
Computing Velocity of Multiple Objects in Sequences
of Images With an Application In Water-Based

Bitumen Extraction Process

by

Mahdi Shooshtari

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Mahdi Shooshtari, 2017

Abstract

Image-based analysis of bitumen extraction process can provide the oil com-

panies with useful information that can be used to assess their performance in

retrieving bitumen from the oil sands. In this analysis, several slurry images

are taken during the extraction process, and then image processing techniques

are used to extract the information and operating metrics from the images.

Computing the velocity of floating objects, including bitumen droplets and

sand particles, is one of the most important operating metrics. This operating

metric gives us information about bitumen retrieving performance in addition

to more understanding about the floating objects and their movement; yet up

to our knowledge, there is not an evaluated automated method to detect and

track the floating objects in slurry images successfully and measure their speed

in the real-time. To address this problem, we have developed algorithms to

(1) detect bitumen droplets and sand particles in each image; and (2) track

the detected objects in the sequence of images.

For the first step of this project, we evaluated several well-known global

and local thresholding and segmentation algorithms and found the method

with the best outcome for our images. We also applied tiling and downsam-

pling methods to the images in order to improve the performance of evaluated

thresholding and segmentation algorithms in the object detection and/or de-

creasing running time of the segmentation algorithms. The results indicated

that tiling and downsampling decrease the performance in most of the cases.

Tiling and downsampling of the images decrease the running time of the seg-

ii

mentation algorithms, but they still are not as fast as thresholding methods.

Moreover, we developed a Recursive Iterative Thresholding framework that

can be combined with any local or global thresholding algorithm to improve

the performance of the original algorithm through detecting a larger number

of small and bright objects.

For the second step of the project (i.e. tracking the detected objects in a

sequence of images), we implemented and tested two tracking methods: (1)

a frame-by-frame tracking algorithm; and (2) a multi-frame tracking method.

For the frame-by-frame tracking algorithm, objects of consecutive images were

matched and connected to each other by using an assigning algorithm that

determines the optimum assignment. In contrast, for the multi-frame tracking

method, multiple frames were considered together, and a Flow Network was

built by connecting the objects using the weighted edges. Then a greedy

approach was used to detect the K-shortest path (KSP) in the Flow Network.

Our experiments indicated that finding the KSP in a Flow Network has better

performance compared to the frame-by-frame tracking, and it produces the

results in a noticeably less running time. We used two State-of-the-Art cutting

algorithms and developed two additional novel methods to cut the tracks into

smaller tracklets for using in the Flow Network. Our experiments showed

that using each tracklet as a node of the Flow Network instead of using each

detected object as a node improved the performance of the algorithm.

iii

Acknowledgements

I would first like to thank my thesis adviser Professor Hong Zhang of the

Department of Computing Science at the University of Alberta. The door to

Prof. Zhang office was always open whenever I ran into a troubled spot or had

a question about my research or writing. He consistently allowed this project

to be my own work, but steered me in the right the direction whenever he

thought I needed it.

I would also like to thank an expert, and a great friend, who was involved

in the validation of this research project: Postdoctoral Fellow of the Depart-

ment of Computing Science, University of Alberta, Dr. Li He. Without his

passionate participation and input, this thesis could not have been successfully

conducted.

I would also like to acknowledge Dr. Nilanjan Ray of the Department of

Computing Science at the University of Alberta as the second reader of this

thesis, and I am gratefully indebted to him for his very valuable comments on

this thesis.

Finally, I must express my very profound gratitude to my parents and to

my sister for providing me with unfailing support and continuous encourage-

ment throughout my years of study and through the process of researching

and writing this thesis. This accomplishment would not have been possible

without them. Thank you.

Author

Mahdi Shooshtari

iv

Table of Contents

1 Introduction 1
1.1 Computing Velocities of Multiple Objects: Technology and Ap-

plication . 1
1.2 Detecting Objects in Each Image 3

1.2.1 Image Thresholding . 3
1.2.2 Global Thresholding 4
1.2.3 Local Thresholding . 5
1.2.4 Image Segmentation 8

1.3 Tracking Objects in a Sequence of Images 10
1.3.1 Multiple Object Tracking 10
1.3.2 Frame-by-frame Tracking Algorithms 12
1.3.3 Multi-frame Tracking Algorithms 14
1.3.4 Tracklet Stitching Algorithms 17

1.4 My Contribution to the Process of Computing Object Velocities 18
1.4.1 Comparing Existing Methods and Applying Tiling and

Down-Sampling . 18
1.4.2 Proposed Framework for Improving Image Thresholding

Algorithms . 19
1.4.3 Tracking Objects by Applying Hungarian Assigning and

Network-Flow To the Detected Objects 19
1.4.4 Using Tracklets and How to Cut Them 20

2 Detecting Objects in Each Image 22
2.1 Making Ground Truth Images 23
2.2 Evaluating Detection Methods 24
2.3 Comparing Thresholding and Segmentation Methods 24
2.4 Applying Tiling and downsampling 26

2.4.1 Tiling Experiments . 29
2.4.2 Downsampling Experiments 32

2.5 Recursive Iterative Thresholding Framework 34
2.5.1 Iterative Thresholding Framework for All Thresholding

Algorithms . 35
2.5.2 Recursive Iterative Framework for Global Thresholding

Algorithms . 37
2.5.3 Recursive Iterative Thresholding Framework Implemen-

tation . 38
2.6 Conclusion . 41

3 Tracking Objects in Sequences of Images 42
3.1 Designing a Ground Truth Generator GUI 43
3.2 Evaluating Tracking Methods 45

3.2.1 Between Frames Based Evaluation (BFB) 45
3.2.2 Track Based Evaluation (TB) 46

v

3.3 Applying Frame-by-frame and Multi-frame Tracking Algorithms
to Slurry Images . 48
3.3.1 A Frame-by-frame Tracking Algorithm 48
3.3.2 A Multi-Frame Tracking Algorithm 51

3.4 Using Tracklets as Nodes in Flow Network 53
3.4.1 Singh2008 Cutting Method 54
3.4.2 Shitrit2014 Cutting Method 55
3.4.3 Proposed Hard Cutting Method 55
3.4.4 Proposed Kalman Filter Cutting Method 56
3.4.5 Setting Parameters of the Track Cutting Methods . . . 58

3.5 Computing Velocity of Bitumen Droplets 62
3.6 Conclusion . 63

4 Summary, Conclusion and Future Works 67
4.1 Detecting Objects in Each Image 67
4.2 Tracking Objects in a Sequence of Images 68
4.3 Future Works . 70

Bibliography 72

vi

List of Tables

2.1 Results of applying different thresholding and segmentation al-
gorithms on sparse slurry images 26

2.2 Results of applying different thresholding and segmentation al-
gorithms on dense slurry images 27

2.3 Running Time of Applying Algorithms on Tiled Sparse Images 30
2.4 Running Time of Applying Algorithms on Tiled Dense Images 31
2.5 Running Time of Applying Algorithms on Down-sampled Sparse

Images . 33
2.6 Running Time of Applying Algorithms on Down-sampled Dense

Images . 33
2.7 Results of using proposed framework with the best global and

local thresholding methods in sparse images. 38
2.8 Results of using proposed framework with the best global and

local thresholding methods in sparse images 38

3.1 Between frame based evaluation of two tracking methods . . . 53
3.2 Between frame based evaluation of tracking methods that use

Flow Network, with or without tracklets 60

vii

List of Figures

1.1 Examples of Slurry Images . 3
1.2 General framework of frame-by-frame tracking algorithms. . . 12
1.3 An example of using Flow Network for tracking multiple objects

in sequences of images . 16

2.1 Advantage of using tiling for global thresholding algorithms . . 28
2.2 Result of applying tiling method on sparse images 30
2.3 Result of applying tiling method on dense images 31
2.4 Result of applying downsampling method on dense images . . 32
2.5 Flowchart of Proposed Iterative Framework 36
2.6 Examples of object detection with proposed framework via MAX-

ENT thresholding algorithm 39
2.7 Examples of object detection with proposed framework via NICK

thresholding algorithm . 40

3.1 An example of running proposed GUI for generating ground
truth tracks . 45

3.2 Track based evaluation of two tracking methods 54
3.3 Track based evaluation of tracking methods that use Flow Net-

work, with or without tracklets 61
3.4 The relation between size of the objects and their velocity . . 63
3.5 The relation between brightness of the objects and their velocity 64
3.6 Horizontal velocity vs Vertical velocity and Size vs Brightness 65

viii

List of Abbreviations
List of commonly used abbreviations

2D-ENT Two Dimensional Entropy
BFB Between Frames Based
DAG Directed Acyclic Graph
GB Graph-based
GUI Graphical User Interface
KSP K Shortest Path
MAT Multistage Adaptive Thresholding
MAX-ENT Maximum Entropy
MHT Multiple Hypothesis Tracking
MIN-ERR Minimum Error
M-SHIFT Mean Shift
MTT Multiple Target Tracking
SLIC Simple Linear Iterative clustering
SRG Seeded Region Growing
SRM Statistical Region Merging
TB Track Based

ix

Chapter 1

Introduction

1.1 Computing Multiple Objects Velocities:

Technology and Application

Oil sands or technically called bitumen sands are mixtures of bitumen, sand,

clay and water. In order to separate bitumen from mined oil sands ore, there is

a water-based procedure that includes crushing mined oil sands ore and mixing

them with hot water, steam, and some chemicals to produce oil sands slurry

[10]. The slurry is then given to a hydro-transported pipeline in which the

majority of bitumen separates from sand particles and attaches to existed air

bubbles [10, 23]. Bitumen droplets (either attached to air bubbles or remained

attached to sand particles) in addition to pure sand particles form the main

objects in the slurry. To collect bitumen droplets and dispose of sand parti-

cles, the slurry is then introduced into a Primary Separation Vessel (PSV).

In PSV, bitumen droplets that are attached to air bubbles float up and make

the primary bitumen froth, while the sand particles and the bitumen droplets

that are attached to sand particles either sink as underflow and settle at the

bottom of PSV, or remain suspended in the middle of the vessel as middlings.

These objects are processed separately to recover more bitumen froth (called

secondary bitumen froth) from them [10, 23]. Any process applied to the oil

sands slurry is called the slurry process [10].

Recently an image-based slurry process analyzing system has been invented

[10] that is capable of retrieving useful information from bitumen extraction

process. It generates system performance metrics for the slurry processing

1

and adjusts different operating parameters in order to produce the optimal

performance in retrieving bitumen from the slurry. This system contains a

flow tube, one or two cameras, and a computer. The flow tube, which is

a colorless cylindrical glass has a slurry inlet, a slurry outlet, and one or

two transparent viewing portions. The input of slurry inlet is diverted from

the slurry process and it includes either slurry before primary bitumen froth

separation or the slurry that only contains middlings and settled objects. The

slurry is then floated in the flow tube, and cameras that are installed in the

viewing portions capture its images. These images are supplied to a computer

for further processings. In the computer, different analysis can be applied to

the slurry images and different information can be retrieved. This includes

bitumen droplet size and shape, bitumen droplet velocity, predicted bitumen

recovery rate, sand particle size distribution, sand particle shape, and water

turbidity [10]. There are two main processing steps, at least one of which

is required in order to extract each of the aforementioned information: (A)

Detecting objects in each image; and (B) Tracking the detected objects in a

sequence of slurry images. Computing velocity of the bitumen droplets which

is the focus of our study requires both of the above processing steps.

In this project, we processed the images that contain multiple objects most

of which are sand particles, and the rest are sand-bitumen combinations. One

camera takes several good quality images of the objects as they sink until the

operation is over. Some examples of different moments of the process after

floating slurry in the flow tube are shown in Figure 1.1. The two main steps to

automatically compute the velocity of floating objects include (A) detection of

as many objects (i.e. bitumen droplets and sand particles) as possible in each

image and (B) tracking the detected objects (mainly bitumen droplets) in the

sequences of images. There are some computational challenges in detection

and tracking of objects in slurry images: (1) Most of the objects in the slurry

images are very small or bright and they are overlapping. Based on our initial

literature review, we found that most of the published segmentation methods

are not capable of addressing this challenge properly. (2) The objects rotate

during the sinking process and their shape or size and color change as they

2

move. On the other hand, the velocity of different objects is not the same.

These conditions make automated tracking of the bitumen droplets in the

series of images very challenging.

(a) (b)

Figure 1.1: Examples of slurry images in the beginning (a) and middle (b)
moments of floating slurry in the flow tube. At the beginning moments, there
are fewer objects to detect and the images are sparse. After a while, there are
hundreds of objects and the images are dense.

1.2 Detecting Objects in Each Image

As shown in Figure 1.1, the images normally contain a large number of small

objects with different intensities and shapes. Although some of the sand par-

ticles and bitumen droplets are large and dark enough to be detected easily

by the majority of the thresholding algorithms, most of the objects do not

have these characteristics. Additionally, the images suffer from different illu-

minations at different parts. This makes the object detection problem even

more challenging. On the other hand, it is required to compute the velocity

of objects as fast as possible, preferably in the real-time. Considering all of

these together, the desired method needs to detect small and bright objects

as well as the large or dark objects and needs to be fast enough to run in the

real-time.

1.2.1 Image Thresholding

One of the main applications of image segmentation is to detect objects in

images. In segmentation methods, the main idea is to divide an image into

3

smaller similar parts in a way that it makes the required object or the Region

of Interest (RoI) easily distinguishable from other parts of the image. Image

thresholding is a specific category of segmentation algorithms. In thresholding

algorithms, the input is normally a gray image in which each pixel has a value

in the range of [0, 255]. The output is a binary image. In the output, the

pixels that contain Objects or RoI get 1 (which is the white color), while the

background pixels get 0 (which is the black color). In order to be consistent

with the input images, one can invert the value and color of each pixel of the

output image. Deciding on whether a pixel should get 0 or 1 in the output

image is made based on a threshold value (T):

J(x, y) =

{

0, if I(x, y) < T (x, y)

1, otherwise
(1.1)

where J is the output image, I is the input image, x and y are the current

pixel’s coordinates and T(x,y) is the threshold value for the pixel in x and y

coordinates. In the thresholding algorithms, the main objective is to select the

threshold value T(x,y). There have been many efforts to develop appropriate

methods to identify the value of the threshold [37, 45].

Thresholding algorithms can be used for different applications such as

blood cell or other medical particle tracking methods [7, 36, 33], recogniz-

ing text in low quality or ancient document images [31, 25, 50, 12, 34]. In

the text recognition applications, thresholding algorithms can benefit from

other information such as background estimation, features of the text and/or

learning techniques [25, 50, 12].

1.2.2 Global Thresholding

Thresholding algorithms can be divided into two main groups; (A) global

thresholding; and (B) local thresholding. Global thresholding methods find

the optimum threshold value for the entire image. In other words, for any pixel,

the threshold value T(x,y) is the same (called T). Global thresholding methods

decide on the threshold value based on the image features such as intensity

histogram, image entropy or clustering the intensity values [47]. Normally cut-

off threshold value T divides the bimodal histogram into two separate clusters

4

with unimodal histograms. Under an ideal situation, the histogram of the

image intensity has a bimodal distribution. However, this condition does not

hold most of the time, meaning that histograms are not bimodal, and therefore,

the separated histograms cannot perfectly fit into two unimodal diagrams.

Maximum entropy (MAX-ENT) [15] is a well-known global thresholding

method that is based on entropy, and finds a threshold that maximizes the

sum of entropy in each of the separated clusters. Minimum error (MIN ERR),

Otsu and Iterative are examples of clustering-based methods [19, 32, 29]. Min-

imum error (MIN-ERR) [19] assigns the best Gaussian model to each of the

unimodal histograms and then computes the sum of the misclassification er-

ror. This method finds a threshold that minimizes misclassification error. The

Iterative method [32] computes the mean intensity of each class separately

and updates the next threshold value iteratively as the mean sum of classes

divided by two. This method repeats this procedure until the threshold value

does not change substantially. Otsu method [29] identifies a threshold value

such that it provides the highest similarity between members of each class

through minimizing within class variance, and the highest difference between

members of different classes by maximizing between class variance.

1.2.3 Local Thresholding

Global thresholding algorithms do not have good performance when there are

shadows, poor illumination or a lot of noise in the images. To address this

problem, local thresholding algorithms select a specific threshold value for

each pixel according to its spatial properties such as relation with neighbor

pixels. Niblack [27] computes the threshold value in each pixel as a function

of intensity average and diversity deviation in a window neighborhood. The

threshold value for each pixel is computed by the following equation:

T (x, y) = µ(x, y) +K ∗ σ(x, y) + C (1.2)

where µ(x, y) is the average intensity of a window with size b*b while the

center is in coordinates x and y. T(x,y) is the computed threshold value for

the pixel in x and y, σ(x, y) is standard deviation and C is the offset. Width

5

of the window b can be constant as it is in Niblack method or adaptive with

regard to more spatial properties. Here K is negative.

Sauvola [34] is an improved version of Niblack that relaxes the effect of

standard deviation σ(x, y) by the proposed formula:

T (x, y) = µ(x, y) ∗
[

1 +K(
σ(x, y)

R
− 1)

]

(1.3)

where R=128 and K is a positive number. This approach is suitable for image

areas with low contrast. In those cases, σ(x, y) is low and T (x, y) is less than

µ(x, y). As a result, the dark regions which are part of the background are

detected and removed more easily.

NICK [18] smooths the noise in image neighborhood while applying a local

thresholding method similar to Niblack.

T (x, y) = µ(x, y) +K ∗

√

√

√

√

n
∑

i=1

I(xi, yi)
2 − µ(x, y)2

N
(1.4)

where n = b∗b, N is the total number of pixels in the image and I(xi, yi) is the

intensity of ith pixel in the neighborhood in coordinates xi and yi. Recently,

Khoshki [17] made NICK algorithm more accurate by iteratively repeating the

procedure with different descending window sizes and selecting the objects that

were detected as objects in the previous step.

Bernsen [4] is a simpler method in which the threshold is determined as

follows:

T (x, y) =

{

128 if Imax(x, y)− Imin(x, y) < ǫ
Imax(x,y)+Imin(x,y)

2
Otherwise

(1.5)

the threshold value for a pixel is only computed when the difference between

maximum and minimum intensity Imax(x, y)− Imin(x, y) in a neighborhood is

bigger than a constant number ǫ, otherwise it is in the same class of neighbor

pixels. That means if the pixels of the neighborhood have similar intensities

and current pixel has an intensity less than 128 (half range in gray scale), it

is assigned to the background, otherwise to the foreground.

Two-Dimensional Entropy (2D-ENT) [1], as an entropy based method,

maps every pixel in the image into a two-dimensional environment where one

6

axis is the intensity value and the other axis is the intensity average in the

neighborhood. This algorithm finds two threshold values (one for each axis)

that split the 2D environment into two groups, and it provides the maximum

sum of 2D-ENT in the classes.

Multistage Adaptive Thresholding (MAT) algorithm [47] assumes that se-

lecting a proper threshold value is difficult when the intensity of pixels are in

a certain range:

T (x, y) =











Tmin if I(x, y) < Tmin

Tmax if I(x, y) > Tmax

µ(x, y) +K ∗ σ(x, y) Otherwise

(1.6)

When the intensity of a pixel is less than a predefined small value Tmin it is

assigned to the background and when it is more than predefined big value Tmax

it is considered as an object with no doubt. Selection of Tmin and Tmax is one

of the main contributions of this paper.

Gatos [12] aims for detecting a text in degraded document images. It

first computes a rough estimation of the text by Sauvola Algorithm. Then

it computes the background estimation with a function affected by computed

foregrounds and finally it detects the desired objects based on the difference

between original image and the estimated background image.

Local thresholding algorithms, in general, are time-consuming because they

need to compute a threshold value for each of the pixels one by one. To address

this problem, some algorithms use integral images [40, 38, 17]. Here the main

idea is that for each pixel in an integral image, its value is equal to the sum of

all previous pixels that are in left and top position of this pixel including the

current one in the original image. By having this integral image, computing

average or variance of the intensity for each pixel in a neighborhood with a

size of w*w can be done easily. As a result, the processing time is changed

from O(n2w2) in an n*n image into O(n2), and it is not dependent on the

size of window (w) anymore [38]. We used some of the methods (Niblack,

Sauvola and NICK) along with the same idea in Section 2.3 and Section 2.4

for evaluation and comparison.

7

1.2.4 Image Segmentation

Image segmentation algorithms divide an image into several areas with the

most similar pixels. Unlike thresholding methods, output images of image

segmentation can have multiple gray scale intensities and each area will have

a different label. By segmenting the slurry images in a proper way, sand

particles, bitumen droplets, and water can be distinguished from each other.

Seeded region growing (SRG) [3] is a segmentation method that starts

with some pixels that are known to be part of the foreground or ROI (as

seeds). This method then expands the area around these seeds to find the

whole foreground region. The space around each seed will be enlarged until

the difference between the intensity of neighbor pixels and the mean of regional

intensities is greater than a threshold.

Mean shift (M-SHIFT) [8] maps each pixel in an RGB image into a five-

dimensional environment (Red, Green, Blue, X coordinate, and Y coordinate)

and then tries to shift each point to the most crowded closest position around.

Clusters made by this approach create the segments of the image. The same

process can be done for the case of gray scale images by shifting each pixel to

the nearest most crowded place in a three-dimensional environment (Intensity,

X coordinate, and Y coordinate).

In graph-based (GB) method [11], pixels of the image are nodes in the

graph and edge weights of edges are computed according to a function of

dissimilarity between corresponded nodes. This method aims to divide the

graph into smaller subgraphs so that each sub-graph (cluster) should contain

similar members. As a result, edges between two vertices in the same cluster

should have relatively low weights. Members of two different clusters should

be different enough from each other. As a result, edges between two vertices

in the different cluster should have relatively higher weights. Edges will then

be sorted according to their weights incrementally. For each edge in the sorted

list, if nodes of the edge are in different classes but they are similar enough

(according to measurements), related classes would be merged. There are two

ways for making the graph; (A) considering edges between each pixel and its

8

eight neighbors which is called Grid Graph or (B) map each pixel of the image

into a five-dimensional space. For (B), Red, Green, Blue, X coordinate, and

Y coordinate are the axis. Each pixel has edges with its N nearest neighbors

in a specific radius R. This method is called nearest neighbor (NN) graph. In

the Grid Graph, the weight of each edge is equal to the intensity difference

of related pixels. While in the NN Graph weights are equal to the Euclidean

distance between points. in the Grid Graph, S is the minimum size of a

segmentation cluster.

In statistical region merging (SRM) [28] each pixel is compared with its four

neighbors (with regard to a function of dissimilarity) and four connected pairs

are formed. These pairs are sorted incrementally based on their dissimilarity

value. From top to bottom of this sorted list, if two nodes of a connected

pair are not in the same segment, but they are similar enough (according to

a similarity function), two related segments will be merged together. This

method needs one variable to be set which is related to the number (and size)

of the detected segments.

Superpixel algorithms group adjacent similar pixels into small partitions

called superpixels. In generating them, two main purposes are considered; (A)

adhering as well as possible to the boundaries of objects in the image and (B)

running fast. Simple linear iterative clustering (SLIC) method for grouping

similar pixels is comparable to K-means [2]. Assume having K superpixels

is desired. As a result, according to the number of pixels in the image which

is N, the image initially is divided into squares with an approximate length

of S =
√

N
K

and S cluster centers are found. For each pixel in the image, it

is then assigned to the nearest cluster center. Edges of each square should

adhere to edges of objects. By increasing K there would be more superpixels

but with smaller areas. It will also increase the chance of having accurately

boundary fitted superpixels.

9

1.3 Tracking Objects in a Sequence of Images

In order to compute the speed of objects, we need to track the detected objects

in a sequence of images. The computational challenges for addressing this

problem are as follows:

• The main features that can be extracted from detected objects are the

shape (size), color (brightness) and their location. There are hundreds

of detected objects in each image and most of the particles in our images

have similar features. This makes it challenging to match the same

particles in sequences of images.

• In general, objects appear at the top of the images, sink vertically and

after a while disappear at the bottom of the images. This process is very

fast and in most of the cases, the lifetime of an object in our images is

less than ten frames. A lifetime of super fast objects can be two or three

frames.

• Because of having a moderate water flow in the tube, objects do not

necessarily move vertically and they also have movements in other direc-

tions. Moreover, objects collide with other objects and there is a pos-

sibility that they merge together. During the sinking process, merged

objects might split from each other later. As a result, the number of

objects in consecutive images is not necessarily the same.

• Images have different lighting in different that affect the brightness of

objects during their sinking.

• Objects rotate in the water and their observed shapes are not constant.

• Objects do not move at the same speed. Moreover, the speed of an object

varies as it moves.

1.3.1 Multiple Object Tracking

Tracking several objects simultaneously, called as Multiple Target Tracking

(MTT) is a famous problem that is needed to be solved in different applica-

10

tions. Tracking blood cells for medical usages [20, 22, 24, 13, 14, 35, 9], tracking

pedestrians in the images of surveillance cameras [48, 30, 41] or tracking play-

ers in team sports to have team analysis [39] are examples of MTT. We are

interested mainly in mentioned applications because of objects of those im-

ages, blood cells, and people, have some similarities to our bitumen droplets

and sand particles. For example, objects can be merged or stayed together for

several frames, they have different speeds and also their shape and color are

not constant during the movement. Similarly, targets to track in slurry images

are bitumen droplets and sand particles (in general we call them as objects)

that show similar behaviors.

Many different algorithms are proposed to address MTT problem for dif-

ferent situations. In general, there is not a single best method that performs

excellent for all different types of images and objects, and depending on images

and object features different algorithms have different performances [7, 24].

Both supervised and unsupervised algorithm for MTT are developed and their

performance among different experiments indicates that none of them are ab-

solutely better than others [7]. In our specific application, we are not able to

use supervised and machine learning based algorithms because we do not have

enough training data for our slurry images and there is not any data set with

similar features available. Merging of moving objects together and/or split-

ting them from each other are other common situations that in most of the

MTT cases happen [13]. We mentioned some algorithms that handled these

two cases in Section 1.3.2 and Section 1.3.3.

Most of the MTT algorithms can be categorized into one of the two main

groups: (A) algorithms which assign newly detected objects in each frame to

the existed tracks especially by comparing the new objects with the objects

of the previous frame; and (B) algorithms that find the best possible tracks

by taking all objects of all frames into consideration. First group is called

frame-by-frame tracking algorithms (more details in Section 1.3.2) and second

group is called multi-frame tracking algorithms (more details in Section 1.3.3)

[22, 7, 24, 13]. A vast study on different MTT algorithms shows that in

general, multi-frame tracking algorithms have better performances than frame-

11

by-frame tracking. However, most of the multi-frame tracking algorithms need

more time to run and might not be suitable for real-time tracking processes

[7].

1.3.2 Frame-by-frame Tracking Algorithms

Frame-by-frame tracking algorithms are MTT methods that aim to make the

tracks by iteratively assigning (i.e. matching) the objects of two consecutive

images starting from the first two frames and ending by two last frames of

a video. These methods connect the newly detected objects to the existing

tracks. The assignment is based on similarity of the objects in successive

frames. In our images, similarity can be computed according to features such

as shape, color, and positions. General framework of frame-by-frame tracking

algorithms mentioned in [5] is shown as a flowchart in Figure 1.2.

Detected Objects

Detect Objects
in Next Frame

Start

Assign Objects Inspect Tracks

Is There
More Frames
to Catch?

Update Models
Predict and

Gating

List of Tracks

Stop

no

yes

Figure 1.2: General framework of frame-by-frame tracking algorithms.

Although different algorithms use different ways to track the objects, all

of them have at least the assigning step of the framework. For example; [9]

assigns each object in the current frame to the Local Nearest Neighbor (LNN)

object in the next image [7, 21, 33, 35]. Improved methods aim to find a

global optimal assigning between objects. Global Nearest Neighbor (GNN)

[35] algorithms allocate the objects in a way to get the highest similarity score

between connected pairs. Hungarian assigning is also a similar method which

finds the least total cost between connected objects [7, 26]. More complicated

algorithms are also proposed; using each object’s shape as a kernel to find its

12

best match in the next image [21], or in [33] case, fitting the best possible curve

around each object by using a fourth order polynomial Gaussian function in

order to gain more possible features and information from objects.

Track inspection step is to make sure the connections between objects are

correct. This step is also responsible for handling the cases such as disappear-

ing an object for several frames (blinking), and merging or splitting of objects.

Moreover, ending a track or starting a new one are two other tasks related

to this step. It is not necessarily possible to assign all objects in a frame to

all objects in the next frame. Some algorithms ignore the blinking, merging

and splitting problems and their focus is on tracking non-conflicting objects

[21, 35]. On the other hand, many algorithms are proposed to handle these

cases, for example, by using dummy objects (non-existed objects) to make the

number of objects in successive frames equal [36, 9]. Linking the short tracks

to each other to make complete tracks is also used in [14]. In addition, re-

questing user input in conflicting situations is another way to handle merging

and splitting occurrences [42].

Comparing objects in one frame to all objects in the next frame to find

the best possible matches is very time intensive. Only a few features can

be extracted per object and since there are a significant number of objects

in each image, many objects would be similar to each other. Therefore the

chance of false assigning would be higher compared to cases that there are fewer

objects to compare with. Shrinking the search window is a good solution for

eliminating many of the false candidates [7, 5]. This method called gating and

it increases the speed of comparison process. To make sure that the exact

object will not be missed in the next frame, the search window should be

big enough but more importantly, the area of searching should be close to the

object we are looking for. As a result, different MTT algorithms apply different

fluid motion models or motion estimation algorithms to predict and suggest

the object possible location in the next frame [7, 24, 36]. Motion models

can be for random movements (Brownian motion), directed movements or a

combination of both [7, 36]. Next position of each object can also be predicted

according to the movement history of the related track. Next position can be

13

estimated by methods such as Kalman filter [7, 5].

As shown in Figure 1.2, after assigning objects to existing tracks and main-

taining the tracks in inspection step, motion model or estimation model should

be updated according to the new assignments. By this update, the location

of objects in next frame can be predicted in the next step (predicting and

gating). After that, objects of next frame will be retrieved. These five main

steps (assigning objects, inspecting tracks, updating the models, predicting,

and detecting objects in next frame) will run iteratively until there is no more

frame available in the movie.

1.3.3 Multi-frame Tracking Algorithms

Instead of connecting objects of consecutive images to each other, multi-frame

tracking methods look for the best possible tracks in the entire movie [43, 20,

30, 49, 5]. Frame-by-frame tracking algorithms have one main weakness; shape

and color of objects might change during their movement. Therefore, there is

a chance that by comparing the objects just between consecutive frames, two

completely different objects get connected to each other. Since in most of the

frame-by-frame tracking methods there is no history about features of those

two objects, this connection might be accepted. As a result, in images with

several similar objects frame-by-frame algorithms are more error prone than

multi-frame tracking [39, 7].

Multi-frame tracking methods are also known as Multiple Hypothesis Track-

ing (MHT) algorithms [6, 5]. The main features of these methods are:

• They take all the possible connections between objects of different frames

into consideration (by using gating methods the number of connections

is reduced significantly)

• Possible tracks (which are also called as hypotheses in MHT) are se-

quences of these connections.

• For every hypothesis, track score is computed according to the similarity

of objects in that hypothesis.

14

• Hypotheses with highest scores will be selected as final tracks.

Flow network is a Directed Acyclic Graph (DAG) that is recently used

successfully in some multi-frame tracking algorithms [43, 39, 30, 49]. In this

graph, every detected object is a node. For each edge that connects two

nodes, capacity or weight of that edge is computed based on the dissimilarity

between related nodes (i.e. objects). The direction of the edges is from nodes

of previous frames to the nodes of the next frames. Nodes with a possibility

of starting a track are connected to the birth node and nodes that can be the

last presence of an object in the video are connected to sink node. If edges are

considered as pipes, the ultimate goal is to find the K pipelines in the network

with the least total cost of pipes to flow a fluid from birth node to the sink

node. This goal is equivalent to finding the K-Shortest Paths (KSP) problem

[30].

In Figure 1.3 an example of using Flow Network for MTT is shown. In

this network, detected objects are shown as blue nodes. Object Oij is the jth

detected object in the ith frame. Nodes are connected to each other by directed

edges. Edges of this example just connect objects of consecutive frames to each

other. Weights of edges are computed based on dissimilarity of related nodes

(although not shown in the graph). Between objects of successive frames, not

all objects are similar enough to be connected to each other (e.g. there is no

similar enough object in frame number 1 to object O24). Objects which are

good candidates for starting a track are connected to the birth node. Please

note that there might not be a specific relation between frame number and

connection to the birth node. For example in slurry images, objects are sinking

and as a result, objects in the top part of the images are good candidates for

starting a track. The same conditions are true for connecting the ending nodes

to the sink node. After generating the graph, the goal is to find K paths from

the birth node to the sink node which have the least total weight of the edges.

Final tracks will be those paths without considering their connections to birth

and sink node.

Despite their general better performance than frame-by-frame tracking al-

15

Birth

O11

O12

O13

O21

O22

O23

O24

O25

O31

O32

O33

O34

Sink

Figure 1.3: An example of using Flow Network for tracking multiple objects
in sequences of images. Object Oij is the jth detected object in the ith frame.
Connection between edges are directed and their weight is computed based on
their dissimilarity of related nodes.

gorithms [7], multi-frame (i.e. MHT) methods are not good at running time

and memory usage since every time a new frame with new objects is added, all

of the possible tracks (hypothesis) should be updated. Some hypothesis may

fail at the gating step and they should be removed. On the other hand, some

other new hypotheses might get started. Updating all of the changes is very

time-consuming. For keeping all the possible hypotheses, these methods also

consume a huge amount of memory. These drawbacks are recently addressed

in a greedy Flow Network based algorithm proposed in [30].

For speeding up the process of finding KSP in Flow Network and at the

same time using less amount of memory, a greedy algorithm was proposed

at [30]. This method suggests saving the least possible total cost for getting

from the birth node to all detected objects in the current step (i.e. current

frame). In the next frame, each detected object will be connected to an object

in the previous frame with the following condition; previous frame object’s

total cost plus the connected edge cost to the current object should be the

16

least comparing to other connections. For the next step, least possible costs

should be updated just by adding the cost of the new connections. At the end

(by getting to the sink node), objects (and their related path) with the least

total cost will be selected.

By applying this greedy improvement there is no need to save all the net-

work in the memory. Instead, only objects of the last frame need to know

their path to the birth node and its cost. On the other hand, while the perfor-

mance remains identical, this method reduces the run time from O(N3log2N)

to O(KNlogN) where N is the total number of frames and K is the number

of tracks [30].

1.3.4 Tracklet Stitching Algorithms

One of the main problems in cases that MTT algorithms are needed is that

most of the times targets are moving in different directions and they also

rotate. As a result, their appearance based features will change during the

movie. Considering similar objects with similar shape and color around, this

drawback can cause several misassigning between objects. On the other hand,

although feature changing is inevitable, its effect is less in shorter time periods.

For example, considering an object in two consecutive frames, its appearance

is almost the same, but after several frames, it can be different noticeably. As

a result, many algorithms are proposing tracklets (i.e. small tracks with the

lifetime of fewer than 10 frames) in order to have more reliable features for

targets during their movement [39, 48, 6, 30, 41].

Tracklets are in fact short sub-tracks of the main tracks. By using tracklets,

instead of connecting objects to each other to form the tracks, similar tracklets

will be connected and made the final track. This method is also known as

tracklets stitching [6, 30]. Using tracklets provides features that will not change

unpredictably in the upcoming frames such as average size of the object or its

average color. In addition, if a misassigning happens between objects, this

error only affects the rest of the tracklets that contain those two objects.

Recently a novel Flow Network based method for tracklet stitching has been

developed that uses tracklets as nodes in the Flow Network instead of each

17

detected object separately [6].

In general, a very important factor to have good results is to have tracklets

with good accuracy. There are different methods to generate the tracklets. For

example in Singh2008 algorithm [41] whenever similarity between two consec-

utive objects is less than a threshold, tracklet will be finished. Shitrit2014 [39]

first uses Flow Network with every object as a node in it. After computing the

best tracks, this method cuts them to several smaller tracklets whenever two

tracks get close to each other. The rational behind it is that misassignments

always happen when objects are too close.

1.4 My Contribution to the Process of Com-

puting Object Velocities

In order to compute velocity of floating objects, a system needs to have good

performance in two major steps: (1) detecting the objects in each image and

(2) tracking the objects in a sequence of images. We contributed to both steps.

Chapter 2 is dedicated to the methods we developed and the experiments we

performed for the first part of this project (i.e. detecting as many objects as

possible in the least running time). Chapter 3 of this thesis is dedicated to the

methods we implemented for tracking the objects. In the following sections,

we bring a brief description of our contributions.

1.4.1 Comparing Existing Methods and Applying Tiling
and Down-Sampling

Slurry images have some specific features and contain hundreds of objects

with different sizes, in different shapes and different brightnesses (bitumen

droplets are darker than sand particles). In addition, images suffer from poor

illumination, and the background light changes in different parts of them. Here

the goal is to detect most of the objects as fast as possible. In order to assess

performance of previously developed methods on our datasets, we tested four

global thresholding (MAX-ENT, MIN-ERR, Otsu and Iterative), seven local

thresholding (2D-ENT, Niblack, Sauvola, Bernsen, Gatos, NICK, MAT) and

18

five segmentation algorithms (GB, SLIC, SRG, M-SHIFT and SRM).

Image segmentation methods are time-consuming. In comparison, global

thresholding algorithms are faster; however, they do not have good perfor-

mances when there are light changing effects in the image. As our first attempt

to improve the performance and decrease the running time, we proposed us-

ing two simple methods, image tiling and downsampling. More details about

the results of applying existing methods on slurry images are provided in

Section 2.3. Also, an extensive study about the effects of image tiling and

downsampling on image segmentation and global thresholding methods can

be found in Section 2.4.

1.4.2 Proposed Framework for Improving Image Thresh-
olding Algorithms

We contributed to this area of research by proposing a framework that detects

small objects using fast and accurate thresholding methods. Our framework

iteratively detects relatively large and dark objects and then removes them

from the image to give more chance to the relatively smaller or brighter ob-

jects to be detected. Any global or local thresholding algorithm can work

with this framework properly. Although our proposed framework may use

the global thresholding approaches, it does not have the main drawbacks of

global thresholding methods (including being vulnerable to the background

illumination changes). To evaluate our method, we compared it against ten

different popular thresholding algorithms, including four global thresholding

and six local adaptive algorithms. The main objects that we look for include

sand particles and bitumen droplets which have relatively darker colors, while

the image background is bright. Section 2.5 is dedicated to explaining this

proposed framework in more details.

1.4.3 Tracking Objects by Applying Hungarian Assign-
ing and Network-Flow To the Detected Objects

After detecting objects in each image, the next step was to accurately track

the detected bitumen droplets and sand particles in a sequence of images. As

19

mentioned earlier, there are two main categories of object tracking approaches:

frame-by-frame approaches and multi-frame methods. In general, multi-frame

tracking algorithms have better performance in other MTT applications. In

comparison, frame-by-frame methods need less memory to run and can do all

comparisons in one traverse of all images.

None of the existing methods for MTT has been previously evaluated and

applied to the slurry images, and for the first time, we applied two tracking

algorithms to track the detected objects: (1) a Hungarian assigning method

(as a frame-by-frame based approach); and (2) K-shortest paths (KSP) based

tracking in a Flow Network (as a multi-frame based approach). For the frame-

by-frame tracking algorithm, objects of two consecutive images are assigned

to each other by using the Hungarian method. For the Flow Network method

(which is a multi-frame tracking algorithm), we found K-shortest paths in the

network, where each detected object in each image was a node of the graph

and the edge weights were computed by using the dissimilarity between the

nodes. More details about the implementation and experiment results of these

two methods are described in Section 3.3

1.4.4 Using Tracklets and How to Cut Them

The result obtained from applying tracking algorithms (Section 3.3) indicated

that finding KSP in a Flow Network has a better performance than Hungarian

assigning tracking algorithm. Therefore, we asked whether we can improve the

performance of the Flow Network even further. As mentioned earlier, using

tracklets instead of detected objects has been previously shown to improve the

results in other applications. Therefore, likewise we were keen to see whether

the same effects were observed in our specific application of the Flow Network

in the slurry images.

There are several ways to cut the tracks into smaller parts to obtain the

tracklets. We tested two of the existing methods. In addition, we proposed

a two new cutting method to generate more reliable tracklets (which in turn

results in generating accurate tracks at the end). We named the proposed

cutting methods as Kalman filter cut and Hard cut. Hard cut divides a track

20

into smaller tracklets with the same size. Kalman filter cut uses Kalman filter

to cut a track whenever a big jump happens between the object’s expected

new location and its observed new location. More details of the methods and

experimental results of using tracklets in the Flow Networks are explained in

Section 3.4.

21

Chapter 2

Detecting Objects in Each
Image

In this chapter, we describe the steps required to make sure objects are de-

tected in each image as accurately as possible. It is preferable to detect bitu-

men droplets and track them in real time and as a result running time is also

an important factor.

Some of the most famous algorithms of global Thresholding, local Thresh-

olding and Segmentation are compared to each other with regard to our images

in Section 2.3. To improve the accuracy and/or efficiency of the algorithms,

two simple ideas can be; (1) tiling the image into smaller parts and apply

the algorithm on each part separately, or (2) downsampling the images into

smaller sizes with hope to have the same accuracy but in a less running time.

In Section 2.4, we studied the effect of using tiling and downsampling methods

on the performance of mentioned algorithms. At Section 2.5, we proposed a

framework that is able to work with both global and local Thresholding al-

gorithms and it will improve their performances. For evaluating any of the

algorithms and methods and also the proposed framework, some ground truth

images are required. We explained the process of making ground truth images

in Section 2.1 before any other topics. Section 2.6 contains conclusion and

summary.

22

2.1 Making Ground Truth Images

For comparing the thresholding methods, we needed to compare them with

some ground truth images. We prepared our ground truth as binary images in

which a user manually marks foreground pixels as one. The remaining pixels

form the background and are labeled as zero (or vice versa). The size of slurry

images is 2736∗1500 and they contain large quantities of bitumen droplets and

sand particles. In general, original pictures can be categorized into two: (1)

sparse, and (2) dense images. At the beginning moments of floating slurry in

the flow tube, slurry images contain fewer objects (i.e. bitumen droplets and

sand particles) and therefore slurry images are more transparent and sparse.

However, after a while, the number of objects increases gradually and each

image can contains hundreds of objects. We call the first group as sparse

images and the latter group as dense images. In sparse images, there are fewer

objects to detect and the image histogram is mostly unimodal to some extent.

In comparison, in dense images, there are hundreds of bitumen droplets and

sand particles in the hot water and images mostly have bimodal histograms.

We manually labeled five sparse ground truths and five sparse ones by selecting

all acceptable objects in an image with Adobe Photoshop and then replace

them with zero; rest of the image is labeled as one. Each group of five images

to be labeled are timely consecutive (five consecutive frames).

In making ground truth images, there are cases that some of the close

objects are labeled as one big object. The reason is that the boundary between

some adjacent bitumen droplets and sand particles could not be distinguished

properly with bare eyes, therefore they were all labeled as one big object. Also,

there are some scratches on the surface of the cylinder. These scratches are

neither bitumen droplets nor sand particles, but without any knowledge about

the shape of the objects, they are dark and big enough to be detected as an

object in a two-dimensional image by a thresholding algorithm. We labeled

bigger darker scratches as foreground and ignored the rest. On the other hand,

in making ground truths, we selected as many objects as possible and there

are some small or bright objects in ground truth images which are hard to

23

detect by all of the thresholding methods.

2.2 Evaluating Detection Methods

We applied the existing algorithms and also proposed method on each ground

truth image, and obtained a binary image. We then compared the binary

result image against the manually labeled ground truth. We measured cor-

rectness score using Recall, Precision, and F-score. These three scores are

computed pixel-wise; comparing the number of pixels detected as foreground

by a thresholding algorithm with the number of pixels labeled as one in ground

truth images. In addition, we used OCE-Score as a measure which is sensitive

to under-segmentation and over-segmentation between detected objects of an

algorithm with labeled objects in ground truth images. OCE-Score is an ob-

ject based scoring method and gives a penalty for an inappropriately detected

object. The output of the methods is a similarity score in the range of [0 1].

2.3 Comparing Thresholding and Segmenta-

tion Methods

To compare the the results of previous works with regard to our slurry images,

we tested four global thresholding (MAX-ENT, MIN-ERR, Otsu and Itera-

tive), seven local thresholding (2D-ENT, Niblack, Sauvola, Bernsen, Gatos,

NICK, MAT) and five segmentation algorithms (GB, SLIC, SRG, M-SHIFT

and SRM). These methods are described in Section 1.2.

Some of the algorithms have parameters which need to be tuned properly.

Values we mention in the following are reached by testing different numbers

to get the highest performance results. Global thresholding algorithms do not

need any parameters to set. For 2D-ENT we used a sub-window with size 3*3.

In MAT 10% of lower and 10% of the upper histogram are ignored and the sub-

window size is 7*7. In Niblack K is -0.2, offset C is 10 and the sub-window size

is 85*85. For Sauvola a bigger sub-window of 465*465 is used with K = 0.34

and R is equal to the maximum standard deviation in the image. To apply

Bernsen algorithm sub-window size is 93*93 and if the intensity difference

24

between the brightest and the darkest pixel in this sub-window is less than 5,

we assume that area is homogeneous. For NICK K is -0.2 with sub-window

95*95.

Segmentation algorithms divide the image into smaller parts (i.e. smaller

areas) with similar properties. In most of the cases, number of areas is more

than two. It can be helpful as it can distinguish between hot water, sand

particles, and bitumen droplets but first, there is a need to make sure segmen-

tation algorithms can detect the objects properly. To do so, we applied some

post processing on each of the algorithms in order to have binary images with

detected objects in white and background in black. GB algorithm gives us sev-

eral partitions. We think of the biggest partition as background and the rest as

foreground. If checking for neighbors is based on the pixel distance, threshold

K in the algorithm is equal to 2.5 and the minimum size of a segmentation

cluster S is 50. For the case of finding neighbors based on Nearest Neighbor

algorithm, threshold K is 2.5
√

3
, the number of nearest neighbors N is 10 and

the searching range R is 50. We tested SLIC with three different numbers of

superpixels K = {500, 1000, 5000}. We then replace the intensity of each pixel

by the average intensity of its super pixel. As the last post-processing step, we

apply the MIN-ERR algorithm to find a proper threshold K. Pixels of every

superpixel with an intensity average above K are parts of the foreground. In

SRG, we select the brightest pixels as seeds and maximum intensity distance

for breaking expanding loop is 12.5. To turn a Mean Shift algorithm’s output

to a binary image, we first convert it to a grayscale image and then apply the

MIN-ERR thresholding method to find the objects. Spatial range to consider

for moving is 40 and threshold for convergence is 9.

In order to increase the quality of the images and make circular objects

easier to detect, we applied a Gaussian filter on each frame as a preprocess-

ing step. In some of the cases, after running the algorithm, there are holes

in the middle of the foregrounds. However, since sand particles and bitumen

droplets are closed filled objects with no hole in them, we filled these holes as

a post-processing step.

25

Table 2.1: Results of applying different thresholding and segmentation algo-
rithms on sparse slurry images. The best results are for MAX-ENT and Nick
methods.

Spare Images - Average Running Times in Seconds
Algorithms Recall Precision F Measure OCE Score Run Time (s)
MAX-ENT 0.68 0.79 0.73 0.56 0.1
MIN-ERR 0.57 0.92 0.7 0.51 0.21
Otsu 0.96 0.01 0.02 0.004 0.16
Iterative 0.95 0.01 0.02 0.004 0.17
2D-ENT 0.67 0.79 0.73 0.54 13.22
Niblack 0.92 0.6 0.73 0.57 0.39
Sauvola 0.58 0.87 0.7 0.51 0.42
Bernsen 0.99 0.01 0.02 0.01 1.23
Gatos 0.65 0.81 0.72 0.54 1.48
Nick 0.63 0.9 0.74 0.56 0.4
MAT 0.78 0.04 0.08 0.02 493.95
GB-Grid 0.97 0.35 0.51 0.34 27.86
GB-NN 0.98 0.27 0.42 0.26 40.55
SLIC-500 0.89 0.23 0.36 0.18 3.68
SLIC-1000 0.69 0.68 0.68 0.42 5.65
SLIC-5000 0.51 0.94 0.66 0.48 22.14
SRG 0.97 0.01 0.02 0.002 2338.89
M-SHIFT 0.48 0.96 0.64 0.45 14463.62
SRM 0.59 0.84 0.69 0.52 41.19

The results of applying these methods on slurry images are shown in Ta-

ble 2.1 and Table 2.2. Considering both sparse and dense images, the best

algorithms are MAX-ENT and Nick thresholding algorithms with high accu-

racy rate and very fast running time. Segmentation algorithms are not as

good as thresholding algorithms in detecting objects and moreover, they are

significantly slower comparing to thresholding methods. Most of the algo-

rithms have a better performance in dense images as the number of objects

(including darker and bigger ones) are more and it makes them easier to detect.

2.4 Applying Tiling and downsampling

As mentioned earlier, although most of the global thresholding algorithms

are super fast with reasonable good results, they are vulnerable against poor

lighting in different parts of the image. If there is a way to select a smaller part

of the image in which the illumination does not change significantly and apply

26

Table 2.2: Results of applying different thresholding and segmentation algo-
rithms on dense slurry images. The best results are for MAX-ENT and Sauvola
methods.

Dense Images - Average Running Times in Seconds
Algorithms Recall Precision F Measure OCE Score Run Time (s)
MAX-ENT 0.8 0.9 0.85 0.68 0.11
MIN-ERR 0.74 0.94 0.83 0.65 0.22
Otsu 0.79 0.92 0.85 0.69 0.14
Iterative 0.78 0.92 0.84 0.68 0.16
2D-ENT 0.22 0.95 0.36 0.18 14.61
Niblack 0.84 0.91 0.87 0.73 0.41
Sauvola 0.85 0.91 0.88 0.74 0.44
Bernsen 0.95 0.77 0.85 0.64 0.87
Gatos 0.68 0.96 0.8 0.6 0.18
Nick 0.67 0.97 0.79 0.59 0.4
MAT 0.54 0.85 0.66 0.48 856.3
GB-Grid 0.98 0.71 0.82 0.62 28.1
GB-NN 0.97 0.76 0.85 0.67 40.53
SLIC-500 0.77 0.67 0.72 0.33 2.65
SLIC-1000 0.35 0.99 0.52 0.30 3.73
SLIC-5000 0.68 0.96 0.8 0.6 15.94
SRG 0.98 0.29 0.45 0.09 1025.44
M-SHIFT 0.81 0.91 0.86 0.7 14536.41
SRM 0.73 0.93 0.82 0.64 54.14

27

the same algorithm just on that smaller area, results can be improved. One

simple idea is to divide the image into smaller parts, or in other words, tile

the image with smaller sub-windows, and then apply the same thresholding

algorithm on each tile separately. Figure 2.1 shows an example of applying

Otsu method on the entire image, and also on four divided parts separately.

In this example, we aimed for finding dark objects in the bright background.

In the output, white areas are foreground while black means background. The

third image is the result of dividing the image into four equal smaller images

and apply Otsu on each of them. The image suffers from different background

lighting in different parts of it and it is only by using tiling that we could

detect both objects. As a drawback, running thresholding methods on several

tiles will cost having longer running times (see Table 2.3 and Table 2.4).

(a) (b) (c)

Figure 2.1: Advantage of using tiling for global thresholding algorithms. (a)
original image, (b) result of applying Otsu algorithm on the entire image and
(c) result of applying Otsu on four equally divided sub-images.

On the other hand, segmentation algorithms are designed for several pur-

poses not just detecting background and foreground. They have different func-

tionality, but most of them split the image into several similar segments. It

can be helpful for separating background hot water, sand particles and bitu-

men droplets from each other. As also shown in Table 2.1 and Table 2.2, their

well-known weakness is that most of them are time intensive.

One solution to address this problem is downsampling. For most of the

segmentation algorithms, increasing the number of pixels running time would

increase the running time. The run time can be reduced by applying the seg-

28

mentation methods on downsampled images. On the other hand, the down-

sampled images will lose a noticeable number of pixels and cause the algorithm

to have less information which is undesired for proper processing.

Tiling is also a helpful solution here. Instead of doing a time-consuming

process, dividing the image into smaller sub-images and then segment sub-

images one by one makes the whole process faster. Most of the segmentation

algorithms need O(n2) or more time to run, where n is the number of pixels

[8, 3]. As a result, tiling works faster than applying the algorithm on the entire

image.

The results of applying tiling on global thresholding and also segmentation

algorithms, in addition to applying downsampling on segmentation methods,

are reported in Section 2.4.1 and Section 2.4.2. These two ideas are not new

[16, 25], but the experiments provide us helpful information. We benefit from

them in our proposed framework for applying the right amount of dividing

(more details in Section 2.5.2).

2.4.1 Tiling Experiments

In order to verify the effect of tiling on the performance of global thresholding

and segmentation algorithms, we selected different tiling rates t = {1, 2, 4, 8,

12, 16, 20, 24}. In each experiment, the height of each image is divided into t

pieces and the width of the image into 3
2
∗ t as in our images width is longer

than 3
2
of the height. Figure 2.2a shows the average F-score of dividing sparse

images into smaller parts within different division rates t and applying differ-

ent global thresholding algorithms on them. When t = 1 we use the original

image. The result of running the same experiments on segmentation methods

is shown in Figure 2.2b. Average running time of the experiments on sparse

images is presented in Table 2.3.

Dividing the image into smaller parts increases the run-time of global

thresholding methods since a fast algorithm, which is O(1), will be run more

than one time. Tiling also decreases the performance of global thresholding

algorithms although it has a peak at earlier divisions. In segmentation algo-

29

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

Tiling Rate

F
-S
co
re

MAX-ENT
MIN-ERR

Otsu
Iterative

(a)

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

Tiling Rate

F
-S
co
re

GB-Grid
GB-NN
SLIC-500
SLIC-1000
SLIC-5000

SRG
M-SHIFT

SRM

(b)

Figure 2.2: F-Score vs Tiling Rates in sparse images, for (a) Global threshold-
ing and (b) Segmentation Algorithms.

Table 2.3: Average running time of applying each method on tiled sparse
images with different tiling rates t.

Spare Images - Average Running Times in Seconds
Algorithms t = 1 t = 2 t = 4 t = 8 t = 12 t = 16 t = 20 t = 24 t = 28
MAX-ENT 0.11 0.27 0.18 0.31 0.50 0.70 0.94 1.22 1.53
MIN-ERR 0.19 0.21 0.22 0.24 0.26 0.28 0.31 0.35 0.39
Otsu 0.14 0.16 0.17 0.20 0.25 0.31 0.39 0.50 0.58
Iterative 0.20 0.16 0.17 0.21 0.27 0.32 0.39 0.49 0.62
GB Grid 27.86 22.83 19.08 22.87 33.93 48.75 70.40 96.17 127.39
GB NN 40.55 33.65 28.29 31.17 43.45 57.30 80.35 105.75 135.39
SLIC 500 3.68 3.99 4.59 5.77 6.87 7.25 9.47 15.52 15.30
SLIC 1000 5.65 6.94 7.91 9.08 14.82 19.18 16.71 33.98 34.11
SLIC 5000 22.14 28.46 32.98 45.50 62.89 171.29 144.06
SRG 2338.90 795.04 439.49 220.80 145.97 115.85 101.16 91.77 92.86
M-SHIFT 14463.62 3912.48 704.41 288.87 210.56 176.59 154.84 142.67 133.15
SRM 41.19 8.06 6.43 5.28 5.55 6.10 6.91 7.81 8.85

rithms, GB and the SRG are the only methods which have a better perfor-

mance by tiling into smaller parts. Tiling has a good effect on SRG, M-SHIFT,

and SRM and makes them faster. On the other hand, because of required

steps for initializing and post-processing methods such as GB and SLIC, these

segmentation algorithms work slower by increasing number of tiles. SLIC is

dependent on the number of superpixels K, and as a result, by having more

number of superpixels, running time would be longer.

The average F-score of dividing dense images into smaller parts within

different tiling rates t and applying different global thresholding algorithms

on them is shown in Figure 2.3a. When d = 1 we use the original image. The

result of running the same experiments on segmentation methods is shown

in Figure 2.3b. Average running time of the experiments on dense images is

30

Table 2.4: Average running time of applying each method on tiled dense images
with different tiling rates t.

Dense Images - Average Running Times in Seconds
Algorithms t = 1 t = 2 t = 4 t = 8 t = 12 t = 16 t = 20 t = 24 t = 28
MAX-ENT 0.36 0.16 0.22 0.44 0.83 1.33 1.91 2.63 3.42
MIN-ERR 0.21 0.22 0.24 0.24 0.27 0.29 0.32 0.36 0.40
Otsu 0.13 0.14 0.14 0.16 0.19 0.23 0.28 0.35 0.43
Iterative 0.13 0.14 0.16 0.19 0.25 0.35 0.44 0.62 0.82
GB Grid 28.10 23.08 20.17 23.22 34.70 48.88 70.17 96.11 127.28
GB NN 40.53 33.28 29.21 32.13 47.67 56.72 80.49 104.97 136.14
SLIC 500 2.65 3.01 4.25 5.51 6.70 7.20 9.41 15.30 16.04
SLIC 1000 3.73 5.62 7.47 8.88 14.06 19.01 17.56 33.64 36.85
SLIC 5000 15.95 27.27 31.55 44.80 66.48 172.14 144.16
SRG 1025.44 610.75 328.58 135.27 94.39 75.39 66.08 63.22 65.75
M-SHIFT 14536.42 3939.53 723.95 305.44 227.28 191.59 172.49 159.66 149.16
SRM 54.14 13.15 7.65 5.95 5.98 6.30 7.34 8.27 9.36

presented in Table 2.4.

0 5 10 15 20 25 30
0.78

0.8

0.82

0.84

0.86

0.88

Tiling Rate

F
-S
co
re

MAX-ENT
MIN-ERR

Otsu
Iterative

(a)

0 5 10 15 20 25 30

0.5

0.6

0.7

0.8

0.9

Tiling Rate

F
-S
co
re

GB-Grid
GB-NN
SLIC-500
SLIC-1000
SLIC-5000

SRG
M-SHIFT

SRM

(b)

Figure 2.3: F-Score vs Tiling Rates in dense images, for (a) Global thresholding
and (b) Segmentation Algorithms.

Similar to sparse images, the same pattern of running time is observed

for dense images. Algorithms have acceptable performance. It is because

there are more dark objects in the images. Increasing tiling rate does not

improve the performance. On the other hand, it is interesting that for the

majority of these algorithms, tiling has no effect on their performance after a

certain division rate which means it can make algorithms such as M-SHIFT,

SRM, and SRG faster with the same performance. Comparing to segmentation

methods, thresholding algorithms still have better performances on original

image without any tiling and also they are still very faster.

31

2.4.2 Downsampling Experiments

To see the effect of downsampling on the performance, we tested different

downsampling rates d = {1, 2, 4, 6, 8}. In each experiment, height and width

of the image after downsampling (called as newHeight and newWidth) are

dependent on the downsampling rate d; newHeight = height

d
and newWidth =

width
d

where height and width are the dimensions of the original image. In

order to be comparable with ground truth images, we upsample the resulting

image after segmenting the downsampled image to the original image dimen-

sions. Both downsampling and upsampling are done with resize function of

MATLAB. We do not apply downsampling on thresholding algorithms because

they are fast enough. The average F-score of downsampling sparse and dense

images within different division rates d and applying different segmentation

algorithms on them can be found in Figure 2.4. d = 1 corresponds to the orig-

inal image. Average running time of applying each segmentation algorithm on

downsampled images with different downsampling rates is shown in Table 2.5

and Table 2.6.

2 4 6 8

0

0.2

0.4

0.6

0.8

Downsampling Rate

F
-S
co
re

2D-ENT
GB-Grid
GB-NN
SLIC-500
SLIC-1000
SLIC-5000

SRG
M-SHIFT

SRM

(a)

2 4 6 8

0.2

0.4

0.6

0.8

downsampling Rate

F
-S
co
re

2D-ENT
GB-Grid
GB-NN
SLIC-500
SLIC-1000
SLIC-5000

SRG
M-SHIFT

SRM

(b)

Figure 2.4: F-Score vs downsampling Rates in (a) sparse and (b) dense images
for segmentation Algorithms.

Downsampling decreases the run time in all cases significantly. It reduces

the performance of all segmentation algorithms except the M-SHIFT. In M-

SHIFT case performance remains the same or decreases slightly.

In conclusion, since a real-time application is desired at the end, run time

is a very crucial factor. Although downsampling and tiling had a good effect

on increasing the speed of some segmentation algorithms, they are still much

32

Table 2.5: Average running time of applying each method on down-sampled
sparse images with different downsampling rates d.

Sparse Images
Average Running Times in Seconds

Algorithms d = 1 d = 2 d = 4 d = 6 d = 8
GB Grid 27.86 5.97 1.30 0.61 0.40
GB NN 40.55 8.63 1.92 0.89 0.59
SLIC 500 3.68 1.14 0.43 0.31 0.25
SLIC 1000 5.65 1.69 0.57 0.35 0.29
SLIC 5000 22.14 6.44 1.88 0.95 0.62
SRG 2338.90 137.65 3.77 3.63 3.87
M-SHIFT 14463.62 801.20 37.17 9.11 3.86
SRM 41.19 9.43 3.27 2.83 1.81

Table 2.6: Average running time of applying each method on down-sampled
dense images with different downsampling rates d.

Dense Images
Average Running Times in Seconds

Algorithms d = 1 d = 2 d = 4 d = 6 d = 8
GB Grid 28.10 6.04 1.49 0.67 0.42
GB NN 40.53 8.65 2.02 0.96 0.65
SLIC 500 2.65 1.14 0.42 0.33 0.33
SLIC 1000 3.73 1.13 0.45 0.30 0.26
SLIC 5000 15.95 4.26 1.33 0.78 0.55
SRG 1025.44 110.50 7.94 3.36 1.53
M-SHIFT 14536.42 798.45 38.96 9.43 4.10
SRM 54.14 8.70 2.65 2.22 2.05

33

slower than thresholding methods with less accuracy (worse performance).

Tiling increases the performance in earlier division rates for MAX-ENT and

MIN-ERR, but it had a bad effect on thresholding algorithms in general.

Therefore, using tiling for improving the performance is not recommended.

2.5 Recursive Iterative Thresholding Frame-

work

One of the problems with thresholding algorithms especially in cases such

as ours is that dark objects (i.e. sand particles and/or bitumen droplets)

shadow bright objects. In global thresholding algorithms, dark objects make

the threshold value to be something small while these brighter objects normally

have a brightness very close to the thresholding value. In local thresholding,

shadow problem may happen because of being affected by a dark object in

the neighborhood. This dark object decreases intensity average and increases

standard deviation of the sub-window. As in most of the cases, standard

deviation has a negative weight on computing the threshold value for the

current pixel, having a dark object around means having a less threshold value

and missing brighter objects. If a small window (for example b=3) is used,

the probability of detecting noises as foreground goes higher and by increasing

the size of the window. smaller or brighter objects would be missed.

In this section, we present a framework for detecting all objects including

the dark ones while retrieving brighter and smaller objects without mislabeling

noise as objects. This method is based on some conditions about our project

and images we have, such as:

• There are hundreds of objects in each image and a noticeable number

of them are small. They may have intensities similar to that of the

background.

• Bigger objects are normally bitumen droplets that are also darker, and

therefore, easier to be detected. In comparison, the smaller brighter

objects are mostly sand particles.

34

2.5.1 Iterative Thresholding Framework for All Thresh-
olding Algorithms

In the proposed method, we iteratively apply a thresholding algorithm on the

original image, select the biggest detected objects among all recognized ob-

jects and then remove them from the image. We repeat these steps until every

single detectable object is detected in this level of processing. Since big ob-

jects are usually darker ones, by removing them from the image, thresholding

algorithms should focus on a smaller range of intensities to select the proper

threshold value. As a result, the chance of detecting brighter objects in the

next iteration is higher.

Removing the biggest detected objects from the image and preparing it for

the next iteration is dependent on the thresholding algorithm that is used. For

global thresholding algorithms that do their processes on intensity values of

the image, we change the color of candidate objects to black with an intensity

value equal to zero. We set that the first iteration is on intensity values in

the range of [0,255], but for the next iterations, acceptable intensity values are

in the range [1,255]. For local thresholding algorithms, we replace the best

candidate pixels with the estimated background or an average of background

pixels in a neighborhood.

We potentially could set the number of biggest candidates to be selected in

each iteration (n), as a constant number, or a number increasing per iteration

with a constant growing rate. However, we decided to set n as an increasing

number that increases in each iteration with a growing rate that increases in

each iteration. The reason is that there are a huge number of small similar

objects in every image with almost the same size and same intensity. Bigger

and darker objects are more distinguishable according to their area and in-

tensity. However, small objects are very similar. Since small objects have the

similar features and there are hundreds of them in each image, it is better to

detect and remove them as much as possible in every iteration. By selecting

this approach, the iterative method terminates more rapidly with the same

performance. The algorithm will terminate if it cannot detect any more ob-

35

jects in two consecutive iterations; in other words, n does not increase for the

last iteration. Another termination condition is when the size of the biggest

detected object exceeds a constant value K. In the latest case, the detected

object will be a part of the background, and since having any objects that big

is not correct, the algorithm will not accept that iteration. The flowchart of

the proposed framework is shown in Figure 2.5.

Start

Input Image

Apply Thresh-
olding Method

Detected
More Objects?

Detected
Objects with
More than
K Pixels?

Ignore New
Detected
Objects

Select Biggest
Half of the New
Objects as Fore-
ground, Then
Remove Them
from Image

Output Image

Stop

no yes

noyes

Figure 2.5: Flowchart of Proposed Iterative Framework

According to the result reported from Section 2.3, MAX-ENT has one of

the best performances of a global thresholding method and it is significantly

fast. NICK is also the best local thresholding method for our goal. Therefore,

we decided to use these two thresholding methods to test in our proposed

framework.

36

2.5.2 Recursive Iterative Framework for Global Thresh-
olding Algorithms

As mentioned earlier in Section 1.2.3 and Section 2.4, the main weakness

of global thresholding algorithms is their bad performance in poor lighting

images. When we use a global thresholding method in our framework, the

proposed iterative method is also weak against poor illumination which is a

common situation in our images. To address this problem, first we apply

the iterative procedure on the original image. Result image contains detected

objects in black and the rest of the pixels have the same intensity as before.

Then the resulting image will be divided into four sub-images and recursively

the same method will be applied on each sub-image until some termination

conditions are met. The last result will be achieved by running a binary OR

operation among images of all these levels. By making the image smaller in

each level of recursive processing and also eliminating big darker objects, the

chance of detecting smaller objects will be higher and it is more robust against

poor lighting in the image.

There are two termination conditions here: (1) size of the sub-image should

not be less than w*h and (2) the intensity difference between the darkest and

the brightest pixels in that sub-image should be more than a constant value m.

Selecting these three parameters can be manual or automatic based on image

features. Based on trying different values on our images and comparing the

results with ground truth images, we realized the best performance happens

when w = 400, h = 400, m = 10. Going deeper in the recursive process causes

the algorithm to detect noises as foreground objects. As the process does

not go deeper, the program never met the intensity difference m termination

condition, but by selecting higher values for m, the objects with intensities

very similar to the background would be missed.

37

Table 2.7: Results of using proposed framework with the best global and local
thresholding methods in sparse images.

Sparse Images
Algorithms Recall Precision F Measure OCE Score Run Time (s)

MAX-ENT 0.68 0.79 0.73 0.56 0.10
Proposed Method

Recursive Iterative (via MAX-ENT)
0.78 0.71 0.74 0.59 2.91

NICK 0.63 0.90 0.74 0.56 0.40
Proposed Method

Iterative (via NICK)
0.64 0.89 0.74 0.56 3.47

Table 2.8: Results of using proposed framework with the best global and local
thresholding methods in sparse images

Dense Images
Algorithms Recall Precision F Measure OCE Score Run Time (s)

MAX-ENT 0.80 0.90 0.85 0.68 0.11
Proposed Method

Recursive Iterative (via MAX-ENT)
0.93 0.80 0.86 0.64 8.29

NICK 0.67 0.97 0.79 0.59 0.40
Proposed Method

Iterative (via NICK)
0.77 0.95 0.86 0.70 5.26

2.5.3 Recursive Iterative Thresholding Framework Im-
plementation

To assess the performance of our proposed method, we applied our framework

to the same set of ground truth images. Our framework is general and can be

used with any global and local thresholding algorithms. We selected the global

and local thresholding methods with the best performances to be used in our

framework. The global thresholding algorithm with the best performance is

MAX-ENT and the best performance among local thresholding algorithm was

achieved by NICK (See Table 2.1 and Table 2.2). For testing MAX-ENT in

our framework and based on trying different levels of dividing the image in the

recursive process, we realized it is better to stop dividing the image into smaller

parts after two levels. We found that if we keep dividing the image into smaller

parts it may detect the entire sub-image as a homogeneous foreground area.

When using NICK as a local thresholding algorithm in our framework, pixels

of detected objects in the image will be replaced with the average intensity of

their neighborhood. The same preprocess (applying Gaussian filter) and post-

process (filling the holes) are also applied here. Results are shown in Table 2.7

and Table 2.8.

38

(a) (b) (c)

(d) (e) (f)

Figure 2.6: Examples of object detection with proposed framework via MAX-
ENT thresholding algorithm. (a),(d) Examples of original image, (b),(e) ob-
jects detected with MAX-ENT method and (c),(f) objects detected by using
MAX-ENT in the proposed framework.

The results show that our proposed method has a better performance than

the best methods from the previous section. The main improvement achieved

by using our proposed framework when compared to the other previously pub-

lished methods is in its ability to detect smaller and brighter objects more ac-

curately and more often. The small and bright objects are not easy to detect

as they are more similar to the background, and also they are considered as

noise in the other methods. Detecting more objects means achieving higher

recall rates and in all cases, proposed framework increases recall of thresh-

olding algorithms. It is also noticeable that since the goal is about detecting

more small objects, in an image with hundreds of objects and while recall is

a pixel-wise scoring method, even one percent increase in recall rate means

having more than ten smaller objects. On the other hand, because of running

several iterations and more specifically, processing an image in different levels

of recursion in global thresholding algorithms, output images of the framework

may suffer from a slightly under-segmentation problem and some close objects

39

(a) (b) (c)

(d) (e) (f)

Figure 2.7: Examples of object detection with proposed framework via NICK
thresholding algorithm. (a),(d) Examples of original image, (b),(e) objects
detected with NICK method and (c),(f) objects detected by using NICK in
the proposed framework.

are detected as one big object. It leads to lower precision rates. In contrast,

in all cases, F-score as a combined measurement is improved by our method.

Because of running multiple iterations, the run times of our framework are

longer. Unlike precision and recall which are pixel-wise measurements, OCE

is an object based scoring method and according to experiment results, the

OCE is improved by our framework, as it is able to detect more objects cor-

rectly.

NICK thresholding algorithm has higher recall rates with our framework

especially in dense images, but its performance is not changed that much

in sparse images. The reason is that in the sparse images, objects are far

from each other and the probability of being affected by a dark object in the

neighborhood is less. As a result, if an object is not detected as an object

and there is no dark object around, it will not detect as foreground in next

iterations either. This condition happens rarely in dense images.

Examples of detecting small and bright objects by the proposed method

40

and comparing them with results of MAX-ENT and NICK are shown in Fig-

ure 2.6 and Figure 2.7 respectively. Objects detected by our method have

bigger areas than those of thresholding algorithms. The reason is that around

each object there is a layer of pixels, which are not part of the foreground

and also these pixels are not as bright as background pixels. This makes our

algorithm detect them as part of the object.

2.6 Conclusion

In this chapter, we presented an iterative framework that is suitable for de-

tecting smaller and brighter objects in an image accurately. This framework

is compatible with both global and local thresholding methods. In the case

of global thresholding methods, it is recommended to apply a recursive divid-

ing approach to relax the effect of poor illumination on detection processes.

In order to evaluate the performance of our method, we compared it to the

well-known global and local thresholding algorithms. We first compared per-

formances of four famous global thresholding, seven local thresholding algo-

rithms, and five segmentation algorithms together on our ground truth images.

We selected the top global and local thresholding algorithms by considering

their F-measure, OCE score and run time. Other experiments such as tiling

the images or downsampling them were also tested, but the results were not

satisfactory. We then run our proposed method using these top global and

local thresholding algorithms and compared the results against the best can-

didates of each group. All comparisons are done by using slurry images and

the purpose is to detect bitumen droplets and sand particles as many and as

accurately as possible. Results show that our method is able to detect more

objects including brighter and smaller ones and it also performs better, but

slower than the best algorithms of each group.

41

Chapter 3

Tracking Objects in Sequences
of Images

By comparing some of the famous thresholding and segmentation algorithms,

it is realized that MAX-ENT and NICK have the best performances for run-

ning on slurry images. Evaluating proposed Recursive Iterative Framework

indicates that this framework can work better but it needs noticeably more

running time. As a result, for the further studies, we just worked with the

results of the MAX-ENT global thresholding algorithm.

After detecting objects properly in each image, the second main step is

to track the detected objects in sequences of slurry images. By tracking any

specific object in a video, a list of positions in different images will be made at

the end. A fast algorithm which can track objects correctly is a suitable one

because the aim is to track particles in real time.

Objects of slurry images do not blink or disappear temporarily between

their movement (a case that happens in blood cell imaging [36, 9]). Therefore,

an acceptable tracking method connects good candidates for several frames

without missing any frames in between. A track is finished whenever the

tracked object is out of the image boundary. In addition, objects can collide

with each other in a few situations. In this study, we have developed a method

to track objects in slurry images, and to the best of our knowledge, this is the

first study that applies a method for tracking objects in slurry images. The

main focus of our project was to test and evaluate the performance of different

applicable methods. Handling cases such as merging or splitting of the objects

42

is out of the scope of this study and is left for future work.

There are hundreds of detected objects in each image. Tracking all of these

objects simultaneously would be very difficult, if not impossible. As a result,

we focused on tracking the most important floating objects which are bitumen

droplets. Bitumen droplets are darker objects comparing to sand particles.

Therefore a good way to separate them out is by selecting darker objects.

Since we used the MAX-ENT to detect objects, all the objects should have a

brightness less than a global threshold T . Selected darker objects are the ones

which had a brightness less than T/2. Tracking brighter objects is a part of

the future works.

In this chapter, we describe implementation and evaluation of different

tracking methods. For evaluation of the methods, some ground truth tracks

are needed. Section 3.1 explains the required steps for generating a Graphical

User Interface (GUI) to help a user generate ground truth tracks faster and

easier. The evaluation process is described in Section 3.2. In Section 3.3 we

mention the implementation of two tracking methods; a frame-by-frame based

algorithm and a multi-frame based method. These two methods are then

evaluated according to ground truth tracks. Section 3.4 describes the methods

of improving the tracking performance by using tracklets in Flow Network.

Section 3.6 contains conclusion of this chapter.

3.1 Designing a Ground Truth Generator GUI

We designed a GUI using MATLAB to help a user generate ground truth

tracks in a very short time. By running the GUI, the beginning frame will

be shown to the user. If T is the global threshold value computed by the

MAX-ENT algorithm to separate foreground from background, GUI shows

darker detected objects which have an intensity less than T/2 with a yellow

square around them. User can select any of those yellow squares as the starting

position of a certain object. GUI then shows the next frame with the same

condition and user should select the right yellow square that contains the

same object in that frame. This procedure continues until user realizes that

43

the specific object is out of the image boundaries and it cannot be tracked

anymore. Therefore the user stops that round and the track will be saved in

the memory. The user can finish the program or continue to track another

object. If the user decides to continue, GUI starts over and shows the first

frame again.

There are many objects that appear later and the user cannot select them

from the beginning frame. By using proposed GUI, the user can skip the

frames and move on to the frame in which an object appears for the first time.

If user realizes there was a mistake in his object selection in previous frames,

he can easily go back in the frames and reselect another object instead.

To help user selecting a right object, GUI marks all the previously selected

objects for existing tracks with a blue plus sign on them. Figure 3.1 shows an

image of the proposed GUI. In this example, two tracks are already selected

and to select a new object for initializing a new track, user has skipped 8 first

frames and moved forward to the ninth frame. In this frame a new object

appeared at the top of the image and user wants to select it by pointing the

mouse at it (intersection of vertical and horizontal black lines).

By using the proposed GUI, we made 41 ground truth tracks for further

evaluations. These tracks contain mostly big objects which were easy to track.

They can start anywhere in the image and end anywhere else. As a knowledge

about our images, we know that bitumen droplets are sinking and therefore

we are interested in tracks which begin at the top part of an image and end

at the bottom part of another image. We also know that height of each image

is 1500 pixels. We considered objects with a distance less than 500 pixels

from the top of the image as good candidates to start a track. Similarly, we

assumed objects with a distance less than 500 pixels from the bottom of the

image are good candidates to finish a track. After applying these constraints,

29/40 tracks remained. These formed our ground truth tracks that we used to

evaluate tracking algorithms. Moreover, after having produced tracks by an

algorithm, only those tracks that are descending in the images and have the

same beginning and ending conditions are considered as final tracks.

44

Figure 3.1: An example of running proposed GUI for generating ground truth
tracks. Bitumen droplets and sand particles which were dark enough to detect
as candidate objects are shown by yellow squares. To make sure the user does
not select any part of the other tracks by mistake, already selected objects are
marked with blue signs. In this frame a new bitumen droplet has appeared at
the top of the image and user aims to select it (the one at the intersection of
vertical and horizontal black lines).

3.2 Evaluating Tracking Methods

In order to evaluate the performance of each tracking algorithm, we compared

the results of each algorithm against the ground truth tracks using the two

following approaches; (1) Between Frames Based Evaluation and (2) Track

Based Evaluation. In the following sections, we describe these two tracking

evaluation methods.

3.2.1 Between Frames Based Evaluation (BFB)

Each tracking algorithm generates several tracks. Between any two consecutive

frames, each track has either zero or one certain connection. Since a tracking

algorithm generates several tracks, there are multiple connections between any

two consecutive frames. The same condition holds for the ground truth tracks.

The precision and recall between two successive frames (e.g. ith and (i+1)th

45

frames) can be computed as:

Precision(i) =
NTC(i)

NC(i)
(3.1)

Recall(i) =
NTC(i)

NGT (i)
(3.2)

where NTC(i) and NC(i) are respectively the number of true connections and

the total number of connections between ith and (i+1)th frames generated by

the tracking algorithm. NGT (i) is the total number of ground truth connec-

tions between the ith and (i+ 1)th frame. The average between frames based

precision and recall for the entire movie are computed as:

Precision BFB =

N
∑

i=1

Precision(i)

N
(3.3)

Recall BFB =

N
∑

i=1

Recall(i)

N
(3.4)

where N is the number of frames in the video and BFB stands for Between

Frames Based evaluation. Recall BFB is similar to detection rate used in

other multiple target tracking (MTT) papers [30, 46, 49] for evaluating and

comparing tracking methods. F-Score of BFB evaluation is computed as:

F Score BFB = 2 ∗
Precision BFB ∗Recall BFB

Precision BFB +Recall BFB
(3.5)

3.2.2 Track Based Evaluation (TB)

The second evaluation method considers the generated tracks as a whole, and

measures Precision and Recall as follows:

Precision TB =
NTT

NT
(3.6)

Recall TB =
NTT

NGTT
(3.7)

46

where NTT is the number of true tracks, NT is the total number of tracks

created by the algorithm and NGTT is the number of ground truth tracks

(which is equal to 29 in our study). Here TB stands for Track Based evaluation.

In order to measure the number of true tracks (NTT), we first computed the

accuracy A(i) for each track i as the number of times the track i connections

match the ground truth connections divided by the length of the track i. Then

we used an accuracy threshold of t between 0 and 1, and identified all the

tracks with the accuracy A(i) greater than or equal to the threshold t. These

tracks formed the set of true tracks. In our experiments, we used four different

accuracy thresholds for t (40%, 60%, 80%, 100%). The tracks with A(i) = 1

perfectly match to the ground truth tracks.

The drawback of this evaluation is that the lengths of the accepted tracks

(i.e. A(i) ≥ t) are not taken into consideration. Therefore, two tracks one with

a length of 3 frames and another with a length of 30 frames may have the same

accuracy A(i) value. This is not appropriate for performance evaluations, as

there is more interest in finding the tracks with relatively higher lengths that

match to the ground truth tracks. To take this point into consideration, we

used the following formula.

Weighted Precision TB =

n
∑

i=1

L(i) ∗ A(i)

NT
∑

i=1

L(i)

(3.8)

Weighted Recall TB =

n
∑

i=1

L(i) ∗ A(i)

NGTT
∑

j=1

L GT (j)

(3.9)

L(i) is the length of ith detected track and L GT(j) is the length of jth ground

truth track. The F-Score of TB evaluation is computed as:

Weighted F Score TB = 2∗
Weighted Precision TB ∗Weighted Recall TB

Weighted Precision TB +Weighted Recall TB
(3.10)

For TB evaluation we tested four different accuracy rates A(i) = {40%,

47

60%, 80%, 100%}. Tracks with accuracy less than 40% are the tracks in which

60% of their lifetime they do not match with any ground truth tracks. Since

we are not interested in these tracks we did not use accuracy rates of less than

40% in our evaluations.

3.3 Applying Frame-by-frame and Multi-frame

Tracking Algorithms to Slurry Images

Up to our knowledge, this is the first attempt of applying tracking algorithms

to the sequences of slurry images. As the first step, we evaluated one method

of each group of tracking algorithms (frame-by-frame and multi-frame tracking

algorithms) on our data sets. The performance of each algorithm is evaluated

by TB and BFB evaluation methods by using the ground truth tracks.

3.3.1 A Frame-by-frame Tracking Algorithm

As a frame-by-frame tracking algorithm, we used Hungarian assigning method

[26, 41] to find the best assignments between detected objects of any two con-

secutive frames. In general, Hungarian assigning algorithm finds connections

between members of two groups with the least cost calculated based on a

dissimilarity matrix. In our tracking method, each row of the dissimilarity

matrix corresponds to one object of the current frame, each column corre-

sponds to objects of the previous frame, and each element value corresponds

to the dissimilarity between the corresponding objects from the two consecu-

tive frames. By using Hungarian method, any object in the current frame will

be connected to at most one object of the previous frame. Similarly, objects of

previous frames can be connected to at most one object in the current frame.

In order to obtain a dissimilarity matrix, we computed the similarity be-

tween pairs of objects from two consecutive frames using the following features:

(1) Number of Pixels (Shape); (2) Brightness (Color); and (3) X and Y co-

ordinates (Position). We computed the similarity between pairs of objects

according to any of these features using Equations 3.11 to 3.14, where P1 is

a detected object in the previous frame and P2 is an object in the current

48

frame. In these equations, NP (P) is the number of pixels in object P , and

I(P) is the average intensity of pixels in object P . X(P) and Y (P) are X

and Y coordinates of the center of object P . Parameters X Diff Max and

Y Diff Max are described in the next paragraph. All three similarity mea-

surements, Shape Sim, Color Sim and Position Sim, get values between 0

and 1, where zero means no similarity and 1 means exactly the same.

Shape Sim(P1, P2) = min(
NP (P2)

NP (P1)
,
NP (P1)

NP (P2)
) (3.11)

Color Sim(P1, P2) = min(
I(P2)

I(P1)
,
I(P1)

I(P2)
) (3.12)

X1 = X(P1), X2 = X(P2), Y 1 = Y (P1), Y 2 = Y (P2) (3.13)

Position Sim(P1, P2) = 1−

√

(X2−X1)2 + (Y 2−Y 1)2

4
√

(X Diff MAX)2 + (Y Diff MAX)2

4

(3.14)

In our images, the objects mostly sink (move downwards), and in fewer

cases, they float up (move upwards). In general, the objects vertical move-

ments are more than their horizontal ones. Therefore, in Equation 3.14, the

distance between vertical positions of two objects is divided by 4 to relax its

effect on the equation. In general, if two objects in consecutive images have

any of the following conditions, we consider them as different objects.

|X2−X1| > X Diff MAX

Y 2− Y 1 > Y Diff MAX

Y 1− Y 2 > Y Diff MIN

(3.15)

The first condition indicates that objects can move horizontally in both left and

right directions, but their horizontal movement is limited by X Diff MAX

pixels per frame. The second condition indicates that the objects sink, but

their downwards movement is not more than Y Diff MAX pixels between

consecutive frames. Last equation (Y 1−Y 2 > Y Diff MIN) considers float-

ing up movements which can happen on few occasions, and it indicates that

49

the upwards movements are limited by Y Diff Min pixels between consecu-

tive frames. Based on the knowledge about our images, such as the size of the

images and approximate velocity and movement of objects, we set those three

parameters as follows:

X Diff MAX = 100, Y Diff MAX = 400, X Diff MIN = 50.

We computed the similarity between pairs of objects (P1 from the previous

frame and P2 from current frame) only if they were located in the horizontally

and vertically constrained distances defined above.

By considering three features (i.e. shape, color, and position) similarities,

we computed the overall similarity between objects P1 and P2 as follows:

Similarity(P1, P2) = α ∗ Shape Sim(P1, P2)

+ β ∗ Color Sim(P1, P2)

+ γ ∗ Position Sim(P1, P2)

(3.16)

where α, β and γ are the weights assigned to shape, color and position features

respectively, and indicate the relative importance of each similarity feature. In

slurry images, the feature that makes the objects distinguishable the most is

the shape of objects. Especially big objects (which are bitumen droplets most

of the time) have different shapes. Since the focus in this project is on tracking

bitumen droplets, we assigned the highest similarity weight to the shapes of

the objects. Intensity or color is another object feature that is stable most of

the time as the object moves between frames, and therefore it can be used to

track the object in different frames. However, bitumen droplets have similar

intensities. Therefore, intensity feature should have less weight compared to

the shape feature. In general, objects move downwards in a sequence of images

but their exact movement is unknown to us. We already set a boundary for

the acceptable range of movements in the horizontal and vertical directions.

However, in these boundaries, different objects have similar chances of getting

connected (i.e. false connection rate can be high) if the position feature weight

has a very high value. Therefore, the position similarity weight (γ) should get

the smallest value among the three features weights. By considering these

50

constraints and trying different values, the following weights led to the best

performance during the experiments: α = 0.6, β = 0.3, γ = 0.1.

At the end, we used the similarity between two objects (a value that is in

the range of zero to one) to compute the dissimilarity value between pairs of

P1 and P2 objects:

Dissimilarity(P1, P2) = 1− Similarity(P1, P2) (3.17)

Between any two consecutive frames, dissimilarity matrix of objects is made

by the mentioned procedure and is given to the Hungarian assignment algo-

rithm [26]. The output of this method is a list of objects that are connected to

each other such that they result in the least total connections dissimilarity. By

repeating the same procedure for all pairs of consecutive frames of the whole

movie, we obtained all the tracks as sequences of connections.

3.3.2 A Multi-Frame Tracking Algorithm

For a Multi-Frame tracking algorithm, we used the method developed in [30] to

find the K-Shortest-Paths (KSP) in a Flow Network with a greedy approach.

This method is a state of the art multi-frame tracking approach. The goal is to

find KSP from birth node to sink node. In this method, each detected object in

any frame is considered as a node in the network. Only nodes of consecutive

frames are connected to each other. We set the weight of each edge as the

dissimilarity between the two nodes of the edge. Since each node in the network

is an object, we used the same approach as the one we explained in Section 3.3.1

to measure the dissimilarity between the nodes. All the connections have a

value between zero and one.

The other important factor in working with the Flow Network is the con-

nections of the nodes to the birth and sink nodes. In slurry images, the objects

usually sink. In other words, generally they appear at the top of the images

and after moving downwards in a sequence of frames, they disappear at the

bottom of the image. Therefore, connections to the birth and sink node in our

network are related to their locations in the image, not their frame number. In

each image, we connect the objects that are at the top part of the image to the

51

birth node, as they are good candidates to start a track. Similarly, we connect

the objects that are at the bottom of the images to the sink node as there is

a good chance that those objects are observed for the last time in a sequence

of images. To be more specific, the height of our images are 1500 pixels and

the objects with a center’s height less than 500 pixels (from the image top)

are connected to the birth node and objects with center’s height of more than

1000 pixels (from the image top) are connected to the sink node. The weight

of each connection to the birth and sink node depends on the location of the

object in the image. The higher (lower) the object is in the image, the higher

the weight of connection to the birth (sink) node is. Weights are computed as

follows:

Birth Weight(P) = 1−
Y (P)

Birth Row
(3.18)

Sink Weight(P) = 1−
Y (P)− Sink Row

Image Height− Sink Row
(3.19)

where Birth Row = 500, Sink Row = 1000, Image Height = 1500.

Birth Weight(P) and Sink Weight(P) are the edge weights for the connec-

tions between object P and the birth node and the sink node, respectively.

We set up the network and assigned all the weight of edges as described

before. Then we run the greedy algorithm described in [30] to find the K-

Shortest-Paths (KSP) in the network. Since we were looking for all possible

tracks, we set K to a large number (K = 100), meaning that the algorithm

looks for a maximum of 100 paths with the shortest cost from the birth node

to the sink node. In all of the algorithms, the total number of paths that were

found was less than K. This indicates that all possible tracks without any

shared paths are detected.

The results of evaluating two implemented tracking methods with regard

to the ground truth tracks are shown in Figure 3.2 and Table 3.1. Here the

results of Between Frame Based (BFB) evaluation and the algorithm running

time are shown. The reported running time includes the time required for

the tracking part of the algorithm only, and the running time of the object

52

Table 3.1: Between frame based evaluation of two tracking methods. Hun-
garian Assigning is a frame-by-frame tracking algorithm while finding KSP in
Flow Network is multi-frame one. Because of using a greedy-based approach,
finding KSP in Flow Network is significantly faster.

Between Frames Based Evaluation Precision BFB Recall BFB F Score BFB Run Time (s)
Hungarian Assigning 0.37 0.75 0.49 8.11
KSP in Flow Network 0.34 0.81 0.48 4.05

detection is excluded. In other words, the algorithm running time starts from

when the information of the detected objects is extracted and it ends when

all the tracks are identified by the tracking algorithm. For the Hungarian

assigning approach, the running time of computing the dissimilarity matrix

and finding the best matches between any two frames (starting from the first

frame) are included. The run time is for the entire sequence. For the greedy

Flow Network based method, running time includes the time required to make

the entire network and then to find KSP in the network. Figure 3.2 shows the

track based (TB) evaluation, where the y-axis shows the F-measure, and the

x-axis shows different accuracy acceptance rates. Considering the F-measures

and also the running time, it is clear that Flow Network based approach has

a better performance.

3.4 Using Tracklets as Nodes in Flow Network

Section 3.3 indicates that finding KSP using Flow Network outperforms match-

ing objects of consecutive images using Hungarian assigning method.

In this section, we examine whether using tracklets (a small part of a

track) instead of objects as the nodes of the Flow Network would improve

the performance of Flow Network-based tracking methods. In order to make

the tracklets, there should exist an initial track to start with, and cut it into

the tracklets. We generated the initial tracks by using Hungarian assigning

method (See Section 3.3.1 for more detail). We then implemented and evalu-

ated the performance of two existing track cutting methods (See Sections 3.4.1

and 3.4.2). In addition, we developed two novel cutting methods as explained

in Sections 3.4.3 and 3.4.4 in more detail. Each of these methods takes a dif-

53

40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4

Acceptance Rate

W
ei
gh

te
d
F
S
co
re

Hungarian Assigning
KSP in Flow Network

Figure 3.2: Track based evaluation of two tracking methods. Hungar-
ian Assigning is a frame-by-frame tracking algorithm while finding KSP in
Flow Network is multi-frame one. Acceptance rate is the a threshold and
Weighted F Score is the weighted F Score TB both mentioned in Section
3.2.2.

ferent approach to cut the tracks into smaller parts. In the following sections,

we describe each of the tracklets generating algorithms (or track cutting algo-

rithms) separately. Also, we report the performance of each method in terms

of running time and F-Score. Please note that the reported running time of

each method includes the time required for running the Hungarian algorithm,

in addition to the time required to cut the tracks into the tracklets.

3.4.1 Singh2008 Cutting Method

Considering a specific track that is generated by the Hungarian assigning ap-

proach, the Singh2008 Cutting Method [41] traces the track starting from its

first object, and computes the similarity between pairs of the objects in consec-

utive frames as it moves along the track. Whenever the similarity between the

two objects is less than a predefined threshold S, it cuts the track to make the

first tracklet. It then continues tracing the rest of the track by starting from

the next object and repeating the same procedure to make a new tracklet.

54

3.4.2 Shitrit2014 Cutting Method

Considering a specific track that is generated by the Hungarian assigning ap-

proach, the Shitrit2014 Cutting Method [39] traces the track starting from

its first object, and as it moves along the track, it computes the distance be-

tween the object and the closest object from another track at the same frame.

Whenever the distance between the two objects get smaller than a predefined

threshold, the track is cut and a tracklet is formed. The same procedure

repeats for the rest of the track until the track comes to its end.

The rationale behind this method is that in most of the cases, the misas-

signment of the objects happens when the two tracks get too close. In this

situation, there are more candidate objects to be assigned to a track when the

Hungarian assigning approach is running, and therefore, the chance of a wrong

assignment is higher. By cutting a track into the tracklet at these points, the

error rate reduces.

3.4.3 Proposed Hard Cutting Method

In addition to the State-of-the-Art cutting algorithms (i.e. Singh2008 and

Shitrit2014), we proposed two novel cutting methods to cut a track into several

tracklets. The first one cuts a track everyK steps (i.e. frames). This algorithm

results in ⌈ L
K
⌉ tracklets, where L is the length of the track. Here all the

tracklets have a length of K except the last one, the length of which is equal

to the remainder of dividing L by K. Our proposed cutting approach, which

we call it the Hard Cut method, does not use any a prior information about

the tracks and the objects.

The rationale behind using the Hard Cut method is that by using a small

K (in the order of three to five frames), a large number of tracklets with a

small size are generated. This would ensure that the possibility of encoun-

tering wrong assignments of newly detected objects to the existing tracks by

using Hungarian assigning method remains negligible. Moreover, if a wrong

assigning happens in the process, its effect size is small, as it remains in effect

only by the end of the corresponding short tracklet. Given that our goal is

55

to use the tracklets as the Flow Network objects, this method of cutting the

tracks is a good candidate for our study, as it generates short reliable tracklets.

3.4.4 Proposed Kalman Filter Cutting Method

As our second proposed cutting method, we used Kalman filter to determine

whether a big unexpected jump in the object position occurs on the track.

In this method, a track is cut into smaller parts (i.e. tracklets) whenever the

observed position of the current object is significantly far from its expected

position defined by considering the object previous positions and speed. Dif-

ferent objects have different speeds. Moreover, the speed of each object varies

as they move. As a result, setting a constant speed threshold (maximum num-

ber of pixels that an object moves between the two consecutive frames) is not

appropriate for detecting unexpected big jumps in the location of the object.

As an alternative solution, we used the previous positions of the object

to predict its expected position in the current frame. If the distance between

the observed position and the predicted position is more than M times higher

than the average distances (between the observed and predicted positions of

the object) in the previous frames, then it is considered as a big jump, and the

track is cut at that point. Using this approach, the definition of a big jump is

specific to each track, and it is not dependent on a constant threshold.

More formally, we defined the distance between the predicted position of

the object in track T in the ith frame and its observed location as:

D(T, i) = d(P (T, i), O(T, i)) (3.20)

where O(T, i) and P (T, i) are the observed position and the predicted position

(estimated by the Kalman Filter method) of the object in the ith frame of

the track T , respectively. Here d(P (T, i), O(T, i)) is the Euclidean distance

between these two positions. A big jump happens when the distance between

the predicted position of the object and its actual observed position in the

current frame is more than their average distance in the previous frames by a

56

threshold fold of M :

D(T, i) > M ∗

i−1
∑

l=1

D(T, l)

i− 1
(3.21)

If this condition is met, the algorithm cuts the track T at the ith frame, and

continues to apply the same cutting process to the rest of the track. In this

algorithm, the minimum length of a track is set to three frames, because the

Kalman filter requires having some prior knowledge about the position of the

object. Kalman filter is used to predict the position of the object in the fourth

frame and afterward. Any track or the remaining part of a track with a length

of fewer than three frames is considered as a tracklet by itself, and the Kalman

filter is not applied to it.

In the Kalman filter, predicted state vector x−

k and predicted covariance of

state vector estimate P−

k are computed in every iteration k by the following

equations [44]:

x−

k = Axk−1 +Bu (3.22)

P−

k = APk−1A
T +Q (3.23)

where A is the state transition matrix, xk−1 is the prior state vector computed

in the previous iteration (i.e. the predicted object location in the previous

frame), B is input matrix, u is input control vector, Pk−1 is covariance of state

vector estimate in the last iteration, and Q is process noise covariance. The

next step in each iteration is to update the xk and Pk according to the newly

observed location of the object and its related optimal Kalman gain K:

K = P−

k HT (HP−

k HT +R)−1 (3.24)

xk = x−

k +K(zk −Hx−

k) (3.25)

Pk = P−

k −KHP−

k (3.26)

where H is the observation matrix, R is the measurement noise covariance and

zk is the observation vector in kth iteration (i.e. the location of the object in

57

the current frame). In each iteration, xk is the estimated location of the object

in the next frame (i.e. P (T, i) in Equation 3.20). Details about initializing the

Kalman filter vectors and matrices is mentioned in the next section.

3.4.5 Setting Parameters of the Track Cutting Methods

For all of the above cutting methods, there was a parameter that needed

to be set properly. The parameter S in the Singh2008 is the threshold of

dissimilarity between the two consecutive objects in a track. The parameter

D in the Shitrit2014 is the minimum distance between an object of one track

and the objects of another track. The parameter K in the Hard Cut is the

length of the tracklets, and the parameter M in Kalman Filter method is

the fold threshold of current distance between the predicted and the observed

positions of an object in the current frame compared to the average distance in

the previous frames. In order to obtain the optimum value of the parameter for

each cutting algorithm, we tested different numbers and selected the number

that resulted in the best performance measured by Weighted F-Score according

to between frame based (BFB) evaluation. The best parameter values are:

S = 0.2, D = 200, K = 3 and M = 2.75.

To work with Kalman filter, several parameters are needed to be initial-

ized including: x, state vector estimate, R, measurement noise covariance, H,

observation matrix, Q, process noise covariance, P , covariance of state vector

estimate, A, state transition matrix, B, input matrix and u, input control vec-

tor. In the implemented Kalman filter, state vector x is based on the location

of the object and contains estimated X Coordinate and Y Coordinate of ob-

ject location. z is the observation vector and it contains the current location

of the object in the image. Since first state estimate is not available, x is

initialized to be the first observed location. Parameters R, H, Q, A and Bu

can have different values in each iteration but we assumed they are constant

[44]. Following parameters are set according to object movement features in

58

slurry images:

R =

[

0.2845 0.0045
0.0045 0.0455

]

, H =

[

1 0 0 0
0 1 0 0

]

, Q =









0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1









P =









100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100









, A =









1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









, Bu =









0
0
0
6









(3.27)

After generating the tracklets, we set them as the nodes of the Flow Net-

work. The nodes (i.e. Tracklets) that end in a specific frame were connected

only to the tracklets that start in the same frame. Tracklets with their first

object at the top part of the images were connected to the birth node and

tracklets with their last object in the bottom part of the image were con-

nected to the sink node. The weight of each connection to the birth node is

computed based on the location of the first object in the tracklets. Similarly,

The weight of each connection to the sink node is computed based on the

location of the last object in the tracklets.

Computing the similarity between the nodes of the Flow Network was the

same as what was explained in Section 3.3.1. The only difference is that instead

of the shape and color of an object, we used the average shape (average number

of pixels) and average color (average intensity) of objects in each tracklet.

In addition, for computing the similarity between the positions of any two

tracklets (Equation 3.14), the position of the last object of the previous tracklet

was compared against the position of the first object of the current tracklet.

We measured the running time of each method. The total running time in-

cludes the time required to perform the following steps: (1) Making the initial

tracks by using the Hungarian frame-by-frame assigning method; (2) Cut-

ting the tracks into small tracklets; (3) Computing the tracklets information

including average number of pixels and average intensity; and (4) Building

the Flow Network according to the new features and finding the KSP in the

network.

59

Table 3.2: Between frame based evaluation of tracking methods that use Flow
Network, with or without tracklets. Methods which use tracklets need to have
some tracks at the beginning, in order to cut them into trakclets. As a result,
they are slower than original Flow Network.

Between Frames Based Evaluation Precision BFB Recall BFB F Score BFB Run Time (s)
Flow Network All Graph 0.34 0.81 0.48 4.05
Flow Network Singh2008 Cut 0.47 0.65 0.54 10.1
Flow Network Shitrit2014 Cut 0.34 0.77 0.48 10.99
Flow Network Every 3 Steps Cut 0.40 0.83 0.54 15.36
Flow Network Kalman Filter Cut 0.38 0.75 0.51 10.05

We evaluated the performance of the cutting methods using between frame

based (BFB) and the track based (TB) evaluations methods, the results of

which are shown in the Table 3.2 and Figure 3.3, respectively.

My results show that using the tracklets (instead of the detected objects) as

the nodes of the Flow Network improves the performance of the KSP method.

To be more specific, the Singh2008 cutting method and our two proposed

cutting methods (Hard Cut and Kalman Filter Cut) had an improved perfor-

mance compared to the original full Flow Network method (without cutting).

The only cutting method that did not improve the results was the Shitrit2014.

Based on BFB evaluations, the Singh2008 and the Hard Cut mutually show

the best performance among the four tested cutting methods, while based on

the TB evaluation, the best performance belongs to Singh2008 approach. The

running times of the tested cutting methods were similar except for the Hard

Cut approach which had the highest running time among the four methods.

The main reason is that this method makes noticeably more tracklets, and

therefore, computing the features of each tracklet and setting up the Flow

Network take more time in the Hard Cut algorithm.

As it is clear from the Table 3.2, BFB Recalls of three out of four cutting

methods are higher than 0.75; while the BFB precisions are relatively low

(0.34-0.47). The low precisions resulted in low BFB F-Scores (less than 0.54).

A low precision corresponds to a high false discovery rate (FDR), meaning

that there are cases that the automated tracking algorithm identifies a track;

while the manually identified ground truth does not include those tracks (False

Positives). The main reason for the existence of many false positives is that

60

40 50 60 70 80 90 100

0.2

0.3

0.4

Acceptance Rate

W
ei
gh

te
d
F
-S
co
re

Flow Network All Graph
Flow Network Singh2008 Cut
Flow Network Shitrit2014 Cut

Flow Network Every 3 Steps Cut
Flow Network Kalman Filter Cut

Figure 3.3: Track based evaluation of tracking methods that use Flow Network,
with or without tracklets. All graph is the method in which every detected
object is a node in the network, while tracklets are used instead in other four
methods with different cutting algorithms. Acceptance rate is the a threshold
and Weighted F Score is the weighted F Score TB both mentioned in Section
3.2.2.

there are many similar and small objects in each image that make the task

of generating the ground truth tracks hard for the user. In other words, the

user was not able to consider some objects as part of a track by the bare eyes,

while the fact that the tracking algorithms were able to identify those tracks

may indicate that they were, in fact, the true tracks. Therefore, by missing

to mark some of the true tracks as the ground truth tracks, the precision of

the tracking algorithms were affected. This, in turn, resulted in relatively low

F-Scores, although the BFB Recalls were relatively high. To get an idea of

how a low precision may affect the F-Score, consider a case where the best

possible correct answer (given that the user lost tracking of several tracks)

results in a BFB Precision and Recall of 0.5 and 1, respectively. In this case,

the best possible BFB F-Score would be:

F Score BFB = 2 ∗
0.5 ∗ 1

0.5 + 1
= 0.66 (3.28)

User limitation in selecting all the correct tracks affects the track-based

(TB) evaluations too (See Figure 3.3). In TB evaluation, only tracks with an

accuracy of A(i) > t are considered for the evaluations. Here the accuracy

of a track is equal to the number of frames that the track matches to any

61

ground truth track divided by the length of that track. By missing some true

tracks by the user, the accuracy of several tracks detected by an automated

tracking algorithm falls below the threshold t. Therefore, according to the

Equations 3.8 and 3.9, both precision, and recall measurements are effected

and TB F-Score would be even less than BFB F-Score.

3.5 Computing Velocity of Bitumen Droplets

By detecting objects in each image and tracking the dark objects in sequences

of images now we have the required information in order to compute the ve-

locity of the bitumen droplets. At the end of tracking process, each tracking

algorithm would give us several tracks. For each track, the velocity is com-

puted as the average distance (number of pixels) traversed between consecutive

frames. In general velocity is a 2D vector in our images, but since we know

that objects do not move at the same pace in X and Y direction, therefore we

focused on two 1D velocity vectors; (1) Vertical velocity which is the average

number of pixels an object could move up and down between two frames and

(2) Horizontal velocity which is the average number of pixels an object could

move left and right between consecutive frames.

By having the velocity of objects (that are mostly bitumen droplets) we

can also compute the relation between size or intensity of objects and their

velocities. The scatter plots of the relation between size or intensity of the

bitumen droplets and their horizontal and vertical velocities are shown in Fig-

ure 3.4 and Figure 3.5. Each node in these plots represents a track. The

horizontal axis in Figure 3.4 is the average size of the object during the move-

ment on the track and in Figure 3.5 is the average grayscale intensity of the

object. In both figures, the vertical axis is for the average velocity of the object

between consecutive frames. In these plots, results of two different tracking

algorithms are shown. Black dots are the tracks computed by finding KSP in

Flow Network with help of Singh2008 cutting algorithm and red dots represent

the tracks of finding KSP in Flow Network when every detected object is a

separate node in the network. Moreover, the relations between horizontal and

62

vertical velocity and also between size of the objects and their intensity are

shown in Figure 3.6.

According to the plots, most of the bitumen droplets have a size between

200 to 600 pixels and bigger objects move slower. On the other hand, there

is a direct linear relation between the intensity of bitumen droplets and their

velocity. Darker objects move very slowly and brighter objects move faster.

We can also conclude that faster objects move fast in both directions and

bigger objects are darker ones. In this project, our focus was on tracking

darker detected objects (i.e. bitumen droplets) and therefore we do not have

enough information about the relation between size and brightness of sand

particles and their velocity.

200 400 600 800 1,0001,2001,400
0

50

100

150

Size of Objects [Number of Pixels]

V
er
ti
ca
l
V
el
o
ci
ty

[P
ix
el
s
p
er

F
ra
m
e]

200 400 600 800 1,0001,2001,400

0

20

40

60

Size of Objects [Number of Pixels]

H
or
iz
on

ta
l
V
el
o
ci
ty

[P
ix
el
s
p
er

F
ra
m
e]

Figure 3.4: The relation between size of the objects and their velocity. Black
dots represent 48 tracks computed by finding the KSP in Flow Network with
help of the cutting algorithm used in Singh2008 for creating tracklets. Red
circles are for 94 tracks computed by finding the KSP in Flow Network when
every detected object is a node in the Flow Network.

3.6 Conclusion

In this chapter, we studied the process of tracking the detected objects in a

sequence of slurry images. Due to the fact that there are a huge number of

objects in each slurry image, the task of tracking the objects is very challenging.

Since we are especially interested in computing the speed of bitumen droplets,

the main target objects of our tracking method were the bitumen droplets,

63

30 35 40 45 50 55 60
0

50

100

150

Brightness of Objects [Average Intensity]

V
er
ti
ca
l
V
el
o
ci
ty

[P
ix
el
s
p
er

F
ra
m
e]

30 35 40 45 50 55 60

0

20

40

60

Brightness of Objects [Average Intensity]

H
or
iz
on

ta
l
V
el
o
ci
ty

[P
ix
el
s
p
er

F
ra
m
e]

Figure 3.5: The relation between brightness of the objects and their velocity.
Black dots represent 48 tracks computed by finding the KSP in Flow Network
with help of the cutting algorithm used in Singh2008 for creating tracklets.
Red circles are for 94 tracks computed by finding the KSP in Flow Network
when every detected object is a node in the Flow Network.

which were the dark objects in the slurry images.

We first implemented and evaluated two tracking methods: (1) frame-by-

frame based tracking; and (2) muli-frame based tracking. For the frame-by-

frame based tracking algorithm, we used the Hungarian assigning algorithm

to connect the corresponding objects in consecutive frames. At the end, the

connected objects in the sequence of frames formed the tracks. For the muli-

frame tracking method, we used a greedy-based algorithm to find the KSP

in a Flow Network. Here every detected object was a node in the network,

and the nodes of consecutive frames were connected to each other to form

the network. The weights of the edges were computed based on the similarity

between the related objects. In order to find the K best tracks in sequences

of images, K-shortest Paths (KSP) should be found in this network. Our

experiment results indicated that multi-frame-based approach using the Flow

Network has better performance than the frame-by-frame method, and its

running time is noticeably shorter.

In order to evaluate the performance of the tracking methods, we needed to

have ground truth tracks. Therefore, we implemented a ground truth generator

GUI. This GUI helps a user select a certain detected object in a sequence of

images and make the ground truth tracks fast and accurately. Using the ground

64

0 10 20 30 40 50 60
0

50

100

150

Horizontal Velocity [Pixels per Frame]

V
er
ti
ca
l
V
el
o
ci
ty

[P
ix
el
s
p
er

F
ra
m
e]

200 400 600 800 1,0001,2001,400

30

40

50

60

Size of Objects [Number of Pixels]B
ri
gh

tn
es
s
of

O
b
je
ct
s
[A

ve
ra
ge

In
te
n
si
ty
]

Figure 3.6: Horizontal velocity vs Vertical velocity and Size vs Brightness. The
relation between horizontal velocity and vertical velocity is shown in the left
plot, and the relation between size of the objects and their brightness is shown
in the right plot. Black dots represent 48 tracks computed by finding the KSP
in Flow Network with help of the cutting algorithm used in Singh2008 for
creating tracklets. Red circles are for 94 tracks computed by finding the KSP
in Flow Network when every detected object is a node in the Flow Network.

truths dataset, we measured evaluation metrics such as precision, recall, and F-

score. Two different ways of evaluations are described in Section 3.2: between

frames based evaluation (BFB) and track based evaluation (TB). In all the

evaluations, tracks should start at the top of the image and finish at the

bottom of the image. Situations such as merging or splitting of the objects

are not in the scope of our study and are left for the future work.

Realizing that finding KSP in Flow Network leads to a better performance

compared to the frame-by-frame approaches, we took the next step and asked

whether we can improve the results even further. According to the literature,

an appropriate way to have more reliable features for the Multiple Target

Tracking (MTT) methods is to use the tracklets instead of the original objects

in the Flow Network. Tracklets are small sub-tracks with short lengths. Using

tracklets helps to extract more reliable information for each object such as its

average size and color during its path in the tracklet. Here our main aim was

to use the tracklets instead of each object separately as the nodes of the Flow

Network and to make the connections between timely matched tracklets (the

last object of previous tracklet and the first object of current tracklet should

65

be in consecutive frames). The dissimilarity between the Flow Network nodes

was measured based on the dissimilarity between the tracklets.

We implemented two existing methods and developed two novel methods

to generate the tracklets, and to evaluate the effects of using tracklets on the

performance of the Flow Networks in tracking the objects. Our first proposed

method (Hard Cut) divides the tracks into smaller tracklets every K frame

without any prior information about tracks; while our second proposed method

(Kalman Filter), cuts a track wherever a big unexpected jump is detected on

the track by a Kalman Filter based approach. Results of evaluations indicate

that using the tracklets improves the performance when these tracklets were

generated by any of the Singh2008, Hard Cut, or Kalman Filter methods. The

only cutting method that did not improve the results was Shitrit2014. Based

on BFB evaluations, the Singh2008 and the Hard Cut mutually show the best

performance among the four tested cutting methods, while based on the TB

evaluation, the best results were obtained by Singh2008 approach. Overall

Kalman Filter approach is faster than Hard Cut while both of them have

similar performances. By having the track results, we computed the relation

between size and brightness of objects and their velocity. According to the

results, brighter and smaller bitumen droplets are faster.

66

Chapter 4

Summary, Conclusion and
Future Works

Tracking several objects in an environment is a well-known image processing

and vision problem that has applications in several areas including blood cell

tracking, pedestrian tracking and analyzing players of a game. In this study,

we have addressed this problem for a specific application: Computing speed of

bitumen droplets in a sequence of slurry images in the real-time. To achieve

this, we developed algorithms performing the following two steps: (1) detecting

as many objects (i.e. bitumen droplets and sand particles) as possible in each

image in the shortest running time; and (2) tracking the detected objects

in the video. In our study, the first priority was given to tracking bitumen

droplets. Our study improved the performance of both detection and tracking

algorithms for the current application.

4.1 Detecting Objects in Each Image

Chapter 2 of this thesis is dedicated to applying different segmentation and

thresholding algorithms to slurry images with the aim of detecting objects

including bitumen droplets and the sand particles in these images.

Here the goal was to develop a method to detect as many objects as possible

with low false detection rate. The desired method should process the images in

the real-time. In order to identify the best detection method, we built a ground

truth data through manually labeling ten slurry images from different moments

67

of floating slurry in the flow tube. We then evaluated the performance of four

global thresholding, seven local thresholding and five segmentation algorithms

using this ground truth data. Our results indicated that MAX-ENT and NICK

outperform the other algorithms in both sparse and dense images. We verified

the effect of tiling and downsampling of images when combined with all the

mentioned algorithms. Our results showed that the tiling and downsampling

of images did not improve the quality of object detection. Although tiling and

downsampling could decrease the running time of segmentation algorithms but

they are still not as fast as thresholding methods.

My other contribution to this study was developing a recursive iterative

thresholding framework that is applicable to both global and local threshold-

ing algorithms and results in detection of a larger number of small and bright

objects in each image. Our recursive iterative thresholding framework uses

a thresholding algorithm and iteratively applies the following steps for each

image until the termination condition is met: (1) detect objects using a thresh-

olding algorithm; (2) select dark objects and add them to the output image;

(3) remove the selected objects from the original image; (4) repeat steps 1-3 if

the termination condition is not met.

In order to evaluate the performance of our recursive iterative threshold-

ing framework, we applied it in combination with the best local and global

thresholding algorithms (MAX-ENT and NICK) to our slurry images. Our

results indicated that this framework is capable of detecting more objects in

each image including small and bright objects. Our recursive iterative frame-

work improved the performance of both tested thresholding algorithms with

the cost of longer running times.

4.2 Tracking Objects in a Sequence of Images

After detecting bitumen droplets and sand particles properly, the next step is

to track the detected objects in a sequence of images. Chapter 3 of this thesis

is dedicated to explaining the computational methods we developed to track

bitumen droplets in a sequence of slurry images. Here the goal was to develop

68

a method to track bitumen droplets fast and accurately.

In our study, we considered two approaches for tracking the objects: (1)

Hungarian-based frame-by-frame tracking approach; and (2) Flow Network-

based tracking approach. In order to evaluate each method, we built the

ground-truth tracks through developing a GUI that helps a user to select the

tracks fast and easy. We then used the ground-truth tracks to evaluate the

performance of the Hungarian-based and the Flow Network-based tracking

approaches. Our results indicated that the greedy based implementation of

finding K-shortest path (KSP) in a Flow Network outperforms the Hungarian-

based approach in terms of both performance and the running time.

In our initial Flow Network-based experiments, we used each detected ob-

ject as a node of the network. We then asked if using tracklets (i.e. the

short tracks, most of the time obtained by cutting a long track) instead of

objects as the nodes of the network would improve the performance of Flow

Network-based method.

In order to make tracklets, we used two existing cutting algorithms (Shitrit2014

and Singh2008) [39, 41]. In addition, we proposed two cutting methods and

called them Hard Cut and Kalman Filter Cut. The Hard Cut algorithm di-

vides a track into smaller tracklets with the fixed length, while the Kalman

Filter Cut algorithm cuts a track whenever there is a big jump in the location

of the object in a track as the object moves in a sequence of images. Our re-

sults indicated that using tracklets improves the performance of finding KSP

in the Flow Network. In addition, we showed that although Singh2008 [41]

outperforms all other approaches, but our proposed methods in generating

tracklets have better performances than the other State-of-the-Art of cutting

algorithm Shitrit2014 [39].

As the final experiment, we were interested in knowing the relation between

the size and the brightness of bitumen droplets and their velocity. The result

indicated that larger bitumen droplets move slower than the smaller ones and

moreover, brighter objects move faster than darker objects.

69

4.3 Future Works

We would suggest the following directions for the future work in order to

continue this research study and to improve the results:

• Using cameras with higher frame rates for taking videos of the

sinking process. In the current videos, positions of the objects change

substantially in the consecutive frames, making it very challenging to

track them. Using higher frame rates cameras would result in more

accurate tracking of the objects, which in turn results in more accurate

computing of the velocity of the objects.

• Applying more tracking algorithms on slurry images, and eval-

uating their results. In this study, we used two tracking algorithms.

As a future direction, we would suggest using other approaches such as

Gmcp-tracker [48] and multiple hypothesis tracking (MHT) [5] as they

both showed good performance in tracking multiple targets in other MTT

scenarios such as pedestrian tracking.

• Improving quality and quantity of the ground truth datasets.

Generating higher number of the labeled ground truth images for the ob-

ject detection stage of the framework, as well as, generating more ground

truth tracks using our GUI in the other similar videos would increase the

accuracy of our evaluations of the object detection and tracking methods.

• Applying object detection and tracking algorithms to other

datasets. Although we applied our methods to this specific applica-

tion (i.e. identifying and tracking bitumen droplets in slurry images),

our framework is general and can be used in other applications that

include images with similar characteristics. An example of these appli-

cations is tracking the blood cells in a sequence of images. We am also

keen to see how our proposed cutting approaches and recursive iterative

thresholding method perform in other applications.

70

• Extending the method to detect and track more diverse types

of objects. In slurry images, some objects may merge together or split

from each other as they move. The merging and splitting effects induce

more challenges in tracking the objects, as they may change the features

of the objects such as their sizes and shapes. Our current method does

not address these cases. However, this is a very interesting direction

for the future work, as it improves the quality of object tracking in this

specific application, and we predict it will find many applications in the

other similar datasets. Moreover, in order to extract more information

about floating objects and the slurry process, there is a need to track a

larger number of objects including sand particles. In this project, our

focus and priority were on tracking bitumen droplets but for further

studies, tracking sand particles is recommended.

71

Bibliography

[1] Ahmed S Abutaleb. Automatic thresholding of gray-level pictures using
two-dimensional entropy. Computer vision, graphics, and image process-
ing, 47(1):22–32, 1989.

[2] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pas-
cal Fua, and Sabine Süsstrunk. Slic superpixels compared to state-of-
the-art superpixel methods. IEEE transactions on pattern analysis and
machine intelligence, 34(11):2274–2282, 2012.

[3] Rolf Adams and Leanne Bischof. Seeded region growing. IEEE Transac-
tions on pattern analysis and machine intelligence, 16(6):641–647, 1994.

[4] John Bernsen. Dynamic thresholding of grey-level images. In Interna-
tional conference on pattern recognition, volume 2, pages 1251–1255, 1986.

[5] Samuel S Blackman. Multiple hypothesis tracking for multiple target
tracking. IEEE Aerospace and Electronic Systems Magazine, 19(1):5–18,
2004.

[6] Gregory Castñnón and Lucas Finn. Multi-target tracklet stitching
through network flows. In Aerospace Conference, 2011 IEEE, pages 1–7.
IEEE, 2011.

[7] Nicolas Chenouard, Ihor Smal, Fabrice De Chaumont, Martin Maška,
Ivo F Sbalzarini, Yuanhao Gong, Janick Cardinale, Craig Carthel, Stefano
Coraluppi, Mark Winter, et al. Objective comparison of particle tracking
methods. Nature methods, 11(3):281, 2014.

[8] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach to-
ward feature space analysis. IEEE Transactions on pattern analysis and
machine intelligence, 24(5):603–619, 2002.

[9] John C Crocker and David G Grier. Methods of digital video microscopy
for colloidal studies. Journal of colloid and interface science, 179(1):298–
310, 1996.

[10] Darcy Daugela, Barry Bara, Robert Skwarok, Rodney Ridley, Pat
Dougan, and Mark Polak. System and method for image-based analy-
sis of a slurry and control of a slurry process, March 24 2016. US Patent
20,160,086,321.

[11] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-
based image segmentation. International Journal of Computer Vision,
59(2):167–181, 2004.

72

[12] Basilios Gatos, Ioannis Pratikakis, and Stavros J Perantonis. Adaptive
degraded document image binarization. Pattern recognition, 39(3):317–
327, 2006.

[13] Khuloud Jaqaman and Gaudenz Danuser. Computational image analysis
of cellular dynamics: a case study based on particle tracking. Cold Spring
Harbor Protocols, 2009(12):pdb–top65, 2009.

[14] Khuloud Jaqaman, Dinah Loerke, Marcel Mettlen, Hirotaka Kuwata,
Sergio Grinstein, Sandra L Schmid, and Gaudenz Danuser. Robust
single-particle tracking in live-cell time-lapse sequences. Nature methods,
5(8):695–702, 2008.

[15] Jagat Narain Kapur, Prasanna K Sahoo, and Andrew KC Wong. A new
method for gray-level picture thresholding using the entropy of the his-
togram. Computer vision, graphics, and image processing, 29(3):273–285,
1985.

[16] Muhammad Burhan Khan, Humaira Nisar, Choon Aun Ng, Po Kim Lo,
and Vooi Voon Yap. Local adaptive approach toward segmentation of mi-
croscopic images of activated sludge flocs. Journal of Electronic Imaging,
24(6):061102–061102, 2015.

[17] Rohollah Mazrae Khoshki and Subramaniam Ganesan. Multi-scale adap-
tive nick thresholding method for alpr system. Entropy, 4(10), 2015.

[18] Khurram Khurshid, Imran Siddiqi, Claudie Faure, and Nicole Vincent.
Comparison of niblack inspired binarization methods for ancient docu-
ments. In IS&T/SPIE Electronic Imaging, pages 72470U–72470U. Inter-
national Society for Optics and Photonics, 2009.

[19] Josef Kittler and John Illingworth. Minimum error thresholding. Pattern
recognition, 19(1):41–47, 1986.

[20] Klas EG Magnusson, Joakim Jaldén, Penney M Gilbert, and Helen M
Blau. Global linking of cell tracks using the viterbi algorithm. IEEE
transactions on medical imaging, 34(4):911–929, 2015.

[21] GI Mashanov and JE Molloy. Automatic detection of single fluorophores
in live cells. Biophysical journal, 92(6):2199–2211, 2007.

[22] Martin Maška, Vladimı́r Ulman, David Svoboda, Pavel Matula, Petr
Matula, Cristina Ederra, Ainhoa Urbiola, Tomás España, Subramanian
Venkatesan, Deepak MW Balak, et al. A benchmark for comparison of
cell tracking algorithms. Bioinformatics, 30(11):1609–1617, 2014.

[23] Jacob Masliyah, Zhiang Joe Zhou, Zhenghe Xu, Jan Czarnecki, and
Hassan Hamza. Understanding water-based bitumen extraction from
athabasca oil sands. The Canadian Journal of Chemical Engineering,
82(4):628–654, 2004.

[24] Erik Meijering, Oleh Dzyubachyk, Ihor Smal, et al. Methods for cell and
particle tracking. Methods Enzymol, 504(9):183–200, 2012.

73

[25] Reza Farrahi Moghaddam and Mohamed Cheriet. Adotsu: An adaptive
and parameterless generalization of otsu’s method for document image
binarization. Pattern Recognition, 45(6):2419–2431, 2012.

[26] James Munkres. Algorithms for the assignment and transportation prob-
lems. Journal of the society for industrial and applied mathematics,
5(1):32–38, 1957.

[27] Wayne Niblack. An introduction to digital image processing. Strandberg
Publishing Company, 1985.

[28] Richard Nock and Frank Nielsen. Statistical region merging. IEEE Trans-
actions on pattern analysis and machine intelligence, 26(11):1452–1458,
2004.

[29] Nobuyuki Otsu. A threshold selection method from gray-level histograms.
Automatica, 11(285-296):23–27, 1975.

[30] Hamed Pirsiavash, Deva Ramanan, and Charless C Fowlkes. Globally-
optimal greedy algorithms for tracking a variable number of objects. In
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, pages 1201–1208. IEEE, 2011.

[31] Ioannis Pratikakis, Basilis Gatos, and Konstantinos Ntirogiannis. Icdar
2013 document image binarization contest (dibco 2013). In 2013 12th
International Conference on Document Analysis and Recognition, pages
1471–1476. IEEE, 2013.

[32] TW Ridler and S Calvard. Picture thresholding using an iterative selec-
tion method. IEEE trans syst Man Cybern, 8(8):630–632, 1978.

[33] Salman S Rogers, Thomas A Waigh, Xiubo Zhao, and Jian R Lu. Precise
particle tracking against a complicated background: polynomial fitting
with gaussian weight. Physical Biology, 4(3):220, 2007.

[34] Jaakko Sauvola and Matti Pietikäinen. Adaptive document image bina-
rization. Pattern recognition, 33(2):225–236, 2000.

[35] Ivo F Sbalzarini and Petros Koumoutsakos. Feature point tracking and
trajectory analysis for video imaging in cell biology. Journal of structural
biology, 151(2):182–195, 2005.

[36] Arnauld Sergé, Nicolas Bertaux, Hervé Rigneault, and Didier Marguet.
Dynamic multiple-target tracing to probe spatiotemporal cartography of
cell membranes. Nature methods, 5(8):687–694, 2008.

[37] Mehmet Sezgin et al. Survey over image thresholding techniques and
quantitative performance evaluation. Journal of Electronic imaging,
13(1):146–168, 2004.

[38] Faisal Shafait, Daniel Keysers, and Thomas M Breuel. Efficient imple-
mentation of local adaptive thresholding techniques using integral images.
In Electronic Imaging 2008, pages 681510–681510. International Society
for Optics and Photonics, 2008.

74

[39] Horesh Ben Shitrit, Jérôme Berclaz, François Fleuret, and Pascal Fua.
Multi-commodity network flow for tracking multiple people. IEEE trans-
actions on pattern analysis and machine intelligence, 36(8):1614–1627,
2014.

[40] T Romen Singh, Sudipta Roy, O Imocha Singh, Tejmani Sinam, Kh Singh,
et al. A new local adaptive thresholding technique in binarization. arXiv
preprint arXiv:1201.5227, 2012.

[41] Vivek Kumar Singh, Bo Wu, and Ramakant Nevatia. Pedestrian tracking
by associating tracklets using detection residuals. In Motion and video
Computing, 2008. WMVC 2008. IEEE Workshop on, pages 1–8. IEEE,
2008.

[42] Matthew B Smith, Erdem Karatekin, Andrea Gohlke, Hiroaki Mizuno,
Naoki Watanabe, and Dimitrios Vavylonis. Interactive, computer-assisted
tracking of speckle trajectories in fluorescence microscopy: application
to actin polymerization and membrane fusion. Biophysical journal,
101(7):1794–1804, 2011.

[43] Engin Türetken, Xinchao Wang, Carlos Joaquin Becker, Carsten
Haubold, and Pascal Fua. Globally optimal cell tracking using integer
programming. Technical report, 2016.

[44] Greg Welch and Gary Bishop. An introduction to the kalman filter. de-
partment of computer science, university of north carolina, 2006.

[45] Pierre D Wellner. Adaptive thresholding for the digitaldesk. Xerox,
EPC1993-110, 1993.

[46] Junliang Xing, Haizhou Ai, and Shihong Lao. Multi-object tracking
through occlusions by local tracklets filtering and global tracklets associ-
ation with detection responses. In Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, pages 1200–1207. IEEE,
2009.

[47] Feixiang Yan, Hong Zhang, and C Ronald Kube. A multistage adaptive
thresholding method. Pattern recognition letters, 26(8):1183–1191, 2005.

[48] Amir Roshan Zamir, Afshin Dehghan, and Mubarak Shah. Gmcp-tracker:
Global multi-object tracking using generalized minimum clique graphs. In
Computer Vision–ECCV 2012, pages 343–356. Springer, 2012.

[49] Li Zhang, Yuan Li, and Ramakant Nevatia. Global data association for
multi-object tracking using network flows. In Computer Vision and Pat-
tern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8.
IEEE, 2008.

[50] Zhou Zhiwei, Li Linlin, and Tan Chew Lim. Edge based binarization for
video text images. In Pattern Recognition (ICPR), 2010 20th Interna-
tional Conference on, pages 133–136. IEEE, 2010.

75

