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Abstract 
In this work, electroencephalography and functional magnetic resonance imaging 

(fMRI) were performed together to obtain electroencephalograms (EEGs) and fMR 

images from an epileptic patient. A procedure known as independent component analysis 

(ICA) was applied to the fMR images in order to develop an improved method of 

identifying brain regions where the patient's seizures occur. 

Before the EEG-fMRI study was performed, a preliminary fMRI scan was 

performed on a healthy subject. The fMR images acquired from the preliminary scan 

were used to explore the effectiveness of applying ICA to fMR images. 

The results from both studies indicate that more work needs to be done to improve 

the quality of hemodynamic response signal models used for statistically testing fMRI 

measurements. However, the results also indicate that ICA is an effective tool that can be 

used to help identify epileptogenic regions of a patient's brain. 
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Chapter 1 

Introduction 

The objective of this work has been the development of an improved method for 

localizing the region(s) of the brain responsible for the onset of seizure activity in patients 

suffering from partial epilepsy. The objective was achieved by the application of an 

analytical process called Independent Component Analysis (ICA) to measurements 

obtained using an imaging technology called functional magnetic resonance imaging 

(fMRI). 

1.1 Motivation 

An improved localization method was developed in this work to contribute to 

improving treatments that are available to patients with partial epilepsy. Surgical 

treatment involves the localization and excision of regions of abnormal tissue (lesions) 

responsible for a patient's epilepsy. Accurate localization of the lesion(s) improves the 

probability of a positive outcome for epilepsy patients for whom surgical intervention is 

the only hope of a cure. It was the opportunity to do this that provided the motivation for 

this work. 
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1.2 Background 

1.2.1 Epilepsy 

Epilepsy is a serious neurological disorder that affects about one per cent of the 

population in North America [1]. The disorder has several causes such as head trauma, 

congenital malformations, brain tumours and many others [1,2]. 

People suffering from epilepsy periodically experience seizures. Seizures are 

attributed to sudden and excessive synchronous discharges from abnormal populations of 

neurons in localized areas of grey matter in the brain [1,2]. During a seizure, a patient 

will elicit symptoms that depend on the affected brain regions. These symptoms include 

loss of consciousness, convulsions, inability to respond to external stimuli, blank staring 

and several others [2, 3]. 

Seizures can be classified many ways, but their broad classification into focal 

(partial) seizures and generalized seizures is important for this work. Focal seizures 

begin in specific localized regions of grey matter in the brain, called the epileptic foci, 

and result in symptoms that are linked to the affected brain regions [2]. On the other 

hand, generalized seizures have no local origin of onset and affect both hemispheres of 

the brain [2, 4]. Since the seizure onset region can be localized, patients with partial 

epilepsy that experience focal seizures were the focus of this work [2, 4, 5] 

Epilepsy is most often treated with medication [2]. Unfortunately, the 

medication may not control the seizures or it may become ineffective over time [2, 6]. In 

these cases, surgery may be a possible alternative course of treatment. 
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1.2.2 Functional Magnetic Resonance Imaging 

Functional magnetic resonance imaging is a form of magnetic resonance 

imaging (MRI) which can be used to acquire brain images that provide information about 

function in addition to information about anatomy. fMRI was discovered in the early 

1990s and it continues to be a popular area of research [7, 8]. fMRI is used to study 

neural activity that occurs in stroke, motor control, cognition, epilepsy and other areas [9, 

10]. 

1.2.2.1 Magnetic Resonance Imaging 

MRI is an imaging modality that is mainly used to obtain images of soft tissue 

inside the body. It is used to generate images for both clinical applications and research. 

It is a very useful imaging modality to study anatomy because images with fine spatial 

resolution in any orientation can be acquired [11]. 

1.2.2.1.1 The Acquisition of Magnetic Resonance Images 

Magnetic resonance images are acquired by manipulating magnetic fields that 

are applied to the body [12]. 

When subjects are imaged, they lie on a bed within an MR scanner in which a 

strong static magnetic field, called the Bo field, is present [9]. Typical static magnetic 

field magnitudes for human MRI are 1.5 Tesla (T), 3.0 T and 4.7 T. By convention, the 

direction of the static magnetic field is labeled the +z direction as shown in Figure 1.1 

[12]. The z-axis is called the longitudinal axis [11]. 

3 



Figure 1.1 Two Nuclear Magnetic Moments Rotating About the z-axis in the Presence of a Strong 

Static Magnetic Field 

Strong static magnetic fields have an effect on certain atomic nuclei within the body. 

Hydrogen atoms, which are abundant in the body as a part of water molecules and 

organic compounds, possess nuclear magnetic moments that are affected by strong static 

magnetic fields [12]. In the presence of a strong static field, hydrogen nuclear magnetic 

moments will align at an angle to the +z-axis or they will align at the same angle to the 

-z-axis. Figure 1.1 shows two nuclear magnetic moments, one black arrow aligned at 

angle 9 to the +z-axis and one black arrow aligned at angle 0 to the -z-axis. While in 

these positions, the static magnetic field exerts a torque on the nuclear magnetic 

moments, causing them to precess (rotate) about the +z-axis or -z axis as shown in Figure 

1.1. Thus, each magnetic moment sweeps out a cone. The rate at which the magnetic 

moments precess about the z-axis is called the Larmor frequency. Equation (1.1) is the 

Larmor frequency equation. 
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fit = yB0 (1.1) 

The Q)0 variable is the radial frequency of the magnetic moments. The y symbol 

represents the gyromagnetic ratio, which has units of MHz/Tesla. The gyromagnetic 

ratio is a constant and its value varies for different atomic elements that produce nuclear 

magnetic moments. Since gyromagnetic ratios vary between elements, magnetic 

moments from different elements will precess at different Larmor frequencies in the 

presence of the same static magnetic field. Lastly, Bo in equation (1.1) is the static 

magnetic field magnitude. 

Nuclear magnetic moments are vectors which sum together to produce a net 

magnetization vector that points in the +z-direction [12]. Regarding this point, many 

nuclear magnetic moments are aligned at the same angle 9 to the +z-axis or -z-axis, 

however, the moments point in different directions as they lie at an angle to the z-axis. 

What can be deduced by observing Figure 1.1 is that each magnetic moment can be 

resolved into components along the x, y and z-axes. The resultant magnetization vector 

along the x-axis, which is obtained by summing the x-components from each magnetic 

moment, is nearly zero. This is because any components that lie along the +x-axis are 

cancelled by an equal number of components that lie along the -x-axis. The resultant 

magnetization vector along the y-axis is negligible for an analogous reason. With regard 

to the resultant magnetization vector along the z-axis, a larger proportion of the magnetic 

moments are aligned at an angle 0 to the +z-axis because this is a lower energy state. 

Thus, there will be a larger number of components pointing in the +z-direction than in the 

-z-direction. The excess of components pointing in the +z-direction will produce a 

measurable magnetization vector along the +z-axis. The net magnetization vector is 
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shown in Figure 1.2. 
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Figure 1.2. Net Magnetization Vector 

Once a magnetization vector has been prepared in the body region being imaged, 

it is tipped into a plane that is perpendicular to the longitudinal axis direction using a 

radio frequency (RF) pulse [12]. This plane is called the transverse plane or x-y plane. 

The tipping occurs because the RF pulse generates a short-lived magnetic field that 

applies a torque to the magnetization vector. The field produced by the RF pulse is called 

a Bi field. The Bi field must rotate in the transverse plane about the z-axis with a 

frequency equal to the Larmor frequency of the atomic nuclei of interest. When the Bi 

field rotates at the Larmor frequency, a strong torque is applied to the magnetization 

vector. This torque forces the vector to rotate into the transverse plane [11, 12]. When 

the Larmor frequency and the Bi field frequency are equal, the Bi field is said to be in 
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resonance with the Larmor frequency. 

After the RF pulse is removed, the magnetization vector that was tipped into the 

transverse plane will begin to precess back toward the +z-axis to return to its original 

state [11]. Consequently, an electric current will be induced in a metal coil of wire that is 

placed around the part of the body being imaged [12]. This electric current is measured 

and used to produce magnetic resonance images. In addition, the magnetization vector 

that is being regenerated along the +z-axis may be tipped into the transverse plane again 

by another RF pulse to obtain another image of the same tissue. 

During the signal measurement period, the magnetization vector in the 

transverse plane is also spatially encoded by magnetic fields called gradients [12]. 

Spatial encoding is used to vary the static magnetic field strength along three dimensions 

so that the precise spatial location of a measured magnetization vector is known. 

Gradient fields are added to or subtracted from the static magnetic field magnitude in a 

linear fashion along the x, y or z-axes. Since it is known how the static magnetic field 

varies along each axis, the data collected can be properly processed to determine the 

signal strength at different locations in the body. Compared to static magnetic fields, 

gradient field magnitudes are much smaller [9]. Typical gradient magnetic field 

magnitudes are between 25-40 mT/metre. 

1.2.2.1.2 MRI Contrast Mechanisms 

In MRI, there are several mechanisms available to obtain contrast between 

different tissues in MR images. Two contrast mechanisms that are commonly used in 

MRI and fMRI are based on a phenomenon called relaxation [12, 13]. 
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The first mechanism is called longitudinal relaxation, which occurs when the 

magnetization vector recovers along the +z-axis [11]. The vector will eventually increase 

to the magnitude it had before it was perturbed by an RF pulse [12]. Longitudinal 

relaxation occurs because the nuclear magnetic moments of the perturbed hydrogen 

atoms interact with the surrounding environment, which includes the static magnetic field 

[9]. This causes the magnetic moments to "relax" back to their original state at an 

exponential rate that has a time constant Ti. Thus, longitudinal relaxation can also be 

referred to as Ti relaxation. The images acquired when longitudinal relaxation is 

exploited are called Ti-weighted images. 

The Ti time constant varies for different tissue types, so imaging sequences are 

designed to take advantage of this fact to generate images with sharp contrast between 

tissues [9]. For example, cerebrospinal fluid (CSF) has a much longer Ti than grey 

matter in the brain. An imaging sequence can be designed to tip the magnetization 

vectors originating from CSF and grey matter into the transverse plane. After a period of 

time, a larger proportion of magnetic moments from grey matter will have relaxed. At 

this point, if the magnetization is tipped again and measured, the resulting signal will 

have a larger contribution from grey matter than from CSF. Hence, there will be 

significant contrast between grey matter and CSF in the image. 

The other important form of relaxation, known as transverse relaxation, occurs 

when the magnetization vector magnitude decreases after it has been tipped into the 

transverse plane [12]. This occurs for several reasons, such as imperfections 

(inhomogeneities) in the static magnetic field and differences in the magnetic field that 

different tissues experience [9, 12]. These influences cause the magnetization in the 
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transverse plane to diminish over time [11]. Just as in longitudinal relaxation, transverse 

relaxation is an exponential process with a time constant T2* [12]. The images acquired 

when transverse relaxation is exploited are called T2 -weighted images. 

Fortunately, static field inhomogeneities may be corrected using an RF pulse 

called a spin-echo [12]. A consequence of using a spin-echo is that it will increase the 

time it takes the transverse magnetization to diminish to zero. When spin-echoes are 

used, only random time-dependent interactions, such as the interactions of hydrogen 

nuclei with other hydrogen nuclei in the surrounding environment, cause the 

magnetization to decay over time [11,12]. Thus, the magnetization decreases 

exponentially with a time constant of T2, which is longer than T2* [12]. The tradeoff 

when using a spin-echo is that it requires a longer imaging time [11]. 

Much like the Ti time constant, T2 and T2* varies for different tissues [12]. 

After the magnetization vector is tipped, the magnetization vector contribution from the 

tissue with the shorter transverse relaxation time will decrease faster than the contribution 

from the tissue with the longer relaxation time [9]. When the signal is measured, the 

tissue with a longer transverse relaxation time will make up a larger proportion of the 

signal than the tissue with the shorter transverse relaxation time. For example, a 

magnetization vector may be composed of magnetic moment contributions from 

hydrogen nuclei in fat and skeletal muscle. Fat tissue has a longer T2 (T2*) than skeletal 

muscle, so a T2-weighted image of these tissues will show contrast between fat and 

skeletal muscle [14]. 

Transverse relaxation, particularly T2 , is the contrast mechanism that is 

commonly exploited in fMRI [13]. Transverse relaxation occurs quickly, so fMRI 
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sequences must be fast to capture functional information. During an fMRI sequence, 

there is usually not enough time to include a spin-echo or to run multiple RF pulses to 

obtain Ti contrast. However, Ti-weighted MR images are often acquired from subjects 

in addition to fMR images to provide the necessary detailed information about each 

subject's anatomy. 

1.2.2.2 Blood-Oxygenation-Level-Dependent (BOLD) fMRI 

The most common type of fMRI is blood-oxygenation-level-dependent (BOLD) 

fMRI [9]. It is called BOLD fMRI because it is used to measure differences in blood 

oxygenation and blood flow to obtain information about brain function. 

1.2.2.2.1 The Hemodynamic Response 

Neural activity in the brain that occurs when a subject performs a task or 

experiences a stimulus usually causes an increase in blood flow and blood oxygenation in 

a localized region [9, 15]. This region may be a few millimetres from the site of the 

neural activity. This change in blood flow and blood oxygenation is called the 

hemodynamic response [9, 16]. The hemodynamic response occurs because energy-

requiring metabolic events, such as glial cell processes and synaptic activities, take place 

when neurons transmit action potentials [9]. A supply of oxygen and glucose is delivered 

by the blood to be used as raw materials for energy production. 

1.2.2.2.2 The Measurement of the Hemodynamic Response 

The hemodynamic response is measured during a BOLD fMRI scan [17]. When 
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a hemodynamic response occurs, an increased amount of oxygenated blood is often 

delivered to a localized region near the site of neural activity [9]. The oxygenated blood 

is actually in excess because the proportion of oxygen extracted from the increased blood 

volume is reduced compared to the proportion of oxygen extracted from the blood under 

resting (baseline) blood flow conditions. Thus, there is a decrease in the proportion of 

deoxyhemoglobin in the blood during a hemodynamic response. This results in a 

measurable increase in the signal measured by BOLD fMRI [9, 18]. 

The change in signal strength occurs because oxyhemoglobin and 

deoxyhemoglobin have magnetic properties that affect BOLD fMRI signal measurements 

[9]. Oxyhemoglobin is diamagnetic, which means it repels the magnetic field applied to 

it. As a result, local magnetic field distortions decrease. This causes a slight increase in 

the signal measured during a BOLD fMRI scan. On the other hand, deoxyhemoglobin 

exhibits a paramagnetic effect by allowing the applied magnetic field to be attracted into 

the deoxyhemoglobin molecule. This effect increases distortions in the magnetic field 

surrounding a deoxyhemoglobin molecule, which slightly decreases the measured BOLD 

fMRI signal. Coincidentally, BOLD fMRI signals only indicate the presence or absence 

of deoxyhemoglobin [18]. A BOLD signal does not indicate the proportion of 

oxyhemoglobin present because molecules other than oxygen, such as carbon monoxide, 

can bind to hemoglobin and decrease the concentration of deoxyhemoglobin without 

increasing the concentration of oxyhemoglobin [17]. 

In an fMRI scan, thousands of BOLD measurements are taken. The brain tissue 

is divided into small three-dimensional volume elements, known as voxels, by the fMR 

imaging sequence [19]. A voxel's dimensions vary from study to study, but its length and 
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width in the plane of the image are usually 2-4 mm while its thickness is usually larger at 

about 5-10 mm. A series of adjacent voxels form one slice of a brain image [12]. 

Several adjacent slices form one whole brain image called a brain volume [20]. fMR 

images, as well as MR images, are viewed slice-by-slice. Slices may be viewed in 

different orientations in fMR images and MR images. Slice orientations may be axial 

(top to bottom of the head), sagittal (left to right of the head) and coronal (front to back of 

the head) [12, 21]. Slices from Ti-weighted anatomical MR images of the brain in each 

of these orientations are shown in Figure 1.3. 

Figure 1.3. MR Image Slices of a Human Brain: Coronal Direction (Top Left), Sagittal Direction 
(Top Right) and Axial or Transverse Direction (Bottom) 

BOLD signal samples are measured from each voxel in the entire brain volume multiple 

times over the course of the scan. Thus, signal samples from one voxel make up a time 

sequence (time course); since there are thousands of voxels, then there are thousands of 

BOLD time courses that are measured and prepared for subsequent analyses. 
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Many of the measured BOLD time courses may contain a hemodynamic 

response that corresponds to the neural activity of interest. Usually, a positive BOLD 

response follows shortly after the neural activity has occurred [17]. It is called a positive 

BOLD response because the measured time course increases in magnitude for a short 

time after the neural activity takes place. This increase in signal strength is a result of 

decreased deoxyhemoglobin concentration in a region occupied by the voxel from where 

the BOLD signal was measured. Positive BOLD response measurements indicate that 

the hemodynamic response is sluggish [16]. This is because the measured BOLD 

hemodynamic responses usually do not start for about 1-2 seconds after neural activity 

begins [17]. The positive BOLD response increases until it reaches a peak about 5-8 

seconds after the neural activity begins and then decreases back to the baseline level 7-13 

seconds later. Positive BOLD responses that correspond to significant neural events have 

an amplitude increase of approximately 0.5-3 % relative to the baseline BOLD signal 

level measured from a patient using a 1.5 T scanner [17, 22, 23]. The amplitude 

increases even more when BOLD signals are measured using a scanner with a stronger 

static magnetic field [24]. 

Positive BOLD responses occur often during fMRI, but negative BOLD 

responses corresponding to neural activity of interest have been recorded as well [25, 26]. 

The physiology of positive BOLD responses is understood better than that of negative 

BOLD responses because the former has been investigated more thoroughly [25]. One 

idea that has been proposed to explain negative BOLD responses is that there is a 

decrease in metabolic activity. This decrease in metabolic activity occurs because 

synaptic events take place that inhibit action potential propagation [25, 26]. The decrease 
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in metabolic activity has a low energy demand, so an increase in blood flow is not 

required. Thus, deoxyhemoglobin concentration increases which results in a decreased 

BOLD signal. An important point to note is that the energy demand is still low even 

when the energy required to inhibit neurons from propagating action potentials is 

considered [26]. Whatever the cause, negative BOLD responses have been observed in 

fMRI studies that investigate many types of neural activity, including activity which is 

involved in sensorimotor tasks and epilepsy [25, 27]. 

1.2.2.2.3 Block Design and Event-Related Paradigms 

There are two paradigms that are used during fMRI to evoke neural activity in a 

subject. The first is the block design paradigm and the second is the event-related 

paradigm. 

When a block design paradigm is used, a subject alternates between intervals of 

performing an activity and resting [13]. The rest periods and activity periods have a 

constant duration. However, the rest period duration may or may not be equal to the 

activity period duration. A typical block design paradigm is a finger flexion motor 

control study. In this type of fMRI study, subjects tap their forefingers and thumbs 

together for a period of time (ten seconds or more) and then rest for a period of time [28]. 

The activity period and rest period are repeated several times during the fMRI scan [29]. 

During each activity interval and rest interval, BOLD signal samples are measured from 

every voxel. The time that elapses when the subjects complete one task period and the 

rest period that immediately follows is called a cycle (trial) in the imaging procedure. An 

illustration of the block paradigm is shown in Figure 1.4. 
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Figure 1.4. Block Design Paradigm 

Block design paradigms are represented by the square wave shown in Figure 1.4 [11]. 

The task portion of the paradigm is represented by the positive phase of the square wave, 

while the rest portion is represented by the negative phase of the square wave [11,30]. 

When an event-related paradigm is used, subjects experience brief stimuli or 

perform short tasks at random or predetermined points during the scan [6, 13, 31]. An 

example of this type of paradigm has been used to study neural activity involved in 

processing auditory stimuli [31]. During the scans, subjects hear brief tones of different 

frequencies at random points in time. The event related paradigm is depicted in Figure 

1.5 [29, 31]. 

: stimuli V- - -
rest rest rest 

time 

Figure 1.5. Event-Related Paradigm 
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The events are shown as short duration rectangular pulses in Figure 1.5 [29, 32]. The 

events may also be represented with Dirac Delta functions [32, 33]. The rest periods, 

represented by the baseline values of the rectangular pulses, usually have random 

durations [13]. 

1.2.2.3 MRI versus fMRI 

MR and fMR images are obtained for different reasons. Magnetic resonance 

images have a very fine spatial resolution because they are examined for anatomical 

abnormalities [11]. On the other hand, fMR images are examined to find information 

about brain function. Subjects undergoing fMRI scans often have MRI scans as well. 

This is so the subjects' fMR images can be registered to their anatomical MR images. 

During the registration process, fMR image voxels are registered (matched) to 

corresponding locations on anatomical MR images that have a fine spatial resolution. 

Registration is performed to allow the results of the fMRI statistical analyses to be 

localized onto the anatomical MR images. Registration allows for a more accurate 

assessment of the potential regions of neural activity [20]. An axial MR image of one 

slice of a subject's brain is shown in Figure 1.6. An image of a slice (axial orientation) 

positioned at about the same location in the same subject is shown in Figure 1.7, except 

this image was acquired using fMRI. These images are shown to illustrate the finer 

spatial resolution that anatomical MR images have over fMR images. The physical 

dimensions of both images are 240 mm x 240 mm. However, the image in Figure 1.6 is 

256 pixels x 256 pixels and the image in Figure 1.7 is 128 pixels x 128 pixels. 

Anatomical details are much clearer in the MR image than the fMR image. 
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Figure 1.6. Image of One Slice of a Subject's Brain Acquired Using MRI 
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Figure 1.7. Image of One Slice of a Subject's Brain Acquired Using fMRI 
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1.2.3 The Statistical Analysis of fMRI Data 

After the fMR images have been collected, they are examined using a statistical 

analysis to determine the brain regions that show a significant BOLD signal change when 

a subject performs a task or experiences a stimulus [32]. There are several types of 

statistical analyses that may be performed, but the most common is a statistical 

parametric test that is based on the General Linear Model [34, 35]. 

1.2.3.1 The General Linear Model 

The General Linear Model (GLM) is a linear system of equations that is used to 

account for the measurements that are made during an fMRI scan [30, 34]. The 

assumption that is made when using a GLM is that the fMRI measurements can be 

represented by a linear combination of estimated time courses [34]. Equation (1.2) 

represents the GLM. 

Y = Gp + £ (1.2) 

The Y matrix is called the data matrix because it contains the BOLD time 

courses measured from every voxel during an fMRI scan [33]. Each row in the Y matrix 

is a time sample and each column is a voxel. 

The G matrix is called the design matrix [30]. This matrix contains several 

signals that are designed to account for different phenomena that may contribute to the 

measured signals in the data matrix [20, 30, 34]. For example, one or more signals may 

be designed to represent the BOLD response that is expected shortly after the subject 

experiences a stimulus or performs a task [34]. In addition, the design matrix may 
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contain signals that are used to account for artifacts, such as noise or head motion [20]. 

These effects must be accounted for in the design matrix, otherwise they could cause the 

statistical analysis to produce erroneous results [36]. Signals that account for artifacts in 

the design matrix are called confounds [15, 37]. Each signal in the G matrix is also 

referred to as a regressor, explanatory variable or covariate [30, 34]. The regressors form 

the columns of the G matrix and time samples form the rows of the G matrix [30]. 

The p matrix is known as the parameter matrix [30]. This matrix is filled with 

coefficients that "fit" the regressors in the G matrix to each BOLD signal in the Y matrix. 

Hence, when the G and P matrices are multiplied together, the resulting product matrix 

will contain several time courses. Each time course will approximate a corresponding 

signal in the Y matrix as closely as possible. Each row of the P matrix contains the 

weight of a regressor at each voxel. Each entry in the P matrix is estimated during a 

parameter estimation step. 

The £ matrix in the GLM is called the residual matrix [30]. This matrix contains 

values that are the arithmetic differences between the measured signals in the Y matrix 

and the estimated signals calculated from the product of the P and G matrices. Thus, 

each element in £ is the error at each time instant and voxel. The number of rows in the 

residual matrix corresponds to the number of time samples and the number of columns 

corresponds to the number of voxels. 

1.2.3.2 Regressors in the GLM 

Designing regressors to place in the G matrix is a difficult task. This is because, 

in most statistical analyses involving the GLM, several regressors are included to account 
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for a variety of effects that may appear in the fMRI measurements [15]. 

The regressors that are intended to model the BOLD signal changes that occur 

shortly after the neural activity of interest are the important parts of the G matrix. These 

regressors are created by considering the relationship between neural activity and a 

resulting hemodynamic response [15, 32]. Neural activity is considered to be an input 

signal to a linear, time-invariant system. The system, in the case of fMRI, is a voxel. 

The input signal is a square wave (boxcar) (Figure 1.4) if a block design paradigm is used 

or a pulse signal (Figure 1.5) if an event-related paradigm is used. The times in which 

the neural activity is initiated correspond to the times in which the signals begin a 

positive phase in Figure 1.4 and Figure 1.5. A voxel is assumed to receive the input 

signal and, in turn, produce an output BOLD response signal that is a delayed and blurred 

version of the input signal [15, 30, 36]. A voxel is assumed to behave this way to 

illustrate the physiological fact that the BOLD hemodynamic response does not begin for 

1-2 seconds after the neural activity is initiated (the delay) and lasts for several seconds 

before settling back to the baseline level (the blur). 

Since the input-output behaviour of a voxel is considered a linear, time-invariant 

system, regressors that are intended to model a BOLD hemodynamic response to neural 

activity are developed by convolving the input signal with an impulse response function 

that represents a voxel's actions on the input [15]. The impulse response function of a 

voxel is called the hemodynamic response function (HRF). The input signal in fMRI is 

often called the stimulus function. The convolution operation is depicted by equation 

(1.3) [36]. 
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y(t) = hrf(t) * s(t) = J hrf(T)s(t-r)dT (1.3) 
r = 0 

The hrf(t) variable is the hemodynamic response function and the s(t) variable is the 

stimulus function. The output variable y(t) is the BOLD hemodynamic response which is 

measured during an fMRI scan. 

Several HRFs have been designed and used in past fMRI studies. Some examples 

of HRFs are the Gamma and Poisson probability density functions [15]. An example of a 

Gamma probability density function (pdf) is shown in Figure 1.8. This Gamma pdf is 

shown as it would be used as a regressor, not as a true pdf. This is why the vertical axis 

is labeled as normalized magnitude (instead of probability values) and the horizontal axis 

is labeled as time (instead of possible outcomes of a random variable). 
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Figure 1.8. Example of a Gamma pdf 

More recently, the canonical HRF has become a very popular HRF [4, 15]. It has 
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been used in fMRI studies of many different types of neural activity, including studies of 

motor control and epileptic neural activity [4, 10, 38]. Interesting localization results 

have been discovered using the canonical HRF. The canonical HRF is actually the 

arithmetic difference between 2 different Gamma pdfs [4, 39]. The canonical HRF was 

designed in a study conducted by Friston and colleagues in 1998 [36, 40]. Equation (1.4) 

below describes the canonical HRF [39]. 

C(t) = f V t15e~'; t > 0 (1.4) 
r(a = 6) T(«r = 16) 

Each term on either side of the subtraction sign in equation (1.4) is an example of a 

Gamma pdf. The first term is actually the Gamma pdf shown in Figure 1.8. The T 

variable in equation (1.4) is the Gamma function (not to be confused with the Gamma 

pdf) evaluated with the shape parameter a. The variable t in equation (1.4) is time. The 

Gamma function is shown by the formula in equation (1.5) [41,42]. 

T(a)= $tale~'dt (1.5) 
(=0 

The canonical HRF computed by evaluating equation (1.4) is displayed in Figure 1.9. 
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Figure 1.9. Canonical HRF 

Other regressors that are placed in the design matrix to account for confounding 

effects are typically not convolved with any function [15]. These regressors may be 

cosine or sine functions that are included to account for low frequency noise in the fMRI 

measurements [43]. Regressors that account for head motion that occurred during the 

fMRI scan may also be used [44]. In addition, polynomial functions may be inserted into 

the design matrix to account for other confounds [43]. Lastly, a signal with constant 

amplitude of one is always placed in the design matrix [30, 45]. This signal accounts for 

the non-zero baseline BOLD signals (BOLD signals with a non-zero mean) that are 

measured during the fMRI scan. 

1.2.3.3 Statistical Tests 

A statistical test is performed on fMRI measurements to find localized brain 
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regions in which there is a high probability that significant BOLD responses occurred 

when the subjects were exposed to a particular stimulus or task [15, 30]. Regions 

identified by statistical tests in which task-related or stimulus-related BOLD responses 

occurred are called active regions. Moreover, every voxel within an active region is an 

active voxel. Statistical tests are performed immediately after the values in the p matrix 

are estimated. The parameter estimates (estimated values of the p matrix) are the values 

used in the statistical tests to determine the locations of active regions. 

One common statistical test in fMRI is the two sample Student's t-test. The t-

test is used to determine if there is a significant difference in means between two 

populations [11, 46]. When the t-test is used on fMRI measurements, it is assumed that 

each measured BOLD signal belongs to one of two populations: active periods or rest 

periods that occur during an fMRI scan [11]. If there is no significant difference between 

the means of the BOLD signals that are measured from these two populations, then the 

neural activity did not produce any significant BOLD hemodynamic responses. 

A statistical hypothesis is implemented during a t-test that states that the 

parameter estimates all occurred by chance and that there were no significant BOLD 

hemodynamic responses to the neural activity [15, 36]. The parameter estimates are 

treated as the means of the rest period signal and active period signal populations. This is 

because a parameter estimate is an average "fit" for a particular regressor at a particular 

voxel. The hypothesis that there were no significant BOLD responses to the task or 

stimulus is called the null hypothesis. Important parameter estimates (i.e. P matrix 

estimates corresponding to the regressor(s) that represent the assumed BOLD responses 

to a task or stimulus) that have a very low probability of occurring by chance according 
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to a t-test will result in the corresponding voxels to be active. Parameter estimates with 

low probabilities of occurring by chance cause the null hypothesis to be rejected in favor 

of an alternate hypothesis. The alternate hypothesis states that there were significant 

BOLD responses measured following neural activity. 

Student's t-tests are usually used when one regressor's parameter estimates are 

tested against the baseline level or the difference between parameter estimates of two 

regressors is tested [47]. The regressors being tested represent BOLD responses that 

occurred during different tasks or stimuli that subjects were exposed to during an fMRI 

scan. When performing a t-test, all parameter estimates are assumed to be distributed 

according to a Student's t-distribution. This probability distribution is the expected 

distribution of the parameter estimates if there were no significant BOLD responses. 

Each parameter estimate is substituted into a formula to calculate a t-statistic (or 

t-value) that corresponds to a value along the horizontal axis of a Student's t-distribution 

[47]. Equation (1.6) is the formula for the t-statistic. The t-statistic will correspond to a 

probability value (p-value) along the vertical axis of the t-distribution. A p-value 

indicates the probability that the corresponding parameter estimate occurred by chance. 

V var(cr p) 

A 

In equation (1.6), j8 is the parameter estimate for a single regressor at one voxel. In the 

denominator is the estimated standard deviation of the parameter estimates for one 

regressor across all voxels. The term in the denominator is sometimes called the standard 

error of the parameter estimates. The vector c is the called a contrast vector. The 
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contrast vector is transposed in equation (1.6) as indicated by the ' T'. This vector selects 

the regressors that will be used in the t-test. For example, in an fMRI statistical test in 

A 

which the P matrix contains three regressors, there may be interest in seeing the 

difference in active regions between the first regressor and baseline activity. In this case, 

the contrast vector would be cT = [1 0 0]. It is important to note in this case that 

parameter estimates of baseline BOLD signal activity (mean of the rest period signal 

population) are zero. In another example, there may be interest in seeing the difference 

in active regions between the first and third regressors. In this case, the contrast vector 

would be cT = [10-1]. 

F-tests are slightly more complicated than t-tests; they are usually performed 

when there is an interest in examining the effect of a linear combination of regressors 

[47]. If an F-test is performed, the parameter estimates are assumed to be distributed 

according to an F-distribution. 

Parameter estimates are substituted into a formula to calculate F-statistics (or F-

values) to use in an F-test [47]. The F-statistic calculated for each parameter estimate 

indicates the parameter estimate's position along the horizontal axis of an F-distribution. 

The F-value will correspond to a p-value on the F-distribution. The p-value indicates the 

probability that the parameter estimate occurred by chance. The formula for an F-statistic 

is given by equation (1.7). 

p = /^(var(cT/?)r'cT/7 ( 1 ? ) 

^2 

26 



Terms in the F-statistic equation are the same as the terms in the t-statistic equation 

except the variable U2, which is a degrees-of-freedom term. Degrees-of-freedom will be 

explained shortly. In addition, c is now a matrix instead of a vector. With regard to the 

example scenario presented earlier in which there were three regressors, there may be 

interest in identifying the active regions that correspond to the first two regressors. In 

this case the contrast matrix would be c = 
1 0 0 

0 1 0 

There is not just one t-distribution or one F-distribution that is used in a t-test or 

F-test on fMRI measurements, respectively. The shape of a t-distribution or F-

distribution changes depending on variables called degrees-of-freedom [47]. In fMRI 

studies, degrees-of-freedom are affected by the number of BOLD signal time samples 

and the number of regressors. t-distributions are affected by one degrees-of-freedom 

variable and F-distributions are affected by two degrees-of-freedom variables. Equation 

(1.8) shows the t-distribution degrees-of-freedom [33]. 

v = T-p (1.8) 

The T variable is the number of BOLD signal time samples (brain volumes) acquired. 

The p variable is the number of regressors in the design matrix. Equations (1.9)(a) and 

(1.9)(b) show the two formulas for the degrees-of-freedom of the F-test [48]. 

v. = p - 1 (a) 1 (1.9) 
v2=T-p (b) 
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The variables in equations (1.9)(a) and (1.9)(b) are the same variables in equation (1.8). 

As the degrees-of-freedom increase, the shape of a t-distribution or F-distribution 

approaches the shape of a normal (Gaussian) distribution. 

To complete a statistical test, a threshold must be chosen for the t-statistic or F-

statistic p-values to identify active voxels [11]. This threshold is implemented so that any 

calculated p-value equal to or lower than the threshold indicates that the corresponding 

parameter estimate value likely did not occur by chance. Thus, the voxel that possesses 

this parameter estimate has a high probability of being active. This procedure is 

illustrated in Figure 1.10 on a hypothetical t-distribution. Common thresholds chosen in 

fMRI studies are p < 0.05 or p < 0.01. 
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Figure 1.10. Example t-distribution 
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1.2.3.4 Software Available for Performing Statistical Tests 

There are numerous software programs available for performing statistical 

analyses on fMRI measurements using the GLM. 

One very popular software program is called Statistical Parametric Mapping 

(SPM) (Wellcome Department of Imaging Neuroscience, London, UK). SPM is a 

software program that runs in the MATLAB programming environment. All stages of 

the analysis from image preprocessing to viewing statistical test results on brain images 

may be performed with SPM. 

Another well known software program for performing statistical analyses on 

fMRI measurements is fMRI of the Brain Software Laboratory (FSL) (fMRIB Analysis 

Group, Oxford, UK). Much like SPM, all stages of the analysis can be performed with 

FSL. However, FSL does not run in the MATLAB environment. 

1.2.4 Independent Component Analysis 

In several fields, such as telecommunications and biomedical signal processing, 

signals are measured to study various phenomena. A common problem with the signal 

measurements is that they may be composed of a mixture of important underlying signals 

that are unknown [49]. Independent Component Analysis (ICA) is a signal analysis 

method that is used to recover the underlying signals. 

1.2.4.1 The Cocktail Party Problem 

ICA can be explained with a simple example known as the cocktail party 

problem [49]. In this problem, several people are speaking simultaneously in one room. 
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Several microphones are scattered throughout the room. Each microphone records one 

sound signal that is produced from a mixture of speech signals from everyone in the 

room. The signal recorded by each microphone is called a mixed signal and the speech 

signal from each person is called a source signal. The source signals are recovered from 

the mixed signals to solve the problem. ICA is a method that can be used to solve the 

cocktail party problem. 

To apply ICA to the cocktail party problem (and other related problems), a few 

assumptions are made [49]. First, it is assumed that speech signals mix together in a 

linear fashion. Thus, each mixed signal is a weighted sum of speech signals. It is also 

assumed that each speech signal is statistically independent from all other speech signals. 

This is a reasonable assumption because each speech signal is completely separate from 

all the other speech signals. Statistical independence is exploited so that ICA may be 

applied to determine all of the underlying speech signals. The speech signals that are 

calculated using ICA are called independent components. 

1.2.4.2 Statistical Independence 

Statistical independence is an important property in ICA. To exploit statistical 

independence and apply ICA, source signals and mixed signals are assumed to be random 

variables [49]. Random variables that are statistically independent satisfy equation (1.10) 

[35]. 

N 

p(sl,s2,...,sN) = Ylp(si) (1.10) 
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The s variables in equation (1.10) are random variables and N is the number of random 

variables. The variable p(si, s2,..., sN) is the joint pdf of the random variables si through 

SN. Lastly, p(s;) is the pdf of each separate random variable si through SN- Equation 

(1.10) states that if the random variables are statistically independent, the product of the 

random variable pdfs is equal to the joint pdf of the random variables. Source signals 

that are computed using ICA would approximately satisfy equation (1.10) [49]. 

1.2.4.3 The Mathematical Model of ICA 

The mathematical model of ICA is the linear system of equations shown in 

equation (1.11) [49]. 

x = As (1.11) 

The x matrix contains the signal measurements and is called the data matrix. The matrix 

A contains real coefficients that describe how the source signals are mixed together to 

produce the measured signals in x. Thus, matrix A is called the mixing matrix. Lastly, 

the matrix s contains the independent components. The dimensions of the matrices 

depend on the type of ICA that is being performed. Equation (1.11) indicates that each 

mixed signal is a weighted sum of source signals. 

There are some important points about the independent components calculated 

using the mathematical model of ICA. 

The first point is that each independent component must have unit variance [49]. 

The actual variance of a source signal is unknown since any scalar multiplier of a 

component in s can be cancelled by dividing the corresponding set of mixing coefficients 
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in A by the same scalar multiplier. Thus, the amplitudes of the source signals are fixed 

by constraining the solution of equation (1.11) to produce source signals with a variance 

of one. 

Another point is that once the independent components are calculated, only one 

component at most may be a Gaussian random variable [49]. A Gaussian random 

variable is a random variable with a Gaussian distribution. Only one component may be 

Gaussian because several ICA algorithms (methods of performing ICA) use non-

Gaussianity as a measure of statistical independence. Non-Gaussianity is a measure of 

statistical independence because of the implications of a theorem known as the Central 

Limit Theorem. The Central Limit Theorem is exploited by ICA algorithms. The 

theorem states that the pdf of a sum of independent random variables becomes more 

Gaussian with more independent random variables included in the sum. Since mixed 

signals are assumed to be weighted sums of independent random variables, the Central 

Limit Theorem applies in ICA. In most ICA algorithms, components are computed one 

at a time, so the final component is simply calculated so that it satisfies equation (1.11). 

Hence, the final component may be more Gaussian than all the other components. 

In order for all the independent components to be computed properly, the 

number of mixed signals must be equal to or greater than the number of independent 

components [50]. Otherwise, one of the source signals will contain a mixture of the 

remaining independent components. This situation may cause problems in most studies 

that use ICA because the number of independent source signals is often unknown. 
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1.2.4.4 Types of ICA 

ICA may be used to analyze BOLD signals measured during fMRI [51]. If ICA 

is chosen as a method of analyzing fMRI data, there are different types of ICA that may 

be applied. BOLD signals are measured from different physical locations over a period 

of time, so spatial independence or temporal independence can be considered. 

Temporal ICA is one type of ICA that may be performed on BOLD fMRI 

measurements [51]. An ICA algorithm will perform temporal ICA on the data if the 

columns in the data matrix form the BOLD signal time samples and if the rows form the 

voxels. When temporal ICA is used, the resulting independent components in the s 

matrix are time courses. When the algorithm is finished, each row of s will contain one 

independent component and each column will be a time sample of an independent 

component. When using temporal ICA, the maximum number of independent 

components that can be calculated is equal to the number of voxels. Each component 

time course will be statistically independent from all other component time courses. This 

can be proven by verifying equation (1.10); if component pdfs and a joint pdf were 

calculated using the component time samples, it can be shown that equation (1.10) would 

be approximately satisfied. 

Another type of ICA that may be applied to BOLD fMRI measurements is 

spatial ICA [51]. An ICA algorithm will perform spatial ICA on the fMRI data if the 

columns of the data matrix form the voxels and if the rows form the BOLD signal time 

samples. Thus, the data matrix used in spatial ICA is the transpose of the data matrix 

used in temporal ICA. In spatial ICA, each independent component in the s matrix can 

be considered as a component brain map. Component brain maps are brain volume 
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images that can be viewed slice-by-slice. Each voxel within the volume is assigned a 

weight that is calculated by the ICA algorithm [35, 52]. The weight magnitude indicates 

how much of an effect the corresponding component had on the BOLD signal 

measurement at a particular voxel [52]. Weights that have a much higher or much lower 

weight than the average spatial weight of the corresponding component are color-coded 

so they can be clearly identified. For example, weights that are two standard deviations 

above or below the average spatial weight may be considered significant. When spatial 

ICA of the BOLD signals is complete, each row of s forms an independent component 

and each column refers to a voxel [51]. When using spatial ICA, the maximum number 

of independent components that can be calculated is equal to the number of time samples 

[35]. Each component brain map shows a distribution of weights that will be statistically 

independent from other component brain maps with a different spatial weight 

distribution. Voxels with very high or very low spatial weights in one component map 

should have little overlap with voxels that have very high or very low weights in another 

component map. Lastly, in a fashion similar to temporal ICA, if component pdfs and a 

joint pdf were calculated using the component spatial weights, it could be shown that 

equation (1.10) would be approximately satisfied. 

1.2.5 ICA versus Statistical Analysis Using the GLM 

ICA and a statistical analysis using the GLM have important similarities and 

differences that are considered when both techniques are used to analyze the same fMRI 

data sets. 

An important similarity between ICA and the GLM is that the ICA mathematical 
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model and the GLM are both linear systems of equations [53]. The fMRI measurements 

are assumed to be a weighted sum of underlying signals in both types of analyses. 

One important difference between ICA and a statistical analysis using the GLM 

is that ICA is a data-driven analysis method and a statistical analysis using the GLM is a 

hypothesis-driven analysis method [53]. Data-driven methods are focused on the 

intrinsic properties of the data. When data-driven methods are applied, there are no 

particular BOLD response signals that are assumed to be present in the measurements. 

The results from a data-driven analysis will reveal BOLD fMRI signals that can be 

examined for specific physiological effects. On the other hand, one or more BOLD fMRI 

signals are assumed to be present in the fMRI data when applying hypothesis-driven 

methods. A statistical null hypothesis and alternate hypothesis are also made when a 

hypothesis-driven method is used. These hypotheses are not present when using a data-

driven method. 

Another difference between the two approaches used for analyzing fMRI data is 

that ICA is a multivariate data analysis technique and a statistical analysis using the GLM 

is a univariate data analysis technique [53]. When a multivariate data analysis technique 

is used in fMRI, the relationships between BOLD signals measured from different voxels 

are considered when calculations are being made. When an ICA algorithm is executed, 

all voxel measurements are included in the calculations to determine each independent 

component. Conversely, when parameter estimates are being calculated and t-statistics or 

F-statistics are being assigned during a statistical analysis with the GLM, regressors in 

the G matrix are compared with BOLD signals one voxel at a time. Consequently, this is 

called a univariate analysis method. 
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Both ICA and a statistical analysis using the GLM are valuable methods for 

examining fMRI measurements. The methods have similarities, but they also 

complement one another. Interesting differences in results have been observed when 

ICA and statistical analyses have been performed on the same set of fMRI measurements 

[54]. 

1.2.6 The Electrical Activity of the Brain 

1.2.6.1 Electroencephalography 

A useful procedure for recording neural activity that occurs in the brain is 

electroencephalography [2]. The electroencephalograph is an instrument that is used to 

record the neural activity in the brain that is measurable at the scalp. The cap of an 

electroencephalograph has electrodes on it that are arranged in a particular manner over 

the cap surface. The cap is placed over a subject's head so the electrodes can come into 

contact with the subject's scalp. Neural activity in the brain may produce electric 

potentials that can be recorded at the scalp by the electrodes. The electric potentials are 

plotted on an electroencephalogram (EEG) [3]. Measurable electric potentials are 

produced as a result of ionic volume currents being generated in the extracellular regions 

of neurons when a substantial number of neuron action potentials are conducted 

simultaneously [2, 55]. 

The EEG is useful for diagnosing and studying different forms of epilepsy. An 

EEG acquired from a patient suffering from epilepsy may show ictal discharges, which 

are EEG signals recorded when a patient is experiencing a seizure [3]. In addition, some 

epileptic patients may also produce interictal discharges. Interictal discharges are 
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abnormal neural signals that appear on an EEG that is recorded between seizures [2, 3]. 

Both types of discharges may be used to diagnose different types of epilepsy. However, 

some epileptic patients may not produce interictal discharges. Furthermore, some 

patients may produce interictal discharges that appear during some EEG sessions and not 

others. Interictal discharges may not be visible on the EEG because the discharges may 

be too short, too intermittent or too insignificant in amplitude [2]. Despite these 

shortcomings, both interictal and ictal discharges recorded on EEGs have been used to 

study epilepsy for several decades. 

1.2.6.2 Electroencephalography and fMRI 

Recently, many research groups have successfully recorded EEG and fMRI 

measurements simultaneously to study brain disorders like epilepsy [4, 5, 10, 25, 31, 38]. 

Past combined EEG-fMRI studies have shown that interictal discharges may induce 

hemodynamic responses. A relationship between interictal discharges and hemodynamic 

responses exists because interictal discharges require energy that is produced from the 

nutrients carried by the blood. Hemodynamic responses that are recorded shortly after 

interictal discharges occur have provided some insight into the regions of the brain that 

may be causing seizures. This has significant implications for epileptic patients that are 

being considered for surgery as physicians treating these patients need an accurate 

assessment of the locations and sizes of the abnormal brain regions. However, interictal 

discharges that do not have an accompanying hemodynamic response and vice versa have 

also been observed in epileptic patients during combined EEG-fMRI scans. Thus, there 

is a complex relationship between interictal discharges and hemodynamic responses. 
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1.2.7 Scope of the Work 

The focus of this work was to design HRFs that are more closely related to a 

subject's own task-related or stimulus-related BOLD responses than the canonical HRF. 

The development of an HRF that resembles the hemodynamic response to an interictal 

event that occurs in the brains of patients suffering from focal epilepsy was of particular 

interest. The process of developing subject-specific HRFs, particularly in focal epileptic 

patients, has not been investigated thoroughly [4, 10]. 

In addition, the HRFs developed in this work were compared with the canonical 

HRF in terms of validity and goodness-of-fit to the data. In past studies, the quality of 

the regressors in the GLM has been assessed by the number of active voxels produced by 

using the regressors in statistical tests [48]. One set of regressors may yield a higher 

number of active voxels than another set, so the former is considered a "better" set of 

regressors. This view on the quality of the regressors in the GLM may not be correct. 

Hence, the quality of the regressor sets in each study of this work is assessed using 

various measures that will be discussed later. 

Designing subject-specific HRFs was chosen as the focus of this work because 

several research groups have reported substantial variations in the shape of measured 

task-related and stimulus-related BOLD hemodynamic response signals [4, 5, 10, 16, 52, 

53, 56]. Results from past studies show significant variations in relevant hemodynamic 

responses from one subject to another. Furthermore, hemodynamic responses have been 

shown to vary across different brain regions in one subject. Different stimuli have been 

shown to evoke hemodynamic responses with varying shapes as well. Variations in the 

delay and dispersion (width) of relevant hemodynamic responses are common. Using 
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subject-specific HRFs in the statistical tests of fMRI measurements may also reveal 

active regions in which the signal-to-noise ratio (SNR) is low [5]. Active regions with a 

low SNR may not be detected by statistical tests in which non-subject-specific HRFs are 

used. 

As a result of these findings, it is reasonable to question how well the canonical 

HRF resembles task-related and stimulus-related hemodynamic responses [57]. The 

canonical HRF is used very frequently in fMRI studies that are conducted to investigate 

many types of neural activity [4, 38]. In most of these studies, there are several patients 

for whom the canonical HRF is used as an HRF in the GLM. The canonical HRF may 

not account for an adequate amount of variance in hemodynamic responses from active 

voxels. In other words, HRFs are being misspecified. This will cause statistical test 

results to be invalid, inaccurate and potentially biased [32, 53]. 

To account for the variation in the shape of task-related and stimulus-related 

hemodynamic responses, the time derivative and dispersion derivative of the canonical 

HRF may be included as regressors in the design matrix [32]. The time derivative 

accounts for differences in the time-to-peak amplitude (delay) between the canonical 

HRF and the measured task-related or stimulus-related hemodynamic responses. The 

dispersion derivative accounts for differences in the positive phase width of the canonical 

HRF and the measured task-related or stimulus-related hemodynamic responses. 

Including time and dispersion derivatives of the canonical HRF may not be 

adequate to account for variations between the canonical HRF and relevant hemodynamic 

responses. If the canonical HRF is not an accurate depiction of a subject's relevant 

hemodynamic responses to begin with, then including derivative waveforms may reduce 
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the sensitivity of the statistical analysis process for detecting activations (active voxels) 

[10, 22]. Moreover, the time and dispersion derivatives may only account for small 

differences between the canonical HRF and relevant hemodynamic responses [32]. Thus, 

even if derivative functions are included, statistical test results may still be inaccurate. 

To design new HRFs that may resemble task-related or stimulus-related 

hemodynamic responses more accurately, ICA was used in this work. Spatial ICA and 

temporal ICA were performed on fMRI measurements to identify spatial independent 

components and temporal independent components that may correspond to task-related 

or stimulus-related hemodynamic responses. After some processing of the components 

(described later), regressors were produced or HRFs were produced that were convolved 

with appropriate stimulus functions to make regressors. The regressors were placed in 

separate GLMs that were used in separate statistical tests of the fMRI measurements. 

The results of the statistical tests in which the IC A-derived regressors were used were 

compared with the results of the statistical tests in which the canonical HRF was used. 

In the first study of this work, measurements from a block design motor control 

fMRI scan were acquired. A subject was asked to perform a finger flexion task in which 

the forefinger and thumb of the right hand were tapped together during activation 

periods. ICA was performed on the fMRI measurements and specific spatial and 

temporal components were identified and used to produce task-related hemodynamic 

response regressors. 

The first study was used to investigate how effective ICA may be when the 

technique is used to generate regressors. Statistical test results from three statistical 

analyses were compared. One statistical analysis was performed with each of the two 
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ICA-derived regressors and one analysis was performed with the regressor computed 

using the canonical HRF. Some methods of assessing the validity of the different 

regressor sets and the goodness-of-fit of the GLM regressors to the data were also 

implemented. Study 1 was a precursor to Study 2, an important fMRI study performed 

on an epileptic patient. 

In the second study, a continuous EEG-fMRI scan was performed on a patient 

suffering from partial epilepsy. The patient's EEG was recorded while fMRI 

measurements were acquired continuously and simultaneously. The EEG was examined 

after the scan and interictal events were marked. After interictal event times were noted, 

fMRI measurements were examined for hemodynamic responses that may have occurred 

shortly after the interictal events. A form of ICA that combines spatial ICA and temporal 

ICA was used in the fMRI measurement analysis process to identify "spatio-temporal" 

independent components that may resemble hemodynamic responses to interictal events. 

After some processing of the components, HRFs were developed and each HRF was then 

convolved with the corresponding stimulus function to produce regressors for the GLM. 

In the last step of this study, statistical test results from the statistical analyses using 

spatio-temporal components were compared with the statistical test results from the 

statistical analysis using the regressor made with the canonical HRF. In addition, the 

validity and goodness-of-fit of the GLM regressor sets to the data were also assessed in a 

similar fashion to Study 1. 

The second study was important because it may have significant clinical 

applications for patients that suffer from partial epilepsy. Accurate assessments of the 

locations and sizes of brain regions in which seizures begin are important when patients 
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are being considered for surgery. Using ICA-derived regressors in the GLM may 

produce more accurate localization results versus using a GLM in which regressors have 

been derived from a canonical HRF. Physicians can use accurate activation maps (brain 

maps showing active voxels) when they are performing surgeries to remove abnormal 

brain regions in epileptic patients. Thus, epileptic patients will have a higher chance of 

becoming seizure-free. 

There are not many studies available that describe the production of subject-

specific HRFs using IC A, especially in combined EEG-fMRI studies of patients with 

brain disorders. Furthermore, there are not many fMRI studies available that assess the 

validity of conventional HRFs. The studies in this work were conducted to investigate 

these two issues. 

1.2.8 Thesis Organization 

The remainder of this thesis contains four chapters. The methods that were used 

to acquire the EEG and fMRI measurements, process the images, analyze the images and 

compare the different regressors are described in detail in Chapter 2. In Chapter 3, the 

results of Study 1 and Study 2 are presented. Chapter 4 contains a detailed discussion of 

the results of the two studies. In the final chapter, some conclusions about the work in 

this thesis are presented and some future directions that can be taken with the findings are 

suggested. 
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Chapter 2 

Methods 

2.1 The Acquisition of fMRI Data 

When fMRI scans are performed, there is a sequence of steps that must be 

implemented to acquire images [24]. The imaging steps are different for each type of 

MR image obtained. For example, there are differences in the series of steps that are 

used to acquire an anatomical MR image versus a functional MR image. The series of 

steps is called an imaging sequence. 

There are a few types of imaging sequences that may be used to acquire fMR 

brain images from a subject [11]. The sequence used in both studies in this work is a 

gradient echo-planar imaging sequence (GRE-EPI). This imaging sequence is depicted 

in Figure 2.1 [24]. This type of imaging sequence is very popular in fMRI because it can 

be used to produce higher BOLD signal contrasts (differences in amplitude between 

induced BOLD signals from neural activity and BOLD signals from resting brain 

activity) than other imaging sequences that have been used for BOLD fMRI [11, 24]. 
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Figure 2.1. Gradient Echo-Planar Imaging Sequence 

The top of Figure 2.1 shows the RF pulse, which plays a very important role in 

an fMR imaging sequence. The pass band in the frequency domain of the RF pulse 

contains several different frequencies. The frequency components in the pass band are 

equal to the Larmor frequencies of hydrogen nuclear magnetic moments in the body 

region that is to be imaged [12]. When the RF pulse occurs, the Bi field is applied for the 

duration of the RF pulse. The rotating Bi field will place a torque on the net 

magnetization vector (which points in the +z-direction) in the body region being imaged. 

As a result, the net magnetization vector will tip toward the transverse (x-y) plane. The 

amount of tipping is measured by a parameter called the flip angle (Figure 2.1) [9]. The 

flip angle is the angle between the tipped magnetization vector and the +z-axis. The 
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magnitude of the flip angle may be controlled by adjusting the area under the RF 

waveform [11]. Thus, RF waveforms are manipulated to achieve a desired magnitude of 

the magnetization vector in the transverse plane. The magnitude of the magnetization 

vector placed in the transverse plane can be calculated by measuring the horizontal 

component of the tipped magnetization vector [12]. 

During an fMRI scan, multiple RF pulses are applied [11]. One RF pulse is 

applied for each slice in the body region being imaged. The length of time that elapses 

between RF pulses that tip the magnetization vector from the same slice is known as the 

repetition time (TR). During one TR, multiple RF pulses are applied to acquire BOLD 

signals from different slices in the body region being imaged. Thus, BOLD fMRI 

measurements acquired from the brain during one TR are used to produce images of an 

entire brain volume. The brain volume can then be viewed slice-by-slice. Typical TRs 

range between 1-3 seconds in fMRI scans [8,44]. In addition to the TR, there is another 

time parameter called the echo time (TE) that is often listed in the specifications of a 

GRE-EPI sequence [13, 58]. In a GRE-EPI sequence, the TE is the time that elapses 

between the RF pulse application and the acquisition of the BOLD signal that is at the 

centre of the slice being imaged [58]. The TE is not shown in Figure 2.1. 

When each RF pulse occurs, a Gz gradient magnetic field is also applied. This 

gradient is also known as the slice selection gradient because it is used to select a slice in 

a body region where fMRI signals are acquired [12]. When the slice selection gradient is 

applied, the static magnetic field strength will vary along the z-axis. The static magnetic 

field strength varies along the z-axis because magnetic fields in addition to the original 

static magnetic field are implemented by the gradient. The magnetic fields implemented 

45 



by the gradient can be represented by magnetic field component vectors. These 

component vectors are shown in red in Figure 2.2. At each location along the z-axis, the 

components will either be added to or subtracted from the original static magnetic field. 

The addition or subtraction of the magnetic field component vectors will increase or 

decrease the static magnetic field strength, respectively. The magnitude of the magnetic 

field component that is added to or subtracted from the static magnetic field depends on 

the location of the component along the z-axis. Since the magnetic field strength varies 

at different points along the z-axis, nuclear magnetic moments will precess with different 

Larmor frequencies along the z-axis according to equation (2.1). Equation (2.1) is an 

extension of equation (1.1) as the gradient magnetic field is incorporated into the Larmor 

frequency equation. 

oKz) = r(B0+Gzz) (2.1) 

The variable co(z) in equation (2.1) is the Larmor frequency of magnetic moments at a 

particular location on the z-axis as measured from z = 0. The variable Gz is the 

magnitude of the gradient in units of mT/metre. The variable z indicates the location of 

the magnetic moments along the z-axis as measured from z = 0. All other variables in 

equation (2.1) are the same as the variables in equation (1.1). 

Figure 2.2 shows how the slice selection gradient varies along the z-axis 

according to equation (2.1). The lengths of the red arrows indicate the magnitudes of the 

gradient magnetic field vector components that are added to the static magnetic field at 

those locations relative to other locations along the z-axis. The addition of the static 
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magnetic field component and the gradient magnetic field components is a vector 

addition. 
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Figure 2.2. Gz Gradient Strength Variation Along the z-axis 

The RF pulse that is applied while the slice selection gradient is on has a specific 

frequency pass band. The frequency values in this pass band are the Larmor frequencies 

that magnetic moments in a specific region of the body have as a result of the 

combination of the static magnetic field and the gradient magnetic field [12]. This 

specific region of the body is the region that will be imaged. Thus, the magnetization 

vector resulting only from the magnetic moments in this body region will be tipped from 

the z-axis. 

The Gx and Gy gradients cause the static magnetic field to vary, in a similar 

manner to the Gz gradient, along the x and y-axes, respectively [11]. Equation (2.1) can 
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be written for gradients along the x and y-axes [12]. However, there are some differences 

between the Gx, Gy and Gz gradients. The Gy gradient, also called the phase encoding 

gradient, is applied for a short time prior to a Gx gradient implementation [11]. The 

phase encoding gradient causes the phases of magnetic moments in the slice being 

imaged to vary at different locations along the y-axis. Thus, measured BOLD signals are 

encoded with different phases so that their locations along the y-axis can be determined. 

Shortly after a phase encoding gradient is applied, a Gx gradient, or frequency encoding 

gradient, is applied. The frequency encoding gradient causes the Larmor frequencies of 

magnetic moments to vary along the x-axis of the slice being imaged. The frequencies of 

the measured BOLD signals may then be used to determine the locations along the x-axis 

from which the BOLD signals were measured. Figure 2.3 depicts how the gradient 

magnetic field components implemented by the gradient magnetic field vary along the y-

axis. A similar figure can be constructed for the frequency encoding gradient. 
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Figure 2.3. Gy Gradient Strength Variation Along the y-axis 

While the frequency encoding gradient is applied, the fMRI BOLD signals are 

sampled as shown by the tick marks in Figure 2.1. The measured fMRI signals, also 

called echoes, diminish in amplitude over time because of the same factors that 

contribute to T2 signal decay [13]. Since T2* decay is rapid, the GRE-EPI sequence is 

fast so that BOLD signals with sufficient amplitude can be acquired. Images that are 

acquired in fMRI using GRE-EPI are T2 -weighted images. 

2.2 The Analysis of fMRI Data 

A statistical analysis of fMRI measurements involves three procedures 

performed in the following order [18]: 

1. Preprocessing 

2. Parameter estimation by multiple linear regression 
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3. Statistical inference 

Each of these procedures was performed in this work using SPM5 and FSL 3.20 fMRI 

statistical analysis software. Each procedure is described in the sections that follow. 

2.2.1 Preprocessing 

Before the fMRI data are statistically examined for BOLD responses to a task or 

stimulus, the images are prepared by applying several preprocessing steps [20,59]. The 

order of the steps presented below is the order in which they were performed during fMR 

image preprocessing in both studies of this work. 

2.2.1.1 Slice Timing Adjustment 

An important preprocessing step that is done on fMRI measurements is a slice 

timing adjustment. During a statistical test, it is assumed that BOLD signal 

measurements from all voxels in all slices during one particular TR (i.e. for one particular 

brain volume) were acquired at the same time instant [59]. This is not what happens 

during an fMRI scan because BOLD signals occurring at different locations in different 

slices are measured successively during one TR. This slice-to-slice time delay is 

illustrated in Figure 2.4. The brain image slices in Figure 2.4 were acquired in Study 1 of 

this work. 
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Figure 2.4. Slice Timing Difference Between Two Slices 

The black square boxes in the fMR brain image slices indicate the rough locations of the 

voxels where the BOLD signals, shown on the right, were measured. The sizes of the 

boxes and, hence, the in-plane sizes of the voxels in Figure 2.4 are extremely exaggerated 

as the in-plane voxel dimensions are equal to the pixel dimensions in these brain images. 

The black boxes are large so that slice timing delays can be explained clearly. BOLD 

signal time samples from the top brain image slice were recorded earlier than BOLD 

51 



signal time samples from the bottom slice. As a result, when the time course from each 

voxel is measured and displayed as shown in Figure 2.4, there is a delay between the time 

courses. This delay is illustrated, in an exaggerated fashion, by the time that elapses 

between the dashed lines. 

To correct for the time delay, a slice timing adjustment is performed on the fMRI 

measurements [20, 32, 59]. Before a slice timing adjustment is carried out, a reference 

slice is chosen. The reference slice is usually the first slice in the fMRI scan [21]. The 

BOLD signals measured in the voxels in the reference slice are left unchanged by the 

adjustment procedure. During the slice timing adjustment, BOLD signals measured in 

voxels that are not in the reference slice are changed to account for the time delay. The 

magnitudes of signal samples are interpolated to what they likely would have been 

measured to be if all signal samples from all voxels in all slices acquired during one TR 

were measured simultaneously [20]. Interpolation is done using the BOLD signal 

samples measured from the same voxel in neighboring acquisitions (adjacent TRs) to 

estimate an adjusted BOLD signal value for the voxel being examined. Typical 

interpolation schemes used to perform slice timing adjustments are spline interpolation 

methods [21]. 

In order to do a proper statistical analysis on fMRI measurements, the regressor 

signal values must be compared to the corresponding BOLD signal time samples that 

were, effectively, recorded at the same instant [32]. This prevents the statistical results 

from being biased and erroneous. Hence, a slice timing adjustment is important. 
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2.2.1.2 Motion Correction 

Head motion that may occur during fMRI scans can also cause problems during a 

statistical analysis [60]. Translational head motion less than 1 mm may be enough to 

cause undesirable changes to measured BOLD signals. Voxel sizes are very small and 

they are comparable to distances a subject's head may move during imaging. At the 

beginning of a scan, each voxel corresponds to a particular spatial location in the brain. 

Head motion can cause voxels to correspond to different spatial locations in subsequent 

acquisitions (TRs). As a result, the BOLD signal acquired from a voxel affected by head 

movement will fluctuate because of movement and not because there is a BOLD response 

due to task performance or stimulus presentation. 

Cases in which movement has the most adverse effects on fMR images occur 

when regions lying close to tissue boundaries move [20]. For example, pixels that cover 

the air-tissue boundary found at the sinuses may display significant artifacts due to 

motion. These artifacts occur because of differences in the way that different types of 

matter or tissue interact with externally applied magnetic fields to produce a local 

magnetic field [9, 12]. The amount of distortion that an externally applied magnetic field 

experiences when it interacts with tissue or matter is called magnetic susceptibility. In 

the previous example, air and tissue have very different magnetic susceptibilities. Thus, 

the local magnetic fields in regions that contain air and regions that contain tissue are 

quite different. The difference in local magnetic field magnitudes causes magnetization 

vectors measured in voxels that contain air-tissue boundaries to decay rapidly. Since the 

magnetization vectors decay rapidly, some distortion in the brain images will occur when 

BOLD signals are measured from voxels at air-tissue boundaries. Motion causes even 
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more distortion because the proportion of air and tissue changes within the voxels as a 

subject moves [20]. 

Methods are available to deal with the problems associated with head motion 

[60]. Software programs like SPM and FSL have procedures that rotate and translate the 

measured brain volumes to find a close match to a reference brain volume. To find the 

closest matches possible between each volume and the reference volume, the global 

minimum of a cost function is calculated. Typical reference volumes are the first volume 

acquired during the fMRI scan or the average volume of all brain volumes acquired [21]. 

This type of motion correction method is called a rigid body motion correction [60]. 

During rigid body motion corrections, differences between the reference volume and the 

volume being analyzed are measured along six rigid body parameters: translational 

movement along the x, y and z-axes as well as rotational movement about the x, y and z-

axes. In SPM5, which is the software used to correct for motion in the two studies of this 

work, the measured differences in brain volumes are subjected to a least-squares cost 

function [21]. The least-squares cost function is minimized to find the optimal 

translations and rotations of the volumes to match the reference volume. 

Unfortunately, rigid body motion correction does not remove all BOLD signal 

fluctuations that are caused by motion [44]. Motion may be highly correlated to the task 

subjects perform during an fMRI scan [60]. Voxels may be incorrectly labeled active as 

a result of a task or stimulus instead of being labeled active as a consequence of subject 

motion. This type of confound is called stimulus-correlated motion and is often observed 

in fMRI data after rigid body motion correction has been applied. Other motion 

confounds that are not adequately accounted for by rigid body motion correction are due 
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to the fact that BOLD signal values depend on a subject's position in the MR scanner 

[44]. The magnetic field magnitude varies at different locations within the scanner 

because of static field inhomogeneities. If a patient moves within the scanner, the 

magnetic field may vary at different locations due to field inhomogeneities. As a result, 

the fMRI signal will depend on position within the scanner. Another motion confound 

called the spin excitation history effect is a consequence of fMRI signal dependence on 

subject position in the scanner. Magnetic moments tipped by RF pulses that occur early 

in a scan may also contribute to BOLD signals measured later in the same scan. If a 

magnetization vector in one region is tipped by an RF pulse and then the subject moves, 

BOLD signals measured while the subject is in this new position will depend on the 

magnetic moments tipped by the aforementioned RF pulse in addition to any new RF 

pulses that are applied. 

Methods are available to remove motion artifacts that are not already removed by 

a rigid body motion correction [44, 61]. One method that is used often is the inclusion of 

additional regressors in the design matrix. The regressor values are equal to the rigid 

body movements measured (in millimetres) during the rigid body motion correction. 

Additional regressors were not included in the GLMs to remove motion effects in 

either study of this work. This is because the subjects exhibited very little motion in all 

of the runs except one. Additional regressors were not included in the GLM of the run in 

which there was significant translational and rotational movement because the statistical 

test results of this run were not much different than the statistical test results of the other 

runs when motion confound regressors were excluded from all statistical tests. These 

details will be discussed later. 
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2.2.1.3 Brain Voxel Extraction 

Non-brain tissue that is often observed in raw fMR images does not need to be present in 

the images when statistical analyses are performed [20]. Non-brain tissues seen in raw 

fMR images are often skull or scalp, which are tissues that are not involved in producing 

BOLD hemodynamic responses. Pixels showing non-brain tissues may be blacked out 

through a brain voxel extraction algorithm [62]. Pixels containing non-brain tissue often 

have a lower intensity than pixels containing brain tissue. One slice of an fMR brain 

image before brain voxel extraction is shown in Figure 2.5. The same image slice after a 

brain voxel extraction procedure has been performed is shown in Figure 2.6. 

20 40 60 80 100 120 

Figure 2.5. fMRI Slice that Shows Pixels Containing Non-Brain Tissue 
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20 40 60 80 100 120 

Figure 2.6. fMRI Slice in which Non-Brain Tissue is Removed 

Some of the grey-colored pixels at the outer edge of the brain in Figure 2.5 are pixels 

containing fMRI signals from skull and scalp tissue. These pixels were blacked out by 

the brain voxel extraction procedure as shown by the image in Figure 2.6. 

2.2.1.4 Spatial Smoothing 

Spatial smoothing is another important preprocessing step [20]. When fMR 

images are spatially smoothed, BOLD signal measurements in each voxel are replaced 

with weighted averages of BOLD signal measurements acquired from neighboring voxels 

and from the voxel being analyzed [59]. To perform spatial smoothing, a three-

dimensional signal known as a Gaussian kernel is convolved with the BOLD signal 

measurements. The Gaussian kernel values are weights that are multiplied by the BOLD 

signal measurements in the convolution operation. The size of the Gaussian kernel 
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determines the number of neighbouring voxels that are included in the average. A 

parameter that indicates the size of a Gaussian kernel is called the Full Width at Half 

Maximum (FWHM). This parameter is measured on a Gaussian kernel by measuring the 

distance (in millimetres) between two points that correspond to half the kernel's peak 

value. As the FWHM gets larger, more voxels are included in the average to yield a 

smoother image. The FWHM is usually specified in millimetres along the x, y and z-

axes. Common FWHM dimensions are about one to two times the dimensions of a voxel 

[20]. For example, the voxel dimensions of images acquired in a typical fMRI scan may 

be 4.0 mm x 4.0 mm x 4.0 mm. The FWHM chosen for the Gaussian kernel to smooth 

the images from this fMRI scan may be 8.0 mm x 8.0 mm x 8.0 mm. 

Spatial smoothing is performed on fMRI measurements for several reasons. 

First, spatial smoothing improves the signal-to-noise ratio (SNR) in each voxel [59]. Any 

BOLD responses that correspond to the neural activity that occurs when subjects perform 

a task or experience a stimulus will increase the SNR because these BOLD responses are 

added together during spatial smoothing. On the other hand, noise will tend to be 

cancelled out by the spatial smoothing process. Noise signal magnitudes are random, so 

positive and negative noise measurements that are added together during spatial 

smoothing will diminish the noise magnitude. A higher SNR will increase statistical 

testing power, which is a measure of the ability of statistical tests to detect BOLD signals 

from truly active voxels. Another benefit of performing spatial smoothing is that the data 

will be converted to a form in which Gaussian Random Field Theory can be applied. 

Gaussian Random Field Theory will be discussed shortly. Lastly, spatial smoothing 

reduces the sensitivity of BOLD measurements to movement [10]. 
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Although there are many benefits to spatial smoothing, there are also some 

shortcomings. Spatial smoothing reduces the spatial resolution of the fMR images 

significantly, which results in blurred images [11, 59, 63]. Spatial smoothing also 

increases the correlation between BOLD signals measured from neighbouring voxels, 

which is undesirable when performing a univariate statistical analysis [32, 53, 63]. 

Problems may also arise if the Gaussian kernel is too large or too small. If the kernel is 

too small, then the voxel measurements do not meet the specifications required to apply 

Gaussian Random Field Theory [64]. If the kernel is too large, then the ability to detect 

true activations (statistical power) will decline [59]. According to a theory known as the 

matched filter theory, the optimal kernel size is a kernel with an FWHM that is the same 

size as the expected active regions [15, 32, 64]. Using a kernel this size will result in 

optimal active region detection during the statistical analysis. Therefore, a Gaussian 

kernel with an FWHM equal to the size of the activated areas should be chosen to smooth 

the images. This principle is difficult to apply in practice because the size of the active 

regions is what is under investigation. The size of the kernel then depends on the 

anticipated size of the active regions [64]. 

Figure 2.7 shows a single brain image slice, acquired in Study 1, before spatial 

smoothing was applied. The same slice after spatial smoothing with a Gaussian kernel 

with an FWHM = 8.0 mm x 8.0 mm x 8.0 mm is shown in Figure 2.8. Notice that the 

image in Figure 2.8 has a much lower spatial resolution than the image in Figure 2.7. 
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Figure 2.7. fMRI Slice Before Spatial Smoothing 

20 40 60 80 100 120 

Figure 2.8. fMRI Slice After Spatial Smoothing 
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2.2.1.5 Temporal Filtering 

In most fMR image analyses, temporal filtering is the last preprocessing step 

[59]. Applying temporal filtering to the fMRI data will remove noise from the images. 

Noise that is present in the data can dilute BOLD responses corresponding to neural 

activity that occurs when subjects perform a task or experience a stimulus [13]. 

Noise can be produced by several physiological or scanner-dependent sources. 

Two separate physiological effects, rhythmic cardiac pulsations and breathing, result in 

the appearance of undesirable low frequency signals in the data [20, 59]. A beating heart 

causes low frequency signals to appear in fMRI data because arterioles in the brain 

expand and contract at the same frequency as a beating heart [43, 65]. The changing 

blood flow that occurs when arterioles expand and contract causes changes in the 

measured BOLD signals. With regard to respiratory noise, patient breathing causes very 

small head movements as well as changes in blood oxygenation that are dependent on 

respiration instead of being dependent on neural activity [43]. Another type of noise that 

appears in BOLD signals is low frequency scanner drift [32]. BOLD signals might 

slowly drift over the course of an fMRI scan because there may be slow changes in the 

temperature of the scanning environment. 

The physiological types of noise listed above are usually undersampled during 

fMRI signal acquisition [43]. These noise signals are aliased to lower frequency 

components according to the Nyquist theorem. The frequency range of a typical heart 

beat is 0.80-1.3 Hz [20]. The typical respiration rate of a human at rest is 0.10-0.30 Hz. 

To deal with noise caused by physiological effects, respiration and heart rate can be 

monitored externally during an fMRI scan using a respiration belt and pulse-oximeter, 
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respectively [43]. Using the heart rate and respiration rate information recorded by the 

monitoring devices, regressors that account for physiological noise can be constructed 

and placed in the design matrix. Unfortunately, external monitoring devices are not 

always available, so a certain amount of physiological noise is expected and tolerated in 

the measured BOLD signals. 

The most common way to deal with low frequency noise is to use a high pass 

filter [20, 59]. High pass filtering is done carefully because the frequency of the 

paradigm (the frequency of a task-rest cycle or trial) may be close to some noise 

frequency components in the frequency domain [59]. Inadvertently removing frequency 

components of BOLD signals that are related to the subject's performance of a task or 

experience of a stimulus by high pass filtering may have drastic consequences on the 

results. In most software packages such as SPM5, the signal measurements are not 

directly high pass filtered because this can introduce additional negative autocorrelation 

into the residuals. To avoid this problem, cosine functions with low frequencies are used 

as regressors in the design matrix. Thus, any linear combination of these cosine 

functions will emulate the low frequency noise terms to account for the noise. 

Temporal low pass filtering may also be applied to fMRI signals to remove high 

frequency artifacts [59]. Low pass filtering is usually implemented with a Gaussian 

kernel-shaped filter similar to the ones used in spatial smoothing. 

The effectiveness of low pass filtering is very controversial. One reason for the 

controversy is that low pass filtering reduces the power of fMRI statistical analyses [20, 

59]. Since this controversy exists, direct low pass filtering of the fMRI data was not 

performed in the two studies of this work. 
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2.2.2 Parameter Estimation by Multiple Linear 
Regression 

Once the fMRI measurements have been preprocessed, the parameters are 

estimated and the residual matrix (e) values are calculated [18]. Parameters are estimated 

using a statistical method called multiple linear regression [15, 18]. In this work, SPM5 

software was used to perform the parameter estimations and residual calculations. Thus, 

SPM5 software was used to "fit" the GLM to the BOLD signal measured in each voxel. 

The following section describes the process that is used by SPM5 to fit the GLM to each 

BOLD signal. 

With regard to using the GLM to fit to fMRI measurements, an important point 

about the independence of BOLD signal time samples is considered before performing 

the parameter estimation. Since BOLD signals are sampled quickly during fMRI scans 

with TRs of 1-3 seconds, the BOLD signal samples measured from each voxel are not 

independent of the other samples measured from the same voxel [32, 66]. The signal 

samples exhibit some temporal correlation (correlation in time) with each other. 

Problems may arise in the statistical analyses of fMRI measurements because of the 

temporal correlation that exists between the samples. For instance, if some of the effects 

present in the BOLD signals are left unaccounted for by the GLM, such as noise or other 

task-related or stimulus-related BOLD responses, then the residuals from each voxel will 

be temporally correlated with other residuals from the same voxel [32, 48]. This 

correlation between residuals is called temporal autocorrelation. When the GLM is used 

in any statistical analysis, it is assumed that the residuals are independent [48]. Since the 

residuals are usually not temporally independent, adjustments are made to the parameter 

estimation procedure to account for temporal autocorrelation between the residuals. 
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Temporal autocorrelation between residuals reduces the degrees-of-freedom of 

the t-test or F-test [15]. Adjustments to the statistical analysis are made to account for the 

reduction in degrees-of-freedom. A parameter called the effective degrees-of-freedom is 

calculated for the t-test or F-test to account for the smaller degrees-of-freedom. 

Alternatively, the degrees-of-freedom may stay the same with some parameter estimation 

procedures, such as the parameter estimation procedure in SPM5. 

SPM5 uses a method called restricted maximum likelihood (ReML) to calculate 

parameter estimates and residual values to fit the GLM to each BOLD signal [21]. 

ReML takes into account the temporal autocorrelation of residuals to obtain parameter 

estimates [15, 33, 67, 68]. 

To describe ReML, it is easiest to begin with the assumption that there is no 

temporal autocorrelation between the residuals. In this scenario, the residuals are 

independent and identically distributed (iid) [68]. When the residuals are iid, each time 

course of residuals (one time course of residuals is calculated for each voxel) is assumed 

to have a temporal mean of zero and a normal (Gaussian) amplitude distribution [36]. In 

addition, each residual value is assumed to be temporally independent from other residual 

values in the same time course. When the residuals are iid, the covariance matrix of a 

residual vector calculated for one voxel (i.e. a residual time course from one voxel) has 

the generic form shown in equation (2.2) [68]. 

covar(sn) = 

5, 0 ... 0 

0 s2 ... 0 

0 0 ... sT 

<7„2=VTxT<7n
2 (2.2) 
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The variable e is the vector of residuals from one voxel. The variable n indicates the 

voxel being analyzed. The square matrix V is the correlation matrix [33, 68]. Each entry 

in the V matrix, labeled s, along the diagonal is the variance of the signal intensities in 

each image 1 through T [68]. The variable T is the number of images (brain volumes) 

acquired, so the V matrix is a T x T matrix. The variable an is the overall noise 

measured in the nth voxel. The variance values along the diagonal in the covariance 

matrix in equation (2.2) are used to calculate the t-statistics (equation (1.6)) and F-

statistics (equation (1.7)). 

In the simplest case of parameter estimation, the residuals are assumed to be iid, 

the V matrix is set equal to the identity matrix (I) and the parameters are estimated using 

ordinary least-squares estimation according to a theorem known as the Gauss-Markov 

theorem [33]. With these assumptions, the ordinary least-squares (OLS) parameter 

estimates for all regressors and all voxels are given by equation (2.3). 

AOLS 

p = (GTG)" G T Y (2.3) 

All matrices in equation (2.3) are the same matrices found in the GLM (equation (1.2)). 
A 

In addition, the covariance of the P matrix for a single voxel n is estimated by equation 

(2.4). This equation is used for every voxel. 

AOLS A 2 OLS 

cov(P )n = (GTG)" <7n (2.4) 

Lastly, the variance of the residuals for one voxel ((Xn in equation (2.4)) is estimated 

using equation (2.5). In equation (2.5), Y and P are vectors (one column each) as 
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opposed to matrices as in the GLM. The Y and p vectors contain values from the n 

voxel. 

f A 0 L S ^ 

Y-Gp 
v J 

T f AOLS\ 

Y-Gp 
I ) 

The variable x> in equation (2.5) is the same degrees-of-freedom variable from the 

Student's t-distribution (equation (1.6)). 

Since the residuals are not temporally independent in an fMRI measurement 

statistical analysis, the ReML estimation method is used to account for residual 

autocorrelation [33]. In the first step of ReML parameter estimation, the covariance of 

the residuals (equation (2.2)) is assumed to have a particular structure. An example 

structure is called the first order autoregressive model or AR(1) model [32, 33]. The 

details of the AR(1) model are not important to this work. Once a structure for the 

covariance of the residuals has been chosen, ReML is used to estimate the parameters and 

the covariance of the residuals [33]. The ReML method requires a significant number of 

calculations because it is iterative, so various simplifying assumptions are made to speed 

up the process. Once the covariance of the residuals has been estimated, the estimated 

A 

correlation matrix, V, is used to decorrelate the residuals in the GLM. The decorrelation 

process is called whitening. The GLM (equation (1.2)), equation (2.3), equation (2.4) 

and equation (2.5) are all modified by the whitening process [33]. 

The whitened GLM is shown in equation (2.6). 
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V^Y = V'^Gp + Y \ (2 6 

^ Y = G p + £' 

In practice, the estimated correlation matrix, V , is used as the V matrix in equation (2.6). 

The prime symbol (') indicates a matrix that has been whitened. The equations below are 

the modified equations used to estimate the parameters, parameter covariances and 

residuals when ReML is used. The parameter estimates are no longer ordinary least-

squares estimates. Instead, the parameter estimates are called generalized least-squares 

(GLS) estimates. 

,GLS 

p = (G'TG')" G ' T Y' (2.7) 

AGLS A 2 GLS 

cov(p )n = (G'TGy a, (2.8) 

( A G L S \ T f A G L S N \ 

Y - G ' p Y G P 
2 GLS 

J_ 
V 

<7„ = ^ '-+ 1 (2.9) 

th Once again, the Y and p vectors in equation (2.9) contain values from the n voxel. 

2.2.3 Statistical Inference 

Once the parameters of the GLM have been estimated from the BOLD signals 

measured from each voxel, the parameter estimates of a single regressor or a combination 

of parameter estimates from multiple regressors are statistically tested [30,47, 67]. The 

statistical test is usually a Student's t-test or an F-test, so the parameter estimates that are 
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tested are determined by contrast vectors according to equation (1.6) or equation (1.7), 

respectively. A threshold is set on the t-statistics or F-statistics to determine if the 

corresponding voxels are active or inactive. The process of determining active voxels 

from inactive voxels once a threshold is chosen is called a statistical inference [18]. With 

regard to the studies in this work, only Student's t-tests were performed. 

When a statistical analysis of fMRI measurements is performed, there are two 

commonly used methods which describe the nature of the combined parameter estimation 

and statistical inference processes. There is the classical method and the Bayesian 

method [67]. With regard to this work, the classical method was used because it is 

simpler than the Bayesian method and it is more practical for a single subject [21, 67]. 

Hence, the bulk of this section focuses on the classical method. In particular, the 

classical method that involves the Student's t-test is discussed. 

The classical method begins with the parameter estimation steps described in 

Section 2.2.2 [67]. The t-statistics that are calculated using the parameter estimates are 

assumed to be distributed according to a Student's t-distribution with a certain number of 

degrees-of-freedom as described in Section 1.2.3.3. t-statistic values may be converted to 

p-values which, under the classical method, indicate the probabilities that the parameter 

estimates occurred by chance. When a Bayesian method is used, p-values indicate the 

probabilities that the voxels were active (parameter estimates exceeded the threshold) 

given the acquired BOLD signal measurements. 

With regard to the classical method, once the p-values are calculated, a low p-

value threshold is selected to find voxels whose parameter estimates have very low 

probabilities of occurring by chance [67]. Hence, it can be concluded with a reasonable 
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amount of confidence that voxels whose parameter estimate p-values are lower than the 

threshold are active. 

A p-value may also be considered as the probability that a voxel is identified as 

being active when the voxel is truly inactive [22]. In other words, the p-value is the 

probability that the null hypothesis is falsely rejected. Hence, the p-value assigned to a 

parameter estimate is the probability of a false positive. The p-value can also be called 

the type I error rate. False positives are kept to a minimum during a classical statistical 

inference, which is why the p-value threshold is low. 

False negatives also occur in the statistical analysis of fMRI measurements. 

False negatives occur when a voxel is labeled as inactive when the voxel is truly active 

[22,46]. A false negative can also be called a type II error. A false negative is an 

incorrect acceptance of a null hypothesis. The probability of a false negative occurring is 

one minus the statistical power of the test. The statistical power is a measure of the 

probability of detecting an active voxel if the voxel is truly active as mentioned in 

Section 2.2.1.4 [22, 30]. Statistical power is increased by increasing the SNR of the 

BOLD signal measurements and by acquiring several BOLD signals from subjects while 

using a small number of accurate regressors in the GLM (i.e. having high degrees-of-

freedom) [22, 30, 32]. Statistical power can be measured using methods such as Monte 

Carlo calculations [22]. Statistical power was not measured in the fMRI studies of this 

work because this was not the focus of the studies. 

One issue that is considered during the inference stage of the statistical analysis 

of fMRI measurements is the multiple comparisons problem [63]. The multiple 

comparisons problem arises as a consequence of considering each voxel independently 
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even though BOLD hemodynamic responses are measured from tens of thousands of 

voxels. Voxels in close spatial proximity to one another may show some correlation 

between their BOLD signals, which exacerbates the multiple comparisons problem. In a 

hypothetical example of an analysis of fMRI measurements, a brain volume may consist 

of 25, 000 voxels. If a p-value threshold (also known as an a threshold) of a < 0.05 was 

implemented, then 1, 250 voxels (25, 000 x 0.05 = 1, 250) may be active by chance 

alone. This is much too high to be acceptable. This issue is called the multiple 

comparisons problem. The statistical analysis is modified to take the multiple 

comparisons problem into account. 

In order to account for the multiple comparisons problem, voxels are considered 

in groups [63]. The probability that the parameters of task-related or stimulus-related 

regressors for the whole brain volume were obtained by chance (from a null Student's t-

distribution) is of interest, rather than the individual probabilities that the parameter value 

for each task-related or stimulus-related regressor at each voxel occurred by chance. 

When a threshold is applied to a group of t-statistics from a statistical analysis of fMRI 

measurements, it is called a family-wise error rate (FWE). An FWE threshold was 

applied in this work. 

One method of applying an FWE is called the Bonferroni correction [63]. 

Referring back to the hypothetical example given earlier, an a threshold was assigned to 

each voxel. The probability that the entire brain volume of voxels is active (i.e. all voxel 

p-values are less than or equal to a) is given by equation (2.10). 

Prob(p<or) = aN (2.10) 
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In equation (2.10), N is the total number of voxels. Given equation (2.10), the probability 

that none of the voxel p-values are less than or equal to a is given by equation (2.11). 

Prob(p > a) = (1 - of (2.11) 

Thus, the probability of obtaining at least one voxel with a p-value less than a is shown 

by equation (2.12). This is the FWE using the Bonferroni correction. 

aFWE=l-(l-a)N (2.12) 

Since a for each voxel is small, equation (2.12) may be simplified to equation (2.13). 

aFWE = N« (2.13) 

Regarding the hypothetical fMRI scan example, with 25 000 voxels and a desired C^WE = 

0.05, the a threshold for each voxel is a= 2.0* 10"6 (0.05/25 000 = 2.0* 10"6). 

The Bonferroni correction is considered to be too conservative for a statistical 

analysis of fMRI measurements [63]. The a threshold for each voxel using the 

Bonferroni correction in the hypothetical example is too low. Voxels are still treated 

independently when a Bonferroni correction is used, so corrections to the threshold must 

take this into account. 

Gaussian Random Field (GRF) Theory was introduced to properly correct for 

the multiple comparisons problem in the statistical analyses of fMRI measurements [63]. 

GRF Theory accounts for spatial correlation between neighbouring voxels. Groups of 

adjacent voxels are treated as independent units. The spatial correlation is estimated in 

terms of smoothness, which is expressed as the FWHM of a Gaussian kernel. 
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Smoothness is calculated using the correlations between residual values that are 

calculated during the parameter estimation step. The FWHM in this case is not the same 

as the FWHM of the Gaussian kernel used to spatially smooth the images. The FWHM 

of the smoothing estimate is used to determine the number of groups of adjacent pixels in 

a brain image slice that are the same size as the FWHM. These groups are called 

resolution elements or resels. The number of resels is used in an equation to determine 

an (XFWE threshold for the image in which groups of adjacent voxels are identified where 

each voxel has a t-statistic above a t-statistic threshold that is set for each voxel. The 

number of groups with voxels that have t-values above the threshold is the Euler 

characteristic (EC) of the image. The t-value threshold can be raised to decrease the EC 

or lowered to increase the EC. The formula in equation (2.14) is used to calculate the 

expected EC of an image. 

3/ Z-Y 
E[EC] = R(4ln(2))(2x)/2Zte

 /2 (2.14) 

The variable R is the number of resels and Zt is the t-value threshold converted to a 

statistical z-score. The EC depends mostly on the number of resels when the brain 

volume is significantly larger than a resel. The expected EC corresponds to the 

probability of finding a group of voxels that have t-values above the t-value threshold by 

chance. Hence, the expected EC can be considered as the OCFWE for the image. The t-

value threshold can be adjusted to achieve the desired (XFWE and correct for the multiple 

comparisons problem. 
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2.3 The Assessment of GLMs 

In order to compare the different regressors that were used in the studies of this 

work, some statistical calculations and performance measures were computed. As 

mentioned in Section 1.2.7, several research groups claim that one set of regressors that is 

used in the GLM to fit to the data is better than another set of regressors because the 

former set of regressors yields a higher number of active voxels [48]. The number of 

active voxels is counted after two separate statistical analyses of the fMRI measurements, 

one analysis for each set of regressors. A set of regressors used in the GLM may be 

called a hemodynamic response (HR) model. A difference in the number of active voxels 

is not a suitable way of determining if one HR model is better than another. For this 

reason, calculations with various statistics and performance measures were performed on 

the fMRI measurements in both studies of this work. 

2.3.1 Statistics Used To Compare HR Model 
Performance 

2.3.1.1 Concurrence Ratio 

The first variable used to compare the HR models is the concurrence ratio (CR) 

[54]. The CR is not a statistic; it is a measure that represents the agreement between the 

results from two different t-tests. A different HR model is used in each t-test. If most of 

the active voxels from the two t-tests are the same (i.e. at the same spatial locations), the 

CR will be high. Conversely, if the active voxels from the first t-test do not match most 

of the active voxels from the second t-test, the CR will be low. The formula for the CR is 

shown below by equation (2.15). 
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„ n number of active voxels at same location from both t - tests 
CR = (2.15) 

average number of active voxels from both t - tests 

2.3.1.2 Durbin-Watson Statistic 

The second calculation used to compare the HR models is the Durbin-Watson 

(DW) statistic [48]. The DW statistic can be used to determine the quality of HR models 

by evaluating the validity of the models at each voxel. A DW statistic is calculated for 

every voxel in the fMR images. The Durbin-Watson statistic is calculated using the 

formula in equation (2.16). 

2>,-«,-.)2 

DW = ̂  (2.16) 

In the DW equation, n is the number of time samples and et is the error (residual) at time 

t. To properly use the GLM in a statistical analysis, it is assumed that the residuals are 

temporally independent. This assumption is violated in the statistical analysis of fMRI 

measurements as mentioned in Section 2.2.2. The degree of temporal autocorrelation 

between the residuals is an indicator of the quality of the corresponding HR model. The 

DW statistic is a way of measuring the amount of temporal autocorrelation between the 

residuals, so the statistic can be used to determine the validity of HR models at each 

voxel. 

Once the DW values have been calculated, they must be interpreted [69]. DW 

values are interpreted in a manner that is similar to the interpretation of t-statistics. DW 
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values range from 0 to 4. A DW value that is equal to 2 means that there is no significant 

correlation between the residuals. A DW value that is less than 2 indicates that there is 

substantial positive correlation between residuals. A DW value that is greater than 2 

indicates that there is substantial negative correlation between residuals. The DW 

statistic distribution approaches a normal distribution that has a mean of 2 and a variance 

of 4/n when a large sample size is used (i.e. a large number of voxels). However, the 

exact DW distribution should be used whenever possible. 

In the statistical analysis of fMRI measurements, a certain amount of correlation 

between the residuals is expected, so an a threshold can be set on the DW values [69]. 

An a threshold is used because, much like t-statistics and F-statistics, DW statistics can 

be converted to p-values. Before calculating an a threshold, it is important to know that a 

DW distribution depends on the regressors being used in the design matrix. Different 

regressors change the DW values at different a thresholds of the DW distribution. 

However, there are upper and lower bounds on the DW values at commonly used a 

thresholds ( a < 0.01 or or < 0.05) if the exact regressor values are unknown. If the p-

value of a DW statistic falls below the a threshold, there is a certain amount of 

correlation between the residuals that is acceptable under the one-tailed DW test null 

hypothesis that there is positive correlation between the residuals. For instance, for a 

design matrix with 2 regressors that have 100 time samples each (one regressor being a 

vector of ones) and an a < 0.01 threshold, the upper bound on the DW statistic is 1.562 

and the lower bound is 1.522 (taken from a DW statistic table) [70]. If a DW value 

calculated for an arbitrary voxel is less than 1.522, there is a considerable probability of 

significant positive temporal autocorrelation between the residuals that cannot be 
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tolerated [69,70]. Conversely, if the DW value is greater than 1.562, then the probability 

of positive autocorrelation between the residuals is low and the null hypothesis can be 

rejected. If the DW value falls between 1.522 and 1.562, then the evaluation of the 

validity of the HR model at the randomly chosen voxel is inconclusive. 

2.3.1.3 F-statistic (to Assess HR Model Performance) 

After the DW test, an F-test must be done on the voxels that pass the DW test to 

determine if the HR model accounts for a statistically significant amount of variance in 

the BOLD signals measured at those voxels [48]. If the F-values exceed a threshold (i.e. 

the F-values are below the equivalent a threshold), then there is a high probability that 

the corresponding HR model explains a significant amount of data variance at those 

voxels. The formula for calculating the F-statistic is given by equation (2.17)(a) and 

equation (2.17)(b). 

R2/ 

F(R2)= A
2
P~l) (a) 

/(n-p) (2-17> 

R2=SSR_ 

SST 

In equation (2.17)(b), the SSR variable is the sum of squared regressor values from the 

linear combination of regressors that is used to account for the BOLD hemodynamic 

responses. The variable SST is called the total sum-of-squares, which is the sum of 

squared BOLD signal values measured from one voxel. The variables n and p represent 

the number of time samples and the number of regressors in the design matrix, 

respectively. The F-score formula in equation (2.17)(a) is the ratio of the variance 
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accounted for by the HR model to the variance not accounted for by the HR model [48]. 

Equation (2.17)(a) is also corrected by the two different degrees-of-freedom of an F-test: 

p-1 and n-p (equation (1.9)). The F-test is used because it is assumed that the F-statistic 

follows an F distribution with (p-1, n-p) degrees-of-freedom. The null hypothesis for this 

F-distribution is that the model does not explain a significant amount of variance in the 

data, while the alternative hypothesis is that the model does explain a significant amount 

of variance in the data. 

2.3.1.4 Adjusted Coefficient of Multiple Determination 

The final variable used to compare the HR models is the adjusted coefficient of 

multiple determination (Ra) [48]. The Ra variable computes how well each model fits 

the BOLD signal from each voxel that passes the DW test and the F-test. This coefficient 

describes the amount of variance in a BOLD signal that is accounted for by the HR 

model. The coefficient ranges in value from 0 to 1. An Ra value of 0 indicates the 

model does not account for any of the variance of the BOLD signal. An Ra
2 value of 1 

means the model fits the signal perfectly. The formula for Ra
2 is given by 

equation (2.18). 

SSE/ 

R"Z=1~SST(n ^ ( 2 - 1 8 ) 

The SSE variable in equation (2.18) is the sum of squared errors (residuals) for one 

voxel. An HR model that has a higher Ra
2 at a given voxel is considered to be a better 

model. 
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2.4 Combined EEG-fMRI Scanning 

EEG and fMRI may be successfully performed simultaneously [10, 71]. There 

has been a lot of interest recently in performing fMRI scans and acquiring EEGs 

simultaneously. Combined EEG-fMRI scans provide new information about brain 

activity in both healthy subjects and patients with disorders like epilepsy. This 

information cannot be acquired when EEG and fMRI measurements are obtained 

separately. A combined EEG-fMRI scan was performed on a patient suffering from 

partial epilepsy in the second study of this work. 

EEG and fMRI have complementary advantages that are exploited in a combined 

EEG-fMRI scan [26, 31, 72]. Signals recorded on an EEG have a very fine temporal 

resolution because they are sampled with a period on the order of milliseconds. In 

contrast, BOLD signals from the same voxel are sampled every few seconds during an 

fMRI scan. However, fMRI has much better spatial resolution. Voxel dimensions are 

much smaller than the distances between electrodes on the cap of an 

electroencephalograph. Distances between electrodes are usually on the order of 

centimetres. 

2.4.1 Continuous versus Spike-Triggered EEG-fMRI 
Scanning 

Currently, there are two ways of performing combined EEG-fMRI scans on 

patients suffering from epilepsy. In both methods, interictal events that are identified on 

an EEG are of interest because they often result in BOLD hemodynamic responses [4, 

10]. 
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The first method is spike-triggered EEG-fMRI in which fMRI scanning 

commences a few seconds after interictal events are identified on the EEG [10]. Spike-

triggered EEG-fMRI scans preceded continuous EEG-fMRI scans [38]. 

Spike-triggered EEG-fMRI scanning has several challenges [10, 38]. Spike-

triggered EEG-fMRI is labour intensive because it requires careful attention to the EEG 

during the EEG-fMRI scanning process. Since BOLD responses do not occur after every 

interictal event and BOLD response time courses are not consistent in duration, it is 

difficult to determine an appropriate time to begin the fMRI scan after an interictal event. 

BOLD responses peak at different times in different patients and they peak at different 

times in different brain regions. Thus, if scanning begins too soon or too late, only 

portions of relevant BOLD responses may be measured. Moreover, it is difficult to 

identify interictal events as some of them may not be clearly evident on the EEG. 

Knowing when to stop an fMRI scan after an interictal event is also a challenge. 

Scanning must stop before the BOLD response settles back to baseline to avoid obtaining 

scans that contain baseline fMRI signals that are misconstrued as being part of the BOLD 

response of interest [38]. Thus, a truncated BOLD response is often acquired, which 

limits the study of neural activity. Another issue is that a BOLD signal acquisition 

cannot begin until at least 15 seconds after the completion of the previous BOLD signal 

acquisition. This time period is maintained to allow the tipped magnetic moments in the 

excited tissue to return to their original state. This prevents the contamination of 

subsequent signal acquisitions with magnetization vectors that were tipped in previous 

RF pulse applications. Lastly, in order to properly compare the interictal event-related 

BOLD signals with baseline BOLD signals, brain images must be acquired during 
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periods that are free of interictal events so that baseline BOLD signals can be measured 

[10]. Time periods in which patients will not elicit interictal neural activity are difficult 

to predict. 

Continuous EEG-fMRI scanning is the other form of combined EEG-fMRI 

scanning [10]. When continuous EEG-fMRI scanning is performed, both the EEG and 

fMR images are acquired continuously and simultaneously throughout the procedure. 

Continuous EEG-fMRI scanning overcomes the limitations of spike-triggered EEG-fMRI 

procedures. Since many of the shortcomings of spike-triggered EEG-fMRI scanning are 

not relevant to continuous EEG-fMRI scanning, continuous EEG-fMRI scanning was 

performed in the second study of this work 

There are several artifacts in the fMRI scans and the EEG that are accounted for 

during processing of continuous EEG-fMRI data. The artifacts and methods of removing 

them are discussed in the next section. 

2.4.2 Artifacts in Combined EEG-fMRI Scanning 

While combining EEG and fMRI has great potential to reveal interesting 

information about brain activity, there are several artifacts in the fMR images and in the 

EEG that occur when the two methods are combined [10, 73]. These artifacts do not 

appear when fMR images and EEGs are acquired separately. The most significant 

artifacts are seen on the EEG signals. 

Significant artifacts appear on the EEG due to MR gradients and RF pulses. 

Since closed circuit loops are part of an electroencephalograph device, rapidly changing 

MR gradients and RF pulses that occur during fMRI induce currents in the electrode 
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wires [6, 10, 38]. The induced currents cause rapid amplitude fluctuations in the 

potentials measured by the electrodes. The amplitudes of potentials contaminated by 

gradient artifacts and RF pulse artifacts are much higher than the typical amplitudes of 

the potentials measured at the scalp. 

Fortunately, there are ways of removing gradient and RF pulse artifacts [6, 10, 

38]. One way of removing the artifacts is to estimate the electric potentials that are 

contributed by the artifacts and subtract the estimated artifact signals from the signals 

measured at the electrodes. Another method of removing gradient and RF pulse artifacts 

is to filter the artifacts out of the EEG signals. In Study 2, the gradient and RF pulse 

artifacts were removed using the former procedure. An average EEG signal waveform 

for each electrode channel was calculated and then subtracted from the corresponding 

EEG signal to yield EEG signals in which scanner artifacts were removed. 

Another artifact that appears on EEGs is caused by subject head movements [10, 

38]. EEG electrodes are very sensitive to slight head movements. Small, rhythmic head 

movements caused by large blood vessels moving blood along with each heart beat or by 

respiration are enough to induce currents in the electrodes. The induced currents generate 

undesirable changes in potentials. The EEG artifact caused by head movement from a 

beating heart is called the ballistocardiogram. Methods of removing the 

ballistocardiogram have been developed, which include using ICA [73]. 

In Study 2, average ballistocardiogram waveforms were produced from the EEG 

signals that were contaminated with ballistocardiogram artifacts. The average 

ballistocardiogram waveforms were then used to create spatial filters to remove the 

ballistocardiogram artifacts from contaminated EEG signals. 
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The electroencephalograph also has adverse effects on MR image measurements 

[10]. For instance, there may be a loss of MR signal strength around the electrodes. 

However, this artifact can actually be advantageous because it makes it easy to identify 

the locations of the electrodes on the MR images. Anatomical MR images are images 

that are more severely affected by this artifact than functional images. The artifact was 

not present in the functional images that were received for the second study of this work. 

In addition, the functional images were not registered to the anatomical images in Study 

2, so the artifacts caused by the electrodes were not a problem. 

2.5 The Application of ICA to fMRI Measurements 

Spatial ICA and temporal ICA were applied to the fMRI measurements in both 

studies of this work. This section describes the steps that were completed when ICA was 

performed on the fMRI measurements. 

2.5.1 Preprocessing 

Prior to conducting ICA on the fMRI measurements, most ICA software 

programs will preprocess the measurements. 

First, the fMRI data are subjected to the slice timing adjustment, motion 

correction, brain voxel extraction, spatial smoothing and temporal filtering preprocessing 

steps that were discussed in Section 2.2.1 [28, 74]. 

Next, the fMRI measurements are subjected to a process called centering [49]. 

In this step, the temporal mean of each mixed signal (BOLD signal measured from one 

voxel) is calculated and subtracted from the corresponding measured mixed signal time 
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samples. This process centers the fluctuations of the mixed signals about zero. The 

means are often added back to the independent component time samples once the 

independent components have been calculated. Centering simplifies the independent 

component extraction process so the ICA algorithms can proceed quickly. An equation 

that describes how the ICA mathematical model is modified by the centering process is 

shown by equation (2.19). 

x = x0+£{x} = As (2.19) 

The s, A and x matrices in equation (2.19) are the same matrices from the ICA 

mathematical model (equation (1.11)). The xo matrix contains the measured mixed 

signals that have been centered. The E{} notation is an operator that returns the vector of 

expected values (temporal means) of each mixed signal. 

The next preprocessing step is called whitening, which is very similar to the 

whitening method used to find parameter estimates (Section 2.2.2) [49]. Whitening is 

performed by using a technique called Principal Component Analysis (PCA), which is a 

signal analysis method described in the next section. Whitening decorrelates the centered 

mixed signals and sets the variance of each signal to one. The resulting covariance 

matrix of the whitened signal observations is the identity matrix. Whitening is performed 

to simplify the calculation of the A matrix. After the ICA algorithm has whitened the 

data, each column in the A matrix will be orthogonal to all the other columns. Thus, the 

ICA algorithm will compute the independent components much faster using whitened 

data. The first step in whitening is to perform an eigenvalue decomposition of the 

covariance matrix of the centered data matrix as shown by equation (2.20). Hence, 
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equation (2.20) describes the PCA process. 

E{x0x0
T} = EDET (2.20) 

The product of the x<)XoT operation is the covariance matrix. The E matrix contains the 

eigenvectors of the covariance matrix. The D matrix is a diagonal matrix; the 

eigenvalues of the covariance matrix are the values along the diagonal. The eigenvectors 

are the principal components of the covariance matrix. To obtain the whitened, centered 

mixed signal matrix, the x<> matrix is subjected to equation (2.21). 

x0=ED-1/2E rx0 (2.21) 

The covariance matrix of the new matrix of whitened, centered mixed signals is now the 

identity matrix as shown by equation (2.22). 

£{x0xo } = I (2.22) 

2.5.2 Principal Component Analysis versus Independent 
Component Analysis 

Independent Component Analysis and Principal Component Analysis are similar 

methods of decomposing a set of mixed signals into component signals [15]. PCA was 

used to preprocess the fMRI measurements in both studies of this work. 

PCA is a technique that will decompose mixed signals into a set of component 

signals that are statistically uncorrected [75]. Two random variables that are 

uncorrelated satisfy equation (2.23) [49]. 
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E{yly2}-E{yl}E{y2} = 0 (2.23) 

In equation (2.23), yi and y2 are arbitrary random variables. Equation (2.23) states that 

the covariance of two uncorrected random variables is equal to 0. 

Statistical independence and uncorrelatedness are related to one another [49]. 

Uncorrelatedness is a weak form of statistical independence [15, 49]. Random variables 

that are statistically independent are also uncorrected, but uncorrected random variables 

are not necessarily independent [49]. Therefore, any independent components that are 

estimated by ICA algorithms will also be uncorrected, which implies that whitening the 

mixed signals prior to calculating independent components is a legitimate procedure. 

PC A can also be used to reduce the dimensions of the data matrix [15, 49-51, 74]. 

Data reduction can be done using PCA because it is assumed that there are fewer 

independent components than time samples in spatial ICA or fewer components than 

voxels in temporal ICA. Principal components are used to account for the variance of the 

fMRI measurements. The principal components (columns of E matrix in equation (2.20)) 

are usually arranged in order of the proportions of the variance they account for in the 

measurements. The eigenvalues along the diagonal of the D matrix indicate the amount 

of variance accounted for by each of the eigenvectors. Some of the eigenvalues have 

small magnitudes, so the corresponding eigenvectors account for very little variance in 

the fMRI measurements. Principal components that account for very little data variance 

are usually discarded because it is assumed they account for noise or other unimportant 

effects that are present in the data [50,75, 76]. The eigenvectors and the corresponding 

eigenvalues that account for a small amount of data variance can be removed from the E 

and D matrices, respectively, to reduce the data dimensions. By reducing the dimensions 
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of the data matrix, the number of independent components that an ICA algorithm 

computes is reduced. 

ICA and PCA can be illustrated using plots in an n-dimensional space where n is 

the number of mixed signals measured [35]. In this example, two source signals were 

mixed together by a mixing (A) matrix using an in-house MATLAB program to create 

two mixed signals. The values of the mixing matrix were real numbers chosen at random 

from Gaussian and uniform distributions. The source signals were time courses of 

residuals from two voxels. The residual time courses were calculated using fMRI 

measurements acquired during Study 2. These signals are not related, so it is assumed 

they are statistically independent. The source signals are plotted against one another as 

shown in Figure 2.9. 
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Figure 2.9. Two Time Courses of Residuals Plotted Against One Another 
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If source signals extracted from mixed signals are statistically independent, knowing the 

values of one source signal does not provide any information about the values of any 

other source signal in the mixture [75]. There is no apparent relationship between the 

two signals in Figure 2.9, so the signals appear to be statistically independent. 

The signals were linearly mixed together with a known A matrix. The 

corresponding mixed signals are shown in Figure 2.10 and Figure 2.11. 
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Figure 2.11. Mixed Signal 2 

The mixed signals are plotted against one another in Figure 2.12 and Figure 2.13. 

Both mixed signals were subjected to temporal ICA and PCA. To demonstrate 

the difference between PCA and ICA on plots in two-dimensional space, the mixed 

signals are projected onto two vectors in both PCA and ICA to produce uncorrelated and 

statistically independent component signals, respectively [35]. The vectors are obtained 

from the inverse of the A matrix in ICA and from the inverse of the E matrix in PCA. 

The directions of the vectors for PCA and ICA are shown in Figure 2.12 and Figure 2.13, 

respectively. The first principal component vector, shown in red in Figure 2.12, 

corresponds to the principal component that accounts for the largest amount of variance 

in the mixed signals. The second principal component vector, shown in green in Figure 

2.12, corresponds to the principal component that accounts for the second largest amount 

of variance. The two principal component vectors are orthogonal to one another [35]. If 

there were more source signals (i.e. more dimensions), then there would be a third 
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principal component that would account for the third largest amount of variance in the 

data, and so on. By contrast, the two independent component vectors shown in Figure 

2.13 are oriented in different directions than the principal component vectors. 
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Figure 2.12. Principal Component Vectors in Mixed Signal Space 
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2.5.3 The Calculation of Independent Components 

There are several ICA algorithms available to calculate independent components 

that are embedded in a set of mixed signals [77]. Two ICA algorithms were used to 

calculate independent components from the fMRI measurements acquired in both studies 

of this work. Both of these algorithms are used frequently in studies that involve ICA. 

The first algorithm is called FastICA [49]. This algorithm computes independent 

components by finding component signals that have maximum non-Gaussianity. Non-

Gaussianity is a measure of independence because of the implications of the Central 

Limit Theorem (Section 1.2.4.3). The first step in finding the components is to rearrange 

equation (1.11) to equation (2.24) shown below. 

s = A *x (2.24) 

Since PCA was performed as a preprocessing step in the ICA procedure, the A 

matrix has been reduced to a square matrix. Thus, the A matrix is invertible, so the ICA 

mathematical model can be rearranged to the equation shown by equation (2.24). If the 

A matrix is not square, then a pseudoinverse of the A matrix may be calculated and used 

in equation (2.24). 

The components in equation (2.24) are computed one at a time by finding the 

maximum non-Gaussianity of the product of each A" matrix row vector and the x matrix 

(projections of the mixed signals onto vectors in the A"1 matrix as described earlier). For 

the first iteration, the values in one row of the A" matrix are estimated or chosen 

randomly. The values of the A" matrix row vector are then adjusted during subsequent 

iterations until maximum non-Gaussianity is calculated. Each row of the A"1 matrix is 
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calculated iteratively until all the independent components are determined. The number 

of independent components that is computed depends on the type of ICA. Different types 

of ICA are described later. 

A measure of non-Gaussianity that FastICA uses is called kurtosis [49]. 

Kurtosis is defined by equation (2.25). 

K(y)=E{y4}-3(E{y2})2 (2.25) 

The variable y in equation (2.25) is a random variable. During each iteration of the 

FastICA algorithm, the y variable is a mixed signal that is being changed by the 

algorithm. When the kurtosis of the y variable is maximized, the y variable is an 

independent component. The kurtosis of a Gaussian random variable is equal to 0. The 

kurtosis of a random variable with a "spiky" pdf is greater than 0. A spiky pdf is a pdf 

that has high probability densities when the values of the random variable are small or 

large and low probability densities when the values of the random variable are 

intermediate. Random variables with positive kurtosis values are called superGaussian 

random variables. The kurtosis of a random variable with a "flat" pdf is less than 0. A 

flat pdf is a pdf that has approximately constant probability densities when the values of 

the random variable are small and low probability densities when the values of the 

random variable are high. In most fMRI studies, spatial independent component brain 

maps show small regions of voxels with high spatial weights [52]. Hence, most spatial 

independent components found from fMRI measurements are superGaussian. 

The direct calculation of a random variable's kurtosis is difficult to perform, so an 

alternate method of calculating non-Gaussianity is used by FastICA [49]. Kurtosis 
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calculations are sensitive to outliers in the data, which are measured mixed signal time 

samples (random variable measurements) that lie at the extremes of the signal's pdf. 

Outliers may be errors that could result in a poor estimate of kurtosis. To overcome this 

problem, a measure of non-Gaussianity called negentropy is used. Negentropy is derived 

from a quantity in information theory called entropy [49]. Entropy is a measure of the 

average uncertainty of a random variable [78]. The entropy of a continuous random 

variable is given by equation (2.26) [49]. 

H(y) = -\p(y)log{p(y)}dy (2.26) 

In equation (2.26), p(y) is the pdf of the random variable y. Negentropy is calculated 

using equation (2.27). 

J(y)=H(ygauJ-H(y) (2.27) 

The ygauss variable is a Gaussian random variable. 

Negentropy is difficult to calculate in practice [49]. Therefore, negentropy may 

be estimated using calculations that involve non-quadratic functions. Negentropy is 

approximated by the proportionality relationship given by (2.28). 

J(y) - [E{G(y)}-E{G(ygauJ}f (2.28) 

The function G() is any non-quadratic function. A typical non-quadratic function is the 

hyperbolic tangent function. Negentropy values for Gaussian random variables are equal 

to 0 and negentropy values for superGaussian random variables are greater than 0. 
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The second ICA algorithm that was used in the studies of this work is called 

Infomax [79]. Infomax, much like FastICA, was developed using principles of 

information theory [35]. A principle of information theory known as mutual information 

is exploited by the Infomax algorithm. Mutual information is a measure of the 

dependence between random variables [49, 78]. Therefore, the mutual information 

between the output signals of the Infomax algorithm is minimized [79]. The output 

signals of the Infomax algorithm are the independent components. If the output signals 

of the Infomax algorithm are statistically independent from one another, the mutual 

information between the output signals is equal to 0. Mutual information is described by 

equation (2.29) [49]. 

m 

The y variables in equation (2.29) are random variables. During each iteration of the 

Infomax algorithm in which fMRI measurements are the input signals, y variables are 

mixed signals that are being manipulated by the algorithm. When the mutual information 

between the y variables is minimized, the y variables become independent components. 

The variable m is the total number of random variables. The H(yO function is the entropy 

of a single random variable. Lastly, H(y) is the joint entropy of the random variables. 

The details of the steps of the Infomax algorithm are not important to discuss in this 

work. 
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2.6 fMRI Studies 

2.6.1 Study 1: Block Design Paradigm 

2.6.1.1 The Task 

BOLD fMRI measurements were acquired from one healthy subject during an 

fMRI scan performed with a block design paradigm. The fMRI scan was performed 

using a General Electric Sigma 3.0 T scanner (General Electric, Waukesha, WI, USA). 

The task the subject performed was a right handed finger flexion task. During the task 

portion of the scan, the subject made finger tapping movements in which the forefinger 

and thumb touch one another. For most of the task blocks, one finger tap was performed 

per second (i.e. at a 1.0 Hz rate). The subject viewed a flashing checkerboard that 

provided visual cues at a 1.0 Hz rate to indicate when to perform finger taps. For the 

remaining task blocks, the subject performed the finger tap movements at an arbitrary 

pace. The duration of the task period was 12 seconds followed by a rest period of 24 

seconds. The fMRI scan began with the task period. This sequence was repeated nine 

times for a total imaging time of 5 minutes and 24 seconds. A graphical depiction of the 

task is shown in Figure 2.14. The task and rest periods are indicated in the figure. 
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Figure 2.14. Finger Flexion Block Design Paradigm 

2.6.1.2 Imaging Sequence 

fMR images were acquired with a GRE-EPI sequence. The GRE-EPI sequence 

was a two-shot sequence. In a two-shot GRE-EPI sequence, two RF pulses are required 

to obtain all the measurements from one slice [24, 58]. After the first RF pulse is 

applied, BOLD signal samples are measured from one-half of the voxels in one slice. 

Then a second RF pulse is applied so that the remaining half of the measurements may be 

acquired. Twenty slices were acquired in an interleaved fashion from the top of the head 

to the bottom. When interleaved sequences are used, odd (or even) numbered slices are 

acquired first, followed by even (or odd) numbered slices [21]. In this case, the first slice 

acquired at the top of the subject's head was labeled slice number 1. Hence, the 

interleaved slice acquisition order was 1, 3, 5,..., 19, 2, 4, 6,..., 20. The imaging 

specifications were: a total TR = 3.0s (1.5 seconds/shot), flip angle = 60°, TE = 30 ms, 
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field-of-view along the x-direction (FOVx) = 24 cm, FOVy = 24 cm, 5 mm slice 

thickness with no gap, in-plane voxel dimensions 1.875 mm x 1.875 mm and data matrix 

that is 96 pixels x 96 pixels zero-filled to 128 pixels x 128 pixels. Some scans at the 

beginning of the imaging sequence were discarded because they were acquired while the 

MR scanner was not in steady-state operation. Once the scanner reached steady-state 

operation, which often takes less than 10 seconds, the block design paradigm began. 

Over the entire steady-state fMRI scan, 108 volumes were acquired. 

2.6.1.3 Image Preprocessing 

After the fMRI measurements were acquired, the images were preprocessed. 

First, a slice timing adjustment was performed on the images to align the acquisition 

timing of the slices to the first slice (top of the head) that was acquired. The slice timing 

adjustment was performed using SPM5 software. Then the fMR images of each run were 

adjusted using a rigid body motion correction. SPM5 software was used to perform the 

rigid body motion correction. The reference brain volume was the first brain volume 

acquired in each run. After motion correction, fMRI signals from non-brain tissue were 

removed by performing a brain voxel extraction. The brain voxel extraction was 

performed using the BET tool in the FSL 3.20 software program. After this step, SPM5 

was used again to spatially smooth each volume with a three-dimensional Gaussian 

kernel of FWHM = 8.0 mm x 8.0 mm x 8.0 mm in the x, y and z-dimensions. Lastly, the 

data were temporally high-pass filtered with FSL 3.20 software. The cutoff period of the 

high-pass filter was 120 seconds. 
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2.6.1.4 fMRI Measurement ICA 

After the preprocessing steps were completed, temporal ICA and spatial ICA 

were performed on the fMRI data. 

Spatial ICA was performed with the fMRI measurements from all 108 brain 

volumes using fMRLAB software (Swartz Center for Computational Neuroscience, San 

Diego, CA, USA). Spatial ICA was performed on the data to check for the presence of at 

least one spatial independent component that corresponds to the task paradigm. The 

fMRLAB software program performs spatial ICA using the Infomax algorithm [35, 52]. 

The spatial independent component brain maps were visually inspected to find 

voxels with high spatial weights in the left hemisphere motor cortex region of the brain. 

High spatial weights were determined by setting a threshold for the z-scores of the spatial 

weights. The z-score of a spatial weight is the number of standard deviations that the 

spatial weight is above or below the mean spatial weight of the corresponding spatial 

independent component [46, 52]. The formula to calculate z-scores is shown by equation 

(2.30). 

z = ̂ ^ (2.30) 
o 

In equation (2.30), v is the value of the spatial weight, \i is the mean spatial weight for the 

spatial independent component being examined and a is the standard deviation of the 

spatial weights of the spatial independent component being examined. The z-score 

threshold was chosen to be z > 2.5. This threshold score is similar to the z-score 

threshold used in past studies such as the study done in [52] and the study done in [28]. 

By visual inspection, a single spatial independent component showed an apparent relation 
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to the motor task. 

To confirm that the spatial independent component was task-related, the time 

course that corresponds to the spatial independent component (column of the A matrix in 

spatial ICA) was inspected. Time courses that correspond to spatial independent 

components often provide clues about the sources of the independent components [35, 

51]. In this study, time courses of task-related spatial components should show a signal 

with an approximate sinusoidal shape because of the periodic nature of the task 

paradigm. The peaks and troughs of the time courses of the task-related spatial 

components should correspond to the timing of the task. There will be some delay before 

the task-related spatial component time courses show an increase or decrease in signal 

amplitude after each task block is initiated. This is because hemodynamic responses take 

some time to begin after the initiation of the corresponding neural activity (mentioned in 

Section 1.2.2.2). 

To identify consistently task-related components, a correlation method 

developed in [35] was used. With this method, a reference signal must be calculated 

first. The reference signal is the canonical hemodynamic response for the block design 

task paradigm. The canonical hemodynamic response is the signal that results when the 

square wave in Figure 2.14 is convolved with the canonical impulse response in Figure 

1.9. Next, the correlation coefficient was calculated between the canonical hemodynamic 

response and the positive region of activation (ROA+) average time course of the 

suspected task-related spatial component. If the task-related spatial component ROA+ 

average time course has a high correlation coefficient with the canonical hemodynamic 

response, the spatial component can be labeled as consistently task-related according to 
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the independent component labeling method used in the study in [35]. The ROA+ 

average time course of a spatial component will be explained shortly. The equation for 

the correlation coefficient is shown by equation (2.31). 

n 

Z(*»-**)0'l--;y) 
rk= '•=' _ (2.31) 

The variable rk is the correlation coefficient for the kth independent component. The 

variable Xjk is the value of the ith time sample of the kth component. The variable Xk is 

the temporal mean of the kth independent component. The variable y, is the value of the 

ith time sample of the canonical hemodynamic response y. The variable v is the temporal 

mean of the canonical hemodynamic response. Lastly, n is the number of time samples. 

The ROA+ average time course is the time course that is computed when time 

courses from voxels that had spatial weights with z-scores > 2.5 in a suspected task-

related spatial component are averaged together. The reason the ROA+ average time 

course was used instead of the spatial component time course is because the ROA+ 

average time course is easier to obtain as an output signal from the fMRLAB software 

program. The ROA+ average time course and the spatial component time course are also 

very similar. The two time courses were found to be similar using a feature of the 

fMRLAB program. When spatial independent components are displayed on brain maps 

using the fMRLAB program, the ROA+ average time course and a "projected" spatial 

component time course are also displayed for each spatial component. With regard to the 

projected spatial component time course, each spatial independent component time 
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course is projected onto the ROA+ voxels by multiplying the spatial component time 

course with the spatial weights above threshold. Then the time courses that result are 

averaged together to yield a "component projected onto ROA+ voxels" time course. The 

"component projected onto ROA+ voxels" time course accounted for 88.0% of the 

variance of the ROA+ average time course for the spatial independent component that 

was suspected of being task-related. Therefore, the two time courses are very similar and 

the ROA+ average time course was used to create a regressor (described later). 

The spatial independent component that was suspected of being task-related was 

identified to be consistently task-related using the method of independent component 

labeling developed in [35]. The ROA+ average time course of the spatial component had 

a high correlation coefficient with the canonical hemodynamic response and the brain 

map of the spatial component showed voxels with spatial weights above the z-score 

threshold in the left hemisphere motor cortex region. 

Once the component was identified, the fMRI measurements were averaged over 

the trials. Each trial lasted 36 seconds, so 12 brain volumes (i.e. 12 BOLD signal 

samples) were acquired during each trial. BOLD signal samples that were acquired at 

corresponding points in different trials were averaged together. One averaged BOLD 

signal time course was calculated for every voxel to generate averaged fMRI 

measurements. Averaging the images over the trials improves the SNR, which may 

produce improved statistical test results. The averaging procedure is illustrated in Figure 

2.14. 

Once the averaging procedure was completed, spatial ICA was performed on the 

averaged fMRI data. One consistently task-related spatial component was identified with 
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the same method of component identification that was used on the unaveraged fMRI 

data. However, each time course was 12 time samples instead of 108. Since there were 

only 12 time samples, only 12 spatial independent components were computed by 

fMRLAB. Since independent component time courses from the averaged fMRI data 

were being inspected, a task-related spatial component time course was assumed to be a 

signal that increased and decreased with timing that corresponds to a single trial of the 

task paradigm. A spatial component that had high spatial weights in the left hemisphere 

motor cortex was selected. The correlation coefficient between this spatial component 

and a single period of the canonical response (i.e. the canonical response to a single 

neural event shown in Figure 1.9) was calculated. The ROA+ average time course and 

the "component projected onto ROA+ voxels" time course were essentially the same as 

the "component projected onto ROA+ voxels" time course accounted for 98.3 % of the 

variance of the ROA+ average time course 

Next, temporal ICA was performed on a subset of the unaveraged fMRI data to 

extract one or more consistently task-related temporal independent components. This 

step was carried out to ensure that task-related temporal components were present in the 

fMRI measurements. Prior to performing temporal ICA, some adjustments were made to 

the data. 

First, voxel measurements from slices 16 to 19 were extracted from the 

unaveraged data to use in temporal ICA. Temporal ICA was performed on 

measurements from slices 16 to 19 only because it was difficult to extract task-related 

temporal components from the fMRI measurements from all slices. Since this is a study 

of motor control, it is reasonable to assume that task-related components will most likely 
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be calculated from BOLD signals measured in the motor cortex region. Slices 16 to 19 

cover a large portion of the motor cortex region. Furthermore, the spatial ICA results 

revealed task-related spatial components with very high spatial weights in the motor 

cortex region in slices 16 to 19. Thus, slices 16 to 19 of each acquired brain volume were 

used in temporal ICA. 

With regard to the temporal ICA process, the fMRI measurements needed to be 

rearranged. The fMRI measurements from slices 16 to 19 were rearranged from a four-

dimensional matrix (spatial dimensions x, y, z and temporal dimension t) to a two-

dimensional matrix (voxels x time). An in-house software program was built using 

MATLAB version 7.0 (MathWorks, Natick, MA, USA) to place the measurements in a 

two-dimensional matrix and to keep track of the locations of the voxels in three-

dimensional space. 

According to ICA theory, the maximum number of temporal components that 

can be computed is equal to the number of voxels. In this case, there were 9, 245 voxels 

in slices 16 to 19. A matrix of 9, 245 voxels x 108 time samples is too large to process 

using temporal ICA. Moreover, it is unnecessary to calculate 9, 245 components because 

most of the components will account for a very small fraction of the variance in the fMRI 

measurements. Thus, the data matrix was reduced in size. 

To accomplish the matrix reduction, an economy singular value decomposition 

(svd) was performed on the fMRI data using MATLAB. An economy svd was used to 

produce singular values; singular values are the square roots of the eigenvalues of the 

data covariance matrix. An economy svd also produces spatial vectors (similar to 

eigenvectors) that correspond to the singular values. The singular values can be used in 
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the exact same way as the eigenvalues to reduce the dimensions of the data matrix [66]. 

The economy svd computes the largest singular values and the corresponding spatial 

vectors up to the number of time samples within the data. This way, components that 

account for a large percentage of the data variance are kept and insignificant components 

are discarded without affecting the inherent structure of the data too severely. Hence, the 

data matrix that results from data reduction using an economy svd is 108 rows x 108 

columns. 

There is a measurement factor that limits the number of independent 

components that can be computed using temporal ICA. This limitation is in addition to 

the restriction in which the maximum number of temporal independent components that 

can be calculated is equal to the number of voxels. This additional restriction only has an 

effect on temporal ICA in this study. Improper components will be produced by the 

temporal ICA algorithm if the algorithm is not restricted to compute an appropriate 

number of components. If there is an insufficient number of BOLD time samples 

measured from each voxel, then the ICA algorithm breaks down and does not compute 

legitimate components [80]. If illegitimate component signals were computed, the 

signals would have very small amplitudes at nearly all time samples. At the few time 

samples in which the component signal amplitudes are not small, there is a sharp change 

in value to some maximum or minimum. The rule of thumb is to compute N temporal 

components so that the inequality in (2.32) is satisfied. 

kN1 < number of time samples (2.32) 

The variable k is an arbitrary integer. In this study, a k = 3 value was chosen. The 

103 



temporal ICA algorithm was constrained to produce three temporal components from the 

unaveraged fMRI data, so the inequality in (2.32) is satisfied (3*32 = 27 < 108). 

This additional restriction does not affect the spatial ICA calculations in this 

study. Since spatial ICA requires the transpose of the x matrix used in temporal ICA, the 

inequality in (2.32) becomes the inequality in (2.33) for spatial ICA. 

kN2 < number of voxels (2.33) 

The other restriction on spatial ICA is that the maximum number of spatial components 

that can be computed is limited by the number of time samples. In this study, there were 

108 time samples in the unaveraged fMRI data, so the fMRLAB program only computed 

a maximum of 108 spatial components. Since 108 components were computed, the 

inequality in (2.33) is already satisfied. There is a total of 78, 087 voxels in the 

unaveraged fMRI data and the result calculated using (2.33) is 34, 992 (3 * 1082 = 34, 

992 < 78, 087). The inequality in (2.33) is also satisfied when spatial ICA is performed 

using the averaged fMRI data. There are only 12 time samples in the averaged fMRI 

data, and the result calculated using (2.33) is 432 (3 * 122 = 432 < 78, 087). 

After performing an economy svd on the data matrix and taking the restrictions 

of temporal ICA into account, the two-dimensional data were subjected to the FastICA 

software program (Helsinki University of Technology, Helsinki, Finland) to compute 

temporal independent components. 

The temporal components were then inspected to find consistently task-related 

temporal components. The procedure used to find consistently task-related temporal 

independent components was similar to the procedure used to find consistently task-
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related spatial independent components. 

During the inspection procedure, the spatial weight vectors corresponding to the 

temporal components were analyzed. Just as there is a corresponding unconstrained time 

course for each spatial independent component when spatial ICA is performed, there is a 

corresponding unconstrained spatial weight vector for each temporal component when 

temporal ICA is performed [51]. FastICA does not have a feature that can be used to 

display temporal component spatial weight vectors on a brain map. In addition, 

fMRLAB only performs spatial ICA. Hence, a software program was built using 

MATLAB to display each temporal component's spatial weight vector on a crude brain 

map to visualize the magnitude of the spatial weights. However, z-scores were not 

computed for the spatial weights because visual inspection of the weights was sufficient. 

One temporal independent component was identified using the procedure 

developed in [35]. Many of the spatial weights in the left hemisphere motor cortex 

region in the brain map of the selected temporal component were high. A correlation 

coefficient between this component and the canonical response was calculated in order to 

label the component a consistently task-related temporal component. The temporal 

component has a high correlation coefficient with the canonical response, so it is a 

consistently task-related temporal independent component. 

In the next phase, temporal ICA was performed on the averaged fMRI data to 

locate one or more consistently task-related temporal independent components to use for 

constructing a temporal ICA-derived hemodynamic response regressor. The averaged 

fMRI data were rearranged into two dimensions using the MATLAB software program 

previously mentioned, reduced to a 12 x 12 matrix using an economy svd and then 
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subjected to the FastICA program. Only two components were computed, which satisfies 

the inequality in (2.32) (3 * 22 = 12 < 12). 

One temporal component was suspected of being consistently task-related based 

on visual inspection of the temporal component's corresponding spatial weight brain map. 

The correlation coefficient between the temporal component and one cycle of the 

canonical hemodynamic response is high, so the component is a consistently task-related 

temporal independent component. 

2.6.1.5 fMRI Measurement Statistical Analyses 

The next phase of this study was to build three design matrices. Three task-

related regressors were placed in separate design matrices in the GLM. The first 

regressor that was built was the canonical hemodynamic response. This regressor is 

commonly used in the GLM in many types of fMRI studies, which was mentioned in 

Section 1.2.3.2 [4,10, 38]. The temporal ICA-derived regressor was constructed next by 

concatenating the consistently task-related temporal independent component acquired 

from the averaged fMRI data. The temporal component was concatenated in series nine 

times to represent the nine trials that occurred over the entire scan. The spatial ICA-

derived regressor was generated in the same manner by concatenating the ROA+ average 

time course that corresponds to the consistently task-related spatial component acquired 

from the averaged fMRI data. In addition to the task-related regressors, five regressors 

that are cosine signals used to high-pass filter the fMRI recordings were placed in each 

design matrix. A vector with all the signal values equal to 1 was included in the design 

matrix to account for the non-zero mean (baseline) of the BOLD signals that were 

106 



measured. Regressors that account for head motion were not included in the design 

matrices because the subject exhibited less than 1 mm of translational motion along each 

spatial axis and less than 1° of rotational motion about each spatial axis during the scan. 

Each design matrix was subjected to SPM5 to build three separate GLMs. 

Next, the parameters of the p matrix were estimated and the residuals of the £ 

matrix were calculated by SPM5 to satisfy the GLM equation in all three cases. A 

popular method of compensating for autocorrelation between the residuals by using an 

AR(1) model was not used in this study [32]. This is so each HR model's performance in 

isolation could be assessed rather than evaluating the effectiveness of methods that 

compensate for residual autocorrelation in combination with an HR model [48]. 

Once the GLMs were prepared, a Student's t-test was performed on the 

parameter estimates that correspond to each task-related hemodynamic response 

regressor. The t-test results indicate which brain regions were active in response to the 

task. The threshold for active voxels was set at (XFWE ^ 0.01 with a contiguous active 

voxel extent minimum of 5 voxels. A contiguous active voxel extent minimum is the 

minimum number of active voxels that must be adjacent to one another in order to 

declare the region active. The voxel extent minimum used in this study is the same voxel 

extent minimum used in the study in [25]. The active voxels were determined using a 

very low threshold because multiple t-tests were performed. The active voxels were 

located and highlighted on images of transverse slices of the brain. An in-house software 

program generated with MATLAB was used to highlight the active voxels on the images 

of transverse brain slices. 
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2.6.1.6 HR Model Comparisons 

The final stage of this study was to compare the performance of each HR model. 

The t-test results for each HR model were compared using the CR, DW statistics, F-

statistics and Ra
2 measures that were described in Section 2.3.1. These measures were 

calculated using an in-house software program built using MATLAB. A DW value was 

calculated for the active voxels that correspond to each of the three HR models. A two-

sided DW statistical test was performed because it is not known whether the residual 

autocorrelation is predominantly positive or negative in this fMRI study. After the DW 

test, F-values were calculated for the active voxels. The active voxels that had F-values 

above the F-value threshold of F = 2.99 were input to the Ra
2 formula to produce Ra

2 

measures. The F-value threshold was selected from an F-statistic table [81, 82]. Finally, 

the HR models were compared in pairs. The quality of each HR model was assessed 

based on the comparisons. 

2.6.2 Study 2: Event-Related Paradigm 

2.6.2.1 The Events 

BOLD fMR images and EEG signals were recorded from a female patient 

suffering from refractory right temporal lobe epilepsy. Three EEG-fMRI scans were 

performed in which fMRI measurements and EEG measurements were acquired 

continuously and simultaneously. The patient did not perform any tasks during the EEG-

fMRI scans. Scans were performed using an event-related paradigm. A single interictal 

discharge on the EEG was an event during the scans. Each scan was referred to as a run. 

All runs were performed on the same day and each run was 20 minutes in duration. 
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A General Electric Sigma 3.0 T MR scanner and a NeuroScan MagLink RT 64-

electrode EEG cap (Compumedics, El Paso, TX, USA) compatible with MRI were used 

to record the fMRI and EEG signals, respectively. EEG electrodes were attached to the 

scalp according to the International 10-20 system. A diagram of the International 10-20 

system of electrode placements for the 64 electrodes is shown in Figure 2.15. The 

meaning of the electrode labels is not important for discussion in this work. EEG signals 

were sampled with a frequency of 10 kHz. 

Figure 2.15. International 10-20 System of Electrode Placements 

2.6.2.2 Imaging Sequence 

The fMR images were acquired with a GRE-EPI sequence. Twenty-four slices 

were acquired in an interleaved fashion from the top of the head to the bottom. The 

specifications of the GRE-EPI sequence are as follows: one-shot TR = 1500 ms, TE = 30 
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ms, flip angle = 60 °, 5 mm slice thickness with no gap, FOVx = FOVy = 24 cm, single 

slice data matrix that is 64 voxels x 64 voxels and a 3.75 mm x 3.75 mm in-plane voxel 

area. Some scans at the beginning of the imaging sequence were discarded because these 

scans were acquired before the MR scanner reached steady-state operation. After the MR 

scanner reached steady-state operation, 800 brain volumes were recorded in each run. 

2.6.2.3 The EEG 

After all measurements were acquired, the EEG was analyzed first. Gradient and 

RF pulse artifacts in the EEG signals were removed using NeuroScan software. The 

EEG signals were then decimated to a frequency of 1.0 kHz. After the decimation step, 

the ballistocardiogram artifacts were removed from the EEG signals. Lastly, the EEG 

was arranged into a standard bipolar montage by subtracting the electrode signals from 

one another in pre-determined reference pairs. The interictal epileptic events were 

marked by an epileptologist on the bipolar montage. 

2.6.2.4 Image Preprocessing 

Next, the fMR images were preprocessed. First, a slice timing adjustment was 

performed on the images of each run to align the acquisition timing of the slices to the 

first slice (top of the head) that was acquired in the corresponding run. The slice timing 

adjustment was performed using SPM5 software. Then the fMR images of each run were 

adjusted using a rigid body motion correction. The rigid body motion correction was 

performed using SPM5 software. The reference brain volume was the first brain volume 

acquired in each run. After motion correction, fMRI signals from non-brain tissue were 
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removed by performing a brain voxel extraction using the BET tool in the FSL 3.20 

software program. After this step, SPM5 was used again to spatially smooth each volume 

with a three-dimensional Gaussian kernel with FWHM = 6.0 mm x 6.0 mm x 6.0 mm in 

the x, y and z-dimensions. Lastly, the data were high-pass filtered with FSL 3.20 

software. The cutoff period of the high-pass filter was 100 seconds. 

2.6.2.5 fMRI Measurement ICA 

After the preprocessing steps were completed, spatio-temporal ICA was 

performed on the fMRI data. Spatio-temporal ICA is a technique that combines spatial 

ICA and temporal ICA [83]. In this method, spatial ICA is performed on the fMRI 

recordings first. One or more spatial independent components are chosen based on 

criteria such as the locations of voxels with high spatial weights in the component brain 

maps and high correlation coefficients between spatial component time courses and an 

expected hemodynamic response time course. Time courses from voxels with high 

spatial weights in the chosen spatial independent component brain maps are then 

subjected to temporal ICA. In the last step of spatio-temporal ICA, one or more temporal 

components are selected as event-related components based on high correlation 

coefficients between the temporal components and an expected hemodynamic response. 

Spatio-temporal ICA was performed on the BOLD fMRI measurements acquired 

from each run. The spatio-temporal ICA method used in this study is similar to the 

method used in [83]. An important difference between the method used in [83] and the 

method used in this study is that kurtosis was used as a criterion to select temporal 

components in [83]. An EEG was not recorded during the fMRI scans in the study in 
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[83], so kurtosis was used as a measure to identify potential BOLD responses that were 

related to interictal events. Spatio-temporal ICA was used in this study to produce 

spatio-temporal independent component time courses that were, after some processing, 

used to generate hemodynamic impulse response signals. The steps that were performed 

to generate the impulse responses are described later. 

Spatial ICA was performed first on the fMRI measurements acquired in this study 

using the Group ICA of fMRI Toolbox (GIFT) program (the MIND Institute, 

Albuquerque, NM, USA). GIFT is a software program that operates in the MATLAB 

environment. The GIFT program was constrained to produce 47 spatial independent 

components from the run 1 measurements, 50 components from the run 2 measurements 

and 50 components from the run 3 measurements. The GIFT program was constrained to 

produce these numbers of components by using the PCA data matrix reduction technique. 

These numbers of spatial components are well below the limit set by (2.33). The 

minimum number of voxels that were analyzed in one run was 15, 899. Using (2.33), the 

maximum result is 7500 (3 * 502 = 7500 < 15, 899). 

Before the spatial components were examined, a canonical hemodynamic 

response signal was constructed by convolving the canonical impulse response signal 

(Figure 1.9) with a pulse train that had square wave pulses beginning when each interictal 

event was recorded on the EEG. The average interictal event was computed from the 

patient's EEG measurements to determine a suitable duration for the pulses in the 

stimulus function (input signal to a voxel). The duration of interictal events from past 

studies was also investigated to determine a suitable pulse duration. Interictal event 

durations can be anywhere from 20-200 ms depending on the type of interictal epileptic 
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waveform [84]. Each pulse was given a duration of 150 ms in the stimulus function. 

The canonical hemodynamic response signal was used for the process of finding interictal 

event-related spatial independent components. 

To identify spatial components that correspond to the interictal events, two 

criteria were used. First, correlation coefficients were calculated to describe the 

similarities between the canonical hemodynamic response and each time course that 

corresponds to a spatial independent component. Second, the spatial weight brain maps 

were visually inspected to find components that had high spatial weights in the right 

temporal lobe. Hemodynamic activity was expected in the right temporal lobe of this 

patient because of her epilepsy. A single component with a significant negative 

correlation coefficient that had high spatial weights in the right temporal lobe was 

identified from each run to be related to the interictal events. 

Time courses from voxels that had a z-score of at least 80% of the highest z-score 

from the chosen spatial components were subjected to temporal ICA. This step differs 

from the same step in the study in [83] because only one spatial independent component 

from each run was chosen in this study for further examination. In the study completed 

in [83], voxels that had spatial weights above the z-score threshold in any of the spatial 

component brain maps were examined using temporal ICA. 

For the temporal ICA procedure, the FastICA software program was used to 

calculate three temporal components from each run. Using (2.32), the maximum result is 

27, so the inequality in (2.32) is satisfied (3 * 32 = 27 < 800). In this case of temporal 

ICA, however, the maximum number of temporal components that can be computed is 12 

because there were time courses from only 12 voxels that were available for temporal 
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ICA. The two restrictions on computing maximum numbers of temporal components are 

explained in Section 2.6.1.4. Only three components were necessary to compute since, 

according to the results from the whitening preprocessing step, the eigenvalues of three 

components accounted for the majority of the variance in the measurements. The 

FastICA algorithm also had difficulty converging to a solution when it was constrained to 

produce 7 to 12 components. 

Much like the procedure in which correlation coefficients were calculated 

between spatial component time courses and canonical responses, the correlation 

coefficients between the temporal components and their corresponding spatial component 

time course were calculated. The temporal independent component from each run that 

had the highest correlation coefficient was chosen to prepare an average patient-specific 

spatio-temporal ICA-derived hemodynamic impulse response. 

2.6.2.6 Impulse Response Preparations 

After a spatio-temporal component was chosen for each run, some processing was 

completed to obtain an average spatio-temporal ICA-derived hemodynamic impulse 

response signal that corresponds to a single interictal event. An average hemodynamic 

impulse response to a single interictal event was generated because interictal events 

mostly occurred in clusters for this patient. Different numbers of interictal events 

occurred at different points in each interictal event cluster, so the BOLD signals could not 

be averaged like the BOLD signals were averaged in Study 1. Since interictal events 

rarely occurred in isolation, the average BOLD response that the patient produced shortly 

after each interictal event was assumed to be a suitable estimate of the hemodynamic 
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impulse response signal. In this study, it is assumed that the spatio-temporal component 

time courses contain BOLD signals that the patient generated shortly after she 

experienced interictal epileptiform activity. Therefore, a deconvolution technique was 

applied to the event-related spatio-temporal independent component time courses to 

extract a hemodynamic impulse response from each run. 

For the first step in the deconvolution, the spatio-temporal components were 

interpolated to obtain a signal that was sampled at a rate of 1.0 kHz. Since the EEG 

recordings were sampled at a decimated frequency of 1.0 kHz, the spatio-temporal 

independent component time courses were upsampled to this frequency to perform a 

deconvolution. The original sampling period for the spatio-temporal component signals 

was the TR, which is equal to 1.5 s. 

The next step in the deconvolution process was to estimate the hemodynamic 

impulse responses using a Wiener filter. The Wiener filter formula and its application in 

computing an approximate impulse response are illustrated by equations (2.34)(a) and (b) 

[85]. 

X *( f) 
M(f) = T V T T T T <fl> 

Xh(f) (2-34> 
H(f) = M(f)Y(f) (b) 

In equations (2.34)(a) and (b), the variable f is the frequency value. The function M(f) in 

equation (2.34)(a) is the frequency spectrum (Fourier transform) of the Wiener filter. 

The function X(f) is the frequency spectrum of the interictal event pulse train signal and 

the asterisk (*) denotes the complex conjugate of X(f). The signal Svv(f) is the estimated 
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power spectrum for white noise. The function H(f) in equation (2.34)(b) is the 

A 

estimated frequency spectrum of the impulse response. In order to calculate H(f), an 

A 

estimate of the power spectrum of H(f)is required. The estimated power spectrum of 

A 

H(f) is the function Shh(f). The function Y(f) in equation (2.34)(b) is the (approximate) 

frequency spectrum of the event-related spatio-temporal independent component. 

If white noise is not present in the fMRI measurements, the right side of equation 

(2.34)(a) reduces to Y(f)/X(f). Hence, the whole process of estimating the impulse 

response becomes a direct deconvolution as shown by equation (2.35). 

Y(f) 
H(f)= -^± (2.35) 

X(f) 

A direct deconvolution is not feasible for this study. Some of the magnitudes of the 

frequency components in the X(f) frequency spectrum are equal to 0 or very close to 0. 

Division by frequency components with really small magnitudes results in extremely 

A 

large frequency component magnitudes in the H(f) frequency spectrum. The resulting 

impulse response computed by performing an inverse Fourier transform on the 
A 

H(f) frequency spectrum has invalid values. 

The Wiener filter method was used to obtain impulse response signals. The 

Svv(f)/Shh(f) term in equation (2.34)(a) prevents the denominator from approaching zero, 

resulting in a much smoother estimate of the impulse response. The Svv(f) power 

spectrum is given a constant magnitude of 10, 000 over all frequencies. The Shh(f) 

function used in equation (2.34)(a) is the normalized power spectrum of the canonical 
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impulse response. The normalized power spectrum of the canonical impulse response is 

used as the Shh(f) signal because it is expected that the estimated impulse responses will 

have pass band frequency spectra that are somewhat similar to the canonical impulse 

response frequency spectrum. The power spectrum of the canonical impulse response is 

shown in Figure 2.16. 
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Figure 2.16. Canonical Hemodynamic Impulse Response Power Spectrum 

The values chosen for the Svv(f)/Shh(f) ratio resulted in an appropriate magnitude 

spectrum for M(f). The M(f) function that was designed and used in equations (2.34)(a) 

A 

and (b) produced a / / ( / ) frequency spectrum with a pass band that is similar to the 

canonical impulse response frequency spectrum pass band. 

The last step in the deconvolution process used to prepare the spatio-temporal 

ICA-derived impulse responses was to smooth the frequency spectra of the impulse 
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responses using a Hamming window. Smoothing was necessary to remove oscillations 

that are in the impulse response signals in the time domain. The oscillations are present 

because of small magnitude frequency components that remain in the frequency spectra 

of the spatio-temporal IC A-derived impulse responses after Wiener filtering. The 

canonical impulse response spectrum is smooth, so the spatio-temporal ICA-derived 

hemodynamic impulse response spectra should be smooth as well. 

Hamming windows of various sizes were tested to find optimal impulse 

responses. The first step in testing different Hamming windows was to obtain impulse 

responses from spectra that were smoothed with different Hamming windows. Impulse 

responses in which the signal amplitudes approach zero in the time domain at about 30 

seconds were optimal since the canonical impulse response lasts about 30 seconds. The 

spatio-temporal ICA-derived impulse responses that were produced by smoothing with 

various Hamming windows were convolved with the pulse train event signal from the 

corresponding run to produce spatio-temporal ICA-derived hemodynamic responses. The 

spatio-temporal ICA-derived hemodynamic responses were compared with the spatio-

temporal independent component time courses to find hemodynamic responses with 

BOLD signal changes that were concordant with the interictal event-related BOLD signal 

changes in the spatio-temporal component time courses. The optimal Hamming window 

size was 133 points as shown in Figure 2.17. 
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Figure 2.17. 133-point Hamming Window 

2.6.2.7 fMRI Measurement Statistical Analyses 

Next, hemodynamic response model regressors were constructed for each run. 

The spatio-temporal ICA-derived hemodynamic response regressors are the signals that 

resulted from the convolution of the optimal spatio-temporal ICA-derived impulse 

response from each run with the corresponding interictal event pulse train. After the 

convolution, the spatio-temporal ICA-derived hemodynamic responses were decimated to 

signals that have a sampling rate of 0.67 Hz (equivalent to a TR of 1.5 s). Decimation 

was performed so that regressors with 800 time samples could be placed in separate 

design matrices. 

Canonical hemodynamic response regressors for each run were also constructed 

and placed in separate design matrices. Since the interictal event-related spatio-temporal 

independent components show negative BOLD responses, some unexpected additional 

v . v t « 

0.005 

119 



steps were added to this study. The canonical hemodynamic response signal values for 

each run were multiplied by -1 (i.e. the canonical responses were inverted) to obtain 

negative canonical hemodynamic responses to use as regressors in GLMs for three 

additional statistical tests on the fMRI measurements. Hence, there were six canonical 

responses that were generated in total: one canonical response with positive values and 

one canonical response with negative values for each of the three runs. 

In addition, 24 cosine function regressors were placed in all of the design 

matrices. The cosine functions were used to high-pass filter the fMRI signals by 

removing frequency components that had periods longer than 100 s. Lastly, a vector with 

all the signal values equal to 1 was included in each design matrix to account for the non

zero mean (baseline) of the BOLD signals that were measured. Regressors that account 

for head motion were not included in the design matrices because the patient exhibited 

less than 1 mm of translational motion along each spatial axis and less than 1° of 

rotational motion about each spatial axis during runs 1 and 2. In run 3, the patient moved 

her head a maximum of 4 mm along one of the axes and rotated her head a maximum of 

about 1.75° about one of the axes. However, in this case the activation maps are not very 

different from run-to-run when motion confound regressors are excluded from all the 

statistical tests. Thus, motion confound regressors were excluded from the design 

matrices corresponding to run 3. 

Each design matrix was subjected to SPM5 software to build separate GLMs. 

The parameters were estimated and the residuals were calculated for the GLMs using 

SPM5. The popular method of compensating for autocorrelation between the residuals 

by using an AR(1) model was not used in this study [32]. This is so each HR model's 
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performance in isolation could be assessed rather than evaluating the effectiveness of 

methods that compensate for residual autocorrelation in combination with an HR model 

[48]. 

Once the GLMs were prepared, Student's t-tests were performed on the parameter 

estimates that correspond to the interictal event-related regressors, the canonical 

hemodynamic response regressors and the inverted canonical hemodynamic response 

regressors. The t-test results indicate which voxels were active in response to the 

interictal events. The threshold for active voxels was set at CIFWE ̂  0.01 with a 

contiguous active voxel extent minimum of 5 voxels. The voxel extent minimum used in 

this study is the same voxel extent minimum used in the study in [25]. The active voxels 

were determined using a very low threshold because multiple t-tests were performed. 

The active voxels were located and highlighted on transverse slice images of the brain 

using an in-house program generated with MATLAB. 

2.6.2.8 HR Model Comparisons 

The final stage of this study was to compare the performance of each HR model. 

The t-test results for each HR model were compared using the CR, DW statistics, F-

statistics and Ra
2 measures that were described in Section 2.3.1. These measures were 

calculated using an in-house software program that was built using MATLAB. A DW 

value was calculated for the active voxels corresponding to each of the HR models. A 

two-sided DW statistical test was performed because it is not known whether the residual 

autocorrelation is predominantly positive or negative in this fMRI study. After the DW 

test, F-values were calculated for the active voxels. The active voxels that had F-values 
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above the F-value threshold of F = 1.80 were input to the Ra
2 formula to produce Ra

2 

measures. The F-value threshold was selected from an F-statistic table [81, 82]. Finally, 

the HR models were compared and the quality of each HR model was assessed based on 

the comparisons. 
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Chapter 3 

Results 

3.1 Study 1: Block Design Paradigm 

3.1.1 Regressor Preparations 

After the fMRI measurements were acquired and preprocessed, spatial ICA was 

performed on the unaveraged fMRI data first. One consistently task-related spatial 

independent component was found. 

Figure 3.1 is the consistently task-related spatial component brain map. Voxels 

with spatial weight z-scores of z > 2.5 (the z-score threshold) are shown in red and 

yellow in Figure 3.1 and voxels with spatial weight z-scores < -2.5 are shown in blue. 

The legend of the brain map is shown at the right of the brain map. There are several 

voxels in the left hemisphere motor cortex region that have high spatial weights. There 

are a few small regions in the supplementary motor cortex and ipsilateral cerebellum that 

have high spatial weights as well. However, the spatial weights in the supplementary 

motor cortex and cerebellum are not as high as those in the motor cortex region. There 

are very few small regions that have negative spatial weights. These regions were 

ignored. 
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Figure 3.1. Spatial Independent Component Brain Map (Unaveraged fMRI Data; Right Side of Slice 
is Left Side of Brain and Bottom of Slice is Anterior of Brain) 

Figure 3.2 is the ROA+ average time course for the spatial component computed 

using the unaveraged fMRI measurements. This time course shows a sinusoid-shaped 

signal. The amplitudes of peaks and troughs are not constant across trials. The peak per 

cent increase in amplitude of the signal relative to the average signal amplitude in voxels 

that have a weight greater than z = 2.5 is nearly 1 % and the peak per cent decrease in 

amplitude relative to the average signal amplitude in voxels that have a weight less than z 

= 2.5 is -0.66 %. The per cent signal amplitude changes were calculated using fMRLAB. 

The correlation coefficient between the ROA+ average time course and the canonical 

response is 0.79. This correlation coefficient is considered to be sufficiently high. 
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Figure 3.2. ROA+ BOLD Signal Time Course for Task-Related Spatial Independent Component 

(Unaveraged fMRI Data) 

The spatial independent component brain map acquired using the averaged fMRI 

measurements is shown in Figure 3.3. The spatial weights are high in locations that are 

similar to the locations of high spatial weights in Figure 3.1. However, there are some 

differences. There are some regions that have spatial weights greater than z = 2.5 in the 

occipital/parietal lobe regions and one region that has spatial weights less than z = -2.5 in 

the parietal lobe region. These regions are not highlighted in the brain map of the spatial 

component found using the unaveraged fMRI measurements. Once again, voxels that 

had spatial weights less than z = -2.5 were ignored. 
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Figure 3.3. Spatial Independent Component Brain Map (Averaged flVIRI Data; Right Side of Slice is 
Left Side of Brain and Bottom of Slice is Anterior of Brain) 

Figure 3.4 is the ROA+ time course for the spatial component computed using the 

averaged fMRI measurements. The signal is approximately one cycle of the sinusoid-

shaped signal in Figure 3.2. The peak per cent increase in amplitude of the signal relative 

to the average signal amplitude in voxels that have a weight greater than z = 2.5 is 0.85 % 

and the peak per cent decrease in amplitude relative to the average signal amplitude in 

voxels that have a weight less than z = 2.5 is -0.48 %. The per cent signal amplitude 

changes were calculated using fMRLAB. The correlation coefficient between this time 

course and one cycle of the canonical response is 0.87. This correlation coefficient is 

even higher than the correlation coefficient between the canonical response and the 

ROA+ average time course for the spatial component computed using the unaveraged 

fMRI measurements. 
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Figure 3.4. ROA+ BOLD Signal Time Course for Task-Related Spatial Independent Component 

(Averaged fMRI Data) 

The time course in Figure 3.4 was concatenated nine times to produce the spatial 

ICA-derived task-related regressor shown in Figure 3.5. 
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Figure 3.5. Spatial ICA-Derived Regressor 
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Next, temporal ICA was performed on the unaveraged fMRI measurements from 

slices 16 to 19. One consistently task-related temporal independent component was 

identified. Figure 3.6 is the brain map of spatial weights for the task-related temporal 

component computed using the unaveraged fMRI measurements. The spatial weight 

vector is displayed on a grey-scale brain map in the figure. The legend of the brain map 

is shown at the bottom of the brain map. There are several voxels in the left hemisphere 

motor cortex region that have high spatial weights. There are a few small regions in the 

supplementary motor cortex that have high spatial weights as well. However, the spatial 

weights in the supplementary motor cortex are not as high as those in the motor cortex 

region. 

increasing spatial weight 

Figure 3.6. Brain Map of Spatial Weights for the Task-Related Temporal Independent Component 
(Unaveraged fMRI Data; Images are in Radiological Orientation) 

Figure 3.7 is the temporal independent component time course computed using 

the unaveraged fMRI measurements. This time course shows a sinusoid-shaped signal. 

However, the amplitudes of peaks and troughs are not constant across trials. The 

correlation coefficient between this time course and the canonical hemodynamic response 

is 0.80. This correlation coefficient is considered to be sufficiently high. 
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Figure 3.7. Task-Related Temporal Component Time Course (Unaveraged fMRI Data) 

Figure 3.8 is the spatial weight vector of the task-related temporal component computed 

using the averaged fMRI measurements. The spatial weights are high in locations that 

are similar to the locations of high spatial weights in Figure 3.6. 

20 40 60 80 100120 20 40 60 80 100120 20 40 60 80 100 120 20 40 60 80 100120 

increasing spatial weight 

Figure 3.8. Brain Map of Spatial Weights for the Task-Related Temporal Independent Component 
(Averaged fMRI Data; Images are in Radiological Orientation) 
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Figure 3.9 is the temporal component time course computed using the averaged 

fMRI measurements. The signal is approximately one cycle of the sinusoid-shaped 

signal in Figure 3.7. The correlation coefficient between this time course and one cycle 

of the canonical response is 0.86. This correlation coefficient is even higher than the 

correlation coefficient between the canonical response and the temporal independent 

component time course computed using the unaveraged fMRI measurements. 
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Figure 3.9. Task-Related Temporal Component Time Course (Averaged fMRI Data) 

The time course in Figure 3.9 was concatenated nine times to produce the 

temporal ICA-derived task-related regressor shown in Figure 3.10. 
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Figure 3.10. Temporal ICA-Derived Regressor 

The last regressor that was produced to use in a GLM is the canonical 

hemodynamic response regressor. This regressor is shown in Figure 3.11. 
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Figure 3.11. Canonical Hemodynamic Response Regressor 
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3.1.2 fMRI Measurement Statistical Analyses 

The regressors in Figure 3.5, Figure 3.10 and Figure 3.11 were placed in separate 

GLMs to perform separate parameter estimations. A Student's t-test ((XFWE ^ 0.01 with a 

contiguous active voxel extent minimum of 5 voxels) was performed on each of the 

parameter estimates corresponding to the task-related regressors. The voxels that were 

active according to the Student's t-tests are shown on brain maps below. Figure 3.12 is 

the activation map that resulted from the t-test in which the spatial ICA-derived regressor 

was the task-related regressor. Figure 3.13 is the activation map that resulted from the t-

test in which the temporal ICA-derived regressor was the task-related regressor. Lastly, 

Figure 3.14 is the activation map that resulted from the t-test in which the canonical 

hemodynamic response regressor was the task-related regressor. 
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(INCREASING t-VALUES) 

Figure 3.12. Activation Map Computed Using Student's t-test with the Spatial ICA-Derived 
Regressor (Images are in Radiological Orientation) 
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Figure 3.13. Activation Map Computed Using Student's t-test with the Temporal ICA-Derived 
Regressor (Images are in Radiological Orientation) 
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Figure 3.14. Activation Map Computed Using Student's t-test with the Canonical Hemodynamic 
Response Regressor (Images are in Radiological Orientation) 

3.1.3 HR Model Comparisons 

In the final phase of this study, the results from the Student's t-tests performed 

using all three HR models were compared using various measures and statistics. The 

voxels that were active according to the t-test results were subjected to the CR measures, 

DW statistics and F-statistics calculations. The active voxels that reached the F-statistic 

threshold were used for the Ra
2 calculations. First, the total number of voxels that were 

analyzed and the number of active voxels found using each HR model are listed in Table 

3.1. Next, the CR measures and the range, mean and standard deviation of each set of 

active voxel t-values and each set of active voxel DW statistics are also listed in Table 
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3.1. The number of active voxels (found using each HR model) that had a DW p-value 

(probability of uncorrelated residuals) of at least 0.50 is listed in Table 3.1 as well. The 

number of active voxels that reached the F-value threshold is also listed in Table 3.1. 

Finally, the range, mean and standard deviation of the Ra
2 measures for the active voxels 

that reached the F-value threshold are listed in Table 3.1. 

Table 3.1. Comparison of HR Models 
Test/Model 

Voxels 
Analyzed 

Active Voxels 
t-value Range 
Mean t-value 

t-value SD 
Concurrence 

Ratio (%) 

DW p-value 
Range 

Mean DW p-
value 

DW p-value 
SD 

Voxels with 
DW p > 0.50 
Voxels with 

F > 2.99 
Ra

2 Range 
Mean Ra

2 

Ra
2SD 

Canonical HR Model 

59, 770 

7,071 
5.5 - 16.7 

7.7 
1.8 

with 
TICA-

Derived 
HR Model 

77.4 

with SICA-
Derived 

HR Model 

79.4 

0.00 - 0.99 

0.020 

0.083 

52 

7,071 

0.18-0.72 
0.32 
0.11 

Temporal ICA-Derived 
HR Model 

59, 770 

10, 229 
5.5-27.1 

8.6 
3.3 

with 
Canonical 
HR Model 

77.4 

with SICA-
Derived 

HR Model 

93.6 

0.00 - 0.99 

0.024 

0.090 

102 

10, 229 

0.18-0.87 
0.37 
0.16 

Spatial ICA-Derived HR 
Model 
59, 770 

9,108 
5.5 - 25.7 

8.5 
3.2 

with 
Canonical 
HR Model 

79.4 

with 
TICA-

Derived 
HR Model 

93.6 

0.00-1.0 

0.024 

0.089 

87 

9,108 

0.18-0.86 
0.36 
0.15 

3.2 Study 2: Event-Related Paradigm 

3.2.1 Regressor Preparations 

After the fMRI measurements were acquired and preprocessed, the fMRI 

measurements were subjected to a spatial ICA algorithm. The brain maps of the interictal 
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event-related spatial independent components for run 1, run 2 and run 3 are shown in 

Figure 3.15, Figure 3.16 and Figure 3.17, respectively. The highest spatial weights of 

these components are in the right temporal lobe of the patient's brain. The correlation 

coefficients between the spatial component time courses and the canonical hemodynamic 

responses (in corresponding runs) are listed in Table 3.2. 

increasing 
spatial 
weight 

these regions 
and the same 
regions in the 
(approx.) 7 
preceding 
slices are the 
right 
temporal lobe 

Figure 3.15. Interictal Event-Related Spatial Independent Component Brain Maps from Run 1 
(Images are in Neurological Orientation) 
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Figure 3.16. Interictal Event-Related Spatial Independent Component Brain Map from Run 2 
(Images are in Neurological Orientation) 
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Figure 3.17. Interictal Event-Related Spatial Independent Component Brain Map from Run 3 
(Images are in Neurological Orientation) 
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Table 3.2. Spatio-Temporal Component Derivation Results 

Spatial Component Time Course Correlation Coefficient with 

Canonical Response 

Max z-score from Spatial Weights 

Number of Voxels with z-score > 80%ofzmax 

Number of Temporal Independent Components Produced 

Temporal Component Correlation Coefficient with Spatial 

Component Time Course 

Runl 

-0.30 

11.6 

12 

3 

0.92 

Run 2 

-0.30 

9.8 

12 

3 

0.95 

Run 3 

-0.37 

9.6 

12 

3 

0.95 

Time courses from voxels that had z-scores that were at least 80% of the 

maximum z-score in the corresponding interictal event-related spatial component were 

subjected to a temporal ICA algorithm. The number of voxels with z-score values above 

the threshold in each run was recorded in Table 3.2. The correlation coefficients between 

the interictal event-related temporal component chosen from each run and the 

corresponding spatial component time course are shown in Table 3.2. These temporal 

components had the highest correlation coefficients, so they were chosen as the interictal 

event-related spatio-temporal components. 

The interictal event-related spatio-temporal component time courses are shown in 

Figure 3.18, Figure 3.19 and Figure 3.20. Spatio-temporal component time samples that 

are not in a 33-second window (the duration of the canonical impulse response according 

to SPM5) after interictal events occurred were removed from the spatio-temporal 

components. The time samples were removed by setting the amplitudes of the signals to 

0. Any hemodynamic activity in the spatio-temporal components that occurs outside this 

time frame is assumed to be unrelated to the interictal events. The spatio-temporal 

components that have time samples set to 0 were given the name "zeroed spatio-temporal 
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components". The canonical responses are superimposed on the zeroed spatio-temporal 

components in Figure 3.18, Figure 3.19 and Figure 3.20 so that the zeroed spatio-

temporal components and canonical responses can be compared. Moreover, the interictal 

event pulse trains are also included in the figures so that the timing of the zeroed spatio-

temporal components and the timing of the canonical responses relative to the interictal 

event onsets can be examined. It is evident from Figure 3.18, Figure 3.19 and Figure 

3.20 that the patient exhibited negative BOLD hemodynamic responses to the interictal 

events she experienced. However, the zeroed spatio-temporal components in the figures 

also show positive phases that are smaller in amplitude than the negative phases. 
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Figure 3.18. Zeroed Spatio-Temporal Component, Canonical Response and Interictal Event Pulse 
Train Signal Superimposed on One Another (Run 1) 
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Figure 3.19. Zeroed Spatio-Temporal Component, Canonical Response and Interictal Event Pulse 
Train Signal Superimposed on One Another (Run 2) 
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Figure 3.20. Zeroed Spatio-Temporal Component, Canonical Response and Interictal Event Pulse 
Train Signal Superimposed on One Another (Run 3) 

In the next step, the zeroed spatio-temporal components were modified in the 

frequency domain using a Wiener filter and smoothed using a 133-point Hamming 
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window. These procedures were performed to obtain spatio-temporal ICA-derived 

hemodynamic impulse responses. The magnitude spectrum of the Wiener filter (M(f) in 

equation (2.34)) for run 1 is displayed in Figure 3.21. The Wiener filters for runs 2 and 3 

were very similar to the Wiener filter for run 1. 

. x10 Wiener Filter (M(f)> Magnitude Response 

3h 
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Frequency(Hz) 

Figure 3.21. Wiener Filter Magnitude Spectrum for Run 1 

When the Wiener filters were applied to the frequency spectra of the zeroed 

spatio-temporal components, the resulting magnitude spectra of the spatio-temporal ICA-

derived impulse responses contained frequency components with a considerable 

magnitude in a band of frequencies that is similar to the pass band of the magnitude 

spectrum of the canonical impulse response. The magnitude spectra of the canonical 

hemodynamic impulse response and the spatio-temporal ICA-derived impulse responses 

are shown in Figure 3.22, Figure 3.23, Figure 3.24 and Figure 3.25. 
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Figure 3.22. Magnitude Response of Canonical Hemodynamic Impulse Response 

Magnitude Response of Unsmoothed Spatio-Temporal ICA-Derived Hemodynamic Impulse Response from Run 1 
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Figure 3.23. Magnitude Response of Spatio-Temporal ICA-Derived Impulse Response (Run 1) 
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Magnitude Response of Unsmoothed Spatio-Temporal ICA-Derived Hemodynamic Impulse Response from Run 2 
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Figure 3.24. Magnitude Response of Spatio-Temporal ICA-Derived Impulse Response (Run 2) 

Magnitude Response of Unsmoothed Spatio-Temporal ICA-Derived Hemodynamic Impulse Response from Run 3 
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Figure 3.25. Magnitude Response of Spatio-Temporal ICA-Derived Impulse Response (Run 3) 

The magnitude spectrum of the canonical impulse response is much smoother 

than the magnitude spectra of the spatio-temporal ICA-derived impulse responses. Sharp 

peaks in the spectra of the spatio-temporal ICA-derived impulse responses caused a 
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significant number of oscillations to appear in the time domain versions of the spatio-

temporal ICA-derived impulse responses. The spatio-temporal ICA-derived impulse 

response (time domain) for run 1 that has an unsmoothed frequency spectrum is shown in 

Figure 3.26. The spatio-temporal ICA-derived impulse responses for run 2 and run 3 had 

similar oscillations. 

Spatio-Temporal ICA-Oerived Hemodynamic Impulse Response from Run 1 (Frequency Response Not Smoothl 
0.6 

Time(msec) 

Figure 3.26. Spatio-Temporal ICA-Derived Impulse Response from Run 1 (Unsmoothed Frequency 

Response) 

The magnitude spectra that were generated after convolving the frequency spectra 

of the spatio-temporal ICA-derived impulse responses with a 133-point Hamming 

window are shown in Figure 3.27, Figure 3.28 and Figure 3.29. These magnitude spectra 

are much smoother than the unsmoothed versions in Figure 3.23, Figure 3.24 and Figure 

3.25. 
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Magnitude Response of Smoothed SpaHo-Temporal ICA-Derived Hemodynamic Impulse Response from Run 1 
20 

0.2 0.25 0.3 
Frequency(Hz) 

0.35 0.4 0.45 0.5 

Figure 3.27. Smoothed Magnitude Spectrum of Spatio-Temporal ICA-Derived Impulse Response 
(Run 1) 

Magnitude Response of Smoothed Spatio-Temporal ICA-Derived Hemodynamic Impulse Response from Run 2 
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Figure 3.28. Smoothed Magnitude Spectrum of Spatio-Temporal ICA-Derived Impulse Response 
(Run 2) 
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Magnitude Response of Smoothed SpaHo-Temporal ICA-Dertved Hemodynamic Impulse Response from Run 3 
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Figure 3.29. Smoothed Magnitude Spectrum of Spatio-Temporal ICA-Derived Impulse Response 

(Run 3) 

The inverse Fourier transforms of the smoothed frequency spectra of the spatio-

temporal ICA-derived impulse responses were performed. The resulting spatio-temporal 

ICA-derived impulse responses are shown in Figure 3.30, Figure 3.31 and Figure 3.32. 

The canonical impulse response is shown in Figure 1.9 for comparison. 

The time that elapsed for each spatio-temporal ICA-derived impulse response to 

reach its most negative peak was recorded. The duration measured for the impulse 

response from run 1 was 10.6 seconds. The duration measured for the impulse response 

from run 2 was 7.3 seconds. The duration measured for the impulse response from run 3 

was 6.7 seconds. 
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Spatio-temporal ICA-Derived Hemodynamic Impulse Response from Run 1 (Frequency Response Smoothed) 
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Figure 3.30. Spatio-Temporal ICA-Derived Impulse Response from Run 1 (Smoothed Frequency 
Spectrum) 
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Figure 3.31. Spatio-Temporal ICA-Derived Impulse Response from Run 2 (Smoothed Frequency 
Spectrum) 

148 



SpaUo-Temporal ICA-Dertved Hemodynamic Impulse Response from Run 3 (Frequency Response Smoothed) 
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Figure 3.32. Spatio-Temporal ICA-Derived Impulse Response from Run 3 (Smoothed Frequency 

Spectrum) 

Finally, the spatio-temporal ICA-derived hemodynamic responses were 

generated. To create the hemodynamic responses, each spatio-temporal ICA-derived 

impulse response was convolved with the interictal event pulse train from the same run. 

The resulting signals were then decimated with a sampling rate of 0.67 Hz to obtain 

hemodynamic responses that were 800 time samples each. The spatio-temporal ICA-

derived responses were then used as regressors in the statistical analyses of the fMRI 

measurements. The spatio-temporal ICA-derived hemodynamic responses are 

superimposed on the spatio-temporal components that were used to derive them as shown 

in Figure 3.33, Figure 3.34 and Figure 3.35. These figures are provided to compare the 

spatio-temporal ICA-derived hemodynamic responses with their corresponding spatio-

temporal component time courses. 
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Figure 3.33. Spatio-Temporal ICA-Derived Hemodynamic Response Superimposed on Spatio-
Temporal Component Time Course (Run 1) 
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Figure 3.34. Spatio-Temporal ICA-Derived Hemodynamic Response Superimposed on Spatio-
Temporal Component Time Course (Run 2) 
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Figure 3.35. Spatio-Temporal ICA-Derived Hemodynamic Response Superimposed on Spatio-
Temporal Component Time Course (Run 3) 

3.2.2 fMRI Measurement Statistical Analyses 

After the spatio-temporal ICA-derived hemodynamic responses were produced, 

the canonical hemodynamic response signals, inverted canonical hemodynamic response 

signals and the spatio-temporal ICA-derived hemodynamic response signals were placed 

into separate design matrices. The parameters were estimated and the residuals were 

calculated for each GLM. Afterward, t-tests were performed on the parameter estimates 

corresponding to each interictal event-related regressor for each run. The active voxels 

were determined from the t-test results. The brain maps that show the active voxels 

computed from the t-tests in which the canonical hemodynamic responses were used in 

the GLMs are shown in Figure 3.36, Figure 3.39 and Figure 3.42. The brain maps that 

show the active voxels computed from the t-tests in which the spatio-temporal ICA-

derived responses were used in the GLMs are shown in Figure 3.37, Figure 3.40 and 

Figure 3.43. The brain maps that show the active voxels computed from the t-tests in 
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which the inverted canonical hemodynamic responses were used in the GLMs are shown 

in Figure 3.38, Figure 3.41 and Figure 3.44. 

INACTIVE VOXELS ACTIVE VOXELS 
(INCREASING t-VALUES) 

Figure 3.36. Brain Map Showing Active Voxels Determined by t-test using Canonical Hemodynamic 
Response Regressor (Run 1; Images are in Radiological Orientation) 
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Figure 3.37. Brain Map Showing Active Voxels Determined by t-test using Spatio-Temporal ICA-
Derived Hemodynamic Response Regressor (Run 1; Images are in Radiological Orientation) 
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Figure 3.38. Brain Map Showing Active Voxels Determined by t-test using Inverted Canonical 
Hemodynamic Response Regressor (Run 1; Images are in Radiological Orientation) 
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Figure 3.39. Brain Map Showing Active Voxels Determined by t-test using Canonical Hemodynamic 
Response Regressor (Run 2; Images are in Radiological Orientation) 
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Figure 3.40. Brain Map Showing Active Voxels Determined by t-test using Spatio-Temporal ICA-
Derived Hemodynamic Response Regressor (Run 2; Images are in Radiological Orientation) 
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INACTIVE VOXELS ACTIVE VOXELS 
(INCREASING t-VALUES) 

Figure 3.41. Brain Map Showing Active Voxels Determined by t-test using Inverted Canonical 
Hemodynamic Response Regressor (Run 2; Images are in Radiological Orientation) 

157 



v_ V 
INACTIVE VOXELS 

-v 
ACTIVE VOXELS 

(INCREASING t-VALUES) 

Figure 3.42. Brain Map Showing Active Voxels Determined by t-test using Canonical Hemodynamic 
Response Regressor (Run 3; Images are in Radiological Orientation) 
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Figure 3.43. Brain Map Showing Active Voxels Determined by t-test using Spatio-Temporal ICA 
Derived Hemodynamic Response Regressor (Run 3; Images are in Radiological Orientation) 
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(INCREASING t-VALUES) 

Figure 3.44. Brain Map Showing Active Voxels Determined by t-test using Inverted Canonical 
Hemodynamic Response Regressor (Run 3; Images are in Radiological Orientation) 

The correlation coefficients between the spatio-temporal ICA-derived 

hemodynamic response regressors and the corresponding inverted canonical 

hemodynamic response regressors were acquired as another means of comparing the 

signals. The correlation coefficient between the spatio-temporal ICA-derived 

hemodynamic response regressor and the inverted canonical response for run 1 is 0.76. 

The correlation coefficient between the spatio-temporal ICA-derived hemodynamic 

response regressor and the inverted canonical response for run 2 is 0.93. The correlation 

coefficient between the spatio-temporal ICA-derived hemodynamic response regressor 

and the inverted canonical response for run 3 is 0.99. These correlation coefficients are 
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high, but the correlation coefficient for run 1 is much less than the correlation coefficient 

for each of the other two runs. 

3.2.3 HR Model Comparisons 

In the final phase of this study, the HR models were compared using various 

measures and statistics. The voxels that were active according to the t-test results were 

subjected to the CR, DW statistics and F-statistics calculations. The active voxels that 

reached the F-statistic threshold were used for the Ra
2 calculations. First, the total 

number of voxels that were analyzed and the number of active voxels found using each 

HR model for each run are listed in Table 3.3. Next, the CRs that compare the active 

voxel locations between the spatio-temporal ICA-derived response brain maps and the 

canonical response brain maps are 0.0 %. Thus, there is no active voxel overlap. The 

CRs that compare the active voxel locations between the inverted canonical response 

brain maps and the canonical response brain maps are also 0.0 %. The CR that compares 

the active voxel locations between the spatio-temporal ICA-derived response brain map 

and the inverted canonical response brain map is 71.5 % for run 1, 89.9 % for run 2 and 

98.6 % for run 3. The ranges, means and standard deviations of the sets of active voxel t-

values and the sets of active voxel DW statistics are also listed in Table 3.3. The number 

of active voxels that had a DW p-value (probability of uncorrected residuals) of at least 

0.50 is listed in Table 3.3 as well. The number of active voxels that reached the F-value 

threshold is also listed in Table 3.3. Finally, the range, mean and standard deviation of 

the Ra
2 measures for the active voxels that reached the F-value threshold are listed in 

Table 3.3. 
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Table 3.3. Comparison of HR Models 

Test/ 
Model 
Run 

Voxels 
Analyzed 

Active 
Voxels 

t-value 
Range 

Meant 

t-value 
SD 

DWp-
value 
Range 
Mean 
DWp 

DWpSD 

Voxels 
with DW 
p > 0.50 

Voxels 
with F > 

1.80 

Ra
z Range 

Mean Ra
2 

Ra
2SD 

Canonical HR Model 

1 
15, 899 

74 

4 . 9 -
9.8 

6.2 

1.6 

0.00-
0.82 

0.045 

0.16 

3 

18 

0.027 -
0.082 

0.045 

0.014 

2 
16,059 

206 

4 . 9 -
14.4 

6.5 

1.6 

0.00-
0.91 

0.025 

0.11 

4 

68 

0.026-
0.19 

0.051 

0.034 

3 
15, 900 

61 

5 .0-
11.0 

6.4 

1.2 

0.00-
0.41 

0.0083 

0.053 

0 

18 

0.026-
0.11 

0.043 

0.021 

Spatio-Temporal ICA-
Derived HR Model 

1 
15, 899 

2,548 

4 . 9 -
16.7 

7.4 

2.0 

0.00-
0.99 

0.027 

0.12 

52 

1,372 

0.024 -
0.24 

0.063 

0.034 

2 
16,059 

2,720 

4 . 9 -
21.6 

8.2 

2.7 

0.00-
0.99 

0.019 

0.099 

42 

1,715 

0.024 -
0.36 

0.082 

0.052 

3 
15,900 

2,956 

4 . 9 -
20.8 

8.0 

2.6 

0.00-
0.96 

0.0071 

0.065 

17 

1,756 

0.025 -
0.34 

0.079 

0.049 

Inverted Canonical HR 
Model 

1 
15, 899 

2,310 

4 . 9 -
21.4 

7.9 

2.5 

0.00-
0.99 

0.028 

0.12 

52 

1,370 

0.025 -
0.35 

0.075 

0.048 

2 
16, 059 

2,641 

4 . 9 -
26.0 

8.4 

3.0 

0.00-
1.00 

0.019 

0.10 

42 

1,688 

0.024 -
0.45 

0.087 

0.058 

3 
15,900 

2,956 

4 . 9 -
21.2 

8.1 

2.6 

0.00-
0.97 

0.0071 

0.065 

17 

1,770 

0.025 -
0.35 

0.080 

0.050 
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Chapter 4 

Discussion 

4.1 Study 1: Block Design Paradigm 

The spatial ICA-derived regressors and temporal ICA-derived regressors were 

compared with each other and with the canonical response regressor in several different 

ways. 

4.1.1 Regressors 

The "unaveraged" fMRI data spatial and temporal independent components that 

are identified as consistently task-related components exhibit several features that 

indicate the components are related to the motor task. The spatial independent 

component brain map and the temporal independent component brain map show high 

spatial weights in regions that are expected to be active during the motor task. Both 

component maps have high spatial weights in the left hemisphere motor cortex and the 

supplementary motor cortex. Neural activity that is involved in allowing and controlling 

movement of the fingers of the right hand takes place in the left hemisphere motor cortex. 

Hence, it is expected that task-related independent component brain maps acquired from 

fMRI measurements in which subjects perform finger movement tasks during the scan 

have high spatial weights in the left hemisphere motor cortex [28, 86]. The 

supplementary motor cortex is also involved in controlling movement. The spatial 

component brain map also has high spatial weights in the right cerebellum. Finger 
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movement requires dexterity and fine control, which are aspects of finger movement 

governed by the ipsilateral cerebellum [86]. 

The unaveraged fMRI data task-related temporal component time course and the 

unaveraged fMRI data task-related spatial component ROA+ average time course also 

indicate that the components are consistently task-related. The correlation coefficients of 

both independent component time courses with the canonical hemodynamic response are 

greater than 0.78. The timing of the peaks and troughs in the time courses are concordant 

with the timing of the task-and-rest cycles. Both time courses look similar to a sinusoid, 

much like the canonical response does for this experiment. 

The amplitudes of the unaveraged fMRI data task-related independent 

component time courses indicate that the BOLD responses varied in amplitude across 

trials. Signal increases up to a maximum of about 1% above baseline activity are in the 

task-related ROA+ average time course of the spatial component (Figure 3.4). This per 

cent change in signal amplitude is a little low for a task-related BOLD signal that is 

usually recorded at 3.0 T. Typically, per cent changes in BOLD signal amplitudes of 0.5 

- 5% are recorded in fMRI studies [17, 22-24]. Lower per cent changes in BOLD signal 

amplitudes are recorded at lower static magnetic field strengths (e.g. Bo = 1.5 T). A 

baseline BOLD signal level was not computed to find the per cent change in the signal 

amplitude of the temporal component. The baseline BOLD signal has to be computed 

manually to analyze the temporal ICA results. The work required to determine the 

baseline BOLD signal did not seem necessary because the amplitude per cent change 

measurement is not a major result that needs to be found. In addition, the temporal 

component is similar to the ROA+ average spatial component time course, so the work 
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required to obtain the per cent change in amplitude seems even more unnecessary. 

The maximum per cent change in the task-related ROA+ average spatial 

component time course signal level is lower than the 2.2% average BOLD signal increase 

that was recorded in a finger tapping study completed in [87]. A comparison is made 

between this study and the study in [87] to compare typical task-related BOLD response 

magnitudes acquired in MR scanners with similar static magnetic field strengths. In the 

study in [87], a 3.0 T scanner was used to record BOLD signals from 6 patients that 

performed a finger tapping task. The difference in magnitude between the signals from 

both studies may be attributable to the differences in subjects. Another explanation for 

the difference in magnitudes between the signals may be that a comparison is being made 

between an ROA+ average time course signal from one patient and signals that are 

averaged over several voxels in 6 patients. These signals are derived differently, so a 

difference in their magnitudes is expected. There may be significantly different amounts 

of additive noise in the BOLD signals measured in each experiment. The additive noise 

may have caused the amplitude of the signals to be higher in the experiment performed in 

[87]. Alternatively, other spatial components that were found in this study may contain 

task-related BOLD responses or they may contain a significant portion of the additive 

noise in the fMRI measurements. If more than one spatial component was included in 

the derivation of a task-related regressor, then the difference in signal magnitudes 

between the experiments may be decreased. Any differences in the amplitude per cent 

changes of the task-related temporal independent component from this study and the 

average BOLD signals measured in [87] may have been caused by the same factors. 

The fMRI recordings acquired in this study were averaged over each trial to 
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accomplish some important objectives. First, averaging the measurements improves the 

SNR. Furthermore, at least one task-related component was identified in temporal ICA 

and spatial ICA of the unaveraged fMRI measurements, so averaging the fMRI 

measurements and then performing ICA provides the opportunity to identify independent 

component time courses that accurately represent the subject's average BOLD response 

during one trial. When an average task-related BOLD response over one trial is 

concatenated together in time over the duration of the scan, a signal may be produced that 

is more appropriate to use as a regressor than the canonical response. Averaging takes 

the variation of the BOLD response across different trials into account. Averaging also 

reduces the statistical bias that is present in this study. Using independent component 

time courses calculated with the unaveraged fMRI data as regressors would introduce a 

more significant statistical bias when performing statistical tests on parameter estimates 

[4,10]. fMRI measurements from one subject must be used in some way to produce 

subject-specific and brain-region specific hemodynamic responses that will subsequently 

be used to analyze the same fMRI measurements or different fMRI measurements 

acquired from the same subject in order to detect active voxels. Thus, some statistical 

bias is inevitable. 

The spatial and temporal independent components selected from spatial ICA and 

temporal ICA of the averaged fMRI data, respectively, showed similarities between the 

corresponding components from spatial ICA and temporal ICA of the unaveraged fMRI 

data. Spatial component brain maps acquired using either the averaged or unaveraged 

fMRI data showed high spatial weights in the left hemisphere motor cortex, the 

supplementary motor cortex and the right side of the cerebellum. The brain maps of the 
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averaged fMRI data temporal component and the unaveraged fMRI data temporal 

component were nearly identical. The averaged fMRI data temporal component time 

course and the ROA+ average time course from the averaged fMRI data spatial 

independent component were similar in shape to one cycle of the corresponding 

unaveraged fMRI data independent component time courses. 

The averaged fMRI data spatial component did show some differences from the 

corresponding unaveraged fMRI data spatial component. There were a few more regions 

with high spatial weights in the averaged fMRI data task-related spatial component brain 

map than in the unaveraged fMRI data task-related spatial component brain map. These 

regions include areas in the parietal and occipital lobes. The extra regions of high spatial 

weights may be present because there may be task-related BOLD signal contributions 

from these regions that become more prominent when the fMRI measurements are 

averaged together. With regard to the high spatial weights in the occipital lobe, the 

region of the brain that is involved in processing visual information is located in the 

occipital lobe [86]. The subject viewed a checkerboard during the task periods of the 

fMRI scan, so some regions of high spatial weights in the occipital lobe are expected. 

The averaged fMRI data temporal component time course and the averaged 

fMRI data spatial component ROA+ average time course showed similarities and 

differences with respect to a single cycle of the canonical response. First, the correlation 

coefficients between the averaged fMRI data independent component time courses and a 

single cycle of the canonical response were above 0.86, which means all three signals are 

very similar in shape. However, the spatial component ROA+ average time course 

reached its peak earlier and it has lower values during the subject's rest period than a 
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single cycle of the canonical response. The temporal component also peaked earlier than 

both the single cycle canonical response and the spatial component ROA+ average time 

course. The temporal component also had a sharper peak than the single trial canonical 

response. 

The differences the averaged fMRI data independent component time courses 

showed with respect to a single cycle of the canonical response may be very important 

when statistical tests are performed on fMRI measurements. The independent component 

time courses are subject-specific and brain region-specific. Voxels that are truly active 

during the task period according to the t-tests done using the independent component 

regressors may otherwise be labeled inactive if the canonical response is used instead. 

Voxels that are falsely labeled inactive may be involved in the motor task; these voxels 

may have important clinical or research implications. Thus, using an assumed 

hemodynamic response regressor, like the canonical response, in a GLM for statistical 

analysis of a subject's fMRI measurements when the regressor is not specific to the 

subject may not yield an accurate assessment of the active regions in the subject's brain 

[4, 5, 10, 16, 52, 56]. The unaveraged fMRI data independent component time courses 

varied in shape and amplitude; these variations may not have been taken into account 

properly by the canonical hemodynamic response regressor. This could result in false 

positive and/or false negative activations. 

4.1.2 Activation Maps 

The brain activation maps that show the t-test results from each statistical analysis 

of the fMRI measurements present some interesting findings. The activation map derived 
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from the t-test using the canonical HR model showed the fewest number of activations. 

In all three brain activation maps, the highest t-values were in the left motor cortex 

region. In addition, there were extensive areas of activation in the cerebellum, bilateral 

regions of the posterior frontal lobe, parietal lobe, temporal lobes and in the 

supplementary motor cortex. The task-related spatial independent component brain maps 

and the task-related temporal independent component brain maps (calculated using both 

the original and averaged fMRI data) had high spatial weights in most of the same 

regions as the activation maps. 

The substantial degree of overlap between the active regions of all three activation 

maps yielded the high CRs between each pair of activation maps. The activation maps 

from the t-tests using the ICA-derived HR models were the most similar as the CR 

between these two maps was the highest by a substantial margin. Only a few areas of 

activation were unique to the ICA-derived HR model brain maps. Many of the active 

regions found in this study were also considered active in fMRI studies done in [28] and 

[87]. The fMRI measurements from the study done in [28] were examined with ICA 

only. 

Despite the large amount of overlap between the active voxels in the brain maps, 

using the ICA-derived regressors for the t-tests resulted in higher active voxel t-values, 

on average, than the active voxel t-values found from the t-test in which the canonical 

response regressor was used. The active regions of the ICA-derived regressor brain maps 

also covered a larger portion of the brain. The active regions in the spatial and temporal 

ICA-derived regressor brain maps that were not active in the canonical regressor brain 

maps were largely in agreement. These regions included parts of the cerebellum and 
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regions near the thalamus and putamen [28]. These regions were also active in the study 

in [28]. The regions that were active according to the ICA-derived HR model t-tests only 

were identified because the ICA-derived regressors more accurately represent the 

subject's task-related BOLD responses than the canonical response regressor. The active 

regions that were unique to the ICA-derived regressor brain maps may be important in 

finger tapping task performance. Furthermore, the appearance of unique active regions 

illustrates that using canonical HR models to perform statistical tests may not be ideal. 

4.1.3 Performance of the HR Models 

The DW statistics, F-statistics and Ra
2 values that were calculated using the t-test 

results yielded some interesting findings. These variables provided information to 

compare the HR models directly. 

First, DW statistics were calculated for the active voxels from each t-test. The 

average DW p-value for active voxels in each of the t-tests was about 0.02, which is very 

low. Since BOLD signals exhibit a significant amount of autocorrelation due to the way 

they are measured and preprocessed and the AR(1) model was not used to compensate for 

the autocorrelation between residuals, it is difficult to pinpoint an acceptable DW 

threshold p-value that can be used to determine if an HR model is valid at a particular 

voxel. However, the DW p-values calculated from the ICA-derived HR model t-test 

results showed higher p-values, on average, than the DW p-values calculated from the 

canonical HR model t-test results. The number of active voxels that had a probability of 

having statistically independent errors of at least 50% in the ICA-derived HR model brain 

maps was larger than the same measurement for the canonical HR model brain map 
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(Table 3.1). Therefore, the ICA-derived HR models showed improved validity over the 

canonical HR model. The high degree of correlation among the residuals indicates that 

there may be several phenomena in the fMRI measurements that are not being adequately 

accounted for by the HR models [48]. 

The F-statistic and Ra measures were also useful indicators of the quality of the 

HR models. First, the F-statistics indicated that each HR model accounted for a 

statistically significant amount of variance in the BOLD signals measured from active 

voxels. As for the Ra
2 values, an average of 32 % of the variance of the active voxel 

BOLD signals was accounted for by the canonical HR model. The ICA-derived models 

showed slight improvements as they both accounted for an average of 36% of the 

variance of the active voxel BOLD responses. These somewhat low average values are 

another indication that some important effects that are present in the BOLD signals are 

not being accounted for properly. The Ra calculation results indicate that the ICA-

derived HR models are a more accurate representation of the BOLD responses in voxels 

that are active during a finger tapping task. 

With regard to the voxels that were active according to the ICA-derived HR 

model t-tests only, the SNR may not be adequate for the same voxels to be labeled active 

when a canonical HR model is used for the t-test [5]. Voxels that are falsely labeled 

inactive may be important in the neural processing required to allow subjects to move 

their fingers. Conversely, voxels that are falsely labeled active may be misleading when 

results from motor control fMRI studies are examined. 
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4.2 Study 2: Event-Related Paradigm 

The spatio-temporal ICA-derived regressors were compared with each other and 

with the canonical response regressor in several different ways. 

4.2.1 Regressors 

By combining methods in [35, 51, 83] to select interictal event-related 

independent components, the spatio-temporal components that were chosen show they 

are related to the interictal events. First, the spatial independent components have high 

spatial weights in the right temporal lobe, which is the region of the brain that is 

suspected of causing the patient's seizures. Electrodes placed over the right temporal 

lobe area recorded interictal epileptic events, so there is spatial agreement between the 

EEG and ICA findings. In addition, the spatial component time courses and the temporal 

components show significant BOLD signal changes that are concordant with the onset of 

interictal events. The magnitudes of the BOLD responses (in the independent component 

time courses) following interictal events are roughly proportional to the number of 

interictal events that occurred during a short time period preceding the BOLD responses 

(Figure 3.18, Figure 3.19 and Figure 3.20). 

The interictal event-related BOLD responses in the chosen spatio-temporal 

components were negative. Negative BOLD responses have been examined in recent 

studies, but positive BOLD responses have received far more attention because they are 

more common in all types of fMRI studies [25]. Negative BOLD responses have been 

reported in studies completed in [10, 25, 26, 88] where the majority of patients showed 

both positive and negative or only negative BOLD responses to interictal epileptiform 
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events [10, 25, 26]. An interesting finding mentioned in [88] is that there were a lot of 

negative BOLD responses measured from patients suffering from temporal lobe epilepsy. 

The findings in this study are consistent with the findings reported in [88]. 

Positive BOLD responses are expected to occur more often than negative 

responses [25]. If event-related positive BOLD responses are expected and event-related 

negative BOLD responses occur, then using the canonical response in an HR model to 

detect event-related BOLD responses may yield results that are not ideal. Many 

important active voxels could go undetected and/or many voxels may be falsely labeled 

active. A significant advantage of ICA is that it is useful if little is known or little can be 

assumed about a patient's BOLD response [51]. ICA may be used to reveal the shape of 

a patient's BOLD response. Thus, ICA may prevent erroneous assumptions from being 

made about patient BOLD responses. 

Some attempts have been made to explain the physiology of a negative BOLD 

response. Since positive BOLD responses have been studied more than negative BOLD 

responses, the physiological nature of positive BOLD responses is better understood 

[25]. One proposed explanation of the physiology of a negative BOLD response is that 

the neural activity preceding the response is inhibitory. There is some evidence that 

inhibitory neural events require a lot less energy than positive BOLD responses, so there 

is little need for an increase in blood flow and blood volume to the affected brain area. 

Hence, the proportion of deoxyhemoglobin increases in regions near the site of neural 

activity, causing the BOLD response to decrease. 

Wiener filtering and smoothing with a Hamming window were useful for deriving 

spatio-temporal ICA-derived impulse responses. By manipulating the constant term 
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SVv(fyShh(f) in the denominator of equation (2.34)(a), a reasonable low-pass Wiener filter 

was generated. The Wiener filter is reasonable because when it is multiplied by the 

frequency spectra of the zeroed spatio-temporal independent components, the resulting 

frequency spectra of the spatio-temporal ICA-derived impulse responses contain 

frequency components in a similar band of frequencies as the pass band of the frequency 

spectrum of the canonical impulse response. A precise frequency spectrum of the 

patient's interictal event-related hemodynamic impulse response is not known, so the 

canonical impulse response frequency spectrum is an appropriate guide. A large 

Hamming window was used for smoothing in order to dampen the oscillations to 

amplitudes of 0 at approximately 30 seconds. Since little is known about the duration of 

the interictal event-related impulse response, a 30-second impulse response seems 

appropriate. The canonical impulse response used in SPM5 lasts approximately 30 

seconds and this impulse response was derived using fMRI measurements in a past study 

[40]. The spatio-temporal ICA-derived impulse responses calculated in this study using 

Wiener filtering and Hamming window smoothing may contain irrelevant hemodynamic 

activity (i.e. be too long) or may not capture the entire BOLD response to a single 

interictal event (i.e. be too short). However, most of the important hemodynamic activity 

following interictal events is present in the spatio-temporal ICA-derived impulse 

responses. 

An initial transient BOLD signal increase was observed in all three spatio-

temporal ICA-derived impulse responses. The transient signal increase in the spatio-

temporal ICA-derived impulse response from run 3 was substantially smaller than the 

same transient signal increases in the spatio-temporal ICA-derived impulse responses in 

174 



runs 1 and 2. Perhaps the impulse response signals increase for a short time after 

interictal events because fMRI signal samples considered in the deconvolution process 

were acquired too soon after the interictal event. Alternatively, some of the interictal 

events may not have caused a BOLD response, but hemodynamic activity that followed 

shortly after these interictal events was still involved in the deconvolution process. 

Perhaps the transient signal increases may not be caused by errors in the impulse 

response derivation process at all. The transient signal increases may indeed be a part of 

the patient's interictal event-related BOLD hemodynamic impulse responses. Initial 

small amplitude signal dips are present in many positive BOLD responses that have been 

measured from past studies [32,40]. Small amplitude dips occur so often in positive 

BOLD responses that they have been modeled in regressors too. Thus, transient 

amplitude increases may be valid in negative BOLD responses. 

The periods of time that elapsed before the spatio-temporal ICA-derived impulse 

responses from runs 2 and 3 reached their negative peaks fell in the range of 5-8 s. This 

is the range of time it takes for a positive BOLD response to reach its peak as mentioned 

in Section 1.2.2.2.2 [17]. The time elapsed before the spatio-temporal ICA-derived 

impulse response from run 1 reaches its most negative peak is somewhat higher. 

Coincidentally, the duration of the initial transient positive BOLD signal increase is the 

longest for the impulse response from run 1. The reason for the difference in durations is 

not known. However, the differences may be attributed to the inclusion of too much or 

too little interictal event-related hemodynamic activity in the deconvolution process in 

run 1 or runs 2 and 3. 
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The smoothing procedure resulted in three spatio-temporal ICA-derived impulse 

response frequency spectra that are smooth in appearance just like the canonical impulse 

response frequency spectrum. The pass bands in all of the impulse response frequency 

spectra were similar to one another. 

Despite some noticeable differences, the shapes of each of the spatio-temporal 

ICA-derived impulse responses are similar. Hence, the patient had interictal event-

related BOLD responses that showed some consistency. Furthermore, when each spatio-

temporal ICA-derived impulse response is convolved with its respective pulse train event 

signal, the resulting hemodynamic response signal is very similar in timing and shape to 

the corresponding spatio-temporal component during short time periods that followed 

interictal events. This also suggests that the patient's BOLD responses to interictal events 

were somewhat consistent. Thus, the hemodynamic response signals that were produced 

from the convolution process can be used as regressors in GLMs for statistical testing of 

the fMRI measurements. 

Lastly, the comparisons between the spatio-temporal ICA-derived hemodynamic 

response, the canonical hemodynamic response and the inverted canonical hemodynamic 

response (from the same run) yielded interesting findings. The spatio-temporal ICA-

derived responses and the canonical responses are very different. Hence, if the patient's 

BOLD responses were not examined first and the canonical response was used as the 

assumed hemodynamic response for each run, the resulting active voxel locations 

acquired in this study are likely incorrect. Since the spatio-temporal ICA-derived 

responses and the canonical responses are very different, the resulting activation maps are 

very different (discussed in the next two sections). The inverted canonical responses and 
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the spatio-temporal ICA-derived responses, however, are very similar according to the 

high correlation coefficients between the signals. The correlation coefficient between the 

spatio-temporal ICA-derived response and the inverted canonical response for run 1 is the 

lowest, but the signals are still moderately similar. The reason for the difference is likely 

attributed to the significant transient positive BOLD signal increase that is present in the 

spatio-temporal ICA-derived response and absent in the inverted canonical response. On 

the other hand, the spatio-temporal ICA-derived responses and the inverted canonical 

responses from runs 2 and 3 are very similar. The differences between each of the 

responses, whether they are small or large, may lead to differences in active voxel 

locations that have important clinical and research implications. 

4.2.2 Activation Maps 

Since the spatio-temporal ICA-derived hemodynamic response and the positive 

canonical response in each run are very different, the t-tests resulted in brain maps that 

have very different active voxel locations. First, brain maps corresponding to the spatio-

temporal ICA-derived response (spatio-temporal ICA-derived response brain maps) have 

a much higher number of active voxels than the brain maps corresponding to the 

canonical response (canonical response brain maps). Most of the active voxels in the 

spatio-temporal ICA-derived response brain maps are in the right hemisphere temporal 

lobe, which agrees with the spatial ICA brain maps and the EEG recordings. To a lesser 

extent, some left hemisphere temporal lobe activations are present, which also agrees 

with the spatial ICA brain maps. However, the spatio-temporal ICA-derived response 

brain maps also yield strong activations in the right hemisphere frontal lobe, cerebellum 
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and activations that extend upward into the right parietal and right occipital lobes. It is 

not known why these regions were active during the scan. However, the results suggest 

that each of these regions may also be involved in generating interictal epileptiform 

activity. The active voxels in the canonical response brain maps are somewhat 

inconsistent from run to run. Active voxels in the canonical response brain maps are in 

the right hemisphere anterior temporal lobe and right hemisphere parietal lobe. None of 

the canonical response brain map active voxel locations matched the spatio-temporal 

ICA-derived response brain map active voxel locations. Yet, in some cases, regions of 

active voxels in the spatio-temporal ICA-derived response brain maps and canonical 

response brain maps are adjacent. 

There are other important discrepancies between the spatio-temporal ICA-derived 

response brain maps and the canonical response brain maps. The average t-values in the 

active voxels of the spatio-temporal ICA-derived response brain maps are slightly higher 

than the t-values in the active voxels of the canonical response brain maps. Since there 

are not many active voxels in the canonical response brain maps, the average t-value may 

not be an adequate way of comparing the two brain maps. However, the maximum t-

values in the active voxels of the spatio-temporal ICA-derived response brain maps are 

much higher than the maximum t-values in the active voxels of the canonical response 

brain maps. Thus, voxels have a higher probability of being active under the assumption 

that the task-related regressor is the spatio-temporal ICA-derived response regressor 

rather than the canonical response regressor. 

On the other hand, the spatio-temporal ICA-derived response brain maps and the 

inverted canonical response brain maps from corresponding runs have very similar active 
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voxel locations. The increased CRs between the activation maps coincide with increased 

correlation coefficients between the spatio-temporal ICA-derived responses and inverted 

canonical responses. The mean and maximum active voxel t-values from the inverted 

canonical response brain maps are a little higher than the same measurements from the 

spatio-temporal ICA-derived brain maps. However, the differences between the t-values 

of these activation maps are not remarkable. 

The results provide evidence that a patient-specific HR model like the spatio-

temporal ICA-derived HR model allows the statistical analysis to be more sensitive to 

detecting active areas where the SNR is low. These findings suggest that care must be 

taken to choose a proper HR model in similar fMRI studies. Even though the inverted 

canonical response brain maps and the spatio-temporal ICA-derived response brain maps 

are very similar, the differences in active voxel locations may be significant in fMRI 

studies. Precise details about the locations of neural activity in the brain are important 

when patients are being considered for surgery. If the patient's fMRI measurements were 

not examined prior to choosing an interictal event-related hemodynamic response 

regressor, an improper interictal event-related hemodynamic response regressor may have 

been chosen. An improper hemodynamic response regressor would result in activation 

maps that are not optimal. An HR model must be prudently chosen to accurately locate 

brain regions involved in generating epileptic activity. This idea can be extended to any 

fMRI study such as sensorimotor studies where variable BOLD responses have been 

found [16]. ICA is a tool that can be used to help develop improved HR models. 
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4.2.3 Performance of the HR Models 

The DW statistics, F-statistics and Ra
2 values that were calculated resulted in 

some interesting findings. 

The mean DW statistics that were calculated to measure residual autocorrelation 

between the residuals indicate that all HR models have very low validity at the active 

voxels. The mean DW p-values corresponding to the active voxels in their respective 

brain maps range from approximately 0-0.05. A very small number of active voxels from 

all of the brain maps have DW p-values of at least 0.50. The high probability of 

autocorrelation between residuals indicates that the HR models are not accounting for 

some important hemodynamic activity that is present in the BOLD signals. Much like 

the first study, the AR(1) model was not used to account for the autocorrelation between 

the residuals in this study. Since the AR(1) model was not used and BOLD signal 

samples exhibit a significant amount of autocorrelation due to the way they are measured 

and preprocessed, it is difficult to determine an acceptable DW threshold p-value that can 

be used to decide if an HR model is valid at a particular voxel. 

Regarding the differences in the DW p-values between brain maps, the average 

DW p-values calculated from the canonical HR model t-test results are higher than the 

average DW p-values calculated from the spatio-temporal ICA-derived HR model t-test 

results. However, there are very few active voxels in the canonical model brain maps, so 

the difference in average DW p-values between the different brain maps may not be 

significant. In contrast to the average DW p-values, the spatio-temporal ICA-derived 

response brain maps and the inverted canonical response brain maps have higher 

maximum DW p-values than the canonical response brain maps in corresponding runs. 
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This result, when combined with the observation that most of the active voxels in the 

spatio-temporal ICA-derived response brain maps are in the expected regions (right 

hemisphere temporal lobe), provides evidence that the spatio-temporal ICA-derived HR 

model shows improved validity over the canonical HR model. There is very little 

difference in validity between the inverted canonical HR model and the spatio-temporal 

ICA-derived HR model. 

The F-tests revealed interesting results. In all cases, the BOLD signal variance 

from 36 % or more of the active voxels is not statistically significantly accounted for by 

the HR models. These results are significantly different from the results found in the first 

study. In Study 1, all HR models surpassed the F-value threshold at their respective 

active voxels. These findings allude to the point made earlier that the HR models are not 

accounting for some important hemodynamic activity that is present in the BOLD 

signals, especially in this interictal event-related study. 

Despite the low DW p-values and the F-test results, the spatio-temporal ICA-

derived HR models showed a better fit to their active voxel BOLD signals than did the 

canonical HR models. The Ra
2 values calculated using the spatio-temporal ICA-derived 

HR model t-test results are much higher than the Ra
2 values calculated using the 

canonical HR model t-test results. The Ra
2 values for the spatio-temporal ICA-derived 

HR models are still low, ranging from maximum values of 0.24-0.34. The ICA-derived 

HR models are patient-specific and brain region-specific, therefore, they are more likely 

to yield accurate active voxel locations when used in a statistical test. 

The maximum Ra values for the inverted canonical HR models (0.35-0.45) are 

somewhat higher than the maximum Ra
2 values for the spatio-temporal ICA-derived HR 
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models, but the inverted canonical HR models still do not account for a substantial 

amount of variance in the BOLD signals. 

To account for an increased amount of variance in the BOLD signals, perhaps a 

spatio-temporal ICA-derived HR model should be used in the GLM in combination with 

the AR(1) model. Alternatively, multiple spatio-temporal component time courses may 

be used in the HR model to account for several different phenomena that are present in 

the BOLD signals. Care must be taken not to use too many spatio-temporal components 

as regressors with this approach because there may not be enough degrees-of-freedom 

left to perform a proper t-test. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions from Studies 1 and 2 

Developing an appropriate hemodynamic response to use as a task-related or 

stimulus-related regressor in the GLM for a statistical test on fMRI data is a complicated 

task. Assuming a subject's (or patient's) task-related or stimulus-related BOLD 

responses will be similar to the canonical response may not yield optimal results. If task-

related or stimulus-related BOLD responses are different than the assumed response, 

false positives and false negatives may result. False positives and false negatives can 

lead to incorrect conclusions about the nature of a patient's neural and hemodynamic 

activity. 

There is evidence in the two studies of this work that ICA can be used to 

produce patient-specific and brain-region specific hemodynamic responses that can be 

modified to make regressors to use in the GLM. The ICA-derived hemodynamic 

responses take the unique shape of each subject's task-related or stimulus-related BOLD 

responses into account. The similarities and differences between ICA and the statistical 

analysis of fMRI measurements using the GLM allow the methods to be combined 

successfully. 

In the right handed finger tapping block design paradigm motor study, time 

courses were produced using spatial ICA and temporal ICA separately. These time 

courses were used as regressors in the GLM for a t-test on the fMRI measurements. The 
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largest regions of active voxels that were found from the t-tests using the ICA-derived 

regressors are in the left hemisphere motor cortex, supplementary motor cortex and 

ipsilateral cerebellum. All of these regions are involved in processing neural information 

related to finger movement. Compared to the canonical HR model, the ICA-derived HR 

models are more valid and they account for a higher amount of variance in the BOLD 

signal measurements. Despite these differences, the locations of active voxels in all of 

the brain maps are mostly in agreement. 

In the interictal event-related paradigm study, spatial ICA and temporal ICA 

were combined to produce spatio-temporal ICA-derived interictal event-related 

hemodynamic impulse responses. After the spatio-temporal ICA-derived hemodynamic 

impulse responses were filtered and smoothed in the frequency domain, they were 

convolved with their respective stimulus functions (interictal event pulse train signals) to 

produce spatio-temporal ICA-derived regressors. Large regions of active voxels were 

found from the t-tests using the spatio-temporal ICA-derived regressors. These regions 

are in the right temporal lobe, which agrees with the patient's EEG and the patient's 

diagnosis of refractory right temporal lobe epilepsy. The spatio-temporal ICA-derived 

response brain maps show far more active voxels in the expected locations than the 

canonical response brain maps. The canonical response brain maps are not very useful, 

because there are very few small active regions. It can be concluded that the canonical 

hemodynamic response is not an appropriate interictal event-related regressor to use for 

this study. 

Since the fMRI measurements in Study 2 were examined with ICA before 

statistical tests were performed, the ICA results showed that the patient had negative 
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interictal event-related BOLD responses. Negative interictal event-related BOLD 

responses have been recorded in patients suffering from temporal lobe epilepsy in past 

studies [5, 25, 88]. Since negative BOLD responses were observed, the values of the 

canonical response were multiplied by -1 (inverted) to produce a third event-related 

regressor to use in another t-test. The inverted canonical HR models and the spatio-

temporal ICA-derived HR models are similar in terms of the number of active voxels in 

their respective brain maps, validity and goodness-of-fit to the BOLD signals. 

Hemodynamic responses that are generated based on a patient's own fMRI 

measurements are more appropriate signals to use as regressors when performing 

statistical tests. Patient-specific and brain-region specific regressors allow the statistical 

tests to be more sensitive to the detection of active voxels. Active voxels in which the 

SNR is low are more easily detected using patient-specific and brain-region-specific 

regressors [5]. Thus, more accurate brain maps may be produced for researchers and 

physicians to use. For instance, when epileptic patients are being considered for surgery, 

accurate brain maps are required in order to do a proper excision of the brain regions 

causing seizures. 

On the other hand, statistical test results will be biased if a patient's fMRI 

measurements are used to generate a task-related or stimulus-related regressor which is 

then used to statistically test the measurements from which the regressor was developed. 

Attempts were made in both studies to reduce the statistical bias; the fMRI measurements 

were averaged over each trial in the first study and hemodynamic impulse responses were 

generated in the second study. Another way to reduce statistical bias and produce useful 

statistical test results with fMRI measurements would be to acquire many measurements 
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from a single patient over several runs (sessions), use some of the measurements to 

generate a subject-specific hemodynamic response regressor and then use the regressor in 

statistical tests on the remaining fMRI measurements. 

The validity and goodness-of-fit of all the HR models used in the two studies of 

this work are not optimal. BOLD signals are acquired at a rapid rate and are extensively 

preprocessed, so there is a substantial amount of autocorrelation between the signal 

samples. More work needs to be done to account for the various phenomena that are 

present in the BOLD signals by using more regressors or other methods. 

ICA was shown to be a useful tool for providing insight into the task or 

stimulus-related BOLD responses of a subject before any assumptions are made about the 

shape of a subject's BOLD responses. From the ICA results, appropriate task-related and 

stimulus-related regressors were produced to use in the GLM for a statistical analysis of 

the fMRI measurements. 

5.2 Future Directions 

There are several ways to develop the ideas presented in this work. For instance, 

if ICA is performed on the fMRI measurements, several independent component time 

courses may be used to develop one or more task-related or stimulus-related 

hemodynamic responses to use as regressors. Subjects may generate a single task-related 

or stimulus-related BOLD response that is comprised of more than one independent 

component. On the other hand, subjects may have several different task-related or 

stimulus-related BOLD responses that are represented by several independent 

components. Furthermore, several independent component time courses can be used to 
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produce several regressors to account for several different types of phenomena that are 

present in the fMRI measurements. For instance, several ICA-derived regressors may be 

used to account for noise or physiological activity other than task-related or stimulus-

related BOLD activity. If more regressors are included, the validity and goodness-of-fit 

of the HR models may improve. When using ICA, a more systematic method of 

selecting independent components would be helpful. There was some ambiguity in the 

component selection in the studies of this work, so more well-defined rules to choose 

components would be useful. 

There is a need for more studies that focus on measuring and improving the 

quality of HR models. There are not enough studies that focus on obtaining valid HR 

models that fit the BOLD signals well. A lot of studies measure the quality of an HR 

model by the number of active voxels that are found when the model is used in a 

statistical test [48]. This method of assessing HR model quality is not ideal. DW 

statistics, F-statistics and Ra
2 measures are useful ways of assessing the quality of HR 

models, but there may be other ways of measuring model quality that would be easier to 

implement. Most of the DW statistics, F-statistics and Ra
2 measures calculated for the 

HR models in the studies of this work are not adequate. One change that may improve 

these calculations is to use ICA-derived hemodynamic responses in combination with 

AR(1) models when conducting parameter estimations. 

Lastly, more work can be done to improve interictal event fMRI studies. For 

instance, different interictal events that occur in the EEG can be separated by type or the 

brain region from which the interictal events originate. ICA can be used on the fMRI 

measurements that are separated according to different interictal event types or locations. 
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Alternatively, EEG measurements can be used as constraints when performing statistical 

analyses on fMRI measurements to locate active voxels. 
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