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Abstract 

Accurately identifying strand residues (β-residues) from protein sequences aids 

prediction and analysis of numerous structural and functional aspects of proteins. This 

thesis is focused on improving sequence-based prediction of strand residues and strands, 

which in turn would lead to better recognition of β-sheets (arrangements of multiple 

strands). We developed a novel ensemble-based predictor, BETArPRED, achieving a 

statistically significant performance improvement over existing, state-of-the-art 

secondary structure predictors. Our method improves prediction of strand residues and 

strands, and it also finds strands that were missed by the other methods. When compared 

with the top-performing three dimensional structure predictor, our BETArPRED 

improves predictions of strands and provides more correct predictions of strand residues, 

while the other predictor achieves higher rate of correct strand residue predictions when 

under-predicting strands. Next, we investigate strand residue-residue pair propensities 

incorporating long-range interactions, and a scoring function that uses these propensities. 

This scoring function is empirically shown to differentiate between strand and non-strand 

residues. We study the effect of residue conservation and directionality of strands in β-

sheets on these propensities, and conclude that they provide little to no further 

improvement. We also compare our pair propensities with other recently proposed 

relative frequency-based pair propensities, and find that our pair propensities provide 

better discriminatory power in judging a residue from a strand to a non-strand. These 

proposed pair propensities could be used to further improve the sequence-based β-residue 

predictors. 
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1 Introduction  

In molecular biology, a protein is a biologically active molecule, whose function in vivo 

is defined by its 3-dimensional (3D) structure. However, when it is first produced by a 

living organism, a protein is not in its 3D structure; it is instead a linear arrangement of 

amino acids, selected and ordered by the genetic code of that organism. This linear 

sequence must then undergo a complex process of folding to produce a stable 3D 

structure. If this complex process proceeds normally, the resulting biomolecule will 

correctly implement the target functionality. On the other hand, if the process goes awry, 

a wide spectrum of diseases can result.  

 

In his Nobel Prize-winning work, Anfinsen (1973) experimentally showed that proteins 

form specific shapes determined by their amino acid sequence. Since then, sequence 

based computational structure prediction methods assume the protein sequence contains 

all of the information needed to predict the 3D structure. However, it is not yet known 

fully how the 3D structure can be determined from this sequence. Hence this topic has 

been a main focus of research in the last few decades. A full understanding of the 

relationship between protein sequence and structure would aid in the prediction of 

unknown protein structures and would impact related areas, such as rational design of 

novel proteins and peptides. Knowing the 3D structure is also essential to understanding a 

protein’s function and to investigate the interactions with other molecules (Singh et al., 

2006; Laskowski et al., 2005; Espadaler et al., 2005; Bowie et al., 1991), and is crucial in 

rational drug structure-based design (Klebe et al., 2000; Lengauer et al., 2000). 

 

Structural bioinformatics, which is a subfield of computational biology, attempts to 

determine the (unknown) 3D structure of a new protein sequence, based on the 



2 
 

assumption that a given protein sequence folds into a unique protein structure (Anfinsen, 

1973) and utilizing a principle that similar protein sequences lead to similar 3D structure. 

Currently, only a small fraction of all proteins have a known 3D structure. These 

structures are published and stored in the publicly available Protein Data Bank (PDB) 

(Berman et al., 2000). As of 15th January 2012, PDB includes 72,683 proteins 

(http://www.rcsb.org/pdb/results/), while the overall number of known non-redundant 

protein sequences that are stored in the RefSeq database (Pruitt et al., 2002) includes 

14,090,554 (http://www.ncbi.nlm.nih.gov/RefSeq/). This wide structure-sequence gap is 

a result of the relatively low throughput of empirical methods for determining protein 

structure (e.g. X-ray crystallography, nuclear magnetic resonance). 

 

The 3D (tertiary) structure of a protein consists of repeating units of secondary structure 

(SS) states, which include helix (h), strand (e) and coil (c) states. The two major types of 

secondary structures are the α-helix (helix) and β-strand (strand). About half of the amino 

acids (AAs) that comprise a protein sequence fold into the α-helix and β-strand secondary 

structures; the remaining residues are in more irregularly structured states called coils. 

The secondary structures are arranged in the 3D fold, which in turn defines the unique 

physical and chemical properties of proteins (Rost and Sander, 1996). Hence, 

determining the sequence of secondary structures in a protein is an important 

intermediate step in determining the tertiary structure. During the last three decades, there 

has been intense research in the sequence-based prediction of the protein secondary 

structures.  
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1.1 Motivation 

In spite of significant advances in secondary structure prediction, the existing approaches 

for predicting strands from protein sequences are of relatively poor quality when 

compared to the other two structural types (α-helix and coil). One of the reasons for this 

is that strands can interact with other strands positioned far away in the linear protein 

sequence to form β-sheet structures. These long-range interactions are a unique feature of 

the strand structures, and are essential to understanding the structure of β-sheets (Zhang 

and Kim, 2000). Strand to strand interactions are wide-spread (every strand interacts with 

at least one other strand to form a β-sheet) and the linear distance between interacting 

strands is irregular. In contrast, helices and coils are established based on local 

interactions and they rarely interact with each other. Only a few methods have been 

proposed for the prediction of long-range interactions in a protein sequence and their 

accuracy is relatively low (Hubbard, 1994; Asogawa, 1997; Baldi et al., 2000; Steward 

and Thornton, 2002; Rost et al., 2003; Punta et al., 2005; Vullo et al., 2006; Cheng and 

Baldi, 2007), which implies that the prediction of strands is a difficult problem. Other 

reasons for the relatively low performance of the existing approaches are the weak 

coupling between β-residues pair’s on neighboring strands in a β-sheet (Mandel-

Gutfreund et al., 2001) and the lack of a systematic approach to solve this problem 

(Cheng and Baldi, 2005).  

 

At the same time, an understanding of strand structures finds several important 

applications in the prediction of β-sheets and the prediction of the tertiary structure of 

proteins (Zaremba and Gregoret, 1999; Steward and Thornton, 2002; Ruczinski et al., 

2002; Rost et al., 2003; Cheng and Baldi, 2005; Wu and Zhang, 2008; Lippi and 

Frasconi, 2009; Max et al., 2010), characterization of super-secondary structures and 
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protein folding patterns (Kamat and Lesk, 2007), elucidation of folding pathways and 

understanding the stability of protein folds (Smith and Regan, 1997;  Merkel and Regan, 

2000; Mandel-Gutfreund et al., 2001), design of new proteins (Smith and Regan, 1995; 

1997; Kortemme et al., 1998; Kuhlman et al., 2003), and in investigations of certain 

mechanisms causing neurodegenerative diseases(such as Alzheimer’s, Parkinson’s and 

Prion diseases) (Fernandez-Escamilla et al., 2004; Stefani and Dobson, 2003; Stöhr et al., 

2008; Kedarisetti et al., 2008).  We also observe that more than 75% of proteins currently 

in the PDB contain β-sheets, demonstrating the importance of these structures. These 

applications and the abundance of the β-sheet structures motivate the need for 

computational approaches that improve the prediction of strand residues (amino acids in 

the protein sequence that fold into strands), strands (segments of consecutive β-residues), 

and their pairs (pairs of strands that form β-sheets) from the protein sequence.  

1.2 Overview of proposed research 

Before computational methods can identify β-sheet candidates, we must first identify the 

residues that make up individual strands; current computational methods are relatively 

ineffective for this task. Thus, our aim is to improve the prediction of strands from the 

protein sequence, and to investigate the pairings of the amino acids that are crucial for the 

formation of β-sheets. To this end, this thesis addresses the following three objectives:  

 

Objective 1: Secondary structure predictors normally solve the three-state prediction 

problem. However, we can also cast secondary structure prediction as three two-state 

problems (strand vs. non-strand; helix vs. non-helix; coil vs. non-coil). This will be our 

approach in the construction of our strand residue prediction algorithm (BEATrPRED). 

In this research, we first compare two-state strand predictions against two-state helix 
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predictions from state-of-the-art secondary structure predictors. This is needed to verify 

the continued existence of the quality gap between strands and helices in this new 

representation.  

 

Objective 2: We investigate the creation of a new, more accurate method for the 

prediction of the strand residues and strands. We hypothesize that improvements can be 

achieved by employing a consensus-based approach (by combining multiple existing 

prediction methods), and by combining local and long-range predicted structural 

information.  

 

Objective 3: We investigate the propensities of the residue_residue pairs in the 

strand_strand contacts, and we hypothesize that these propensities can be used to further 

improve the prediction of the strand residues and strands. We also study the influence of 

the sequence conservation on these propensities. 

 

In Objective 1, we compare a group of state-of-the art prediction models on a new dataset 

of 429 protein chains, which we created to minimize the effect of templates in the models 

(see Section 4.2.2 for further discussion). Protein chains in this dataset were selected 

from the PDB based on low similarity to each other, high-resolution structure 

determination, and recent deposition (at the time of the experiments). From this 

comparison, we select the best-performing predictors as the base predictors in our 

proposed ensemble in Objective 2. We combine predictions from these base methods 

with additional features (representing residue, window, and chain properties that are 

based on AA, SS and depth information) to form our proposed method. We then evaluate 

the performance of this new predictor against the individual predictors from Objective 1 

on our new dataset. In addition, we compare all of these predictors, our new predictor, 
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and an additional method (the best-performing 3D structure predictor from the CASP 8 

competition (Zhang, 2009)) on the CASP 8 competition dataset.  In Objective 3, we 

empirically determine the propensity of amino acid pairs to align with each other in a 

strand pairing in a β-sheet. We computed these propensities based on the direction of 

alignment between the strands (parallel or anti-parallel). We also examine how 

conservation of amino acids interacts with these propensities. We then empirically 

determine whether these propensities can be used to identify strand residues.   

 

1.3 Outline 

The remainder of this dissertation consists of five chapters. Chapter 2 provides 

background information. Chapter 3 details our experimental design and evaluation 

procedures. Chapter 4 addresses objectives 1 and 2, summarizing and evaluating the 

model developed for the prediction of strand residues and strands. Chapter 5 addresses 

objective 3 and details the investigation of strand residue_residue pair propensities. 

Finally, Chapter 6 concludes with a summary of contributions and future work. 
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2 Background 

In this chapter, we first provide background information on proteins that includes basic 

definitions of proteins, a brief overview of protein structures, related structural databases, 

details about β-sheet sub-units (candidates or topology), and the specific tools used to 

process protein sequence and structure data. We then describe the data mining concepts 

and methods that are used in the context of our research.  

 

2.1 Background on proteins 

2.1.1 Basic definitions 

An Amino Acid (AA) is an organic acid containing an amino group (+NH3), carboxyl 

group (COO-), variable side chain (R) group and a hydrogen atom (H) are all attached to 

a central α carbon (Cα) atom. The general structure of an amino acid is shown in Figure 

2-1. There are 20 different types of amino acids that constitute the building blocks of 

proteins. Each amino acid has unique physiochemical properties that differ based on the 

variable side chain group. Amino Acids are denoted by a 3 letter code or a single letter 

code (Lodish et al., 2003). We employ the single-letter code in this dissertation. Amino 

acids also often referred to as residues. 
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Figure 2-1 General structure of an amino acid 

 

A peptide bond is a molecular bond between the carboxyl group of one amino acid and 

the amino group of the next amino acid with removal of a water molecule. This bond is 

also known as an amide bond (Petsko and Ringe, 2004). Figure 2-2 shows the peptide 

bond link between two amino acids. 

 
Figure 2-2 Peptide bond link between two amino acids 

 

A peptide is formed by linking a series of amino acids via peptide bonds in a predefined 

order, usually <40 amino acids in length (Lodish  et al., 2003). Figure 2-3 represents a 

peptide as a chain of amino acids, using a single letter code. 

 

Figure 2-3 Peptide chain of human insulin (PDB id: 3Q6E, chain A) 
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A polypeptide is a chain of many (>40) amino acids linked by peptide bonds. Figure 2-4 

shows a polypeptide chain representing amino acids using circles. The ends of the chain 

(called terminals) are annotated with the respective groups. The protein sequence is read 

from the N-terminal to the C-terminal (Lodish  et al., 2003).  

 

Figure 2-4 Polypeptide chain with the annotated terminals 

 

The N-terminal refers to the end of a polypeptide chain terminated by an amino acid 

with a free amine group (NH3+) (Lodish  et al., 2003). (see Figure 2-4). 

 

The C-terminal refers to the end of a polypeptide chain terminated by an amino acid 

with a free carboxyl group (COO-) (Lodish  et al., 2003).  (see Figure 2-4). 

 

Proteins are bio-molecules composed of one or more polypeptide chains containing 

amino acids linked together via peptide bonds (Petsko and Ringe, 2004).  

 

The Backbone is a part of the peptide chain consisting of a series of N-Cα-Cβ atoms 

(main chain portion with sequence NCCNCCNCCNCC...), which helps to determine the 

protein conformation (shape) (Petsko and Ringe, 2004). See Figure 2-2.  
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Hydrogen bonds contribute significantly to the overall stability of the protein structure 

(its folded state). Hydrogen bonds are formed between main chain groups, or between the 

side chain groups, or between the main chain and side chain group; see Figure 2-1 for the 

definition of the main and side chain groups. In all cases, the hydrogen bond involves an 

attractive interaction between the hydrogen atom of a donor group (positively polarized), 

such as OH or NH, and a pair of nonbonding electrons on an acceptor group (negatively 

polarized), such as CO (Petsko and Ringe, 2004), see Figure 2-5.  The donor group atom 

that carries the hydrogen must be electronegative for the attraction to be significant. The 

hydrogen bonds vary in length from 0.26 to 0.34nm (i.e., the distance between heavy 

atoms N and O in Figure 2-5).  

 

Figure 2-5 Hydrogen bond between main chain groups 

 

Dihedral, Phi (ф) and Psi (ψ), angles. In Figure 2-6 the amino acid with the central 

carbon atom Cα forms a bond with N and Cβ atoms. The angle of the bond between Cα 

and N to the adjacent peptide bond is known as phi(ф) and the angle of the bond between 

Cα and Cβ to the adjacent peptide bond is known as psi(ψ) (Petsko and Ringe, 2004). 

Both of these angles, ф and ψ, form the dihedral angles/torsion angles (which describe 

conformations around rotatable bonds). These angles could take different values for the 

same amino acid occurring in different positions of the same protein sequence as well as 

in different proteins. They are useful to define the protein structure, particularly the 

secondary structure.  
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O- 

C C O

R2 

N+ 

H 

O- 

Hydrogen bond 
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Figure 2-6 Dihedral, ф and ψ, angles 

 

Multiple sequence alignment (MSA) arranges three or more sequences such that 

positions believed to be similar / identical based on functional, structural, or evolutionary 

relationships between these sequences are written in a common column. When a 

sequence does not possess a matching amino acid in a particular position then this 

position is denoted by a gap, i.e., “–“. Multiple sequence alignment is useful for 

displaying the common fragments (segments of AAs) in a given set of sequences (Koonin 

and Galperin, 2003). These fragments may have common structure or function and thus 

one protein can be used to annotate other proteins. 

VTISCTGSSSNIGAG-NHVKWYQQLPG 

VTISCTGTSSNIGS--ITVNWYQQLPG 

LRLSCSSSGFIFSS--YAMYWVRQAPG 

LSLTCTVSGTSFDD-WYYSTWVRQPPG 

[each letter represents one amino acid and '-' represents a gap] 

Figure 2-7 Multiple sequence alignment example 

 

Sequence profile or position-specific scoring matrix (PSSM) is a summary of the 

amino acid types present at each sequence position (column) in a given MSA; PSSM is 

also called a sequence profile. The matrix assigns positive scores to residues that appear 

more often than expected by chance and negative scores to residues that appear less often 

than expected by chance. It has been shown that for a given protein family (a set of 

functionally similar proteins), structural and functional constraints influence the amino 

acid types appearing at each position in the protein sequence and also that sequence–
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structure correlations exist for secondary structures (MacCallum, 2004). Therefore, the 

sequence profiles are related to the secondary structure, i.e., they could be used and were 

used to predict the secondary structure.  

 

Sequence homology 

Homology is based on the evolutionary relationship found between two similar protein 

sequences which are derived from different species. Typically two protein sequences 

derived from the recent common ancestors are more similar than those derived from 

distant common ancestors since distant ancestors can accumulate many dissimilar 

mutations in their respective evolutionary paths. Hence, finding the evolutionary 

relationship between distant ancestors using only their protein sequences becomes a 

difficult task (Petsko and Ringe, 2004). Sequence homology is defined as the percentage 

of amino acids that are similar after aligning a protein sequence with other sequences.  

Proteins with similar function often (but not always) have similar protein sequences in 

corresponding functional regions. This observation has been used to find protein 

sequences with known structure/function that exhibit similarity to a protein sequence 

with unknown structure/function. Information about similar proteins provides insights 

into the structure and function of the query protein. This approach is also used to predict 

the protein secondary structures of newly discovered protein sequences, but requires that 

a query protein exhibits at least 30% homology to other proteins in the database.  In the 

case of low similarity (i.e <25% similarity), predicting the unknown secondary structures 

becomes difficult. Tools like BLAST and PSI-BLAST have been developed to find the 

similar sequences from databases.  
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Sequence conservation 

Scientists compare protein sequences from different species to identify residues that are 

conserved despite evolutionary change; it is assumed that such residues play particularly 

important roles in a protein’s folding and function. However, sequences are only a 1D 

representation of 3D proteins. It is important to recognize that the 3D spatial orientation 

of residues also drives sequence conservation.  For example, residue contacts in β-sheets, 

a binding surface, or an enzyme active site may have several conserved residues spread 

across the protein sequence, but in 3D space the residues are consolidated into a localized 

binding surface. In addition, amino acids can be divided into several groups of similar 

characteristics; substitution of an amino acid by a similar one can still result in a similar 

3D structure (although this is not always the case) (Vyas et al., 2009; Cai et al.,2009).  

 

2.1.2 Overview of protein structures 

A protein is a large biomolecule consisting of a chain of amino acids (AA) that are linked 

through peptide bonds. This linear chain of amino acids can spontaneously fold into three 

dimensional structures called native folds, which are biologically active forms. The order 

of the AA’s in a protein chain and the properties of their side chains determine the 3D-

structure and function of the protein (Anfinsen, 1973; Rost and Sander, 1993). The 

structure of proteins can be analyzed on four different levels. These four levels are 

summarized below. 

 

Primary structure (also called amino acid sequence or protein sequence) is defined by 

the linear order of AAs along a polypeptide chain in a protein (Branden and Tooze, 

1999). The following Figure 2-8 depicts the primary structure of a protein using the 

single letter code for AAs.  
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[The sequence continues over multiple rows] 

Figure 2-8 Primary structure of Fe-S biosynthesis protein (PDB ID: 2QGO chain-A).  

 

Secondary structure (SS) is defined by the localized sections of the folded segments of 

a polypeptide chain that are stabilized by regular patterns of hydrogen-bonds between the 

peptide NH and CO groups of different residues (Petsko and Ringe, 2004). The three 

basic types of secondary structures are the α-helix (h), β-strand (e), and coil (c), see 

Figure 2-9.  

 

 

  

 

Α – helix {h} β- strands {e} Coil {c} 

Figure 2-9 Secondary structures 

 

These secondary structures form clusters (segments) in the primary structure, see Figure 

2-10. 

 

[h-helix state, e-strand state, and c-coil state] 

Figure 2-10 Secondary structure of Fe-S biosynthesis protein (PDB ID: 2QGO chain-A). 

 

An α-helix is formed when a polypeptide chain arranges into a regular spiral or rod like 

structure. In the most frequent type of helix structure, i.e., α-helix, the CO group of the 

backbone of an amino acid at position j forms a hydrogen bond with the NH backbone 

group of the amino acid that lies at position j + 4 (Petsko and Ringe, 2004). Hence, α-

helix has four residues per turn. Other types of helical structures such as 310 helix and π 

cccceeeechhhhhhhhhcccccceeeeeeccccccccccccccccccceeeeeecc

cccccceececcccceeeechhhhcccccceeeeeecceeeeeecceeeeeeeeeee

hhhhhhhhhhcccccccccccccccc                  

MSLLNIKFTDNAVDYLKRREILDKILILITDDGGGKYSIQGGSCSMGAHFSIIWLDK

VDPDYPVKIANEQNVKIYTSDFDKTMLGPNMVMDYNAGSLSLSSDEGLLDGSVDIGN

GAALLKANKNVQMGINRQCEGHHHHHH  
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helix, which are relatively rare in proteins, have three and five residues per turn, 

respectively.  

 

A β-strand is usually three or more residues in length. Backbone atoms in two strands 

connect through hydrogen bonds and form a sheet. A stretch of at least three consecutive 

strand residues is identified as a β-strand if all the (φ, ψ) values in this region lie within 

the region defined by:  180°< φ < –30°, 60° < ψ < 180° or –180° < ψ < –150° 

(Gunasekaran et al., 1998). The other type of beta structure is β-bridge, defined by two 

backbone hydrogen bonds that will be described in more detail later. 

 

A Coil is a non-repetitive, relatively irregular secondary structure. Three main types of 

coils include turns (which assume a few defined structures), bends and loops that are 

irregularly shaped (Branden and Tooze, 1999). Coils connect α-helix and β-strand 

segments, i.e., they serve as linkers, and without them proteins would be loosely packed. 

 
 
Super secondary structures (also called motifs) involve multiple secondary structures in 

a particular geometric arrangement. If a single secondary structure is considered as a 

‘unit’ then a super secondary structure would be comprised of at least two 'units' of 

secondary structure (Gruber A, et al., 2008). Some of these super secondary structures are 

known to have a specific biological role but for others their role is unknown.  

 

The tertiary structure of a protein is a specific three-dimensional shape resulting from 

the folding of the entire polypeptide chain and can be seen as the spatial arrangement of 

the secondary structures (Branden and Tooze, 1999). The tertiary structure is defined by 

the coordinates of the atoms of the constituent AAs. The tertiary structure of the Fe-S 
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biosynthesis protein (PDB ID: 2QGO) is shown in Figure 2-11. This structure is shown in 

a simplified ribbon form that shows secondary structures of the protein backbone instead 

of the atomic coordinates. 

 

 

Figure 2-11 Tertiary structure of Fe-S biosynthesis protein (PDB ID:2QGO) 

 

Quaternary structure is the arrangement of multiple folded protein chains in a multi-

subunit complex (Branden and Tooze, 1999). A variety of bond interactions including 

hydrogen bonding, salt bridges, and disulfide bonds hold the various chains in a 

particular geometry. For example, the simplified ribbon representation for the quaternary 

structure of the deoxy hemoglobin (PDB ID: 1O1J) shown in Figure 2-12 contains four 

protein chains that together form a globular protein (i.e., protein that assumes a sphere-

like shape). 

 

[Each of the four constituent chains is shown using a different shade of gray] 

Figure 2-12 Quaternary structure of Deoxy hemoglobin (PDB ID: 1O1J)  

Helix 
Coil 

β-Sheets 
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2.1.3 Protein databases 

Protein Data Bank 

The Protein Data Bank (PDB) is a worldwide repository of 3D structural information 

concerning proteins, which has identified structures for around 72,000 protein structures 

among the millions of known sequences. These structures are obtained by the 

experimental methods such as X-ray crystallography or NMR spectroscopy. The data is 

submitted by biologists and scientists from around the world, and is curated by the 

Research Collaborators for Structural Bioinformatics (RCSB) PDB Advisory Committee. 

The PDB repository can be accessed online for free (http://www.rcsb.org/). This database 

is well maintained and up-to-date, and has been used in many structure-related 

investigation applications. As of 15th January 2012, PDB contains 72683 protein chain 

structures (http://www.rcsb.org/pdb/results/). Several databases have been are derived 

from PDB to classify proteins in terms of their structure, function and evolution. PDB is a 

key resource in structural biology studies and is the source of data that is used to design 

and validate our proposed method.  

 

Dictionary of Secondary Structures of Proteins (DSSP) 

The secondary structure label for each AA is assigned using the dictionary of secondary 

structures of proteins (DSSP) program (Kabsch and Sander, 1983), which uses the atomic 

coordinates of a given protein chain structure obtained from the PDB. The current version 

of this product is 17.1. The DSSP annotates each residue as belonging to one of the eight 

secondary structure types: H (α-helix), G (3-helix, also known as 310 helix), I (5-helix, 

a.k.a. π-helix), B (residue in isolated beta-bridge), E (extended β-strand), T (hydrogen 

bond turn), S (bend), and “_” (any other). Typically, these eight states are reduced to 



18 
 

three states as follows: helix (h, which includes H, G, and I), strand (e, which includes E 

and B), and coil (c, which includes remaining types) (Moult et al., 2009). These three 

states are widely used to indicate the protein secondary structure states and are also used 

by the EVA (evaluate the accuracy of automated protein secondary structure prediction 

methods) web server  (Rost and Eyrich, 2001).  

 

2.1.4 β-sheets 

A β-sheet is an assembly of two or more β-strands that are hydrogen bonded to form a 

sheet-like (planar) arrangement. The formations of backbone hydrogen bonds between 

adjacent strands which may be far away from each other in the sequence (Branden and 

Tooze, 1999) provide a significant increase in overall stability of a protein. Formation of 

β strand pairs can be subdivided into individual interactions between β-strand residues 

(known as β-residue pairs/ β-contacts), which allows for step-wise prediction of β-sheets 

(Cheng and Baldi, 2005). In β-sheets, the strand pairs can be arranged in three ways: 

antiparallel, parallel, and mixed, as shown in Figure 2-13  and discussed below.  

 
[Arrows denote β strands and their orientation in the protein chain and dashed lines denote 

hydrogen bonds] 

Figure 2-13 Parallel, antiparallel. and mixed β-sheet arrangements.  
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Antiparallel β-sheets: In an antiparallel arrangement, the successive β strands run in 

opposite directions in the sequence so that the CO and NH groups of one residue in the 

first strand establish their hydrogen bonds with the NH and CO groups of the same 

partner in the second strand, respectively (Berg et al., 2002). This is known as a close pair 

of hydrogen bonds (Ho, 2002). Hence, in antiparallel β-strand pair data, either both 

residues of a pair are hydrogen bonded or both residues are non-hydrogen bonded (see 

Figure 2-14). This arrangement produces the strongest inter-strand stability as it allows 

for the inter-strand hydrogen bonds between carbonyls and amines to be planar, which is 

the preferred orientation. Hence, in antiparallel strand arrangement, N-terminus of one 

strand is adjacent to the C-terminus of the other strand. 

 

Parallel β-sheets: In a parallel arrangement, the successive β strands run in the same 

direction. The NH group of one residue in the first strand is bonded to the CO group of a 

partner residue in the second strand. However, the CO group of the residue in the first 

strand is not bound to the NH group of the partner residue in the second strand, but 

instead finds a residue immediately following the other residue of the pair in the second 

strand (Berg et al., 2002).  This is known as a wide pair of hydrogen bonds (Ho, 2002) as 

shown in Figure 2-14. This orientation is slightly less stable because it introduces non 

planarity in the inter-strand hydrogen bonding pattern. Hence, in parallel β-strand pair 

data, one residue is hydrogen bonded whilst the pairing residue is non-hydrogen bonded 

(see Figure 2-14).  

 

Mixed β-sheets: In a mixed arrangement, an individual strand may exhibit a mixed 

bonding pattern, with a parallel strand on one side and an antiparallel strand on the other 

(Berg et al., 2002). Such arrangements are less common than a random distribution of 

orientations would suggest. 
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[In an H-bonded pair, the amine and carboxyl groups of the partner AAs bind to each other. In a 
non-H-bonded pair, such bindings do not exist; the amine and carboxyl groups bind to partner 

AAs in a different β-strand] 

Figure 2-14 Different forms of bonding between partner AAs in a strand pair. A residue pair 

may be H-bonded or non-H-bonded (depicted on the left side of the figure). Additionally, H-

bonded pairs may form with wide or narrow residues, depending on the orientation of the 

two strands (depicted on the right side of the figure) (Ho, 2002).   

 

β-bridge 

Formation of a single pair β-sheet hydrogen bond is defined as a β-bridge or β-bulge, i.e. 

a β-strand pair of length 1. DSSP defines bridge partners as residues across from each 

other on adjacent β-strands, and it also determines whether the bridge partners interact via 

backbone N–OH-bonds (in other words, a β-bridge must be an H-bonded pair). In 

general, a β-sheet consists of parallel or antiparallel bridges (Kabsch and Sander, 1983). 

Table 2.1 shows an example of a protein sequence, with the β-sheet subunits labeled. 
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Table 2-1 β-sheet subunits of the Fe-S biosynthesis protein (PDB ID:2QGO_A) 

[where B denotes a β-bridge, pi denotes parallel β--strand pairs, ai correspond to antiparallel β--
strand pairs, and i denotes strand pairs. The sequence continues over three rows in the table.] 

Primary sequence 

8-State Secondary structure 

β-Bridge 

 

Parallel β-strands pair 

 

Antiparallel β-strands pair 

 

MSLLNIKFTD NAVDYLKRRE ILDKILILIT DDGGGKYSIQ GGSCSMGAHF 

CCCCBEEECH HHHHHHHHTT CTTSEEEEEE CSSCSTTCCC CCCCCCCCCE 

    B 

     EEE                  EEE                         

      p1                   p2 

                          EEEEEE                     E 

                            a1 

Primary sequence 

8-State Secondary structure 

β-Bridge 

 

Parallel β-strands pair 

 

Antiparallel β-strands pair 

 

SIIWLDKVDP DYPVKIANEQ NVKIYTSDFD KTMLGPNMVM DYNAGSLSLS  

EEEEESSCCT TCCEECBCSS CCEEEECHHH HTTSCSSEEE EEETTEEEEE 

                 B 

EEEE                    EEE             EEE  

 p3                      p2              p1 

EEEEE         EE          EE            EEE EEE  EEEEE  

 a1           a2           a2              a3  a3     a4 

Primary sequence 

8-State Secondary structure 

β-BRIDGES 

 

Parallel β-strands pair 

 

Antiparallel β-strands pair 

SDEGLLDGSV DIGNGAALLK ANKNVQMGIN RQCEGHHHHH H  

ETTEEEEEEE EEEEHHHHHH HHHHHCCCCC CCCCCCCCCC C 

  

          EEEE 

            p3 

E  EEEE  

a4  a4     

 

2.1.5 Tools used for generating datasets and features 

CD-HIT:  

 
CD-HIT(Li and Godzik, 2002)  stands for Cluster Database at High Identity with 

Tolerance. CD-HIT takes a formatted sequence database as input and reduces the overall 

size of the database by removing 'redundant' (highly similar) sequences and outputs a set 

of 'non-redundant' (at a given similarity level) representative sequences. CD-HIT clusters 

all input sequences into groups with sequences that are similar with each other above a 

certainty identity threshold and then selects one chain from each cluster to generate the 

set of representative sequences. The algorithm implements a very fast heuristic to find 

highly similar segments between sequences to avoid costly full alignments.  

 

BLAST AND PSI-BLAST 

 
BLAST (Basic Local Alignment Search Tool) is a search method (Altschul, 1990) that 

finds sequences in a database similar to a given query protein sequence, where the 
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similarity exceeds a preset threshold score. Position-Specific Iterative BLAST (PSI-

BLAST) is an iterative alignment method that uses sequence profiles (Altschul et al., 

1997). The first iteration of the PSI-BLAST is similar to a run of the BLAST program 

and generates a MSA using the BLAST program output to calculate a PSSM. This PSSM 

is used by the second iteration of the PSI-BLAST to detect sequences in a database that 

are also above the threshold score. These newly found sequences are used to recalculate 

the PSSM. This process is repeated until no more new similar sequences are found or a 

user-defined number of iterations have elapsed. Whereas BLAST generates sequences 

that are similar based on a single query protein sequence, PSI-BLAST is able to retrieve 

sequences that have similar structure/function to the input sequence through a profile 

search that  combines the underlying conservation information. Hence, PSI-BLAST 

method can identify related sequences even though much of their primary sequences have 

been altered through evolutionary changes (Altschul et al., 1997; Aravind and Koonin, 

1999). PSI-BLAST tool is available online from the National Center for Biotechnology 

Information (NCBI) website (http://www.ncbi.nlm.nih.gov/BLAST/). 

 

RDpred 

Residue depth quantifies how deeply a given residue is buried within the protein 3D 

structure.  This information aids in the prediction of protein folds, functional sites and in 

protein design. RDpred is a recent sequence based residue depth prediction method 

(Zhang et al., 2008) that predicts residue depths using three depth indices/definitions: two 

distance-based depths based on the MSMS (Koh et al., 2003) and DPX (Pintar et al., 

2003) methods, and a volume based depth based on the SADIC algorithm (Varrazzo et 

al., 2005). These three approaches are complementary to each other. Since, the absolute 

correlations between these depth predictions range between 0.63 and 0.77 (Yuan and 
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Wang, 2008). In addition, RDPred was shown to outperform a competing sequence based 

residue depth predictor designed by Yuan (2008). The prediction of exposed residues 

(residues with low depth) has implications in characterization/prediction of interactions 

with ligands and other proteins, while the prediction of buried residues (residues with 

high values of depth) could be used in the context of the prediction and simulation of 

protein folding. 

  

2.2 Background on computational methods  

Experimental techniques for determining a protein structure such as X-ray 

Crystallography and Nuclear Magnetic Resonance (NMR) methods (Rhodes, 2006) 

remain slow, laborious, expensive and do not scale up to current sequencing speeds. 

Furthermore, using experiments to determine how proteins function is a daunting task; 

and furthermore their native environments are very specific, which can be difficult to 

replicate in the laboratory. Hence researchers have developed several high throughput 

computer methods that can rapidly sift through massive amounts of data and help 

determine the structure and function in silico. Machine learning methods are one of the 

computational approaches that aim to extract information from data through a process of 

training from examples. These approaches rely heavily on similarity of protein sequences 

for prediction of protein 3D structure (structural features, topology and coordinates). 

Machine learning methods are suitable candidates due to the abundance of data and a lack 

of a clear theoretical model that can be used to deduce structure. 
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2.2.1 Definitions 

A feature describes an attribute or property of an object (i.e. it is an observation or 

computed value). The set of possible values that a feature can take is its domain. An 

object can be described by a set of features.  

Example-2.1:   

PDB_ID  2JWU 

Chain_ID  A 

Amino Acid Sequence   TTYKLILNLKQAKEEAIKELVDAATAEKYFKLYANAKTVEGVWTYKDETKTFTVTE 

AA Sequence length 56 

‘T’ count in AA sequence 9 

‘H’ count in AA sequence  0  

 

In Example 2.1, chain ID, length of the AA sequence, count of AAs of type T, and count 

of AAs of type H are the features that describe a given protein chain.  

 

These feature values are summarized as, Chain_Id = A is a nominal feature, i.e., the 

values of this feature, which is “A”, is nominal. Sequence length = 56 is a numerical 

feature, i.e., the values of this feature, which is “56”, is numerical. Also, Amino acid ‘T’ 

count= 9 and Amino acid ‘H’ count= 0 are numerical features.  Similarly, we can derive 

different types of features from the protein sequences. 

 

A dataset is collection of objects, where each object is described by the same set of 

attributes/features. The most popular representation of a dataset is a two-dimensional 

table. A given row represents an object, and a column represents a feature. 

Example-2.2:  For the following three protein sequences, Table 2-2 represents a dataset, 

where each row represents an object/instance and a column is described by a feature. 
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sequence_1: TTLYTSLHAYFVAAPTGCNAEGFFATLGGEI  
sequence_2: GCLGDKCDYNNGCCSGYVCSRTWKWCVLNGPW  
sequence_3: MGINTRELFLNFTIVLITVILMWLLVRSYQY 
 

Table 2-2 Protein dataset using feature-based representation. 

Protein_length Number of 

‘T’s in AA 

sequence 

Number of 

‘L’s in 

sequence 

 

31 5 3 <- feature vector for  sequence_1 

32 1 2 <- feature vector for  sequence_2 

31 3 5 <- feature vector for3 sequence_3 

 

Feature space is the cross-product of all the feature domains; this is the universal set 

from which examples are drawn.   

Example-2.3: For the following protein sequence, protein is specified by a set of three 

features. The cross product of these features is the feature space.  

sequence - TTLYTSLHGYFVFGPTGCNLEGFFATLGGEI 

feature space - (Protein_length, # of ‘T’s in sequence, # ‘L’s in sequence) 

 

Feature vector represents an object as one point in the feature space described by the 

values of its features. In machine learning feature vector is also called 

tuple/record/example, and is usually represented by one row in the dataset table.  

Example-2.4: For the following protein sequence, generated three features that represent 

the protein instance, values of its features forms a feature vector,  

Sequence - TTLYTSLHGYFVFGPTGCNLEGFFATLGGEI 

Feature space- (Protein_length, # of ‘T’s in sequence, # ‘L’s in sequence) 

Feature vector - (31,5,4) 

 

Class (C) (also called predicted feature) is defined by the user and usually is a distinct 

feature. The values of the class feature are referred to as class labels. The labels reflect 



26 
 

some categorization of the underlying objects. The learning task in classification is to 

determine a mapping from feature vectors to class labels that approximates the observed 

label assignment with minimal error.  

 

Training data is a finite subset of the entire available dataset defined as Tr=(A, C), which 

consists a subset of instances A =(A1 . . . An) associated with class labels C =(C1 . . . Cn), 

in which class is predefined. Training dataset is used to generate a prediction model using 

a learning process. 

 

Test data is a finite subset of the entire available dataset defined as Te= (A, C), which 

consists a subset of instances A =(A1 . . . An) associated with class labels C =(C1 . . . Cn), 

in which class is hidden from the prediction model. Test data that is used in a 

classification (prediction) process as well as in the learning process are known as in-

sample evaluation. Test data that is used in a classification (prediction) process, and is not 

used in the learning process are known as out-of-sample evaluation. The prediction 

model uses the predicting features from the test dataset to predict the class labels, which 

are compared with the hidden (true) values to evaluate the predictive quality of the 

model. Out-of-sample evaluation is considered a less-biased estimate of the expected 

performance of the classifier (predictor) on all possible inputs from the feature space. 

Example-2.5: A protein dataset shown in Table 2-3 includes class feature called 

protein_type (this feature will be predicted using the remaining features) which has two 

class values (labels) defined as peptide (P) or polypeptide (O). The protein length, 

number of ‘T’ in the AA sequence, and number of ‘H’ in the secondary structure are the 

predicting features. The training data is the first four rows, where the class labels are 

predefined. The last row where class is hidden and has to be predicted is the test data.  
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Table 2-3 Protein dataset using feature-based representation including class 

 
 
 

 Protein_length Number of ‘T’s in 

AA sequence 

Number of ‘H’s in 

secondary sequence 
Protein 

type 

 

Sequence_1 31 5 5 P 

Training 
dataset 

Sequence_2 31 7 6 P 

Sequence_3 62 3 21 O 

Sequence_4 77 9 4 O 

Sequence_5 65 1 4 -- Test dataset 

 

Positive and negative examples are the examples in a dataset that satisfy the class 

condition are called positive (+ve) examples and remaining are called negative (-ve) 

examples.  

Example-2.6: The positive and negative examples are shown in Table 2-4, where class 

label ‘P’ is defined by a condition that needs three predicting features: protein_length, 

number of ‘T’s in AA sequence, and number of ‘H’s in secondary sequence (i.e. 

Length<40 and T>4 and H>4) Positive examples are the first two rows that satisfy the 

condition and negative examples are last two rows that do not satisfy the condition. 

Table 2-4 Protein dataset using feature-based representation including class with type 

annotation. 

[Positive examples correspond to peptides (P) and negative examples correspond to others] 
 Protein_length Number of ‘T’s in 

AA sequence 

Number of ‘H’s in 

secondary sequence 
Protein 

type 

 

Sequence_1 31 5 5 P 
+ve 

examples 
Sequence_2 31 7 6 P 

Sequence_3 62 3 21 O 
-ve 

examples 
Sequence_4 77 9 4 O 

 

Class feature Predicting features 
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2.2.2 Classification methods 

Machine learning (ML) in computational biology focuses extensively on the prediction of 

protein secondary structure or other unknown properties, based on known properties 

(Baldi  and Brunak, 2001). This section is focused on ML methods that are used in this 

dissertation for the prediction of protein secondary structure. These methods concern the 

prediction/classification problem. 

 

Classification is a task in which a classification system learns patterns from training 

dataset (Tr) and generates classification model that is used to predict a class label Ct for 

each object At from a test dataset (Te). The classification model’s performance is 

evaluated by comparing the predicted class labels with the original class labels for the 

instances in Te using metrics and testing procedures. The entire process is summarized 

Figure 2-15. 

 
[Numbers denote the order of operations.] 

Figure 2-15 Learning and classification process, where training dataset used for learning 

and test data is used for classification (single-split with out of sample approach). 
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We explore the use of three classifiers in this dissertation: logistic regression (LOG) 

(Cessie and Houwelingen, 1992), a normalized Gaussian radial basis function (RBF) 

network (Bugmann, 1998), and a linear-kernel based Support Vector Machine (SVM) 

(Fan et al., 2008), which are described next. Our ultimate solution is based on the logistic 

regression; the other two classifiers were empirically evaluated to be inferior for our 

classification task. Thus, we provide a detailed introduction with an example for the LOG 

model, while the other two models are overviewed briefly. A more detail description of 

these classification methods is outside of the scope of this dissertation. 

 

Logistic Regression (LOG) 

Logistic regression (Cessie and Houwelingen, 1992) has been applied to a broad range of 

problems in computational biology such as protein interaction prediction (Qi et al., 2006), 

sequence-based prediction of DNA-binding residues (Hwang et al., 2007), prediction of 

protein intrinsic disorder (Peng et al., 2006), protein structural class prediction 

(Kedarisetti et al., 2006), etc. This record indicates that LOG is a reasonable candidate for 

our problem. LOG is useful when a user wants to predict the presence or absence of a 

characteristic or outcome based on values of a set of predicting variables. LOG fits a 

linear combination of predictor variables that passes through a sigmoid function, where 

the values of the class variable are the outcome. In our work, we used binary LOG where 

the class feature has two categories. A general form of the binary regression model is 

given in equation [2.1]: 

P = 
e

z−
+1

1
, where z = C0 + C1x1 + C2x2 + … + Cmxm  [2.1] 

Where, C0 is a constant, Ci are coefficients of the linear polynomial z in the predicting 

features xi, i = 1, 2, …, m is the feature index, and m is the number of predicting features. 
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The value of z is used to compute the probability P for a given outcome (label). The 

probability of the second outcome (in the binary classification) equals 1– P. The 

coefficients C0 and Ci are calculated from the training dataset to minimize error rate on 

that dataset. We use WEKA (Hall et al., 2009) to derive the coefficients; a more detailed 

explanation of this calculation is outside of the scope of this dissertation.   

 

The logistic regression is demonstrated below with an example using the data shown in 

Table 2-3. This simple model uses three predicting features to predict the two class labels 

defined by the protein type class features. The LOG model is generated by fitting the 

training data (the first four rows). The resulting coefficients are summarized in Table 2-5. 

Table 2-5 LOG coefficients from the training dataset from Table 2-3 

Variables Coefficients Coefficient values  

Protein length (x1) C1 -0.7034 
Number of ‘T’s in AA sequence (x2) C2 -0.5974 
Number of ‘H’s in protein Secondary 
sequence (x3) 

C3 -0.7886 

 C0 46.0905 

 
 

We use this model to predict the last (test) instance sequence_5 in Table 2-3. The 

probabilities P of each class label are calculated using the equation [2.1] as follows 

z = (-0.7034*65) + (-0.5974*1) + (-0.7886*4) + 46.0905 = -3.3823 

Plabel P = 

e
z−

+1

1
 = 0.0329 

Plabel O = 

e
z

+1

1
 = 0.9672  

Plabel P + Plabel O = 0.0329+0.9672 = 1 

Hence, this test instance is classified as class O with 0.9672 probability and error of 

0.0329. 



31 
 

 

Normalized Gaussian radial basis function network (NRBF) 

Neural Networks (NNs) are widely used in protein secondary structure prediction 

problem and also the earliest machine learning technique applied in the field of 

computational biology (Stormo et al., 1982). An example of an artificial neural network 

containing radial basis functions is shown in Figure 2-16, where there are three layers in 

the network, the input layer, the output layer, and a hidden layer. Each hidden node has a 

different radial basis function that is centered on a feature vector from the training 

dataset.  The goal of this type of network is to create a model that correctly maps the 

inputs to the output using training data, so that the model can be used to produce the 

output class label when it is unknown (Abdi, 1994). In normalized RBF network 

(Bugmann, 1998) the output node activity is normalized by the total input activity in the 

hidden layer. As a result of the normalization, the activity of the hidden nodes determines 

which weights contribute the most to the output.  

 
 

[This diagram is redrawn from the paper (Abdi, 1994)] 

Figure 2-16 Radial basis function NN model  
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Support Vector Machines (SVM) 

The goal of SVM modeling is to find the optimal hyper plane that separates feature 

vectors into classes. Figure 2-17(a) shows, a simple SVM model in a binary class, where 

the feature vector classes are represented by diamonds and stars. SVM model detects a 

single line from out of all possible lines that separates the feature vectors into two classes. 

The feature vectors near the separating line are called support vectors and the distance 

between the dashed lines that are drawn parallel to the separating line and close to the 

support vectors is called the margin. SVM detects the single optimal line by maximizing 

the width of the margin.  If the data is not separable by linear plane, SVM with the help 

of kernel mapping function transform the data into a higher dimensional space in order to 

perform the separation. In Figure 2-17(b) shows, SVM using non-linear polynomial 

kernel function to transform the data into a higher dimensional space to perform the 

separation (http://www.dtreg.com/svm.htm). The most common kernels for a range of 

applications are linear, polynomial, radial basis function (RBF), and sigmoidal. In this 

work we use SVMs with linear kernels to perform the prediction of binary class feature 

vectors. More details about SVM can be found in numerous sources (Cristianini and 

Shawe-Taylor, 2000; Smola et al., 2000; Campbell, 2002; Sanchez, 2003; Fan et al., 

2008).   
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(a) 

 
(b) 

[source of this diagram is from http://www.dtreg.com/svm.htm and redrawn] 

Figure 2-17 (a) shows separating the points with straight line and (b) shows separating the 

points with non-linear curve (polynomial) 

 

2.2.3 Feature selection methods 

Feature selection methods are used to reduce dimensionality of data, i.e., the number of 

the predicting features. A feature selection method simplifies the subsequently used 

classifier by retaining only the relevant features. This may lead to improving the accuracy 

of the classifier and it decreases the size of the dataset. In this dissertation, we consider 

two feature selection strategies: a filter-based and a wrapper based method.  

 

Filter based methods remove unnecessary features without using a classifier (Kohavi 

and John, 1996). Some filter based methods strive for retaining consistency in the data 
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(Allmuallim and Deitterich, 1991), i.e., they remove a feature only when doing so would 

not worsen the consistency. Consistent data are when a given combination of features and 

their values is associated with a single class label. Instances are considered inconsistent if 

they have the same feature values and different class labels. Other filter based methods 

rank features according to a relevancy score (Kira and Rendell, 1992; Holmes and Nevill-

Manning, 1995). In our work, we considered two filter-based methods that are 

computationally efficient, which is important given the relatively large size of our data. 

The consistency-based (CONS) method (Liu and Setiono, 1996) is monotonic, fast, able 

to remove redundant and/or irrelevant features, and capable of handling some noise. The 

correlation-based (CFS) method (Hall, 2000) is a fast filter method that identifies relevant 

features as well as redundancy among relevant features within the high dimensionality 

data. These two methods were shown to reduce the dimensionality of the feature vector 

while maintaining or improving prediction quality in the subsequent classification (Liu 

and Setiono, 1996; Hall, 2000). 

 

The CONS method (Liu and Setiono, 1996) uses a ratio between the numbers of 

inconsistent vs. total number of examples when the input data are projected onto a given 

subset of features. The CONS method attempts to amplify the discriminating power of 

the data, as defined by the predicting features. This method finds the smallest set of 

features that can distinguish classes, as if with the full feature set.  

 

The CFS method (Hall, 2000) uses correlation as the relevancy score. This score 

considers the correlation between a given feature and the class feature and the correlation 

of that feature with other predicting features. The CFS method uses a ratio between a 

correlation-based estimate of the predictive value of a given feature (correlation with the 

class) set and its estimated redundancy (with other predicting features). For example, this 
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correlation can be calculated as the entropy of Y before and after observing X. The 

relevance score measure computed by CFS value lies between 0 and 1. A value of 0 

indicates that X and Y have no association; the value 1 indicates that knowledge of X 

completely predicts Y. The CFS method uses a search algorithm along with it’s 

correlation-based relevancy score to evaluate the merit of feature subsets.  

 

The wrapper-based method (Hall and Smith, 1999) uses a classification algorithm in a 

cross validation (CV) design to evaluate feature subsets. In other words, feature sets are 

assessed based on their prediction quality using a given classification algorithm (Hall and 

Smith, 1999). The wrapper-based selection was performed simultaneously with classifier 

selection and we considered three classifiers: LOG, NRBF, and SVM. Wrapper-based 

methods often achieve better results than the filter-based methods, but are slower as they 

must repeatedly call the classification algorithm and must be rerun when a different 

algorithm is used. 

 

2.2.4 Data Mining Software 

WEKA 

WEKA (Waikato Environment for Knowledge Analysis) is a product of the University of 

Waikato (New Zealand) and was first implemented in its current form in 1997. WEKA 

software is written in the Java language and provides a GUI (graphical user interface) for 

interacting with data files and producing visual results. Weka is open-source software 

that provides many different algorithms for data mining and machine learning. The 

software is freely available (http://www.cs.waikato.ac.nz/ml/weka/), platform 

independent and provides facilities for scripting experiments. It is actively maintained, 

with selected new algorithms being added as they appear in the research literature.  
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LIBLINEAR 

LIBLINEAR (Library for Large Linear Classification) is a classifier for data with 

millions of instances and features (Fan et al., 2008). LIBLINEAR is also open source 

software (http://www.csie.ntu.edu.tw/~cjlin/liblinear/), operates in a scriptable command-

line mode, and interfaces with MATLAB/Octave, Java, Python, and Ruby. LIBLINEAR 

includes implementations for logistic regression and linear support vector machines. It 

also supports multi-class classification, and cross validation for model selection. We use 

this software due to the relatively large size of our dataset. 

 

SigmaPlot v12 

SigmaPlot is a graph-plotting and curve-fitting package, available online at 

http://www.sigmaplot.com/downloads. SigmaPlot was used to generate plots and to fit a 

Gaussian mixture distribution to our data in Chapter 5. It integrates with Microsoft Excel, 

and provides wizards for plotting and fitting. It also allows for user-defined fitting, 

presentation of 3-dimensional (3-D) mesh-plots and plots of multiple 3-D plots in the 

same graph, which were not utilized in this dissertation.  
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3 Experimental design and evaluation  

This chapter summarizes the experimental designs used to develop and validate the 

models, and also details the performance measures and the statistical tests used in this 

thesis to evaluate the models.  

 

3.1 Experimental design  

We use two experimental designs in our research: the single-split design and the cross-

validation design. Both designs generate out-of-sample estimates of the quality of a 

classifier (predictor). In the single-split protocol, the original data is randomly divided 

into training and testing datasets. These sets are disjoint, i.e. the original data is sampled 

without replacement to form both the training and testing datasets. The training dataset is 

used to inductively determine a prediction model, and the testing dataset is used to 

determine the out-of-sample quality of that predictor, according to one or more quality 

metrics. As discussed previously, this is considered a less-biased estimate of the 

predictor’s performance on novel inputs. In the k-fold cross validation protocol, the 

original data is divided into k subsets of approximately equal size. A training dataset is 

formed by merging k-1 of these subsets, while the remaining dataset is treated as the 

testing dataset. Training and testing process then proceeds as in the single-split design. 

The entire procedure is repeated k times, with each subset held out as the test dataset 

exactly once. The quality of the predictions is evaluated by aggregating the out-of-sample 

performance measures over the k iterations. The k-fold cross validation method is 

considered more reliable than the single-split method, as it reduces the risk of randomly 
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selecting and training and test set on the predictor performs unusually well, which would 

bias the estimated performance. 

  

3.2 Performance measures 

A confusion matrix is commonly used to represent the output of a given classifier 

(Kohavi and Provost, 1998). Table 3-1 shows a confusion matrix for a binary 

classification, in which rows represent the observed class labels and columns represent 

the predicted class labels. The diagonal elements summarize the correctly classified 

instances and the cross-diagonal elements represent misclassified examples. The entries 

in the confusion matrix report the number of true positives (TP), which are correctly 

predicted positive examples; false negatives (FN), which are the incorrectly predicted 

positive examples; false positives (FP), which are the incorrectly predicted negative 

examples; and true negatives (TN), which are the correctly predicted negative examples. 

Table 3-1 Confusion matrix for binary classification.  

 Predicted +ve Predicted –ve 

Observed +ve TP FN 

Observed –ve FP TN 

 

We consider an example in which a classification model predicts a given AA as β-strand 

or non-β-strand for a sequence with 100 residues that includes 55 β-strand and 45 non-β-

strand residues. Among the 55 β-strand type residues, the model predicts 45 as β-strands 

(TP) and 10 as non-β-strands (FN). Similarly, among the 45 non-β-strand type residues, 

30 were correctly predicted as non β-strands (TN) and 15 were incorrectly predicted as β-

strands (FP). The resulting confusion matrix is shown in Table 3-2. 
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Table 3-2 Example confusion matrix 

 Predicted β-strand Predicted non-β-strand 

Observed β-strand 45 10 

Observed non-β-strand 15 30 

 

Next, we define several performance measures computed from the elements of the 

confusion matrix, which we use to assess our prediction models. These measures quantify 

prediction quality at the residue and the segment (β-strand) levels. The former means that 

we assess predictions for each AA, and the latter means that we assess predictions of 

entire secondary structure segments (in particular, the β-strand segments). These 

performance measures are consistent with the measures applied in the EVA platform 

(Koh et al., 2003), which is frequently used to evaluate secondary structure prediction 

methods.  

 

Residue-level measures include: 

Accuracy (Acc) measures the percentage of predictions that are correct and is defined by 

Accuracy=
)(

)(

FNFPTNTP

TNTP

+++
+

 = 
 sprediction ofnumber  total

 spredictioncorrect  ofnumber 
  [3.1] 

The accuracy measure may not be a sufficient when the number of negative examples is 

much greater than the number of positive examples in the given data, For example, 

suppose there are 10000 examples, 9950 of which are negative class and 50 of which are 

positive class. If the model predicts them all as negative, the accuracy would be 99.5%, 

even though the classification system misses all positive cases. Hence, there is a need for 

other measures (Baldi et al., 2000; Rost et al., 2003; Punta et al., 2005; Cheng et al., 

2007, etc..) that are at least less sensitive to such a biased class distribution. This is not to 

say that accuracy is of no value; it is, however, necessary to supplement accuracy with 

additional quality measures, in order to obtain a complete picture of a classifier’s 
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performance. In the remainder of this section, we present some of the alternatives used in 

our experiments.  

Recall (Qss_obs) measures the percentage of positive examples that were predicted as 

positive (i.e. how many of the examples predicted by the model were truly positive 

among  all observed positive examples). This measure is also known as sensitivity and is 

defined by 

Qss_obs =
FNTP

TP

+
=

 examples positive ofnumber  total

 sprediction positivecorrect  ofnumber 
   [3.2] 

Precision (Qss_pred) measures the percentage of positive predictions that are correct (i.e. 

how many of the examples predicted by the model were truly positive among all 

predicted positive examples). This measure is defined by  

Qss_pred = 
FPTP

TP

+
 =

 ssprediction positive ofnumber  total

 sprediction positivecorrect  ofnumber 
  [3.3] 

Eqs. [3.1], [3.2], and [3.3] assume binary prediction where the positive examples are the 

β-strand residues and the negative examples are the remaining AAs. We also computed 

Qss for each secondary structure state separately (i.e. Qh_obs, Qh_pred, Qe_obs, Qe_pred,  Qc_obs 

Qc_pred were also determined).  

Per residue prediction accuracy (Q3) quantifies the three-state per-residue accuracy and 

is the most widely used score for evaluating secondary structure predictions (Zhang et al., 

2010). Q3 gives the overall percentage of correctly predicted residues in each of the three 

states: helix, strand and coil. N is the number of residues in a sequence.  

∑
=

=
},,{

3

100

cehi

iTP
N

Q    [3.4] 
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Mathew’s Correlation Coefficient (MCC) measures the quality of a prediction by 

comparing the predictions against a random assignment of a class label and is defined by 

MCC = 
2 )))()()(((

))*()*((

FPTNFNTNFPTPFNTP

FNFPTNTP

++++

−
 [3.5] 

Matthew’s correlation coefficient equals 1 if the prediction is perfect, 0 if the prediction 

is not better than random and is negative if the prediction is even worse than random 

(Mathews, 1975). 

 

As in Lin et al. (2005) and McGuffin and Jones (2003), we also computed four quality 

measures that quantify different types of residue prediction errors based on observed and 

predicted strand segments; see Figure 3-1 for an example.  

(i) Over-prediction error (Oe,) is defined as the number of FP residues where the entire 

segment of the predicted strand residues (predicted β-strand) does not overlap with the 

observed residues state.  

(ii) Under-prediction error (Ue ) quantifies the number of FN residues where none of the 

residues in the entire segment of the observed strand residues (observed β-strand)  is 

correctly predicted.  

(iii) Length error (Le) represents the total number of FN residues and FP residues where 

some of the predicted strand residues overlap with an observed strand residues and where 

the incorrect predictions form a segment that extends to a terminus of the observed β-

strands.  

(iv) Inner segment error (We) is defined as the number of FN residues which are inside 

an observed β-strand, i.e., the segment of these incorrect predictions does not extend to a 

terminus of the observed β-strand.  
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[Over-prediction errors denoted by O, under-prediction errors  denoted by U, length error denoted 

by L, and inner-segment  errors denoted by W] 

Figure 3-1 Illustration of four types of prediction errors. The top line gives the observed 

positions of strand residues (E) and non-strand residues (-),the middle line shows a 

prediction, and the bottom line annotates the errors using bold font. 

 

Segment level measures include: 

Segment overlap (SOV3) quantifies prediction of the secondary structure segments. 

Given both predicted and observed secondary structure assignments, the segment overlap 

measure quantifies the overlap of secondary structure segments of each state rather than 

individual residues (Zemla et al., 1999). A high SOV3 value means that there is a large 

overlap between observed and predicted secondary structure segments, and low SOV3 

value indicates smaller overlap. SOV3 values lie between 0 and 1. This measure has been 

comprehensively tested during the 2nd critical assessment of techniques for protein 

structure prediction (CASP2) (Lesk 1997) and the subsequent CASP assessments (these 

are competitions that assess techniques in the field of protein structure prediction). We 

computed SOV3 for three-state secondary structure segments and computed SOVi for each 

state separately where i={helix(h), strand(e), and coil(c)} (i.e., SOVh, SOVe, SOVc). We 

used SOVe (i.e., for β-strand segments) measure to evaluate the strand prediction model.   

 

Segment overlap for three states (SOV3) is calculated as follows:  

∑∑ ×
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Segment overlap for β-strand segments (SOVe) is calculated as follows: 

      ∑ ×
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Where, N is the number of residues in a sequence, s is the segments, i is the secondary 

structure state, s1i is the observed segment, s2i is the predicted segment,  minov is the 

minimum  overlap between the observed and predicted segments, maxov is the extent of 

the observed and predicted segments  and δ is the accepted variation which assures minov 

over maxov  ratio to 1.0 where there are only minor deviations at the end of segments. 

SOVh and SOVc is computed similar to SOVe. 

 

Average strand segments coverage (ASSC) is a new measure defined by this thesis that 

quantifies the overall strand coverage of strands in the sequence. ASSC measures how 

many of the residues are correctly predicted in each overlapping segment pairs from the 

observed and predicted β-strand segments of a sequence, whether those residues were 

continuous or not. This differs from SOVe, which measures the ratio of the minov and 

maxov (which are continuous residues of the segment) portions of the overlapping 

segment pairs from the observed and predicted β-strand segments of a sequence. We used 

ASSC measure to evaluate the prediction model on the overall coverage of strand 

segments residues in a sequence. This measure is defined by 
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1
   [3.11] 

Where Sio is the number of residues in the observed β-strand Si, Sip is the number of 

predicted strand residues that overlap with residues in the observed β-strand Si, and N is 

the total number of β-strands. 

3.3 Statistical significance tests  

Our tests of statistical significance for our results proceed in two steps. We first use the 

Shapiro-Wilk test (Shapiro and Wilk, 1965) to verify normality. The Shapiro–Wilk test 

tests the null hypothesis that the data in the group forms a normally distributed 

population. The test statistic is: 
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where x(i)  is the i-th order statistic, i.e., the i
th smallest number in the sample; 

x  = (x1 + ... + xn) / n is the sample mean and the constants ai are given by  
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=   [3.13] 

Where T

nmmm ),.....,( 1=  and m1, ..., mn are the expected values of the order statistics of 

independent and identically-distributed random variables sampled from the standard 

normal distribution, and V is the covariance matrix of those order statistics. Small values 

of W indicate non-normality; however, there is no closed-form expression for the 

distribution of W. Tables of critical values for W may be found in (Pearson and Hartley, 

1972).  
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We used paired t-test (Goulden, 1956) when our data satisfies the normality test. In the 

paired t-test, the null hypothesis is that the mean difference between pairs DX  is zero, 

while the alternative hypothesis is that the mean difference is nonzero. The test statistic is  

ns

X
t

D

D

/
0µ−=    [3.14] 

The average (
D

X ) and standard deviation (sD) of those differences are used in the 

equation. The constant µ0 is non-zero in a variant that tests the average of the difference 

is significantly different from µ0. The t-value is then compared to the Student’s t-

distribution with n-1 degrees of freedom. The null hypothesis is rejected if and only if the 

probability P(t) is less than or equal to the chosen significance α/2 (for a two-sided test).   

 

We use the Wilcoxon signed rank test (Wilcoxon, 1945) when the data does not pass the 

normality test. This test analyzes paired differences by using ranks of the data, i.e., it 

considers the signs of the differences, instead of the magnitude.  The null hypothesis is 

the medians of the two groups are the same, i.e. m1 = m2, while the alternative is m1 ≠ m2.  

The test statistic W+ is defined as 

i
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i

i RW ∑
=

+ =
1

φ    [3.15] 

where Ri is the i-th ranked (nonzero) difference between paired items, and φi is the sign of 

that difference. W+ considers only positive differences (W- considers only negative 

differences; one uses the smallest of the two as the test statistic). For a small number of 

differences, an exact computation of the p-value for this statistic is given by 

(http://www.stat.auckland.ac.nz/~wild/ChanceEnc/Ch10.wilcoxon.pdf). However, for a 
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larger number of differences (roughly 20 or more), we can approximate the distribution 

of W+ as being normal. The z-statistic is 

A
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wA denotes the observed rank sum, nA of our n observations from a distribution are 

labeled group A and nB observations from the same distribution are labeled group B. The z 

statistic is compared against the normal distribution with zero mean and variance = 1  
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4 Prediction of strand residues 

4.1 Overview 

The existing approaches for prediction of β-strand residues from protein sequences are 

characterized by a relatively poor quality. This is likely due to the long-range (in the 

sequence) interactions that are characteristic of β-sheets, unlike helices and coils. This 

stems from the fact that extraction of long-range interactions suffers from a combinatorial 

explosion when compared to more local interactions that can be characterized using one 

short segment in the chain. Only a few methods have been proposed for the prediction of 

long-range residue-residue contacts/interactions and their accuracy is relatively low 

(Hubbard, 1994; Asogawa, 1997; Baldi et al., 2000; Steward and Thornton, 2002; Rost et 

al., 2003; Punta et al., 2005; Vullo et al., 2006; Cheng et al., 2007). Other reasons for the 

relatively low predictive performance for the β-strand residues are the weak coupling 

between β-residues pairs on neighboring strands (Mandel-Gutfreund et al., 2001), i.e., the 

interactions are “irregular” and thus difficult to find; and the lack of a systematic 

approach towards the problem (Cheng and Baldi, 2005). At the same time, the knowledge 

of β-sheet topology, i.e., the pairing of all the β-strands in a given protein, is essential for 

understanding the structure of β-sheets (Zhang and Kim, 2000). To this end, our work 

focuses on improving the accuracy of sequence-based prediction of β-strand residues and 

β-strand segments. Improving these predictions would help with more accurate prediction 

and understanding of the β-sheet topology and in other areas that were discussed in 

Section 1.1. 

 



48 
 

4.2 Existing research and proposed solution 

The past three decades have seen intense research in the sequence-based prediction of 

protein secondary structure (SS) (Rost, 2001). In the last fifteen years, Q3 for state-of-the-

art predictors improved from about 70% (Rost and Sander, 1993) to over 80% 

(Montgomerie et al., 2006; Zhang et al., 2011). Recent SS predictors employ a variety of 

machine learning-based models such as neural networks, support vector machines, and 

regression. They can be categorized into standalone methods and ensembles that combine 

multiple SS predictors. A majority of the standalone predictors are based on different 

types of neural networks, including PHD (Rost, 1996), PSIPRED (Jones et al., 1999; 

McGuffin et al., 2000), SABLE (Adamczak et al., 2005), SSpro (Pollastri et al., 2002), 

YASPIN (Lin et al., 2005), PORTER (Pollastri and McLysaght, 2005), and SPINE (Ofer 

and Zhou, 2007). Their Q3 is relatively high and ranges between 73% and 78% on the 

benchmark EVA dataset (Rost and Eyrich, 2001; Rost and Sander 2000; Lin et al., 2005). 

The ensemble predictors include CoDe (Selbig et al., 1999), PROTEUS (Montgomerie et 

al., 2006; 2008), and CDM (Cheng et al., 2007), and they achieve Q3 of up to 89.9% on 

their test datasets (Montgomerie et al., 2008). 

 

The above methods attempt to solve the general three–state prediction problem; however, 

recent research shows that predicting specific SS types, such as specific coil types 

including β- and γ-turns (Zheng and Kurgan, 2008; Hu and Li, 2008; Tang et al., 2011) 

also produces high-quality results. Empirical analysis of two SS predictors, YASPIN and 

PORTER, reveals that their Qe values are lower than Qh by 7 to 16 percentage points (Lin 

et al., 2005; Pollastri and McLysaght, 2005; Jones, 1999). This indicates that binary 

classification of strand vs. non-strand residues (either coils or helices) may be 

characterized by lower improvement over a baseline than the binary classification of 
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helices or coils (Ward et al., 2003). Furthermore, fragments of protein sequence that fold 

into strands are characterized by specific patterns that concern occurrence of certain AA 

types, which were investigated in numerous studies over the last 3 decades (Chou et al., 

1982; Chou et al., 1986; Chou and Carlacci, 1991; Mandel-Gutfreund and Gregoret, 

2002; Bhattacharjee and Biswas, 2010), and which could be exploited to build effective 

predictors.  

 

Virtually all modern SS predictors, including PSIPRED, SSPRO, PORTER, and 

PROTEUS, exploit local information in the sequence using a windowing approach to 

compute their predictions. In other words, to predict a given AA they use information 

about the neighboring AAs in the sequence and ignore AAs that are farther away. Their 

designs also imply independence between positions in the window, i.e. although 

predictions are based on neighboring AAs they use them individually and do not exploit 

relations between them. While this is acceptable when considering the AA sequence, 

windowing the predicted SS sequence (e.g. in the second stage of popular PSIPRED 

method that uses predicted SS) loses vital information. This recently prompted 

development of a method that post-processes predicted SS (Madera et al., 2010), and it 

inspires the development of our feature set. We also note that certain residue 

characteristics, such as burying depth, that can be predicted relatively accurately from the 

sequence (Yuan and Wang, 2008; Zhang et al., 2008) and have not been considered by 

the existing SS predictors, could provide valuable predictive input. More specifically, 

recent analysis shows that helices are about three times more abundant on the protein 

surface when compared with strands, while their abundance in the protein core is 

comparable, and twice as high compared to coils (Yuan and Wang, 2008). 
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To this end, we propose BETArPRED (BETA Residues PREDictor) (Kedarisetti et al., 

2011), which focuses on the two-state strand prediction problem. Our approach is 

motivated by recent works demonstrating that ensemble-based SS predictors outperform 

standalone solutions (Montgomerie et al., 2006; 2008; Albrecht et al., 2003). Similarly, 

combining multiple predictors results in improvements in related predictive efforts, 

including prediction of protein fold types (Shen and Chou, 2006; Chen and Kurgan, 

2007), structural classes (Mizianty and Kurgan, 2009; Kedarisetti et al., 2006; Gromiha 

and Selvaraj, 1998), quaternary structure type (Shen and Chou, 2006), transmembrane 

helices (Shen and Chou, 2008), and disorder (Schlessinger et al., 2009; Mizianty et al., 

2010; Xue et al., 2010), to name a few. Furthermore, correlations between neighboring 

SSs are known to be stronger than between neighboring residues (Crooks and Brenner, 

2004; Liu et al., 2004). Hence, BETArPRED first passes sequences to three base SS 

predictors (SSpro, PSIPRED and SPINE). Our selection of these three base predictors is 

discussed in Section 4.2.3. BETArPRED also uses residue depth predictions computed 

with RDpred (Zhang et al., 2008) (see section 0), and sequence-derived information to 

generate features. The features utilize local (window-based) patterns in the predicted SS 

to exploit relations between adjacent residues. They further combine information about 

the predicted SS and residue depth, and consider global (sequence-wide) information 

concerning chain length. 

 

4.2.1 Overview of proposed solution  

We propose a novel type of ensemble in which we accept the strand residue predictions 

of the strongest base method and (re)predict the remaining residues. The overall design of 

the proposed method is shown in Figure 4-1. The input protein sequence is fed into 

SSpro, SPINE and PSIPRED to obtain predicted SS. The strand residues predicted by 
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SSpro are passed to the final prediction due to its best performance on our generic 

globular protein dataset. This design is motivated by high predictive quality of SSpro for 

strand residues (as evidenced later in this chapter based on Table 4-1) and the fact that 

such ensemble provides an improvement in predictive quality over a classical method that 

would simply combine multiple predictors (as evidenced based on results in Table 4-3 

and Table 4-4 which are discussed in Section 4.2.5). The design of the classical method 

which predicts all residues is denoted on Figure 4-1 when removing the parts shown 

using dotted lines and it is denoted as alternative design in this thesis. Using our design, 

the predicted SSs, residue depth predicted with RDpred method (Zhang et al., 2008), and 

the sequence itself are used to compute a feature vector for the remaining residues that 

were not predicted by SSpro as strand residues. These features combine both local 

(window-based) and global (sequence-based) information. The feature vector is passed to 

a classifier, and the predicted strand residues are merged with the predictions from SSpro.  

 
[the alternative (classical) design can be obtained by removing dotted lines and predicting all 

residues by a classifier] 

Figure 4-1 The overall design of the proposed BETArPRED method. 
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4.2.2 Datasets 

A new dataset is created to train and test the proposed strand prediction model. This 

dataset has sequences with low (<25%) sequence similarity. The low similarity assures 

that the solution cannot be found by a simple sequence alignment. This dataset is a subset 

of PDB (Berman et al., 2000) that are deposited between Jan. 2007 and Dec. 2008; the 

evaluation was performed in 2009. The main reason to create a new dataset is to make it 

dissimilar with the previous training sets used by the methods that are used in the 

proposed ensemble and methods that are compared with the proposed model. These 

methods were evaluated in 2009 and their corresponding predictive models were built 

before 2007. Next, this dataset is further filtered to consider only protein chains with 

high-quality structures; those determined by using X-ray crystallography with resolution 

< 2.5Å and R-value < 0.25 (Rhodes 2006; Rupp, 2011). Then using CD-hit program (Li 

et al., 2002), the sequence similarity within the dataset is reduced by selecting a subset of 

chains that has pair wise sequence identity <40%. Additionally, to minimize the effect of 

templates used by the methods those are utilized in the proposed solution, we removed 

any sequence that has >25% similarity to the sequences deposited in PDB before Jan. 

2007 using pairwise similarity computed by BLASTp program. As in Cheng and Baldi 

(2005) and Lippi and Frasconi (2009), we retained the sequences that have at least 50 

residues and contain at least 10% strand residues. This is motivated by the fact that 

metrics that we use to evaluate strand prediction, which are mentioned in Chapter 3, 

require that strand residues are present in the native structure; otherwise calculations 

would lead to divide by 0. The final dataset consists of 861 protein sequences, and is 

referred to as dataset-1 in this thesis. The strand and non-strand residues in this dataset 

were annotated using DSSP (Kabsch and Sander, 1983).  
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This dataset was randomly divided into two subsets, the TRAINING and the TEST sets. 

The TRAINING dataset contains 429 protein sequences (103,390 residues and 25,697 

strand residues), which are used to design and train the predictive model using 5-fold 

cross validation. The TEST dataset contains 432 sequences (106,405 residues and 25,648 

strand residues) and is used to determine the out-of-sample prediction quality of 

BETArPRED.  Also, BEATrPRED is evaluated on targets from the CASP8 experiment 

(Moult et al., 2009). In forming our CASP8 dataset, we exclude 3 targets which could not 

be processed using DSSP and another 7 for which the predictions of the top-performing 

tertiary structure predictor in CASP8 (Cozzetto et al., 2009) were missing. This dataset 

includes 111 sequences (5,358 strand residues, out of 22,875 total residues). The datasets 

are available at http://biomine.ece.ualberta.ca/BETArPred/BrP.htm. 

 

4.2.3 Empirical evidence on sequence based strand residue and ββββ-

strands predictions  

We considered the key SS predictors listed by Rost (2009) which include PORTER, 

PSIPRED, SSpro, SABLE, and YASPIN, as well as two recent predictors, SPINE and 

PROTEUS2. PSIPRED is widely applied in prediction of various structural properties 

such as solvent accessibility (Garg et al., 2005), fold (Chen and Kurgan, 2007), structural 

class (Mizianty and Kurgan, 2009), outer membrane beta barrel protein types (Mizianty 

and Kurgan, 2011), folding rate (Ivankov and Finkelstein, 2004), and β- and γ-turns 

(Zheng and Kurgan, 2008; Hu and Li, 2008), to name a few. PROTEUS2 is a recent 

ensemble method that was selected due to its reported favorable performance when 

compared with competing SS predictors (Montgomerie et al., 2006; Zhang et al., 2011). 

YASPIN was reported to provide high quality predictions of strand residues (Lin et al., 
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2005; Zhang et al., 2011). PORTER (the standalone version provided at 

http://distill.ucd.ie/porter/), SSpro 4.0, and SPINE were selected due to their strong 

performance on the EVA server and in a recent benchmark (Koh et al., 2003; Zhang et 

al., 2008). We computed Acc, Qe_obs, Qe_pred, SOV3, SOVh and SOVe values on the 

TRAINING set for each of the seven predictors, see Table 4-1. We select the three 

methods with highest accuracy (SSpro, PSIPRED, and SPINE) to implement our 

BETArPRED. These methods also have high SOVe, SOVh, SOV3 and Qe_pred values, while 

their Qe_obs is also relatively large. SABLE and PORTER have low Qe_obs, while 

PROTEUS and YASPIN over-predict strand residues, leading to low Qe_pred. The selected 

predictors have SOVe < SOVh, confirming that helices are predicted more accurately than 

strands.  

Table 4-1 Seven SS predictors compared on the TRAINING dataset.  

[The methods are sorted by Acc] 

SS predictor Acc Qe_obs Qe_pred SOVe SOVh SOV3 
SSpro 89.02 70.49 82.64 74.76 80.78 77.33 
PSIPRED 88.71 73.76 79.24 75.49 80.25 77.51 
SPINE 88.68 72.01 80.27 75.51 80.02 77.23 
SABLE 88.31 68.60 81.29 74.14 78.46 76.48 
PROTEUS 87.95 82.42 72.65 78.89 79.24 77.51 
PORTER 87.03 66.82 77.74 71.37 78.34 76.08 
YASPIN 85.57 72.67 70.18 73.00 76.21 73.41 

 

4.2.4 Features 

We employ features generated at three levels: the predicted residue itself (raw values), 

from a local window centered over the predicted residues (aggregated local information), 

and the entire protein sequence (aggregated global information). The features are 

obtained from three input sources: the sequence, the predicted SS, and the predicted 

depth. In total we extract 214 features for 209795 instances. Out of those 103390 

instances used for training and 106405 instances are used for test. 
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The following feature definitions use the following terminology: the first letter in the 

prefixes of the feature names indicates the information level, i.e., r denotes residue, w 

denotes window, and p denote sequence-level features. The second letter of the prefix 

indicates the information source used to derive the feature value, i.e. a denotes to AA 

information and s denotes to SS based information. Additional symbols are defined as 

follows:  

• A method, i={PSIPRED, SSPro, SPINE} 

• The SS state, k={h,e,c} 

• SS state segment, a segment formed with a particular SS state 

• A depth index, j={MSMS, DPX, SADIC} 

• Dipeptide Type, m={hh, ee, cc, hc, ec, ch, ce} We do not consider the dipeptides 

where strand residues are next to helix residues, since they very rarely occur 

naturally, if at all. 

• Tripeptide Type, n={hhh, hcc, cch, hhc, chh, hch, eee, ecc, cce, cec, eec, cee, 

ece, ccc, ech, hce} We do not consider the tripeptides where strand residues are 

next to helix residues, since they very rarely occur naturally, if at all. 

• Fragment Size, s = {3, 5, 9}  

 

Residue-level Features 

For each residue in a given sequence, the following 9 features are computed:  

r_a_from_N, The linear distance between the N terminal and the current residue 

position.(1 feature). 

r_a_from_C, The linear distance between the C terminal and the current residue 

position (1 feature). 
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r_a_ssi,  The type of SS state predicted by a method (3 features). 

r_a_score, The relaibility scores for the predicted SS state by the PSIPRED method 

(1 feature).  

r_a_depth,j ,The depth predicted for a given residue by the RDpred method based on 

each of the depth indices (3 features). 

 

Window-level Features  

174 features are computed for each residue in a given protein sequence using a local 

window. The maximum window size that we use is 9 (4 residues on each side of the 

predicted residue). This size was selected since previous work suggests that formation of 

strands appears to be affected by residues within 3 positions in the sequence (Chen et al., 

2006). We extended the resulting 7 residues-wide window to include one more position 

assuming that feature selection (which is described in the next sub-section) will remove 

features that are irrelevant.  

 

Among the 174 features, 63 are generated using the predicted residue depths (in some 

cases combined with the predicted SS): 

w_a_depthj_frags, is the average depth predicted by a depth index for a given  

window size (3*3=9 features). 

w_s_mi_avgdepth_statek_depthj, is the average depth predicted by a depth index for 

each central SS state of a prediction method in a given window.  (3*3*3=27 

features). A value of -1 is used when a given SS state is not predicted in the window. 

w_s_mi_avgdepth_segl_depthj,  is the average depth predicted by a depth index for 

each SS state segment of a prediction method in a given window. (3*3*3=27 

features). The values for the remaining two SS state segments are set to -1.  
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Another 87 features quantify composition of the predicted SS: 

w_s_mi_statek,, is the count of SS state residues by a prediction method in a given 

window (3*3=9 features) 

w_s_mi_statek_norm_len, is the normalized count (by length) of SS state residues by 

a prediction method in a given window  (3*3=9 features). 

w_s_mi_dipepm, is the count of each dipeptide segment type by a prediction method 

in a given window (7*3=21 features). 

w_s_mi_tripepn_central_res, is the binary feature that describes whether the central 

tripeptide segment predicted by a method, matches a defined tripeptide segment type 

in a given window (16*3=48 features). 

 

The following 9 features utilize the reliability scores for the SS predicted by PSIPRED: 

w_s_mPSIPRED_avg_rel_score_statek, is the average reliability score for SS state 

predicted by the PSIPRED method in a given window (3 features). 

w_s_mPSIPRED_max_rel_score_statek, is the maximum reliability score for SS state 

predicted by PSIPRED method in a given window (3 features). 

w_s_mPSIPRED_min_rel_score_statek ,is the minimal reliability score for SS state 

predicted by PSIPRED method in a given window (3 features). 

 

The next 9 features quantify the number and size of predicted SS segments:  

w_s_mi_max_seg_len, is the maximal length of SS segment predicted by a method in 

a given window (3 features). 

w_s_mi_min_seg_len, is the minimal length of SS segment predicted by a method in 

a given window (3 features). 

w_s_mi_seg_number, is the number of SS segments predicted by a method in a given 

window (3 features). 
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The final 6 features quantify the position of the predicted residue with respect to the 

predicted SS segment that includes this residue: 

w_s_mi_max_interface_distance, is the maximal distance between the position of the 

predicted residue (center of the window) and the two termini of the central SS 

segment of a method in a given window (3 features) 

w_s_mi_min_interface_distance, is the minimal distance between the position of the 

predicted residue(center of the window) and the two termini of the central SS 

segment of a method in a given window (3 features) 

 

Sequence-level Features 

A total of 31 features are computed by exploring the entire protein sequence: 

p_a_chain_len, is the length of the protein sequence (1 feature). 

p_s_mi_segs, is the number of the SS segments predicted by a method (3 features). 

p_s_mi_segl_norm_len, is the count of the SS state segments predicted by a method, 

normalized by the sequence length (3*3=9 features). 

p_s_mi_segl_norm_total, is the count of the SS state segments predicted by a method, 

normalized by the total SS segments in the sequence (3*3=9 features). 

p_s_mi_Eseg_± 1, is the count of strands where length of the strand predicted by a 

method equals length of the central segment ± 1 in a given sequence when the 

central segment is of β-strand type (3 features). These features are set to -1 when the 

predicted residue in not in a β-strand. 

p_s_mi_Eseg_± 2, is the count of strands predicted by a method where length of the 

strand equals length of the central segment ± 2 in a given sequence when the central 
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segment is of β-strand type (3 features). These features are set to -1 when the 

predicted residue in not in a β-strand. 

p_s_mi_Eseg_± 3, is the count of strands predicted by a method where length of the 

strand equals length of the central segment ± 3 in a given sequence when the central 

segment is of β-strand type (3 features). These features are set to -1 when the 

predicted residue in not in a β-strand. 

 

The p_s_mi_Eseg_+/-1, p_s_mi_Eseg_+/-2 and p_s_mi_Eseg_+/-3 features help the 

ensemble when predicting sequences that are rich in β-strands. More specifically, if a 

residue is in a strand segment, and there are other strands of similar size as this strand in 

the same protein, the residue is more likely to be a strand since β-strands commonly 

(although not universally) interact with other strands of similar size to form β-sheets.  

 

The values of -1 are used as feature values in cases where the input information is 

undefined, e.g., when finding number of similarly sized β-strand for a residue which is 

not in a β-strand. This value is used by the classifier to identify the fact that value is 

undefined.  We selected -1 since this value is always outside of the domain of these 

features, e.g., if a given residue is not in a β-strand then the predicate “number of 

similarly sized β-strand segments”  is semantically distinct from the case of a residue in a 

β-strand where there are no similarly-sized strands in the sequence. 

 

4.2.5 Feature and classifier selection  

We use empirical feature selection to identify a subset of features that are effective in 

predicting strand residues. At the same time, we require a classifier with favorable 
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predictive quality. These experiments were performed using the WEKA (Hall et al., 

2009) and LIBLINEAR (Fan et al., 2008) software packages. We considered two feature 

selection strategies: a filter-based method in which feature sets are evaluated by their 

“association” with the prediction outcomes, and a wrapper-based method in which feature 

sets are assessed based on prediction quality using a given classification method (Hall 

and Smith, 1999). 

 

We applied two filter-based methods, consistency-based (CONS) (Liu and Setiono, 1996) 

and correlation-based (CFS) (Hall, 2000) that are described in Section 2.2.3. These two 

methods were shown to reduce the dimensionality of the feature vector while maintaining 

or improving prediction quality. Also, these methods were used in other areas of 

bioinformatics, such as a sequence-based prediction of protein crystallization propensity 

(Kurgan et al., 2009), prediction of structural classes of proteins (Mizianty and Kurgan, 

2009; Kedarisetti et al., 2006), gene expression and protein patterns (Liu and Wong, 

2002), where they provided satisfactory results. We used these two selection methods on 

the TRAINING dataset using 5-fold cross validation and we combined the features 

selected in each fold together. We also took the union and intersection of these two 

feature sets, which are denoted UNION and INTER, respectively.  

 

The wrapper-based selection was performed simultaneously with classifier selection. We 

consider three classifiers that are fast, useful and commonly used in this research context: 

logistic regression (LOG) (Cessie and Houwelingen, 1992), a normalized gaussian radial 

basis function (NRBF) network (Bugmann, 1998), and a linear-kernel based Support 

Vector Machine (SVM) (Fan et al., 2008) due to speed. The RBF network requires 

setting the number of clusters, k, and we use two variants with k=1 and k=2, referred to as 

RBF(1) and RBF(2), respectively. These settings allowed for fast calculations given the 
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large size of our data. We also parameterized the value of complexity constant C for the 

SVM for each of the feature sets using 5-fold cross validation. As with the filter-based 

selection, we used best-first search to generate features subsets that were inputted into the 

four classifiers, LOG, RBF(1), RBF(2), and SVM. Each of the feature sets was evaluated 

on the TRAINING dataset using 5-fold cross validation. We evaluate the classifiers using 

three indices: Accuracy (Acc), average of Qe_pred and Qe_obs (Avg), and SOVe. 

Consequently, we have three feature sets. 

 

Next, we used the same four classifiers to compare the predictive quality of all selected 

feature sets (four selected using filter-based methods and three using the wrapper-based 

method). Each of the 28 experiments (4 classifiers * 7 feature sets) is based on the 5-fold 

cross validation on the TRAINING dataset. The complete results are given in Table 4-2. 

Additionally, we repeated the same procedure with an alternative design (i.e standard 

ensemble), where all the residues predicted by a classifier. Using results in Table 4-2, we 

selected four best models based on the highest Acc and the highest SOVe values. Out of 

those four best models, two models are selected from the standard ensemble, one with 

highest accuracy and one with highest SOVe values. Similarly, we selected two best 

models for the proposed design, one with highest accuracy and one with highest SOVe.  

As observed in Table 4-2, two models attain the same highest accuracy for the proposed 

design and out of those two we chose one best model with the higher Qe_pred.   
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Table 4-2  Results obtained using 5 fold cross validation on the TRAINING dataset for the 

considered four classifiers and seven feature sets. Chosen design results shown in bold italics.  

[The first two columns specify the classifiers and the feature set identified by the corresponding 
feature selection method. The results for the proposed design that accepts strand residues predicted 
by SSpro and predicts the remaining residues are shown in the “(proposed method)” columns. The 
results for the design that predicts all residues are given in the “alternative design” columns. The 

results with the highest accuracy (Acc) and SOVe  are shown using bold. N/A means that the 
quality index value could not be computed since no strand residues were predicted.] 

Classifier Feature 

selection 

Prediction of all residues  

(alternative design) 

Strand residues predicted 

by SSpro with 

prediction of the 

remaining residues 

(proposed method) 
Acc SOVe Qe_obs Qe_pred Acc SOVe Qe_obs Qe_pred 

SVM CONS 75.22 0 0 N/A 89.05 74.77 70.53 82.71 
CFS 88.50 73.08 72.13 79.55 89.05 76.21 74.40 80.02 
UNION 75.22 0 0 N/A 89.05 74.77 70.53 82.71 
INTER 88.74 75.51 73.87 79.28 89.05 74.77 70.53 82.71 
ACC 89.07 74.79 70.31 82.98 89.31 76.71 75.40 80.27 
AVG * 89.08 78.75 78.57 77.62 24.78 5.07 100 24.78 
SOVe 55.39 79.34 82.73 33.69 55.59 80.27 84.64 34.06 

LOG CONS 89.25 75.56 72.16 82.26 89.19 77.36 76.16 79.39 
CFS 89.33 74.61 70.91 83.52 89.23 77.23 76.03 79.60 
UNION 89.31 75.09 71.99 82.64 89.24 77.73 76.29 79.45 
INTER 89.02 74.67 69.08 83.77 89.15 76.77 75.69 79.54 
ACC 89.20 75.58 71.92 82.25 89.51 78.19 76.63 80.15 
AVG  89.43 75.47 73.15 82.22 89.51 78.35 77.00 79.92 
SOVe 88.86 76.49 75.10 78.91 89.45 78.51 77.12 79.66 

RBF(1) CONS 88.72 77.24 76.95 77.38 89.23 76.34 74.84 80.36 
CFS 89.37 77.01 75.20 80.61 89.48 78.05 76.64 80.04 
UNION 89.33 76.47 75.45 80.30 89.48 78.05 76.64 80.04 
INTER 89.03 78.31 76.08 78.91 89.35 77.56 75.92 80.07 
ACC 89.07 74.66 70.31 82.97 89.29 77.62 74.32 80.91 
AVG * 89.54 77.31 75.62 80.92 89.01 79.51 80.09 76.62 
SOVe 88.74 76.23 76.33 77.82 89.01 79.54 80.05 76.62 

RBF(2) CONS 88.89 74.27 72.52 80.69 89.30 76.56 75.07 80.44 
CFS 89.22 75.74 72.30 82.05 89.48 78.05 76.64 80.04 
UNION 89.18 74.31 69.75 83.89 89.48 78.05 76.64 80.04 
INTER 89.07 78.59 76.66 78.69 89.41 78.19 77.20 79.46 
ACC 89.34 77.19 73.43 81.70 89.36 77.66 74.05 81.33 
AVG * 89.00 74.34 73.12 80.67 88.97 79.68 80.86 76.11 
SOVe 88.78 77.30 75.24 78.57 89.16 78.86 78.13 78.12 

AVG* means wrapper-based feature selection evaluated using average of Qe_pred  and Qe_obs 

 

Table 4-3 compares the four best models against the three base SS predictors on the 

training dataset. Results show that SSpro has the highest Qe_pred value, i.e., only about 

17% of its strand residue predictions are incorrect. This is why strands predicted by this 

method are passed to the output in our design. However, 29% of the observed strand 
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residues are missed by SSpro, and our proposed ensemble is designed to find them. Also, 

Table 4-3 reveals that there are two best results in terms of high accuracy with a tradeoff 

between Qe_pred and Qe_obs.  Out of those two, we selected one best model with highest 

SOVe value, which was obtained by the LOG classifier and wrapper-based feature 

selection evaluated using accuracy (the last row in Table 4-3). The selected feature set 

used in our best model includes only 9 features and they are discussed in detail later.  

Table 4-3 Results of 5-fold cross-validation on the TRAINING dataset for the two best 

performing feature sets, according to Accuracy and  SOVe , using the proposed design and 

alternative design, they  are compared with three base SS predictors (PSIPRED, SSpro and 

SPINE).  

[The proposed/alternative design rows encode the classifiers (SVM, RBF(1), and LOG) and 
feature selections (SOVe , Avg, and Acc) used. The results with the highest accuracy (Acc), Qe_pred 

and SOVe of the chosen design were shown using bold.] 

Predictor  Acc SOVe Qe_obs Qe_pred 

SSpro  89.02 74.76 70.49 82.64 

PSPRED 88.71 75.49 73.76 79.24 
SPINE 88.68 75.51 72.01 80.27 
Alternative design (predicts all residues)  SOVe + SVM 55.39 79.34 82.73 33.69 

Avg + RBF(1) 89.54 77.31 75.62 80.92 
Proposed design (by taking strand residues predicted 

by SSpro and predicting the remaining positions) 

SOVe + SVM 55.59 80.27 84.64 34.06 
Acc + LOG 89.51 78.19 76.63 80.15 

 
 

We also compare the four best models from Table 4-3 on the TEST and CASP8 datasets. 

The results, which are summarized in Table 4-4, confirm that the chosen ensemble 

provides favorable predictive quality as measured by accuracy, SOVe and a good trade-off 

between Qe_obs and Qe_pred. Thus, the proposed BETArPRED method uses the strand 

residues predicted by SSpro and predicts the remaining residues utilizing the LOG 

classifier and the 9 features. 
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Table 4-4 The results on the TEST and CASP8 dataset for the two best performing feature 

sets, measured by accuracy and SOVe on the TRAINING dataset, using the proposed design 

and the alternative design. 

[The proposed/alternative design rows encode the classifiers (SVM, RBF(1), and LOG) and 
feature selections (SOVe, Avg, and Acc) used. The results with the highest accuracy (Acc) and 

SOVe of the chosen design were shown using bold.] 

Predictor TEST dataset CASP8 dataset 

Acc SOVe Qe_obs Qe_pred Acc SOVe Qe_obs Qe_pred 

Alternative design (predicts 

all residues)   

SOVe + SVM 54.57 79.04 82.84 32.64 53.40 76.84 82.42 31.65 

Avg + RBF(1) 89.42 78.14 75.29 79.77 88.10 70.58 70.64 77.45 

Proposed design (by taking 

strand residues predicted by 

SSpro and predicting the 

remaining positions) 

SOVe + SVM 54.90 79.96 84.48 33.04 53.82 77.66 83.95 32.08 

Acc + LOG 89.41 79.46 76.60 78.95 89.70 77.65 76.30 79.62 

 

4.3 Experimental results and discussion 

4.3.1 Comparative analysis of predictions of strand residues  

Our predictions are assessed using residue level (Acc, Qe_obs, Qe_pred, Oe, Ue, Le, and We) 

and β-strand segment level (ASSC and SOVe) quality measures. We compare 

BETArPRED with the seven SS predictors on the TEST and CASP8 datasets. For the 

CASP8 dataset we also include the best automated 3D structure predictor from the 

CASP8 experiment (Cozzetto D,,et al.,2009), the ZHANG-server, with the predicted 

structure processed using DSSP to obtain the positions of strand residues. We include 

results on the entire CASP8 dataset and also on its two subsets that include sequences 

with at least 1 strand residue and 10% of strand residues respectively; the 10% amount is 

consistent with work in (Cheng and Baldi, 2005; Lippi and Frasconi 2009) and with the 

TEST dataset. This is because most of the quality indices (Qe_obs, Ue, Le, We, ASSC, and 

SOVe) could not be measured for chains without strand residues and they may provide 

statistically unreliable estimates when the number of strand residues is low. In particular, 

for chains with no strand residues they would default to zero and cannot quantify how 
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many strand residues are incorrectly predicted. The results are given in Table 4-5. We 

also assess the statistical significance of improvements on these datasets between 

BETArPRED and other predictors. This was done by comparing the corresponding 

results for individual proteins. When a given quality measure for both predictors is 

normally distributed (per the Shapiro-Wilk test of normality with p-value < 0.05) we 

applied the paired t-test and otherwise we used the Wilcoxon rank sum test. 

 

Table 4-6 provides these results for different versions of the CASP8 dataset and for the 

TEST dataset. The results demonstrate that BETArPRED achieves the highest SOVe and 

accuracy on the TEST dataset. The ASSC, SOVe, Qe_obs, and Ue of BETArPRED are 

statistically significantly better at 0.05 when compared with six out of the seven SS 

predictors. When compared with the remaining PROTEUS which over-predicts strand 

residues, BETArPRED significantly improves Qe_pred,, Acc, Le and We. The results on the 

CASP8 confirm these findings. We note statistically significant improvements in SOVe, 

ASSC, Qe_obs, and Ue. Overall, the results indicate that BETArPRED accurately predicts 

individual strand residues (highest accuracy among SS predictors on both CASP8 and 

TEST sets) as well as β-strands (highest SOVe, except for YASPIN on the CASP8 set). 

Importantly, the low values of the Ue, which are significantly lower than most of the 

other predictors including SSpro, demonstrate that our method finds β-strands that were 

missed by other methods. When compared with the ZHANG-server, our method 

significantly improves prediction of strand segments (as measured by ASSC and SOVe) 

and is inferior in the context of prediction of strand residues. We note that ZHANG-

server under-predicts strand residues and these predictions have high quality, while 

BETArPRED finds substantially more observed strand residues (higher Qe_obs). 
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Table 4-5 The results of the BETArPRED and the seven representative SS predictors on the 

TEST and CASP8 datasets, as well as for subsets of the CASP8 datasets that include chains 

with at least 1 strand residue and at least 10% of strand residues. Results on the CASP8 

datasets also include the top-performing automated 3D predictor, ZHANG-server 

Dataset Predictor ASSC SOVe Qe_obs Qe_pred Acc Oe Ue Le We 

TEST  

432 chains with 

at least 10% 

strand residues 

BETArPRED 76.20 79.46 76.60 78.95 89.41 1.46 2.22 6.89 0.02 

SSPRO 70.58 75.72 71.08 82.03 89.25 1.16 2.86 6.69 0.03 

PSIPRED  72.13 75.53 72.97 77.96 88.49 1.29 3.13 7.07 0.03 

SPINE 70.00 74.87 70.71 79.33 88.48 1.31 2.99 7.17 0.06 

SABLE 67.01 73.37 67.43 79.45 87.92 1.24 3.42 7.41 0.02 

PROTEUS  80.23 77.68 79.99 71.59 87.50 1.35 2.16 8.64 0.09 

PORTER 65.01 70.90 66.17 76.97 87.05 1.47 2.57 7.53 0.02 

YASPIN 73.00 73.16 72.81 68.32 85.28 2.71 3.45 8.55 0.01 

CASP8  

111 chains 

BETArPRED 75.75 76.83 75.89 79.96 89.74 1.39 2.28 6.64 0.04 

ZHANG-server 67.49 71.96 67.98 90.30 90.70 0.45 2.87 5.95 0.04 

SSPRO 70.25 73.69 70.65 83.14 89.72 0.93 2.83 6.47 0.04 

PSIPRED  72.02 72.21 72.96 77.26 88.59 1.34 3.13 6.93 0.02 

SPINE 71.43 73.66 71.55 80.13 89.13 1.31 2.93 6.57 0.07 

SABLE 67.27 72.02 67.63 79.88 88.37 1.36 3.37 6.89 0.01 

PROTEUS  74.90 72.00 75.54 72.08 87.36 1.49 3.04 7.99 0.02 

PORTER 63.20 67.44 63.90 75.28 86.57 1.37 3.53 8.51 0.02 

YASPIN 78.88 77.89 79.11 73.14 88.25 1.87 2.57 7.30 0.01 

CASP8  

106 chains with 

at least 1 strand 

residue 

BETArPRED 75.75 75.74 75.89 79.96 89.33 1.45 2.37 6.90 0.04 

ZHANG-server 67.49 70.63 67.98 90.37 90.34 0.45 2.99 6.18 0.04 

SSPRO 70.25 72.45 70.65 83.14 89.32 0.97 2.94 6.73 0.05 

PSIPRED  72.02 70.90 72.96 77.26 88.13 1.39 3.26 7.20 0.02 

SPINE 71.43 72.42 71.55 80.19 88.72 1.34 3.04 6.83 0.07 

SABLE 67.27 70.70 67.63 80.06 87.96 1.37 3.50 7.16 0.01 

PROTEUS  74.90 70.68 75.54 72.37 86.96 1.55 3.16 8.31 0.02 

PORTER 63.20 65.90 63.90 75.30 86.04 1.42 3.67 8.85 0.02 

YASPIN 78.88 76.84 79.11 73.45 87.89 1.84 2.67 7.59 0.01 

CASP8  

99 chains with at 

least 10% strand 

residues  

BETArPRED 76.15 80.15 76.23 80.22 89.05 1.43 2.39 7.19 0.04 

ZHANG-server 67.95 72.77 68.35 90.47 90.06 0.46 3.01 6.43 0.04 

SSPRO 70.60 76.63 70.97 83.30 88.99 0.96 2.99 7.01 0.05 

PSIPRED  72.47 75.30 73.37 77.60 87.84 1.34 3.27 7.54 0.02 

SPINE 71.76 76.53 71.86 80.59 88.43 1.28 3.06 7.15 0.07 

SABLE 67.63 75.00 67.95 80.43 87.64 1.32 3.52 7.50 0.01 

PROTEUS  75.35 74.98 75.95 72.70 86.62 1.50 3.17 8.69 0.02 

PORTER 63.51 69.70 64.19 75.26 85.52 1.48 3.73 9.25 0.02 

YASPIN 79.16 80.33 79.38 73.84 87.60 1.77 2.74 7.88 0.01 
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Table 4-6 The results of the statistical significance tests on the TEST dataset and CASP8 

datasets that include 111 chains, 106 chains with at least 1 strand residue, and 99 chains with 

at least 10% of strand residues which compare BETArPRED against the seven 

representative SS predictors and ZHANG-server.  

[The “---“/“--“/”-“ means that BETArPRED is worse with p < 0.02/0.05/0.1, the “+++”/“++“/”+“ 
means that BETArPRED is better with p < 0.02/0.05/0.1, and “=” denotes that the BETArPRED 

and the other methods are not significantly different] 

Dataset Predictor ASS

C 

SOVe Qe_obs Qe_pred Acc Oe Ue Le We 

TEST  

432 chains with 

at least 10% 

strand residues 

SSPRO +++ +++ +++ – – – = – – – +++ = = 

PSIPRED  +++ +++ +++ = + – – +++ = = 

SPINE +++ +++ +++ = +++ = +++ = +++ 

SABLE +++ +++ +++ = +++ = +++ + = 

PROTEUS  – – – = – – – +++ +++ = = +++ +++ 

PORTER +++ +++ +++ = +++ – – ++ + = 

YASPIN +++ +++ +++ +++ +++ +++ +++ +++ – – – 

CASP8  

111 chains 

ZHANG-server + = = – – – – – – – = – = 

SSPRO + = ++ = = = = = = 

PSIPRED  = + = = = = +++ = = 

SPINE = = = = = = ++ = = 

SABLE +++ ++ +++ = = = +++ = = 

PROTEUS  = + = +++ +++ = +++ = = 

PORTER +++ +++ +++ = ++ = +++ = = 

YASPIN = = = +++ + = = = – 

CASP8  

106 chains with 

at least 1 

strand residue 

ZHANG-server + = = – – – – – – – – = – = 

SSPRO ++ = ++ – = = = = = 

PSIPRED  = + = = = = +++ = = 

SPINE = = + = = = ++ = = 

SABLE +++ +++ +++ = = = +++ = = 

PROTEUS  = ++ = +++ +++ = +++ + = 

PORTER +++ +++ +++ = +++ = +++ = = 

YASPIN = = = +++ + = = = – 

CASP8  

99 chains with 

at least 10% 

strand residues  

ZHANG-server ++ + ++ – – – – – – – – = – – = 

SSPRO ++ + +++ – = = = = = 

PSIPRED  = ++ = = = = +++ = = 

SPINE + + + = = = ++ = = 

SABLE +++ +++ +++ = = = +++ = = 

PROTEUS  +++ ++ = +++ +++ = +++ = = 

PORTER +++ +++ +++ + +++ = +++ = = 

YASPIN = = = +++ + = = = – 
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4.3.2 Comparison of 3-state secondary structure predictions 

Here, we want to investigate how our two-state BETArPRED predictions compare with 

existing three-state predictors and how this affects predictions of the other two secondary 

structure states (helix and coil).  To address this, we designed an approach to generate the 

3-state predictions using the outputs of the BETArPRED method and we compare them 

with the considered seven representative SS predictors. By design, BETArPRED predicts 

all strand residues predicted by SSpro as strands. To generate 3-state predictions for 

BETArPRED, we combined the outputs of BETArPRED with the predictions from SSpro 

(which obtains the highest accuracy on the training dataset see Table 4-1), without 

changing the strand residue prediction assignments of BETArPRED. More specifically, 

we predict strands for all residues predicted by BETArPRED as strands and all non-

strand residues predicted by BETArPRED are assigned the state predicted by SSpro.  

 

We compare these three-state predictions with the corresponding predictions produced by 

the other secondary structure predictors on the TEST and the CASP8 datasets, see Table 

4-7. The results show that the improved prediction of the strand residues provided by 

BETArPRED does not have a detrimental effect on the prediction of helix and coil 

residues. The overall three-state predictive quality measured using Q3 and SOV3 for 

BETArPRED is the highest for both datasets. A direct comparison between the 3-state 

predictions generated by SSpro and the SSpro predictions augmented using the 

BETArPRED outputs demonstrates that the latter increases both Q3 and SOV3  values on 

the TEST and CASP8 datasets. On the TEST dataset, we observe a small decrease in the 

SOVh and SOVc, and substantially improved SOVe  value.  
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Table 4-7 Summary of results for the 3-state secondary structure predictions generated by 

combining predictions of BETArPRED with SSpro and the seven representative SS 

predictors on the TEST dataset and the CASP8 dataset that includes the automated 3D 

predictor, ZHANG-server.  

[We predict strands for all residues predicted by BETArPRED as strands and we use predictions 
from SSpro for the non-strand residues predicted by BETArPRED to obtain the 3-state secondary 

structure predictions]  

Dataset Predictor Q3 SOV3SOVhSOVeSOVc Qh_obs Qh_predQe_obs Qe_predQc_obsQc_pred

TEST BETArPRED 80.45 77.56 81.27 79.46 73.70 84.91 85.30 76.60 78.95 78.85 77.17 
SSPRO 80.12 77.07 81.76 75.72 73.73 85.25 84.56 71.08 82.03 81.04 75.56 
PSIPRED  78.73 76.68 80.25 75.53 72.16 85.47 82.00 72.97 77.96 76.28 76.19 
SPINE 78.82 76.32 80.59 74.87 72.10 84.56 82.89 70.71 79.34 78.65 75.09 
SABLE 77.87 75.90 79.01 73.37 72.40 81.60 84.70 67.43 79.45 80.84 72.04 
PROTEUS  78.48 77.08 78.57 77.68 71.27 84.21 86.40 79.99 71.59 72.58 76.22 
PORTER 76.81 75.50 79.22 70.91 71.91 81.90 82.75 66.17 76.97 78.72 72.04 
YASPIN 75.20 73.56 77.03 73.16 68.56 80.94 81.00 72.81 68.32 71.61 74.48 

CASP8 

99 chains 

with at 

least 10% 

strand 

residues  

BETArPRED 80.15 78.83 80.16 80.15 73.57 84.61 84.98 76.23 80.22 78.96 76.20 
ZHANG-server 78.14 73.36 78.51 72.77 68.96 85.90 77.42 68.35 90.47 78.19 73.43 
SSPRO 80.10 78.16 81.92 76.63 73.82 85.92 84.23 70.97 83.30 80.99 75.20 
PSIPRED  77.93 77.06 78.88 75.30 71.70 83.81 81.82 73.37 81.82 75.85 74.83 
SPINE 78.71 76.77 78.88 76.53 72.21 83.20 83.16 71.86 80.59 79.29 74.19 
SABLE 77.54 75.94 77.65 75.00 71.60 79.85 85.46 67.95 80.43 81.75 70.74 
PROTEUS  76.38 74.13 73.08 74.98 67.94 81.22 83.27 75.95 72.70 72.57 73.09 
PORTER 74.43 73.29 75.00 69.70 68.80 80.44 80.95 64.19 75.26 75.85 69.00 
YASPIN 78.26 77.39 80.75 80.33 69.99 84.96 82.83 79.38 73.84 71.84 77.25 

 
 

4.3.3 Analysis of the selected features 

Error! Reference source not found. lists the features used by BETArPRED. They 

utilize all considered input predictions at all three information levels. The features use the 

residue-level SS predicted by PSIPRED and SPINE, local information extracted from the 

SS predicted by PSIPRED, SPINE and SSpro, a combination of the local predicted SS 

and residue depth quantified using both volume and distance based definitions, and 

sequence-level information concerning the chain length. Figure 4-2 visualizes values of 

two pairs of these features. Both plots show how a given combination of a predicted 

depth-based feature with a feature that utilizes predicted SS is helpful in annotation of the 

strand vs. non-strand residues. The position of each marker indicates the values of the 

two features (essentially the same as a scatter plot, except that each marker represents a 

cluster of points in this 2D projection). Coloration of the marker indicates the observed 
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class mixture associated with that cluster of residues, and the shape of the marker 

indicates the number of residues in the cluster. Note that “predicted SS” that defines 

features on the x-axis comes from a different predictor than for the y-axis. When the 

predicted SS of the residue is a strand (x-axis in the bottom panel) or when this residue is 

located inside a strand segment (x-axis in the top panel), the values of the average depth 

of the predicted helical conformations in the vicinity of this residue (y-axes) provide 

evidence on its proper classification. If there are no predicted helices (-1 on the y-axis), 

then it is most likely a strand conformation (the marker is green). The higher the average 

depth of the predicted helices (shown on the y-axis), the smaller the likelihood that our 

prediction should be a strand (the marker is more red). This agrees with the underlying 

biology, as it is more likely that the predicted helical conformation is correct if its depth 

is higher. 

 

Table 4-8 Features used by the BETArPRED. 

Feature name Description 
r_a_ssPSIPRED 
r_a_ssSPINE 

Residue-level predicted SS by PSIPRED and SPINE 

w_s_mPSIPRED_tripepeee_central_res 
w_s_mPSIPRED_tripepece_central_res 
w_s_mSPINE_tripepece_central_res 
w_s_mSSpro_tripepcch_central_res 

Local predicted by PSIPRED, SPINE, and SSpro SS of 
tripeptides, including EEE, ECE, and CCH 
combinations, centered on the predicted residue 

w_s_mPSIPRED_avgdepth_segh_depthMSMS 
w_s_mSSpro_avgdepth_stateh_depthSADIC 

Local average predicted depth of the predicted helix 
residues and helical segments predicted by PSIPRED 
and SSpro 

p_a_chain_length Sequence-level chain length 
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The y-axis quantifies the average predicted depth of helical residues predicted by SSpro in a window of size 9 
centered on the predicted residue. Value of -1 is used when there are no predicted helices in the window. The x-
axis shows whether the predicted residue is in the EEE segment, as predicted by PSIPRED. 

 
The y-axis quantifies the average predicted depth for the helix segment  predicted by PSIPRED that includes the  
predicted residues. Value of -1 is used when the predicted residue in not in a helix segment. The x-axis shows the 
SS predicted by SPINE for the predicted residue. 

Figure 4-2 Scatter plots of two pairs of features used by the BETArPRED. Size of the 

markers denotes number of residues and color denotes their membership (green for strand 

residues and red for non-strand residues) 
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4.3.4 Case study 

We selected the galactose mutarotase related enzyme Q5FKD7 (PDB ID: 3DCD) among 

the CASP8 targets to demonstrate our method. This chain contains about 45% strand 

residues with several short and longer segments. Figure 4-3 shows side-by-side the 

observed SS derived from DSSP, the results from BETArPRED, and the predictions from 

the ZHANG-server and SSpro. The results reveal that the proposed predictor finds three 

β-strands in the middle of the sequence that were missed by SSpro, adding a total of 16 

strand residues to the SSpro predictions, out of which 12 are correct and 4 are incorrect. 

BETArPRED correctly finds additional β-strands as a trade-off for a few over-predicted 

strand residues located at the termini of the correctly predicted β-strands.  An evaluation 

of the case study predictions is presented in Table 4-9. The ZHANG-server under-

predicts the strand residues; only 87 residues were correctly identified, while 

BETArPRED correctly predicts 111 out of the total of 133 strand residues. The Ue of 

BETArPRED is 3.7, which is lower by 3.7 and 3.3 when compared with SSpro and 

ZHANG-server, indicating that our method finds a few extra β-strands. At the same time, 

this comes as a trade-off for the Qe_pred of BETArPRED that is lower by 2.5 and 8.9 

percent when compared with SSpro and ZHANG-server. 
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AA:  

DSSP: 

SSpro: 

BrP: 

Zhang: 

 

AA:  

DSSP: 

SSpro: 

BrP: 

Zhang: 

 

AA:  

DSSP: 

SSpro: 

BrP: 

Zhang: 

 

AA:  

DSSP: 

SSpro: 

BrP: 

Zhang: 

 

AA:  

DSSP: 

SSpro: 

BrP: 

Zhang: 

XDYTIENNXI KVVISDHGAE IQSVKSAHTD EEFXWQANPE IWGRHAPVLF PIVGRLKNDE 

-EEEEE---E EEEEE-B--E EEEEEE---- -B-B------ -------EEB ---------E 

--EEEE---E EEEEE----E EEEEE----- EEEEE----- -------EEE E--------E 

--EEEE---E EEEEE----E EEEEEE---- EEEEE----- -------EEE E--------E 

-EEEEE---- EEEEE----E EEEEE----- E--------- -------EE- ---------- 

 

YTYKGKTYHL GQHGFARNAD FEVENHTKES ITFLLKDNEE TRKVYPFKFE FRVNYNLXNN 

EEE--EEEE- ---B-----B -EEEEEE--E EEEEEE---- --------EE EEEEEEEE-- 

EEE--EEEE- ---------- EEEEE----E EEEEEE---- -------EEE EEEEEEE--- 

EEE--EEEE- ---------E EEEEE----E EEEEEEE--- ------EEEE EEEEEEE--- 

EEE--EEE-- ---------- -EEE------ -EEEE----- --------EE EEEEEEEE-- 

 

LLEENFSVVN KSDETXIFGV GGHPGFNLPT DHGENKEDFY FDXHPSVTRV RIPLKDASLD 

EEEEEEEEEE -----EEE-E EE--EEE--- --------EE EEEE----EE E--EE--EE- 

EEEEEEEEEE ---------- -----EE--- --------EE E--------- ---------- 

EEEEEEEEEE ------EEE- ----EEE--- --------EE EE-----EEE E--------- 

EEEEEEEEEE -----EE--- EE--E----- ---------E EEE----E-- ---------- 

 

WNNRSLAPTD SLIALSDDLF KDDALIYELR GNDNKVSLRT DKNKFHVNVW TRDAPFVGIW 

----EEE--- --EE------ ----EEEE-- ---EEEEEEE -----EEEEE EE---EEEEE 

---------- ---------- ---EEEEE-- ----EEEEE- -----EEEEE -----EEEEE 

---------- --EE------ ---EEEEE-- ----EEEEEE -----EEEEE E----EEEEE 

---------- --EE------ --EE------ -----EEEE- -----EEEEE E-----EE-- 

 

SQYPKTDNYV CIEPWWGIAD RDDADGDLEH KYGXNHLKPG KEFQAGFSXT YHSTTDEVKL 

--------EE EEEEEE---- B-----B--- ----EEE--- -EEEEEEEEE EE-------- 

--------EE EEE------- ---------- ----EEE--- -EEEEEEEEE EE----EE-- 

--------EE EEE------- ---------- ----EEE--- -EEEEEEEEE EE----EE-- 

---------- E--------- ---------- -----EE--- -EEEEEEEEE E--------- 

[where “–“ and “E” denote non-strand and strand residues and B denotes beta-bridges, 
respectively. The AA sequence is split into multiple rows. DSSP is annotated such that bold 

indicates strand residues missed by SSpro and BrP, and underlined bold shows strand residue 
segments found by BrP and missed by SSpro. BrP is annotated such that bold / underlined bold 

indicate mistakes / improvements when compared with SSpro] 

Figure 4-3 Comparison of the SSpro, BETArPRED (BrP), and ZHANG-server (ZHANG) 

predictions with the observed SS derived from DSSP for the galactose mutarotase related 

enzyme Q5FKD7 (PDBid 3DCD). The DSSP, SSpro, BrP and ZHANG are shown in four 

consecutive rows. 

 

Table 4-9 The empirical evaluation of the predictions for the case study shown in Figure4-3. 

[First column shows the prediction method, second gives the number of correctly predicted strand 
residues, and next four columns show the strand segment overlap, accuracy for stand residues, and 

Ue and Qe_pred measures.] 
Method # Strand residues correctly predicted SOVe Acc Ue Qe_pred 
SSpro 99 79.8 83.0 7.3 89.2 
BETArPRED 111 86.6 85.6 3.7 86.7 
ZHANG 87 74.5 80.7 7 95.6 
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4.4 Summary 

BETArPRED is empirically shown to improve predictions of strand residues and strand 

segments when compared to a wide range of modern SS predictors and with the best-

performing tertiary structure predictor in CASP8. It could thus be useful in prediction of 

higher level structures such as β-sheets (Cheng  and Baldi,2007; Max et al., 2010). Since 

BETArPRED performs well for low identity chains its outputs could be useful in the 

context of the development of improved sequence profile-profile alignments (Wu and 

Zhang, 2008). The improvements stem from the novel design, which uses features that 

aggregate and combine information coming from three SS predictors and the residue 

depth predictor. Although the BETArPRED provides high quality predictions, there is 

still room for further improvement. One potential approach could be to exploit strand-

strand interactions. This could be done with the help of scoring profiles that reflect inter-

strand amino acid pairing preferences, which are tackled in the next Chapter. Another 

useful source of information that could be used to improve the strand predictions is 

related to position-specific propensities of AA types in strand segments. BETArPRED is 

freely available at http://biomine.ece.ualberta.ca/BETArPred/BrP.htm. 
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5 Strand residue-residue pair propensities  

5.1 Overview  

Prediction of β-sheets requires an understanding of the interactions between component 

strands. This is dependent on their constituent amino acids, as cross-strand pairing is 

influenced by the residue side-chains (Fooks et al., 2006). Several investigations on the 

pairing of amino acids in β-sheets have been carried out and their prediction quality of 

contacts between β-strands are roughly 32-35% accurate (Lippi and Frasconi,2009; 

Tegge et al.,2009; Cheng and Baldi, 2007; Punta and Rost, 2005). In our previous 

chapter, we developed a model that improves prediction of β-strand residues and β-

strands, which are the basic building blocks of β-sheets, when compared with the 

currently available methods. Our method implements a novel ensemble of secondary 

structure prediction methods. However, the existing β-strand residue prediction methods, 

including our BETArPRED (Kedarisetti et al., 2011), are largely based on local 

interactions, i.e. their inputs are implemented using a sliding window of neighboring 

residues in the sequence (with the exception of BETArPRED that uses one chain-based 

input). Hence, in this chapter we investigate whether the use of long-range interactions 

could provide information that would be useful for prediction of the β-strand residues.  

 

In this context, we propose and empirically analyze scoring functions that quantify the 

propensity of a given residue to form a β-strand based on propensities of specific 

residue_residue pairs to interact in β-sheets. We also study the impact of residue 

conservation and the strand directionality on the quality of these scoring functions. We 

use the scoring functions to differentiate between strand and non-strand residues, to 
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determine whether these scoring functions would generate a useful input for the 

prediction of strand residues.  

 

5.2 Existing research and proposed work 

Residue_residue pairing preferences were first studied in parallel and antiparallel β-sheets 

by Lifson & Sander (1979) on a small dataset of 35 protein chains. They suggested that 

the resulting residue_residue pair correlations are useful in statistical prediction of protein 

tertiary structure. Later, residue_residue pair preferences in antiparallel β-sheets and 

parallel β-sheets were studied separately (Wouters and Curmi, 1995; Hutchinson et al., 

1998; Zaremba and Gregoret, 1999; Fooks et al., 2006; Cheng et al., 2007; Zhang et al., 

2010). Side chain interactions and residue_residue pair preferences within antiparallel β-

sheets were studied in two cases: for pairs whose backbone atoms are hydrogen bonded 

(H-bonded sites), and for pairs which are not hydrogen bonded (non-H-bonded sites) 

(Wouters and Curmi, 1995). In addition, an experimental study of the interplay between 

side chain interactions and the stability of β-sheets observed the greatest stabilization for 

charge-charge interactions and optimally arranged pairings (i.e., how specific 

residue_residue pair preferences between strands should align) (Merkel et al., 1999). We 

discuss some of the findings from these studies later in this chapter when analyzing our 

results. These investigations demonstrate a weak correlation between pairing preferences 

and suggest that these interactions are not instrumental in determining the β-sheet 

structures. Moreover, these works use relatively small datasets which include protein 

structures that were resolved with low resolution, did not attempt to investigate whether 

the pairing preferences could be used to identify strand residues, and also normalized the 

pair preferences using a product of probabilities of individual residues, which may not be 

a good choice when they would be used to identify strands. (Note that in this field, 
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normalization does not mean a transform of a feature domain to [0, 1], rather it refers to 

any process that makes the residue_residue pairs commensurate; in the sense that the bias 

due to the background frequency of the residues has been corrected.)    

 

In recent quantitative studies, the residue_residue pair preferences were applied to predict 

certain characteristics of β-strands. The β-sheets were predicted from strand-strand pairs 

identified in native β-strand segments, by computing strand residue_residue pair 

probabilities based on contact maps (represent the distance between all possible residue 

pairs of a 3D protein structure using a binary 2D matrix) (Baldi et al., 2000; Cheng et al., 

2007). The drawback of these studies is that they utilized the native β-strand segments. A 

couple of recent studies concern prediction of strand-strand pair orientation using relative 

frequency of residue_residue pairs that occur in parallel and antiparallel β-sheets (Zhang 

et al., 2010; Zhang et al., 2009). In other words, given a pair of native β-strand segments, 

the authors have proposed a method that decides whether this pair interacts in parallel or 

antiparallel fashion. In summary, these works did not concern the identification of β-

strand residues and they assumed that the native β-strand information is known.  

 

Recently, a few related databases were also developed. One database (ICBS) concerns 

inter-chain strand-strand interactions only (Dou et al., 2004). Inter-chain interactions 

occur between protein sequences; in a quaternary structure, strands from different chains 

can form strand pairs, extending a β-sheet across multiple chains. SheetsPair is another 

database of amino acid pairs that occurs in β-sheets (Zhang et al., 2007), including both 

inter-chain and intra-chain interactions. However, this database is not suitable for our 

investigation, as neither sequence similarity nor structure quality (i.e. resolution and R-

value) are recorded in this database.  
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In contrast to prior research, our work uses a relatively large dataset composed of high 

quality structures, and we propose a scoring function that quantifies propensity of a given 

residue to form β-strand. We also use a different type of normalization to generate the 

residue_residue propensities, which is based on native intra-chain strand residue_residue 

pairs. To the best of our knowledge, our study is the first to investigate the use of the long 

range strand-strand interactions within a protein chain to identify β-strand residues. We 

perform a comprehensive study of strand residue_residue pair propensities for parallel 

and antiparallel strand pairs, and we further investigate the influence of residue 

conservation on these residue_residue pairs. Similar to previous works that compute 

residue_residue pair preferences for H-bonded pairs (Wouters and Curmi, 1995; 

Hutchinson et al., 1998; Mandel-Gutfreund et al., 2001), we also focus on H-bonded 

strand residue_residue pairs annotated by DSSP. Furthermore, we utilize these 

propensities to build novel scoring functions, which are shown to be useful for the 

identification of strand residues.  

 

5.2.1 Goals 

Our aim is to investigate the propensities of the residue_residue pairs in strand-strand 

contacts that occur within a protein chain. This chapter focuses on third Objective that 

was discussed in Chapter 1. This investigation requires us to complete the following three 

tasks: 

Task 1: To design and compute strand residue_residue pair propensity tables for parallel 

and antiparallel β-sheets using a large dataset of high quality protein structures.  

Task 2: To study the effect of the residue conservation and the directionality of the 

strand-strand interactions on the propensities of the strand residue_residue pairs.  
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Task 3: To construct and evaluate scoring functions that can identify β-strand residues in 

a given protein sequence.  

 

This work is the first to address Tasks 2 and 3; if successful, our results could be used in 

a new generation of sequence-based β-strand predictors.  

5.2.2 Datasets 

We derived two datasets to study the residue_residue pair preferences for parallel and 

antiparallel strand pairs. The first dataset, called the parallel dataset (PR), includes all H-

bonded residue_residue pairs that occur in parallel strand pairs; the second dataset, called 

the antiparallel dataset (APR), includes all H-bonded residue_residue pairs that occur in 

antiparallel strand pairs. These two datasets were derived from the 861 protein structures 

from the dataset described in Section 4.2.2. The strand residue_residue pair details for 

each protein were determined using DSSP. We separated the strand-strand pairs into 

parallel and antiparallel subsets based on the orientation of a given pair of strands. The 

PR dataset contains 2001 strand pairs and 13218 residue_residue pairs. The APR dataset 

contains 4012 strand pairs and 32008 residue_residue pairs. Note that there are almost 

twice as may strand pairs in APR dataset compared to PR dataset, which shows that the 

antiparallel strands are more prevalent than the parallel strands. This is a result of the fact 

that antiparallel strands are more stable, see Section 2.1.4 for details. To normalize the 

propensity tables, we computed a third dataset called NR (normalization dataset) based 

on a random pairing of residues in a given protein chain. We first generated a set of 

segments extracted from protein chains that follow the distribution of observed strand 

segment sizes, separately for parallel and antiparallel strands. Next, we aligned each of 

these segments at a random position in the same protein chain to extract the 

corresponding residue_residue pairs. Finally, we used these “random” residue_residue 
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pair propensities to normalize propensities calculated for the parallel or antiparallel native 

(within the same protein chain) strand residue_residue pairs. We believe that normalizing 

by the random pairings can better quantify propensities of residue_residue pairs when 

compared with the normalization using a product of propensities of the two individual 

residues, particularly in a context of using these propensities to find strand residues 

within a protein chain.  

 

5.2.3 Propensity scores 

Normalization of residue_residue pair scores  

Residue_residue pair propensity scores are computed for parallel and antiparallel datasets 

separately to build two 20x20 dimensional tables. These pairs are symmetric and thus the 

tables include 210 values (190 heterogeneous pairs that include two different AA types 

and 20 homogenous pair of a given AA type with itself). To generate these scoring tables, 

first we count the occurrences of the strand residue_residue pairs in the PR, APR, and NR 

datasets. Next, we perform normalization by dividing the count of a given strand 

residue_residue pair in the PR and APR dataset with the count of the corresponding 

residue_residue pair in the NR dataset. This normalization is quite different from the 

previous works (Zhang et al., 2010), where a product of probabilities of the two 

individual residues was used to approximate the probability of that pair. Also, we 

compute residue pair probability using intra-strand pairs rather than (approximated) inter-

strand pairs. An element in the propensity table for parallel and antiparallel direction is 

computed as follows: 
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where the scores mij_pe  and mij_ape represent propensity of Ai_Aj (residue_residue) pairs 

that interact in a parallel or antiparallel strand pair , respectively, P(Ai_Aj)pe and P(Ai_Aj-

)ape represent the count of the Ai_Aj residue_residue pairs computed from the PR  and 

APR datasets respectively, and P(Ai_Aj)nd represents the count of the Ai_Aj 

residue_residue pairs computed from the NR dataset. 

 

Strand residue_residue pair propensity scores 

The strand residue_residue pair propensity scores for parallel and antiparallel datasets are 

given in Table 5-1 and Table 5-2, respectively. The propensity values >1 indicate the 

corresponding residue_residue pairs are more likely to form a strand pair for a given 

direction when compared with a random pairing of residues in the same protein chain. 

Note that the two matrices are both upper triangular since we only consider 210 possible 

amino acid pairs, regardless of the arrangement of the two amino acids within a pair (i.e., 

these matrices are symmetric). 
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Table 5-1 Strand residue_residue pair propensities that occur in parallel strand pairs 

calculated based on dataset-1.  

[The maximal score is shown in bold font and the underlined scores correspond to pairs that are 
discussed in (Fooks et al., 2006)] 

 A C D E F G H I K L M N P Q R S T V W Y 

A 0.726 1.517 0.106 0.211 1.178 0.404 0.650 2.239 0.439 1.127 1.031 0.298 0.140 0.195 0.450 0.437 0.550 2.312 0.723 1.003 

C  1.084 0.407 0.674 2.501 0.709 1.530 4.978 0.542 1.264 0.394 0.241 0.056 0.799 0.487 0.785 1.490 3.497 0.619 1.626 

D   0.084 0.048 0.173 0.243 0.357 0.335 0.224 0.300 0.193 0.263 0.062 0.137 0.436 0.246 0.473 0.328 0.185 0.185 

E    0.070 0.552 0.190 0.774 0.380 0.852 0.355 0.155 0.189 0.104 0.261 0.823 0.435 0.520 0.568 0.514 0.581 

F     2.504 1.172 0.933 3.747 0.379 2.272 2.517 0.368 0.099 0.183 0.632 0.461 0.647 4.069 0.820 2.464 

G      0.199 0.361 1.240 0.219 0.799 0.585 0.237 0.091 0.207 0.370 0.388 0.627 1.013 0.973 0.593 

H       0.929 1.213 0.751 0.624 0.848 0.591 0.000 0.255 0.609 0.661 1.265 1.266 0.401 1.369 

I        13.993 0.787 5.218 4.286 0.811 0.356 0.656 0.805 1.223 1.455 6.602 2.662 3.252 

K         0.117 0.467 0.830 0.310 0.075 0.370 0.511 0.382 0.618 0.935 0.189 0.755 

L          2.659 1.781 0.354 0.173 0.420 0.600 0.367 1.001 4.581 1.177 1.982 

M           1.239 0.299 0.176 0.271 0.221 1.041 1.699 3.331 1.301 1.626 

N            0.694 0.074 0.302 0.527 0.400 1.151 0.817 0.642 0.641 

P             0.000 0.000 0.121 0.078 0.110 0.582 0.264 0.464 

Q              0.127 0.654 0.307 0.956 0.743 1.548 0.673 

R               0.268 0.624 1.501 1.269 0.723 0.973 

S                0.371 0.554 0.795 0.161 0.523 

T                 0.949 1.962 0.646 1.053 

V                  8.758 2.939 3.422 

W                   0.000 1.265 

Y                    1.231 
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Table 5-2 Strand residue_residue pair propensities that occur in antiparallel strand pairs 

calculated based on dataset-1.  

[The maximal score is shown in bold font and the underlined scores correspond to pairs that are 
discussed (Mandel et al., 2001). The scores in underlines italics correspond to pairs that are cross-

referenced with the results in (Wouters and Curmi, 1995).] 

 A C D E F G H I K L M N P Q R S T V W Y 

A 0.747 0.739 0.251 0.383 1.255 0.497 0.675 1.535 0.326 1.024 0.748 0.269 0.139 0.494 0.530 0.494 0.773 1.858 1.547 1.382 

C  2.686 0.429 0.358 2.445 0.602 1.316 3.514 0.346 0.932 1.221 0.696 0.367 0.895 0.530 0.556 1.454 2.359 2.813 1.940 

D   0.365 0.302 0.566 0.241 0.600 0.334 0.720 0.295 0.219 0.326 0.122 0.516 1.034 0.488 0.767 0.588 0.476 0.395 

E    0.355 0.878 0.340 0.895 0.772 1.300 0.558 0.735 0.673 0.263 0.876 1.840 0.697 1.183 0.872 0.835 1.122 

F     2.948 1.161 1.106 2.656 0.751 2.240 2.137 0.490 0.716 0.942 0.881 0.876 1.309 2.753 2.081 2.706 

G      0.406 0.618 0.965 0.287 0.762 0.639 0.293 0.136 0.285 0.352 0.481 0.653 1.113 1.644 1.271 

H       0.810 1.481 0.811 0.689 0.934 0.537 0.413 0.755 0.704 1.244 1.716 1.220 1.127 1.343 

I        5.186 1.024 2.732 2.307 0.648 0.352 0.970 0.931 1.028 1.087 3.294 3.042 2.739 

K         0.476 0.517 0.762 0.409 0.198 0.819 0.620 0.839 1.247 1.050 1.324 1.614 

L          1.830 1.410 0.315 0.256 0.655 0.775 0.688 0.746 2.364 2.148 2.072 

M           2.046 0.617 0.436 1.063 0.365 0.698 1.331 3.471 0.955 1.886 

N            0.591 0.138 0.567 0.589 0.629 1.204 0.850 1.028 0.590 

P             0.070 0.083 0.183 0.183 0.363 0.399 0.786 0.799 

Q              0.974 1.127 1.106 2.069 0.895 1.790 1.621 

R               0.785 0.915 1.498 1.304 1.772 1.900 

S                0.823 1.552 1.186 0.812 1.055 

T                 2.229 1.596 0.800 1.321 

V                  4.362 2.579 2.691 

W                   1.902 2.648 

Y                    2.686 

 

Impact of residue conservation on the propensity of strand residue_residue 

pairs 

We also compute the propensities of conserved strand residue_residue pairs that occur in 

parallel and antiparallel strand pairs. To generate the corresponding propensity tables, 

first we compute conservation scores for all AAs in the considered protein chains. These 

conservation score values are binarized to differentiate between conserved and non-

conserved residues by setting a threshold. Next, we compute the propensities of the 

conserved strand residue_residue pairs for PR and APR datasets with the normalization 

using the NR dataset.  
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Computation of residue conservation  

The conservation score of an amino acid that typically mutates is higher compared to an 

amino acid that typically does not mutate easily (Johansson and Toh, 2010). There are 

several methods, including entropy–based, variance-based, and matrix score-based, to 

calculate conservation scores from the multiple sequence alignments (Pei and Grishin, 

2001). A recent study suggests that the relative entropy measure leads to more 

biologically relevant results (Wang and Samudrala, 2006). This measure found 

applications in several areas, such as identification of protein functional site regions (La 

and Livesay, 2005), identification of binding sites (Zhang et al., 2010), fold recognition 

(Chen and Kurgan, 2007), identification of residues determining functional specificity of 

protein subfamilies (Wang and Samudrala, 2006). Therefore, we chose the relative 

entropy measure to compute residue conservation. 

 

To compute the relative entropy, we first generate PSSM (position specific scoring 

matrices) profiles for all the protein chains using PSI-BLAST program (Altschul et al., 

1990) with default parameters. The relative entropy is defined as follows: 
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where REj is the relative entropy of a residue at the jth position in a chain, WP(Ai) are the 

weighted observed percentages extracted from position-specific scoring matrix (PSSM) 

for the ith AA type at jth position, and bp(Ai) is the background probability of the ith AA 

type. The background frequency is the ratio of the occurrence of ith AA type to the total 

number of residues in the dataset. 
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We considered residue conservation score values for 51345 strand residues in 861 chains 

(alignments) from our dataset to establish a threshold that differentiates between 

conserved and non-conserved strand residues. Based on similar work in (Pei and Grishin, 

2001), we plot a histogram of the conservation values; Figure 5-1 presents the histogram 

with bin size 0.3σ, where σ is the standard deviation. The histogram shows a single peak 

with asymmetric tails, a short and steep tail on the left side and a long tail on the right 

side. Such a shape indicates a mixed distribution that is likely to have a few distinct 

components. This shape is similar to a distribution shown in (Pei and Grishin, 2001), 

where the authors concluded that it can be approximated by the sum of two Gaussian 

distributions, one that corresponds to low conservation and another that corresponding to 

high conservation components. We performed a similar analysis by fitting the sum of two 

Gaussian distributions with the help of the SigmaPlot software 

(http://www.ritme.com/tech/sigmaplot); see Figure 5-1. Clearly, the bin size for a 

histogram has an important influence on the goodness-of-fit for any model fitted to it; we 

therefore also examined mixture models (again, of two Gaussians) for histograms of the 

same data at 0.1σ and 0.2σ. We use multiple measures of goodness-of fit: the standard 

error of the model, the coefficient of determination (R2) of the model, and a one-way 

ANOVA (analysis of variance) (see Supplementary Figure 0-1, 2&3 in Appendix A). 

Overall, while the models for 0.1σ and 0.3σ are nearly as good a fit as each other (and in 

fact all three are very strong fits), the mixture model for 0.3σ is a slightly better fit than 

for 0.1σ. This choice is important because if the two distributions correspond to low and 

high conservation as assumed, then the exact conservation value where these two 

distributions are equal can be used as a threshold to distinguish low conservation from 

high conservation. Thus, the threshold depends on our choice of bin size.    
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Based on the above analysis, and following (Pei and Grishin, 2001), we model the 

histogram with bin size at 0.3σ (see Figure4.1) as the sum of two Gaussians, which 

approximate the distribution of the low conservation and high-conservation components, 

respectively. The low conservation component (on the left) contributes to the main peak 

together with the left tail. The high conservation component (on the right) gives rise to 

the long right shoulder. The cut-off threshold to separate conserved and non-conserved 

AAs is the crossing point of these two Gaussian distributions, equal to 1.0532. This 

threshold is used to binarize the residue conservation, such that the residue is assumed as 

conserved if the relative entropy value is > 1.0532, and otherwise it is assumed to be non-

conserved.  

 
[The values on the x-axis are binned with the bin size equal 0.3σ where σ is the standard deviation. 

The corresponding number of residues is shown on the y-axis. Based on (Jimin et al., 2001) and 
using the Sigmaplot software, these data were fitted into the sum of two Gaussian distributions. 
(g1 + g2): f=a*(p1*exp(-.5*((x- µ1)/ σ1)2)+p2*exp(-.5*((x- µ2)/ σ2)2)), where µ1 and µ1 are 

means, σ1 and σ2 are standard deviations and  p1 and p2 are coefficients in the sum of two 
Gaussians. These two Gaussian distributions serve as an approximation of the low conservation 

and the high conservation components, respectively, and a is parameter that describes bin 
size*number of residues. We analyzed bin sizes of 0.1 σ, 0.2 σ and 0.3 σ; the best fit to our data 

(judged by R2 and a one-way ANOVA) occurs for 0.3 σ (see Appendix A for details). The dashed 
line shows the threshold that is used to binarize the conservation scores] 

Figure 5-1 The relative entropy-based conservation score values in histogram, which are 

shown using black dots. 
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Conserved strand residue_residue pair propensity tables 

Conserved residue_residue pair propensity scores are computed from the PR and APR 

datasets, respectively, by assuming that both residues in a residue_residue pair should be 

conserved. There are 4591 and 14406 conserved strand residue_residue pairs from among 

13218 and 32008 strand residue_residue pairs in the PR and APR datasets, respectively. 

An element in the propensity table for parallel and antiparallel direction is computed as 

follows: 
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where the score mcij_pe, mcij_ape represents the propensity of conserved Ai_Aj-

(residue_residue) pairs that interact in parallel or antiparallel strand pairs, repectively, 

Pc(Ai_Aj)pe and Pc(Ai_Aj)ape represents the count of the conserved Ai_Aj pairs computed 

from the PR and APR datasets respectively, and P(Ai_Aj)nd represents the count of the Ai-

_Aj pairs computed from the NR dataset. 

 

The conserved strand residue_residue pair propensity scores for the PR and APR datasets 

are shown in Table 5-3 and Table 5-4, respectively. Propensity values >1 indicates that 

the corresponding residue_residue pairs are more likely to form a strand pairs for a given 

direction when compared with a random pairing of residues in the same protein chain. 
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Table 5-3 Conserved strand residue_residue pair propensities that occur in parallel strand 

pairs calculated based on dataset-1.  

[The maximal score is shown in bold font and the underlined scores correspond to pairs that are 
discussed in (Fooks et al., 2006)] 

 A C D E F G H I K L M N P Q R S T V W Y 

A 0.499 2.340 0.175 0.101 1.560 0.486 0.965 2.118 0.404 0.815 1.535 0.204 0.108 0.240 0.312 0.210 0.463 1.169 1.040 1.061 

C  3.121 0.780 1.386 4.801 1.320 4.406 9.477 0.993 1.734 1.135 0.000 0.000 0.985 0.255 1.399 1.950 2.978 1.783 2.080 

D   0.242 0.055 0.200 0.466 0.411 0.255 0.136 0.398 0.555 0.535 0.177 0.225 0.574 0.397 0.574 0.174 0.531 0.246 

E    0.122 0.504 0.357 1.465 0.373 0.545 0.335 0.000 0.084 0.187 0.575 0.607 0.339 0.478 0.302 0.423 0.814 

F     5.381 1.778 2.340 4.753 0.655 2.837 5.033 0.471 0.284 0.328 0.835 0.620 0.838 3.671 1.518 5.249 

G      0.439 0.891 1.749 0.137 0.778 1.189 0.430 0.184 0.278 0.355 0.380 0.592 0.619 1.019 1.290 

H       2.675 2.229 0.915 0.943 1.899 0.681 0.000 0.734 1.192 1.294 2.600 1.325 1.156 3.121 

I        16.132 0.621 5.153 7.348 0.406 0.535 0.524 0.999 1.344 1.824 4.329 4.991 5.305 

K         0.000 0.392 1.594 0.178 0.043 0.629 0.580 0.065 0.839 0.478 0.000 1.226 

L          2.274 1.282 0.295 0.184 0.369 0.261 0.333 1.098 2.485 1.337 2.568 

M           3.566 0.861 0.506 0.780 0.510 2.496 2.362 2.588 3.745 4.235 

N            1.373 0.107 0.474 1.012 0.443 2.154 0.769 1.618 1.419 

P             0.000 0.000 0.078 0.075 0.317 0.464 0.761 0.817 

Q              0.367 1.184 0.236 1.342 0.698 4.161 1.507 

R               0.308 0.984 1.640 0.949 1.300 1.274 

S                0.450 0.712 0.390 0.462 0.669 

T                 1.170 1.327 1.195 1.129 

V                  1.676 2.433 3.219 

W                   0.000 3.121 

Y                    2.193 
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Table 5-4 Conserved strand residue_residue pair propensities that occur in antiparallel strand pairs 

calculated based on dataset-1. 

[The maximal score is shown in bold font and the underlined scores correspond to pairs that are 
discussed in (Mandel et al., 2001). The scores in underlines italics correspond to pairs that are 

cross-referenced with (Wouters et al., 1995)] 

 A C D E F G H I K L M N P Q R S T V W Y 

A 0.627 0.994 0.244 0.410 1.146 0.569 0.904 1.343 0.306 0.788 0.978 0.286 0.146 0.421 0.436 0.430 0.684 1.058 2.140 1.367 

C  4.972 0.746 0.442 4.513 1.147 2.808 4.862 0.452 1.243 3.074 0.994 0.663 1.466 1.015 0.823 1.989 1.491 6.251 3.149 

D   0.483 0.218 0.875 0.355 0.831 0.371 0.778 0.226 0.442 0.440 0.136 0.735 1.029 0.570 0.880 0.420 0.677 0.550 

E    0.387 1.248 0.422 1.218 0.638 1.073 0.392 0.710 0.641 0.238 0.931 2.100 0.516 1.218 0.476 1.180 1.340 

F     5.110 1.815 2.127 3.688 1.015 2.308 3.721 0.901 1.193 1.423 1.190 1.213 1.722 2.159 4.086 4.136 

G      0.559 0.900 1.076 0.227 0.835 1.010 0.377 0.210 0.355 0.386 0.677 0.830 0.851 2.557 1.764 

H       1.705 1.799 0.955 0.787 1.730 0.795 0.535 1.248 0.894 1.771 2.122 1.003 2.357 2.670 

I        6.019 0.831 2.261 2.651 0.663 0.483 1.270 0.909 0.908 1.217 1.870 4.204 3.660 

K         0.484 0.423 1.058 0.511 0.192 1.095 0.739 0.845 1.358 0.569 1.989 1.634 

L          1.804 1.280 0.299 0.159 0.503 0.697 0.686 0.614 0.997 2.756 2.387 

M           4.262 0.823 0.807 2.113 0.487 0.796 1.506 2.571 2.122 3.339 

N            1.154 0.153 0.856 0.699 0.776 1.566 0.620 1.842 0.836 

P             0.062 0.144 0.148 0.120 0.332 0.261 1.455 1.231 

Q              1.579 1.509 1.351 3.101 0.584 2.557 2.607 

R               0.835 1.038 1.811 0.788 2.942 3.004 

S                1.147 2.032 0.812 1.105 1.421 

T                 2.507 0.954 1.439 1.496 

V                  0.681 2.528 2.039 

W                   3.729 4.972 

Y                    4.463 

 

5.3 Discussion of propensity scores 

5.3.1 Comparison of propensity scores 

We plot the strand residue_residue propensity scores for Ai_Aj pairs (in solid black line), 

conserved Ai_Aj pairs (in dotted line), and the relative frequency Ai_Aj pair scores (in 

solid grey line) that were recently developed in (Zhang et al., 2010) for parallel and 

antiparallel pairs in Figure 5-2 and Figure 5-3, respectively. These Figures facilitate a 

direct comparison of differences between our scores and the recent representative scores 

that were developed using a different normalization. 
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Figure 5-2 210 Ai_Aj pair scores for parallel direction, where Ai_Aj pairs are arranged in descending order of strand Ai_Aj 

pair propensity scores. Top 25 preferred (with highest values) pairs are shown in panel (a) and remaining pairs shown in panel 

(b). 
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Figure 5-3  210 Ai_Aj pair scores for antiparallel direction, where Ai_Aj pairs are arranged in descending order of strand 

Ai_Aj pair propensity scores. Top 25 preferred (with highest values) pairs are shown in panel (a) and remaining pairs shown 

in panel (b) 

Excluding top 25 strand residue-residue pair scores, conserved strand residue-residue pair scores, and relative frequency of residue-

residue pair scores that occur in anti parallel beta-sheets
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Based on Figure 5-2 which concerns the parallel direction, among the 210 strand Ai_Aj 

pair scores, 28% show preference in formation of strand pairs (i.e., their score value is 

greater than 1). To compare, the propensities for the conserved pairs and pairs based on 

work in (Zhang et al., 2010) show preference in 41% and 59% of cases, respectively. For 

the antiparallel direction, see Figure 5-3, among the 210 strand Ai_Aj pair scores, 41% 

have score values > 1. The corresponding percentages for the conserved pairs and pairs 

based on work in (Zhang et al., 2010) are 50% and 78%, respectively. These results 

suggest that a larger fraction of residues pairs are preferred for the formation of the 

antiparallel strands; this could be because the antiparallel strands are more prevalent in 

protein chains than the parallel strands. Also, a relatively small number of strand Ai_Aj 

pairs have high score values (say, >3, which would indicate the three time higher 

likelihood to form strand pairs), which agrees with other works where only several 

(<10%) of pairs are show to be significant for the formation of β-sheets (Fooks et al., 

2006; Wouters and Curmi, 1995). 

 

Next, we computed Spearman’s correlation coefficient between the three sets of strand 

Ai_Aj pair scores, for each direction separately. The correlation coefficient values 

between our propensities for all and the conserved pairs are 0.89 and 0.90 for the parallel 

and antiparallel direction, respectively, which means these two propensity tables are 

highly correlated. The coefficient values calculated between our pair scores and the 

propensities from (Zhang et al., 2010) are 0.83 and 0.89 for the parallel and antiparallel 

direction, respectively, which again shows that these two approaches to calculate 

propensity are highly correlated. However, the correlation coefficients between our 

scores for conserved residues and the scores from (Zhang et al., 2010) are 0.76 and 0.78, 

respectively, which suggests a lower similarity. This is due to the fact that these scores 

differ on two aspects: the normalization and the inclusion of the conservation. 
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Next, we compared the top 5 preferred (highest-scoring) parallel Ai_Aj pairs (I_I, V_V, 

I_V, I_L, and C_I) from our strand Ai_Aj pair propensity scores with the top 5 preferred 

pairs from the other two methods, see Figure 5-2. Out of these 5 pairs, 2 (I_I and C_I) 

and 3 (V_V, I_V, and I_L) also appear among the top 5 based on the conserved strand Ai-

_Aj pair propensity scores and based on propensities calculated by Zhang et al. (2010), 

respectively. We also compared the top 5 preferred antiparallel Ai_Aj pairs (I_I, V_V, 

C_I, M_V, and I_V); see Figure 5-3. Out of these 5 preferred pairs, only 1 pair (I_I) is 

among the top 5 pairs calculated using the conserved strand Ai_Aj pair propensity scores, 

and similarly 1 pair (I_V) is among the top 5 based on (Zhang et al., 2010). These results 

suggest that in spite of the relatively high correlation, the proposed and the existing 

propensities differ. We also note that based on our scores four of the Ai_Aj pairs (I_I, 

V_V, C_I, and I_V) are in the top 5 preferred pairs for both parallel and antiparallel 

directions. Moreover, the Ai_Aj pair with the highest score (I_I) and the Ai_Aj pair with 

the lowest score (P_P) for parallel and antiparallel directions are the same.  

 

5.3.2 Comparison of propensity scores with existing literature 

A recent investigation of  Ai_Aj pairs in parallel beta sheets (Fooks et al., 2006), gives a 

list of nine preferred pairs (N_N, I_I, V_V, L_L, I_V, C_C, D_K, E_K, and E_R). 5 out 

of these 9 pairs (I_I, V_V, L_L, I_V, and C_S) are among the preferred pairs based on 

our Ai_Aj pair propensity scores, and 6 pairs (N_N, I_I, V_V, L_L, I_V, and C_C) are 

preferred based on our conserved Ai_Aj pairs propensity scores. These pairs are shown 

using underline in Table 5-1 and Table 5-3. An investigation of strand residue pairs for 

antiparallel β-sheets listed 11 statistically significant Ai_Aj pairs (H_H, G_W, F_L, F_Y, 

V_Y,V_W, K_S, I_Y, R_S, K_R, and K_Q) that are H-bonded (Mandel et al., 2001). Out 
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of these 11, 6 pairs are be preferred based on our strand pair propensity scores (G_W, 

F_L, F_Y, V_Y, V_W, and I_Y), and 8 based on the conserved-pair scores (H_H, G_W, 

F_L, F_Y, V_Y, V_W, and I_Y); these pairs are shown using underline in Table 5-2  and 

Table 5-4. In another, older work that analyzes the intra-chain interactions and pair 

correlations in antiparallel β-sheets, the authors give nine high scoring AA pairs (C_C, 

E_K, E_R, Q_R, F_F, S_S, D_K, Q_K, and T_N) that are H-bonded (Wouters and 

Curmi, 1995). Out of the 9, 6 pairs (C_C, E_E, E_R, Q_R, F_F, and T_N) and 7 pairs 

(C_C, E_K, E_R, Q_R, F_F, S_S, and T_N) are also preferred based on our propensity 

regular and conservation-based scores, respectively; these pairs are shown using 

underlined italics in Table 5-2 and Table 5-4. In addition, the ICBS database (Dou et al., 

2004) suggests two homo-pairs (the same AAs in a pair): C_C and M_M, and one hetro-

pair (different AAs in a pair) C_W, which are favored in the antiparallel β-sheets. These 

three pairs are also preferred based on our propensities. Our comparative analysis shows 

that our propensity tables, which are computed, based on the intra-chain normalization, 

overlap with prior work and that we find a few “new” preferred pairs.  

 

5.3.3 Use of propensity scores to find β-strand residues 

Chapter 4 describes the BETArPred method, which improves strand residue prediction 

when compared with the existing methods. However, there is room left to further 

improve the strand residue prediction from the sequence. Here, we investigate whether 

long range interactions, specifically the strand residue_residue pair propensity tables, can 

be used to differentiate between strand and non-strand residues. To do that, we define a 

scoring function based on sliding the observed/predicted strand segment over the 

sequence and aggregating the strand residue_residue pair propensities for the aligned 
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pairs. We investigate whether these scores differ significantly between the native strand 

and native non-strand residues. 

 

Scoring function  

To compute scoring function values, we first collect all (native or predicted) strand 

segments in a given sequence. Next, we slide each strand segment in one direction (left to 

right or parallel, and right to left or antiparallel) along the sequence. While sliding a 

given segment in a given direction, we compute the scoring function value for each 

residue in the sequence (for the residues in the center of sliding window), except for the 

residues that belong to the segment in question; this is to assure that we do not use a 

given strand segment to “self-score” its own residues. The scoring function is  

L

m

S

L

n

nij∑
== 1

_

     
[5.6] 

where mij represents the Ai_Aj residue_residue (or conserved residue_residue) pair 

propensity scores from the corresponding tables (Table 5-1, Table 5-2, Table 5-3, and  

Table 5-4), depending on the direction of sliding and the use of conservation, and L is the 

number of pairs that were scored.  

 

The scoring function computes an average strand residue_residue pair propensity over all 

pairs of residues between the slid strand segment and the corresponding segment on the 

protein chain. Overlapping segments correspond to a potential matching strand pair, and 

all AA pairs in these segments can contribute equally to the formation of the strand pair. 

Higher values of the scoring function means these two segments are more likely to 

interact to form a strand-strand pair, while lower value means these two segments are less 
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likely to interact.  We find the maximum value for each residue among all segments in all 

sliding positions as follows: 

),......,,(_ 321 riiiii ssssMaxSMax =   [5.7] 

Where ‘i’ is the ith residue in the sequence and ‘r’ is the number of scores available for all 

the residues.  sri is the score of the ith residue in the rth row. 

 

An example that illustrates the computation of scoring function values for a fragment of 

the amino acid sequence of the Apolipoprotein A-I Binding Protein (PDB ID: 2DG2) is 

shown in Figure 5-4. The example includes two strand segments which are slid in parallel 

direction (left to right). After we calculate the scoring function values for each position 

when sliding each strand segment, we aggregate these scores by computing a maximum 

for each amino acid (row 45 in Figure 5-4). We calculate the maximum since each strand 

must interact with at least one other to form a β-sheet. While most of the strands in a 

chain could interact with more than one other strand, determining the number of 

interacting strands is not our objective. We need only determine that there is a strong 

interaction with at least one other strand, and this shows that the residue of interest is 

likely a strand residue. We observe that in our example in Figure 5-4, most of the 

residues with high maximal scores, at 1.7 and 1.8, do indeed form strand segments. This 

agrees with the observed structure (see row 2) where these two strands in fact form a β-

sheet. We evaluate the quality of these maximum-based propensities through statistical 

tests that compare their values between native strand and non-strand residues in the next 

section. We note that we do not calculate the scoring function when the slid segment 

overlaps with itself in the sequence (rows 3 to 8 for the first strand segment, and rows 36 

to 44 for the second strand). Instead, we assign a default value of -1. This value is used 

since the scoring function values are always positive and we want to ignore these default 
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values when calculating the maximum. We use this scoring procedure in six cases: (1) 

when sliding the strand segments in parallel direction;  (2) when sliding the strand 

segments in antiparallel direction; (3) when sliding the strand segments in parallel 

direction and scoring using only the conserved residue_residue pairs; (4) when sliding the 

strand segments in antiparallel direction and scoring using only the conserved 

residue_residue pairs; (5) when sliding the strand segments in parallel direction, scoring 

using only the conserved residue_residue pairs, and recording the maximal scores only 

for conserved residues; (6) when sliding the strand segments in antiparallel direction, 

scoring using only the conserved residue_residue pairs, and recording the maximal scores 

only for conserved residues. These six cases are evaluated when using (for sliding) both 

the native strand segments assigned with DSSP and the strand segments predicted with 

BETArPRED. 
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Strand segments  S1 S1 S1 S1 S1              S2 S2 S2 S2 S2     Row# 
AA sequence D L L I S L T A P K K S A T H F T G R Y H Y L G G R F V 1 
SS sequence C E E E E E C C C E C C C C C C C C C E E E E E C C C C 2 

-1 -1 -1 -1 -1                        3 
 -1 -1 -1 -1 -1                       4 
  -1 -1 -1 -1 -1                      5 
   -1 -1 -1 -1 -1                     6 
    -1 -1 -1 -1 -1                    7 
     -1 -1 -1 -1 -1                   8 
      0.7 0.7 0.7 0.7 0.7                  9 
       0.6 0.6 0.6 0.6 0.6                 10 
        0.6 0.6 0.6 0.6 0.6                11 
         0.7 0.7 0.7 0.7 0.7               12 
          0.9 0.9 0.9 0.9 0.9              13 
           1.2 1.2 1.2 1.2 1.2             14 
            1.0 1.0 1.0 1.0 1.0            15 
             1.3 1.3 1.3 1.3 1.3           16 
              1.1 1.1 1.1 1.1 1.1          17 
               1.4 1.4 1.4 1.4 1.4         18 
                0.8 0.8 0.8 0.8 0.8        19 
                 1.5 1.5 1.5 1.5 1.5       20 
                  1.4 1.4 1.4 1.4 1.4      21 
                   1.4 1.4 1.4 1.4 1.4     22 
                    1.8 1.8 1.8 1.8 1.8    23 
                     1.4 1.4 1.4 1.4 1.4   24 
                      1.5 1.5 1.5 1.5 1.5  25 

 

                       1.5 1.5 1.5 1.5 1.5 26 
1.7 1.7 1.7 1.7 1.7                        27 

 1.4 1.4 1.4 1.4 1.4                       28 
  1.4 1.4 1.4 1.4 1.4                      29 
   1.5 1.5 1.5 1.5 1.5                     30 
    0.7 0.7 0.7 0.7 0.7                    31 
     0.9 0.9 0.9 0.9 0.9                   32 
      0.6 0.6 0.6 0.6 0.6                  33 
       0.5 0.5 0.5 0.5 0.5                 34 
        0.5 0.5 0.5 0.5 0.5                35 
         0.8 0.8 0.8 0.8 0.8               30 
          0.8 0.8 0.8 0.8 0.8              31 
           0.8 0.8 0.8 0.8 0.8             32 
            1.3 1.3 1.3 1.3 1.3            33 
             1.1 1.1 1.1 1.1 1.1           34 
              0.9 0.9 0.9 0.9 0.9          35 
               -1 -1 -1 -1 -1         36 
                -1 -1 -1 -1 -1        37 
                 -1 -1 -1 -1 -1       38 
                  -1 -1 -1 -1 -1      39 
                   -1 -1 -1 -1 -1     40 
                    -1 -1 -1 -1 -1    41 
                     -1 -1 -1 -1 -1   42 
                      -1 -1 -1 -1 -1  43 

 

                       -1 -1 -1 -1 -1 44 
global maximum 1.7 1.7 1.7 1.7 1.7 1.5 1.5 1.5 0.9 0.9 0.9 1.2 1.3 1.3 1.3 1.4 1.4 1.5 1.5 1.5 1.8 1.8 1.8 1.8 1.8 1.5 1.5 1.5 45 

 

Strand 1 

Strand 2 

 
[The first row shows the amino acid sequence. The native strand segments, which are identified in 

row 2 and above the sequence, were assigned with DSSP. Rows 3 to 26 show scoring function 
values that are obtained by sliding strand 1 segment over the sequence in parallel direction (left to 

right) and rows 27 to 44 give the scoring function values that are computed by sliding strand 2 
segment. Row 45 shows the maximum value calculated for each residue among the corresponding 
scores generated by all segments in all sliding positions. Scores shown in bold font correspond to 

location of the native strand segments.] 

Figure 5-4 Example computation of the scoring function values for a fragment of the AA 

sequence of the Apolipoprotein A-I Binding protein (PDB ID: 2DG2).  

 

 

 

Scores 
when 
sliding 
strand 1 
(s1) 

Scores 
when 
sliding 
strand 2 
(s2) 
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5.3.4 Evaluation of maximum-based propensities  

Table 5-5 summarizes the statistical comparison of the propensities for strand and non-

strand residues. We consider the six cases defined in Section 5.3.3, which are shown in 

consecutive rows in Table 5-5. Specifically, we calculate the maximum-based 

propensities using all residue pairs and conserved residue pairs by sliding strand 

segments in the parallel and antiparallel directions, and we calculate the maximum-based 

propensities only for conserved residues using conserved residue pairs by sliding strand 

segments in the parallel and antiparallel directions. The above cases were executed when 

using the DSSP assigned native strand segments, including all segments in both 

directions (column 3 in Table 5-5) and a subsets of segments in their native direction 

(column 4 in Table 5-5), and when sliding the BETArPRED predicted strand segments 

(column 5 in Table 5-5). In case of column 4, we exclude protein chains from which do 

not have DSSP assigned strand segments in the indicated direction since we cannot score 

these proteins. As a result, we exclude a total of 348 and 78 sequences from our dataset 

when assessing propensities for parallel and antiparallel directions, respectively. 

Similarly for column 5, we exclude 3 protein chains for which BETArPRED did not 

predict any strand segments. Moreover, when calculating the maximum-based 

propensities using the conserved residue pairs, when there are no conserved pairs to 

compute the scoring function then we use the default “-1” value; this is because the 

scoring function values are always positive and we use maximum to aggregate the scores, 

so a “-1” value is always ignored.  
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Table 5-5 Comparison of averages for strand and non-strand residue from dataset-1 in the 

18 experimental designs and their statistical significance test results.  

[Score types include propensity scores of Table 4.1,  Table 4.2 , Table 4.3 and Table 4.4. The 
directions of sliding include parallel (p) and antiparallel (ap). The tests concern sliding of DSSP 

assigned native strand segments, including all segments in both directions (column 3), and a 
subsets of segments in their native direction (column 4), and sliding of BETArPRED predicted 
segments (column 5). The statistical tests compare scores for native strand residues (E avg) and 
native non-strand residues (nE avg).Statistical tests are performed by selecting 1000 non-strand 
and 323 strand residues at random (to maintain the native proportions of strand and non-strand 
residues) from dataset-1 to compute the averages and to measure significance of the differences 
between these two sets of scores. This is repeated 1000 times and the “prob. of p-value at 0.05” 

column reports the probability (fraction) of the 1000 tests where the “E avg” is significantly higher 
than “nE avg” at the 0.05 level.] 

Direc

-tion 

of sli-

ding 

score 

type 

no direction (all 

segments) using DSSP-

derived strands 

direction (only in the 

correct direction) using 

DSSP-derived strands 

no direction using 

BETArPRED-predicted 

strands 

E avg 
+/-std 

nE avg 
+/-std 

Prob. of 

p-value 

at 0.05 

E avg 
+/-std 

nE avg 
+/-std 

Prob. of 

p-value 

at 0.05 

E avg 
+/-std 

nE avg 
+/-std 

Prob. of 

p-value 

at 0.05 

p all pairs 3.9514 
±1.6029 

3.2355 
±1.3689 1 3.6392 

±1.4531 
2.9712 
±1.2039 1 3.5617 

±1.4788 
3.3552 
±1.3939 .623 

conserved 

pairs 
5.1484 
±3.7456 

4.5320 
±3.4067 .767 4.5842 

±3.4946 
4.0270 
±3.1671 .695 4.8252 

±3.5206 
4.7151 
±3.4634 .055 

conserved 

pairs for 

conserved 

AAs 

5.3521 
±3.4447 

4.5463 
±3.0150 .982 4.7949 

±3.2082 
4.0997 
±2.7603 .964 4.8541 

±3.3560 
4.6345 
±3.2619 .177 

ap all pairs 2.2795 
±0.5395 

1.9888 
±0.4660 1 2.0631 

±0.4361 
1.8117 
±0.3936 1 2.1182 

±0.5012 
2.0383 
±0.4772 .748 

conserved 

pairs 
2.9422 
±1.4553 

2.7883 
±1.4390 .396 2.6952 

±1.3907 
2.5400 
±1.3847 .476 2.8479 

±1.4200 
2.8360 
±1.4314 .019 

conserved 

pairs for 

conserved 

AAs 

3.0054 
±1.1816 

2.7622 
±1.1315 .936 2.7523 

±1.1096 
2.5171 
±1.0740 .952 2.8541 

±1.2969 
2.7906 
±1.3086 .124 

 

Table 5-5 shows the average values of the maximum-based propensities over the entire 

dataset for native strand residues (E avg) and native non-strand (nE avg) residues. We 

tested the significance of any differences between these values. We could not directly 

compare the entire set of propensities (51345 and 158450 values for strand and non-

strand residues, respectively) due to the large sample size. Instead, we randomly select 

1000 values for the non-strand residues and 323 values for strand residues to maintain the 

native proportions of strand and non-strand residues. Next, we run the normality test for 

these two sets using Shapiro-Wilk test (Shapiro and Wilk, 1965) at the 0.05 significance 
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level. Since these two groups were always normally distributed we used the student’s 

group t-test to assess significance. This test was repeated 1000 times, each time selecting 

a different set of strand and no-strand residues, and we recorded how many times the test 

was significant at 0.05 significance level. Next we calculated the probability of 

significance as (sum_plus - sum_minus) / 1000, where “sum_plus” denotes the number of 

times when the maximum-based propensities of strand residue are significantly higher 

than for the non-strand residues and “sum_minus” denotes the number of times when the 

maximum-based propensities of non-strand residue are significantly higher than for the 

strand residues.   

 

Table 5-5 shows that, as expected, the average maximum-based propensities are always 

(for all 18 setups) higher for the strand residues. When using the DSSP assigned native 

strand segments and when scoring using all residues (rows 2 and 5, and columns 3 and 4), 

the probability of significance is 1, which means that the difference between the scores 

for strand residues and non-strand residues was always found to be significant. This result 

suggests that the maximum-based scores are helpful in differentiating strand and non-

strand residues. This demonstrates that our propensities can be used to find strand 

residues based on long-distance interactions. 

 

Table 5-5 also shows that the averages are higher for the parallel direction when 

compared to the antiparallel direction. For example, when using the DSSP assigned 

strand segments and when scoring using all residues pairs (rows 2 and 5, and column 3) 

the average (± standard deviation) for strand and non-strand residues is 3.9514 (±1.6029) 

and 3.2355 (±1.3689) for the parallel direction, and 2.2795 (±0.5395) and 1.9888 

(±0.4660) for the antiparallel direction, respectively. This is due to the higher strand 

residue_residue pair propensity score values for the parallel direction (see Table 5-1) 
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when compared to the values for the antiparallel direction (see Table 5-2). Similarly, 

when we use the conserved strand residue_residue pair scores to compute scoring 

function values, the averages are higher than when using all strand residue_residue pair 

scores (e.g., rows 2 and 3, column 3). This is again due to the fact that the 

residue_residue pair propensity score values for all residues (see Table 5-1 and Table 

5-2) are lower than for the conserved pairs (see Table 5-3 and Table 5-4). The above 

discussion shows that different strand residue_residue pair propensity tables induce 

different magnitudes of the average means. Therefore, we do not rely on the raw average 

values to decide whether the maximum-based propensities are useful; instead we use the 

statistical tests of significance.  

 

The probability of significance when calculating the scoring function using conserved 

residue pairs (rows 3 and 6) is lower than when using all residues pairs (rows 2 and 5). 

This is most likely because many segment pairs that are used to calculate the scoring 

function have no conserved residue_residue pairs, which means that fewer scores are 

available to calculate the maximums. Similarly, we believe that the probability of 

significance is lower when we slide the strand segments in their native direction (columns 

3 and 4), since again this results in fewer scores that are used to calculate the maximums. 

Moreover, our analysis in Section 5.3.1  shows that the strand residue_residue propensity 

scores are similar between the parallel and antiparallel directions, which suggest that 

directional information does not provide strong predictive value for differentiating strand 

and non-strand residues.  

 

The last column in Table 5-5 shows the results when we use the predicted strand 

segments from BETArPRED to calculate the maximum-based scores. As expected, the 

probability of significance (0.623 and 0.748 for the parallel for antiparallel directions, 



 103

respectively) is lower than when using the DSSP assigned segments (column 3). This is 

because the predicted strand segments may include errors. Nonetheless, this evaluation 

indicates that our scoring functions can aid prediction of β-strand residues in a protein 

sequence.  

 

We also compare our propensities (Table 5-1 and Table 5-2) with the propensity scores 

based on recent work by Zhang et al. (2010) (see column 3 & 4 in Table 5-6). For the 

scores by Zhang et al., the probability of significance is 1 when we slide the observed 

strand segments (that are assigned by DSSP) in either direction. This is the same as when 

using the new scores proposed in this work; (see column 3 in Table 5-6). 

Table 5-6 Comparison of averages for strand and non-strand residue from our dataset using 

our scores with propensity scoring tables from (Zhang et al.,2010) for parallel (p) and 

antiparallel (ap) directions and their  statistical significance test results.  

[The tests concern sliding of all DSSP assigned native strand segments (column 3) and sliding of 
BETArPRED predicted segments (column 4). The statistical tests compare scores for native strand 

residues (E avg) and native non-strand residues (nE avg). We select 1000 non-strand and 323 
strand residues at random (to maintain the native proportions of strand and non-strand residues) 
from our dataset to compute the averages and to measure significance of the differences between 
these two sets of scores. This is repeated 1000 times and the “prob. of p-values at 0.05” column 
reports the probability (fraction) of the 1000 tests where the “E avg” is significantly higher than 

“nE avg” at the 0.05 level.] 

Direction 

of sliding 

for all 

pairs 
 

Residue 

reside pair 

scores 

no direction (all segments) 

using DSSP-derived 

strands 

no direction using 

BETArPRED-predicted 

strands 

E avg 

+/-std 

nE avg 

+/-std 

Prob. of 

p-value at 

0.05 

E avg 

+/-std 

nE avg 

+/-std 

Prob. of 

p-value 

at 0.05 

P 

Ours 
3.9514 

±1.6029 
3.2355 

±1.3689 
1 

3.5617 
±1.4788 

3.3552 
±1.3939 

0.623 

others 

(Zhang et 

al.,2010) 

5.8585 
±1.8143 

4.9792 
±1.5342 

1 
5.3474 

±1.6237 
5.1186 

±1.5640 
0.611 

ap 

Ours 
2.2795 

±0.5395 
1.9888 

±0.4660 
1 

2.1182 
±0.5012 

2.0383 
±0.4772 

0.748 

others 

(Zhang et 

al.,2010) 

4.1041 
±0.8621 

3.6557 
±0.7618 

1 
3.8592 

±0.8082 
3.7361 

±0.7765 
0.685 
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However, when using the predicted strand segments, the probability of significance is 

higher when using our scores, i.e., 0.623 vs. 0.611 for the parallel direction and 0.748 vs. 

0.685 for antiparallel direction (see column 4 in Table 5-6). The 6% improvement in the 

probability when scanning in the antiparallel direction is relatively substantial, especially 

considering the fact that the antiparallel strands are more prevalent than the parallel 

strands. These results suggest that our strand residue_residue propensity tables provide an 

improvement over the existing approaches in the context of identification of the β-strand 

residues.  

5.4 Summary 

In this chapter, we investigated the use of long-range interactions to identify β-strand 

residues in protein sequences. We computed the propensities of residue pairs to form 

residue_residue interactions in β-sheets. We also computed the propensities for conserved 

residue_residue pair interactions that occur in β-sheets to study the effect of residue 

conservation. We normalized these propensities using residue_residue pair scores in the 

same chain (intra-chain) rather than normalizing with a product of individual residue 

scores, as was done in previous works. Our chosen normalization is arguably more 

suitable for sequence-based prediction of β-strand residues. We also compared these 

residue_residue propensity scores, including scores based on all and based on conserved 

pairs, with the relative frequency scores that were recently proposed in (Zhang et al., 

2010). Our residue_residue pair propensity scores are shown to be correlated with other 

two types of scores (scores that include conservation and scores by Zhang et al., (2010)) 

and our top residue_residue pair propensity scores (pairs that are more prevalent in β-

sheets) are in agreement with previously identified residue_residue pairs in β-sheets. 

However, our empirical evaluation of the utility of these propensity scores in finding β-
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strand residues shows that our propensities provide somewhat greater predictive power 

when compared with the propensities proposed by Zhang et al. (2010). 

 

We also propose a maximum-based scoring function which is used to differentiate 

between the strand and non-strand residues. These maximum-based scores are based on 

long-range interactions, and they complement the current β-strand residue predictors that 

utilize local, window-based information. We assess the usefulness of these scores by 

comparing their values for strand and non-strand residues. Our results show that the 

average values for strand residues are significantly higher than for the non-strand 

residues, meaning these scores can be helpful in differentiating between strand and non-

strand residues. We also tested our methods by including the residue conservation and 

strand directionality information separately and combined, but we were unable to gain 

further benefits. Overall, our analysis suggests that our residue_residue pair propensities 

combined with our maximum-based scoring function are potentially useful for the 

prediction of β-strand residues.  
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6 Conclusions 

6.1 Review 

This thesis focuses on improving computational prediction of β-residues (strand residues) 

and strands in proteins based on the amino acid sequence. Such predictions would lead to 

better sequence-based recognition of β-sheets. We followed a systematic step-wise 

approach consisting of three main steps. In the first step, we investigated the two-state 

performance of existing secondary-structure predictors, and confirmed that Qe is inferior 

to Qh; this indicates that there is a need for a specialized β-strand residue prediction 

algorithm, to see whether a new prediction method is needed. In the second step, we 

developed a prediction model that improves prediction of β-residues and strands, when 

compared with the existing methods. In the third step, we investigated propensities of 

residue_residue interactions in strand pairs to develop scoring functions that could 

potentially (in the future) lead to the development of even better strand predictors.  

 

In chapter 4, we developed the BETArPRED model that uses a novel ensemble-based 

design to predict the β-residues and strand segments. Our BETArPRED predictions are 

compared with seven modern SS predictors and the top-performing automated structure 

predictor in CASP8, the ZHANG-server. Our model provides statistically significant 

improvements over each of the considered SS predictors and improves prediction of β-

residues and strands.  

 

In chapter 5, we computed the propensities of residue_residue pairs and conserved 

residue_residue pairs that interact in β-sheets. We compared the strand residue_residue 

pair propensity scores with the relative frequency scores of the strand residue-residue 
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pairs that were recently proposed by Zhang et al., (2010). Our residue_residue pair 

propensity scores are shown to be correlated with the other two scores (our conservation-

based scores and the scores by Zhang et al., (2010)). We also observed that our top 

ranked residue_residue pair propensity scores (for pairs that are more prevalent in β-

sheets) are in agreement with previously published residue_residue pairs in beta-sheets. 

Next, we proposed a scoring function based on the propensity scores. We found 

empirically that scores generated by the scoring function can differentiate between strand 

and non-strand residues. We also observed that inclusion of the residue conservation and 

strand directionality information does not provide an improvement in differentiating the 

strand and non-strand residues. Finally, we compared our propensities with the 

propensities proposed in (Zhang et al., 2010) by using them with the scoring function to 

differentiate strand and non-strand residues utilizing strand segments predicted by 

BETArPRED. These empirical results show that our propensities provide greater 

predictive power for the prediction of β-strand residues.  

 

6.2 Contributions 

Objective 1 of this thesis was to compare two-state strand predictions against two-state 

helix predictions from state-of-the-art secondary structure predictors. Objective 2 was to 

investigate the creation of a new, more accurate method for the prediction of the strand 

residues and β-strands. Objective 3 was to investigate the propensities of the 

residue_residue pairs in the strand–strand contacts, and determine whether these 

propensities can be used to further improve the prediction of the strand residues and β-

strands. My specific contributions for each of these objectives are as follows. 

 
The contributions for the objective 1 are: 
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• I generated a high quality dataset for prediction of β-residues and β-strands. The 

criteria applied to compile this dataset were to minimize the effect of templates 

for secondary structure predictors and to include a generic set of globular 

proteins that samples from the whole protein structure space with a low sequence 

similarity and using high quality crystal structures. I divided this dataset into 

training and test subsets, where the latter subset was used for blind comparison of 

our predictor that was developed in this dissertation with other relevant 

predictors. These datasets are available at 

http://biomine.ece.ualberta.ca/BETArPred/BrP.htm. 

 

• Using my dataset, I empirically investigated how the existing methods perform 

with respect to β-strands (β-residue) and helix prediction in 2-state rather than 3-

state secondary structure prediction. I found, as expected, that prediction of β-

strands is characterized by poorer predictive quality when compared with 

prediction of helices, which motivates investigation of objectives 2 and 3. 

 

 

My contributions for objective 2 include: 

• I introduced an ensemble method (BETArPRED) for prediction of β-strands and 

β-residues, which utilizes a novel architecture. 

 

• I introduced a new comprehensive set of features that exploits three types of 

information including the amino acid sequence, predicted secondary structure 

and predicted residue depth, aggregated at three levels: residue, window and 

sequence. This set of features is used as an input to BETArPRED. 
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• I introduced a new quality measure called average strand segment coverage 

(ASSC) to evaluate the strand segment predictions at the sequence level. This 

measure is different from the currently used SOV. The ASSC measures how many 

residues are correctly predicted in a strand segment – whether these residues 

were contiguous or not, whereas SOV calculates the ratio of the largest single 

contiguous portion of the segment to the largest extended portion of the 

overlapping segment. If more than one portion of the segment is correctly 

predicted, those other portions will be ignored. Therefore, ASSC complements 

the SOV measure.  

 

• I also evaluated our BETArPRED method using other residue level prediction 

errors (under, over, length and inner segment errors) in the context of the β-

residue predictions and comprehensively compared it with other SS predictors 

and a leading 3D structure predictor, Zhang-server. My empirical results 

computed using the test dataset (from objective 1) show that BETArPRED 

improves predictions of strand residues and strand segments when compared to a 

wide range of modern SS predictors. 

 

My contributions for objective 3 are: 

• I proposed and computed new propensity scores for the strand residue_residue 

pairs. I compared our residue_residue propensities with other recently proposed 

propensities (Zhang et al., 2010) and with my propensities calculated using 

conserved strand residue_residue pairs. I also cross checked my propensities 

against preferred strand residue_residue pairs identified in the literature. I found 

that my propensity scores are in agreement with the literature. 
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• I developed a maximum based scoring function that uses the strand 

residue_residue pair propensities and I utilized scores generated by this function 

to differentiate between strand and non-strand residues. Using statistical tests of 

significance, I found that these scores can distinguish between the strand and 

non-strand residues. 

 

• I found that the inclusion of sequence conservation and direction of strand 

segments does not improve the propensity scores in the content of their use for 

finding strand residues. More specifically, use of the propensity scores that 

incorporate conservation and direction does not improve the identification of the 

strand vs. non-strand residues when using my scoring function. 

• My empirical analysis demonstrates that our propensity scores provide better 

discriminative power (to distinguish strand and non-strand residues) when 

compared with the recent propensities developed by Zhang and colleagues 

(2010). This was performed by using my scoring function and strand segments 

predicted by BETArPRED. 

 

6.3 Future work  

Although BETArPRED provides high quality predictions, there is still room for further 

improvement. One potential approach could be to exploit strand-strand interactions. This 

could be done with the help of our scoring profiles from Chapter 5, and which reflect 

intra-strand amino acid pairing preferences. (Our results in Table 5-5 are a first step in 

this direction.) A similar approach was recently proposed and successfully used to predict 
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relative orientation of a pair of native strand segments (Zhang et al., 2010). In our case, 

these scoring profiles would be utilized to score the predicted strand residues with respect 

to their potential match with strand residues on another predicted strand segment. Such an 

approach would reflect the long range interactions between strand segments that are not 

covered by the current local window-based strand predictors.  

 

Another useful source of information that could be used to improve the strand predictions 

is related to position-specific propensities of amino acid types in strand segments. Recent 

work shows that these propensities are position-specific and that they follow a 

characteristic periodic pattern in inner positions with respect to the cap residues at both 

termini of the strand segments (Bhattacharjee and Biswas, 2010). The last extensions of 

the current method involves flexible windows as proposed by Chou and colleagues (Chou 

and Shen, 2007; Chou, 2002; Chou, 2001), instead of the fixed-size windows which are 

used in the current version of BETArPRED, to extract the local information.  



 112

References 

1. Abdi H, 1994, A neural network primer, Journal of Biological systems, Volume 

2, Issue 3, Pages 247-283. 

2. Adamczak R, Porollo A, and Meller J, 2005, Combining prediction of secondary 

structure and solvent accessibility in proteins, Proteins, Volume 59, Pages 467-

475. 

3. Anfinsen CB, 1973, Principles that govern the folding of protein chains, Science, 

Volume 181, Isuue 4096, Pages 223–230.  

4. Albrecht M, Tosatto SC, Lengauer T, and Valle G, 2003, Simple consensus 

procedures are effective and sufficient in secondary structure prediction, Protein 

Engineering, Volume 16, Issue 7, Pages 459-462. 

5. Allmuallim H and Deitterich TG, 1991, Learning with many irrelevant features, 

Proceedings of the Ninth National. Conference on AI, Pages 47-52. 

6. Altschul SF and Lipman DJ, 1990, Protein database searches for multiple 

alignments, Proceedings of National Academic Science, Volume 87, Issue 14, 

Pages 5509-5513. 

7. Altschul SF, Madden TL, and  Schäffer AA, 1997,  Gapped BLAST and PSI-

BLAST: a new generation of protein database search programs, Nucleic Acids 

Research, Volume 25, Issue 17, Pages  3389–3402. 

8. Aravind L, and Koonin EV, 1999, Gleaning non-trivial structural, functional and 

evolutionary information about proteins by iterative database searches, Journal of 

Molecular Biology, Volume 287, Issue 5, Pages 1023–1040. 

9. Asogawa M, 1997,  Beta-sheet prediction using inter-strand residue pairs and 

refinement with hopfield neural network, In Proceedings of International 

Conference on Intelligent System of Molecular Biology, Volume 5, Pages 48–51. 



 113

10. Baldi P, Pollastri G, Andersen CAF, and Brunak S, 2000, Matching protein β-

sheet partners by feed forward and recurrent neural networks, In Proceedings of 

the Conference on Intelligent Systems for Molecular Biology, Pages 25–36. 

11. Baldi P and Brunak S, 2001, Bioinformatics: The Machine Learning Approach, 

2nd edition, MIT Press. 

12. Berg JM, Tymoczko JL, and Stryer L, 2002, Biochemistry, 5th edition, W.H. 

Freeman and company. 

13. Bhattacharjee N and Biswas P, 2010, Position-specific propensities of amino 

acids in the β-strand, BMC Structural Biology, Volume 10, Article No. 29. 

14. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov 

IN, and Bourne PE, 2000, The protein data bank, Nucleic Acids Research, 

Volume 28, Issue 1, Pages 235-242. 

15. Bowie JU, Luethy R, and Eisenberg D, 1991, A method to identify protein 

sequences that fold into a known three-dimensional structure, Science, Volume 

253, Issue 5016, Pages 164-170. 

16. Branden C and Tooze J, 1999, Introduction to protein structure, 2nd edition, 

Garland. 

17. Bugmann G, 1998, Normalized Gaussian Radial Basis Function networks, 

Neurocomputing, Volume 20, Pages 97-110. 

18. Cai X,Hu H and Li X, 2009, A new measurement of sequence conservation, 

BMC Genomics, Volume 10, Article No.623. 

19. Campbell C, 2002, Kernel Methods: A Survey of Current Techniques, 

Neurocomputing, Volume 48, Pages 63–84. 

20. Cessie S and Houwelingen J, 1992, Ridge estimators in logistic regression, 

Applied Statistics, Volume 41, Issue 1, Pages 191-201. 



 114

21. Chen K, Kurgan L and Ruan J, 2006, Optmization  of the sliding window size for 

protein structure prediction, Proceedings 2006 IEEE CIBCB Symposium, Pages 

366-372.  

22. Chen K and Kurgan LA, 2007, PFRES: Protein Fold Classification by Using 

Evolutionary Information and Predicted Secondary Structure, Bioinformatics,  

Volume 23, Issue 21, Pages 2843-2850 

23. Cheng J and Baldi P, 2005, Three–stage prediction of protein beta-sheets by 

neural networks, alignments and graph algorithms, Bioinformatics, Volume 21, 

Pages 75-84. 

24. Cheng J and Baldi P, 2007, Improved residue contact prediction using support 

vector machines and a large feature set, BMC Bioinformatics, Volume 8, Article 

No. 113. 

25. Cheng H, Sen TZ, Jernigan RL, and Kloczkowski A, 2007, Consensus data 

mining (CDM) protein secondary structure prediction server: combining GOR V 

and fragment database mining, Bioinformatics, Volume 19, Pages 2628-2630. 

26. Chou KC, Pottle M, Nemethy G, Ueda Y, and Scheraga HA, 1982, Structure of 

beta-sheets: Origin of the right-handed twist and of the increased stability of 

antiparallel over parallel sheets, Journal of Molecular Biology, Volume 162, 

Pages 89–112. 

27. Chou KC, Nemethy G, Rumsey S, Tuttle RW, and Scheraga HA, 1986, 

Interactions between two beta-sheets: Energetics of beta/beta packing in proteins, 

Journal of Molecular Biology, Volume 188, Pages 641– 649. 

28. Chou KC and Carlacci L, 1991, Energetic approach to the folding of alpha/beta 

barrels, Proteins, Volume 9, Pages 280–295. 

29. Chou KC, 2001, Using subsite coupling to predict signal peptides, Protein 

Engineering, Volume 14, Pages 75-79. 



 115

30. Chou KC, 2002, Prediction of protein signal sequences. Current Protein Peptide 

Science, Volume 3, Pages 615-622. 

31. Chou KC and Shen HB, 2007, Signal-CF: a subsite-coupled and window-fusing 

approach for predicting signal peptides, Biochemical Biophysics Research 

Communication, Volume 357, Pages 633-640. 

32. Cozzetto D, Kryshtafovych A, Fidelis K, Moult J, Rost B and Tramontano A, 

2009, Evaluation of template-based models in CASP8 with standard measures, 

Proteins, Volume 77, Supplement 9, Pages 18-28. 

33. Cristianini N and Shawe-Taylor J, 2000, An Introduction to Support Vector 

Machines, Cambridge University Press, UK. 

34. Crooks GE and Brenner SE, 2004, Protein secondary structure: entropy, 

correlations and prediction, Bioinformatics, Volume 20, Pages 1603-1611. 

35. Dou Y, Baisnée PF, Pollastri G, Pécout Y, Nowick J and Baldi P, 2004, ICBS: a 

database of interactions between protein chains mediated by beta-sheet 

formation, Bioinformatics, Volume 20, Issue 16, Pages 2767-2777. 

36. Espadaler J, Romero-Isart O, Jackson RM, and Oliva B, 2005, Prediction of 

protein-protein interactions using distant conservation of sequence patterns and 

structure relationships. Bioinformatics, Volume 21, Pages 3360–3368. 

37. Fan RE, Chang KW, Hsieh CJ, Wang XR, and Lin CJ, 2008, LIBLINEAR: A 

library for large linear classification, Journal of Machine Learning Research, 

Volume 9, Pages 1871-1874. 

38. Fernandez-Escamilla AM, Rousseau F, and Schymkowitz JSL, 2004, Prediction 

of sequence-dependent and mutational effects on the aggregation of peptides and 

proteins, Nature Biotechnology, Volume 22, Pages 1302–1306.  



 116

39. Fooks HM, Martin AC, Woolfson DN, Sessions RB and Hutchinson EG, 2006,  

Amino acid pairing preferences in parallel beta-sheets in proteins, Journal of 

Molecular Biology, Volume 356, Issue 1, Pages 32-44. 

40. Garg A, Kaur H, and Raghava GP, 2005, Real value prediction of solvent 

accessibility in proteins using multiple sequence alignment and secondary 

structure, Proteins, Volume 61, Issue 2, Pages 318-324. 

41. Gromiha MM and Selvaraj S, 1998, Protein secondary structure prediction in 

different structural classes, Protein Engineering, Volume11, Issue 4, Pages 249-

251. 

42. Gruber A, Durham AM, Huynh C and Bethesda HAP, 2008, Bioinformatics in 

tropical disease research, NCBI. 

43. Goulden CH, 1956, Methods of Statistical Analysis, 2nd edition, Wiley, 

Pages 50-55. 

44. Gunasekaran K, Nagarajaram HA, Ramakrishnan C, and Balaram P, 1998, 

Stereochemical punctuation marks in protein structures: glycine and proline 

containing helix stop signals, Journal of Molecular Biology, Volume 275, Pages 

917–932. 

45. Hall M and Smith L, 1999, Feature selection for machine learning: comparing a 

correlation-based filter approach to the wrapper, Proc. FLAIRS, Pages 235-239. 

46. Hall M, 2000, Correlation-based feature selection for discrete and numeric class 

machine learning, Proceedings of Seventeenth International Conference on 

Machine Learning (ICML), Pages 359–366. 

47. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, and Witten IH,  2009, 

The WEKA Data Mining software: an update, SIGKDD Explorations, Volume 

11, Issue 1, Pages 10-18. 



 117

48. Ho BK and Curmi PMG, 2002, Twist and Shear in b-Sheets and b-Ribbons, 

Journal of Molecular Biology, Volume 317, Pages 291-308. 

49. Holmes G and Nevill-Manning CG, 1995, Feature selection via the discovery of 

simple classification rules, Proceedings of International Symposium on 

Intelligent Data Analysis (IDA-95). 

50. Hu X and Li Q, 2008, Using support vector machine to predict beta- and gamma-

turns in proteins, Journal of Computational Chemistry, Volume 29, Issue 12, 

Pages 1867-1875. 

51. Hubbard TJ, 1994, Use of β-strand interaction pseudo-potentials in protein 

structure prediction and modeling, Proceedings of the Biotechnology Computing 

Track, Protein Structure Prediction MiniTrack of the 27th HICSS, IEEE 

Computer Society Press, Pages 336–354. 

52. Hutchinson EG, Sessions RB, Thornton JM and Woolfson DN, 1998, 

Determinants of strand register in antiparallel beta-sheets of proteins, Protein 

Science, Volume 7, Pages 2287–2300.  

53. Ivankov DN and Finkelstein AV, 2004, Prediction of protein folding rates from 

the amino-acid sequence-predicted secondary structure, Proceedings of National 

Academic Sciences, Volume 101, Pages 8942-8944. 

54. Johansson F and Toh H, 2010, a comparative study of conservation andvariation 

scores, BMC Bioinformatics , Volume 11, Article No.388. 

55. Jones DT, 1999, Protein secondary structure prediction based on position-

specific scoring matrices, Journal of Molecular Biology, Volume 292, Issue 2, 

Pages 195-202. 

56. Kabsch W and Sander C, 1983, Dictionary of protein secondary structure: pattern 

recognition of hydrogen-bonded and geometrical features, Biopolymers, Volume 

22, Issue 12, Pages 2577-2637. 



 118

57. Kamat A and Lesk A, 2007, Contact patterns between helices and strands of 

sheet define protein folding patterns, Proteins, Volume 66, Pages 869-876. 

58. Kedarisetti K, Kurgan LA, and Dick S, 2006,  A Comment on Prediction of 

protein structural classes by a new measure of information 

discrepancy, Computational Biology and Chemistry, Volume 30, Issue 5, Pages 

393-394. 

59. Kedarisetti K, Kurgan L, and Dick S, 2006, Classifier ensembles for protein 

structural class prediction with varying homology, Biochemical Biophysical 

Research Communication, Volume  348, Issue 3, Pages 981-988. 

60. Kedarisetti K, Dick S, and Kurgan LA, 2008, Searching for factors that 

distinguish disease-prone and disease-resistant prions via sequence 

analysis, Bioinformatics and Biology Insights, Volume 2, Pages 133-144. 

61. Kedarisetti KD, Mizianty M, Dick S and Kurgan L, 2011, Improved sequence-

based prediction of strand residues, Journal of Bioinformatics and Computational 

Biology, 9, Issue 1, Pages 67-89. 

62. Kira K and Rendell L, 1992, A practical approach to feature selection, 

Proceedings of the Ninth International Conference on ML, Pages 249-256. 

63. Klebe G, 2000, Recent developments in structure based drug design, Journal of 

Molecular Medicine, Volume 78, Issue 5, Pages 269-281.  

64. Kohavi R and John G, 1996, Wrappers for Feature Subset Selection, Artificial 

Intelligence journal, special Supplement on relevance, Volume 97, Pages 273-

324.  

65. Kohavi R and Provost F, 1998, Editorial for the special Supplement on 

applications of Machine Learning and the knowledge Discovery process, 

Glossary of Terms. 



 119

66. Koh IY, Eyrich VA, Marti-Renom MA, Przybylski D, Madhusudhan MS, Eswar 

N, Graña O, Pazos F, Valencia A, Sali A, and Rost B, 2003, EVA: evaluation of 

protein structure prediction servers,  Nucleic Acids Research, Volume 31, Pages 

3311-3315. 

67. Kortemme T, Ramirez-Alvarado M, and Serrano L, 1998, Design of a 20-amino 

acid, Three-stranded β-sheet protein, Science, Volume 281, Pages 253–256. 

68. Koonin EV and Galperin MY, 2003, Sequence - Evolution - Function: 

Computational Approaches in Comparative Genomics, published by Kluwer 

Academic. 

69. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL and Baker D, 2003, 

Design of a novel globular protein fold with atomic-level accuracy, Science, 

Volume 302, Pages 1364-1368. 

70. Kurgan L, Razib AA,Aghakhani S,Dick S,Mizianty M and Jahandideh S, 2009, 

CRYSTALP2: sequence-based protein crystallization propensity prediction, 

BMC Structural Biology, Volume 9, Article No. 50. 

71. La D and Livesay DR, 2005, Predicting functional sites with an automated 

algorithm suitable for heterogeneous datasets, BMC Bioinformatics, Volume 6, 

Article No. 116. 

72. Laskowski RA, Watson JD, and Thornton JM, 2005, ProFunc: a server for 

predicting protein function from 3D structure, Nucleic Acids Research, Volume 

33, Pages 89–93.  

73. Lengauer T and Zimmer R, 2000, Protein structure prediction methods for drug 

design, Briefings in Bioinformatics, Volume 1, Issue 3, Pages 275-288.  

74. Lesk AM., 1997, CASP2: report on ab initio predictions, Proteins, Supplement 1, 

Pages 151-66. 



 120

75. Li W, Jaroszewski L and Godzik A, 2002, Tolerating some redundancy 

significantly speeds up clustering of large protein databases, Bioinformatics, 

Volume 18, Pages 77-82. 

76. Lifson S and  Sander C, 1979, Antiparallel and parallel beta-strands differ in 

amino acid residue preferences, Nature, Volume 282, Pages 109-111. 

77. Lin K, Simossis VA, Taylor WR, and Heringa J, 2005, A Simple and fast 

secondary structure prediction algorithm using hidden neural networks, 

Bioinformatics, Volume 21, Issue 2, Pages 152-159. 

78. Lippi M and Frasconi P, 2009, Prediction of protein beta-residue contacts by 

markov logic networks with grounding specific weights, Bioinformatics, Volume 

25, Issue  18, Pages 2326-33. 

79. Liu H and Setiono R, 1996, A probabilistic approach to feature selection—A 

filter solution, Proceedings of International Conference on Machine Learning, 

Pages 319–327. 

80. Liu H, Li J and Wong L, 2002, A comparative study on feature selection and 

classification methods using gene expression profiles and proteomic patterns, 

Genome Informatics, Volume 13, Pages 51-60. 

81. Liu Y, Carbonell J, Klein-Seetharaman J, and Gopalakrishnan V, 2004, 

Comparison of probabilistic combination methods for protein secondary structure 

prediction, Bioinformatics, Volume 20, Issue 17, Pages 3099-107. 

82. Lodish H, Berk A, Zipursky SL Matsudaira, 2003, Molecular Cell Biology, 5th 

edition, W.H. Freeman & Company. 

83. MacCallum R.M, 2004, Striped sheets and protein contact prediction, 

Bioinformatics, Volume 20, Pages i224-i231. 



 121

84. Madera M, Calmus R, Thiltgen G, Karplus K and Gough J, 2010, Improving 

protein secondary structure prediction using a simple k-mer model, 

Bioinformatics, Volume 26, Issue 5, Pages 596-602. 

85. Mandel-Gutfreund Y, Zaremba SM, and Gregoret LM, 2001, Contributions of 

residue pairing to beta-sheet formation: conservation and co-variation of amino 

acid residue pairs on antiparallel beta-strands, Journal of Molecular Biology, 

Volume 305, Pages 1145-59. 

86. Mandel-Gutfreund Y and Gregoret LM, 2002, On the significance of alternating 

patterns of polar and non-polar residues in beta-strands, of Molecular Biology, 

Volume 323, issue 3, Pages 453–461. 

87. Mathews BB, 1975, Comparison of the predicted and observed secondary 

structure of T4 phage lysozyme, Biochimica et Biophysica Acta, Volume 405, 

Pages 442-451. 

88. Max N, Hu C, Kreylos O and Crivelli S, 2010, BuildBeta – A system for 

automatically constructing beta sheets, Proteins, Volume 78, Issue 3, Pages 559-

574. 

89. McGuffin LJ, Bryson K and Jones DT, 2000, The PSIPRED protein structure 

prediction server, Bioinformatics, Volume 16, Pages 404-405. 

90. McGuffin LJ and Jones DT, 2003, Benchmarking secondary structure prediction 

for fold recognition, Proteins, Volume 52, Pages 166-175. 

91. Merkel JS, Sturtevant JM and Regan L, 1999, Sidechain interactions in parallel 

β- sheets: the energetics of cross-strand pairings, Structural Fold. Description, 

Volume 7, Pages 1333–1343.  

92. Merkel J.S and Regan L, 2000, Modulating protein folding rates in vivo and in 

vitro by side-chain interactions between the parallel beta strands of green 



 122

fluorescent protein, Journal of Biological Chemistry, Volume 275, Pages 29200–

29206. 

93. Mizianty M and Kurgan L, 2009, Modular prediction of protein structural classes 

from sequences of twilight-zone identity with predicting sequences, BMC 

Bioinformatics, Volume 10, Article No. 414. 

94. Mizianty M, Stach W, Chen K, Kedarisetti KD, Miri Disfani F and Kurgan L, 

2010, Improved sequence-based prediction of disordered regions with multilayer 

fusion of multiple information sources, Bioinformatics, Volume 26, Issue 18, 

Pages i489-i496. 

95. Mizianty M and Kurgan L, 2011, Improved identification of outer membrane 

beta barrel proteins using primary sequence, predicted secondary structure and 

evolutionary information, Proteins, Volume 79, Issue 1, Pages 294–303. 

96. Montgomerie S, Sundararaj S, Gallin WJ, and Wishart DS, (2006), Improving the 

accuracy of protein secondary structure prediction using structural alignment, 

BMC Bioinformatics, Volume 7, Article No. 301. 

97. Montgomerie S, Cruz JA, Shrivastava S, Arndt D, Berjanskii M, and Wishart DS, 

2008, PROTEUS2: a web server for comprehensive protein structure prediction 

and structure-based annotation, Nucleic Acids Research, Volume36, Pages  

w202–w209. 

98. Moult J, Fidelis K, Kryshtafovych A, Rost B, and Tramontano A, 2009, Critical 

assessment of methods of protein structure prediction-Round VIII, Proteins, 

Volume 77, Supplement 9, Pages 1-4. 

99. Ofer D and Zhou Y, 2007, Achieving 80% ten-fold cross-validated accuracy for 

secondary structure prediction by large-scale training, Proteins, Volume 66, 

Pages 838-845. 



 123

100. Pearson ES and Hartley HO, 1972, Biometrika Tables for Statisticians, Volume 

2, Page118. 

101. Pei J and Grishin NV, 2001, AL2CO: calculation of positional conservation in a 

protein sequence alignment, Bioinformatics, Volume17, Issue 8, Pages 700-712. 

102. Peng K, Radivojac P, Vucetic S, Dunker AK, and Obradovic Z, 2006, Length-

dependent prediction of protein intrinsic disorder, BMC Bioinformatics, Volume 

7, Article No. 208. 

103. Petsko G and Ringe D, 2004, Protein Structure and Function: Primers, New 

science press ltd. 

104. Pintar A, Carugo O and Pongor S, 2003, DPX, for the analysis of the protein 

core, Bioinformatics, Volume 19, Pages 313-314. 

105. Pollastri G, Przybylski D, Rost B and Baldi P, 2002, Improving the prediction of 

protein secondary structure in three and eight classes using recurrent neural 

networks and profiles, Proteins, Volume 47, Pages 228-235. 

106. Pollastri G and McLysaght A, 2005, Porter: a new, accurate server for protein 

secondary structure prediction, Bioinformatics, Volume 21, Pages 1719-1720. 

107. Pruitt K, Tatusova T, and Maglott D, 2002, The Reference Sequence (RefSeq) 

Project, National Center for Biotechnology Information. 

108. Punta M and Rost B, 2005, PROFcon: novel prediction of long-range contacts, 

Bioinformatics, Volume 21, Issue 13, Pages 2960–2968. 

109. Qi Y, Bar-Joseph1 Z, and Klein-Seetharaman J, 200), Evaluation of different 

biological data and computational classification methods for use in protein 

interaction prediction, Proteins: Structure, Function, and Bioinformatics,  

Volume 63, Pages 490–500. 

110. Rhodes G, 2006, Crystallography Made Crystal Clear, A Guide for Users of 

Macromolecular Models, Third Edition, Elsevier/Academic Press 



 124

111. Rost B and Sander C, 1993, Prediction of protein secondary structure at better 

than 70% accuracy, Journal Molecular Biology, Volume 232, Pages 584–599. 

112. Rost B and Sander C, 1996, Bridging the protein-sequence–structure gap by 

structure predictions, Annual Revision on Biophysics and Biomolecular 

Structures, Volume 25, Pages 113–136.  

113. Rost B, 1996, PHD: Predicting one-dimensional protein structure by profile 

based neural networks, Methods in Enzymology, Volume 266, Pages 525-539. 

114. Rost B and Sander C, 2000, Third generation prediction of secondary structure, 

Methods Molecular Biology, Volume 143, Pages 71-95 . 

115. Rost B, 2001, Review: protein secondary structure prediction continues to raise, 

Journal of Structural Biology, Volume 134, Pages 204–218. 

116. Rost B and Eyrich VA, 2001, EVA: Large-scale analysis of secondary structure 

prediction, Proteins, Volume 5, Pages 192–199. 

117. Rost B, Liu J, Przybylski D, Nair R, Wrzeszczynski KO, Bigelow H, and Ofran 

Y, 2003, Prediction of protein structure through evolution, Book chapter in 

handbook of chemoinformatics from data to knowledge, Pages 1789–1811. 

118. Rost B, 2009, Prediction of protein structure in 1D: secondary structure, 

membrane regions, and solvent accessibility, Structural Bioinformatics, 2nd 

edition, Gu J, Bourne PE (eds.), Pages 679-714. 

119. Rupp B and Gussa JM, 2011, Biomolecular Crystallography: Principles, Practice, 

and Application to Structural Biology, 2011, online publication, 

http://www.amazon.com/Biomolecular-Crystallography-Principles-Application-

Structural/dp/0815340818/. 

120. Ruczinski I, Kooperberg C, Bonneau R, and Baker D, 2002, Distributions of beta 

sheets in proteins with application to structure prediction, Proteins, Volume 48, 

Pages 85–97. 



 125

121. Sanchez VD, 2003, Advanced Support Vector Machines and Kernel Methods, 

Neurocomputing, Volume 55, Pages 5–20. 

122. Schlessinger A, Punta M, Yachdav G, Kajan L and Rost B, 2009, Improved 

disorder prediction by combination of orthogonal approaches, PLoS One, 

Volume 4, Issue 2, Article No.e4433. 

123. Selbig J, Mevissen T, and Lengauer T, 1999, Decision tree-based formation of 

consensus protein secondary structure prediction, Bioinformatics, Volume 12, 

Pages 1039-1046. 

124. Shapiro SS and Wilk MB, 1965, An analysis of variance test for normality 

(complete samples), Biometrika, Volume 52, Pages 591–611. 

125. Shen HB and Chou KC, 2006, Ensemble classifier for protein fold pattern 

recognition. Bioinformatics, Volume 22, Supplement 14, Pages 1717-1722. 

126. Shen HB and Chou JJ, 2008, MemBrain: improving the accuracy of predicting 

transmembrane helices, PLoS One, Volume 3, Issue 6, Article No. e2399. 

127. Singh R, Xu J, and Berger B, 2006, Struct2net: integrating structure into protein-

protein interaction prediction, Pacific Symposium on Biocomputing, Pages 403–

414.  

128. Smith CK and Regan L, 1995, Guidelines for protein design: The energetics of β 

sheet side chain interactions, Science, Volume 270, Pages 980–982. 

129. Smith CK and Regan L, 1997, Construction and design of β -sheets, Accounts of 

Chemical Research, Volume 30, Page 153. 

130. Stefani M and Dobson CM, 200), Protein aggregation and aggregate toxicity: 

new insights into protein folding, misfolding diseases and biological evolution, 

Journal of Molecular Medicine, Volume 81, Pages 678–699. 



 126

131. Steward RE and Thornton JM, 200), Prediction of strand pairing in antiparallel 

and parallel beta-sheets using information theory, Proteins, Volume 48, Pages 

178–191. 

132. Stöhr J, Weinmann N, Wille H, Kaimann T, Nagel-Steger L, Birkmann E, Panza 

G, Prusiner SB, Eigen M, and Riesner D, 2008, Mechanisms of prion protein 

assembly into amyloid, Proceedings of  National Academic Science, Volume 

105, Issue7, Pages 2409-2414.  

133. Stormo GG, Schneider TD, Gold L, and Ehrenfeucht A, 1982, Use of the 

'Perceptron' algorithm to distinguish translational initiation sites in E. Coli, 

Nucleic Acids Research, Volume 10, Pages 2997-3012. 

134. Tang Z, Li T, Liu R, Xiong W, Sun J, Zhu Y, and Chen G, 2011, Improving the 

performance of β-turn prediction using predicted shape strings and a two-layer 

support vector machine model, BMC Bioinformatics, Volume 12, Article No. 

283. 

135. Tegge A N, Wang Z, Eickholt J and Cheng J, 2009, NNcon: improved protein 

contact map prediction, Nucleic Acids Research, Volume 37, Web Server issue 

w515–w518. 

136. Varrazzo D, Bernini A, Spiga O, Ciutti A, Chiellini S, Venditti V, Bracci L and 

Niccolai N, 2005, Three-dimensional computation of atom depth in complex 

molecular structures, Bioinformatics, Volume 21, Issue 12, Pages 2856-2860. 

137. Vullo A, Walsh I, and Pollastri G, 2006, A two-stage approach for improved 

prediction of residue contact maps, BMC Bioinformatics, Volume 7, Article  

No.180.  

138. Vyas J, Gryk MR and MSchiller MR, 2009, VENN, a tool for titrating sequence 

conservation onto protein structures, Nucleic Acids Research, Vol. 37, Article 

No.18. 



 127

139. Ward JJ, McGuffin LJ, Buxton BF and Jones DT, 2003, Secondary structure 

prediction with support vector machines, Bioinformatics, Volume 19, Issue 13, 

Pages 1650-1655. 

140. Wang K and Samudrala R, 2006, Incorporating background frequency improves 

entropy-based residue conservation measures, BMC Bioinformatics, Volume 7, 

Article No. 385. 

141. Wilcoxon F, 1945, Individual comparisons by ranking methods, Biometric, 

Volume 1, Issue 6, Pages 80–83. 

142. Wouters MA and  Curmi PM, 1995, An analysis of side chain interactions and 

pair correlations within antiparallel beta-sheets: the differences between 

backbone hydrogen-bonded and non-hydrogen-bonded residue pairs, Proteins: 

Structural Functional Genetics, Volume  22, Pages. 119–131. 

143. Wu ST and Zhang Y, 2008, MUSTER: improving protein sequence profile–

profile alignments by using multiple sources of structure information, Proteins, 

Volume 72, Issue 2, Pages 547-556. 

144. Xue B, Dunbrack RL, Williams RW, Dunker AK and Uversky VN, 2010, 

PONDR-FIT: A meta-predictor of intrinsically disordered amino acids, Biochim 

Biophys Acta. Volume 1804, Issue 4, Pages 996-1010. 

145. Yuan Z and Wang ZX, 2008, Quantifying the relationship of protein burying 

depth and sequence, Proteins, Volume 70, Pages 509-516. 

146. Zaremba SM and Gregoret LM, 1999, Context-dependence of  amino acid 

residue pairing in antiparallel β-sheets, Journal of Molecular Biology, Volume 

291, Pages 463–479. 

147. Zemla A, Venclovas C, Fidelis K, and Rost B, 1999, A modified definition of 

Sov, a segment-based measure for protein secondary structure prediction 

assessment, Proteins, Volume 34, Issue 2, Pages 220-223. 



 128

148. Zhang C and Kim S, 2000, The anatomy of protein beta-sheet topology, Journal 

of Molecular Biology, Volume 2, Pages 1075–1089. 

149. Zhang H, Zhang T, Chen K, Shen S, Ruan J and Kurgan L, 2008, Sequence 

based residue depth prediction using evolutionary information and predicted 

secondary structure, BMC Bioinformatics, Volume 9, Article No. 388. 

150. Zhang H, Zhang T, Chen K, Kedarisetti KD, Mizianty MJ, Bao Q, Stach W, 

Kurgan L, 2011, Critical assessment of high-throughput standalone methods for 

secondary structure prediction, Briefings in  Bioinformactics,  Volume 12, Issue 

6, Pages 672-688. 

151. Zhang N,  Ruan J, Wu J and Zhang T, 2007, Sheetspair: A Database Of Amino 

Acid Pairs In Protein Sheet Structures, Data Science Journal, Volume 6, Issue 

15, Pages s589-s595.  

152. Zhang N,  Ruan J, Duan G, Gao S and Zhang T, 2009,The interstrand amino acid 

pairs play a significant role in determining the parallel or antiparallel orientation 

of β-strands,  Biochemical and Biophysical Research Communications, Volume 

386, Pages 537–543. 

153. Zhang N, Duan G, Gao S, Ruan J and  Zhang T, 2010,  Prediction of the 

parallel/antiparallel orientation of beta-strands using amino acid pairing 

preferences and support vector machines, Journal of Theoretical Biology, 

Volume 263, Issue 3, Pages 360-368.  

154. Zhang Y, 2009, I-TASSER: Fully automated protein structure prediction in 

CASP8, Proteins, Volume 77, Supplement 9, Pages 100–113.  

155. Zheng C and Kurgan L, 2008, Prediction of ß-turns at over 80% accuracy based 

on an ensemble of predicted secondary structures and multiple alignments. BMC 

Bioinformatics, Volume 9, Article No. 430. 



 129

 

Appendix 

 

 
[The values on the x-axis are binned with the bin size equal 0.1σ where σ is the standard deviation. 

The corresponding number of residues is shown on the y-axis. Based on (Jimin et al., 2001) and 
using the Sigmaplot software, these data were fitted into the sum of two Gaussian distributions. 
(g1 + g2): f=a*(p1*exp(-.5*((x-µ1)/ σ1)2)+p2*exp(-.5*((x- µ2)/ σ2)2)), where µ1 and µ1 are 

means, σ1 and σ1 are standard deviations and  p1 and p2 are coefficients in the sum of two 
Gaussians. These two Gaussian distributions serve as an approximation of the low conservation 

and the high conservation components, respectively, and a is parameter that describes bin 
size*number of residues. The parameters of the best fit are shown on the right side. The dashed 

line shows the threshold that is used to binarize the conservation scores.] 

Supplementary Figure 0-1 The relative entropy-based conservation score values in a 

histogram, which are shown using black dots.  

ANOVA  results for bin size 0.1σ: 

Nonlinear Regression - Dynamic Fitting   Tuesday, July 06, 2010, 5:28:09 

PM 

 

Data Source: Data 1 in Notebook6 

Equation: User-Defined, Weighted Sum 2 Gaussian 

f=a*(p1*exp(-.5*((x-x10)/b1)^2)+p2*exp(-.5*((x-x20)/b2)^2)) 
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-Histogram of points: 
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-Results of best-fit solution 
Standard error of estimate=187.88 
coefficient of determination 
(R2)=0.96 

Conservation index 
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Dynamic Fit Options: 

Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 

 Minimum Maximum 

a -2631.0000 7893.0000 
b1 0.0000 3.4091 
b2 0.0000 3.4091 
x10 -1.3000 3.9000 
x20 -1.3000 3.9000 
p1 0.0000 1.5000 
p2 0.0000 1.5000 
 
Summary of Fit Results: 

Converged    98.5% 
Singular Solutions   83.0% 
Ill-Conditioned Solutions   15.5% 
Iterations Exceeding 200    1.5% 
Results for the Overall Best-Fit Solution: 

 

 

R  Rsqr  Adj Rsqr  Standard Error of Estimate 
 
0.9823 0.9649 0.9603  187.8832  
 
  Coefficient Std. Error t P  

 

a 3480.2911 1444.5066 2.4093 0.0200  
b1 0.8042 0.1150 6.9950 <0.0001  
b2 0.4373 0.0914 4.7857 <0.0001  
x10 1.7937 0.2069 8.6715 <0.0001  
x20 0.7496 0.0629 11.9177 <0.0001  
p1 0.6021 0.3040 1.9807 0.0536  
p2 0.3979 2.0012E-006198825.6620 <0.0001  
 
Analysis of Variance:  

 

Analysis of Variance:  
  DF SS MS  

Regression 7 106618413.3380 15231201.9054  
Residual 46 1623803.6620 35300.0796  
Total 53 108242217.0000 2042305.9811  
 
Corrected for the mean of the observations: 
  DF SS MS F P  

Regression 6 44663058.4512 7443843.0752 210.8733 <0.0001  
Residual 46 1623803.6620 35300.0796  
Total 52 46286862.1132 890131.9637  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0004) 
 
W Statistic= 0.9019 Significance Level = 0.0500 
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Constant Variance Test  Passed (P = 0.3232) 
 
Fit Equation Description: 
[Variables] 
x = col(1) 
y = col(2) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
peaksign(q)=if(total(q)>q[1], 1, -1) 
xatymin(q,r)=xatymax(q,max(r)-r) 
[Parameters] 
a = if(peaksign(y)>0, max(y), min(y)) ''Auto {{previous: 3480.29}} 
b1 = fwhm(x,abs(y))/2.2 ''Auto {{previous: 0.80419}} 
b2 = fwhm(x,abs(y))/2.2 ''Auto {{previous: 0.437316}} 
x10 = if(peaksign(y)>0, xatymax(x,y), xatymin(x,y)) ''Auto {{previous: 1.7937}} 
x20 = if(peaksign(y)>0, xatymax(x,y), xatymin(x,y)) ''Auto {{previous: 0.749613}} 
p1 = 0.5 ' {{previous: 0.602113}} 
p2 = 0.5 ' {{previous: 0.397887}} 
[Equation] 
f=a*(p1*exp(-.5*((x-x10)/b1)^2)+p2*exp(-.5*((x-x20)/b2)^2)) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b1>0 
b2>0 
p1>0 
p2>0 
p1+p2=1 
[Options] 
tolerance=1e-010 
stepsize=1 
iterations=200 
 
Number of Iterations Performed = 36 
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[ The values on the x-axis are binned with the bin size equal 0.2σ where σ is the standard 
deviation. The corresponding number of residues is shown on the y-axis. Based on (Jimin et al., 

2001) and using the Sigmaplot software, these data were fitted into the sum of two Gaussian 
distributions. (g1 + g2): f=a*(p1*exp(-.5*((x-µ1)/ σ1)2)+p2*exp(-.5*((x- µ2)/ σ2)2)), where µ1 

and µ1 are means, σ1 and σ1 are standard deviations and  p1 and p2 are coefficients in the sum of 
two Gaussians. These two Gaussian distributions serve as an approximation of the low 

conservation and the high conservation components, respectively, and a is parameter that describes 
bin size*number of residues. The parameters of the best fit are shown on the right side. The 

dashed line shows the threshold that is used to binarize the conservation scores] 

Supplementary Figure 0-2 The relative entropy-based conservation score values in a 

histogram, which are shown using black dots.  

 

ANOVA  results for bin size 0.2σ: 

Nonlinear Regression - Dynamic Fitting   Tuesday, July 06, 2010, 5:21:06 

PM 

 

Data Source: Data 1 in Notebook5 

Equation: User-Defined, Weighted Sum 2 Gaussian 

f=a*(p1*exp(-.5*((x-x10)/b1)^2)+p2*exp(-.5*((x-x20)/b2)^2)) 
 
 
Dynamic Fit Options: 

Total Number of Fits    200 
Maximum Number of Iterations   200 
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-Results of best-fit solution 
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Parameter Ranges for Initial Estimates: 

 Minimum Maximum 

a -4236.0000 12708.0000 
b1 0.0000 3.5542 
b2 0.0000 3.5542 
x10 -1.3482 4.0447 
x20 -1.3482 4.0447 
p1 0.0000 1.5000 
p2 0.0000 1.5000 
 
Summary of Fit Results: 

Converged    99.0% 
Singular Solutions   87.5% 
Ill-Conditioned Solutions   11.5% 
Iterations Exceeding 200    0.5% 
Inner-Loop Failures    0.5% 
 
 
Results for the Overall Best-Fit Solution: 

 

 

R  Rsqr  Adj Rsqr  Standard Error of Estimate 
 
0.9811 0.9626 0.9528  355.3416  
 
  Coefficient Std. Error t P  

 

a 6123.7125 3672.0365 1.6677 0.1089  
b1 0.7888 0.1882 4.1922 0.0003  
b2 0.4685 0.1224 3.8294 0.0009  
x10 1.8580 0.3454 5.3787 <0.0001  
x20 0.7822 0.1178 6.6384 <0.0001  
p1 0.5654 0.4308 1.3123 0.2024  
p2 0.4346 1.9827E-006219199.8522 <0.0001  
 
Analysis of Variance:  

 

Analysis of Variance:  
  DF SS MS  

Regression 7 184154581.7563 26307797.3938  
Residual 23 2904155.2437 126267.6193  
Total 30 187058737.0000 6235291.2333  
 
Corrected for the mean of the observations: 
  DF SS MS F P  

Regression 6 74692480.9230 12448746.8205 98.5902 <0.0001  
Residual 23 2904155.2437 126267.6193  
Total 29 77596636.1667 2675746.0747  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0198) 
 
W Statistic= 0.9149 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.2531) 



 134

 
Fit Equation Description: 
[Variables] 
x = col(1) 
y = col(2) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
peaksign(q)=if(total(q)>q[1], 1, -1) 
xatymin(q,r)=xatymax(q,max(r)-r) 
[Parameters] 
a = if(peaksign(y)>0, max(y), min(y)) ''Auto {{previous: 6123.71}} 
b1 = fwhm(x,abs(y))/2.2 ''Auto {{previous: 0.788793}} 
b2 = fwhm(x,abs(y))/2.2 ''Auto {{previous: 0.468531}} 
x10 = if(peaksign(y)>0, xatymax(x,y), xatymin(x,y)) ''Auto {{previous: 1.85804}} 
x20 = if(peaksign(y)>0, xatymax(x,y), xatymin(x,y)) ''Auto {{previous: 0.78221}} 
p1 = 0.5 ' {{previous: 0.565396}} 
p2 = 0.5 ' {{previous: 0.434604}} 
[Equation] 
f=a*(p1*exp(-.5*((x-x10)/b1)^2)+p2*exp(-.5*((x-x20)/b2)^2)) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b1>0 
b2>0 
p1>0 
p2>0 
p1+p2=1 
[Options] 
tolerance=1e-010 
stepsize=1 
iterations=200 
 
Number of Iterations Performed = 32 
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[The values on the x-axis are binned with the bin size equal 0.1σ(a), 0.2σ(b), 0.3σ(c), where σ is 
the standard deviation. The corresponding number of residues is shown on the y-axis. Based on 
(Jimin et al., 2001) and using the Sigmaplot software, these data were fitted into the sum of two 
Gaussian distributions. (g1 + g2): f=a*(p1*exp(-.5*((x-µ1)/ σ1)2)+p2*exp(-.5*((x- µ2)/ σ2)2)), 
where µ1 and µ1 are means, σ1 and σ1 are standard deviations and  p1 and p2 are coefficients 

in the sum of two Gaussians. These two Gaussian distributions serve as an approximation of the 
low conservation and the high conservation components, respectively, and a is parameter that 
describes bin size*number of residues. The parameters of the best fit are shown on the right 
side. The dashed line shows the threshold that is used to binarize the conservation scores.] 

Supplementary Figure 0-3 The relative entropy-based conservation score values in a 

histogram, which are shown using black dots. 

  

 
 

ANOVA  results for bin size 0.3σ: 

 
Nonlinear Regression - Dynamic Fitting   Tuesday, July 06, 2010, 12:44:35 

PM 
 
Data Source: Data 1 in Notebook2 
Equation: User-Defined, Weighted Sum 2 Gaussian 
f=a*(p1*exp(-.5*((x-x10)/b1)^2)+p2*exp(-.5*((x-x20)/b2)^2)) 
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
a -6380.0000 19140.0000 
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b1 0.0000 2.8433 
b2 0.0000 2.8433 
x10 -1.3048 3.9144 
x20 -1.3048 3.9144 
p1 0.0000 1.5000 
p2 0.0000 1.5000 
 
Summary of Fit Results: 
Converged    97.0% 
Singular Solutions   82.0% 
Ill-Conditioned Solutions   15.0% 
Iterations Exceeding 200    2.0% 
Inner-Loop Failures    1.0% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
 
0.9954 0.9909 0.9867  281.8909  
 
  Coefficient Std. Error t P  
 
a 9058.056318108498046.4301 5.0021E-007 1.0000  
b1 0.4685 0.0875 5.3565 0.0001  
b2 0.8008 0.1261 6.3490 <0.0001  
x10 0.7792 0.0780 9.9924 <0.0001  
x20 1.8408 0.2370 7.7668 <0.0001  
p1 0.4224 844534.3121 5.0021E-007 1.0000  
p2 0.57761154625.0448 5.0021E-007 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 7 276590790.9124 39512970.1303  
Residual 13 1033012.0876 79462.4683  
Total 20 277623803.0000 13881190.1500  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 6 112397639.6624 18732939.9437 235.7458 <0.0001  
Residual 13 1033012.0876 79462.4683  
Total 19 113430651.7500 5970034.3026  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.7210) 
 
W Statistic= 0.9684 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.2804) 
 
Fit Equation Description: 
[Variables] 
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x = col(1) 
y = col(2) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
peaksign(q)=if(total(q)>q[1], 1, -1) 
xatymin(q,r)=xatymax(q,max(r)-r) 
[Parameters] 
a = if(peaksign(y)>0, max(y), min(y)) ''Auto {{previous: 9058.06}} 
b1 = fwhm(x,abs(y))/2.2 ''Auto {{previous: 0.468465}} 
b2 = fwhm(x,abs(y))/2.2 ''Auto {{previous: 0.80078}} 
x10 = if(peaksign(y)>0, xatymax(x,y), xatymin(x,y)) ''Auto {{previous: 0.779216}} 
x20 = if(peaksign(y)>0, xatymax(x,y), xatymin(x,y)) ''Auto {{previous: 1.84077}} 
p1 = 0.5 ' {{previous: 0.422445}} 
p2 = 0.5 ' {{previous: 0.577555}} 
[Equation] 
f=a*(p1*exp(-.5*((x-x10)/b1)^2)+p2*exp(-.5*((x-x20)/b2)^2)) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b1>0 
b2>0 
p1>0 
p2>0 
p1+p2=1 
[Options] 
tolerance=1e-010 
stepsize=1 
iterations=200 
 
Number of Iterations Performed = 19 
 


