Musiani et al. (2007)] and the genotype at this locus 

(Two-sided Fisher’s exact test, 1 d.f., P = 0.830). However, this result may be 

biased by several factors. First, there may be a lack of signal due to noise in the 

colour classification system: wolf coats often vary in colour over the entire body, 

and Musiani et al. (2007) assessed colour from only a small piece of hide. Second, 

the subset of wolves with coat colour data was small, and was not a random 

subset of all wolves studied. Most of the phenotyped wolves came from the boreal 

forest or the mainland tundra and had either one or two copies of the major allele 

for this locus; there were only two phenotyped wolves that were homozygous for 

the minor allele. This lack of homozygotes could have a particularly strong 

influence on the results if a functional variant was expressed recessively.  
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Another consideration is that a novel allele of another gene (the K locus) 

causing dominant black coat colouration has recently made its way into the North 

American wolf population from domestic dogs (Anderson et al. 2009). In dogs, 

this allele (KB) produces a protein that prevents the Agouti protein coded by ASIP 

from binding to its target receptor (Candille et al. 2007). Thus, even if ASIP 

contains functional variants within this population, the phenotypic effect may be 

masked in some wolves by the presence of this allele. 

A final possibility is that this SNP is no longer linked to functional 

variation in the ASIP gene. A similar pattern observed in thinhorn sheep (Ovis 

dalli) was reported by Loehr et al. (2008), who found a strong correlation between 

variation within the MC1R coat colour gene and pelage colour at the population 

level, but not at the individual level. Loehr et al. (2008) suggested that this could 

be caused by incomplete genetic mixing of unlinked loci across populations or by 

recombination between the observed genetic variation and (separate) previously 

linked functional genetic variation. However, given the low genetic differentiation 

and high gene flow likely to occur between Arctic and Forest subpopulations (see 

Chapter 2), both of these explanations are unlikely.  

 Overall, further study is required before a strong conclusion about the 

selective importance of any of these three genes can be made. Because I did not 

detect an overall signal of selection in outlier loci, it is possible that these genes 

have not actually undergone selection, and their occurrence among the set of 

candidate genes is coincidental. Thus, it is important to emphasize that these 

genes remain only candidates of selection. However, because allelic variants of 

each of these genes have been observed to strongly affect phenotypes in other 

species (see above), these genes may be worth pursuing in future research to 

determine their involvement in North American grey wolf subpopulation 

differentiation. 
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Conclusions 

I looked for a signal of directional selection within the North American 

wolf population, but did not find evidence for a concentration of selected markers 

amongst the FST outliers. Despite having a large set of markers, a number of 

aspects of this data set have reduced the power to detect a large-scale signal of 

selection in these individuals with an FST-outlier genome scan. Simply having a 

large marker set is not sufficient to detect selected markers, and confirms that 

careful study design is required for sufficient statistical power to accurately detect 

selection (Teshima et al. 2006). Further, the use of markers ascertained in model 

or domestic species may be of only limited use for FST-outlier scans of closely 

related wild species. 

Despite the lack of signal and high false positive rate observed, I identified 

three SNPs in genes known to strongly influence phenotypes in other species that 

showed a high disparity in allele frequencies across Forest and Arctic 

subpopulations. All of these genes potentially relate to differing ecological 

conditions: variation in available prey type may explain selective pressure on 

ADCY8 and DYM, while the need to blend in with a tundra compared to a forest 

habitat can explain selective pressure on ASIP. While promising, the detection of 

these genes is just the first step in outlining their importance to grey wolf 

differentiation. Re-sequencing efforts and collection of new phenotypes from 

across Arctic and Forest subpopulations should help to determine definitively any 

role these genes have in physiological adaptation to local ecological conditions. 
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Table 3-1. Mean pair-wise FST comparisons between five subpopulations of 
wolves, calculated across 27 931 SNPs. 

subpopulation Arctic Atlantic Baffin Forest Pacific 

Arctic 0.000     

Atlantic 0.110 0.000    

Baffin 0.116 0.145 0.000   

Forest 0.065 0.073 0.103 0.000  

Pacific 0.168 0.166 0.200 0.111 0.000 
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Table 3-2. Proportion SNPs in each group of outlier loci (n = 558) that were found 
within homologs of annotated human genes. No set of outlier loci was found to 
contain a significantly greater proportion of genic SNPs compared to the complete 
set of 27 931 SNPs after Bonferroni correction (One-sided exact conditional test, 
1 d.f., P ! 0.0087). 

  

% of SNPs 
found within 

genes P-value 
All 27 931 SNPs  26.84  

    
Subpopulation comparisons 

containing FST outliers    
Atlantic/Arctic  27.06 0.471 
Baffin/Arctic  25.99 0.689 

Baffin/Atlantic  25.99 0.689 
Pacific/Arctic  23.11 0.979 

Pacific/Atlantic  28.49 0.206 
Pacific/Baffin  24.37 0.912 
Forest/Arctic  24.91 0.853 

Forest/Atlantic  30.82 0.021 
Forest/Baffin  27.06 0.467 
Forest/Pacific  28.49 0.205 

All subpopulations  28.49 0.207 
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Table 3-3. Name, location, function, and putative role of 40 genes found near 
candidate loci. Location is that of the identified SNP. 

Gene Chromosome Location Function Putative role/location 

ACSL3 37 31898472 lipid biosynthesis, 
degradation 

highly expressed in brain 

ADCY8 13 30806609 catalyses formation 
of cAMP from ATP 

involved with memory 
formation 

ARMC9 25 46157665 binding uncertain 

ASIP 24 26359293 binds to melanocortin 
receptor 

affects pelage 
colouration 

ASTN2 11 73462161 protein binding involved in neuronal 
migration 

BCAS1 24 42710476 uncertain possible oncogene 

CACNA1S 27 47092881 subunit of calcium 
channel 

expressed in skeletal 
muscle cells 

CLEG4G 20 55481308 protein/sugar binding uncertain 

CPVL 14 45047414 carboxypeptidase expressed by maturing 
monocytes 

CSMD3 13 15478348 uncertain associated with Epilepsy 

DCLK1 25 7668360 microtubule-
associated kinase 

uncertain 

DYM 7 82484918 uncertain mutations cause 
dwarfism/retardation 

EEPD1 14 50645084 DNA binding DNA repair 

Fam170a 11 11900186 metal ion binding uncertain 

FAM65B 35 25908532 binding uncertain 

FOXN3 8 63593443 transcription factor uncertain 

GRIA1 4 59029131 glutamate receptor involved with 
neurotransmission 

ICOS 37 15816476 protein binding involved in T-cell 
receptor signaling 

LRRC16A 35 26355163 inhibits actin filament 
capping 

uncertain 

MFC2L 22 63476100 activates GTP-
binding proteins 

uncertain 
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Gene 
 

Chromosome 
 

Location 
 

Function 
 

Putative role/location 
 

NPAS3 8 15646515, 
15785878 

transcription factor involved with 
neurogenesis, 
schizophrenia 

NRG3 4 34574181 tyrosine 
phosphorylation 

associated with 
schizophrenia 

PAPPA 11 73113432 cleaves IGF binding 
proteins 

associated with wound 
healing 

PCNXL3 4 9730078 uncertain uncertain 

PIK3R5 5 36551475 subunit of kinase 
regulator 

uncertain 

PLCL2 23 29027820 calcium ion binding cell signaling 

PREP 12 65760166 cleaves peptide 
hormones 

involved in mediating 
sperm death 

PTPN14 7 15319772 phosphatase involved with 
cytoskeleton 

RPS27L 18 33189957 interacts with 
apoptosis gene 

regulates apoptosis for 
cancer suppression 

RXRB 9 53860854 retinoid receptor involved with 
spermogenesis 

slc38a2 27 10944564 amino acid 
transporter 

uncertain 

SNAPC4 9 52439042 DNA binding snRNA transcription 

SNX29 6 33613786 protein binding cell communication 

TBCE 4 7525804 chaperones 
microtubule folding 

associated with 
retardation, 
osteosclerosis 

TIGD3 18 54968633 transposon uncertain 

TMEM132C 26 6092231 uncertain uncertain 

TRIB2 17 12221636 signal transduction expressed in thyroid 

USH2A 38 14317121 uncertain involved in development 
of inner ear 

ZSCAN12 35 28545384 regulation of 
transcription 

expressed in testes 
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Figure 3-1. FST values of 27 931 SNPs between Arctic and Forest subpopulations, 
showing high differentiation of SNPs located in the DYM gene (circled, left), the 
ADCY8 gene (centre) and the ASIP gene (right). Spacing of SNPs along the x-axis 
is not to scale of the distance between SNPs along chromosomes; SNPs are 
ordered primarily by chromosome number and secondarily by position within the 
chromosome. 
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Chapter 4 

Synthesis 
  

Grey wolves, being a top predator throughout most of their range, are 

highly important members of northern ecosystems. They can disperse very long 

distances (Fritts 1983; Wabakken et al. 2007), but despite this, grey wolf 

populations appear to be highly structured at large scales, even in the absence of 

physical barriers (Pilot et al. 2006; Carmichael et al. 2007). Interestingly, there 

has been no previous evidence for strong isolation by distance at a continental 

scale in Europe (Pilot et al. 2006) or North America (Carmichael et al. 2007), nor 

has genetic differentiation been strongly correlated with distance at finer scales 

(Weckworth et al. 2005; Musiani et al. 2007; Muñoz-Fuentes et al. 2009). 

Instead, the structure of grey wolf populations is organized based on local 

ecological factors including habitat, climate, and available prey (Weckworth et al. 

2005; Pilot et al. 2006; Muñoz-Fuentes et al. 2009). In particular, Carmichael et 

al. (2001; 2007) and Musiani et al. (2007) have found the presence of migratory 

prey to be particularly influential on population structure.  

Most previous studies of grey wolf population structure to date have been 

performed using microsatellite markers. While these markers are relatively easy to 

obtain, inexpensive, and exhibit high allelic polymorphism, they generally have 

low overall genomic coverage. SNP markers, which have much higher genomic 

coverage and are less prone to sampling bias due to low allelic polymorphism 

(Ruzzante et al. 1998), should prove to be useful in studies of population genetics 

and genomics (Morin et al. 2004). Additionally, due to the high genomic 

coverage, SNP markers can be used to detect selection and identify genes that 

have been important in phenotypic adaptation (Morin et al. 2004). While most 

large-scale SNP studies have involved humans (e.g. Novembre et al. 2008; 

Pickrell et al. 2009), large SNP panels have also been developed for other species 

including sheep, cattle, and domestic dogs. The use of a domestic dog SNP array 
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to genotype grey wolves was verified by vonHoldt et al. (2010), but there has 

been no previous effort to look at genetic structure in a wild population using a 

large SNP data set. 

Using a large SNP panel developed from domestic dogs, I genotyped grey 

wolves from across Canada and Alaska, accomplishing four goals: 1) Re-evaluate 

population structure of North American grey wolves using a high-density marker. 

2) Compare SNP results to microsatellite-based results, to determine possible 

advantages of SNP data. 3) Explore how many SNPs are necessary to accurately 

assess population structure. 4) Scan the genome for signs of selection to identify 

genes that may have adaptive consequences for wolves in different habitats. 

 

Conclusions 

In Chapter 2, I explored the first three goals. I identified only five genetic 

subpopulations of wolves across North America, compared to the eight 

subpopulations suggested by Carmichael et al. (2007). However, four of the 

subpopulations I detected correspond to subpopulations identified by Carmichael 

et al. (2007), and support the ecological separation reported therein. Notably, a 

high number of wolves (45/132) were not strongly assigned to any single 

subpopulation, indicating that a significant amount of gene flow occurs between 

subpopulations, which was not inferred from microsatellite data (Carmichael et al. 

2007). In particular, almost all the individuals captured on the mainland tundra 

(north of the tree line, Fig. 2-2a) were highly admixed between Arctic and Forest 

subpopulations. Wolves in this area have previously been identified as a distinct 

subpopulation (Carmichael et al. 2007; Musiani et al. 2007), and it was 

hypothesized that specialization on migratory barren-ground caribou in this region 

was the driving force behind the observed population structure. My result 

indicates that rather than differentiating these wolves, specialization on migratory 

prey is causing increased gene flow across the mainland tundra, reducing 

differentiation between Arctic and Forest subpopulations. 
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I found that the genetic structure of North American wolves only partially 

corresponds to the subspecies distribution suggested by Nowak (1995). This 

indicates that skull morphology may not always be an accurate indicator of 

subspecies. Minimally, it confirms Carmichael et al.’s (2007) finding that the 

structure of North American grey wolves is more highly influenced by 

contemporary gene flow than by the previous separation of subspecies into 

different glacial refugia. 

Contrary to previous results (Pilot et al. 2006; Carmichael et al. 2007), I 

found strong evidence that geographic distance influences grey wolf genetic 

structure, which helps to explain the reduced structure [compared to Carmichael 

et al. (2007)] and high number of admixed individuals observed. By comparing 

pair-wise inter-individual genetic distance estimates, I found a much stronger 

signal of isolation by distance in SNP data than microsatellite data in a common 

set of 61 previously-genotyped wolves. This indicates that microsatellites lack 

power to detect isolation by distance, which is likely a result of noise due to the 

high allelic polymorphism of these markers. I also demonstrated that this SNP 

data set has high resolution, by recovering substructure within a subpopulation 

containing only eight individuals, and finding evidence for isolation by distance 

within three of five subpopulations. This confirms that large SNP panels can be 

used to detect population structure even when very few samples are available for 

genotyping, a finding that may be useful for studies of rare or endangered species. 

Finally, I found that decreasing the number of markers used to infer 

structure yielded results that were increasingly discordant to results from the full 

data set. Equally important, I observed high variance in discordance across small 

data subsets containing the same number of SNPs. This may be a concern for 

studies using a limited number of markers, because there is potential for high mis-

assignment when using smaller data sets. However, I found that increasing the 

number of SNPs had decreasing benefits as the number of SNPs approached the 

full data set. This suggests that genotyping ~500 SNPs may approximate a 

reasonable balance between accuracy of assignment and cost of genotyping. Last, 
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I discovered that highly admixed individuals are most likely to be mis-assigned, 

and that overall admixture was underestimated in small data sets. This means that 

studies looking to assess or quantify genetic admixture in particular should use as 

many markers as possible in order to minimize error in assignment of admixed 

individuals, and to make sure that admixture is correctly identified. 

In Chapter 3, I addressed the final goal of my study, looking for genes that 

may be under selection in this population of wolves. By using an empirical FST-

outlier genome scan, I looked for SNPs showing particularly high differentiation 

between subpopulation pairs, assuming that SNPs that have undergone directional 

selection between subpopulations would show extreme FST values between 

subpopulations. Looking at the 2% outliers from the pairwise and global FST 

distributions, I did not find evidence for an increased proportion of markers that 

have undergone directional selection, because these outliers did not show an 

increased proportion of genic SNPs compared to the complete set of SNPs. This is 

likely the result of low power to detect selected loci in this population due to a) 

the fact that these SNPs, being mostly ascertained from domestic dogs, may 

represent standing variation, b) the recent reduction in size of the North American 

wolf population, and c) the small sample sizes of several subpopulations. This 

result emphasizes a need to carefully select markers and individuals when 

performing genome scans, and suggests that loci ascertained in domestic species 

may be inappropriate for use in FST-outlier scans of wild species.  

However, by looking at the extreme outliers, I identified 41 unique SNPs 

near to or contained within genes annotated in other species. Of these, three have 

been found to have significant phenotypic effect in other species, and were found 

at very high FST between Arctic and Forest subpopulations. Two of these genes, 

which are involved with memory (ADCY8; de Quervain and Papassotiropoulos 

2006) and skeletal development (DYM; El Ghouzzi et al. 2003), may be 

differentially selected between Forest and Arctic subpopulations due to the 

different prey types available to each subpopulation. There is previous evidence 

showing a change in skull size between the boreal forest and the high Arctic 
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tundra (Mulders 1997), lending support to a hypothesis of selection on the DYM 

gene. The third gene (ASIP) has been observed to control fur colouration in many 

mammal species including domestic dogs (Berryere et al. 2005) and red foxes 

(Våge et al. 1997). Notably, the frequency difference in this SNP is correlated 

with a high frequency of dark-coloured wolves in the boreal forest and white 

wolves in Arctic tundra habitats (Gipson et al. 2002; Musiani et al. 2007). This 

colour change is likely locally adaptive, allowing wolves to blend with their 

surroundings to avoid detection by prey (Jolicoeur 1959). I must however 

emphasize again that these genes are only candidates of selection, and further 

study will be necessary before their importance to grey wolf phenotypic 

differentiation can be verified. 

 

Future directions 

In this study I have looked at only a small subset of the analyses available 

to population geneticists. To fully appreciate the benefits of using a large panel of 

SNPs for population genetic analysis, many more types of analysis could be 

performed. For this study system, it would be interesting to estimate recent and 

historical migration rates between subpopulations, as well as spatial 

autocorrelation, as both would help us to better understand the observed pattern of 

isolation by distance. Additionally, an assessment of recent migration rates 

between Arctic and Forest subpopulations could verify the conclusion of high 

gene flow presented here.  

Although I have made useful comparisons regarding assignment based on 

varying numbers of markers, determining the full effect of the number of markers 

on subpopulation assignment requires further study.  In particular, there are three 

important questions that remain unanswered. First, what is the relative importance 

of the number of markers compared to the number of sampled individuals? 

STRUCTURE assignments are affected by both the number of individuals and the 

number of markers (see Chapter 2), and it is not clear which is more important. 
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Second, how likely is STRUCTURE to determine the correct number of 

subpopulations when using data sets with few markers? While I assessed their 

relative accuracy with a fixed number of subpopulations, it is possible that smaller 

data sets would not indicate the correct number of subpopulations, thus making 

my estimates of discordance conservative. Third, how many SNPs are equivalent 

to microsatellites for assignment purposes? Unfortunately I had access to only a 

small number of individuals genotyped with a limited number of microsatellites. 

The answer to this question will require a more complete set of individuals 

genotyped at many more microsatellite loci, so that multiple replicates can be 

compared, as was done for SNPs in this study. 

 I did not recover a signal of natural selection in this population, which 

suggests that many markers near selected genes may have been missed by the 

empirical genome scan. This could potentially be overcome by genotyping a 

greater number of individuals, which would help to decrease the number of false 

positive markers found in the outliers, and provide stronger evidence that extreme 

outliers were selected. Additionally, the use of haplotype-based genome scans 

may help to detect regions under selection. In particular, the Cross Population 

Extended Haplotype Homozygosity test (Sabeti et al. 2007) may prove useful, 

since it (unlike several other LD-based genome scans) requires no estimates of 

linkage disequilibrium. This test was employed successfully by vonHoldt et al. 

(2010) to domestic dogs, and may also be successful at recovering genes under 

selection in wolves.  

While I did not directly include ecological variables in any analyses, it 

may be useful to obtain environmental data at the capture location of each 

individual (such as temperature, precipitation, and vegetation type) in order to 

look for genetic correlates of ecological variables. In conjunction with a genome 

scan, methods such as the spatial analysis method (SAM; Joost et al. 2008) or the 

Bayesian geographic analysis of Hancock et al. (2008) could be used to identify 

markers associated with particular ecological variables. By combining the results 

of a genome scan with a correlation analysis, it should be possible to discover 
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SNPs that have been under selection, and precisely identify environmental 

variables correlated with the selective pressure on each SNP. Finding SNPs that 

are correlated with particular environmental variables across subpopulations will 

help locate genes associated with ecological selective pressures that are not 

detectable when comparing inter-subpopulation allele frequencies. 

Last, the possible importance of ADCY8, ASIP, and DYM to grey wolf 

phenotypic differentiation have yet to be empirically assessed. For ADCY8 in 

particular, such an assessment will be difficult at this time, because ADCY8 is 

only one gene in a particular set found to be related to memory formation (de 

Quervain and Papassotiropoulos 2006). Determining the possible function of the 

other two genes will require sequencing these genes across numerous individuals, 

as well as collecting phenotypes for skeletal morphology and development time, 

and obtaining more precise measurements of wolf pelage colour. This is an 

expensive proposition, so a logical first step would be re-genotyping individuals 

at the detected SNPs in order to confirm genotypes. Hopefully, through a more 

comprehensive interrogation of the DNA sequence surrounding each SNP and 

careful phenotypic characterization, we will be able to determine a causative 

relationship for particular wolf phenotypes. 
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