
Capacity-Approaching Variable-Length Constrained

Sequence Codes

by

Congzhe Cao

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Communications

Department of Electrical and Computer Engineering

University of Alberta

c© Congzhe Cao, 2019

Abstract

In this thesis we consider construction techniques and applications of

variable-length constrained sequence codes. First we present background

information related to constrained sequence coding theory and review a

recently reported technique for constructing variable-length constrained

sequence codes. We then outline original work. We demonstrate two new

general algorithms that we have developed to construct variable-length

constrained sequence codes for various types of constraints. The first is based

on an encoder with a single encoding state, while the second is based on an

encoder with multiple encoding states which retains the property of

state-independent decoding. We present examples of these construction

algorithms. Then we apply our coding technique to develop constrained

sequence codes for flash memory with multi-page programming in order to

reduce the impact of inter-cell interference and cell leakage. Lastly we study

the synchronization properties of the codes we developed, and show that it is

possible to design variable-length constrained sequence codes with good

synchronization properties such that once the receiver loses synchronization,

it regains synchronization within a limited number of codewords.

ii

Preface

This thesis contains contents that appear in the following publications.

For all the publications listed in the preface, the technical analysis, computer

simulations and writing are conducted by myself under the supervision of Dr

Ivan Fair.

In Chapter 2.1 we propose a construction approach to construct minimal

sets of variable-length constrained sequence (CS) codes for a variety of

constraints based on the finite state machine (FSM) description of

constraints. We also introduce FSM partitions and propose a recursive

construction algorithm to establish the minimal set of the specified state.

The content of Chapter 2.1 has been published in the following publications:

• C. Cao and I. Fair, “Construction of minimal sets for

capacity-approaching variable-length constrained sequence codes,” 2016

Asilomar Conference on Signals, Systems, and Computers, Pacific

Grove, CA, USA, 2016, pp. 255–259.

• C. Cao and I. Fair, “Minimal sets for capacity-approaching

variable-length constrained sequence codes,” IEEE Transactions on

Communications, September 2018, vol. 67, no. 2, pp. 890-902, 2019.

In Chapter 2.2 we develop a variable-length CS coding technique with

multi-state encoders that permit state-independent decoding. The

construction technique is based on the FSM description of the constraint as

well as n-step FSMs. Examples are given for a variety of constraints,

including the runlength-limited (RLL) constraint, the DC-free constraint,

iii

and the DC-free RLL constraint. The content of Chapter 2.2 has been

published in the following publication:

• C. Cao and I. Fair, “Multi-state encoding of capacity-approaching

variable-length constrained sequence codes with state-independent

decoding,” IEEE Access, vol. 7, pp. 54746-54759, 2019.

In Chapters 3.1 and 3.2 we describe the application of the proposed coding

technique in flash memories such that inter-cell interference (ICI) is mitigated.

We describe the ICI mitigation in single-level cell and multi-level cell flash

memories. The content of Chapters 3.1 and 3.2 has been published in the

following publications:

• C. Cao and I. Fair, “Variable-length constrained sequence codes for

mitigating inter-cell interference in all-bit-line flash memory with

multi-page programming,” 28th Biennial Symposium on

Communications, Kelowna, BC, Canada, 2016.

• C. Cao and I. Fair, “Mitigation of inter-cell interference in flash memory

with capacity-approaching variable-length constrained sequence codes,”

IEEE Journal on Selected Areas in Communications, vol. 34, no. 9, pp.

2366-2377, 2016.

In Chapter 3.3 we describe the application of the proposed coding

technique such that variable-length capacity-approaching Pearson codes are

constructed that can be used to reduce the impact of cell leakage in flash

memories. The content of Chapter 3.3 has been published in the following

publication:

• C. Cao and I. Fair, “Capacity-approaching variable-length Pearson

codes,” IEEE Communications Letters, vol. 22, no. 7, pp. 1310-1313,

2018.

In Chapter 4 we describe how variable-length CS codes with high

synchronizing probability can be constructed. We develop algorithms for

construction of variable-length CS codes with high synchronization

iv

probability, and present simulation results that show that these codes exhibit

good synchronization properties such that once the receiver loses

synchronization, it regains synchronization within a limited number of

codewords. The content of Chapter 4 is under preparation for submission:

• C. Cao and I. Fair, “Synchronization of variable-length constrained

sequence codes,” submitted to IEEE Access.

v

To my whole family

For your love and constant support.

vi

They who know the truth are not equal to those who love it, and they who

love it are not equal to those who delight in it.

(知之者不如好之者,好之者不如乐之者。)

– Confucius, ancient Chinese philosopher.

vii

Acknowledgements

I would first like to give my thanks to my supervisor, Dr. Ivan Fair, for

his strong and constant support and supervision during my entire program. I

very much appreciate it.

I would like to express my appreciation for the scholarships I received

from Alberta Innovation Technology Futures (AITF) and National Sciences

and Engineering Research Council (NSERC) of Canada. This work would not

have been possible without generous support.

I extend my thanks to all the faculty members who have taught and

assisted me, especially Dr Majid Khabbazian, Dr Witold Krzymien, Dr Yindi

Jing and Dr Ioanis Nikolaidis for their comments on my research as the

members of my candidacy and final examination committees. I like to thank

Dr Jos Weber from Delft University of Technology, Netherlands, for

reviewing my thesis as the external examiner.

I would also like to extend my thanks to Dr Zesong Fei from Beijing

Institute of Technology who supervised my Masters thesis, Dr Ming Xiao

from KTH Royal Institute of Technology, Dr Toshiaki Koike-Akino and Dr

Ye Wang from Mitsubishi Electric Research Laboratories, for their consistent

help and collaboration.

Congzhe Cao,

in Edmonton, Alberta

viii

Table of Contents

1 Background and Motivation 1
1.1 Introduction to constrained sequence codes 1
1.2 Review of several constrained sequence codes 4

1.2.1 Fixed-length codes . 4
1.2.2 Variable-length codes 8

1.3 Motivation of the proposed variable-length codes 12
1.4 Review of capacity-approaching variable-length constrained

sequence codes . 14
1.4.1 Brief review of constrained coding theory 14
1.4.2 Minimal sets and extensions 17
1.4.3 Normalized geometric Huffman coding 18

1.5 Context and contributions of work in this thesis 22

2 Novel code construction techniques for general constraints 25
2.1 Construction of capacity-approaching codes with a single

encoding state [18, 19] . 25
2.1.1 Selection of specified states 26
2.1.2 Code construction algorithm 44
2.1.3 Example: codes for visible light communications 48
2.1.4 Example: codes for DNA-based storage 54

2.2 Construction of capacity-approaching codes with multiple
encoding states and state-independent decoding [22] 56
2.2.1 Multi-state encoding based on an FSM 56
2.2.2 Multi-state encoding based on n-step FSM 68
2.2.3 Examples: codes for visible light communications . . . 73

3 Applications 82
3.1 Flash memory basis . 82

3.1.1 Structure and programming schemes 82
3.1.2 Inter-cell interference 84

3.2 Coding for flash memory with multi-page Programming [20] . 85
3.2.1 Page-1 constraint . 85
3.2.2 Page-2 constraints . 87
3.2.3 Results of codes constructed with capacity-approaching

code rates . 90
3.2.4 Error control inherent in the constrained sequence codes 95
3.2.5 Concatenation of constrained sequence codes with error

control codes . 103
3.3 Pearson codes for cell leakage [21] 113

3.3.1 Background . 113
3.3.2 Finite state machine description 114
3.3.3 Code construction . 116

ix

3.3.4 Performance analysis 117

4 Synchronization of variable-length constrained sequence
codes 124
4.1 Synchronization . 125
4.2 Criteria for minimal set selection 127

4.2.1 Constraints that mitigate ICI in flash memories 130
4.2.2 The Pearson constraint 132
4.2.3 DC-free constraints . 132

4.3 Partial extensions . 134
4.3.1 Extending synchronizing versus nonsynchronizing words 135
4.3.2 The guided partial extension algorithm 136

4.4 Capability to quickly re-synchronize 137
4.4.1 Upper bounds of the average number of codewords and

bits before resynchronization 139
4.4.2 Simulation results . 141

5 Conclusion 158
5.1 Thesis summary . 158
5.2 Future work . 159

References 162

x

List of Tables

1.1 The code table of MFM code 6
1.2 The encoding table of 3PM code 7
1.3 The code table of a d = 1, k =∞ code 8
1.4 The code table of synchronous variable-length (2, ∞) code . . 10
1.5 The code table of synchronous variable-length (2, 7) code . . . 11
1.6 A codebook of (1,3) RLL code with efficiency of 98.9% 20
1.7 A codebook of (1,3) RLL code with efficiency of 99.24% 21
1.8 A codebook of N = 3 DC-free code with efficiency of 100% . . 21

2.1 Capacity of single-state DC-balanced FSM with N = 4.
Analysis of the multi-state FSM yields λmax = 1.6180 and
C = 0.6942. 31

2.2 A codebook of the constraint that forbids the 111 and 11011
patterns with η = 96.65% . 48

2.3 Parameters of N = 5 DC-free codes with lmax = 6 52
2.4 Parameters of N = 5 DC-free codes with lmax = 8 52
2.5 A DC-free code with N = 5, R̄ = 0.7703, η = 97.19% 52
2.6 Maximum possible code rates of minimal sets with different lmax

for a DC-free code with N = 7 52
2.7 Codes constructed for a DC-free code with N = 7 53
2.8 Words in the minimal set of a DC-free code with N = 7, lmax =

10, C̃M = 97.65% . 53
2.9 A 4-ary k = 3 RLL codebook, R̄ = 0.9971 55
2.10 Comparison of highest code rates and sizes of codebooks with [6] 55
2.11 The minimal set of a two-state (d = 1, k = 3) code 59
2.12 The minimal set of a multi-state DC-free code with N = 5 . . 60
2.13 The minimal set of a DC-free RLL code corresponding to an

NRZI encoded (d = 1, k = 3) code with N = 5 61
2.14 The extended minimal set of a DC-free RLL code corresponding

to an NRZI encoded (d = 1, k = 3) code with N = 5 61
2.15 Partial extension of the extended minimal set of a DC-free RLL

code corresponding to an NRZI encoded (d = 1, k = 3) code
with N = 5 . 63

2.16 Codebook of a (d = 1, k = 3) RLL code with two states and
η = 98.91% . 65

2.17 Codebook of a N = 5 DC-free code with η = 99.14%. 65
2.18 Codebook of a N = 5 DC-free code with ternary source and

η = 100%. 65
2.19 Codebook of a DC-free RLL code corresponding to an NRZI

encoded (d = 1, k = 3) code with N = 5, η = 98.09% 66
2.20 Codebook of a DC-free RLL code corresponding to an NRZI

encoded (d = 1, k = 3) code with N = 5, η = 98.47% 66

xi

2.21 Codebook of a DC-free RLL code with (d = 2, k = 3, N = 5),
η = 98.62% . 66

2.22 Codes constructed that satisfy different DC-free RLL constraints 66
2.23 Codebook of a DC-free RLL code with (d = 1, k = 5, N =

7), η = 98.27% . 67
2.24 The minimal set of a 3-step DC-free code with N = 6 71
2.25 An extended 3-step minimal set of a DC-free code with N = 6,

n = 3 . 71
2.26 Achievable code rates of different n-step FSMs with different

values of n for the DC-free constraint with N = 6 73
2.27 Codebook of a pruned version of the extended 3-step minimal

set of a DC-free code with N = 6 74
2.28 Highest average code rates of DC-free code with N = 6

codebooks with different size 74
2.29 A 2-step minimal set of DC-free code N = 7 76
2.30 An extended 2-step minimal set of DC-free code N = 7 76
2.31 A DC-free N = 7 codebook, η = 95.53% 77
2.32 A 2-step minimal set of DC-free code N = 7 with the set of odd

states as principal states . 77
2.33 A DC-free N = 7 codebook, η = 94.88% 78

3.1 Gray mapping for MLC . 84
3.2 Gray mapping for TLC . 84
3.3 Parameters of codes constructed to satisfy the Page-1

constraint. Capacity of SLC: 0.8114, capacity of MLC: 0.9057,
capacity of TLC: 0.9371 . 91

3.4 Parameters of codes constructed to satisfy the Page-2A
constraint. Capacity of MLC: 0.9396, capacity of TLC: 0.9597 91

3.5 Parameters of codes constructed to satisfy the Page-2B
constraint. Capacity of MLC: 0.92478, capacity of TLC: 0.94985 92

3.6 A codebook for the Page-1 constraint that achieves 99.36% of
capacity for MLC . 93

3.7 A codebook for the Page-2A constraint that achieves 98.83% of
capacity for MLC . 93

3.8 A codebook for the Page-2B constraint that achieves 99.12% of
capacity for MLC . 94

3.9 Codebook of a binary Pearson code with
lmax = 10, ō = 2.9961, R̄ = 0.9987, γ = 0.0039 117

3.10 η̃ with lmax . 119

4.1 Codebook of a (d = 1, k = 3) RLL code with efficiency of
98.90% and sync probability of 96.88% 143

4.2 A constrained sequence codebook for ICI mitigation of MLC
flash memory that achieves 99.6% of capacity 148

xii

List of Figures

1.1 The successive coding steps of error control codes and
constrained sequence codes . 2

1.2 The successive coding step of error control codes and
constrained sequence codes . 5

1.3 The FSM description of the encoder of MFM code 6
1.4 The sliding-block decoder for the (2, ∞) synchronous variable-

length RLL code . 10
1.5 An overview of implementation of variable-length constrained

sequence codes . 14
1.6 FSM of a (1,∞) code . 18
1.7 An example of a partial extension of the minimal set {0, 10} . 18
1.8 Construction of a rate 0.6923 (d = 1, k = ∞) code via NGH

coding, η = 0.9972 . 19
1.9 FSM of a (1, 3) RLL code . 20
1.10 FSM of a DC-free code with N = 3 21

2.1 FSM of general DC-free codes 26
2.2 Maximum possible code rates of different minimal sets in a (d =

1, k =∞) RLL code . 28
2.3 FSM of a (d = 1, k = 2) RLL code 29
2.4 Maximum possible code rates of different minimal sets in a (d =

1, k = 2) RLL code . 29
2.5 Explanation of U1(m),U2(m),U3(m) 34
2.6 FSM of a constrained sequence code that forbids 101 pattern . 38
2.7 Maximum possible code rate of different minimal sets of

constrained sequence codes that forbid the 101 pattern 38
2.8 Maximum possible code rate of different minimal sets of DC-free

codes with N = 5 . 39
2.9 Maximum possible code rate of different minimal sets of DC-free

codes with N = 6 . 40
2.10 FSM of a constrained sequence code that forbids 111 and 11011

patterns . 40
2.11 Achievable efficiency of different minimal sets of constrained

sequence codes that forbids 111 and 11011 patterns 42
2.12 FSM partitions of a constraint that forbids 101 pattern 46
2.13 FSM partitions in constrained sequence codes that forbids 111

and 11011 patterns . 47
2.14 FSM partition of general DC-free codes 50
2.15 FSM of 4-ary k-constrained codes for DNA-based storage . . . 54
2.16 FSM of a (d = 1, k = 3) RLL code 59
2.17 FSM of a DC-free code with N = 5. 60

xiii

2.18 FSM of the DC-free RLL constraint corresponding to an NRZI
encoded (d = 1, k = 3) code with N = 5. 60

2.19 2-step FSM of the DC-free constraint with N = 7. 75

3.1 FSM of Page-1 constraint. 86
3.2 FSM of Page-2A constraint. 88
3.3 FSM of Page-2B constraint. 88
3.4 BER performance of uncoded scheme and the Page-1

constrained coding scheme for SLC flash memories 102
3.5 BER performance of uncoded scheme and the Page-2

constrained coding schemes for MLC flash memories 103
3.6 The encoding process and voltage evaluation of (a) the

conventional scheme and (b) the constrained coding scheme . 104
3.7 The voltage distribution of conventional scheme and Page-1

constrained coding scheme . 104
3.8 The encoding and decoding process of the concatenated coding

scheme . 105
3.9 BER performance of the BCH coded scheme with rate 0.701,

and the concatenated coded scheme of a BCH code and Page-1
constrained code with average rate 0.695 for SLC flash memories 106

3.10 BER performance of the BCH coded scheme with rate 0.771,
and the concatenated coded scheme of a BCH code and Page-1
constrained code with average rate 0.765 for SLC flash memories 107

3.11 BER performance of the BCH coded scheme with rate 0.78,
and the concatenated coded scheme of a BCH code and Page-1
constrained code with average rate 0.768 for SLC flash memories 108

3.12 BER performance of the BCH coded scheme with rate 0.45,
and the concatenated coded scheme of a BCH code and Page-1
constrained code with average rate 0.51 for SLC flash memories 108

3.13 BER performance of the BCH coded scheme with rate 0.48,
and the concatenated coded scheme of a BCH code and Page-1
constrained code with average rate 0.48 for SLC flash memories 109

3.14 BER performance of the BCH coded scheme with rate 0.507,
and the concatenated coded scheme of a BCH code and Page-1
constrained code with average rate 0.514 for SLC flash memories 109

3.15 The voltage distribution of ECC-only scheme and Page-2B
constrained coding scheme . 110

3.16 BER performance of the BCH coded scheme with rate 0.806,
the BCH-RLL scheme with rate 0.797, the concatenated coded
scheme of a BCH code and Page-2A constrained code with
average rate 0.796, the concatenated coded scheme of a BCH
code and Page-2B constrained code with average rate 0.801,
and the concatenated coded scheme of a BCH code and
Page-1 constrained code with average rate 0.803 for MLC flash
memories. 111

3.17 BER performance of the BCH coded scheme with rate 0.859,
the concatenated coded scheme of a BCH code and Page-2A
constrained code with average rate 0.858, the concatenated
coded scheme of a BCH code and Page-2B constrained code
with average rate 0.854, and the concatenated coded scheme of
a BCH code and Page-1 constrained code with average rate
0.856 for MLC flash memories. 112

xiv

3.18 BER performance of the BCH coded scheme with rate 0.506,
the concatenated coded scheme of a BCH code and Page-2A
constrained code with average rate 0.506, the concatenated
coded scheme of a BCH code and Page-2B constrained code
with average rate 0.512 for MLC ash memories. 113

3.19 FSM for q-ary Pearson codes. 115
3.20 FSM for binary Pearson codes. 115
3.21 Comparison of redundancy of the proposed VV code with the

VF code in [60] . 120

4.1 FSM of the (d, k =∞) RLL constraint. 127
4.2 FSM of the (d = 0, k) RLL constraint. 128
4.3 FSM of general (d, k) RLL constraints, d 6= 0, k 6=∞. 130
4.4 FSM of the constraint that forbids pattern 101 for ICI mitigation.130
4.5 FSM of the constraint that mitigates ICI in MLC flash memories.131
4.6 Code efficiency and sync probability of (d = 1, k = 3) RLL

constrained sequence codes. 142
4.7 Average number of words required to regain synchronization for

the constructed (d = 1, k = 3) RLL constrained sequence codes. 144
4.8 Average number of bits required to regain synchronization for

the constructed (d = 1, k = 3) RLL constrained sequence codes. 145
4.9 The ratio that synchronization is achieved on synchronizing

codewords for the constructed (d = 1, k = 3) RLL constrained
sequence codebooks. 145

4.10 Code efficiency and sync probability of the codes for SLC flash
memory. 146

4.11 Average number of words required to regain synchronization for
the codes for SLC flash memory. 147

4.12 Average number of bits required to regain synchronization for
the codes for SLC flash memories. 147

4.13 Code efficiency and sync probability of the constructed codes
for MLC flash memory. 149

4.14 Average number of words required to regain synchronization for
the constructed codes for MLC flash memory. 150

4.15 Average number of bits required to regain synchronization for
the constructed codes for MLC flash memory. 150

4.16 Code efficiency and sync probability of the Pearson codes. . . 151
4.17 Average number of words required to regain synchronization for

the constructed Pearson codes. 152
4.18 Average number of bits required to regain synchronization for

the constructed Pearson codes. 152
4.19 Code efficiency and sync probability of the constructed DC-free

codes with N = 5. 154
4.20 Average number of words required to regain synchronization for

the constructed DC-free codes with N = 5. The upper bounds
for states 2 and 3 are infinity since P = 0. 155

4.21 Average number of bits required to regain synchronization for
the constructed DC-free codes with N = 5. The upper bounds
for states 2 and 3 are infinity since P = 0. 155

4.22 Code efficiency and sync probability of the constructed DC-
free codes with N = 5, when the decoder has knowledge that
codewords have even length. 156

4.23 Average number of words required to regain synchronization for
the constructed DC-free codes with N = 5, when the decoder
has knowledge that codewords have even length. 156

xv

4.24 Average number of bits required to regain synchronization for
the constructed DC-free codes with N = 5, when the decoder
has knowledge that codewords have even length. 157

4.25 All cases that codeword 2 in the minimal set constructed
based on state 1 results in mis-synchronization. Note that the
probabilities of these cases are small, making codeword 2 an
“almost synchronizing codeword”. 157

xvi

List of Symbols

cmax the maximum length of codewords in a codebook

during partial extensions

C a codeword

C capacity of a constrained sequence

C̃M maximum possible code rate of a constrained sequence

constructed from the set M

C codebook

D adjacency matrix of a finite state machine (FSM)

Dn the adjacency matrix of an n-step FSM

H{X} entropy of a Markov FSM

H(σj) the set of next states corresponding to words in W (σj)

lb number of bits stored in each cell in flash memory

lI length at which, for two different minimal sets, the

maximum possible code rate starts to diverge

|lk| the number of words that are of length lk in a set

lmax the maximum length of words in a minimal set

lth the maximum length of words in a full extension of a

minimal set

LM the set of lengths of words in M

|LM | the number of words in a minimal set M

LS lengths of source words in a codebook

Mc a complete extension of a minimal set M

Mf a full extension of a minimal set M

M
(lth)
f the full extension of a minimal set M containing all

possible words with length no greater than lth

Mp a partial extension of a minimal set M

xvii

nmax the maximum number of codewords in a codebook

during partial extensions

N number of RDS values in a DC-free sequence

Nb the number of coded bits required for the decoder to

regain synchronization once synchronization is lost

Ñb upper bound of Nb

Nc the number of codewords required for the decoder to

regain synchronization once synchronization is lost

Ñc upper bound of Nc

N c the number of codewords in a codebook

Nm number of words in a minimal set

P synchronization probability

Q single step transition matrix of an FSM

Qn the n-step transition matrix of an FSM

R̄ average code rate

S the set of suffixes of synchronizing words

U(m) the number of constraint-satisfying sequences of length

m

W (σj) the set of words generated by the j-th principal state

|X| the size of vector X

α(σj) the set of codewords generated through extension of

W (σj)

β(σj) the set of next states corresponding to α(σj)

γ redundancy of a code

ξ the number of entries in each state in the multi-state

codebook

η efficiency of a code

η̃ maximum possible efficiency of a minimal set

π steady-state distribution of an FSM

∅ a void codeword

Ψ the set of principal states in the multi-state code

construction technique

xviii

Acronyms

AWGN additive white gaussian noise

BSC binary symmetric channel

CS constrained sequence

CD compact disc

DAT digital audio tape

DCC digital compact cassette

DVC digital video cassette

DVD digital video disc

DVR digital video recorder

EFM eight-to-fourteen modulation

FSM finite state machine

ICI inter-cell interference

MFM modified frequency modulation

MLC multi-level cell

NGH normalized geometric Huffman

NRZI non-return-to-zero inverted

OOK on-off keying

RDS running digital sum

RLL runlength-limited

SLC single-level cell

TLC triple-level cell

VLC visible light communication

xix

Chapter 1

Background and Motivation

1.1 Introduction to constrained sequence

codes

In communication and data storage systems, constrained sequence codes,

which are also called recording codes and modulation codes (in data storage

systems), or line codes (in optical and wireline communications systems), have

been widely used [1]. Constrained sequence codes have also been proposed for

wireless energy harvesting [2] and visible light communications [3]. As for

the next-generation data storage systems, constrained sequence codes are also

proving to be promising for several emerging data storage devices such as flash

memories [4], phase change memories [5] and DNA-based storage [6].

It is known that the storage and retrieval of information can be modeled

as a communication process that provides information transfer over time.

With channel coding modules integrated into the data storage system, the

reliability of communication can be improved. The reliability of a

communication or data storage system is often measured by the probability

that the transmitted information is correctly recovered at the receiver, or

inversely, by the probability that the original transmitted information is not

accurately recovered. The fundamental problem of the limits of reliable

transmission was considered in the pioneering work of Shannon in his 1948

paper [7] where he proved that it is possible to transmit information over a

1

noisy channel with an arbitrarily small error probability, provided that the

transmission rate is smaller than the channel capacity. Following Shannon’s

early work, theorists and engineers invested tremendous effort to design

practical codes that would enable the performance that Shannon promised to

be approached.

In recording systems and some transmission systems, channel coding is

often performed in two steps: error control coding and constrained sequence

coding. Powerful error control coding techniques such as turbo codes [8], low

density parity check (LDPC) codes [9], rateless codes [10] and polar codes [11]

have resulted in performance approaching the Shannon limit on additive white

Gaussian noise (AWGN) channels. Constrained sequence codes, as another

family of channel coding techniques, attempt to ensure that the characteristics

of transmitted information sequences meet the physical constraints of the non-

white channel. The typical order of coding procedures for error control codes

and constrained sequence codes is shown in Fig. 1.1. The error control decoder

is responsible for dealing with the error propagation that results from the

constrained sequence decoder.

Constrained sequence codes have found many applications in storage

devices such as the compact disc (CD), Mini Disc, digital video disc (DVD),

digital video recorder (DVR), digital audio tape (DAT), magnetic hard disk,

digital compact cassette (DCC) and digital video cassette (DVC). The

majority of constrained sequence codes used in those devices are

runlength-limited (RLL) codes, DC-free codes, or the integration of these

techniques such that sequences have both RLL and DC-free properties.

Source
Error control

encoder

Constrained

sequence

encoder

Destination
Error control

decoder

Constrained

sequence

decoder

channel

Figure 1.1: The successive coding steps of error control codes and constrained

2

sequence codes

RLL coded sequences are sequences in which the number of encoded bits

between consecutive transitions is bounded. In many recording systems, long

sequences of like-valued bits are harmful to system performance because the

timing recovery and the adaptive equalization algorithms often rely on the

presence of an appropriate number of transitions. Very long sequences of like-

valued bits may cause the timing recovery circuit to lose synchronization. On

the other hand, it is well known that the time-domain output of a channel is

the convolution of the input sequence and the channel response. If the time

duration of like-valued bits is too short, severe inter-symbol-interference (ISI)

will arise in the channel output.

RLL codes are often referred to as (d, k) codes where d and k denote the

minimum and maximum number of zeros between consecutive ones. The (d, k)

constraints, followed by a non-return-to-zero inverted (NRZI) step where bit

one represents a change of logic value and bit zero represents no change, result

in an RLL coded sequence where the number of successive like-valued bits is

at least d + 1 and at most k + 1. Such sequences avoid both long and short

sequences of like-valued bits and thus effectively deal with the issue of timing

recovery, adaptive equalization and ISI.

DC-free encoded sequences are sequences that do not accumulate charge.

In other words, the running digital sum (RDS) value of the encoded sequence

is bounded [12]. RDS is the ongoing summation of encoded bit weights in

the sequence, where a logic one is represented by weight +1 while logic zero

is represented by weight –1. It has been shown that if the RDS value is

bounded (i.e., only N different RDS values are allowed), the coded sequence

will have suppressed low frequency components [12]. In recording systems, it

is desired to have low power near zero frequency in the coded sequence because

recorders often are unable to respond to low frequency signals. DC-free codes

have found many applications in those products. DC-free codes are also used

in AC-coupled transmission systems in order to reduce power loss and baseline

wander in those systems.

3

The last section of this chapter provides context, contributions and the

significance of the work in this thesis. In Sections 1.2 to 1.4, we review fixed-

length and variable-length constrained sequence codes some of which have

found wide application in the data storage and communication industry. These

are codes that impose an RLL constraint, or a DC-free constraint, or both of

these constraints simultaneously.

1.2 Review of several constrained sequence

codes

In this section we review several fixed-length and variable-length

constrained sequence codes. For fixed-length codes we introduce the

widely-used eight-to-fourteen modulation (EFM) code, Modified Frequency

Modulation (MFM) code and Three Position Modulation code, and we

discuss the encoding and decoding rules. We then introduce three types of

variable-length constrained sequence codes, including synchronous

variable-length constrained sequence codes.

1.2.1 Fixed-length codes

EFM code

The EFM code was designed to be used with CDs [14]. EFM coded

sequences satisfy the RLL property with d = 2 and k = 10, and have a code

rate of 8/17 and efficiency 86.86%, meaning that the code rate achieves 86.86%

of the maximum rate that is possible with this contraint. Each source block

consists of 8 bits, which is encoded into 14 coded bits using a code table. Each

sequence of 14 coded bits is followed by 3 additional bits called merging bits.

The 14 coded bits and the 3 merging bits together form a coded block of 17

coded bits.

The three merging bits are used to control the low frequency components

of the coded sequences. They are chosen in a way that attempts to bound the

RDS of a coded block. An example of the EFM coding process is shown in Fig.

4

1.2. As shown in this figure, the first block of 8 source bits 0110001 is encoded

into 14 coded bits 10000100100010 by referring to the EFM codebook. When

considering the merging bits, it is evident that in order not to violate the d = 2

constraint, the first merging bit must be a 0. Therefore we have three choices

for the 3 merging bits: 000, 001 and 010, bearing in mind that sequence 011 is

not allowed since it violates the d = 2 constraint. The one we choose should

result in the lowest magnitude of RDS value at the end of a new coded block.

In this example, assume this is the beginning of the coded sequence and the

initial RDS value is 0. 001, 010, 000 result in the RDS value of 5, 7, -1 at the

end of the next coded block, respectively. Therefore, 000 should be chosen as

the merging bits.

Figure 1.2: The successive coding step of error control codes and constrained

sequence codes

It has also been reported that improved selection criteria by looking ahead

for one more block and choosing the merging bits that result in the smallest

RDS at the end of the next two blocks can improve the performance [15]. The

reason is that minimizing the RDS value for the short term (at the end of

the next block) does not always minimize the RDS value for the longer term

(for example, at the end of the next two blocks). However, because of the

complexity, this approach is not used in real equipment, although it is in full

agreement with the standard for the Compact Disc system.

5

MFM code

The MFM code is simple and easy to implement, and as a result became

the standard in flexible and “Winchester”-technology disc drives [12]. The

MFM code has the parameters d = 1, k = 3, the code rate R = 0.5 and

efficiency 90.66%. This code maps one source bit into two coded bits as shown

in Table 1.1, and as explained below.

Table 1.1: The code table of MFM code
Source bit Coded bits

0 x0

1 01

The mapping from source bits to coded bits is very simple. If the source

bit is 1, then the coded bits are 01. If the source bit is 0, the coded bits are

x0 with x depending on the previous coded bit. If the previous coded bit is

0, x is 1, otherwise x is 0. It can be seen that x also works as the “merging

bit”, which is similar to the EFM code. The finite state machine (FSM) that

describes the encoder is shown in Fig. 1.3, where state A denotes the situation

in which the previous coded bit is 0, while state B denotes the situation in

which the previous coded bit is 1.

A B

1/01

0/00

1/01

0/10

Figure 1.3: The FSM description of the encoder of MFM code

Decoding the MFM code is straightforward. One only needs to discard

the first received bit, and the second received bit is decoded as the source bit.

Three Position Modulation code

Three Position Modulation code [16], which is also called the 3PM code,

has also been used in disk systems. The parameters of 3PM code are d = 2,

6

k = 11, with a code rate of R = 0.5. The basic encoding table of the 3PM

code is shown in Table 1.2.

Table 1.2: The encoding table of 3PM code

Source bits Coded bits

000 000010

001 000100

010 010000

011 010010

100 001000

101 100000

110 100010

111 100100

In the encoding process, 3 source bits are encoded into 6 coded bits.

However, it can be observed that in some situations the d = 2 constraint may

be violated. Therefore, a merging process is introduced. If the fifth coded

bit in the current codeword and the first coded bit in the next codeword are

both 1, then the d = 2 constraint will be violated. In such situations, the

sixth coded bit in the current codeword is set to 1, the fifth coded bit in the

current codeword and the first bit in the next codeword are set to 0 in order

to maintain the d = 2 property.

The decoding process is also simple to implement. Whenever a codeword

enters the decoder and the sixth coded bit of the codeword is observed to

be 1, the decoder can easily undo the process described above, otherwise the

received codeword stays the same. Then, by using Table 1.2, one can easily

find the corresponding source bits.

In the above we have introduced several types of fixed-length constrained

sequence codes. In the next subsection, we discuss several types of variable-

length codes and compare them with fixed-length codes.

7

1.2.2 Variable-length codes

Variable-length constrained sequence codes refer to those having

variable-length codewords, while the source words can either be fixed-length

or variable-length. One issue related to variable-length constrained sequence

codes is the need to unambiguously identify the end of each variable-length

codeword. Since the lengths of codewords are different, it is necessary that

one codeword is not the prefix of another, i.e., there is no whole codeword in

the codebook that is an initial segment of any other codeword in this

codebook, otherwise it may not be possible for the decoder to correctly

identify the end of a codeword. Codes in which no codewords are prefixes of

other codewords are called prefix codes, or codes with the prefix property. In

most cases variable-length constrained sequence codes should be prefix codes

in order to facilitate the decoding process. Several codes that satisfy this

property are considered below.

A (1,∞) code

Design of variable-length constrained sequence codes can be

straightforward for some types of constraints. For example, here we present a

variable-length constrained sequence code to satisfy the (1,∞) constraint

[12]. Since the only constraint imposed is that consecutive ones are not

allowed, we can design a code table with only two codewords, i.e. 0 and 10.

The assignment of source words and codewords can be arbitrary. In Table

1.3 we show one possible mapping between source words and codewords.

Table 1.3: The code table of a d = 1, k =∞ code

Source bit Coded bits

0 0

1 10

Assuming equiprobable and independent source bits, the average code

rate of this code is 2/3. Note that the capacity of the (1,∞) constraint is

log2
1+
√

5
2

= 0.6942, thus this codebook has an efficiency of 96.03%. This code

8

has the advantage that it has a high code rate, and is very simple. However,

it is mentioned in [12] that this code, like other variable-length codes, also

suffers from the following drawbacks. If the input sequences are not

sufficiently random, then with an all-one input sequence the code rate

decreases to 0.5. However, one may use a scrambler to make the input

sequence sufficiently random prior to encoding. The more important concern

is that the output block will have variable length, which may introduce

difficulties in some systems. The effort required to accommodate the variable

length output sequence may require additional overhead, which may preclude

the use of this variable-length code because efficient fixed-length codes have

been designed for this particular constraint.

Synchronous variable-length constrained sequence codes

To deal with the issue of variable-length encoded sequences, synchronous

variable-length constrained sequence codes with fixed code rates have been

proposed. These codes ensure that the ratio of the lengths of the variable

length source words to variable length codewords is constant. Several

synchronous constrained sequence variable-length codes are introduced

below.

Example: (2, ∞) RLL code A synchronous variable-length constrained

sequence code with parameters d = 2, k =∞ and code rate R = 1/2 is shown

in Table 1.4. It is important to note that, even though source words are not of

the same length, each source word is mapped to a codeword exactly twice its

length. Therefore, given a block of source bits, the block of coded bits is fixed-

length, which is straightforward to implement in real systems. Furthermore,

as shown in [12], a fixed-length code with the same RLL parameters and the

same code rate has 128 words in the code table while the code in Table 1.4

only has three codewords. This shows one of the advantages of variable-length

codes.

The encoding and decoding process is simple due to the prefix property.

The encoder first recognizes the first bit of the input source bit stream. If the

9

Table 1.4: The code table of synchronous variable-length (2, ∞) code

Source bit Coded bits

0 00

10 0100

11 1000

bit is 0, it is recognized as a source word. Otherwise the encoder checks the

second bit and recognizes either 10 or 11 as a source word. In this way, the

input source bit stream is partitioned into 1-bit or 2-bit source words. Then,

by referring to the code table, the input bit partitions can be mapped to the

corresponding output sequences.

Figure 1.4: The sliding-block decoder for the (2, ∞) synchronous variable-

length RLL code

Since no codeword appears in the most significant bit positions of another,

the codewords are all prefix-free. One way to decode them is to use a sliding-

block decoder with a window size of 2 bits, which is explained as follows.

The received coded sequence is sent into the decoder. The received bits are

checked two by two in a window. If the received bits in the window are 00,

the corresponding source bit is 0. If the received bits in the window are 01

or 10, the corresponding source bit is 10 or 11, respectively, and the next two

10

bits 00 are ignored before starting decoding the bits in the next window. The

sliding-block decoding process is shown in Fig. 1.4.

Table 1.5: The code table of synchronous variable-length (2, 7) code

Source bit Coded bits

10 1000

11 0100

011 000100

010 001000

000 100100

0011 00100100

0010 00001000

Example: (2, 7) RLL code

The d = 2, k = 7 synchronous variable-length RLL code with code rate

R = 1/2 has constituted the bedrock of hard-disk drives [17]. The code table

is shown in Table 1.5.

Thanks to the prefix property of the code, the encoding and decoding

process is similar to the synchronous variable-length (2, ∞) code. The input

sequences are divided into blocks of 2, 3 and 4 bit partitions in accordance with

the words in the code table. For example, if the input source bit sequence is

the 11 bit stream 01100111000..., the output coded bit sequence is the 22 bit

stream 000100001001000100100100.... The decoding can also be implemented

with a sliding-block decoder with window size of 2 bits, similar to the sliding

block decoder described above.

Lastly, we also note that a fixed-length code with the same RLL

parameters can be designed with a codeword length of 34 [12]. It is therefore

evident that the complexity and hardware requirements of fixed-length codes

may be much higher than that of variable-length codes.

11

1.3 Motivation of the proposed

variable-length codes

Although we introduced some variable-length constrained sequence

codes in the previous section, to the best of our knowledge, most constrained

sequence codes that have been employed to date are fixed-length codes. In

those codes, source sequences are divided into fixed-length blocks that are

sent to the encoder. The encoder then outputs fixed-length coded blocks to

the transmission or recording channel. In the following we provide

justification why developing variable-length constrained sequence codes is

now of value.

With fixed-length codes, the code rate is a rational number. However, in

most cases, the capacity of a constrained system is an irrational number,

making it impossible to design capacity-achieving fixed length codes [12, 13].

In order to even approach capacity, either long codewords, complex design

procedures or complex encoding and decoding techniques are usually

required. Although synchronous variable-length constrained sequence codes

are proposed, they still have a fixed and rational code rate, thus they do not

achieve the full flexibility of variable-length codes, and their code rates are

typically still a few percent below capacity.

We note that it could be worthwhile to develop variable-length

constrained sequence codes for the following reasons. First, we claim that

capacity-approaching variable-length constrained sequence codes with code

rates only a few hundredths of a percent away from capacity can be

developed. Examples of such codes are given in [18, 19, 20, 21, 22], and will

be discussed later in this thesis. The design and implementation of those

codes can also be very simple. Therefore, we believe it can be beneficial to

accommodate the variable-length nature of the sequences in order to achieve

the excellent efficiency possible with these codes, which can be implemented

with fairly simple hardware. Second, variable-length blocks fit naturally into

modern systems such as variable-length packet-based transmission systems,

in software solutions such as software defined radio systems, and in today’s

12

high-capacity storage systems and in systems using variable-length

compression techniques. For example, TCP/IP communications, which is

based on variable-length data frames, is now widely used in transmission

systems. Recently, TCP/IP packets integrated with network coding have

been designed for wireless communications and have been reported to

improve the system throughout several times [23]. Since TCP/IP packets are

by definition variable-length, additional variability introduced by

variable-length codes does not introduce any significant drawbacks. File

compression systems also have a variable-length output file size since the size

of the compressed file is unknown beforehand. In contrast, fixed-length

constrained sequence codes designed for CD and DVD were developed in

1980s and 1990s. With new technology being used in modern systems, we

believe variable-length codes should be considered as an option for emerging

transmission systems and storage devices.

In addition to the arguments above, we note that the implementation of

variable-length constrained sequence codes can be adapted to systems that

require fixed-length input blocks transmitted to the channel, as shown in Fig.

1.5. The output of the encoder is a variable-length coded block, which can

then be sent to a buffer. The buffer then outputs fixed-length blocks row-by-

row to fit into the requirement of fixed-length input stream for the channel. If

the coded sequence ends before the end of the output block, then padding is

required in order for the output block to be full. Decoding can be performed

with a sliding-block decoder or another type of decoder. As has already been

demonstrated in some of the examples given above and as will be shown later

in this thesis, it is expected that in some situations, simple, variable-length

codes can achieve higher code rates than fixed-length codes, resulting in higher

efficiency and lower implementation complexity. The design and application of

capacity-approaching variable-length constrained sequence codes is the subject

of this thesis.

13

Figure 1.5: An overview of implementation of variable-length constrained

sequence codes

In the rest of this chapter, we briefly introduce the theory of constrained

sequence codes, and then review a construction technique for

capacity-approaching variable-length constrained sequence codes originally

reported in [24]. We extend the development of those codes throughout the

remainder of this thesis.

1.4 Review of capacity-approaching variable-

length constrained sequence codes

1.4.1 Brief review of constrained coding theory

It is well known that constraints can be modeled by Markov chains. In

this thesis we restrict our discussion to ergodic Markov chains. An ergodic

Markov chain is one in which any state can eventually be reached from any

other state [12]. For an FSM with S states, the matrix of the directed graph

underlying the constraint is denoted by an S×S adjacency matrix D = {dij},
where dij is the number of edges going from state i to state j. The single

step transition matrix is denoted by an S × S matrix Q = {qij}, where qij is

14

the transition probability of going from state i to state j. With the transition

matrix Q and an initial probability vector w(1) of length S, the steady-state

probability distribution of the Markov chain π is defined as

π = lim
t→∞

w(1)Qt−1 (1.1)

where t is number of the transition steps. Given the steady-state distribution,

the entropy of the S-state Markov chain H{X} can be evaluated as

H{X} =
S∑
k=1

πkHk (1.2)

where Hk is the entropy of the k-th state in the Markov chain which is defined

as

Hk = −
M∑
i=1

hilog2hi, (1.3)

and h1, h2, ..., hM are the transition probabilities along the M edges that exit

the k-th state. The capacity of a Markov chain representing the information

source is the value of H{X} maximized over the transition probabilities.

Shannon defined the capacity of a constrained sequence C as [7]

C = lim
m→∞

log2U(m)

m
(1.4)

where U(m) is the number of constraint-satisfying sequences of length m.

With the FSM description of the constraint and its corresponding adjacency

matrix D, he showed that the capacity can also be evaluated by calculating

the logarithm of λmax, where λmax is the largest real root of the determinant

equation

det[D− zI] = 0 (1.5)

and where I is an identity matrix. The capacity, with units of bits of

information per symbol, can therefore be written as

C = log2 λmax. (1.6)

As mentioned above, capacity is achieved with maxentropic transition

probabilities, which can be calculated as follows. Let vector p be the

15

eigenvector associated with the eigenvalue λmax, which is

Dp = λmaxp. (1.7)

The maxentropic state transition probability from state i to state j is [12]

qij = λ−1
maxdij ×

pj
pi

(1.8)

where pi, pj are the i-th and j-th element of the eigenvector p. If the

constraint can be equivalently represented by a single-state FSM, the

maxentropic probability of a variable-length codeword of length oi is given as

[24]

pi = λmax
−oi = 2−oiC . (1.9)

where oi is the length of the i-th codeword.

The maximum possible code rate C̃ of constrained coded sequence

constructed with single-state codewords whose lengths are from the set M , is

C̃M = log2λ̃max (1.10)

where λ̃max is the largest eigenvalue of the characteristic equation
∑
i∈M

λ−li = 1

and li is the length of i-th word in M . We use LM to denote the set of lengths

of words in M , and |LM | to denote the size of LM , i.e., the number of words

in M . It should be emphasized that a word length li could appear more than

once in LM , since different words might have the same length.

Given a one-to-one correspondence between variable-length source words

and variable-length encoded codewords, and assuming equiprobable and

independent bits in the source bit stream, the average code rate R̄ is

R̄ =

∑
si

2−sisi∑
oi

2−sioi
(1.11)

where si is the length of i-th source codeword that is mapped to the i-th

codeword of length oi. The efficiency of a code is defined as

η = R̄/C. (1.12)

16

1.4.2 Minimal sets and extensions

Sequences satisfying a constraint can be generated through free

concatenation of words in a minimal set of the constraint [24]. A complete

minimal set of a constrained sequence code is a set of words whose

concatenation generates all possible constraint-satisfying sequences. As

discussed in [24], this set can be established by enumerating all words that

originate from and end in any specified state in the FSM describing the

constraint. However, sometimes there exists an infinite number of words in

the minimal set, and this set must be truncated in order to generate a

practical codebook. In this case, the truncated set is known as an incomplete

minimal set. For instance, in the FSM of the (d = 1, k = ∞) RLL constraint

shown in Fig. 1.6, a complete minimal set is A = {0, 10} if state 1 is selected

as the specified state. An incomplete minimal set can be established if state

2 is selected as the specified state, resulting in the set B = {01, 001, 0001, ...}

which is infinite because of the loop at state 1. Therefore, in practice we

must truncate B to force it to be finite.

Let minimal set M contain k words. A partial extension of M , denoted

Mp, is formed by concatenating all k words in M to any single word in M ,

generating k + k − 1 = 2k − 1 words, where k words are newly generated

words and k − 1 words are from the previous partial extension. Subsequent

partial extensions can be performed by appending the k words from M onto

any word from the previous extension. On the other hand, a complete

extension of M , denoted Mc, is formed by concatenating all k words in M

with each of the k words in M to generate k2 words, and then recursively

concatenating all k words in M with each of the words in the newly

generated set to generate additional complete minimal sets. A full extension

of M , denoted Mf , is formed through continuously performing complete

extensions of M until asymptotically Mf contains an infinite number of

words.

Based on A, two possible partial extensions are Ap1 = {00, 010, 10} or

Ap2 = {000, 100, 010, 0010, 1010}, based on which further extensions can be

17

constructed, as shown in Fig. 1.7. A complete extension is Ac1 = {00, 010,

100, 1010} based on which another complete extension can be generated as

Ac2 = {000, 0010, 0100, 01010, 1000, 10010, 10100, 101010}. After establishing

the minimal set and performing extensions, we obtain a set of variable-length

codewords. Note that because the minimal sets that we construct have the

characteristic that no word in the set is a prefix of another, this

characteristic extends also to our sets of variable-length codewords, which

enables instantaneous decoding of the encoded sequence [24, 25].

1 2

0

1

0

Figure 1.6: FSM of a (1,∞) code

0 10

00 010 100 1010

000 0010 0100 01010 1000 10010

Figure 1.7: An example of a partial extension of the minimal set {0, 10}

As noted above, we describe the maximum possible code rate with

minimal set M as C̃M . If all constraint-satisfying sequences can be generated

by concatenating codewords in M , then M is a complete minimal set and is

able to achieve capacity, i.e. C̃M = C. However, in some cases there are an

infinite number of codewords in M because of loops that exist in the FSM. In

those cases, let lmax be the maximum length of words in a truncated minimal

set. It can be shown that C̃M → C as lmax → ∞. However in practical code

construction, lmax should be finite. In those cases, C̃M < C, and C̃M can be

determined according to (1.10).

1.4.3 Normalized geometric Huffman coding

After constructing a set of potential codewords through partial

extensions, the next task is to assign these codewords to corresponding

18

source words such that the maximum information density is approached.

This is done with normalized geometric Huffman (NGH) coding [26] [27]. For

each set of partial extensions, NGH coding can be used to obtain the optimal

mapping between variable-length source words and variable-length

codewords. Starting with the desired codeword probabilities

qoi = 2−oiC (1.13)

as the input probabilities, NGH coding merges the two smallest probabilities

in each encoding stage by evaluating their geometric mean, unless these

probabilities are so different that there is no advantage to merging these

values. In this situation, the least probable codeword is simply discarded [26]

[27]. More specifically: in the merging process of qi and qj where qi ≥ qj, the

merged probability qmerged is

qmerged =

{
2
√
qiqj if qi < 4qj

qi if qi ≥ 4qj.
(1.14)

The smaller probability is pruned from the Huffman tree when the lower

condition is satisfied. After obtaining R̄, we replace C by R̄ in (1.13) and

repeat the above process, until R̄ converges.

An example of NGH coding is shown in Fig. 1.8. In this example, a rate

0.6923 variable length (d = 1, k = ∞) constrained sequence code is

constructed that is within 0.28% of the capacity of this constraint. The

codewords {000, 100, 010, 0010, 1010} represent the source words

{11, 10, 01, 001, 000}. As will be the case throughout this thesis, we evaluate

the code rate for this code assuming equiprobable and independent bits in

the source sequence. More detailed discussions on NGH coding can be found

in [26] [27] .

Since different partial extensions result in different codebooks with

different efficiencies η as discussed in [25], we establish limits such as the

maximum number of codewords in the codebook nmax or the maximum

length of codewords in the codebook cmax, and search over all codebooks

within these bounds to determine R̄ of each codebook and choose the one

with the highest efficiency.

19

000

100

010

0010

1010

1

0

1

0

1

1

0

0

Codewords

Maxentropic

probabilities Source word

11

10

01

001

000

Source word

probabilities

0.25

0.25

0.25

0.125

0.125

0.2361

0.2361

0.2361

0.1459

0.1459

0.4722

0.2918

0.5250

0.9958

Figure 1.8: Construction of a rate 0.6923 (d = 1, k = ∞) code via NGH

coding, η = 0.9972

Example ((d = 1, k = 3) RLL constraint): the FSM of a (1,3) RLL code

is shown in Fig. 1.9. The minimal set based on state 1 is {01, 001, 0001}. If we

perform NGH coding with this minimal set, we obtain a simple codebook with

efficiency of 98.9% as shown in Table 1.6. If we perform extensions with the

cmax = 10, the highest efficiency we can achieve is 99.24%, with the codebook

shown in Table 1.7. As a point of comparison, we note that a widely used

(1,3) RLL code is the MFM code with η = 91% [12].

1 2 3 4

0 0 0

1

1

1

Figure 1.9: FSM of a (1, 3) RLL code

Table 1.6: A codebook of (1,3) RLL code with efficiency of 98.9%

Source word Codeword

0 01

10 001

11 0001

Example (DC-free constraint with N = 3): the FSM of a DC-free code

that takes only three different RDS values, i.e., N = 3, is shown in Fig.

1.10. The minimal set based on state 2 is {01, 10}. We may directly perform

NGH coding over the words in this minimal set to obtain a codebook with

η = 100%, as shown in Table 1.8. There is then no purpose in examining

20

Table 1.7: A codebook of (1,3) RLL code with efficiency of 99.24%

Source word Codeword

0 01

100 00101

1010 0010001

1011 0001001

1100 00010001

1101 00100101

11100 00010101

11101 001001001

11110 000101001

111110 0010010001

111111 0001010001

partial extensions and developing a longer code. Note that, in this case, the

result happens to be a fixed-length code and this is in fact the Manchester

code used in many applications such as visible light communications [3].

1 2 3

0 0

1 1

Figure 1.10: FSM of a DC-free code with N = 3

Table 1.8: A codebook of N = 3 DC-free code with efficiency of 100%

Source word Codeword

0 01

1 10

21

1.5 Context and contributions of work in this

thesis

In this section we highlight the context, contributions, and the significance

of the work in this thesis.

We begin by noting that constrained sequence codes, which were

developed and have evolved independently from error control codes, serve a

fundamentally different purpose than error control codes. Error control codes

attempt to overcome the effects of signal distortion after it has occurred. In

contrast, constrained sequence codes attempt to reduce the amount of signal

distortion that occurs on the channel by shaping the signal such that it

matches the constraints of the channel. The effect of constrained sequence

coding is therefore to reduce the likelihood of errors occurring during

demodulation. Both constrained sequence coding and error control coding

serve critical functions in high performance transmission and recording

systems.

Placing constraints on the types of sequences that can be used on the

channel means that sequences that violate system constraints cannot be used,

which places a limit on the number of sequences of a given length that can be

employed. Assuming that all possible sequences may occur at the input to the

constrained sequence encoder, since there will be fewer valid encoded sequences

of the same length, the length of the encoded constrained sequences must be

longer than the length of the source sequence in order to convey all possible

source messages. If the source sequence contains one bit of information in each

source bit, then the amount of information per encoded bit must be less than

one. The maximum amount of information per encoded bit is known as the

capacity of the constraint [7], and can be calculated as given previously in Eq.

(1.4).

We note that this definition of capacity is fundamentally different than

the channel capacity which is of interest for error control codes. The capacity

of the channel is defined as the maximum mutual information between the

transmitter and the receiver. The maximum code rate of an error control

22

code that one can use in hopes of achieving error-free communication is upper

bounded by the capacity of the channel, when capacity is expressed as bits of

information per coded symbol.

Code rates of constrained sequence codes cannot exceed the capacity of

the constraint. We define the efficiency of a code as the ratio of the code rate

to the capacity, and seek to construct codes with efficiencies as close to 1 as

possible. As noted earlier, the capacities of almost all constraints are irrational

[12, 13]. Since fixed-length codes have rational code rates, it may not be

possible for these code rates to approach capacity with practical word lengths.

We note that the average code rate of our variable length codes, as given by

Eq. (1.11), is also rational. However, the construction of variable-length codes

provides considerable flexibility in the mapping of variable-length source words

to variable-length codewords, hence many more rational rates are possible

with practical variable-length codes so there are many more opportunities for

constructing practical codes with rates close to capacity.

Variable-length codes are commonly used in source coding applications,

also referred to as compression. The most widely known variable-length

compression technique is Huffman coding. However, variable length

techniques are not widely used in constrained sequence applications.

Drawbacks and advantages of variable-length constrained sequence

techniques were discussed earlier in this chapter.

The variable-length techniques developed in this thesis are an extension

of the code construction approach first outlined in [24], which was summarized

above in Section 1.4. To the best of our knowledge, the approach outlined in

[24] is the first general technique that has been developed to construct highly-

efficient variable-length codes for any constraint that can be modeled by a

finite state machine.

In this thesis, we extend that work in the following ways.

• In Chapter 2 we further develop the approach outlined in [24] by

identifying the appropriate state within the finite state machine upon

which to base the code construction, and also developing a multi-state

23

construction technique. In doing so we propose two systematic

approaches to construct capacity-approaching variable-length

constrained sequence codes that have higher code efficiency than most

codes in the literature.

• In Chapter 3 we consider the application of constrained sequence codes in

flash memories and propose variable-length constrained sequence coding

schemes to improve the error rate performance when reading from a flash

memory.

• In Chapter 4 we consider the synchronization of variable-length codes

in terms of correctly identifying the codeword boundaries, and we show

that these variable-length codes exhibit good synchronization properties

which enable the receiver to recover from mis-synchronization quickly

once synchronization is lost.

Overall, this thesis develops construction techniques for highly efficient

variable-length constrained sequence codes and demonstrates their practicality

in high performance communication systems.

24

Chapter 2

Novel code construction

techniques for general

constraints

In this chapter we propose two extensions of the technique outlined in

[24] that result in novel, systematic approaches to design variable-length

constrained sequence codes for a wide variety of constraints. These

techniques are based on an encoder that uses a single encoding state, and an

encoder that uses multiple encoding states. Both approaches constitute

original work that enables the construction of codes with capacity-approach

code rates that outperform many codes in the literature. This original work

has been published in [18, 19] and [22].

2.1 Construction of capacity-approaching

codes with a single encoding state

[18, 19]

Although the construction technique summarized in Section 1.4, and

originally described in [24], is efficient for some types of constraints, the

construction of minimal sets in [24] is still empirical and lacks a rigorous

methodology. Therefore, the generalized construction of minimal sets given

25

any type of constraint is still an open research area. For example, the FSM

of a general DC-free constraint is shown in Fig. 2.1. Since multiple states

exist in the FSM of DC-free codes, prior to this work it was not known how

to decide which state should be selected as the specified state in order to

establish the minimal set. Moreover, it is not straightforward to enumerate

the words in the minimal set directly due to the loops that exist in the FSM.

1 K-1 K K+1 N... ...

1 1 1 1 1 1

000000

Figure 2.1: FSM of general DC-free codes

In this section we first introduce criteria for choosing the specified state

which results in the minimal set with the highest maximum possible code rate,

and then we propose a general recursive algorithm to establish the minimal

set of a given type of constraint that could be used to construct high-efficiency

constrained sequence codes. Examples of the proposed algorithm are given for

different constraints.

2.1.1 Selection of specified states

In this section, we outline three criteria for selecting the specified state

which results in the minimal set that has the highest maximum possible code

rate. We discuss examples to illustrate each of the criteria, starting with a

discussion of the complete/incomplete minimal set.

Criterion 2.1

Consider again the (d = 1, k = ∞) RLL constraint whose FSM is shown

in Fig. 1.6, and its possible minimal sets A and B. From a capacity point

of view, minimal set A is capacity-achieving because use of (1.10) with the

characteristic equation λ−1 + λ−2 = 1 yields exactly the same result as (1.6):

CA = C̃A = log2
1+
√

5
2

= 0.6942, which is the capacity of the (d = 1, k = ∞)

RLL constraint [12]. With an infinite number of words in B, however, the

characteristic equation has an unbounded number of terms, and use of (1.10)

26

with a truncated characteristic equation results in C̃B < 0.6942, reflecting

the use of an incomplete minimal set and thus not all constraint-satisfying

sequences in the encoded bit stream. Moreover, it can be shown that the

characteristic equation can be written:

∞∑
i=2

λ−i = λ−2 +
λ−3(1− λ−(Nm−1))

1− λ−1
= 1 (2.1)

where Nm is the total number of words in B. The left-hand side indicates

the potentially unlimited number of words in B. As Nm →∞, λ−(Nm−1) → 0

and (2.1) reduces to λ−2 + λ−1 = 1 and hence limNm→∞ C̃B = C̃A = 0.6942.

Therefore capacity can be achieved if we allow an infinite number of words in

B. This trend is shown in Fig. 2.2 where it is evident that as lmax increases, C̃B

asymptotically approaches capacity. However, in practice we can only allow a

finite number of words in B, hence the capacity is not achievable with practical

encoding schemes. Therefore, when possible, we recommend selecting a state

that results in a complete minimal set such that capacity can be achieved.

This leads to Lemma 2.1

Lemma 2.1 Given two states A and B, if A results in a minimal set with

a finite number of words and if B results in a minimal set with an infinite

number of words, then A is superior to B in terms of maximum possible code

rate, except as lmax →∞ in which case they are equal.

Lemma 2.1 guides selection between states resulting in a complete

minimal set and an incomplete minimal set. We now introduce Lemma 2.2

regarding selection between two complete minimal sets.

27

3 4 5 6 7 8
Maximum length of words in the minimal set

0.4

0.45

0.5

0.55

0.6

0.65

0.7

M
ax

im
um

 p
os

si
bl

e
co

de
 ra

te

Maximum possible code rate of different minimal sets

Maximum possible code rate of minimal set corresponding to state A

Maximum possible code rate of minimal set corresponding to state B

Capacity=0.6942

Figure 2.2: Maximum possible code rates of different minimal sets in a (d =

1, k =∞) RLL code

Lemma 2.2 If there exist two complete minimal sets A and B in an FSM

description of a certain constraint, we have LA = LB, meaning that the sets

of word lengths in A and B are identical.

Proof. Since A and B are complete minimal sets, there is no loop associated

with a third state SC when enumerating words exiting and re-entering the

specified states SA or SB. For an ergodic Markov chain, the only loops that

are possible either start from SA, go to SB, and come back to SA, or start from

SB, go to SA, and come back to SB. Therefore, the words generated based on

state SA and SB have the same length since they are generated by tracing the

same edges in the FSM, only in different order.

We now generalize Lemmas 2.1 and 2.2 to the following criterion.

Criterion 2.1 When selecting among several minimal sets based on an

FSM description of a constraint, any set that has a finite number of words is

equally preferred in terms of maximum possible code rate.

Example ((d = 1, k = 2) RLL constraint): The FSM of the (d = 1, k = 2)

RLL constraint is shown in Fig. 2.3. Based on Criterion 2.1, we conclude

that states 1 and 2 are equally preferred since they both result in complete

minimal sets. Furthermore, although the minimal sets have different words,

their words have the same length, i.e., L1 = L2 = {2, 3}. Therefore, the codes

28

1 2 3

0 0

1

1

Figure 2.3: FSM of a (d = 1, k = 2) RLL code

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Maximum length of words in the minimal set

0

0.1

0.2

0.3

0.4

0.5

0.6

M
ax

im
um

 p
os

si
bl

e
co

de
 ra

te

Maximum possible code rate of different minimal sets

Maximum possible code rate of minimal set corresponding to state 1,2
Maximum possible code rate of minimal set corresponding to state 3

Capacity=0.5515

Figure 2.4: Maximum possible code rates of different minimal sets in a (d =

1, k = 2) RLL code

constructed have the same rate, although the codebooks are different. State

3 is not preferred since it results in an incomplete minimal set. We also note

that for all (d, k) RLL constraints, there always exists at least one state that

results in a complete minimal set and hence should be selected as the specified

state such that capacity is achievable.

The maximum possible code rates of the states in the (d = 1, k = 2)

RLL constraint are shown in Fig. 2.4. It can be seen that the maximum

possible code rate for codes constructed from minimal sets based on states

1 and 2 is exactly the capacity of the (d = 1, k = 2) RLL constraint; the

maximum possible code rate for codes constructed based on state 3 increases

with increasing lmax, but capacity is not achievable with a finite number of

words in the minimal set.

29

Criteria 2.2 and 2.3

With Criterion 2.1, we are able to select an optimal state based on the

FSM description of a constraint that can be represented by a complete minimal

set. However, Criterion 2.1 does not apply when we are unable to construct

a complete minimal set for a constraint. In this section, we discuss selection

criteria when selecting among incomplete minimal sets.

As an example to motivate the consideration of incomplete minimal sets,

we consider DC-free codes because of their importance in transmission and

data storage systems. Minimal sets for most DC-free codes are incomplete.

The FSM in Fig. 2.1 describes bit-by-bit generation of DC-free binary

sequences that take on at most N different RDS values. Note that if N ≥ 4,

once any state in the FSM depicted in Fig. 2.1 is exited, there is no limit to

the number of state transitions that may occur before it is re-entered.

(States 1 and 3 also exhibit this property when N = 3.) Therefore there is no

limit to the length of sequences that can be generated before a state is

re-entered, and it is not possible to construct a complete minimal set.

It is, however, possible to construct incomplete minimal sets with

maximum possible code rates C̃M approaching C. To do so, denote |lk| as the

number of words that are of length lk in the minimal set. Our task is to

determine |lk| for all lk, 1 ≤ lk ≤ lmax that can occur as a particular state in

the FSM is exited and then re-entered, starting with the shortest possible

sequence length up to lmax. We then use these sequences as words in the

minimal set. Since this FSM does not generate all possible sequences that

satisfy the RDS constraint, the maximum possible code rate C̃M of sequences

generated by this single-state FSM will be strictly less than the capacity C

for the original constraint, and the collection of these edge labels comprises

an incomplete minimal set. C̃M can be evaluated according to (1.10) as

shown in the example below.

The values of |lk| can vary depending on the particular state considered

in the FSM. Since C̃M is a function of the edge labels |lk|, then C̃M can depend

on the state from the FSM that is used when enumerating |lk|. For example,

30

Table 2.1: Capacity of single-state DC-balanced FSM with N = 4. Analysis

of the multi-state FSM yields λmax = 1.6180 and C = 0.6942.

Based on states 1 or 4 Based on states 2 or 3
lmax

λ̃max C̃1,4
C̃1,4

C
λ̃max C̃2,3

C̃2,3

C

2 1.0000 0.0000 0.0000 1.4142 0.5000 0.7202

4 1.2720 0.3471 0.5000 1.5538 0.6358 0.9158

6 1.4142 0.5000 0.7202 1.5959 0.6744 0.9714

8 1.4903 0.5756 0.8291 1.6100 0.6871 0.9896

10 1.5341 0.6174 0.8893 1.6150 0.6916 0.9961

12 1.5610 0.6425 0.9254 1.6169 0.6932 0.9985

14 1.5783 0.6584 0.9483 1.6176 0.6939 0.9994

16 1.5898 0.6688 0.9634 1.6179 0.6941 0.9998

consider the DC-balanced code with N = 4, a code which has λmax = 1.6180

and C = 0.6942 [12]. When considering sequences that emanate from and

return to either state 1 or state 4 in Fig. 2.1, it can be verified that all such

sequences have even length, that there is a single sequence of length 2, a single

sequence of length 4, and |lk| = 2(
lk
2
−2) for even lk, lk ≥ 4. In contrast, when

either state 2 or state 3 is exited and re-entered, it is straightforward to show

that |l2| = 2 and |lk| = 1 for all even lk, lk ≥ 4, and zero otherwise.

Solving (1.10) with these values of |lk| yields the results in Table 2.1 which

show how C̃M increases with increasing values of lmax. From this table it is

clear that regardless of the specified state, C̃M approaches C as lmax increases,

but that the minimal set based on states 2 or 3 results in a significant capacity

advantage for low lmax. While C̃2,3 is within 0.4% of capacity for that model

when lmax = 10, it can be shown that this C̃1,4

C
= 0.996 is not attained for the

minimal set based on states 1 or 4 until lmax = 32. However, in either case it

is possible to form an incomplete minimal set that can be used as the basis

for a variable-length code whose code rate is upper bounded by a value of C̃M

that is close to capacity C.

Based on the discussions above, we conclude that the optimal state to

select for DC-free codes with N = 4 is state 2 or 3 with lmax ≤ 32. However,

31

when lmax is large, it is not straightforward to determine which state is

optimal without counting the number of words in the minimal sets. More

importantly, not only for DC-free constraints with large N , but more

generally, for arbitrary constraints, the selection of the optimal state that

results in the highest maximum possible code rate is not an easy task

because the counting of words may become intractable. To tackle these

problems, we now discuss criteria for selection of the specified state when all

minimal sets have infinite size. We start with the following lemma.

Lemma 2.3: For a minimal set M and the set of word lengths LM where

the length of the longest word is lmax and the highest maximum possible code

rate is C̃M , ∀l1, l2, l3 consecutive values l1, l2, l3 ∈ LM that satisfy l2−l1 = l3−l2,

C̃M = f(lmax) is a concave monotonically increasing function with respect to

lmax in LM .

Proof. We first prove the monotonicity of C̃M = f(lmax), and then proceed to

prove concavity.

1) We choose two values of lmax, i.e. l1 and l2. For all 0 < l1 < l2 < ∞,

we have the following characteristic equations:
∑

li≤l1,li∈LM
λ−li1 = 1∑

li≤l2,li∈LM
λ−li2 = 1.

(2.2)

It is straightforward to show that λ2 > λ1 where λ1 and λ2 are the largest

real roots of the above characteristic equations, since the second equation has

more terms on left-hand side. According to Eq. (1.10), we have C̃1 = f(l1) <

C̃2 = f(l2). Therefore C̃M = f(lmax) is a monotonically increasing function.

2) Based on Eq. (2.2), as the size of the minimal set grows, if there exist

any three consecutive values of l1, l2, l3 ∈ LM where 0 < l1 < l2 < l3 <∞ and

l2 − l1 = l3 − l2, then we have that λ1 < λ2 < λ3. In accordance with Eq.

(1.10), the corresponding highest maximum possible code rate then satisfies

C̃1 < C̃2 < C̃3 (2.3)

When l3 → ∞, we have the characteristic equation
∑

li≤l2,li∈LM
λ−li3 + λ−l33 = 1

where λ−l33 → 0, and hence λ3 = λ2, and C̃3 = C̃2 by comparing this equation

32

and the second equation in (2.2). Considering the asymptotic behavior we

know that the rate of increase of C̃ diminishes and becomes negligible as

lmax →∞. We now give the proof of the aforementioned observation for finite

lmax.

From equation (1.4) we know

λ = 2
lim
m→∞

log2 U(m)
m

= lim
m→∞

m
√
U(m).

(2.4)

We have
C̃2 − C̃1 = log2

λ2
λ1

= lim
m→∞

m

√
U2(m)
U1(m)

(2.5)

and
C̃3 − C̃2 = log2

λ3
λ2

= lim
m→∞

m

√
U3(m)
U2(m)

.
(2.6)

We compare U3(m)
U2(m)

= 1 + |l3|

U2(m)∑
i=1

∆3,i

U2(m)
and U2(m)

U1(m)
= 1 + |l2|

U1(m)∑
i=1

∆2,i

U1(m)
, where ∆k,i

is the number of additional allowable sequences generated based on the i-th

sequence in Uk−1(m) when the maximum length lmax increases to lk.

We first consider |l2| = |l3| = 1 which means that only one loop has to

be taken into account when counting words in the minimal set. We will later

extend this approach to the general situation where |l2| 6= |l3| to consider the

possibility of multiple loops. To demonstrate, we show U1(m),U2(m),U3(m)

in Fig. 2.5. As shown in that figure, U2(m) consists of two parts, i.e. U1(m)

and the set Ψ where the number of sequences in Ψ is

|Ψ| = U2(m) − U1(m) =
U1(m)∑
i=1

∆2,i. U3(m) consists of U1(m),U2(m) − U1(m)

and
U2(m)∑
i=1

∆3,i = U3(m) − U2(m) where the last part comprises of two sets, X

and Y, where the number of sequences in X and Y is |X| =
U1(m)∑
i=1

∆3,i and

|Y| =
U2(m)∑

i=U1(m)+1

∆3,i, respectively. Ψ and X are the additional sequences

generated from U1(m) when lmax increases to l2 and l3 respectively. Since

l3 > l2, it is readily apparent that on average, for each sequence in U1(m) the

33

1()U m 1()U m

2 1() ()U m U m

1()U m

2 1() ()U m U m

2

3 2
()

3,
1

() ()
U m

i
i

U m U m





 

1 ()

2,
1

U m

i
i

 Ψ

1 ()

3,
1

U m

i
i

 Χ

2

1

()

3,
() 1

U m

i
i U m 

 Y

1()U m 2 ()U m 3 ()U m

Figure 2.5: Explanation of U1(m),U2(m),U3(m)

34

number of additional allowable sequences when generating X and Ψ satisfies
|X|
U1(m)

< |Ψ|
U1(m)

because for sequences in U1(m) the number of additionally

generated allowable sequences decreases with larger lmax. Furthermore, since

we consider m → ∞, |X|
U1(m)

= o(|Ψ|
U1(m)

), i.e. |X|
U1(m)

is the higher-order

infinitesimal of |Ψ|
U1(m)

. To prove that, we consider

∑
li≤l1,li∈LM

λ−li1 = 1∑
li≤l1,li∈LM

λ−li2 + λ−l22 = 1∑
li≤l1,li∈LM

χ−li + χ−l3 = 1.

(2.7)

It follows that λ1 < χ < λ2, and λm2 > χm > λm1 . Comparing |X| = lim
m→∞

(χm−

λm1) with |Ψ| = lim
m→∞

(λm2 − λm1), we obtain |X| = o(|Ψ|), and thus |X|
U1(m)

=

o(|Ψ|
U1(m)

).

On average, for each sequence in Ψ, the additional number of allowable

sequences |Y|
|Ψ| when generating Y is even smaller than |X|

U1(m)
because the

number of bits that can be substituted by the new word of length l3 per

sequence in Ψ is fewer than in U1(m). Combining the results above, it is

straightforward to derive

U2(m)∑
i=1

∆3,i

U2(m)
= o(

U1(m)∑
i=1

∆2,i

U1(m)
). (2.8)

Now consider the generalized situation where |l2| 6= |l3| which means

multiple states are associated with loops in the FSM. Generally, |l2| ≤ |l3|

because we have more freedom to choose the loops with larger li. Let there

be Γ states associated with loops in the FSM when counting the words in the

minimal set, and let γm be the maximum length of a word in the minimal set

generated without taking the loops into consideration. If lmax > γm, loops

will be taken into account when generating words of length lmax ≥ lk > γm.

If γm ≥ 2, |lk| > 1. We upper bound the number of |lk| as (2.9), which

corresponds to the situation where we are free to choose the positions of the

lk − γm extra bits, and we are also free to assign each loop to any extra bit.

35

|lk| ≤

{(
Γ

1

)
+

(
Γ

2

)
2lk−γm +

(
Γ

3

)
3lk−γm ++

(
Γ

Γ

)
Γlk−γm

}

×

(
lk

lk − γm

)
(2.9)

Since we consider finite lmax and practical FSMs, Γ, γm are finite numbers.

Therefore, |l3| / |l2| is also a finite number. According to (2.8), we have

|l2|

U2(m)∑
i=1

∆3,i

U2(m)
= o(|l3|

U1(m)∑
i=1

∆2,i

U1(m)
) (2.10)

It therefore follows that U3(m)
U2(m)

< U2(m)
U1(m)

as m→∞, and

C̃2 − C̃1 > C̃3 − C̃2 (2.11)

for l1, l2, l3. This completes the proof that C̃M is a concave function of lmax.

Consider two minimal sets A and B constructed from two different states.

When selecting the specified state with a given lmax, we consider C̃A = f(lmax)

and C̃B = g(lmax) for the two minimal sets. It could happen that in the range

of 0 < lmax < lI , the maximum possible rates are the same for two minimal

sets, and that starting from lmax = lI , C̃A and C̃B differ. Also as lmax →∞, the

maximum possible rates of both minimal sets approach capacity. Therefore

we consider C̃A = f(lmax) and C̃B = g(lmax) where lI ≤ lmax <∞.

Without loss of generality, assume f(lmax = lI) > g(lmax = lI), and

consider the asymptotic behavior. As lmax →∞, due to the concave nature of

f(lmax) and g(lmax), if ∀a→ 0, ∃lx = lmax−a where f(lx) > g(lx), then for any

lmax ∈ [lI ,∞), f(lmax) > g(lmax); otherwise the concavity of f(lmax) and g(lmax)

will be violated. This observation provides us with the following Criterion 2.2

to determine the specified state: we only need to compare f(lI) with g(lI),

and f(lx) with g(lx). The latter comparison can be accomplished simply by

comparing the number of longest words in the minimal set as lmax →∞. This

is possible because as lmax → ∞, f(lmax) = g(lmax) = C, and by removing

36

the longest words, the values of f(lmax) and g(lmax) decrease. The minimal set

with the greater number of longest words will lose more information-carrying

capacity since more available patterns are lost, and hence will have a lower

maximum possible rate. This criterion is summarized as follows.

Criterion 2.2: Given any two minimal sets A,B with C̃A = f(lmax) and

C̃B = g(lmax), if f(lI) > g(lI) and A has fewer number of longest words as

lmax → ∞, then f(lmax) > g(lmax) for lmax ∈ [lI ,∞), which means that A is

superior to B in terms of maximum possible code rate for finite lmax.

Example (constrained codes that forbid the 101 pattern): In flash

memories, inter-cell interference (ICI) is considered as one of the most

dominant sources of errors [20, 28, 29, 30, 31]. ICI refers to the phenomenon

that variations of the electrical charge on one floating-gate transistor can

change the voltage levels of its neighboring transistors via the parasitic

capacitance-coupling effect. Many constraints have been exploited in ICI

mitigation [20, 28, 29, 30, 31]. Constrained sequence codes that forbid the

pattern 101 have been designed to limit ICI [20], where the FSM describing

this constraint is shown in Fig. 2.6. All states result in minimal sets with an

infinite number of words. States 1 and 3 are equivalent in terms of maximum

possible code rate due to symmetry. When comparing states 1 and 2, first we

find lI = 3 and C̃1 = f(lI) > C̃2 = g(lI). We then consider the longest

codeword. State 2 has one more loop available than state 1 to construct the

longest codeword, therefore state 1 has fewer number of longest words than

state 2. For example, if the longest word in the minimal set of state 1 has the

form 00 0...................0︸ ︷︷ ︸
the loop at state 3

1, there is a longer word

0 0...................0︸ ︷︷ ︸
the loop at state 3

1 1...................1︸ ︷︷ ︸
the loop at state 1

0 in the minimal set of state 2. According to

Criterion 2.2, state 1 is better than state 2 in terms of maximum possible

code rate.

Fig. 2.7 shows the maximum possible efficiency of different minimal sets

of constrained sequence codes that forbid the 101 pattern. It can be seen that

states 1 and 3 result in higher maximum possible code rates than state 2 for

lmax ∈ [3,∞), which is consistent with the analysis above.

37

1 2 3

1

0
0

0
1

Figure 2.6: FSM of a constrained sequence code that forbids 101 pattern

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Maximum length of words in the minimal set

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 p
os

si
bl

e
ef

fic
ie

nc
y

Maximum possible efficiency of different minimal sets

Maximum possible efficiency of minimal set corresponding to state 1 or 3
Maximum possible efficiency of minimal set corresponding to state 2

Figure 2.7: Maximum possible code rate of different minimal sets of

constrained sequence codes that forbid the 101 pattern

Example (DC-free codes): As noted previously, all states of DC-free

codes with N > 3 result in minimal sets with an infinite number of words.

By applying Criterion 2.2, we can determine that the best state is state N+1
2

when N is odd, and N
2

or N
2

+ 1 when N is even. We discuss odd and even N

separately.

When N is odd, we denote set A as the minimal set resulting from state

N+1
2

and denote set B as the minimal set from any other state. Consider the

number of words of increasing length in the minimal sets, and determine the

length lI at which those numbers diverge. It can be seen that lI = 2 when A is

compared with the set generated from state 1, i.e. C̃A = f(lmax = 2) > C̃B =

g(lmax = 2). lI = 4 when A is compared with the set generated from state 2,

i.e. C̃A = f(lmax = 4) > C̃B = g(lmax = 4), etc. That is, when comparing state

N+1
2

with state 1, 2, 3, ..., N−1
2

, we have that, respectively, lI = 2, 4, 6, ..., N −1,

and C̃A = f(lmax = lI) > C̃B = g(lmax = lI), because with lmax < lI the

38

2 3 4 5 6 7 8 9 10
Maximum length of words in the minimal set

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 p
os

si
bl

e
 e

ff
ic

ie
nc

y

Maximum possible efficiency of different minimal sets

Maximum possible efficiency of minimal set corresponding to state 3
Maximum possible efficiency of minimal set corresponding to state 2 or 4
Maximum possible efficiency of minimal set corresponding to state 1 or 5

Figure 2.8: Maximum possible code rate of different minimal sets of DC-free

codes with N = 5

word lengths are identical in the two minimal sets. Considering the longest

codeword, it can be observed that every longest codeword in A corresponds to

more than one codeword in B of the same length because sequences of edges

that generate B include more loops. Therefore state A has fewer number

of longest words than B. Comparison of A and minimal sets from states

N+3
2
, ..., N is similar due to symmetry in the FSM. According to Criterion 2.2,

the minimal set from state N+1
2

is the best in terms of maximum possible code

rate. This is confirmed by the curves shown in Fig. 2.8 for the case when

N = 5.

When N is even, the procedure is similar to the one discussed above. First

we note that due to symmetry, the maximum possible code rates of minimal

sets from states N
2

and N
2

+1 are the same since they contain words of the same

lengths. We denote set A as the minimal set from state N
2

or N
2

+ 1, and set B

as the minimal set resulting from any other state. Consider the value of lI . It

can be seen that when comparing state N
2

or N
2

+ 1 with state 1, 2, 3, ..., N
2
− 1,

lI = 2, 4, 6, ..., N − 2 respectively, and C̃A = f(lmax = lI) > C̃B = g(lmax = lI).

When considering the longest codeword, it can be observed that A has fewer

longest words than B for the reason outlined above. Comparison of A and

minimal sets of states N
2

+ 1, ..., N results in the same observations due to

39

2 3 4 5 6 7 8 9 10
Maximum length of words in the minimal set

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 p
os

si
bl

e
ef

fic
ie

nc
y

Maximum possible efficiency of different minimal sets

Maximum possible efficiency of minimal set corresponding to state 3 or 4
Maximum possible efficiency of minimal set corresponding to state 2 or 5
Maximum possible efficiency of minimal set corresponding to state 1 or 6

Figure 2.9: Maximum possible code rate of different minimal sets of DC-free

codes with N = 6

1 2 3

0

0 0

1 1

Figure 2.10: FSM of a constrained sequence code that forbids 111 and 11011

patterns

symmetry in the FSM. According to Criterion 2.2, the minimal sets from

states N
2

or N
2

+ 1 are superior to those from any other state in terms of

maximum possible code rate. This is confirmed by the curves shown in Fig.

2.9 for N = 6.

Example (constrained codes that forbid the patterns 111 and 11011):

We note that even if it is not obvious how to compare the number of longest

codewords in different minimal sets, Criterion 2.2 can still be applied. For

example, the constraint that forbids the pattern 111 and 11011 is of interest

when we wish to limit the inter-cell interference in flash memories [20]. In the

corresponding FSM shown in Fig. 2.10, it can be seen that states 1, 2 and 3

all have minimal sets with an infinite number of words.

Let minimal sets A and B be constructed from states 1 and 2 respectively.

It can be seen that LA = {1, 2, 4, 6, 8, ...} and LB = {2, 2, 3, 4, 5, 6, 7, 8, ...}.
40

When lI = 2, C̃A = f(lmax = lI) > C̃B = g(lmax = lI). Now consider

the number of longest words. Although it is not easy to directly determine

which minimal set has the greater number of longest codewords, the following

observations can be made.

If we set lmax = 2n for A and lmax = 2n + 1 for B where n = 1, 2, 3, ...,

the following equations can be obtained:


λ−1

1 +
2n∑

li=2,4,6...

λ−li1 =1

λ−2
2 +

2n+1∑
li=2,3,4...

λ−li2 =1.
(2.12)

where λ1 and λ2 are the largest real eigenvalues of the characteristic equations

of minimal sets A and B, respectively. We establish another equation as

follows:

λ−1 +
2n∑

li=2,4,6...

λ−li =λ−2 +
2n+1∑

li=2,3,4...

λ−li (2.13)

The solution to this equation is

λ−1 =
2n+1∑

li=2,3,5,7...

λ−li (2.14)

which is exactly the solution to (2.12). Therefore, the maximum possible code

rate of A and B is the same if lmax = 2n for A and lmax = 2n+ 1 for B. This

property holds until asymptotically capacity is achieved as n → ∞. When

considering the longest codeword, B has a codeword of length 2n + 1 that is

longer than the longest codeword in A of length 2n by one bit. According to

criteria 2, state 1 is better than state 2 in terms of maximum possible code

rate.

We then apply Criterion 2.2 to compare minimal sets A and B constructed

from states 1 and 3, with maximum possible code rates C̃A = f(lmax) and

C̃B = g(lmax). It can be seen that when lI = 2, f(lmax = lI) > g(lmax = lI).

Now consider the longest words. It is easily seen that the longest codeword in

A is shorter than that in B, since there is one more loop available associated

with state 1 when generating B. Therefore, A has fewer number of longest

41

words than B. According to criteria 2, state 1 is the best state in terms of

maximum possible code rate.

Fig. 2.11 shows the achievable efficiency of state 1, 2 and 3 with different

lmax in the FSM describing constrained sequence codes that forbid the pattern

111 and 11011. It can be seen that state 1 results in a minimal set that

has the highest achievable efficiency. The achievable efficiency of state 2 at

lmax = 2n + 1 is the same as that of state 1 at lmax = 2n, which is also

consistent with the analysis above.

2 3 4 5 6 7 8 9 10
Maximum length of codewords in the minimal set

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 p
os

si
bl

e
ef

fic
ie

nc
y

Maximum possible efficiency of different minimal sets

Maximum possible efficiency of the minimal set corresponding to state 1
Maximum possible efficiency of the minimal set corresponding to state 2
Maximum possible efficiency of the minimal set corresponding to state 3

Figure 2.11: Achievable efficiency of different minimal sets of constrained

sequence codes that forbids 111 and 11011 patterns

We also infer that due to the concavity of the function C̃M = f(lmax),

a minimal set with a lower maximum possible code rate corresponds to a

higher increasing rate in C̃M at that value of lmax for lmax ∈ [lI ,∞). The

higher increasing rate arises from the fact that more words become available

due to more loops in the FSM. Generally speaking, once there are more loops

available for a minimal set at some value of lmax = l1, that set always has

more words available with lmax = l2 > l1 since there is greater freedom with

more loops when generating new words with length l2. Thus, once a minimal

set has a higher increasing rate, it will maintain the higher increasing rate

until capacity is asymptotically achieved. In other words, once a minimal set

is worse in terms of maximum possible code rate, it is always worse until it

42

asymptotically achieves capacity. This implication leads us to Criterion 2.3.

Criterion 2.3: Given two minimal sets A,B with C̃A = f(lmax) and

C̃B = g(lmax), if f(lI) > g(lI), then f(lmax) > g(lmax) for lmax ∈ [lI ,∞). This

implies that A is superior to B in terms of maximum possible code rate.

Proof. We prove by contradiction. Given f(lI) > g(lI) and v > w > I, suppose

f(lw) > g(lw) and f(lv) < g(lv). Asymptotically for lx = lmax − a ∀a → 0,

due to the concavity of f(lmax) and g(lmax), f(lx) should be smaller than g(lx)

under this assumption.

The fact that f(lw) > g(lw) and f(lv) < g(lv) implies that |lmax = lv| in

A is smaller than |lmax = lv| in B because B has gained more information-

carrying capacity with lmax = lv. With incomplete minimal sets A and B, we

know that B has more freedom to choose loops when enumerating words of

length lv. It follows that for lv ≤ lmax = lk < ∞, |lmax = lk| in B is always

greater than |lmax = lk| in A. However, consider the longest word as lmax →∞.

It is evident that f(lx) > g(lx) since |lmax| in B is greater than in A and hence

more information-carrying capacity is lost in B than in A with lmax = lx. This

is contradictory to the condition that f(lx) < g(lx). Therefore the assumption

does not hold, and hence the two curves of f(lmax) and g(lmax) cannot cross

when lmax > lI , i.e. f(lmax) > g(lmax) for lmax ∈ [lI ,∞).

Criterion 2.3 is a strengthened version of Criterion 2.2. Based on this

criterion, there is no need to compare the number of longest codewords in

minimal sets: one just needs to compare the maximum possible code rates

C̃A and C̃B at lmax = lI . The minimal set with a higher maximum possible

code rate at lmax = lI will remain superior until capacity is asymptotically

achieved. For example, if we revisit all the examples discussed above, it is

readily seen that once a state A is better than B in terms of code rate, i.e.

C̃A = f(lI) > C̃B = g(lI), A is always better for lmax ∈ [lI ,∞).

Lastly, we note that the actual curves of C̃ = f(lmax) are not continuous

but discrete. However, this does not change the results above when comparing

different minimal sets with the same lmax.

43

2.1.2 Code construction algorithm

Given selection of an appropriate state, we now discuss how to construct

the minimal set for a general constraint. For some constraints like the (1,∞)

RLL constraint shown in Fig. 1.6, it is straightforward to determine the

minimal set by inspection of the FSM. However, for a variety of constraints

the FSMs are much more complicated and contain many loops, such as the

DC-free constraints which are depicted in Fig. 2.1. From our brief discussion

of DC-free codes in the above section, we observe that counting the words in

minimal sets is not an easy task. In this section we present an algorithm to

construct minimal sets based on FSM partitions. Note that the proposed

code construction technique we present is a general algorithm that can be

used to find the minimal set for a large variety of constraints, and hence can

be applied in many transmission and data storage systems where constrained

coding is essential. We also note that the appropriate number of FSM

partitions to use is an engineering practice, and should be chosen to best fit

the scenario under consideration. The algorithm starts with definition of

word ∅, which indicates that it is possible to merely stay in a state rather

than exit from it.

Definition 2.1 For a specified state, the word ∅ in the corresponding

minimal set is a void codeword. Coded sequence a∅b is indeed ab where a and

b denote any possible constraint-satisfying sequences.

In an extension of a minimal set, the concatenation of ∅ operates as

follows. Appending any word w in the minimal set to the end of ∅ results in

w. ∅ is not allowed to be appended to the end of any word. For a minimal

set M containing word ∅, M
(lth)
f denotes the full extension of M containing

all possible words with length no greater than lth. Detailed discussion of these

definitions is given later in this section.

An FSM partition is obtained by partitioning the FSM into several parts.

For example, the FSM in Fig. 2.6 is partitioned into two FSM partitions F1

and F2 in Fig. 2.12, where F1 has one state and F2 has two states. If we choose

state 3 as the specified state in Fig. 2.12, we begin with the partition farthest

44

from this state and move toward state 3 in order to recover the minimal set of

the original FSM. Starting from state 1 and excluding any transitions across

the partition line separating F1 and F2, the minimal set of state 1 in FSM

partition F1 is M1|p12 = {∅, 1}. Explanation of M1|p12 is as follows.

It is possible to emanate from state 1 and re-enter state 1. In this way we

obtain the codeword 1. It is also possible to just stay in state 1 rather than

emanate from it. This generates the void codeword ∅ which is necessary when

taking into account the next FSM partition. As defined above in Section 1, a

full extension of M1|p12 with lth = 4 is M
(lth=4)
1|p12,f = {∅, 1, 11, 111, 1111} which

is obtained by following the rules of extensions with ∅, as outlined above.

Now consider state 3 in the FSM partition F2. The minimal set of state

3 is established as M2 = {0, 1M1|p12,f00}, which is explained as follows. The

stand-alone 0 represents exiting and reentering state 3 on the rightmost loop.

Bit 1 corresponds to the edge emitting from F2 (and entering F1). The

subsequent 00 corresponds to the edge entering F2 (emitting from F1). Since

M1|p12,f contains all possible words in F1 including codeword ∅, M2 is

comprised of all words whose concatenation generates all

constraint-satisfying sequences. Therefore, M2 = {0, 1M1|p12,f00} is the

complete set of words in the minimal set with state 3 selected as the specified

state. For example, with lth = 4, M
(lth=4)
1|p12,f is {∅, 1, 11, 111, 1111} and hence

M2 = {0, 1M (lth=4)
1|p12,f 00} is {0, 100, 1100, 11100, 111100, 1111100}. As lth → ∞,

M2 = {0, 1M (lth)
1|p12,f00} then becomes {0, 1M1|p12,f00}, which is a minimal set

comprising an infinite number of words. Note that since F2 is the last FSM

partition, although ∅ could be included in M2, it would serve no purpose

since F2 is not included in other FSM partitions. Therefore, ∅ is not

included as a word in the minimal set of the final partition in a sequence of

partitions.

45

1 2 3

1

00

01

1F 2F

Figure 2.12: FSM partitions of a constraint that forbids 101 pattern

An algorithm to construct a minimal set using this approach is as follows.

• Choose a specified state which results in the highest maximum possible

code rate.

• Partition the FSM into n FSM partitions Fi, i = 1, 2, 3...n where the full

extension of minimal set of Fk should be fully included in the minimal

set of Fj, for ∀1 ≤ k < j ≤ n.

• Denote Mi|pij as the minimal set of FSM partition Fi excluding any

transitions across the partition line separating partition Fi and partition

Fj. Mi|pij ,f is the full extension of Mi|pij . Starting from M1|p12 , generate

the minimal set Mi|pi(i+1)
of Fi recursively until reaching minimal set

Mn of the last FSM partition Fn. Note that, to limit the size of the

resulting minimal set, it might be necessary to prune words to limit the

maximum length of words lth in minimal sets of Fi, i = 1, 2, 3...n − 1,

in order to limit the maximum length of words lmax in the minimal set

Mn we eventually establish. In practice, M
(lth)
i|pi(i+1),f

is utilized instead

of Mi|pi(i+1),f which may contain an infinite number of words and is not

practical. Appropriate pruning techniques are considered below.

We now provide complexity analysis for this recursive construction

algorithm. The enumeration of words depends on the specific constraint, the

number of FSM partitions K, the number and lengths of words in each

Mi|pij , i = 1, 2, 3...K − 1, and the limit on the maximum length of words lth.

For simplicity, in this complexity analysis we assume that the number of

complete extensions of Mi|pij performed during generation of M
(lth)
i|pi(i+1),f

is

46

ci, i = 1, 2, 3...K − 1, i.e.,

∣∣∣∣M (lth)

1|p12,f
∣∣∣∣ = Θ(

∣∣M1|p12
∣∣c1+1

) where
∣∣M1|p12

∣∣ denotes
the number of words in M1|p12 . Thus the number of words in M

(lth)
1|p12,f is

O(
∣∣M1|p12

∣∣c1) as c1 becomes large. Similarly, the number of words in M
(lth)
2|p23,f

is O(
∣∣M2|p23

∣∣c2) = O({∣∣M1|p12
∣∣c1 + ε}c2), where ε is the number of words in

M2|p23 except those in M
(lth)
1|p12,f , and hence ε is the higher-order infinitesimal

of O(
∣∣M1|p12

∣∣c1). Therefore, we have
∣∣∣M (lth)

2|p23,f

∣∣∣ = O(
∣∣M1|p12

∣∣c1c2). Recursively

repeating this procedure, we find that the complexity of enumerating words

in FK is O(
∣∣M1|p12

∣∣K−1
Π
i=1

ci
).

The proposed algorithm involves performing extensions until reaching the

maximum allowed word length lmax in the minimal sets. In practice, one could

set lth as an appropriate value. With larger lth, more constraint-satisfying

words exist in the minimal set and the code will have increased efficiency, at

the cost of increased storage and computational resources.

Figure 2.13: FSM partitions in constrained sequence codes that forbids 111

and 11011 patterns

Example (constrained codes that forbid the 111 and 11011 patterns):

the FSM in Fig. 2.10 is partitioned into three FSM partitions F1, F2, F3, as

shown in Fig. 2.13. According to Criterion 2.3, state 3 results in the highest

achievable code rate and is selected as the specified state. To construct its

minimal set, we begin with the farthermost partition and recursively move

toward the specified state. Therefore we begin by constructing the minimal

set for state 1. Starting from F1, the minimal set M1|p12 of F1 excluding

47

transitions across the partitioning line between F1 and F2 is obtained as

M1|p12 = {∅}. Recursively, the minimal set M2|p23 of F2 is obtained as

M2|p23 = {∅, 1M (lth)
1|p12 ,f0}, and finally the minimal set of state 3 is obtained as

M3 = {0, 1M (lth)
2|p23 ,f0}. If we set lmax in M3 to be 6, it is straightforward to

obtain M1|p12 ,f = {∅}, M2|p23 = {∅, 10} and M
(lth=4)
2|p23 ,f = {∅, 10, 1010}. Hence

the final minimal set M3 = {0, 10, 1100, 110100}. Based on M3, we can

construct codebooks for this constraint. In Table 2.2 we choose to present a

simple code that achieves 96.65% of capacity.

Table 2.2: A codebook of the constraint that forbids the 111 and 11011

patterns with η = 96.65%

Source words Codewords

00 10

01 00

10 010

110 1100

1110 01100

11110 110100

11111 0110100

We have now presented the proposed construction algorithm with simple

examples. Apart from its successful application in reducing inter-cell

interference in flash memories as discussed in [20], and in constructing codes

for the Pearson constraint as discussed in [21], in the subsequent sections we

apply this technique in two emerging applications, VLC and DNA-based

storage systems.

2.1.3 Example: codes for visible light communications

DC-free codes for VLC

VLC has gained much attention recently [3, 32, 33, 34]. The simplest

VLC relies on on-off keying (OOK) modulation, which is realized with DC-

free codes to generate a constant dimming level of 50% and reduce flicker

48

perception. Three types of DC-free codes, the Manchester code, a 4B6B code

and an 8B10B code, have been used in VLC standards for flicker mitigation

and dimming control [3].

Manchester encoding represents a logic zero as an OOK symbol 01 and

a logic one as an OOK symbol 10, hence the code rate is 0.5. Note that

Manchester codes satisfy the DC-free constraint with N = 3 and capacity 0.5,

and therefore have a code rate equal to capacity. The 4B6B code satisfies

the DC-free constraint with N = 5, which has a capacity of 0.7925 [1]. The

codebook has 16 source words with a code rate R of 2/3, and therefore has an

efficiency of η = R/C = 84.12%. 8B10B codes are a class of rate R = 8/10

codes that satisfy DC-free constraints with N = 6 or N = 7. Many 8B10B

codes have been constructed with different parameters; a survey of 8B10B

codes can be found in [12]. DC-constrained systems with N = 6 and N = 7

have capacities 0.8495 and 0.8858 respectively. The efficiency of an 8B10B

code is then η = 94.17% for the N = 6 constraint and η = 90.31% for the

N = 7 constraint.

In the following, we first present an algorithm that constructs minimal

sets specifically for DC-free constraints with an arbitrary RDS value. Then we

consider the DC-free N = 5 and N = 7 constraints that the 4B6B code and

8B10B code satisfy, respectively. We construct simple variable-length codes

based on the proposed construction process, and demonstrate that they have

higher efficiency than the fixed-length 4B6B and 8B10B codes.

Algorithm for constructing the minimal set

In this section, we specifically illustrate how our algorithm for

construction of minimal sets can be applied to construct high-efficiency

variable-length DC-free codes with any given value of N . With the

aforementioned criteria and procedures, we base our designs on the FSM in

Fig. 2.1 and choose state SK , K = bN+1
2
c as the specified state.

We partition the FSM into N partial FSMs FS1 , FS2 , ..., FSN , each having

one state, as shown in Fig. 2.14. Algorithm 1 shows the procedure to construct

49

1 K-1 K K+1 N... ...

1 1 1 1 1 1

000000

Figure 2.14: FSM partition of general DC-free codes

the minimal set MSK of state SK . States S1 and SN do not have edges that exit

and re-enter them without crossing partition boundaries, so the minimal sets of

FSM partitions Fs1 and FsN are initialized as MS1|pS1S2 = MN |pSNS(N−1)
= {∅}.

Algorithm 1 Constructing the minimal set of general DC-free codes

Initialize:

1: Choose state SK as the specified state, K = bN+1
2
c

2: Set the minimal set of FSM partitions Fs1 and FsN as

MS1|pS1S2 = MSN |pSNS(N−1)
= {∅}.

Start:

3: for i = 2, 3, ..., K − 1, j = N − 1, N − 2, ..., K + 1 do

4: Construct the minimal set of FSM partitions FSi and FSj as

MSi|pSiS(i+1)
= {∅, 0(M

(l
(i)
th)

S(i−1)|pS(i−1)Si
,f)1} and

MSj |pS(j)S(j−1)
= {∅, 1(M

(l
(i)
th)

S(j+1)|pS(j+1)Sj
,f)0}, respectively.

5: end for

6: Output: The minimal set of state SK is

MSK = {0(M
(l
(i)
th)

S(K−1)|pS(K−1)SK
,f)1, 1(M

(l
(i)
th)

S(K+1)|pS(K+1)SK
,f)0}

Pruning

As discussed above, lth can be set to a predetermined value in order to

limit the size of the minimal set. We now discuss the appropriate value of lth

for DC-free codes when pruning is utilized for the sake of limiting storage and

computational resources.

In order to limit the maximum wordlength in the minimal set to lmax,

it is straightforward to verify that, in each full extension M
(l
(i)
th)

S(i)|pS(i)Si+1
,f , i =

2, 3, ..., (K − 1) and M
(l
(j)
th)

S(j)|pS(j)Sj−1
,f , j = N, (N − 1), ..., (K + 1), it is sufficient

50

to dynamically set lth as

l
(i)
th = lmax − 2(K − i), i = 2, 3, ..., K − 1 (2.15)

l
(j)
th = lmax − 2(j −K), j = N,N − 1, ..., K + 1. (2.16)

Code construction

We first consider a special case of construction of a DC-free code with

N = 3 using our approach, and compare the result with the Manchester code.

With a DC-free FSM of N = 3, it is readily seen that state 2 should be

selected as the specified state, according to Criterion 2.1, from which it is

straightforward to obtain the complete minimal set {01, 10}. Our proposed

method gives a mapping of logic one to 10 and logic zero as 01, which results

in the fixed-length Manchester code with η = 100%.

We now use our approach to construct variable-length DC-free codes with

N = 5 for comparison with the 4B6B code. Based on the criteria outlined

above, we select state 3 as the specified state to construct a variable-length

code; for purpose of comparison we have also constructed codes based on

states 1&5 and 2&4. In Table 2.3 we present the number of words in the

minimal set |LM |, C̃M , η̃, the number of codewords in the codebook N c, the

maximum length of codewords in the codebook cmax, R̄, and η for the best

code constructed with lmax = 6. We present results in Table 2.4 when lmax = 8.

It is evident from these tables that with state 3 as the specified state, C̃M and

R̄ are better than for codes constructed based on other states, which is in

agreement with the results of Fig. 2.8. With lmax = 6, cmax = 8 and N c = 16,

we constructed a codebook with R̄ = 0.7703 and η = 97.19% which is shown

in Table 2.5. Comparing the code with the 4B6B code with R = 2/3 and

η = 84.12%, we note that our code contains the same number of words but is

13% more efficient and is only 2.81% from capacity. With lmax = 8, cmax = 10

and N c = 22, a codebook with η = 98.66% can be constructed. Note that

codebooks with still higher efficiency can be constructed with larger lmax, cmax

and N c.

We also constructed DC-free codes with N = 7, which has capacity 0.8858

51

Table 2.3: Parameters of N = 5 DC-free codes with lmax = 6

State |LM | C̃M η̃ N c cmax R̄ η

1&5 4 0.5000 63.09% 4 6 0.5000 63.09%

2&4 5 0.7054 89.01% 17 10 0.7012 88.48%

3 6 0.7729 97.53% 16 8 0.7703 97.19%

Table 2.4: Parameters of N = 5 DC-free codes with lmax = 8

State |LM | C̃M η̃ N c cmax R̄ η

1&5 9 0.5892 74.35% 25 14 0.5827 73.53%

2&4 9 0.7418 93.60% 25 10 0.7381 93.13%

3 8 0.7863 99.22% 22 10 0.7819 98.66%

Table 2.5: A DC-free code with N = 5, R̄ = 0.7703, η = 97.19%

Source word Codeword Source word Codeword

000 0011 11010 010011

001 1100 11011 011100

010 0101 11100 100011

011 0110 11101 101100

100 1001 111100 01001011

101 1010 111101 01110100

11000 001011 111110 10001011

11001 110100 111111 10110100

Table 2.6: Maximum possible code rates of minimal sets with different lmax

for a DC-free code with N = 7
lmax |LM | C̃M η̃

6 8 0.8101 91.45%

8 16 0.8471 95.63%

10 32 0.8650 97.65%

12 64 0.8743 98.70%

14 128 0.8793 99.27%

52

Table 2.7: Codes constructed for a DC-free code with N = 7
lmax N c cmax R̄ η

6 15 8 0.8034 90.70%

8 61 12 0.8416 95.01%

10 94 14 0.8574 96.80%

12 127 16 0.8661 97.78%

Table 2.8: Words in the minimal set of a DC-free code with N = 7, lmax = 10,

C̃M = 97.65%

Word

length
Word

Word

length
Word

2 10 10 1110101000

2 01 10 0001010111

4 1100 10 1101101000

4 0011 10 0010010111

6 111000 10 1110011000

6 000111 10 0001100111

6 110100 10 1110100100

6 001011 10 0001011011

8 11101000 10 1101010100

8 00010111 10 0010101011

8 11011000 10 1101011000

8 00100111 10 0010100111

8 11100100 10 1101100100

8 00011011 10 0010011011

8 11010100 10 1110010100

8 00101011 10 0001101011

53

[12], for comparison with the 8B10B code. We use state 4 to find the minimal

set. Table 2.6 summarizes the maximum possible code rates C̃M of minimal

sets with different lmax, and Table 2.7 summarizes parameters of practical

codes we have constructed based on those minimal sets. We also include |LM |,

N c and cmax in the tables. As is shown in Table 2.6, with lmax = 10, a minimal

set with η̃ = 97.65% can be constructed; this minimal set is presented in Table

2.8. Using this minimal set we constructed a code with N c = 94, Lm = 14, R̄ =

0.8574 and η = 96.80%. Note that this code contains fewer codewords and has

a higher code rate than the 8B10B code with R = 0.8. Codebooks with still

higher efficiency can be constructed with larger lmax, cmax and N c. We also

note that codewords in our codes satisfy the prefix condition [24] and therefore

can be instantaneously decoded given knowledge of the codebook.

2.1.4 Example: codes for DNA-based storage

The first large scale DNA-based storage was implemented in 2012 and

has attracted considerable interest [35]. In this scheme, binary source bits are

translated into a strand of nucleotides adenine (A), thymine (T), guanine (G)

and cytosine (C), which can be represented by a 4-ary alphabet set {0, 1, 2, 3}.

Long repetitions (e.g., more than 4) of the same nucleotide may significantly

increase sequencing errors in DNA-based storage, and hence should be avoided.

A recent work [6] proposed using fixed-length 4-ary k-constrained codes with

modulo 4 precoding to limit the maximum runlength of nucleotides to be

k + 1. We now apply our proposed code construction technique to construct

variable-length 4-ary k-constrained codes that achieve higher efficiency and

significantly lower implementation complexity.

1 2

1,2,3

0

1,2,3

3

0

4

0

1,2,3

1,2,3

Figure 2.15: FSM of 4-ary k-constrained codes for DNA-based storage

54

The FSM of 4-ary k-constrained codes with k = 3 is shown in Fig. 2.15.

According to Criterion 2.1, we select state 1 as the specified state. The minimal

set is established as

M = {1, 2, 3, 01, 02, 03, 001, 002, 003, 0001, 0002, 0003}.

Following NGH coding, we construct a codebook with R̄ = 0.9971 quaternary

bits per coded symbol and η = 99.92% as shown in Table 2.9, where N c = 12.

To compare, the highest rate of the fixed-length codes proposed in [6] (with

method B) is 147/148 = 0.9932, and N c = 4147. Comparison to [6] with other

k values is listed in Table 2.10, where we present the highest code rate R and

N c of the fixed-length codes in [6] and our results. It is clear that our proposed

variable-length coding technique achieves higher code rates with significantly

smaller codebooks.

Table 2.9: A 4-ary k = 3 RLL codebook, R̄ = 0.9971

Source word Codeword Source word Codeword

10 1 111110 001

01 2 111101 002

00 3 111100 003

1110 01 1111110 0001

1101 02 11111110 0002

1100 03 11111111 0003

Table 2.10: Comparison of highest code rates and sizes of codebooks with [6]

k R [6] N c [6] R̄ N c

1 0.9091 410 0.95 6

2 0.9744 438 0.9881 9

3 0.9932 4147 0.9971 12

4 0.9983 4580 0.9993 15

55

2.2 Construction of capacity-approaching

codes with multiple encoding states and

state-independent decoding [22]

In the previous section we demonstrated the construction of constrained

sequence codes with a single encoding state. Although codebooks with high

η can be constructed with the single-state variable-length construction

technique, two potential drawbacks of this approach should be considered.

First, the codewords can be long, especially when long words exist in the

minimal set, which increases the complexity of the encoding and decoding

circuits. This occurs, for instance, with a large value of k in RLL constraints

and a large value of N in DC-free constraints. Second, for some types of

constraints, a minimal set consisting of a finite number of words does not

capture all the constraint-satisfying sequences because of loops that exist in

the FSMs. This results in a loss in the achievable code rate, as discussed in

the previous section and in [18] [19]. Typical examples are DC-free

constraints with N ≥ 4 and most DC-free RLL constraints. To overcome

these drawbacks, in this section we extend the single-state encoding

technique by proposing a construction technique for variable-length

constrained sequence codes that involves multiple states in the codebook.

2.2.1 Multi-state encoding based on an FSM

In this section we discuss the encoding technique with multiple encoding

states based on an FSM. We start with the selection of principal states.

Selection of principal states

Similar to the single-state technique, the first step of our proposed multi-

state technique is to determine which multiple states of the FSM that describes

the constraint should be considered when generating the words in the minimal

set. We call these states the principal states. Denote the j-th principal state

as σj, σj ∈ Ψ = {σ1, σ2, ..., σ|Ψ|}, where Ψ is the set of principal states and |Ψ|

56

is the size of Ψ. We first define how concatenation of words in the minimal set

is performed.

Definition 2.2 (concatenation of words) Denote

W (σj) = {w(σj)1, w(σj)2, ..., w(σj)|W (σj)|}

as the set of words generated by the j-th principal state. Given W (σj), let the

set of next states corresponding to words in W (σj) be

H(σj) = {h(σj)1, h(σj)2, ..., h(σj)|W (σj)|}

where h(σj)i ∈ Ψ, 1 ≤ i ≤ |H(σj)|. The words in the minimal set are

W (Ψ) = {W (σ1),W (σ2), ...,W (σ|Ψ|)}. When considering concatenation of

words in W (Ψ), w(σj)i is only allowed to be concatenated with words in the

set W (h(σj)i).

Based on this definition of concatenation, we introduce the definition of

principal states and the criterion to select them.

Definition 2.3 (principal states) Ψ is determined such that all constraint-

satisfying sequences can be generated through the concatenation of words in

W (Ψ). In addition, to ensure that it is possible to instantaneously decode

the received sequence, no word in W (σi) is the prefix of a word in W (σj)

∀σi, σj ∈ Ψ.

From Definition 2.3 it follows immediately that if a state σj has a loop

associated with itself in the FSM, then σj ∈ Ψ otherwise not all constraint-

satisfying sequences can be generated with finite-length codewords due to the

loop at σj. The principal states should also be selected such that |W (σi)| =

|W (σj)| ∀σi, σj ∈ Ψ, in order that each state will have a codeword associated

with each source word in the codebook. Examples of the appropriate selection

of principal states follow discussion of establishing the minimal set.

Minimal set

After determining the principal states, we establish the minimal set of

the constraint based on its underlying FSM. Given |Ψ| principal states, the

minimal set in multi-state encoding is a tabular representation that contains

57

2 |Ψ| columns, where |Ψ| of the columns indicate the words generated by the

principal states, i.e. W (Ψ) = {W (σ1),W (σ2), ...,W (σ|Ψ|)}, and the other |Ψ|

columns indicate the next states corresponding to each word, i.e. H(Ψ) =

{H(σ1), H(σ2), ..., H(σ|Ψ|)}.

Assignment of words in a minimal set with multiple states will, in

general, result in the necessity for state-dependent decoding, which requires

knowledge of both the received codeword and the corresponding encoding

state in order to correctly determine the corresponding source word.

Decoding that can be performed with knowledge of only the received

codeword and without tracking the encoder state is called state-independent

decoding. To enable state-independent decoding, the following necessary and

sufficient condition [36] must be satisfied.

Condition 2.1 (state-independent decoding): When assigning words

from W (Ψ) in the minimal set, the necessary and sufficient condition for

state-independent decoding is that for 1 ≤ u ≤ v ≤ y ≤ |Ψ| and for each

Wr ∈ W (σu) ∩W (σy)

such that

Wr /∈ W (σv)

there exists a Wq ∈ W (σv) such that there exists no σl, 1 ≤ l ≤ |Ψ|, for which

Wr,Wq ∈ W (σl).

As will become evident in the examples below, this condition implies

that in the minimal set table, a word does not appear in more than one row.

Therefore, enabling state-independent decoding requires satisfying Condition

2.1, which implies careful design of the encoder. It should be mentioned,

however, that it may not be possible for |W (σi)| and |W (σj)| to be equal ∀i, j.

In such cases we can extend some of the words in W (Ψ) using H(Ψ) with the

goal of generating an extended minimal set with |W (σi)| = |W (σj)| for all i, j.

We note that, without adequate care, this concatenation of words in W (Ψ)

58

may result in a situation where one word becomes a prefix of another, meaning

that the codewords are not prefix-free and that the decoder would not be able

to instantaneously decode the received sequence. In this section we focus on

situations where it is possible to have |W (σi)| = |W (σj)| without causing the

prefix problem, and in the next section we extend the construction technique

to consider situations where the prefix problem arises.

Example ((d = 1, k = 3) code): Consider the FSM for the

(d = 1, k = 3) RLL constraint shown in Fig. 2.16. We choose states 1 and 3

as the principal states, which we denote σ1 and σ2, respectively. With these

states, it follows that W (σ1) = {01, 00}, H(σ1) = {σ1, σ2} and

W (σ2) = {01, 1}, H(σ2) = {σ1, σ1}. We note that this selection of states and

codewords satisfies Condition 2.1 and the prefix condition, therefore

instantaneous state-independent decoding is viable. The minimal set is given

in tabular form in Table 2.11.

1 2 3 4

0 0 0

1

1

1

Figure 2.16: FSM of a (d = 1, k = 3) RLL code

Table 2.11: The minimal set of a two-state (d = 1, k = 3) code
W (σ1) H(σ1) W (σ2) H(σ2)

01 σ1 01 σ1

00 σ2 1 σ1

Example (DC-free code with N = 5): The FSM of a DC-free sequence

with N = 5 is shown in Fig. 2.17. Similar to the previous example, we follow

the steps of the construction technique to select states 2 and 4 as the principal

states, i.e. σ1 = state 2 and σ2 = state 4. The minimal set of this DC-free code

with N = 5 is shown in Table 2.12. As in the example above, this minimal

set enables the construction of codes with instantaneous state-independent

decoders.

59

Figure 2.17: FSM of a DC-free code with N = 5.

Table 2.12: The minimal set of a multi-state DC-free code with N = 5
W (σ1) H(σ1) W (σ2) H(σ2)

11 σ2 00 σ1

10 σ1 10 σ2

01 σ1 01 σ2

Example (DC-free RLL codes with (d = 1, k = 3, N = 5)): We also

employ the proposed multi-state encoding technique to construct codes that

satisfy both DC-free and RLL constraints. We describe the code construction

process with an example of a code that limits toN = 5 the RDS of the sequence

that arises after NRZI encoding a sequence that satisfies the (d = 1, k = 3)

constraint. We will later present results of other codes with different d, k and

N values. The FSM of the (d = 1, k = 3, N = 5) DC-free RLL constraint

(after NRZI coding) is shown in Fig. 2.18, where the coded sequence has

runlengths between d + 1 = 2 and k + 1 = 4, and the RDS is limited to five

different values.

Figure 2.18: FSM of the DC-free RLL constraint corresponding to an NRZI

encoded (d = 1, k = 3) code with N = 5.

60

We choose four states as the principal states, and refer to them by their

locations in the x-y coordinates in Fig. 2.18, i.e.

σ1 = (−1,−2), σ2 = (0,−2), σ3 = (1, 2), σ4 = (0, 2). With this selection of

principal states, all loops in the FSM contain at least one principal state, and

therefore the minimal set will contain a finite number of words. This ensures

that all constraint-satisfying sequences can be generated with concatenation

of words in the minimal set. We establish the minimal set shown in Table

2.13. Note that |W (σ1)| = |W (σ3)| = 2, and |W (σ2)| = |W (σ4)| = 3.

Therefore, we extend some of the words in W (σ1) and W (σ3) by referring to

H(σ1) and H(σ3), in order to have the same number of rows in all columns of

the minimal set. After extension of the word 11 in W (σ1) and the word 00 in

W (σ3), we obtain the extended minimal set as shown in Table 2.14 where

|W (σi)| = 3 ∀i.

Table 2.13: The minimal set of a DC-free RLL code corresponding to an NRZI

encoded (d = 1, k = 3) code with N = 5
W (σ1) H(σ1) W (σ2) H(σ2) W (σ3) H(σ3) W (σ4) H(σ4)

011 σ4 011 σ3 100 σ2 100 σ1

11 σ3 1100 σ2 00 σ1 1100 σ2

0011 σ4 0011 σ4

Table 2.14: The extended minimal set of a DC-free RLL code corresponding

to an NRZI encoded (d = 1, k = 3) code with N = 5
W (σ1) H(σ1) W (σ2) H(σ2) W (σ3) H(σ3) W (σ4) H(σ4)

011 σ4 011 σ3 100 σ2 100 σ1

1100 σ1 1100 σ2 00011 σ4 1100 σ2

11100 σ2 0011 σ4 0011 σ3 0011 σ4

Note that if we use the single-state encoding technique, minimal sets for

DC-free constraints with N ≥ 4 and for most DC-free RLL constraints consist

of an infinite number of words, so to be practical, these sets must be truncated

to result in sets with a finite number of words. Since valid words are removed

from the minimal set, the achievable code rate is reduced, as noted in the

previous section. However, with the multi-state encoding technique described

above, all constraint-satisfying sequences can be generated with the words in

the minimal set, hence full capacity can potentially be approached.

61

Partial extensions

After obtaining a minimal set or an extended minimal set, we may perform

partial extensions to obtain sets of codewords. However, as opposed to the

single-state encoding technique where words in a minimal set can be freely

concatenated, concatenation as defined in Definition 2.2 must be performed

with multi-state encoding. Therefore, in addition to the words in W (Ψ), we

must have knowledge of H(σj)i to determine how to extend the word w(σj)i,

1 ≤ j ≤ |Ψ|, 1 ≤ i ≤ |W (σj)|. A partial extension in multi-state encoding is

the simultaneous extension of words w(σj)i ∀j for a fixed i, where extension

is according to the concatenation of words in Definition 2.2. Similar to single-

state encoding, a partial extension can be applied to the result of any previous

partial extension where partial extensions start from the minimal set.

We denote the set of codewords generated through extension of W (σj) as

α(σj) and the corresponding set of next states as β(σj)
1. The size of each set

is denoted as ξ. Note that when a word w(σj)i is extended in the table, all

the other words in the i-th row that are generated from other principal states

are simultaneously extended to ensure |α(σ1)| = |α(σ2)| = ... =
∣∣α(σ|Ψ|)

∣∣ = ξ.

Example ((d = 1, k = 3, N = 5) DC-free RLL code) We perform partial

extensions of Table 2.14 to obtain a set of codewords for the (d = 1, k = 3, N =

5) DC-free RLL constraint. We extend the words W (σj)1, ∀j and then extend

the words W (σj)2,∀j based on the previous partial extension, by following

Definition 2.2. Our set of codewords is shown in Table 2.15, where ξ = 7.

NGH coding and code rate evaluation

The last step of the encoding technique is to perform NGH coding over the

codebook to assign source words to codewords α(σ1), α(σ2), ..., α(σ|Ψ|) in the

codebook. To approach capacity, we attempt to approximate the maxentropic

probabilities of codewords in the codebook as closely as possible.

We first obtain the maxentropic transition probabilities of the constraint

1When we use the words in the minimal set as the set of codewords directly, for

consistency, we still denote W (σj) as α(σj) and H(σj) as β(σj).

62

Table 2.15: Partial extension of the extended minimal set of a DC-free RLL

code corresponding to an NRZI encoded (d = 1, k = 3) code with N = 5
α(σ1) β(σ1) α(σ2) β(σ2) α(σ3) β(σ3) α(σ4) β(σ4)

011100 σ1 011100 σ2 100011 σ3 100011 σ4

0111100 σ2 01100011 σ4 1001100 σ2 1001100 σ1

0110011 σ4 0110011 σ3 1000011 σ4 10011100 σ2

1100011 σ4 1100011 σ3 00011100 σ1 1100011 σ3

11001100 σ1 11001100 σ2 000111100 σ2 11001100 σ2

110011100 σ2 11000011 σ4 000110011 σ4 11000011 σ4

11100 σ2 0011 σ4 0011 σ3 0011 σ4

based on its FSM representation, which is well studied in [12]. Based on the

maxentropic transition probabilities, we evaluate the maxentropic probability

of each codeword in the final codebook and the steady-state distribution of

Ψ. Denote the maxentropic probability of the i-th codeword in αj as p(αj)i,

the steady-state distribution as π = [π(σ1), π(σ2), ..., π(σ|Ψ|)], and the vector

of input probabilities to NGH coding as pNGH = [p1, p2, ..., pξ]. The desired

probability of the i-th source word is then

pi =

|Ψ|∑
j=1

π(σj)× p(αj)i, 1 ≤ i ≤ ξ. (2.17)

With this vector of desired input probabilities, NGH coding is performed to

generate the corresponding source words.

After constructing the codebook, we must evaluate the average code

rate. We assume independent and equiprobable input bits, and denote

codeword α(σj)i as the codeword assigned to a source word of length li. The

probability of occurrence of that codeword when the encoder is in state j is

p(α(σj)i) = 2−li . Note that since these probabilities are not in general equal

to the maxentropic probabilities, the steady-state probabilities of the

principal states are not exactly the probabilities in the steady-state

distribution of the FSM. Based on the probability of occurrence of each

codeword in the codebook, it is possible to evaluate the steady-state

distribution π̃ = [π̃(σ1), π̃(σ2), ..., π̃(σ|Ψ|)] of all the principal states Ψ by

solving:

63

π̃P = π̃ (2.18)

where P is a |Ψ| × |Ψ| matrix, pji is the element in j-th row and i-th column

and

pji =
∑

k,∀h(σj)k=σi

p(α(σj)k). (2.19)

Given the steady-state distribution of the codebook, the average code rate

R̄ is evaluated as

R̄ =

∑
li

li × 2−li

∑
li

(
|Ψ|∑
j=1

π̃(σj)× o(σj)i)× 2−li

(2.20)

where o(σj)i is the length of the codeword emitted from state σj due to the

occurrence of the i-th source word.

Similar to single-state encoding, by performing partial extensions,

different codebooks can be generated depending on different concatenations

of words in partial extensions. We can establish limits on nmax or cmax, use

an exhaustive search to compare all codebooks that are within these limits,

and choose the one that has the highest R̄.

Example (d = 1, k = 3 RLL code): If we do not perform partial

extensions but directly perform NGH coding over the minimal set shown in

Table 2.11, we obtain the simple yet efficient codebook shown in Table 2.16.

Although |α(σ1)| = |α(σ2)| = 2, the number of unique codewords in Table

2.16 is only three. It can be verified that the steady-state distribution for

this codebook is π̃ = [2
3

1
3
] and that the average code rate is

R̄ =
1× 1

2
+ 1× 1

2
1
2
× 2 + 1

2
× (2

3
× 2 + 1

3
× 1)

=
6

11

which achieves 98.9% of capacity. Note that this code is as efficient as the

single-state code given in Table 1.6, but that it has shorter codewords and

source words. Higher efficiency can be achieved with partial extensions and a

larger codebook. To compare, another variable-length coding technique [37]

64

gives a rate 0.5 variable-length (d = 1, k = 3) code with efficiency 90.7%,

which demonstrates the effectiveness of our proposed construction technique.

Table 2.16: Codebook of a (d = 1, k = 3) RLL code with two states and

η = 98.91%
Source word α(σ1) β(σ1) α(σ2) β(σ2)

0 01 σ1 01 σ1

1 00 σ2 1 σ1

Example (DC-free codes with N = 5): Using the minimal set shown in

Table 2.12 as the codebook, we are able to construct a code with efficiency

η = 96.46%. After performing partial extensions with maximum codeword

length cmax = 4, we obtain the codebook shown in Table 2.17 which has

efficiency η = 99.14%. We also note that with a ternary source, it is possible

to achieve 100% of capacity simply by using words in the minimal set as the

codewords, as demonstrated in Table 2.18.

Table 2.17: Codebook of a N = 5 DC-free code with η = 99.14%.
Source word α(σ1) β(σ1) α(σ2) β(σ2)

00 11 σ2 00 σ1

010 0111 σ2 1000 σ1

011 0101 σ1 0101 σ2

100 0110 σ1 0110 σ2

101 1011 σ2 0100 σ1

110 1001 σ1 1001 σ2

111 1010 σ1 1010 σ2

Table 2.18: Codebook of a N = 5 DC-free code with ternary source and

η = 100%.
Source word α(σ1) β(σ1) α(σ2) β(σ2)

0 11 σ2 00 σ1

1 10 σ1 10 σ2

2 01 σ1 01 σ2

Example (DC-free RLL codes with (d = 1, k = 3, N = 5)): Based on the

extended minimal set shown in Table 2.14, if we use the words in the extended

minimal set as the codewords, the average code rate is R̄ = 0.4167 and η =

98.09%. The corresponding codebook is shown in Table 2.19. Based on the

partial extension in Table 2.15, we construct the codebook with R̄ = 0.4183

65

Table 2.19: Codebook of a DC-free RLL code corresponding to an NRZI

encoded (d = 1, k = 3) code with N = 5, η = 98.09%
Source word α(σ1) β(σ1) α(σ2) β(σ2) α(σ3) β(σ3) α(σ4) β(σ4)

0 011 σ4 011 σ3 100 σ2 100 σ1

10 1100 σ1 1100 σ2 00011 σ4 1100 σ2

11 11100 σ2 0011 σ4 0011 σ3 0011 σ4

Table 2.20: Codebook of a DC-free RLL code corresponding to an NRZI

encoded (d = 1, k = 3) code with N = 5, η = 98.47%
Source word α(σ1) β(σ1) α(σ2) β(σ2) α(σ3) β(σ3) α(σ4) β(σ4)

000 011100 σ1 011100 σ2 100011 σ3 100011 σ4

001 0111100 σ2 01100011 σ4 1001100 σ2 1001100 σ1

010 0110011 σ4 0110011 σ3 1000011 σ4 10011100 σ2

011 1100011 σ4 1100011 σ3 00011100 σ1 1100011 σ3

100 11001100 σ1 11001100 σ2 000111100 σ2 11001100 σ2

101 110011100 σ2 11000011 σ4 000110011 σ4 11000011 σ4

11 11100 σ2 0011 σ4 0011 σ3 0011 σ4

Table 2.21: Codebook of a DC-free RLL code with (d = 2, k = 3, N = 5),

η = 98.62%

Source word α(σ1) β(σ1) α(σ2) β(σ2)

0 111000 σ1 000111 σ2

1 0111 σ2 1000 σ1

Table 2.22: Codes constructed that satisfy different DC-free RLL constraints

Constraint η
Number of

states

Number of

source words

d = 1, k = 3, N = 5 98.09% 4 3

d = 2, k = 3, N = 5 98.62% 2 2

d = 1, k = 4, N = 6 97.61% 6 4

d = 1, k = 5, N = 7 98.27% 8 5

d = 2, k = 5, N = 7 97.66% 6 4

66

Table 2.23: Codebook of a DC-free RLL code with (d = 1, k = 5, N = 7), η =

98.27%
Source word α(σ1) β(σ1) α(σ2) β(σ2) α(σ3) β(σ3) α(σ4) β(σ4)

11 011 σ2 100 σ1 011 σ8 011 σ6

01 1100 σ1 0000011 σ6 1100 σ3 1100 σ4

00 0011 σ8 0011 σ2 0011 σ5 111100 σ3

101 00011 σ5 00011 σ8 00011 σ6 1111100 σ1

100 000011 σ6 000011 σ5 11100 σ1 11100 σ7

Source word α(σ5) β(σ5) α(σ6) β(σ6) α(σ7) β(σ7) α(σ8) β(σ8)

11 100 σ8 100 σ4 011 σ5 100 σ3

01 1100 σ3 1100 σ8 1100 σ8 110 σ1

00 0011 σ5 0011 σ6 0011 σ6 0011 σ7

101 00011 σ6 111100 σ1 111100 σ1 00011 σ5

100 11100 σ1 11100 σ3 11100 σ3 000011 σ6

and η = 98.47% shown in Table 2.20. Further improvement of efficiency can

be obtained via partial extensions with larger cmax and/or nmax.

Example (Other DC-free RLL codes): In Table 2.21 we present a very

simple, but highly efficient, multi-state code for the (d = 2, k = 3, N = 5)

constraint. In Table 2.22 we list parameters of other DC-free RLL codes that

we have constructed. Note that still higher efficiencies can be achieved for

these values of d, k and N with larger codebooks.

To compare, a state-of-the-art fixed-length code construction technique

for the (d = 1, k = 3, N = 5) DC-free RLL constraint gives a rate 0.4 code

with η = 94.16%, and the codebook has 18 states, 256 source words and

hundreds of codewords [38]. As shown in Tables 2.19 and 2.22, however, our

proposed construction gives a codebook with only 4 states, 3 source words

and 6 different codewords, and has efficiency η = 98.09%. [38] also proposed

a (d = 1, k = 5, N = 7) DC-free RLL code with 20 states and 16 source words

that results in an efficiency of η = 90.96%. Our construction gives a code with

8 states, 5 source words and η = 98.27% demonstrating that our proposed

variable-length construction technique can significantly reduce the complexity

and improve the efficiency of constrained sequence codes. The codebook is

shown in Table 2.23. Other examples of DC-free RLL codes that we have

constructed are summarized in Table 2.22.

As is evident in the above examples, all the codes we have presented

67

(and the codes we construct in the rest of this paper) are state-independently

decodable. This requires attention during the construction process. For

instance, consider the minimal set where Wr ∈ W (σu) ∩ W (σy) and

Wr /∈ W (σv). This indicates that state σv cannot generate Wr because of the

constraint described by the FSM. But with an appropriate selection of

principal states, state σv would generate another word Ws such that

Ws /∈ W (σu) and Ws /∈ W (σy). State-independent code design would have

Wr and Ws constitute a row, thus satisfying Condition 2.1. For example in

Table 2.13, w(σ1)1 and w(σ2)1 are 011 while w(σ3)1 and w(σ4)1 are 100,

where it is clear that states σ1 and σ2 can generate 011 but not 100, and vice

versa for states σ3 and σ4. Words 100 and 011 constitute the first row, and

Condition 2.1 is satisfied. Given a minimal set that has the

state-independent decoding property, it is readily seen that codebooks

constructed through its partial extensions can be state-independently

decoded.

2.2.2 Multi-state encoding based on n-step FSM

As demonstrated above, different principal states may have a different

number of words, i.e. there may exist i, j such that |W (σi)| 6= |W (σj)|. This

will cause imbalance in the number of words in different states in the

minimal set, i.e., the number of words in different states is unequal, and

hence this may cause a different number of codewords associated with

different states in the codebook after partial extensions. Although, as we

illustrated in the previous section, it may be possible to construct an

extended minimal set where |W (σi)| = |W (σj)| by extending some words,

this approach does not apply for all constraints. For example, with a DC-free

N = 6 constraint, if we select states 2, 4 and 6 as principal states, i.e.

σ1 = 2, σ2 = 4, σ3 = 6, we have

W (σ1) = {01, 10, 11},W (σ2) = {01, 10, 11, 00}, and W (σ3) = {01, 00}. A

feasible codebook requires the number of codewords in α(σi), 1 ≤ i ≤ |ξ| to

be the same. If we choose to concatenate words in W (σ3) to compensate for

68

the imbalance, some words in W (σ1) and W (σ2) become prefixes of words in

W (σ3), and after partial extensions, some codewords in α(σ1) and α(σ2)

become prefixes of words in α(σ3), eliminating the possibility of

state-independent decoding. Alternatively, it is possible to eliminate words

from W (σ1) and W (σ2) to force the same number of words in all the

principal states, however this will result in rate loss.

In this section we extend our construction technique to include the use

of n-step FSMs, and illustrate this extension with DC-free codes because of

their importance in recently-developed VLC systems. In the next section we

consider a special case of n-step FSMs for DC-free codes that can result in

even further enhancement.

n-step FSM

An n-step FSM describes transitions among states where the edge labels

represent the concatenation of n successive edges of the initial FSM. For

example, when the initial FSM contains edge labels of a single symbol, the

labels in the n-step graph have length n. The adjacency matrix of an n-step

FSM is Dn and the n-step transition matrix is Qn. The asymptotic

steady-state distribution π of a n-step FSM is the same as that of the initial

FSM.

Principal states and minimal sets

Given the n-step FSM, the general code construction procedure is

similar to the one introduced above. The concatenation of words and

selection of principal states is the same as that introduced in the previous

section. Should the number of words in the principal states be unequal, we

perform concatenation over some of the words in W (Ψ) in an attempt to

construct an extended minimal set with the same number of rows in each

state. Care must be taken in this step to ensure that the prefix condition is

maintained, and that similarity in the number of words is improved. For

example, it might occur that wr ∈ W (σ1) and wr ∈ W (σ2), where

69

|W (σ1)| < |W (σ2)|. If we concatenate wr only in W (σ1) to increase the

number of words in state σ1, wr in W (σ2) will become a prefix of some words

in W (σ1). If we concatenate wr in both W (σ1) and W (σ2), the inequality in

number of words might become more pronounced. To address this problem,

we must choose an appropriate value of n such that some words can be

concatenated without those problems occurring in the new minimal set. We

call the new minimal set the n-step minimal set.

We observe that in n-step FSMs of DC-free codes with N RDS values,

state 1 and stateN have fewer words than state bN
2
c. Note that with n = N−1,

the all-one word of length N − 1 is generated by state 1 and the all-zero word

of length N − 1 is generated by state N . In addition, those two words do

not occur in any other states in the minimal set. Therefore, it is possible to

concatenate those two words with other words in the minimal set according to

Definition 2.2 to compensate for the imbalance of words without causing the

prefix problem to arise.

This observation that the imbalance of words in the n-step minimal set

can be reduced also holds for n-step FSMs with n = N − 2 where the all-one

word is generated by states 1 and 2 and the all-zero word is generated by states

N − 1 and N − 2. It is straightforward to verify that this observation applies

when n is in the range

n = [

⌈
N

2

⌉
, N − 1]. (2.21)

From this range, we select the n that results in the highest achievable

code rate, as will be discussed in the next subsection.

Example (DC-free N = 6 code) Consider the construction of an n-step

minimal set for the DC-free N = 6 constraint. Using (2.21), we obtain the

range of n as [3, 5]. Selecting all states as principal states, the minimal set for

the 3-step FSM is shown in Table 2.24.

It is clear from this table that there is an unequal number of words

associated with different states in this minimal set. As has been discussed, if

we extend words in this table without due care, we may violate the prefix

70

Table 2.24: The minimal set of a 3-step DC-free code with N = 6
W (σ1) H(σ1) W (σ2) H(σ2) W (σ3) H(σ3) W (σ4) H(σ4) W (σ5) H(σ5) W (σ6) H(σ6)

101 σ2 101 σ3 101 σ4 101 σ5 101 σ6 010 σ5

110 σ2 110 σ3 110 σ4 110 σ5 001 σ4 001 σ5

111 σ4 011 σ3 011 σ4 011 σ5 011 σ6 000 σ3

010 σ1 010 σ2 010 σ3 010 σ4

100 σ1 100 σ2 100 σ3 100 σ4

111 σ5 001 σ2 001 σ3 000 σ2

111 σ6 000 σ1

condition or cause greater imbalance to arise. For example, if we extend the

word 101 in W (σ1), all other occurrences of the word 101 in the same row

should be extended as well, otherwise they will become prefixes of the newly

concatenated word. However, the extension of the word 101 in other columns

in this row will make the imbalance more severe.

Motivated by the observation above, we perform concatenation of the all-

one words in state σ1, σ2, σ3 and of the all-zero words in state σ4, σ5, σ6. The

resulting table is shown in Table 2.25.

Table 2.25: An extended 3-step minimal set of a DC-free code with N = 6,

n = 3
Wc(α1) Hc(α1) Wc(α2) Hc(α2) Wc(α3) Hc(α3) Wc(α4) Hc(α4) Wc(α5) Hc(α5) Wc(α6) Hc(α6)

101 σ2 101 σ3 101 σ4 101 σ5 101 σ6 000010 σ2

111101 σ5 010 σ1 010 σ2 010 σ3 010 σ4 010 σ5

110 σ2 110 σ3 110 σ4 110 σ5 000011 σ3 000011 σ3

111100 σ3 111100 σ4 001 σ2 001 σ3 001 σ4 001 σ5

111011 σ5 100 σ1 100 σ2 100 σ3 100 σ4 000100 σ2

111110 σ5 011 σ3 011 σ4 011 σ5 011 σ6 000001 σ2

111010 σ3 111010 σ4 111010 σ5 000101 σ2 000101 σ3 000101 σ3

111001 σ3 111001 σ4 111001 σ5 000110 σ2 000110 σ3 000110 σ3

111000 σ1 111000 σ2 111000 σ3 111000 σ4 111000 σ5 111000 σ6

111101 σ6 000010 σ1

111011 σ6 000100 σ1

Pruning and maximum possible code rate

Careful extension of words should reduce the imbalance between the

number of words from different states while ensuring that the prefix

condition remains satisfied. However, should an inequality in the number of

words associated with different states remain, it is possible to truncate some

of the words to obtain a pruned version of the extended minimal set that has

the same number of words in each state. We denote this pruned set as

71

W p(Ψ).

The number of words that must be truncated from state σj, denoted u(σj),

is

u(σj) = |W (σj)| −min{|W (σ1)| , |W (σ2)| , ...,
∣∣W (σ|ψ|)

∣∣}. (2.22)

Given Qn and Dn, we can evaluate the probability of the i-th word in

W (σj), 1 ≤ j ≤ |Ψ|, which we denote p(W (σj))i. Then, u(σj) words with

the lowest probabilities in W (σj) are eliminated. We denote the set of words

in each state of W p(Ψ) as W p(σi), 1 ≤ i ≤ |Ψ|, and the set of next states

corresponding to words in W p(σi) as Hp(σi).

Since some words that satisfy the constraint are not used, we are not able

to achieve full capacity. The achievable code rate of W p(Ψ), denoted as C̃n,

is given by (2.23) where l(W p(σk))v denotes the length of the v-th word in

W p(σk), and π̃p = [π̃p(σ1), π̃p(σ2), ..., π̃p(σ|Ψ|)] is the steady-state distribution

of W p(Ψ).

C̃n =

|Ψ|∑
k=1

π̃p(σk)× (
|W p(σj)|−u(σj)∑

v=1

−p(W p(σk))v × log2p(W
p(σk))v)

|Ψ|∑
k=1

π̃p(σk)× (
|W p(σj)|−u(σj)∑

v=1

p(W p(σk))v× l(W p(σk))v)

. (2.23)

Note that π̃p is different from the steady-state distribution of the initial FSM

of the constraint. It is evaluated similar to (2.18), but with p(α(σj))i in (2.18)

replaced with p(W p(σj))i. After evaluating C̃n, we choose to work with the

W p(Ψ) with the highest C̃n and the highest achievable efficiency η̃n = C̃n/C.

Example (DC-free N = 6 code): Based on (2.23), using the approach

outlined in this section where the all-one and all-zero words are extended and

u(σj) words are pruned, the achievable code rates of different n-step FSMs are

shown in Table 2.26. Note that although for illustration we use n = 3 as an

example throughout this section, of the values of n considered C̃n is highest

with n = 4.

Encoding

Since we now have W p(Ψ) which contains the same number of words

in each state, we can perform partial extensions and NGH coding to obtain

72

Table 2.26: Achievable code rates of different n-step FSMs with different values

of n for the DC-free constraint with N = 6
n = 3 n = 4 n = 5

C̃n 0.8448 0.8475 0.8331

η̃n 99.45% 99.76% 98.07%

the codebook in a manner similar to the FSM-based method in the previous

section. As outlined above, the evaluation of the average code rate is given

by (2.20). Within predetermined limits on nmax and/or cmax, an exhaustive

search can be performed to determine the codebook with the highest R̄.

Example (DC-free N = 6 code) Based on Table 2.25 and (2.22), the

words 111101 and 111011 from state σ2, and the words 000010 and 000100

from state σ5, are removed to result in an equal number of words in all states in

the 3-step minimal set. If we use this 3-step minimal set as the codebook, and

perform NGH coding to obtain the assignment of source words, we construct

the codebook shown in Table 2.27 that has an efficiency of 92.8%.

By performing partial extensions over this 3-step minimal set, we are able

to construct codebooks with higher average code rates. Some results are listed

in Table 2.28.

Lastly, we note that the construction process introduced in this section

can be used for a variety of constraints, and in some instances can result in

a codebook with few principal states, or an extended minimal set with an

equal number of words in all states so that so pruning is not needed. In

the next section we focus on DC-free codes for VLC systems, and we show

that appropriately designed DC-free codebooks can benefit from both of these

conditions.

2.2.3 Examples: codes for visible light communications

In the previous section we showed that, with our proposed encoding

method, codebooks that satisfy the DC-free N = 5 constraint can be

constructed with over 99% efficiency and with fewer codewords than the

4B6B code described earlier. Therefore, our codes can be considered superior

in terms of both efficiency and implementation complexity. In this

73

Table 2.27: Codebook of a pruned version of the extended 3-step minimal set

of a DC-free code with N = 6
Source

word
α(σ1) β(σ1) α(σ2) β(σ2) α(σ3) β(α3)

000 101 σ2 101 σ3 101 σ4

001 110 σ2 110 σ3 110 σ4

10 111101 σ5 010 σ1 010 σ2

110 111110 σ5 100 σ1 100 σ2

010 111011 σ5 011 σ3 011 σ4

11100 111010 σ3 111010 σ4 111010 σ5

011 111100 σ3 111100 σ4 001 σ2

1111 111001 σ3 111001 σ4 111001 σ5

11101 111000 σ1 111000 σ2 111000 σ3

Source

word
α(σ4) β(σ4) α(σ5) β(σ5) α(σ6) β(σ6)

000 101 σ5 101 σ6 000010 σ2

001 110 σ5 000011 σ3 000011 σ3

10 010 σ3 010 σ4 010 σ5

110 100 σ3 100 σ4 000100 σ2

010 011 σ5 011 σ6 000001 σ2

11100 000101 σ2 000101 σ3 000101 σ3

011 001 σ3 001 σ4 001 σ5

1111 000110 σ2 000110 σ3 000110 σ3

11101 111000 σ4 111000 σ5 111000 σ6

Table 2.28: Highest average code rates of DC-free code with N = 6 codebooks

with different size
nmax 25 33 41

R̄ 0.801 0.8047 0.8054

η 94.29% 94.72% 94.81%

74

subsection, we now focus on coding for the DC-free constraint with N = 7,

and compare our results with the 8B10B codes.

We present codes constructed for VLC systems based on n-step FSMs.

We show that based on n-step FSMs with an even n, the number of principal

states in a DC-free code can be reduced to N/2 when N is even and either

bN/2c or dN/2e when N is odd, and that an extended minimal set with an

equal number of words in each state can be obtained such that η̃ = 100%.

1 2 310

00

11 11

4

00

11

5

00

6

00

11

7

00

11

10/01 10/01 10/01 10/01 10/01 01

Figure 2.19: 2-step FSM of the DC-free constraint with N = 7.

The reduction of states is based on the observation that with DC-free

constraints, when n is even, the n-step edge graphs subdivide into two

non-intersecting FSMs. An example of this phenomenon is shown in Fig.

2.19, where it is evident that in this 2-step edge graph of the DC-free

constraint with N = 7, the FSM comprised of the even-numbered states is

not connected to the FSM comprised of the odd-numbered states. However,

as discussed in [39], each of these smaller FSMs generate all constraint

satisfying sequences, and therefore either one can be used as the basis for our

variable-length code design. It can also be verified that the 2-step FSM

comprised of the three even-numbered states has the steady-state probability

distribution π = [0.2929.0.4142, 0.2929], whereas the 2-step FSM of the four

odd-numbered states has the steady-state probability distribution

π = [0.1464, 0.3536, 0.3536, 0.1464].

Following the construction technique introduced above with the 2-step

FSM, we now consider the construction process specifically for DC-free codes

with any value of N . We show that it is always possible to construct an

extended minimal set with a maximum achievable efficiency η̃ = 100% with

only N/2 principal states when N is even, and with bN/2c or dN/2e
75

principal states when N is odd, depending on whether we work with the set

of even-numbered states or the set of odd-numbered states. We begin with

the following example for N = 7 with the set of even-numbered states.

Example (DC-free codes with N = 7): When we consider the set of even-

numbered states, the minimal set of the 2-step FSM is shown in Table 2.29.

The achievable code rate of this codebook is 0.8858, which is the capacity

of DC-free constraint with N = 7, confirming that all constraint-satisfying

sequences are generated by this three-state FSM.

We extend the words 11 in W (σ2),W (σ4), and 00 in W (σ4),W (σ6) by

tracing the edges corresponding to 11 and 00 to construct Table 2.30. Then,

we extend word 1111 in W (σ2), and 0000 in W (σ6) by once again tracing

the edges corresponding to 11 and 00, and obtain an extended minimal set

with ξ = 9 without causing the prefix problem. Note that with this extended

minimal set, the achievable efficiency is 100% since no pruning is performed. If

we use this minimal set as the codebook and perform the encoding procedure as

outlined in this section, we obtain the codebook in Table 2.31 with R̄ = 0.8462

and η = 95.53%. By performing partial extensions with nmax = 15, we have

constructed a codebook with R̄ = 0.8535 and η = 96.35%.

Table 2.29: A 2-step minimal set of DC-free code N = 7
W (σ2) H(σ2) W (σ4) β(σ4) H(σ6) W (σ6)

10 σ2 10 σ4 10 σ6

01 σ2 01 σ4 01 σ6

11 σ4 11 σ6 00 σ4

00 σ2

Table 2.30: An extended 2-step minimal set of DC-free code N = 7
W (σ2) H(σ2) W (σ4) β(σ4) H(σ6) W (σ6)

10 σ2 10 σ4 10 σ6

01 σ2 01 σ4 01 σ6

1110 σ4 1110 σ6 0010 σ4

1101 σ4 1101 σ6 0001 σ4

1111 σ6 1100 σ4 0011 σ6

1100 σ2 0010 σ2 0000 σ2

0001 σ2

0011 σ4

76

Table 2.31: A DC-free N = 7 codebook, η = 95.53%
Source

words
α(σ2) β(σ2) α(σ4) β(σ4) α(σ6) β(σ6)

10 10 σ2 10 σ4 10 σ6

11 01 σ2 01 σ4 01 σ6

0111 111101 σ6 0010 σ2 0010 σ4

001 111100 σ4 0011 σ4 0011 σ6

0110 111110 σ6 0001 σ2 0001 σ4

0101 1101 σ4 1101 σ6 000010 σ2

000 1100 σ2 1100 σ4 000011 σ4

0100 1110 σ4 1110 σ6 000001 σ2

Example (DC-free codes with N = 7): We now consider the

construction of a codebook with the set of odd-numbered states as principal

states. The minimal set is shown in Table 2.32, where the principal states are

σ1, σ3, σ5, σ7. As in the example above, we perform extensions by tracing the

edges corresponding to 11 and 00 to obtain an extended minimal set with an

equal number of words in each principal state. By performing NGH coding

over this extended minimal set, we obtain a codebook with R̄ = 0.8405 and

η = 94.88%, which is shown in Table 2.33. By performing partial extensions

with nmax = 17, we have constructed a codebook with R̄ = 0.8468 and

η = 95.59%.

The above examples demonstrate that when N = 7, it is possible to

extend the all-one and all-zero words are extended until there are an equal

number of words associated with each state. The fact that this is possible for

an arbitrary N where N ≥ 3 is given in the proof of the following theorem.

Note that when N = 2 the code construction is straightforward based on the

minimal set.

Table 2.32: A 2-step minimal set of DC-free code N = 7 with the set of odd

states as principal states
W (σ1) H(σ1) W (σ3) β(σ3) H(σ5) W (σ5) H(σ7) W (σ7)

10 σ1 10 σ3 10 σ5 01 σ7

11 σ3 01 σ3 01 σ5 00 σ5

11 σ5 11 σ7

00 σ1 00 σ3

77

Table 2.33: A DC-free N = 7 codebook, η = 94.88%
Source

words
α(σ1) β(σ1) α(σ3) β(σ3) α(σ5) β(σ5) α(σ7) β(σ7)

10 10 σ1 10 σ3 10 σ5 000001 σ3

010 1110 σ3 1110 σ5 0001 σ3 0001 σ5

0110 1101 σ3 1101 σ5 1101 σ7 00000010 σ1

0111 1100 σ1 1100 σ3 1100 σ5 00000011 σ3

00 111110 σ5 01 σ3 01 σ5 01 σ7

11000 111101 σ5 111101 σ7 000010 σ1 000010 σ3

11001 111100 σ3 111100 σ5 000011 σ3 000011 σ5

1101 11111101 σ7 0010 σ1 0010 σ3 0010 σ5

111 11111100 σ5 0011 σ3 0011 σ5 0011 σ7

Theorem 2.1 For DC-free constraints with any N where N ≥ 3, we can

obtain an extended minimal set with an equal number of words in all states

based on extension of the all-zero and all-one words, where only N/2 states

are selected as principal states when N is even, and when either bN/2c or

dN/2e states are selected as principal states when N is odd. These codes have

achievable efficiency η̃ = 100%, and are instantaneously decodable.

Proof. When N = 3, 4 the proof is straightforward. We now prove for the

situations where N > 4. We consider 2-step FSMs, and consider odd and even

N separately.

i) We first consider odd N with the set of bN
2
c even-numbered states

as principal states, i.e. Ψ = {σ2, σ4, ..., σN−1}. It is readily seen that the

number of words in each state in Ψ is NΨ = {3, 4, 4, ..., 4, 3}, because for a

state σj ∈ {σ4, σ6, ..., σN−3}, W (σj) = {01, 10, 00, 11}, and for the other two

states, W (σ2) = {01, 10, 11} and W (σN−1) = {01, 10, 00}. Starting from a

state σj, another state σi, i ∈ {j + 2, j − 2} is reached in a single extension

with label 11 (when i > j) or 00 (when i < j). With each extension we reach

another state in Ψ. Since |Ψ| = bN/2c, the maximum number of extensions

that result in the all-one or all-zero sequence is bN/2c − 1.

We denote ∆Nσj
as the number of new words generated from an

extension of the edge with label 11 or 00. Consider σj = σ2, and consider the

number of words that can occur as an extension of the edge 11. Since that

edge has reached state σ4, when 4 < N − 1 there are four possible words:

78

1101, 1110, 1100, 1111 since W (σ4) = {01, 10, 00, 11}, and hence ∆Nσj
= 4.

Since the word 1111 has reached state σ6, when 6 < N − 1 there are four

extended words 111101, 111110, 111100, 111111 hence ∆Nσj
= 4 (otherwise we

reach extension number bN/2c − 1). Continuing in this manner, it can be

deduced that in the first bN/2c − 2 extensions, ∆Nσj
= 4. In extension

number bN/2c − 1, however, ∆Nσj
= 3 since it reaches state σN−1 where

|W (σN−1)| = 3, and the extended words do not include the all-one word.

Therefore, the total number of words Nσj in state σj once the all-one word is

no longer in the set is:

Nσ2 =
∑

k=2,4,6,...,N−1

∆Nσk

= 3 + 4(bN/2c − 2) + 3− (bN/2c − 1)

= 3bN/2c − 1.

(2.14)

Similar analysis holds for σN−1. The first extension of the edge 00 from σN−1

results in four extended words 0001, 0010, 0011, 0000 since

W (σN−3) = {01, 10, 11, 00}, hence ∆Nσj
= 4. It can be deduced that in the

first bN/2c − 2 extensions ∆Nσj
= 4, and the all-zero word remains in the set.

In extension number bN/2c − 1, ∆Nσj
= 3, and this is the first extension that

does not include the all-zero word. Therefore, the total number of words Nσj

in state σj once the all-zero word no longer appears in this state is also

Nσj = 3bN/2c − 1.

For σj ∈ {σ4, σ6, ..., σN−3}, both 11 and 00 in are traced during extensions.

It can be verified that the number of extensions of the all-one word is N−1
2
− j

2
,

where ∆Nσj
= 4 in the first N−1

2
− j

2
− 1 extensions and ∆Nσj

= 3 in the last

extension, since it has reached state σN−1. Similarly, the number of extensions

of the all-zero word is j
2
− 1 where ∆Nσj

= 4 in the first j
2
− 2 extensions and

∆Nσj
= 3 in the last extension, since it has reached state σ2. Therefore, the

total number of words Nσj in state σj once the all-one and the all-zero words

are no longer in the set is:

79

Nσj = 4 + 4(bN/2c − j

2
− 1)+

3 + 4(
j

2
− 2) + 3− (bN/2c − 1)

= 3bN/2c − 1.

(2.15)

Thus if all principal states are extended just to the point where they no longer

contain either the all-zero or all-one words, each of the principal states Ψ =

{σ2, σ4, ..., σN−1} have 3bN/2c − 1 words in the extended minimal set, and

hence η̃ = 100% since no pruning is required to construct a set in which all

principal states have the same number of words.

ii) When we choose odd-numbered N with the set of odd states, similar

to the above analysis, the total number of words Nσj in state σj ∈ {σ1, σN}

once the all-one or all-zero words are no longer in the set is

Nσj = 2 + 4(dN/2e − 2) + 2− (dN/2e − 1)

= 3dN/2e − 3,
(2.16)

and the total number of words Nσj in state σj ∈ {σ3, σ5, ..., σN−2} once the

all-one or all-zero word is no longer in the set is

Nσj = 4 + 4(dN/2e − j + 1

2
− 1)+

2 + 4(
j + 1

2
− 2) + 2− (dN/2e − 1)

= 3dN/2e − 3.

(2.17)

Therefore all states have 3dN/2e − 3 words, and η̃ = 100%.

iii) Similarly, when we choose even N with either the set of

even-numbered or odd-numbered states, the total number of words Nσj in

state σj ∈ {σ1, σ3, ..., σN−1} or σj ∈ {σ2, σ4, ..., σN} after all extensions is

Nσj = 3(
N

2
)− 2, (2.18)

so there is the same number of words in all principal states of the extended

minimal set and η̃ = 100%.

iv) We now prove the words in the extended minimal set are prefix-free

such that they are instantaneously decodable. First we observe that in the

80

minimal set W (Ψ), no word is a prefix of another. Therefore, the prefix

problem could only have occurred if a word Wq ∈ W (σu),W (σv) is extended

in σu, but is not extended in σv. During the extensions described in this

proof, only the all-one word or all-zero word is extended. Therefore, if the

all-one word Wq ∈ {W (σu),W (σv)}, it is extended in σu and it is also

extended in σv, since extensions continue until the all-one word is no longer

in the set. Similar analysis holds for the all-zero word. Hence, the prefix

problem is avoided and codebooks constructed based on these balanced

extended minimal sets are instantaneously decodable.

Recall that the 8B10B code employed in VLC has R = 0.8. Tables 2.31

and 2.33 present simple codes with code rates R̄ = 0.8462 and R̄ = 0.8405,

respectively. With similar high code rates, the codes proposed with the

single-state variable-length coding scheme in [18] include significantly more

and longer words. Thus with multi-state encoding, we can construct codes

with fewer and shorter codewords to satisfy DC-free constraints for VLC.

81

Chapter 3

Applications

In this chapter we discuss applications of our proposed variable-length

constrained sequence codes in emerging data storage devices especially flash

memories. We propose novel constrained coding schemes to mitigate inter-

cell interference and deal with cell leakage. The proposed schemes have less

redundancy compared with conventional schemes, and result in better bit error

rate performance. The contents of this chapter were published in [20] and [21].

3.1 Flash memory basis

3.1.1 Structure and programming schemes

In this subsection we review the basics of flash memory, its different

structures, and its programming schemes.

The basic storage unit of flash memories is a floating-gate transistor called

a cell. Electrons can be injected or removed from a cell, and information is

represented by modulating the amount of charge present on the floating gate.

Flash memory is classified based on the number of bits each cell represents:

the single-level cell (SLC), multi-level cell (MLC) and triple-level cell (TLC)

architectures which store 1, 2 and 3 bits in each cell, respectively. In flash

memory, writing or programming means injecting electrons into cells while

erasing is the process of removing electrons from cells.

Cells are organized as blocks in flash memory, where a block is the basic

82

unit of erasure. One block has several word-lines which represent a series of

cells in either an all-bit-line structure or an even/odd bit-line structure. In

flash memories of an all-bit-line structure, each cell stores lb bits where each

word-line consists of lb pages. That is, for SLC flash memory, one word-line

contains only one page, while for MLC and TLC, a word-line contains two

and three pages respectively. In contrast to [40], we denote the lower voltage

level in SLC as a bit of value 1 and the higher voltage level as a bit of value

0. For MLC and TLC, we assume that bits are stored in a cell according to

the Gray mappings given in Tables 3.1 and 3.2. In these representations, each

bit corresponds to one specific page: s0 is the lowest voltage level, s3 is the

highest voltage level in MLC and s7 is the highest voltage level in TLC. In

flash memories using an even/odd bit-line structure, even and odd bit-lines

are interleaved along pages, dividing one page in an all-bit-line structure into

two pages. Therefore, with the even and odd bit-line structure, some circuits

and resources can be shared at the expense of more severe ICI, as discussed in

[41] [42].

There are two basic programming schemes in flash memory: multi-page

programming and full-sequence programming. In multi-page programming,

data is programmed on a page-by-page basis. The first bit in each cell, which

corresponds to page 1, is programmed first, before proceeding to the second

and third bits corresponding to pages 2 and 3 respectively. When

programming bits on higher-level pages, a read operation is first required to

determine the level to be programmed. Therefore in flash memories storing lb

bits per cell, lb programming steps are needed to fully program a cell with

multi-page programming. In contrast, in full-sequence programming, all bits

in a cell are programmed simultaneously regardless of the number of pages

on a word-line. Full-sequence programming can achieve a higher throughput

but suffers from greater ICI [42]. In this chapter we focus on multi-page

programming with an all-bit-line structure, and consider the use of

constrained codes to limit ICI in this structure.

83

Table 3.1: Gray mapping for MLC

State s0 s1 s2 s3

page 1 1 1 0 0

page 2 1 0 0 1

Table 3.2: Gray mapping for TLC

State s0 s1 s2 s3 s4 s5 s6 s7

page 1 1 1 1 1 0 0 0 0

page 2 1 1 0 0 0 0 1 1

page 3 1 0 0 1 1 0 0 1

3.1.2 Inter-cell interference

Flash memory has gained much attention for non-volatile storage

systems because of its low cost and high densities [43] [44]. Apart from its

many merits, however, flash memory also suffers from some deficiencies, one

of which is inter-cell-interference (ICI). ICI arises from parasitic capacitances

between physically adjacent cells such that when charge is being inserted into

one cell, charge may also be added to the floating gates of the neighboring

cells, resulting in a rise of their voltage levels. ICI is becoming increasingly

problematic because with advances in scaling technology, the density of cells

is increasing dramatically. Simultaneously, more information bits are being

stored in each cell, resulting in narrower threshold voltage distributions.

Both issues lead to ICI having a more severe impact in flash memory.

Recently, constrained sequence codes have been successfully applied in

flash memory systems to reduce the effect of ICI [40] [45] [46] [47]. The capacity

of ICI-free balanced codes and ICI-free write-once memory codes is derived in

[40]. In [45], constrained codes are used to limit ICI by setting an ICI severity

function beforehand; this approach is extended to two-dimensional cases in

[46]. RLL codes are employed to mitigate ICI in [47] by forbidding the most

severe ICI pattern.

In the following, we apply our variable-length coding technique to limit

or remove ICI in flash memory with multi-page programming.

84

3.2 Coding for flash memory with multi-page

Programming [20]

In flash memory, ICI occurs when a cell with low charge is surrounded by

cells with high charge. In all-bit-line systems we consider the patterns written

to cells along an individual word-line. In [47], the use of d = 1 RLL codes is

proposed in order to forbid the occurrence along a word-line of the pattern that

introduces the most severe ICI. For example, the scheme proposed in [47] that

uses an RLL code and NRZI coding forbids the pattern 010 which can result

in significant ICI in SLC flash memory. However, this scheme also forbids

the pattern 101 which does not contribute significantly to ICI. Forbidding

this second pattern lowers the code rate unnecessarily. According to [48], in

MLC s3s0s3, s3s1s3 and s3s2s3 are the patterns that are the most susceptible

to ICI. [47] also proposes the use of d = 1 RLL codes on page 2 in MLC to

forbid the pattern s3s0s3. However, RLL codes are not optimal for mitigating

ICI because, while they forbid the most severe ICI pattern, they also forbid

other patterns that do not contribute to ICI which results in an unnecessary

reduction in code rate. In this section we derive constraints and minimal set

representations for SLC, MLC and TLC flash memories that more precisely

mitigate ICI based on the observation of the Gray mapping schemes previously

shown in Tables 3.1 and 3.2. In the next section we present highly efficient

codes that satisfy these constraints.

3.2.1 Page-1 constraint

In this subsection we present the Page-1 constraint, where constrained

coding is performed on page 1 to forbid pattern 010. We first discuss the

Page-1 constraint for SLC which is a special case since SLC only has one page

in each word-line. We then discuss the Page-1 constraint for MLC and TLC.

85

1 2 3

0

1
1

1
0

Figure 3.1: FSM of Page-1 constraint.

SLC

For SLC, it is sufficient to forbid only the pattern 010 in order to remove

the effect of ICI. We denote this constraint as the Page-1 constraint. The FSM

of this Page-1 constraint is shown in Fig. 3.1. The corresponding adjacency

matrix is

D =


1 1 0

0 0 1

1 0 1

 , (3.1)

from which the capacity of this Page-1 constraint is derived as C1 = 0.8114,

as was previously reported in [40].

As discussed in Chapter 2.1 of this thesis, according to criteria 2 and 3,

state 1 is selected as the specified state since it has highest maximum

possible code rate. The corresponding minimal set S1 is established as

S1 = {0, 110, 1110, 11110, ...}. Truncating this set to make it practical results

in an incomplete set because of the loop that exists in state 3. Codes

constructed for this constraint are reported later in this section.

MLC/TLC

Recall that with multi-page programming, which we are considering in

this chapter, data is programmed and fetched in the unit of pages. As a

result, in order to avoid patterns that cause significant ICI, we now show that

it is sufficient to impose the Page-1 constraint on MLC/TLC.

As shown in Tables 3.1 and 3.2, the bit value 1 on page 1 corresponds to

the half of the states with lower voltages, while bit 0 on that page corresponds

to the other half of the states with higher voltages. Accordingly, it follows

86

that if we perform Page-1 constrained coding to forbid the pattern 010 only

on page 1, we eliminate the possibility of occurrence of the most severe ICI

inducing patterns.

To demonstrate the usefulness of this constraint, note that introducing the

Page-1 constraint in MLC forbids the following patterns: s3s0s3, s3s1s3, s2s0s2,

s2s1s2, s3s0s2, s3s1s2, s2s0s3 and s2s1s3. In these patterns, the victim cell is in

state s0 or s1. Since errors in state s0 and s1 contribute to most of the error

events caused by ICI [41] [48], this Page-1 constraint is able to effectively

mitigate the impact of ICI.

The same reasoning holds for TLC. Introducing the Page-1 constraint

forbids the patterns sisjsi, i ∈ {4, 5, 6, 7}, j ∈ {0, 1, 2, 3}, where the victim cell

is in state s0, s1, s2 or s3 which contribute to most of the error events caused

by ICI. Note that all the patterns that we forbid by imposing the Page-1

constraint are ICI patterns; no other patterns are unnecessarily forbidden.

We now consider the capacity of the Page-1 constraint for MLC and

TLC. Note that since we perform constrained coding on only one page while

leaving data on the other pages uncoded, the capacity of the Page-1

constraint for MLC is C1+1
2

= 0.9057 bit/page/cell and for TLC it is

C1+2
3

= 0.9371 bit/page/cell.

3.2.2 Page-2 constraints

Page-2A constraint

Based on the use of the Gray mapping, we propose constraints for

MLC/TLC that have a higher capacity than the Page-1 constraint, at the

cost of reduced ICI mitigation. Focus on page 2 instead of page 1. By

considering state sequences that are possible with bit values on page 2, it is

seen that the most severe ICI patterns are associated with the pattern 111 on

page 2. Accordingly, if we perform constrained coding on page 2 to forbid

the pattern 111 on that page, the sequence s3s0s3 is prohibited in MLC, and

the sequences sisjsi, i ∈ {6, 7}, j ∈ {0, 1} will not occur in TLC. These are

the patterns that induce the most severe ICI. We note that some patterns

87

1 2 3

1
1

0

0
0

Figure 3.2: FSM of Page-2A constraint.

1 2 3

0

0 0

1 1

Figure 3.3: FSM of Page-2B constraint.

that do not induce ICI are also prohibited, however, as we now demonstrate,

the code rate possible with this constraint still exceeds that which is possible

with the Page-1 constraint.

The FSM of the Page-2 constraint is shown in Fig. 3.2. The adjacency

matrix is

D =


1 1 0

1 0 1

1 0 0

 , (3.2)

from which it follows that the capacity of the FSM in Fig. 3.2 is C2A = 0.8791.

Since only data on page 2 is encoded, the capacity of the Page-2A

constraint for MLC and TLC is C2A+1
2

= 0.9396 bit/page/cell and

C2A+2
3

= 0.9597 bit/page/cell, respectively. According to criterion 2.1 as

discussed in Chapter 2.1 of this thesis, we select state 1 as the specified state

since it results in a complete minimal set. The minimal set of the Page-2A

constraint is S2A = {0, 10, 110}.

Page-2B constraint

The Page-2A constraint has a relatively high capacity at the cost of

reduced ICI suppression, since fewer ICI patterns are forbidden. As a

compromise, we propose a modification of the Page-2A constraint to

eliminate more ICI patterns with only a small penalty in capacity.

88

Consider MLC flash memories. As discussed in the previous section, by

imposing the Page-2A constraint, the most severe ICI pattern 303 is

forbidden, and hence the ICI pattern 30303 is also forbidden. However, we

observe that the patterns 30203 and 30103 also result in considerable ICI,

and therefore can significantly impact the performance. Thus, we propose the

Page-2B constraint to not only forbid the pattern 303, but also the patterns

30203 and 30103. This can be accomplished by imposing a constraint on

page 2 that forbids patterns 111 and 11011, in conjunction with the Grey

mapping as shown in Table 3.1. For TLC flash memories, the Page-2B

constraint forbids sequences sisjsksjsi, i ∈ {6, 7}, j ∈ {0, 1}, k ∈ {2, 3, 4, 5}

and hence also effectively suppresses ICI.

The FSM of the Page-2B constraint is shown in Fig. 3.3. The adjacency

matrix is

D =


1 1 0

1 0 1

0 1 0

 , (3.3)

from which it follows that the capacity of the FSM in Fig. 3.3 is C2B =

0.849549161 ≈ 0.84955.

Note that since only data on page 2 is encoded, the capacity of the Page-

2B constraint for MLC and TLC is C2B+1
2

= 0.92478 bit/page/cell and C2B+2
3

=

0.94985 bit/page/cell, respectively. Note that as with the Page-2A constraint,

although the Page-2B constraint excludes some non-problematic patterns, high

capacities can still be achieved.

Because of the loops in the FSM, the minimal set of the Page-2B

constraint has an infinite number of words. As discussed in Chapter 2.1,

according to criteria 2 and 3, state 1 is selected as the specified state. The

corresponding minimal set S2B is established as

S2B = {0, 10, 1100, 110100, 11010100, 1101010100, ...}. Practical minimal sets

representing this constraint are therefore incomplete.

Clearly, the capacity of the Page-2A and Page-2B constraints is higher

than that of the Page-1 constraint but with reduced ICI mitigation since some

89

of the less severe ICI patterns are not forbidden. The choice between the

Page-1, Page-2A and Page-2B constraints is up to the designer, depending on

the system cost and performance requirement. We note that other constraints

are straightforward to derive, model and analyze using this approach.

3.2.3 Results of codes constructed with

capacity-approaching code rates

Upper bound on code rate

As previously discussed, the minimal set S2A has a finite number of words

while the minimal sets S1 and S2B have an infinite number of words. When

designing practical codebooks using the construction technique outlined in

[24], we must construct minimal sets S ′1 and S ′2B with a finite number of words

by eliminating words in the original minimal sets. Since this results in some

constraint-satisfying sequences being abandoned, we are not able to achieve

capacity with S ′1 and S ′2B, but by retaining an appropriate number of shorter

words in the minimal sets, we are able to approach capacity. From (1.9) it

is evident that longer codewords have less of an impact on the achievability

of capacity, therefore we retain the |LM | words with the shortest lengths in

S1 and S2B to construct S ′1 and S ′2B. The upper bound on the code rate for

the Page-1 constraint of SLC, C̃1, can be determined according to Eq. (1.10).

Similar analysis also holds for the Page-2B constraint.

Along with other results, we present the upper bounds on code rate for

the Page-1 and Page-2 constraints for various values of |LM | in Tables 3.3 and

3.5. Similar to the analysis of capacity, for the Page-1 constraint the sum

rate for MLC and TLC flash memory is C̃1+1
2

and C̃1+2
3

respectively. For the

Page-2B constraint the sum rate of MLC and TLC flash memory is C̃2B+1
2

and

C̃2B+2
3

respectively. For the Page-2A constraint, the code rate upper bound is

0.9396 bit/page/cell and 0.9597 bit/page/cell for MLC and TLC respectively.

90

Table 3.3: Parameters of codes constructed to satisfy the Page-1 constraint.

Capacity of SLC: 0.8114, capacity of MLC: 0.9057, capacity of TLC: 0.9371

|LM | 4 6 8 10 12 14

N c 28 46 64 64 67 118

cmax 11 15 13 15 17 23

C̃1 for SLC 0.7529 0.7947 0.8062 0.8097 0.8108 0.8112

ηmax 92.79% 97.94% 99.36% 99.79% 99.93% 99.98%

R̄ 0.7507 0.7917 0.8032 0.8065 0.8069 0.8082

η 92.52% 97.57% 98.99% 99.39% 99.45% 99.61%

C̃1 for MLC 0.8764 0.8973 0.9031 0.9048 0.9054 0.9056

ηmax 96.77% 99.08% 99.71% 99.91% 99.97% 99.99%

R̄ 0.8754 0.8959 0.9016 0.9033 0.9034 0.9041

η 96.65% 98.91% 99.55% 99.73% 99.75% 99.82%

C̃1 for TLC 0.9176 0.9316 0.9354 0.9366 0.9369 0.9371

ηmax 97.92% 99.41% 99.82% 99.95% 99.98% 99.99%

R̄ 0.9169 0.9306 0.9344 0.9355 0.9356 0.9361

η 97.87% 99.30% 99.71% 99.83% 99.84% 99.89%

Table 3.4: Parameters of codes constructed to satisfy the Page-2A constraint.

Capacity of MLC: 0.9396, capacity of TLC: 0.9597

|LM | 3

N c 27

cmax 9

R̄ for MLC 0.9373

η for MLC 99.76%

R̄ for TLC 0.9582

η for TLC 99.83%

91

Table 3.5: Parameters of codes constructed to satisfy the Page-2B constraint.

Capacity of MLC: 0.92478, capacity of TLC: 0.94985

|LM | 4 6 8 10

N c 28 41 50 73

cmax 10 19 22 27

C̃2B for MLC 0.91939 0.92429 0.92473 0.92477

ηmax 99.417% 99.947% 99.995% 99.999%

R̄ 0.91721 0.92240 0.92280 0.92285

η 99.181% 99.743% 99.786% 99.791%

C̃2B for TLC 0.94627 0.94953 0.94982 0.94985

ηmax 99.623% 99.966% 99.997% 99.999%

R̄ 0.94477 0.94827 0.94853 0.94857

η 99.465% 99.833% 99.861% 99.865%

Code construction

We now present results for variable-length codes constructed for the

constraints introduced above.

For the Page-1 constraint, the Page-2B constraint and for each value of

|LM | shown in Tables 3.3 and 3.5, we list parameters of high-rate codes we

have constructed, including the number of codewords in the codebook N c, and

the maximum length of codewords in the codebook cmax. As noted above, we

also present the upper bounds on code rate for SLC and the sum rates for

MLC and TLC flash memories and the highest achievable efficiency ηmax. We

then present the average code rate R̄ and the efficiency η of high-rate codes

we have constructed. For the Page-2A constraint, since the minimal set is

complete with |LM | = 3 words, in Table 3.4 we present parameters of a high

rate code that satisfies this constraint. Although codes in these tables have

rates very close to capacity, we note that codes with still higher efficiencies

can be constructed by expanding the search space.

The code tables for many of the codes referred to in Tables 3.3, 3.4 and

3.5 are too large to list in this thesis, therefore we provide codebooks for some

other simpler codes as examples. For example, as noted in Table 3.3, starting

92

with a minimal set with |LM | = 12, we constructed a code for MLC with

average rate 0.9034 that achieves 99.75% of capacity of the Page-1 constraint.

The codebook for that code has 67 codewords and the longest codeword has

length 17. Since that codebook is too large to list here, in Table 3.6 we list

another codebook for the Page-1 constraint that contains only 12 codewords

but that still achieves 99.36% of capacity. Note that the codewords in this

code are just the words in the minimal set with lengths less than or equal to

13.

Table 3.6: A codebook for the Page-1 constraint that achieves 99.36% of

capacity for MLC

Source words Codewords

0 0

10 110

110 1110

1110 11110

11110 111110

111110 1111110

1111110 11111110

11111110 111111110

111111110 1111111110

1111111110 11111111110

11111111110 111111111110

11111111111 1111111111110

Table 3.7: A codebook for the Page-2A constraint that achieves 98.83% of

capacity for MLC

Source words Codewords

0 0

10 10

11 110

For the Page-2A constraint, although we constructed a code with 27

codewords that achieves 99.76% of capacity for MLC, we choose to present a

93

Table 3.8: A codebook for the Page-2B constraint that achieves 99.12% of

capacity for MLC

Source words Codewords

00 00

10 10

01 010

110 1100

1110 01100

11110 110100

111110 0110100

1111110 11010100

11111110 011010100

111111110 1101010100

1111111110 01101010100

11111111110 110101010100

111111111110 0110101010100

1111111111110 11010101010100

11111111111110 011010101010100

111111111111110 1101010101010100

1111111111111110 01101010101010100

11111111111111110 110101010101010100

111111111111111110 0110101010101010100

1111111111111111110 11010101010101010100

11111111111111111110 011010101010101010100

111111111111111111110 1101010101010101010100

111111111111111111111 01101010101010101010100

94

very simple codebook in Table 3.7 for MLC with rate 0.92855 that achieves

98.83% of capacity. For the Page-2B constraint with |LM | = 12, we have

constructed a code for MLC with rate 0.9230 that achieves 99.81% of

capacity. The codebook for that code contains 111 codewords with a

maximum codeword length of 32. Due to space limitations, we list a different

codebook in Table 3.8 that has only 23 codewords and a maximum codeword

length of 23 but still achieves 99.12% of capacity.

Recall that the d = 1 binary RLL code proposed in [47] has rate

0.667, 0.833 and 0.889 for SLC, MLC and TLC flash memories. When we

consider our codes, we note that not only do our codes have higher average

code rates but that they also ensure that more ICI inducing patterns will not

occur. These benefits arise from a more explicit description of the constraints

and utilization of variable-length constrained sequence codes.

Lastly, we note that it is straightforward to extend our code construction

approach to the design of constrained sequence codes for other constraints of

importance in emerging flash memories in which each cell can store more than

three bits.

3.2.4 Error control inherent in the constrained

sequence codes

Potential error control properties of constrained sequence codes can be

exploited during their decoding, and a well-known problem that arises during

decoding of constrained sequence codes is error propagation. As we outline in

this section, there is inherent error control capability in our proposed Page-

1 and Page-2 constrained sequence codes. We now discuss how we can take

advantage of the error control capability inherent within these codes to improve

overall performance.

The decoder of the Page-1 and Page-2 constrained sequence codes is

implemented using a codebook. The words in the minimal set satisfy the

prefix condition, as do codewords in its partial extensions [25]. Therefore, the

decoding process can be implemented with an increasing block decoder. This

95

decoder keeps a list of codeword lengths ci, ci ∈ [cmin, cmax] where cmin is the

minimum length of codewords. The size of the decoding block increases from

cmin to cmax. As the received sequence enters the decoder, the decoding block

recognizes the next codeword with length starting from the initial size cmin.

If the first cmin bits in the received bit sequence do not comprise a codeword,

the block size increases to the next value of ci and decides if the

corresponding received bit sequence is a codeword or not. This process is

repeated until the size reaches cmax. For illustration purposes we take the

code in Table 3.6 as an example; the detailed decoding procedure for that

codebook is demonstrated in Algorithm 2.

Next we introduce the implicit error correction capabilities in the Page-

1 and Page-2 constraint. In Page-1 constrained codes, the pattern 010 is

forbidden. At the receiver, the occurrence of the forbidden pattern is possible

only if one or more errors have occurred during transmission. Note that if a

codeword is corrupted such that pattern 010 occurs at the receiver, the receiver

does not recognize it as a valid codeword, as shown in Algorithm 2. Similarly,

in the Page-2A and Page-2B constraints, if a codeword is corrupted such that

the pattern 111 (or 111 and 11011 in Page-2B constrained systems) occurs at

the receiver respectively, the receiver does not recognize it as a valid codeword

and indicates that an error event has occurred.

We now discuss how the decoder could implement a simple error

correction algorithm to correct many such errors. In this chapter, we

consider the most probable case when errors due to ICI occur when a state

corresponding to a lower voltage level is detected as another state

corresponding to a higher voltage level. The detector detects and compares

the voltages representing the bit sequences 010 (or 111 and 11011) to find

the error positions and complement incorrect bit values for the Page-1 (and

Page-2) constraint. We denote this as layer-I error correction. For MLC and

TLC cells, due to the voltage distribution of cells, we set a different detection

threshold for some bits on the constrained coded page that can reduce the

number of erroneous detected bits, which we denote as layer-II error

correction. We note that for SLC flash memories the proposed layer-I error

96

Algorithm 2 Increasing block decoding process for the Page-1 constrained

code in Table 3.6
Initialize:

1: cmin = 1, cmax = 13

2: Nr: the total number of received bits

3: ri: the i-th bit of the received coded sequence at the decoder

4: i = 1

Start:

5: while i ≤ Nr do

6: if ri==0 then

7: Output source word 0

8: i = i+ 1;

9: else

10: if ri+1==1 then

11: i = i+ 2;

12: while i ≤ cmax do

13: if ri==0 then

14: Output the corresponding source word

15: i = i+ 1;

16: break;

17: end if

18: i = i+ 1;

19: end while

20: else

21: Indicate error event has happened because the pattern 010 has

occurred

22: end if

23: end if

24: end while

97

correction can be used. For MLC and TLC cell flash memories, the layer-I

error correction and layer-II error correction can be used individually or

simultaneously. In the following we consider the most probable situation of

at most one incorrectly detected bit in a codeword.

Page-1 constraint

Layer-I error correction As a result of the Gray mapping used in SLC,

MLC and TLC cells, the only errors that ICI causes during the reading process

of Page-1 constrained coded sequences are that coded logic ones are detected as

coded logic zeros, whether in SLC, MLC or TLC cells. In the increasing block

decoding process introduced above, consider the situation where the decoder

recognizes the pattern 010, i.e. r(i) = 0, r(i − 1) = 1, r(i − 2) = 0, and the

corresponding detected voltage values are v(i), v(i− 1), v(i− 2), respectively.

Denote the read threshold voltage of page 1 as vth, and recall that a logic zero

is stored as a high voltage level. We identify the position of erroneous bit j

using soft information from the detector as follows:

j =

 i if v(i− 2)− vth ≥ v(i)− vth

i− 2 if v(i− 2)− vth < v(i)− vth
(3.4)

That is, we check the detected voltages of the two positions corresponding to

logic zeros, and select the position whose voltage is closer to the threshold as

the position of the erroneous bit and complement its value to a logic one since

it is more likely to be the erroneous bit due to ICI. The decoder then returns

to the end of the last codeword that was decoded without errors and resumes

the decoding process.

Layer-II error correction We introduce the layer-II error correction for

MLC and TLC cells, which exploits the fact that the voltage distributions

of MLC and TLC cell flash memories are much narrower than in SLC flash

memory for all states except state s0 [49, 50, 51, 52, 53, 54, 55, 56].

As a result of the Gray mapping, for a cell with q bits, the most probable

errors on page 1 are due to incorrect detection of bits in state s2q−1−1, which is

98

incorrectly identified as state s2q−1 . This corresponds to a coded logic one being

erroneously detected as a logic zero. Denote ui and σi as the mean value and

standard deviation of the voltage distribution of state i. Owing to the much

narrower distributions of state s2q−1−1 and s2q−1 than for s0 [49, 50, 51, 52, 53,

54, 55, 56], in some flash memory structures the voltage distributions give rise

to distance between vth and u2q−1 − tσ2q−1 , where t is a parameter describing

the distance between distributions. Assuming that the mean value u2q−1 and

the standard deviation σ2q−1 of state s2q−1 can be accurately estimated, then

the received symbols with voltages that fall in the range (vth, u2q−1 − tσ2q−1)

should not be detected as state s2q−1 since they are likely to be symbols of

state s2q−1−1 whose voltages have been shifted by ICI. Therefore, we establish

a new threshold value that is closer to u2q−1 − tσ2q−1 than vth. During the

detection process, we compare the voltages of bits interpreted as 0 on page 1

with the new threshold. If a voltage is smaller than the new threshold, the

corresponding bit is corrected to value 1, and the decoder returns to the end

of the last decoded codeword where decoding resumes.

Page-2 constraint

Layer-I error correction In Page-2A constrained codes, the pattern 111

is forbidden. Whenever the decoder receives the patten 111, it indicates that

errors have occurred. In accordance with the Gray mapping, pattern 111

occurs when coded bit zero is incorrectly detected as logic value one on page

2. Note that there are two read threshold voltages on page 2. We denote

the higher threshold voltage as vh and the lower threshold as vl such that a

voltage v(i) is detected as a logic zero when vl < v(i) < vh. It is obvious

that pattern 111 occurs only when the bit on Page 1 is detected as zero.

Therefore, we identify the position of erroneous bit j as follows. When the

decoder recognizes pattern 111, i.e. r(i) = 1, r(i − 1) = 1, r(i − 2) = 1 with

the corresponding detected voltage values v(i), v(i− 1), v(i− 2), the erroneous

detected bit position is determined to be the one whose detected voltage is

closest to vh.

99

For the Page-2B constraint, apart from pattern 111, pattern 11011 is also

forbidden. Therefore, in addition to the position selection criterion above, we

establish another criterion to determine the erroneous detected bit position

j when pattern 11011 is recognized, i.e. r(i) = 1, r(i − 1) = 1, r(i − 2) =

0, r(i − 3) = 1, r(i − 4) = 1 with the corresponding detected voltage values

v(i), v(i− 1), v(i− 2), v(i− 3), v(i− 4). Assume the most likely situation of at

most one bit error in each codeword. The bit with value 0 is not regarded as the

erroneous bit otherwise the original sequence would be 11111 which violates

the Page-2B constraint. Therefore, the four potential erroneous bit positions

are i, i− 1, i− 3, i− 4. Similar to the Page-2A constraint, it is assumed that

the position of the erroneous bit is the one whose detected voltage is closest

to vh.

After identifying the erroneous bit position, we correct the value of the

bit from 1 to 0. The decoder returns to the end of last decoded codeword and

resumes the increasing block decoding process.

Layer-II error correction In accordance with the Gray mapping that is

used on page 2, a coded bit with value 0 on page 2 could be corrupted to

value 1 when the bit on page 1 is detected as 0. However, as noted earlier,

because of the much narrower voltage distribution in high voltage states, we

can establish a new threshold to take into account voltage shifts due to ICI

for MLC and TLC flash memories.

Consider page 2. For a cell with q bits, if the corresponding bit on page 1

is detected as a logic one, then the most probable error that can occur is when

state s2q−2−1 is detected as state s2q−2 . Since, as discussed in [49, 50, 51, 52,

53, 54, 55, 56], there is distance between vl and u2q−2 − tσ2q−2 , the detection

threshold can be set to be closer to u2q−2 − tσ2q−2 than vl to deal with voltage

shift caused by ICI. If the corresponding bit on page 1 is detected as a logic

zero, then the most probable error occurs when state s2q−2q−2−1 is detected

as state s2q−2q−2 . Similarly since there is distance between vh and u2q−2q−2 −

tσ2q−2q−2 , the detection threshold can be set closer to u2q−2q−2 − tσ2q−2q−2 . As

bits are detected, we compare the voltages of bits with value 1 on page 2 in the

100

sequence with the new thresholds. If this results in a different logic value, the

corresponding bit is corrected to 0 and decoding resumes from the beginning

of the codeword.

Results

We now demonstrate the effect of taking advantage of the inherent error

control capabilities introduced above. We consider ICI as the only source of

impairment, and we consider ICI only within the same word-line to better

observe the effect of constrained coding with multi-page programming. As

suggested by [47], the threshold voltage shift ∆vi of the i-th cell on a specific

word-line is modeled as

∆vi = α(∆vi−1 + ∆vi+1) (3.5)

where α is the coupling ratio and ∆vi−1 and ∆vi+1 are the voltage shifts of

the neighboring cells of the i-th cell. For an SLC flash block, the voltage

distribution before ICI is set to N(−1, 0.252) when programming bit one and

N(1, 0.252) when programming bit zero, which is consistent with [47].

The BER performance of the uncoded scheme and the Page-1 constrained

coding scheme for SLC flash memories is presented in Fig. 3.4. The horizontal

axis represents a range of values for the coupling ratio α. We use the codebook

in Table 3.6 for the constrained coding scheme. We consider only Layer-I error

correction, and we present the BER before decoding, i.e. the raw BER at

the output of the detector, and the BER after decoding. As shown in Fig.

3.4, the BER performance improves with smaller α. Generally, constrained

sequence codes result in error propagation after decoding. However, due to the

error correction capability of our constrained code, some detection errors are

corrected and error propagation is limited. In the simulation we consider blocks

of size 512, 128 and 64. The results show that there is less error propagation

with smaller source block sizes because error propagation is truncated at the

end of each block. The BER of the constrained coding scheme with source

block sizes of 64 and 128 is comparable to the BER before decoding.

101

We also demonstrate the BER performance of the Page-2A and Page-2B

constraints before and after decoding for MLC. For MLC flash memories, the

voltage distribution of state s0 is set to N(1.1, 0.22) and the distributions of

states s1, s2, and s3 are set to N(2.7, 0.032), N(3.3, 0.032) and N(3.9, 0.032)

respectively. The codebook used for the Page-2A constrained code is the one

shown in Table 3.7, and for the page-2B constraint we use a codebook with

rate 0.9163 bit/page/cell whose size is smaller than the code listed in Table 3.8

and achieves 99.08% of capacity. Both layer-I and layer-II error correction are

used. In layer-II error correction, the detection threshold is set to 2.5 rather

than vl = 1.9, and we consider a source block size of 256. It can be seen

from Fig. 3.5 that with layer-I and layer-II error correction, error propagation

is reduced and lower BER is obtained after constrained decoding. We also

observe that layer-II error correction is independent of block size since false

correction occurs very rarely, especially with moderate t values. Note that the

range of values of α considered in Fig. 3.5 is smaller than the range in Fig.

3.4 because ICI is more severe in MLC than in SLC.

α

Figure 3.4: BER performance of uncoded scheme and the Page-1 constrained

coding scheme for SLC flash memories

102

α

Figure 3.5: BER performance of uncoded scheme and the Page-2 constrained

coding schemes for MLC flash memories

3.2.5 Concatenation of constrained sequence codes with

error control codes

When integrating error control codes with constrained sequence codes,

the concatenated coding scheme shown in Fig. 1.1 is often used. The source

bits are first sent to an ECC encoder, and then are sent to an encoder of a

constrained sequence code so that the coded sequence that is forwarded to

the channel satisfies the channel constraint. At the receiver side, the received

sequence is first decoded by a constrained sequence decoder, and then by an

ECC decoder.

In this section we simulate the system described in Fig. 1.1 and present

the overall bit error rate (BER) performance for various flash memory systems.

We present results for the proposed Page-1, Page-2A and Page-2B constrained

sequence codes with inherent error control capabilities for SLC and MLC flash

memories. We employ Bose, Chaudhuri, and Hocquenghem (BCH) codes as

the ECC code.

Results for the Page-1 constraint

First, to demonstrate the ICI mitigation effect achieved with the proposed

constrained codes, we compare the voltage distributions of a scheme using

103

only a BCH code and a system using only a constrained sequence code. We

use the code that satisfies the Page-1 constraint for SLC given in Table 3.6

with rate 0.7999. To compare, we use a (511,412) BCH code with rate 0.806.

The encoding processes are illustrated in Fig. 3.6. We evaluate the voltage

distribution of cells in each flash memory block assuming a coupling ratio α

of 0.2.

Figure 3.6: The encoding process and voltage evaluation of (a) the

conventional scheme and (b) the constrained coding scheme

Figure 3.7: The voltage distribution of conventional scheme and Page-1

constrained coding scheme

The results of this evaluation are shown in Fig. 3.7. Threshold zero is

used to distinguish between logic zero and logic one symbols. It can be seen

from this figure that ICI causes severe voltage shifts when only error control

104

coding is used. This will result in incorrect detection of coded bits at the

receiver, which may exceed the error correction capability of the ECC code,

especially with larger α. In contrast, the constrained coding scheme effectively

limits ICI, and the occurrence of incorrect detection at the receiver is limited.

We now consider the concatenation of ECC codes and constrained codes,

and compare the overall performance with that of a system using ECC with the

same code rate. The concatenated scheme is shown in Fig. 3.8. We compare

the concatenation and the BCH-only schemes with approximate code rates 0.7

and 0.8. The source bit stream is divided into blocks of size 358, and is encoded

with a (412,358) shortened BCH code. The BCH coded stream is then encoded

with the Page-1 constrained code in Table 3.6 to generate 515 constrained

coded bits per block on average. The overall rate of the (515,412,358) BCH-

CS concatenated code is 0.695. An interleaver and a deinterleaver are used

between the BCH encoder and the constrained encoder, and between the BCH

decoder and the constrained decoder, respectively. We use a simple block

interleaver that write bits row-by-row and extract bits column-by-column. The

deinterleaving process helps to translate the burst errors at the output of

the constrained decoder that might arise due to error propagation into more

random errors for the BCH code to correct effectively. In the ECC-only system

we used a (511,358) BCH code with code rate 0.701. As shown in Fig. 3.9,

the BER of the BCH-CS scheme outperforms the BCH-only scheme. With

smaller α, the error rates of both schemes decrease dramatically.

Figure 3.8: The encoding and decoding process of the concatenated coding

scheme

105

α

Figure 3.9: BER performance of the BCH coded scheme with rate 0.701, and

the concatenated coded scheme of a BCH code and Page-1 constrained code

with average rate 0.695 for SLC flash memories

We also designed a (511,409,391) BCH-CS scheme which has the higher

overall rate of 0.765. A rate 0.771 (511,394) BCH code is simulated for

purposes of comparison. BER results of the concatenated scheme and the

BCH-only scheme are shown in Fig. 3.10. It is clear from these results that

the concatenated scheme performs better than the BCH-only scheme. In the

BCH-CS scheme, if we allocate the minimum possible number of redundant

bits for the BCH code, we could design a rate 0.783 (511,409,400) BCH-CS

scheme. The comparison of this code with a rate 0.789 (511,403) BCH code

is also shown in Fig. 3.10. It can be seen that, since the error correction

capability of the BCH-CS scheme is limited, its BER curve flatter for low α

when compared to the BCH-only scheme. We note that this is a limiting case

of the BCH-CS scheme and we recommend that additional redundant bits be

allocated to the BCH code to provide sufficient error correction.

106

α

Figure 3.10: BER performance of the BCH coded scheme with rate 0.771,

and the concatenated coded scheme of a BCH code and Page-1 constrained

code with average rate 0.765 for SLC flash memories

As shown in Fig. 3.4, with smaller source blocks the error propagation

is alleviated. Therefore, larger performance gain can be obtained with the

BCH-CS scheme with smaller source block size, compared with the BCH-only

scheme. To demonstrate, we compare a rate 0.768 (259,207,199) BCH-CS

scheme where the fewest possible redundant bits are allocated for the BCH

code. We simulated a rate 0.780 (255,199) BCH code as comparison. It can

be seen in Fig. 3.11 that, with shorter block size, the error propagation of the

constrained decoder is alleviated, and compared with the BCH-only scheme,

larger performance gain can be achieved with concatenation with even a very

weak BCH code.

We now consider lower code rates and compare a rate 0.51 (121,97,62)

BCH-CS scheme and a rate 0.45 (127,57) BCH-only scheme in Fig. 3.12, a

rate 0.48 (255,207,123) BCH-CS scheme and a rate 0.48 (255,123) BCH-only

scheme in Fig. 3.13, a rate 0.514 (504,403,259) BCH-CS scheme and a rate

0.507 (511,259) BCH-only scheme in Fig. 3.14. It is again shown that the

BCH-CS schemes outperform the BCH-only schemes. The outer BCH codes

in the BCH-CS schemes are able to correct errors that exist after CS decoding

due to their lower code rates.

107

α

Figure 3.11: BER performance of the BCH coded scheme with rate 0.78, and

the concatenated coded scheme of a BCH code and Page-1 constrained code

with average rate 0.768 for SLC flash memories

α

Figure 3.12: BER performance of the BCH coded scheme with rate 0.45, and

the concatenated coded scheme of a BCH code and Page-1 constrained code

with average rate 0.51 for SLC flash memories

108

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
α, the coupling ratio

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
ER

BER of uncoded scheme
BER of a (255,123) BCH coding scheme, after decoding
BER of a (255,207,123) BCH-CS coding scheme, after decoding
BER of constrained coding scheme, before decoding

Figure 3.13: BER performance of the BCH coded scheme with rate 0.48, and

the concatenated coded scheme of a BCH code and Page-1 constrained code

with average rate 0.48 for SLC flash memories

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
α, the coupling ratio

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
ER

BER of uncoded scheme
BER of a (511,259) BCH coding scheme, after decoding
BER of a (504,403,259) BCH-CS coding scheme, after decoding
BER of constrained coding scheme, before decoding

Figure 3.14: BER performance of the BCH coded scheme with rate 0.507, and

the concatenated coded scheme of a BCH code and Page-1 constrained code

with average rate 0.514 for SLC flash memories

Results for the Page-2A and Page-2B constraints

We first present the voltage distribution of two schemes in MLC flash

memories, the BCH coded scheme and the Page-2B constrained coded scheme.

From Fig. 3.15 we see that the ICI mitigation effect is not obvious, which is

in agreement with Fig. 3.5 where the BER improvement before constrained

decoding is limited compared with the uncoded scheme. However, we note

109

that when constrained sequence codes are concatenated with BCH codes, the

effect of constrained sequence coding is to mitigate the ICI which reduces the

number of bit errors for the BCH codes to correct.

We now compare the concatenated coding scheme with other

conventional schemes in MLC. We consider a BCH-only scheme with no

extra error correction that uses a rate 0.806 (511,412) BCH code on both

page 1 and page 2. For the Page-2A constraint, 439 source bits are encoded

into 511 BCH coded bits with a shortened (511,439) BCH code on page 1.

On page 2, 375 source bits are encoded into 438 BCH coded bits with a

shortened (438,375) BCH code. The BCH coded bits are then encoded with

the codebook in Table 3.7 into 511 coded bits on average, resulting in a rate

439+375
511+511

= 0.796 (511,439,511,438,375) BCH-CS scheme. Block interleavers

and deinterleavers are used between the ECC and constrained sequence

coding procedures. Similarly, a rate 0.801 (511,448,511,

425,371) BCH-CS scheme for the Page-2B scheme is simulated based on the

codebook introduced above. We also simulate the performance of a rate

0.803 (511,457,511,409,364) BCH-CS scheme for the Page-1 constraint.

Figure 3.15: The voltage distribution of ECC-only scheme and Page-2B

constrained coding scheme

We compare all schemes above with a rate 0.797 (511,493,510,340,322)

BCH-RLL concatenated scheme, where a (1,7) RLL code from Table II and

III in [47] is used. On page 1, 493 source bits are encoded into 511 BCH coded

110

bits with a rate (511,493) BCH code. On page 2, 322 source bits are first

encoded into 340 BCH coded bits with a shortened (340,322) BCH code, and

then are encoded into 510 (1,7) RLL constrained coded bits.

It can be seen in Fig. 3.16 that our proposed BCH-CS scheme outperforms

the BCH-RLL scheme and the BCH-only scheme. In this case, the code rate

of the RLL code is so low that the number of redundant bits in the BCH

code of the BCH-RLL scheme is such that the BCH-RLL scheme has limited

error correction capability, and hence performs even worse than the BCH-

only scheme. We note that although the layer-II error correction is proposed

for protection of CS codes, it can also be used for the BCH-only scheme.

We present the BER performance of the BCH-only scheme with this extra

error correction in Fig. 3.16. It is seen that with BER of interest (smaller

than 10−2), the BCH-CS schemes perform better since in this region the ICI

reduction resulted from CS codes leads to fewer errors for the outer BCH code

to correct.

0.14 0.16 0.18 0.2 0.22 0.24
α

10-6

10-5

10-4

10-3

10-2

10-1

B
ER

Uncoded
(511,412) BCH code
(511,439,511,438,375) Page-2A constrained code concatenated with BCH code
(511,448,511,425,371) Page-2B constrained code concatenated with BCH code
(511,457,511,409,364) Page-1 constrained code concatenated with BCH code
(511,412) BCH code with extra error correction

Figure 3.16: BER performance of the BCH coded scheme with rate 0.806, the

BCH-RLL scheme with rate 0.797, the concatenated coded scheme of a BCH

code and Page-2A constrained code with average rate 0.796, the concatenated

coded scheme of a BCH code and Page-2B constrained code with average

rate 0.801, and the concatenated coded scheme of a BCH code and Page-1

constrained code with average rate 0.803 for MLC flash memories.

111

We now compare different schemes with higher average code rates in

MLC. We design a rate 0.858 (511,475,511,438,402) BCH-CS scheme for the

Page-2A scheme, a rate 0.854 (511,484,511,425,389) BCH-CS scheme for the

Page-2B scheme, and a rate 0.856 (511,484,511,409,391) BCH-CS scheme for

the Page-1 scheme. A rate 0.859 (511,439) BCH-only scheme is used as

comparison. It can be seen in Fig. 3.17 that all BCH-CS schemes outperform

the BCH-only scheme. For comparison with the BCH-only scheme with extra

error correction, a similar trend is observed as in Fig. 3.16, except that the

advantage of BCH-CS schemes become less obvious since the code rate of the

outer BCH code is higher, which results in weaker error correction capability.

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
α

10-6

10-5

10-4

10-3

10-2

10-1

B
ER

Uncoded
(511,439) BCH code
(511,475,511,438,402) Page-2A constrained code concatenated with BCH code
(511,484,511,425,389) Page-2B constrained code concatenated with BCH code
(511,484,511,409,391) Page-1 constrained code concatenated with BCH code
(511,439) BCH code with extra error correction

Figure 3.17: BER performance of the BCH coded scheme with rate 0.859,

the concatenated coded scheme of a BCH code and Page-2A constrained code

with average rate 0.858, the concatenated coded scheme of a BCH code and

Page-2B constrained code with average rate 0.854, and the concatenated coded

scheme of a BCH code and Page-1 constrained code with average rate 0.856

for MLC flash memories.

In Fig. 3.18 we present the performance of a rate 0.506 BCH-only

scheme with layer-II error correction, a rate 0.506 (511,259,512,439,259)

Page-2A BCH-CS scheme, and a rate 0.512 (511,259,506,421,259) Page-2B

BCH-CS scheme. Again it is shown that the CS-BCH schemes outperform

the BCH-only scheme with BERs of interest.

112

0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
α

10-6

10-5

10-4

10-3

10-2

10-1

B
ER

(511,259,506,421,259) Page-2B constrained code concatenated with BCH code
(511,259,512,439,259) Page-2A constrained code concatenated with BCH code
(511,259) BCH code, with extra error correction

Figure 3.18: BER performance of the BCH coded scheme with rate 0.506,

the concatenated coded scheme of a BCH code and Page-2A constrained code

with average rate 0.506, the concatenated coded scheme of a BCH code and

Page-2B constrained code with average rate 0.512 for MLC ash memories.

3.3 Pearson codes for cell leakage [21]

In this section we discuss the use of the proposed single-state code

construction technique to construct capacity-approaching variable-length

Pearson codes that are immune to channel gain and/or offset mismatch at

the demodulator that cause performance loss in modern data storage and

communication systems. The contents of this section was published in [21].

3.3.1 Background

As has been described, in flash memory devices, information is

represented by modulating the amount of charge present on floating gates.

However, cell leakage — the phenomenon that charge may leak from these

gates — causes drift of threshold voltages. Fingerprints on optical disks may

cause channel gain and offset variations of the signal at the receiver [57, 58],

therefore effective coding and signal processing methods that deal with gain

and offset mismatch of the received signals are critical for recovery of source

information. Pearson codes, a class of constrained sequence codes that can

113

be decoded with Pearson-distance-based detection, which is immune to

channel gain and offset mismatch, were proposed in [58] and [59]. Practical

systematic Pearson codes were proposed in [60] where the authors studied

fixed-to-fixed (FF) and variable-to-fixed (VF) mappings from source words

to codewords. It is shown in [60] that the VF codes have less redundancy

than their FF counterparts. In the following sections, we explore

variable-to-variable (VV) mapping from source words to codewords to

improve the efficiency and reduce the implementation complexity of Pearson

codes. Based on the variable-length code construction technique proposed in

Section. 2.1, we construct VV Pearson codes, analyze their performance, and

discuss their implementation.

3.3.2 Finite state machine description

We present the FSM for binary and non-binary Pearson codes. Pearson

codes can be regarded as a type of T -constrained code where T pre-defined

symbols each appear at least once in each codeword [57]. As discussed in

[60], a known construction method for Pearson codes is to ensure that every

q-ary codeword contains at least one symbol zero and one symbol one. This

constraint is described by the finite state machine (FSM) description of q-ary

Pearson codes in Fig. 3.19 which guarantees that at least one symbol zero and

one symbol one occur in each sequence of length G. When q = 2, this FSM

reduces to the one shown in Fig. 3.20. It is straightforward to verify that,

regardless of the state from which one starts and ends in these FSMs, every

length-G sequence generated according to these figures satisfies the Pearson

constraint. In this section we focus on binary Pearson codes, but note that

it is possible to apply our code construction technique to q-ary Pearson codes

based on the FSM in Fig. 3.19 rather than the FSM in Fig. 3.20.

114

Figure 3.19: FSM for q-ary Pearson codes.

Figure 3.20: FSM for binary Pearson codes.

The FSM in Fig. 3.20 has 2G− 1 states. As G → ∞, the FSM of binary

Pearson codes extends to an infinite number of states. As outlined in Chapter

1, the capacity C of this FSM is equation (1.6)

C = log2λmax (3.6)

where λmax is the largest real root of the characteristic equation
∑∞

i=22λ
−i = 1.

By solving the characteristic equation for λmax and using this value in (3.6),

we obtain C = 1 which agrees with the observation that the sequence becomes

unconstrained as G → ∞.

In practical construction of Pearson codes, we truncate this FSM to finite

G and construct the code based on a finite number of states and a minimal set

M that consists of a finite number of words in which the longest codeword is of

length lmax. The maximum possible code rate C̃M is determined as (3.7), and

115

the corresponding maximum possible efficiency η̃ = C̃M/C. Again we denote

LM as the set of lengths of words in M . C̃M is evaluated as equation (1.10)

C̃M = log2λ̃max (3.7)

where λ̃max is the largest real root of the characteristic equation
∑

li∈LMλ
−li =

1 and li is the length of the i-th word in M [18, 19]. As shown in Chapter 2.1,

C̃M = f(lmax) is a concave increasing function with respect to lmax. We define

the redundancy of the code as

γ =
∑
oi

2−sioi × (1− R̄). (3.8)

3.3.3 Code construction

As noted above, our construction of Pearson codes is based on the

technique proposed in Section 2.1. It includes:

• Selecting the state upon which to construct the minimal set. Based on

the analysis in Section 2.1, it can be shown that in the FSM of Fig. 3.20,

state G will generate minimal sets with the highest C̃M for lmax ∈ [2,∞),

therefore we specify this state for construction of the minimal set.

• Constructing the minimal set by enumerating all words of length no

greater than lmax that can occur when state G is exited and

subsequently re-entered. It is straightforward to verify that when state

G is the specified state, the words in this minimal set M have lengths

LM = {2, 2, 3, 3, 4, 4, ..., lmax − 1, lmax − 1, lmax, lmax}.

• Forming partial extensions of the words in the minimal set, performing

NGH coding over the minimal set and these partial extensions to

generate different codes with one-to-one correspondence between

variable-length source words and variable-length codewords, and

selecting the code with highest efficiency. However, to simplify analysis

of these codes here, we do not consider codes constructed based on

partial extensions but consider only the simplified case when the

116

minimal set M is indeed the set of codewords in the codebook.

Consideration of partial extensions will result in higher efficiency codes

at the cost of increased implementation complexity.

Table 3.9: Codebook of a binary Pearson code with lmax = 10, ō = 2.9961, R̄ =

0.9987, γ = 0.0039

Source word Codeword Source word Codeword

00 10 111101 000001

01 01 1111100 1111110

100 110 1111101 0000001

101 001 11111100 11111110

1100 1110 11111101 00000001

1101 0001 111111100 111111110

11100 11110 111111101 000000001

11101 00001 111111110 1111111110

111100 111110 111111111 0000000001

Example (A codebook with lmax = 10): Using the construction process

above we construct a code with lmax = 10 and present the codebook in Table

3.9. We use as codewords all words of length less than or equal to 10 that

exit and re-enter state G in Fig. 3.20. We then perform NGH coding to

construct the source words and source-to-codeword mapping in the codebook.

Codewords in this code have an average length of ō = 2.9961; R̄ = 0.9987, and

γ = 0.0039. Detailed performance analysis of this construction technique is

given in the next section.

3.3.4 Performance analysis

Code rate and redundancy

We now analyze the average length of codewords ō, average code rate

R̄, and redundancy γ of VV Pearson codes that can be constructed using

the technique outlined above. First, we introduce and prove the following

propositions.

117

Proposition 3.1 In VV Pearson codes constructed based on a minimal

set, the set of codeword lengths LM = {2, 2, 3, 3, 4, 4, ..., lmax−1, lmax−1, lmax,

lmax} has the corresponding source word lengths LS = {2, 2, 3, 3, 4, 4, ...,

lmax − 2, lmax − 2, lmax − 1, lmax − 1, lmax − 1, lmax − 1}.

Proof. Consider the NGH coding process that involves recursively merging

the two largest words on a Huffman tree. With R̄ initially set to C, it is

straightforward to verify that applying the merging rule given by equation

(1.14) to the set of codeword lengths LM will result in the set of source word

lengths LS. It is also straightforward to show that as R̄ converges to its final

value, further iterations will not change this set of word lengths because the

only possible set of source word lengths that would allow an unconstrained

source sequence to be mapped to codewords with lengths LM with a higher

code rate is L′S = {2, 2, 3, 3, 4, 4, ..., lmax − 1, lmax − 1, lmax − 1, lmax}. This set

of source word lengths is not possible because with L′S, the two longest

source words with length lmax − 1 and lmax must correspond to the two

codewords with length lmax and lmax, however, the construction process

ensures that source words corresponding to these two codewords must have

the same length. Therefore L′S does not exist, source word lengths converge

to LS, and the proposition above holds.

Proposition 3.2 As lmax → ∞, the average length of codewords ō in a

binary Pearson codebook is 3, and the average length of source words s̄ is also

3. The asymptotic average code rate R̄∞ as lmax →∞ is 1.

Proof. Assuming independent equiprobable bits in the source sequence, based

on Proposition 3.1 it follows that

ō = 2

{
lmax−1∑
i=2

(1
2
)
i
i+ (1

2
)
lmax−1

lmax

}
= 2

{
1 + 2

[lmax−1∑
i=3

(1
2
)
i
]
− 2
[
(1

2
)
lmax(lmax − 1)

]
+ (1

2
)
lmax−1

lmax

}
.

(3.9)

As lmax →∞, ō becomes

ō = 2

{
1 + 2

[∞∑
i=3

(1

2

)i]}
= 3. (3.10)

118

Similarly, the average length of source words s̄ is given by

s̄ = 2

{
lmax−1∑
i=2

(1
2
)
i
i+ (1

2
)
lmax−1

(lmax − 1)

}
= 2

{
1 + 2

[lmax−1∑
i=3

(1
2
)
i
]
− 2
[
(1

2
)
lmax(lmax − 1)

]
+ (1

2
)
lmax−1

(lmax − 1)

}
.

(3.11)

As lmax →∞, s̄ becomes

s̄ = 2

{
1 + 2

[∞∑
i=3

(1

2

)i]}
= 3. (3.12)

Therefore, from equations (1.11), (1.12) and (3.8), it follows that as lmax →

∞, the asymptotic code rate and the asymptotic redundancy are 1 and 0

respectively, and the asymptotic average efficiency is 1. As noted earlier, this

is expected since the sequence becomes unconstrained as lmax →∞. Of interest

is how rapidly this occurs, which is discussed below.

Rate of convergence

Theoretical upper bound: As noted above, limiting the maximum length

of codewords to lmax < ∞ in the truncated FSM results in C̃M < C. Using

(1.10), the relationship of maximum possible efficiency η̃ with lmax is given in

Table 3.10, where it is shown that η̃ approaches 1 quickly even with moderate

lmax. Therefore, the reduction in efficiency arising from truncation is negligible

with moderate to large lmax.

Table 3.10: η̃ with lmax

lmax 4 5 6 7 8 9 10

η̃ 0.925 0.966 0.984 0.992 0.996 0.998 0.999

Practical codes Given the asymptotic behavior of ō and γ as outlined in

Proposition 3.2, we now analyze the convergence to their limits in practical

codes. We do so by deriving the first and second order derivatives of ō and γ

versus lmax. As shown in (3.13) and (3.14), ō increases with lmax, but the rate

of increase declines asymptotically as ō→ 3.

dō

dlmax

= −
(1

2

)lmax−2

ln
(1

2

)
> 0. (3.13)

119

d2ō

dlmax
2 = −

(1

2

)lmax−2
[
ln
(1

2

)]2

< 0. (3.14)

As shown in (3.15) and (3.16), γ decreases as lmax grows and the rate of

decrease declines asymptotically as γ → 0.

dγ

dlmax

=
(1

2

)lmax−2

ln
(1

2

)
< 0. (3.15)

d2γ

dlmax
2 =

(1

2

)lmax−2
[
ln
(1

2

)]2

> 0. (3.16)

We plot redundancy versus average length of codewords in Fig. 3.21. In

this figure we compare the redundancy of our proposed VV Pearson codes with

the redundancy of the binary VF Pearson codes proposed in [60] which is shown

to be 3
2
×(1

2
)(o−2) where o denotes the length of the fixed-length codewords [60].

It is evident from Fig. 3.21 that our proposed VV codes achieve a specified

redundancy with significantly shorter average codeword lengths.

2 4 6 8 10 12 14 16
Average length of codewords

10-4

10-3

10-2

10-1

100

R
ed

un
da

nc
y

Redundancy of the VF code
Redundancy of the proposed VV code

o=15

o=3

lmax = 4,

γ = 0.25

lmax = 10, γ = 0.0039

Figure 3.21: Comparison of redundancy of the proposed VV code with the VF

code in [60]

Implementation

We now show that our binary VV Pearson codes can be encoded and

decoded in a straightforward fashion. The codeword and source word lengths

120

described in Proposition 3.1 facilitate well-structured codebooks where

simple encoding and decoding can be implemented without table look-up,

given a predefined lmax. Consider, for instance, the codebook with lmax = 10

in Table 3.9. While table-lookup encoding/decoding is possible, we note that

the structure of the source words and codewords instead allows encoding and

decoding using Algorithms 3 and 4 outlined below.

121

Algorithm 3 Encoding of binary VV Pearson codes

Initialize:

1: Ns: the total number of source words

2: bij ← j-th bit of the i-th source word bi

3: cij ← j-th bit of the i-th codeword ci

4: i = 1

Start:

5: while i ≤ Ns do

6: j = 1

7: while j ≤ lmax − 1 do

8: Read in source bit bij

9: cij = bij

10: if bi(j−1) == 0 && bij == 0 then

11: // source words with length ≤ lmax − 1 that end with 00

12: Encode by changing ci,j−1 to 1.

13: Break;

14: else if bi(j−1) == 0 && bij == 1 then

15: // source words with length ≤ lmax − 1 that end with 01

16: Encode by changing first j − 2 bits in ci to 0

17: Break;

18: else if j == lmax − 1 && bij == 0 then

19: // source words with length lmax − 1 that end with 0

20: Insert a 1 before cij

21: else if j == lmax − 1 && bij == 1 then

22: // source words with length lmax − 1 that end with 1

23: Convert all bits in ci to 0 and then append a 1

24: end if

25: j = j + 1

26: end while

27: i = i+ 1

28: end while

122

Algorithm 4 Decoding of binary VV Pearson codes

Initialize:

1: Nw
r : the total number of received words

2: rij ← j-th bit of the i-th received codeword ri

3: dij ← j-th bit of the i-th decoded word di

4: i = 1

Start:

5: while i ≤ Nw
r do

6: j = 1

7: while j ≤ lmax do

8: Read in received bit rij

9: dij = rij

10: if j == lmax && rij == 0 then

11: // codewords with length lmax that end with 0

12: Drop di(j−1)

13: else if j == lmax && rij == 1 then

14: // codewords with length lmax that end with 1

15: Drop dij and convert all remaining bits in di to 1

16: else if rij 6= ri(j−1) && rij == 0 then

17: // codewords with length < lmax that end with 0

18: Decode by changing di,j−1 to 0.

19: Break;

20: else if rij 6= ri(j−1) && rij == 1 then

21: // codewords with length < lmax that end with 1

22: Decode by changing first j − 2 bits to 1

23: Break;

24: end if

25: j = j + 1

26: end while

27: i = i+ 1

28: end while

123

Chapter 4

Synchronization of

variable-length constrained

sequence codes

In the preceding chapters we demonstrated that improved code efficiency

and simpler implementation can be achieved with variable-length constrained

sequence codes as compared to fixed-length codes. Apart from their

advantages, however, variable-length constrained sequence codes have the

drawback that because of noise that occurs during transmission, erroneously

received sequences may result in loss of codeword boundary synchronization

at the decoder. Mis-synchronization typically results in insertion or deletion

errors, which may cause burst errors at the output of the constrained

sequence decoder that may be difficult for the outer ECC to correct. To

enable practical implementation of variable-length constrained sequence

codes, we aim to develop codes with good synchronization properties to make

it feasible for ECCs to correct errors that occur at the output of the

constrained sequence decoder. Alternatively, with automatic repeat request

(ARQ), it is desired that error propagation be limited to within the current

received packet, to ensure that subsequent packets are unaffected.

In this section, we consider the variable-length constrained sequence codes

constructed by the approaches in Section 2.1 where to the point the design

guideline has been to achieve the highest possible code rate. We show that

124

different strategies should be considered when we aim to develop codes that

achieve both high efficiency and good synchronization properties. We consider

a variety of constraints that are studied previously, including the runlength

limited (RLL) constraint, constraints that mitigate ICI in flash memories, the

Pearson constraint, and the DC-free constraint. We show that these variable-

length constrained sequence codes have good synchronization properties such

that the receiver regains synchronization quickly once it loses synchronization.

This ensures that error propagation is limited during decoding, which confirms

the practicality of these variable-length codes.

4.1 Synchronization

We wish to develop variable-length constrained sequence codes with

good codeword synchronization properties, in which their codebooks have as

many synchronizing codewords as possible. A synchronizing codeword

guarantees that whenever it is received, the decoder achieves synchronization

because it is guaranteed to correctly identify the end of this codeword and

therefore maintain or recover synchronization, regardless of the correctness of

the previously received codewords [63]. According to [63], a synchronizing

codeword C = c1c2...cn in the set of codewords from codebook C must satisfy

the following two conditions:

Condition 4.1: ∀X = x1x2...xm in C such that m > n and C is a

substring of X, c1c2...cn = xm−n+1xm−n+2...xm and

c1c2...cn 6= xixi+1...xi+n−1 ∀i 6= m− n+ 1.

Condition 4.2: ∀j < n such that c1c2...cj is a suffix of any codeword in

C, cj+1cj+2...cn is a valid codeword in C.

Condition 4.1 indicates that if a synchronizing codeword C is an internal

bit string of any codeword X, the last bit of C must also be the last bit of X.

This guarantees that correct identification of C results in correct recognition

of the end of a codeword, hence synchronization is maintained or recovered.

Condition 4.2 ensures that whenever mis-synchronization occurs that results

in the receiver incorrectly identifying cj as the end of a codeword,

125

resynchronization is guaranteed to occur at the end of codeword C because cn

will be identified as the end of C. It is shown in [63] that some Huffman

codes exhibit good synchronizing properties because their codewords

re-synchronize the decoder regardless of the previous synchronization status.

We denote the synchronization probability (denoted as sync probability)

P of a codebook C as the sum of occurrence probabilities of all synchronizing

codewords. Note that synchronizing codewords appear more frequently in

coded sequences constructed from codebooks with higher values of P , and

therefore that decoders will typically re-synchronize more quickly once

synchronization is lost, resulting in fewer burst errors for the outer ECC to

correct. Our goal is therefore to construct codes with high synchronization

probability.

To construct these codes, we first consider the minimal set, and then

consider partial extensions of this minimal set to achieve high efficiency and

high sync probability. Note that, prior to NGH coding, a minimal set and its

partial extensions are not codebooks because their words have not been

assigned source words, and therefore it is not possible to obtain their

occurrence probabilities. However, because we expect good codes to have

probabilities that are close to maxentropic, in our construction approach we

approximate the sync probability P of a minimal set M and its partial

extensions Mp as the sum of the maxentropic probabilities of each

synchronizing word.

Lastly, we note that existence of synchronizing codewords is a sufficient

but not necessary condition for the receiver to regain synchronization, since

in some situations the receiver may correctly regain synchronization on

nonsynchronizing words, as we will show in our simulation results. Thus, we

expect there to be a strong correlation, but not necessarily a direct

relationship, between the sync probability and synchronization performance.

126

4.2 Criteria for minimal set selection

The criteria introduced in Section 2.1 aim to select the specified state

that results in the minimal set with the highest possible code rate. In

situations where we wish to construct codes with good synchronization

properties, criteria should be developed that result in codebooks with high

sync probabilities. In this section we consider selection of the specified state

from the minimal set, and illustrate our selection criteria with a variety of

constraints. In the next section we consider partial extensions of this

minimal set.

Observation 4.1: In the FSM description of a constraint, if a state has

a loop associated with itself, then selection of this state as the specified state

is likely to correspond to a minimal set with a small sync probability, unless

the loop corresponds to a synchronizing word.

Observation 4.1 arises when a single bit 1 or 0 that is associated with

the specified state appears as a word in the minimal set. The word 1 or 0

is likely to violate Condition 4.1, therefore this case should be avoided unless

codeword 0 or 1 is a synchronizing word. We demonstrate Observation 4.1

with the following examples.

Figure 4.1: FSM of the (d, k = ∞) RLL constraint.

Example ((d,∞) constraint): the FSM of the (d, k = ∞) RLL constraint

is shown in Fig. 4.1. We consider the (d = 2, k = ∞) RLL constraint as an

example. To maximize the efficiency of the code, in accordance with the

Criterion 2.1 in Section 2.1 we would select state 1 as the specified state, and

find the minimal set to be M1 = {0, 100}. More generally, as is evident from

Fig. 4.1, the minimal set of a (d,∞) constraint is M1 = {0, 1 0...................0︸ ︷︷ ︸
d zeros

}.

127

It can be verified that the second word is a synchronizing word. However, it

can be observed that word 0 in M1 is not a synchronizing word since it does

not satisfy Condition 4.1. But it can also be verified that, if we select any

other state as the specified state, the minimal set will have a sync probability

of 100%. For example in the FSM of the (d = 2, k = ∞) RLL constraint,

M2 = {001, 0001, 00001, ...} in which every word in M2 is a synchronizing

word. However this minimal set contains an unlimited number of words, and

therefore will result in a less efficient code than that constructed using M1 as

proposed in Section 2.1. This demonstrates that a code optimized for efficiency

may not be optimized for sync probability, and vice versa.

Figure 4.2: FSM of the (d = 0, k) RLL constraint.

Example ((0, k) constraint): the FSM of the (d = 0, k) RLL constraint

is shown in Fig. 4.2. We consider the (d = 0, k = 3) RLL constraint as an

example. To maximize the efficiency of the code, in accordance with the

Criterion 2.1 in Section 2.1, we select state 1 as the specified state, and

establish the minimal set as M1 = {1, 01, 001, 0001}. It can be observed that

for the (d = 0, k = 3) RLL constraint, and more generally for any (d = 0, k)

constraint, every word in M1 is a synchronizing word, and hence the sync

probability is 100%. In this case, the selection criteria in Section 2.1 also

result in the minimal set with the highest sync probability. Note that this is

in agreement with Observation 4.1 since the single-bit word 1 associated with

state 1 is a synchronizing word.

Observation 4.2: In the FSM description of a constraint, if outgoing

edges and incoming edges of a state correspond to the same bit sequence, it is

likely that selection of this state as the specified state results in a minimal set

with few synchronizing words. This occurs because the prefix of a codewordW
128

will be suffix of one or more codewords in the minimal set, and the remaining

bits of W may not be a valid codeword, thus violating Condition 4.2.

Observation 4.2 arises when a word in the minimal set (that corresponds

to the outgoing edges) can be divided into a suffix of another word (that

corresponds to the incoming edges) plus the remaining bits, and therefore it

might occur that these remaining bits are not a valid word, which violates

Condition 4.2. We explain Observation 4.2 with the following example, in

which we use the notationW\ζ to represent a substring of codewordW where

the prefix ζ of W is excluded, and denote M\W as the set of words in the

minimal set M where word W is excluded.

Example (general (d, k) constraints): we consider general (d, k)

constraints where d 6= 0 and k 6= ∞. The corresponding FSM is shown in

Fig. 4.3. According to the Criterion 2.1 in Section 2.1, any state from states

1 to d + 1 can be selected as the specified state because they all result in the

highest maximum possible code rate. For example, the minimal set with

state 1 as the specified state is M1 = {00...0︸ ︷︷ ︸
d zeros

1, 00...0︸ ︷︷ ︸
d+1 zeros

1, 00...0︸ ︷︷ ︸
d+2 zeros

1, ...,

00...0︸ ︷︷ ︸
k zeros

1}. Since every word is a synchronizing word, the sync probability is

100%. However, different from the criteria in Section 2.1, as introduced in

Observation 4.2, state σ, 1 < σ ≤ d should not be selected as the specified

state. Consider state 2 as an example. One of the words W in its minimal

set is 00...0︸ ︷︷ ︸
d−1 zeros

10 which is not a synchronizing word, since 0 is a suffix of W

itself but the minimal set does not contain the word W\0 = 00...0︸ ︷︷ ︸
d−2 zeros

10.

Therefore, Condition 4.2 is not satisfied and hence W is not a synchronizing

word, making the sync probability of M2 less than 100%. A similar

observation can be made for states σ, 2 ≤ σ ≤ d, where we can see that these

states have both an outgoing edge and an incoming edge that are associated

with bit zero, which violates Condition 4.2. W could be a synchronizing

word iff W\0 was a valid word, which is not the case.

129

Figure 4.3: FSM of general (d, k) RLL constraints, d �= 0, k �= ∞.

Based on the above observations and examples, we propose the following

criteria to select the specified state that results in high sync probability.

Criterion 4.1: if a state has a loop associated with itself, this state

should not be selected as the specified state unless the loop corresponds to a

synchronizing word.

Criterion 4.2: if outgoing edges and incoming edges of a state correspond

to the same bit sequence, this state should not be selected as the specified state.

Note that these two criteria are guidelines for general constraints when

selecting the specified state. Therefore one should consider the specific

characteristics of each constraint when selecting the specified state. In

addition to the (d, k) RLL constraints that we have discussed, we now

illustrate state selection for a variety of other constraints.

4.2.1 Constraints that mitigate ICI in flash memories

As discussed in previous sections, constrained sequence codes that forbid

the pattern 101 have been designed to limit ICI [20, 28, 29, 30, 31]; the FSM

describing this constraint is shown in Fig. 4.4, which is Fig. 2.6 in Section 2.1.

Figure 4.4: FSM of the constraint that forbids pattern 101 for ICI mitigation.

According to Criteria 2.2 and 2.3 in Section 2.1, states 1 and 3 are

equally preferred as the specified state due to the fact that they both result

in the highest maximum possible code rate. However, according to Criterion

130

4.1 described in this section, state 3 is inferior to state 1 in terms of sync

probability since state 3 has a loop associated with itself that corresponds to

word 0, and the word 0 is not a synchronizing word. A closer look at

M3 = {0, 100, 1100, 11100, ...} reveals that word 0 is not a synchronizing

word, since 0 does not satisfy Condition 4.1. However, every word in

M1 = {1, 001, 0001, 00001, ...} is a synchronizing word, including the one-bit

word on the self-loop on state 1, resulting in the sync probability of M1 to be

100%. Therefore, considering the criteria in both Section 2.1 and in this

section, state 1 is preferred.

Now consider ICI mitigation in multi-level cell (MLC) flash memories,

where each coded symbol can be 0, 1, 2 or 3 and the pattern 303 is forbidden

by the constraint. The FSM that represents this constraint is shown in Fig.

4.5. Different from the FSM in Fig. 4.4, according to the study in Section

2.1, state 3 is better than state 1 in terms of maximum possible code rate. As

demonstrated in the previous example, however, based on Criterion 4.1, M3

has the word 0 that is not a synchronizing word whereas as we demonstrate

below, every word in M1 is a synchronizing word. This results in the sync

probability of M1 to be 100%. Therefore, we note that in general there is a

tradeoff between the maximum possible code rate and the sync probability, and

it is the choice of the system designer as to which to optimize when selecting

the specified state and constructing the corresponding minimal set.

Figure 4.5: FSM of the constraint that mitigates ICI in MLC flash memories.

To show that the sync probability of M1 is 100%, consider first the

quaternary bit 3 in M1. It can be observed that 3 does not violate the

131

synchronization conditions and hence is a synchronizing word. Consider the

set M1\3. All words in M1 end with a quaternary bit 3, and no word in

M1\3 starts with a quaternary bit 3, therefore Condition 4.2 is satisfied for

all words in M1\3. Furthermore, since the quaternary bit 3 only appears at

the end of each word, Condition 4.1 is satisfied for all words in M1\3. Thus,

M1 has a sync probability of 100%.

4.2.2 The Pearson constraint

In this section we discuss the selection of the specified state in the FSM

of the Pearson constraint that is introduced in Section 3.3.

The FSM of the binary Pearson constraint is shown in Fig. 3.20 in Section

3.3. According to Criteria 2.2 and 2.3 in Section 2.1, we select state G as the

specified state to achieve the highest maximum possible code rate. However,

it can be observed that state G does not satisfy Condition 4.2 since both an

outgoing edge and an incoming edge correspond to bit 0 (and bit 1). Therefore,

state G results in a sync probability lower than 100%. The minimal set is

MG = {01, 10, 001, 110, 0001, 1110, ...}. It can be verified that every word in

MG other than the words 01 and 10 is a synchronizing word, and the sync

probability is 50%.

State G − 1 and G + 1 are inferior to state 1 in terms of the maximum

possible code rate as discussed in Section 3.3, however, it can be verified that

only words 01 and 101 are not synchronizing words in MG−1, and the sync

probability of MG−1 (and MG+1) is 62.5%. Therefore, it is again observed

that a tradeoff exists between the maximum possible code rate and the sync

probability.

4.2.3 DC-free constraints

We consider DC-free constraints with N different RDS values, as

depicted in the FSM shown in Fig. 2.1. According to Criteria 2.2 and 2.3 in

Section 2.1, state dN/2e should be selected as the specified state since its

minimal set has the highest possible code rate. We first consider the case of

132

the DC-free constraint with N = 5. We have that

M3 = {10, 01, 1100, 0011, 110100, 001011} with lmax = 6. Unfortunately it can

be verified that M3 does not contain a synchronizing word, thus M3 has a

sync probability of 0%.

Now we consider the general case where N > 5 and generate the

codebooks using the construction algorithm in Section 2.1. To illustrate, in

Table 2.8 shown in Section 2.1 we list a minimal set when N = 7. Note that

since state dN/2e has sequences 11 and 00 associated with both its outgoing

and incoming edges, it does not satisfy Criterion 4.2 and thus may not be

preferred in terms of sync probability. In fact, we can prove that with N ≥ 5,

the minimal set MdN/2e has sync probability 0%. The proof is as follows.

It is clear that words 01 and 10 are not synchronizing words since they

violate Condition 4.1. Furthermore, we observe that any of the remaining

words W in MdN/2e ends with 00 or 11. Therefore, W is a synchronizing word

iff W\00 is a valid word when 00 is the prefix of W , and similarly iff W\11 is

a valid word when 11 is the prefix of W . However, W\00 cannot be a valid

word since a valid word in MdN/2e must have an equal number of zeros and

ones, while W\00 has two more ones than zeros. A similar argument can be

made for W\11. Hence none of the words in MdN/2e is a synchronizing word

and therefore the sync probability is 0%.

However, we note that state 1 does not violate Criterion 4.2, and that the

minimal set associated with state 1 has a nonzero sync probability. For N = 5

and lmax = 6, M1 = {10, 1100, 110100, 111000}, where it can be verified that

110100 and 111000 are synchronizing words, resulting in a sync probability of

7.4% which is equal to what is possible with M5 and is higher than that can

be achieved in other states.

We also note that with additional prior knowledge at the decoder,

performance can be improved in terms of sync probability. For example,

assume the decoder exploits its knowledge that all DC-free codewords are of

even length. With N = 5, the sync probability of M1 is improved since one

more word, 1100, becomes a synchronizing word. We will present more

results assuming that the decoder has additional knowledge related to the

133

constraint.

In this section we investigated the sync properties of a variety of

constraints, and demonstrated that states that satisfy Criteria 4.1 and 4.2

can result in minimal sets with high sync probabilities. In the next section,

we show that variable-length constrained sequence codes constructed via

partial extensions of minimal sets can achieve both high efficiency and high

sync probability.

4.3 Partial extensions

Using words in the minimal set as the set of codewords may not result in

capacity-approaching codes since higher efficiency is often achieved with larger

codebooks. Therefore, we perform partial extensions over the minimal sets to

generate larger codebooks. However, different from Sections 2.1 and 2.2 where

partial extensions are exhaustively performed and the one that has the highest

efficiency is selected, in this section we introduce an algorithm that efficiently

guides the partial extension process such that the resulting codebook has a

high sync probability. Note that performing partial extensions without care

can reduce the sync probability, as we show in the following example.

Example (d = 1, k = 3 RLL constraint) As discussed in the previous

section, we select state 1 in Fig. 4.3 as the specified state that results in a

minimal set of sync probability 100%, i.e., M1 = {01, 001, 0001}. If we extend

word 0001, we have M1,p = {01, 001, 000101, 0001001, 00010001} where 01, 001

and 00010001 are not synchronizing words, resulting in a sync probability of

only 17%. In contrast, extension of the words 01 and 001 results in sync

probabilities of 78% and 43% respectively.

This example motivates us to design a guided partial extension algorithm

that aims to simultaneously achieve both high code efficiency and high sync

probability.

134

4.3.1 Extending synchronizing versus nonsynchronizing

words

We first consider whether to extend synchronizing words or

nonsynchronizing words when our aim is to keep the sync probability high.

We consider the following proposition and observation.

Proposition 4.1 Extending a synchronizing word lowers sync probability.

Proof. Consider a synchronizing word W in M . If we extend W , the |M |

resulting words from extension of W cannot all be synchronizing words since

one of the resulting words is W ′ = W +W . W becomes a suffix after this

extension, and W ′\W = W can no longer be a valid word. Therefore, W ′ is

not a synchronizing word, which lowers the sum of maxentropic probabilities

of all synchronizing words.

Observation 4.3: Extending a nonsynchronizing word may increase the

sync probability.

It is often the case that an extended word W ′ constructed through an

extension of a nonsynchronizing word W is a synchronizing word, since W ′

consists of W concatenated with a valid word. W becomes the suffix of the

extended wordW ′′ =W+W , hence anyW ′ 6=W ′′ is likely to satisfy Condition

4.2.

For example, consider the ICI constraint in Fig. 4.5.

M3 = {0, 1, 2, 31, 300,

301, 302, 331, 332, 3300, 3301, 3302...} where word 0 is not a synchronizing

word. If we extend word 0, the resulting set is

{00, 01, 02, 031, 0300, 0301, 032, 0331︸ ︷︷ ︸
partial extension

, 0332, 03300, 03301, 03302︸ ︷︷ ︸
partial extension

, 1, 2, 31, 300,

301, 302, 331, 332, 3300, 3301, 3302, ...} where only 00 is not a synchronizing

word. Note that the extended words {01, 02, 031, 0300, 0301, 032, 0331, 0332,

03300, 03301, 03302} are synchronizing words, thus the sync probability has

increased.

Based on Proposition 4.1 and Observation 4.3, we propose extending

nonsynchronizing words whenever possible. Only when the minimal set does

135

not contain a nonsynchronizing word do we recommend extending

synchronizing words. Selection of synchronizing words that will be extended

is discussed below.

4.3.2 The guided partial extension algorithm

We start from the minimal set M , i.e., Mp = M . In each partial extension

we first obtain the set of suffixes S where ∀S ∈ S is a suffix of a synchronizing

word W in Mp, i.e., W = ζ + S where ζ denotes any suffix that exists in Mp.

We search for a nonsynchronizing word N such that N /∈ S is the target word

that we would like to extend. The reason for this is as follows. Suppose a

synchronizing word W can be represented as W = ζ +N ′,N ′ ∈ Mp ∧ S. In

this case, extending N ′ would make W nonsynchronizing since N ′ is not a

valid word any more, which would reduce the sync probability. Therefore, we

extend a nonsynchronizing word N /∈ S. At the same time, N should not

have a synchronizing word as its suffix, i.e., N = Λ +W (where Λ denotes

any sequence) should not be extended since extension of N will result in W

violating Condition 4.1 and becoming a nonsynchronizing word. If we cannot

find such a word N , then a partial extension will result in a synchronizing

word becoming nonsynchronizing. In this case we choose to perform extension

of each of the nonsynchronizing words and choose the one that results in the

highest synchronization probability.

If there are no nonsynchronizing words in Mp, we must extend a

synchronizing word. We note that extending a longer synchronizing word is

more likely to reduce the sync probability than extending a shorter

synchronizing word, since a longer synchronizing word W may correspond to

a greater number of valid words W ′′ where W = Λ +W ′′, and extension of W

results in W ′′ violating Condition 4.1. Returning to the example above, it is

straightforward to confirm that extension of word 0001 is not preferred since

it results in words 01 and 001 violating Condition 4.1. On the other hand,

extension of word 001 only excludes word 01 from being a synchronizing

word, and extension of the word 01 does not result in any word violating

136

Condition 4.1. Therefore, we choose to extend the shortest synchronizing

word, and we propose Proposition 4.2 based on the following lemma.

Lemma 4.1 Under the condition that Mp does not contain

nonsynchronizing words, the shortest synchronizing word cannot be

represented as a suffix plus a valid word.

Proof. The proof is straightforward and is omitted.

Proposition 4.2 Under the condition that Mp does not contain

nonsynchronizing words, extending the shortest synchronizing word W

reduces the sync probability by λ−2lW
max where lW is the length of word W .

Proof. Since W is a synchronizing word, it satisfies Condition 4.1. Therefore

words resulting from extension of W also satisfy Condition 4.1. From Lemma

4.1 we know that these words also satisfy Condition 4.2 except for the extended

word W ′′ =W +W . It can be easily checked that all words in Mp\W remain

synchronizing words, because they satisfy both Conditions 4.1 and 4.2. The

reduction of sync probability as the result of extending W is therefore the

maxentropic probability of word W ′′, which is λ−2lW
max .

Based on the above discussion, the proposed guided partial extension

algorithm is shown in Algorithm 5. This algorithm is initialized with Mp = M

and J = 0 where J is the recursion depth, and is recursively called a number

of times until J exceeds the pre-established limits. With each recursion depth

the algorithm outputs a codebook with the highest synchronization probability

at the current depth.

4.4 Capability to quickly re-synchronize

In this section, we present results regarding the efficiency and sync

probability of codes constructed based on the procedures outlined above. We

evaluate, under the case of a binary symmetric channel (BSC), the sync

properties in terms of the average number of bits and average number of

codewords that the decoder requires to regain synchronization once

137

Algorithm 5 The guided partial extension algorithm

Data: words in Mp, the recursion depth J

Result: the updated Mp

Initialization: S, the set of nonsynchronizing words P, the set of

synchronizing words Q, the set of words Γ that will be extended

in the current recursion, Γ = Φ

Sort(P) // sort by length from shortest to longest

Sort(Q) // sort by length from shortest to longest

if P 6= ∅ then

foreach word N ∈ P do

if N ∈ S or N = N ′′ +W ∃W ∈ Q then
continue;

else

if Γ.empty() or N .size() == Γ.back().size() then
Γ.push back(N)

else
break;

end

end

end

if Γ.empty() then
construct Γ with all words in P

end

else
construct Γ with the shortest words in Q

end

/* recursion with depth J + 1 */

foreach word τ ∈ Γ do
extend τ in Mp, obtain Mp,τ and the corresponding synchronization

probability

call guided partial extension algorithm(Mp,τ , J + 1)

undo the extension of τ in Mp,τ , backtrack to Mp

end

Output: Mp,τ that has the highest synchronization probability ∀τ ∈ Γ

138

synchronization is lost. The decoding algorithm that we consider is the

conventional bit-by-bit decoding algorithm described in the Appendix of [65],

and which is reported here as Algorithm 6.

4.4.1 Upper bounds of the average number of

codewords and bits before resynchronization

We first derive an upper bound on the number of codewords and the

number of coded bits that are required for the decoder to regain

synchronization once synchronization is lost. We denote the upper bound on

the number of codewords Nc and the number of coded bits Nb as Ñc and Ñb,

respectively.

To evaluate Ñc, under the condition that there are no errors in the

received symbols during synchronization, we consider the case when

synchronization occurs only as a result of the occurrence of a sync word. We

note that, after loss of synchronization, if the next received codeword is a

synchronizing codeword (that occurs with probability P) then the receiver

will regain synchronization. However, if the next codeword is not a

synchronizing codeword (with probability 1 − P) but the subsequent word is

a sync word, then synchronization will occur after two words with

probability (1− P)P . Continuing, we have that

Ñc = lim
i→∞
{P + 2(1− P)P + ...+ i(1− P)i−1P}

=
1

P
.

(4.1)

Now consider the case when errors on the binary symmetric channel occur

with probability pc. The probability that a codeword is correctly received is,

on average, (1 − pc)
ō where ō denotes the average length of codewords, i.e.,

ō =
∑
si

2−sioi. Therefore, we have

Ñc =
1

P × (1− pc)ō
, (4.2)

139

Algorithm 6 Conventional bit-by-bit variable-length constrained sequence

decoding when errors occur during transmission

Data: the received sequence v̂

Result: the decoded output, an estimation of the source sequence

Initialization: the codebook, lmax, cur pos head← 1, cur pos← 1

while cur pos head ≤ |v̂| do

if cur pos− cur pos head+ 1 ≤ lmax then

if v̂cur poscur pos head is a valid codeword then
decode v̂cur poscur pos head into the corresponding source word

cur pos← cur pos+ 1

cur pos head← cur pos

else
cur pos← cur pos+ 1

end

else
/∗ no match is found in the codebook ∗/
cur pos← cur pos head+ 1

while cur pos ≤ |v̂| do

foreach tmp start pos in [cur pos head, cur pos] do

if v̂cur postmp start pos is a valid codeword then
decode v̂cur postmp start pos

cur pos← cur pos+ 1

cur pos head← cur pos

goto line 5: if cur pos− cur pos head+ 1 ≤ lmax then

else
tmp start pos← tmp start pos+ 1

end

end

cur pos← cur pos+ 1

end

end

end

140

In a similar fashion, Ñb is derived as

Ñb =
1

P × (1− pc)ō
× ō+ ō− 1 (4.3)

where ō − 1 is, on average, the maximum number of bits of the currently

received codeword that has caused mis-synchronization.

As noted above, in the derivation of (4.1) – (4.3), we assume that

resynchronization occurs only on synchronizing codewords. However, it can

be observed in Algorithm 6 that it is possible for resynchronization to also

occur on nonsynchronizing codewords. Therefore, Ñc and Ñb are indeed

upper bounds on the average number of codewords and the average number

of bits that the receiver requires to regain synchronization, since the actual

number of codewords the receiver requires to resynchronize can be smaller.

As we will show in the simulation results, good synchronization properties

can be observed even with a small value of P and correspondingly large

values of Ñc and Ñb.

4.4.2 Simulation results

We now consider simulation results for synchronization with several

classes of constrained sequence codes.

RLL constraints

Consider, for example, the (d = 1, k = 3) RLL constraint. In accordance

with the discussion in this Section, we select state 1 as the specified state, hence

M1 = {01, 001, 0001}. We perform the guided partial extension algorithm

over M1 with J recursions according to Algorithm 5, J = 0 → 9. The code

efficiency and sync probability of the resulting codes are shown in Fig. 4.6,

where J = 0 on the horizontal axis represents the code constructed with

codewords from the minimal set. From this figure we can see that after several

iterations of extension, we can construct codes with code efficiency near 99%

and sync probability near 100%. The decrease at J = 1 is due to the fact

that P = ∅ and we therefore have to extend a synchronizing word in the first

141

extension, resulting in M1,p = {001, 0001, 0101, 01001, 010001} where 0101 is

not a synchronizing word since it does not satisfy Condition 4.2.

For comparison purposes, consider the codebook that corresponds to J =

4 shown in Table 4.1. This code achieves η = 98.90% and P = 96.88%. Note

that this codebook has the same number of codewords and an efficiency very

close to the code given in Table 1.7, however, the sync probability of the code

in Table 1.7 is only 21.88%, which is much lower than the code in Table 4.1.

This demonstrates that the guided partial extension algorithm can effectively

generate codebooks with high sync probabilities.

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 1 2 3 4 5 6 7 8 9

 0.75

 0.8

 0.85

 0.9

 0.95

 1

e
f
f
i
c
i
e
n
c
y

s
y
n
c

p
r
o
b
a
b
i
l
i
t
y

iteration

code effciency
sync probability

Figure 4.6: Code efficiency and sync probability of (d = 1, k = 3) RLL

constrained sequence codes.

We now consider the sync properties of the (d = 1, k = 3) RLL codes we

constructed. The coded sequence is transmitted over a BSC with crossover

probability 0.1. A source sequence of 50000 bits is randomly generated and

encoded into a constrained sequence with the number of codewords ranging

from ∼9000 to ∼18000 with J = 0 → 9, according to the codebook. Once

synchronization is lost due to errors that occur during transmission through

simulation of Algorithm 6, we obtain the number of bits and the number of

142

Table 4.1: Codebook of a (d = 1, k = 3) RLL code with efficiency of 98.90%

and sync probability of 96.88%

Source word Codeword Source word Codeword

01 0001 00000 0101010001

11 001 00001 0101010101

001 010001 10001 010101001

101 01001 100000 010101010001

0001 01010001 100001 01010101001

1001 0101001

codewords before the receiver regains synchronization. We consider all the

occurrences that synchronization is lost, and report the average number of

bits and average number of codewords that the receiver receives before it

re-synchronizes. The results are shown in Figs. 4.7 and 4.8. It can be seen

that the receiver generally requires less than one codeword to regain

synchronization, demonstrating that these codes have good synchronization

properties in the sense that once synchronization is lost, they recover

synchronization quickly. Nc first increases from J = 0 → 1 and then

decreases from J = 1 → 9, which is consistent with the sync probability

shown in Fig. 4.6. Fig. 4.8 shows that Nb is around 8 for J = 1→ 9. This is

because codebooks with larger J have longer codewords, therefore Nb does

not reduce as dramatically as Nc.

In Fig. 4.9 we demonstrate the ratio of the number of events when

synchronization is achieved on synchronizing codewords to the total number

of synchronization events, for J = 0→ 9. As demonstrated in Fig. 4.9, these

ratios are less than 100% indicating that some synchronization events occur

on nonsynchronizing codewords. This demonstrates that Algorithm 6

permits synchronization to occur on nonsynchronizing codewords, as was

mentioned above. This explains why in Figs. 4.7 and 4.8 the actual average

number of codewords and average number of bits that the receiver requires

for resynchronization are lower than Ñc and Ñb, since Ñc and Ñb assume that

synchronization only occurs on synchronizing codewords.

143

Finally, as is clear from these figures, for the (d = 1, k = 3) RLL

constraint there is no significant advantage to using a codebook other than

the minimal set because it satisfies Criteria 4.1 and 4.2, and hence has

excellent sync properties, while also having high efficiency. In contrast, in the

next subsection we examine situations in which J = 0 is not the best choice

when we compare with other codebooks constructed using our guided partial

extension algorithm.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 1 2 3 4 5 6 7 8 9

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

A
v
e
r
a
g
e

#

o
f

w
o
r
d
s

b
e
f
o
r
e

r
e
−
s
y
n
c

u
p
p
e
r

b
o
u
n
d

iteration

words before re−sync
upper bound

Figure 4.7: Average number of words required to regain synchronization for

the constructed (d = 1, k = 3) RLL constrained sequence codes.

144

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8 9

 4

 6

 8

 10

 12

 14

 16

A
v
e
r
a
g
e

#

o
f

b
i
t
s

b
e
f
o
r
e

r
e
−
s
y
n
c

u
p
p
e
r

b
o
u
n
d

iteration

bits before re−sync
upper bound

Figure 4.8: Average number of bits required to regain synchronization for the

constructed (d = 1, k = 3) RLL constrained sequence codes.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7 8 9

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

R
a
t
i
o

t
h
a
t

s
y
n
c

i
s

o
n

s
y
n
c
h
r
o
n
i
z
i
n
g

c
o
d
e
w
o
r
d
s

s
y
n
c

p
r
o
b
a
b
i
l
i
t
y

iteration

ratio that sync is on synchronizing codewords
sync probability

Figure 4.9: The ratio that synchronization is achieved on synchronizing

codewords for the constructed (d = 1, k = 3) RLL constrained sequence

codebooks.

145

Flash memories

We consider constraints that mitigate ICI in flash memories, including the

single-level cell (SLC) and multi-level cell (MLC) flash memories. For the SLC

flash memories, the constraint was shown previously in Fig. 2.6; discussion

in Section 4.2.1 reveals that it is sufficient to use M1 as the minimal set.

Therefore, we construct our codebooks based on state 1. The code efficiency

and sync probability are shown in Fig. 4.10 where it can be seen that, similar

to the situation with the (d = 1, k = 3) RLL constraint, the sync probability

decreases as J = 0→ 1 since the synchronizing word 1 is extended, resulting in

the nonsynchronizing word 11. For J = 1→ 9, the sync probability increases

up to 99.6%. The sync performance is shown in Figs. 4.11 and 4.12, where

it is evident that on average less than one codeword and less than 8 bits are

required for the receiver to regain synchronization.

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 1 2 3 4 5 6 7 8 9

 0.75

 0.8

 0.85

 0.9

 0.95

 1

e
f
f
i
c
i
e
n
c
y

s
y
n
c

p
r
o
b
a
b
i
l
i
t
y

iteration

code effciency
sync probability

Figure 4.10: Code efficiency and sync probability of the codes for SLC flash

memory.

146

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5 6 7 8 9

 0

 0.5

 1

 1.5

 2

 2.5

A
v
e
r
a
g
e

#

o
f

w
o
r
d
s

b
e
f
o
r
e

r
e
−
s
y
n
c

u
p
p
e
r

b
o
u
n
d

iteration

words before re−sync
upper bound

Figure 4.11: Average number of words required to regain synchronization for

the codes for SLC flash memory.

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8 9

 0

 2

 4

 6

 8

 10

 12

 14

A
v
e
r
a
g
e

#

o
f

b
i
t
s

b
e
f
o
r
e

r
e
−
s
y
n
c

u
p
p
e
r

b
o
u
n
d

iteration

bits before re−sync
upper bound

Figure 4.12: Average number of bits required to regain synchronization for the

codes for SLC flash memories.

Now we show that in situations where the minimal set has low sync

probability, such as when the code efficiency is of high priority and the

specified state is selected according to the criteria in Section 2.1, the guided

147

partial extension algorithm will likely help improve the sync probability. For

example, we consider MLC flash memories and the FSM of the constraint

that forbids pattern 303 as shown in Fig. 4.5. The capacity of this constraint

is 1.978 bit/symbol. According to our criteria, state 1 has the best sync

probability, but a lower code rate than states selected according to the

criteria described in Section 2.1. We instead consider selecting state 3 as the

specified state which has the best maximum possible code rate, but worse

sync probability compared to state 1. Note that state 3 does not satisfy

Criterion 4.1, because word 0 is not a synchronizing word in M3. If we

directly perform NGH coding over M3, the resulting codebook, shown in

Table 4.2, achieves 99.6% of the capacity and has a sync probability of

P = 75% since codeword 0, which occurs with 25% probability, is not a

synchronizing codeword. We now show that the sync probability increases

with the proposed guided partial extension algorithm.

Table 4.2: A constrained sequence codebook for ICI mitigation of MLC flash

memory that achieves 99.6% of capacity

Source words Codewords Source words Codewords

00 2 01 1

10 0 1100 32

1101 31 111000 302

111001 301 111010 300

111011 332 111100 331

1111010 3302 1111011 3301

1111100 3300 1111101 3332

11111100 3331 111111010 33302

111111011 33301 111111100 33300

111111101 33332 111111110 33331

11111111100 333302 11111111101 333301

111111111100 333300 111111111101 333332

111111111110 333331 1111111111110 3333302

11111111111110 3333301 11111111111111 3333300

148

Fig. 4.13 shows the code efficiency and sync probability of codebooks

we have constructed for J = 0 → 9. It can be seen that along with small

increases in efficiency, the sync probability increases from 75% to 99.99%,

which demonstrates the effectiveness of the proposed algorithm. Fig. 4.14 and

4.15 show the average number of codewords and the average number of bits

that the decoder requires to receive to regain synchronization. It can be seen

that on average, less than 0.4 codewords and less than 5 bits are needed to

regain synchronization, which illustrates that the constructed codebooks have

good synchronization properties. Nc is smaller than 1 because even when errors

exist in the received bit sequence, Algorithm 6 usually correctly identifies the

end of the current codeword.

 0.9963

 0.99635

 0.9964

 0.99645

 0.9965

 0 1 2 3 4 5 6 7 8 9

 0.75

 0.8

 0.85

 0.9

 0.95

 1

e
f
f
i
c
i
e
n
c
y

s
y
n
c

p
r
o
b
a
b
i
l
i
t
y

iteration

code effciency
sync probability

Figure 4.13: Code efficiency and sync probability of the constructed codes for

MLC flash memory.

149

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6 7 8 9

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

A
v
e
r
a
g
e

#

o
f

w
o
r
d
s

b
e
f
o
r
e

r
e
−
s
y
n
c

u
p
p
e
r

b
o
u
n
d

iteration

words before re−sync
upper bound

Figure 4.14: Average number of words required to regain synchronization for

the constructed codes for MLC flash memory.

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9

 2

 3

 4

 5

 6

 7

 8

A
v
e
r
a
g
e

#

o
f

b
i
t
s

b
e
f
o
r
e

r
e
−
s
y
n
c

u
p
p
e
r

b
o
u
n
d

iteration

bits before re−sync
upper bound

Figure 4.15: Average number of bits required to regain synchronization for the

constructed codes for MLC flash memory.

150

The Pearson constraint

With the Pearson constraint, we present the results with codes that are

constructed using state G in Fig. 3.20 as the specified state. Fig. 4.16 shows

the code efficiency and sync probability of the constructed codebooks with J =

0→ 9. It can be seen that the sync probability increases from 50% to 61.5%.

Figs. 4.17 and 4.18 show the average number of codewords and the average

number of bits that the decoder needs to receive to regain synchronization.

It can be seen that even though the sync probabilities are relatively low, on

average approximately one codeword and fewer than 7 bits are needed to regain

synchronization.

0.998696

0.998697

0.998698

0.998699

 0 1 2 3 4 5 6 7 8 9

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

e
f
f
i
c
i
e
n
c
y

s
y
n
c

p
r
o
b
a
b
i
l
i
t
y

iteration

code effciency
sync probability

Figure 4.16: Code efficiency and sync probability of the Pearson codes.

151

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 1 2 3 4 5 6 7 8 9

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

A
v
e
r
a
g
e

#

o
f

w
o
r
d
s

b
e
f
o
r
e

r
e
−
s
y
n
c

u
p
p
e
r

b
o
u
n
d

iteration

words before re−sync
upper bound

Figure 4.17: Average number of words required to regain synchronization for

the constructed Pearson codes.

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 1 2 3 4 5 6 7 8 9

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

A
v
e
r
a
g
e

#

o
f

b
i
t
s

b
e
f
o
r
e

r
e
−
s
y
n
c

u
p
p
e
r

b
o
u
n
d

iteration

bits before re−sync
upper bound

Figure 4.18: Average number of bits required to regain synchronization for the

constructed Pearson codes.

152

The DC-free constraint

We present the results of the DC-free constraint with N = 5, and consider

the tradeoff between code efficiency and sync probability. According to the

discussion in this Section, state 1 is better than state 2, which is better than

state 3 in terms of sync probability. However, according to the study in Section

2.1, the opposite is true when attempting to maximize the code rate.

In Fig. 4.19 we present the result of code efficiency and sync probability

for codes constructed with states 1, 2 and 3 as the specified state, with

J = 0 → 9. It can be seen that the above-mentioned conclusion is verified,

and the expected tradeoff between code efficiency and sync probability that

arises from different states as the specified state is clearly seen. Figs. 4.20

and 4.21 show the average number of codewords and the average number of

bits before the decoder regains synchronization. It can be seen that on

average, between 2 to 7 codewords and between 10 to 35 bits are needed to

regain synchronization. Note that Ñc and Ñb for states 2 and 3 are infinity

since P = 0. However, because it is possible for the decoder to regain

synchronization on nonsynchronizing codewords, these codes demonstrate

relatively good synchronization properties even though P = 0.

To improve the synchronization properties, we use the prior knowledge

that the codewords are of even length, and process two bits per decoding

attempt. In this case, the sync probabilities are improved as shown in Fig.

4.22, and the average number of codewords and binary coded bits that are

needed to regain synchronization are reduced as shown in Figs. 4.23 and 4.24.

It can be seen that on average, approximately one codeword and fewer than 7

bits are needed to regain synchronization.

Note that in this case, the results do not indicate that the synchronization

performance for state 1 > state 2 > state 3. The reason is illustrated in Fig.

4.25, and is explained as follows. Codeword 2 in the minimal set with state

1 as the specified state is not a synchronizing word since it does not satisfy

Condition 4.1. However, the chances that reception of codeword 2 result in

mis-synchronization is only when the quaternary bit before 2 (which can be

153

2 or 0) is incorrectly detected as 3 and the quaternary bit after 2 (which can

be 2 or 3) is incorrectly detected as 0. The probability of this case is low,

hence codeword 2 can be regarded as an “almost synchronizing codeword”. It

follows that the sync probability of the minimal set of state 1 can be regarded

as “almost 100%”. Similar reasoning holds for states 2 and 3, making their

sync probability “almost 100%”, and the number of codewords that are needed

to regain synchronization is similar for all three states.

We also note that, with prior knowledge that all codewords have even

length, in case that the receiver misses a single bit in the detection process,

the above-mentioned decoding process with two bits per decoding attempt

will never re-synchronize. Therefore, we propose starting the

two-bit-grouping at both odd and even positions and performing decoding

with both alternatives. In situations where the receiver misses a bit or

mistakenly clocks in an extra bit, the decoding attempt that starts at odd

positions will re-synchronize, otherwise the decoding attempt that starts at

even positions will re-synchronize the received sequence.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

e
f
f
i
c
i
e
n
c
y

s
y
n
c

p
r
o
b
a
b
i
l
i
t
y

iteration

code effciency, state 1
sync probability, state 1

code effciency, state 2
sync probability is zero for J = 0 → 9, state 2

code effciency, state 3
sync probability is zero for J = 0 → 9, state 3

Figure 4.19: Code efficiency and sync probability of the constructed DC-free

codes with N = 5.

154

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9

 0

 1

 2

 3

 4

 5

 6

 7

A
v
e
r
a
g
e

#

o
f

w
o
r
d
s

b
e
f
o
r
e

r
e
−
s
y
n
c

u
p
p
e
r

b
o
u
n
d

iteration

words before re−sync, state 1
upper bound, state 1

words before re−sync, state 2
words before re−sync, state 3

Figure 4.20: Average number of words required to regain synchronization for

the constructed DC-free codes with N = 5. The upper bounds for states 2

and 3 are infinity since P = 0.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7 8 9

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

A
v
e
r
a
g
e

#

o
f

b
i
t
s

b
e
f
o
r
e

r
e
−
s
y
n
c

u
p
p
e
r

b
o
u
n
d

iteration

bits before re−sync, state 1
upper bound, state 1

bits before re−sync, state 2
bits before re−sync, state 3

Figure 4.21: Average number of bits required to regain synchronization for the

constructed DC-free codes with N = 5. The upper bounds for states 2 and 3

are infinity since P = 0.

155

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

e
f
f
i
c
i
e
n
c
y

s
y
n
c

p
r
o
b
a
b
i
l
i
t
y

iteration

code effciency, state 1
sync probability, state 1

code effciency, state 2
sync probability, state 2

code effciency, state 3
sync probability, state 3

Figure 4.22: Code efficiency and sync probability of the constructed DC-free

codes with N = 5, when the decoder has knowledge that codewords have even

length.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9

 0

 1

 2

 3

 4

 5

 6

 7

A
v
e
r
a
g
e

#

o
f

w
o
r
d
s

b
e
f
o
r
e

r
e
−
s
y
n
c

u
p
p
e
r

b
o
u
n
d

iteration

words before re−sync, state 1
upper bound, state 1

words before re−sync, state 2
upper bound, state 2

words before re−sync, state 3
upper bound, state 3

Figure 4.23: Average number of words required to regain synchronization for

the constructed DC-free codes with N = 5, when the decoder has knowledge

that codewords have even length.

156

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8 9

 5

 10

 15

 20

 25

 30

 35

 40

 45

A
v
e
r
a
g
e

#

o
f

b
i
t
s

b
e
f
o
r
e

r
e
−
s
y
n
c

u
p
p
e
r

b
o
u
n
d

iteration

bits before re−sync, state 1
upper bound, state 1

bits before re−sync, state 2
upper bound, state 2

bits before re−sync, state 3
upper bound, state 3

Figure 4.24: Average number of bits required to regain synchronization for the

constructed DC-free codes with N = 5, when the decoder has knowledge that

codewords have even length.

Figure 4.25: All cases that codeword 2 in the minimal set constructed based

on state 1 results in mis-synchronization. Note that the probabilities of these

cases are small, making codeword 2 an “almost synchronizing codeword”.

157

Chapter 5

Conclusion

5.1 Thesis summary

In this thesis, we have discussed the design and application of variable-

length constrained sequence codes. Construction of these codes consists of the

following steps: building a minimal set, performing partial extensions, and

NGH coding.

In Chapter 2 we studied the single-state code construction technique

where the state selection criteria that result in the highest code efficiency

were discussed. Then a recursive minimal set construction algorithm was

developed and applied to a variety of constraints such as DC-free constraints.

We also studied a multi-state code construction technique that results in

high-efficiency variable-length constrained sequence codes with

state-independent properties. We showed that the multi-state construction

technique can result in a higher code efficiency than the single-state

construction technique for some constraints.

In Chapter 3 we discussed the application of the codes constructed by

the construction techniques in Section 2. In particular, we studied the inter-

cell interference in flash memories and developed constrained sequence codes

that mitigate inter-cell interference. Simulation results show that reduced

inter-cell interference and improved BER performance can be achieved when

utilizing these codes. Then we developed variable-length Pearson codes to deal

158

with cell leakage. Numerical results demonstrate that these codes have than

conventional fixed-to-variable mapping Pearson codes.

In Chapter 4 we studied the synchronization properties of these variable-

length constrained sequence codes. We demonstrated that when the primary

goal is high sync probability instead of high code efficiency, new criteria need

to be developed when building the minimal set. We presented these new

criteria, and then we developed a guided partial extension algorithm aiming

at improving the sync probability. Simulation results show that the codes we

constructed have good synchronization properties such that once the receiver

loses synchronization, it regains synchronization quickly within only a few

codewords.

5.2 Future work

One possibility for future work is to consider the design of variable-length

constrained sequence codes for use with full-sequence programming in flash

memory. Instead of applying binary constrained sequence codes on each of the

pages as was described in the case of multi-page programming in Chapter 3, one

could consider designing non-binary constrained sequence codes and applying

them with full-sequence programming where each cell is programmed exactly

once to achieve the desired voltage. This would involve the consideration of

additional constraints that would result in different levels of ICI mitigation.

For example, in TLC flash memory, pattern 707 is the pattern that corresponds

to the most severe ICI, and it is also desired to forbid patterns 706, 607 and

606, etc. A more complex constraint would involve forbidding some or all

of these patterns, which would result in different levels of ICI mitigation.

Construction of these constraints would involve developing FSMs that describe

the constraints, calculating their capacity, and then constructing codes for

those constraints based on the algorithms proposed in this thesis.

A second goal is to improve the error rate performance of systems using

constrained sequence codes. One promising direction is to apply machine

learning methods in constrained sequence decoding. With fixed-length codes,

159

it is promising to use a multiple layer perception network or a convolutional

neural network to decode capacity-approaching fixed-length codes that

results in bit error rates close to maximum a posteriori (MAP) decoding.

With variable-length codes, it is possible to perform one-shot

batch-processing of variable-length CS codes such that an entire sequence is

decoded at once instead of using bit-by-bit decoding as we described in

Chapter 4. As has been shown in our preliminary results [64, 65], it is

possible to improve the error rate performance of constrained sequence codes

by making use of soft information and global information at the receiver.

Another possibility for improving the error rate performance is to consider

the integration of error control codes and constrained sequence codes. Error

control codes and constrained sequence codes are usually designed separately

in a system. As illustrated in Fig. 1.1, the source information is first encoded

by an error control encoder and then by a constrained sequence encoder so

that the characteristics of the coded bit stream match the physical constraint

of the channel. At the receiver, the bit stream is first decoded by a constrained

sequence decoder and then an error control decoder. This approach has two

drawbacks. First, the constrained sequence decoder is often not able to exploit

the soft information of channel bits; second, the constrained sequence decoder

may cause error propagation, which has significant impact on the error control

decoder. We would like to investigate integration of the two codes in a way

that the output bit steam of the channel is sent into the error control decoder

first, and then sent into the constrained sequence decoder while the order of

two encoders stays the same. In this way, soft information from the channel

can be exploited, the error propagation problem could be alleviated, and the

input bit stream of the channel still matches the channel constraint.

Depending on different types of constraints, many methods can be

investigated to accomplish this reversal. One general method that may worth

investigating is to use systematic error control codes [62]. First, the source

bits S are encoded with a constrained sequence encoder to generate a

sequence S ′1 that satisfies the constraint, and then a systematic error control

code is used to encode S ′1 and generate the redundant bits R. Then,

160

constrained sequence coding is performed over R to generate S ′2. S ′1 and S ′2
are transmitted over the channel. At the receiver side, the decoder first

recovers R with constrained sequence decoding, and then performs error

control decoding using the redundant bits R to recover S ′1. Finally

constrained sequence decoding is performed over S ′1 to recover S. In this

way, error control decoding is performed before the constrained sequence

decoding of source bits.

161

References

[1] K. W. Cattermole, “Principles of digital line coding,” International
Journal of Electronics, 1983, 55(1), pp. 3-33.

[2] A. M. Fouladgar, O. Simeone and E. Erkip, “Constrained codes
for joint energy and information transfer,” IEEE Transactions on
Communications, vol. 62, no. 6, pp. 2121-2131, 2014.

[3] IEEE standard for local and metropolitan area networks-part 15.7: short-
range wireless optical communication using visible light, IEEE Standard
802.15.7, 2011, pp. 248-271.

[4] F. Sala, K. A. Schouhamer Immink, L. Dolecek, “Error control schemes for
modern flash memories: solutions for flash deficiencies,” IEEE Consumer
Electronics Magazine, vol. 4, no. 1, pp. 66-73, 2015.

[5] A. Jiang, J. Bruck, H. Li, “Constrained codes for phase-change
memories,” IEEE Information Theory Workshop (ITW), Dublin, 2010,
pp. 1-5.

[6] K. A. Schouhamer Immink and K. Cai, “Design of capacity-
approaching constrained codes for DNA-based storage systems,” IEEE
Communications Letters, vol. 22, pp. 224-227, 2018.

[7] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379-423, 1948.

[8] C. Berrou, A. Glavieux, “Near optimum error correcting coding and
decoding: Turbo-codes,” IEEE Transactions on Communications, vol.
44, no. 10, pp.1261-1271, 1996.

[9] R. G. Gallager, “Low-density parity-check codes,” MIT press, 1963.

[10] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp.2551-2567, 2006.

[11] E. Arikan, “Channel polarization: a method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073, 2009.

[12] K. A. S. Immink, Codes for mass data storage systems, The Netherlands:
Shannon Foundation Publishers, 2004.

[13] S.W. McLaughlin, J. Luo, and Q. Xie, “On the capacity of m-ary
runlength-limited codes,”IEEE Transactions on Information Theory, vol.
41, no. 5, pp. 1508-1511, 1995.

162

[14] K. A. Schouhamer Immink and H. Ogawa, “Method for encoding binary
data,” US Patent 4,501,000, 1985.

[15] K. A. Schouhamer Immink and U. Gross, “Optimization of low-frequency
properties of eight-to-fourteen modulation,” The Radio and Electronic
Engineer, vol. 53, no. 2, pp. 36-66, 1983.

[16] G. V. Jacoby, “A new look-ahead code for increasing data density,” IEEE
Transactions on Magnetics, vol. MAG-13, no. 5, pp.1202-1204, 1977.

[17] T. D. Howell, “Analysis of correctable errors in the IBM 3380 disk file,”
IBM Journal of Research & Development, vol 28, no. 2, pp. 206-211, 1984.

[18] C. Cao and I. Fair, “Construction of minimal sets for capacity-
approaching variable-length constrained sequence codes,” 2016 Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA,
2016, pp. 255–259.

[19] C. Cao and I. Fair, “Minimal sets for capacity-approaching variable-length
constrained sequence codes,” IEEE Transactions on Communications,
September 2018, vol. 67, no. 2, pp. 890-902, 2019.

[20] C. Cao and I. Fair, “Mitigation of inter-cell interference in flash memory
with capacity-approaching variable-length constrained sequence codes,”
IEEE Journal on Selected Areas in Communications, vol. 34, no. 9, pp.
2366-2377, 2016.

[21] C. Cao and I. Fair, “Capacity-approaching variable-length Pearson
codes,” IEEE Communications Letters, vol. 22, no. 7, pp. 1310-1313, 2018.

[22] C. Cao and I. Fair, “Multi-state encoding of capacity-approaching
variable-length constrained sequence codes with state-independent
decoding,” IEEE Access, vol. 7, pp. 54746-54759, 2019.

[23] J. K. Sundararajan, D. Shah, M. Medard, “Network coding meets TCP:
Theory and implementation,” Proceedings of the IEEE, vol. 99, no. 3, pp.
490-512, 2011.

[24] A. Steadman, I. Fair, “Variable-length constrained sequence codes,” IEEE
Communications Letters, vol. 17, no. 1, pp. 139-142, 2013.

[25] A. Steadman, I. Fair, “Simplified search and construction of
capacity-approaching variable-length constrained sequence codes,” IET
Communications, vol. 10, no. 14, pp. 1697-1704, 2016.

[26] G. Böcherer, “Capacity-achieving probabilistic shaping for
noisy and noiseless channels,” PhD thesis, RWTH Aachen
University, 2012. [Online]. Available: http://www.georg-
boecherer.de/capacityAchievingShaping.pdf.

[27] G. Böcherer, “Geometric Huffman coding,” Aug. 2011. Available: http:
//www.georg-boecherer.de/ghc.html

[28] E. Hemo and Y. Cassuto, “D-imbalance WOM codes for reduced inter-
cell interference in multi-level NVMs,” IEEE Journal on Selected Areas
in Communications, vol. 34, no. 9, pp. 2378-2390, 2016.

163

[29] V. Taranalli, H. Uchikawa, and P. H. Siegel, “Error analysis and inter-
cell interference mitigation in multi-level cell flash memories,” IEEE
International Conference on Communications (ICC), London, 2015, pp.
271-276.

[30] Y. M. Chee, C. Johan, H. M. Kiah, S. Ling, T. T. Nguyen, and V. K. Vu,
“Efficient encoding/decoding of capacity-achieving constant-composition
ici-free codes,” 2016 IEEE International Symposium on Information
Theory (ISIT), Barcelona, 2016, pp. 205-209.

[31] S. Buzaglo, P. H. Siegel, “Row-by-row coding schemes for inter-cell
interference in flash memory,” IEEE Transactions on Communications,
vol. 65, no. 10, pp. 4101-4113, 2017.

[32] H. Wang and S. Kim, “New RLL decoding algorithm for multiple
candidates in visible light communication,” IEEE Photonics Technology
Letters, vol. 27, no. 1, pp. 15-17, 2015.

[33] C. E. Mejia, C. N. Georghiades, M. M. Abdallah and Y. H. Al-Badarneh,
“Code design for flicker mitigation in visible light communications using
finite state machines,” IEEE Transactions on Communications, vol. 65,
no. 5, pp. 2091-2100, 2017.

[34] C. E. Mejia, C. N. Georghiades and Y. H. Al-Badarneh, “Code design
in visible light communications using color-shift-keying constellations,”
Proceedings of the 2016 IEEE Global Communications Conference
(GLOBECOM), Washington, DC, 2016, pp. 1-7.

[35] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital
information storage in DNA,” Science, vol. 337, no. 6012, pp. 1628-1628,
2012.

[36] P. A. Franaszek, “Sequence-state encoding for digital transmission,” Bell
System Technical Journal, vol. 47, pp. 143-157, 1968.

[37] M. Béal, “The method of poles: a coding method for constrained
channels,” IEEE Transactions on Information Theory, vol. 36, no. 4, pp.
763-772, 1990.

[38] C. Jamieson and I. Fair, “Construction of constrained codes for
state-independent decoding,” IEEE Journal on Selected Areas in
Communications, vol. 28, no. 2, pp. 193-199, 2010.

[39] I. Fair, Y. Zhu and A. Hughes, “Spectra of multimode coded signals,”
IEE Proceedings - Communications, vol. 153, no. 3, pp. 383-391, 2006.

[40] M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mitigate
inter-cell interference in read/write cycles for flash memories,” IEEE
Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 836-
846, 2014.

[41] Y. Cai, E. F. Haratsch, O. Mutlu et al, “Error patterns in mlc nand
flash memory: measurement, characterization and analysis,” Design,
Automation & Test in Europe Conference & Exhibition (DATE), Dresden,
March 2012, pp. 521-526.

164

[42] G. Dong, S. Li, T. Zhang, “Using data postcompensation and
predistortion to tolerate cell-to-cell interference in MLC NAND flash
memory,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol.57, no.10, pp. 2718-2728, 2010.

[43] S. K. Lai, “Flash memories: Successes and challenges,” IBM Journal of
Research and Development, vol. 52 , no. 4.5, pp. 529-535, 2008.

[44] L. Dolecek and A. Jiang, “Coding methods for emerging storage systems,”
Asilomar Conference Tutorial, Pacific Grove, CA, 2012.

[45] A. Berman and Y. Birk, “Constrained flash memory programming,” IEEE
International Symposium on Information Theory (ISIT), St. Petersburg,
2011, pp. 2128-2132.

[46] A. Berman and Y. Birk, “Low-complexity two-dimensional data encoding
for memory inter-cell interference reduction,” 2012 IEEE 27th Convention
of Electrical & Electronics Engineers in Israel (IEEEI), Eilat, November
2012, pp. 1-5.

[47] Y. Kim, B. Kumar, K. L. Cho, H. Son, J. Kim, J. J. Kong, and J. Lee,
“Modulation coding for flash memories,” 2013 International Conference
on Computing, Networking and Communications (ICNC), San Diego, CA,
2013, pp. 961-967.

[48] V. Taranalli, H. Uchikawa and P. H. Siegel, “Error analysis and inter-
cell interference mitigation in multi-level cell flash memories,” 2015 IEEE
International Conference on Communications (ICC), London, 2015, pp.
271-276.

[49] R. Motwani, “Hierarchical constrained coding for floating-gate to
floating-gate coupling mitigation in flash memory,” 2011 IEEE Global
Telecommunications Conference (GLOBECOM 2011), Houston, TX,
USA, 2011, pp. 1-5.

[50] R. Motwani and C. Ong, “Robust decoder architecture for multi-level flash
memory storage channels,” 2012 International Conference on Computing,
Networking and Communications (ICNC), Maui, HI, 2012, pp. 492-496.

[51] R. Motwani and C. Ong, “Design of LDPC coding schemes for
exploitation of bit error rate diversity across dies in NAND flash
memory,” 2013 International Conference on Computing, Networking and
Communications (ICNC), San Diego, CA, 2013, pp. 950-954.

[52] G. Dong, N. Xie and T. Zhang, “Techniques for embracing intra-cell
unbalanced bit error characteristics in MLC NAND flash memory,” 2010
IEEE Globecom Workshops, Miami, FL, 2010, pp. 1915-1920.

[53] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai and O. Mutlu, “Data
retention in MLC NAND flash memory: Characterization, optimization,
and recovery,” 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), Burlingame, CA, 2015, pp.
551-563.

165

[54] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and
K. Mai, “Neighbor-cell assisted error correction for MLC NAND flash
memories,” 2014 ACM international conference on Measurement and
modeling of computer systems (SIGMETRICS), New York, NY, USA,
2014, pp. 491-504.

[55] Y. Cai, O. Mutlu, E. F. Haratsch and K. Mai, “Program interference in
MLC NAND flash memory: Characterization, modeling, and mitigation,”
2013 IEEE 31st International Conference on Computer Design (ICCD),
Asheville, NC, 2013, pp. 123-130.

[56] Y. Cai, E. F. Haratsch, O. Mutlu and K. Mai, “Threshold voltage
distribution in MLC NAND flash memory: Characterization, analysis,
and modeling,” Design, Automation & Test in Europe Conference &
Exhibition (DATE), Grenoble, France, 2013, pp. 1285-1290.

[57] K. A. Schouhamer Immink, “Coding schemes for multi-level flash
memories that are intrinsically resistant against unknown gain and/or
offset using reference symbols,” IET Electronics Letters, vol. 50, pp. 20-
22, 2014.

[58] K. A. Schouhamer Immink and J. H. Weber, “Minimum Pearson distance
detection for multi-level channels with gain and/or offset mismatch,”
IEEE Transactions on Information Theory, vol. 60, no. 10, pp. 5966-5974,
2014.

[59] J. H. Weber, K. A. Schouhamer Immink, and S. Blackburn, “Pearson
codes,” IEEE Transactions on Information Theory, vol. 62, no. 1, pp.
131-135, 2016.

[60] J. H. Weber, T. G. Swart and K. A. Schouhamer Immink, “Simple
systematic Pearson coding,” 2016 IEEE International Symposium on
Information Theory, Barcelona, 2016, pp. 385-389.

[61] H. Wang and S. Kim, “Soft-input soft-output run-length limited decoding
for visible light communiation,” IEEE Communications Letters, 2016,
28(3), pp. 225-228.

[62] W. G. Bliss, “Circuitry for performing error correction calculations on
baseband encoded data to eliminate error propagation,” IBM Technical
Disclosure Bulletin, vol. 23, pp. 4633-4634, 1981.

[63] T. Ferguson and J. Rabinowitz, “Self-synchronizing Huffman codes,”
IEEE Transactions on Information Theory, vol. 30, no. 4, pp. 687-693,
1984.

[64] C. Cao, D. Li and I. Fair, “Deep learning-based decoding for constrained
sequence codes,” 2018 IEEE Global Telecommun. Conf. (GLOBECOM)
workshops, Abu Dhabi, United Arab Emirates, 2018, pp. 1-7.

[65] C. Cao, D. Li and I. Fair, “Deep learning-based decoding of constrained
sequence codes,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 11, pp. 2532-2543, 2019.

166

	Background and Motivation
	Introduction to constrained sequence codes
	Review of several constrained sequence codes
	Fixed-length codes
	Variable-length codes

	Motivation of the proposed variable-length codes
	Review of capacity-approaching variable-length constrained sequence codes
	Brief review of constrained coding theory
	Minimal sets and extensions
	Normalized geometric Huffman coding

	Context and contributions of work in this thesis

	Novel code construction techniques for general constraints
	Construction of capacity-approaching codes with a single encoding state MyMinimalSet,MyMinimalSetTCOM
	Selection of specified states
	Code construction algorithm
	Example: codes for visible light communications
	Example: codes for DNA-based storage

	Construction of capacity-approaching codes with multiple encoding states and state-independent decoding MyMultipleState
	Multi-state encoding based on an FSM
	Multi-state encoding based on n-step FSM
	Examples: codes for visible light communications

	Applications
	Flash memory basis
	Structure and programming schemes
	Inter-cell interference

	Coding for flash memory with multi-page Programming MyJSAC
	Page-1 constraint
	Page-2 constraints
	Results of codes constructed with capacity-approaching code rates
	Error control inherent in the constrained sequence codes
	Concatenation of constrained sequence codes with error control codes

	Pearson codes for cell leakage myPearson
	Background
	Finite state machine description
	Code construction
	Performance analysis

	Synchronization of variable-length constrained sequence codes
	Synchronization
	Criteria for minimal set selection
	Constraints that mitigate ICI in flash memories
	The Pearson constraint
	DC-free constraints

	Partial extensions
	Extending synchronizing versus nonsynchronizing words
	The guided partial extension algorithm

	Capability to quickly re-synchronize
	Upper bounds of the average number of codewords and bits before resynchronization
	Simulation results

	Conclusion
	Thesis summary
	Future work

	References

