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Introduction

Paleontology is a multi-faceted subject that
involves taxonomy and community analysis
as two of its cornerstones. Both qualitative
and quantitative approaches have been
incorporated into the various methods
employed in such analyses. Each paleon-
tologist obviousty has his or her own prefer-
ence that is commonly expressed in terms of
the use of qualitative or quantitative
methods.

The use of statistics has gained favour
among some paleontologists since it offers
hope for the precise mathematical delinea-
tion of species or communities. With respect
to species this is based on the assumption
that most species in paleontology are essen-
tially defined on morphology. Thus it should,
at least in theory, be possible to accurately
define species on the basis of measured
parameters. Attempts to do this {e.g., Sokal,
1966, Sokal and Sneath, 1963, Jardine and
Sibson, 1971) have met with varying degrees
of success. This is essentially because of the
problems (1) inharent with deriving the meas-
ured parameters, and (2) inherent to the
statistical methods used. In addition, a cer-
tain proportion of the problem must be laid at
the feet of paleontologists themselves who
refuse to use any statistics in their taxonomy
or establishment of communities, or con-
versely, use statistical procedures without

any consideration of the qualitative observa-
tional data. Obviously, a more central
approach should be taken because the com-
bination of qualitative and quantitative data
can yield very sound paleontological
conclusions.

The science of statistics has been applied
to virtually every facet of paleontology. It is
impossible in the context of this paper to
review all of these methods and their applica-
tion in paleontology. Consequently, attention
has been focussed on (1) univariate and
bivariate stafistics that can be used in vir-
tually any taxonomic study, and (2) cluster
analysis, which is a powerful, butunderused,
tool in the delineation of communities or
fossil associations. In each case, the format
involves: (1) an outline of the basic statistics
involved, as well as the formulae needed for
their derivation; (2) a discussion of the prob-
lems that may be encountered in the applica-
tion of these statistics;, and (3) a listing of
selected studies that have utilized the statis-
tics being discussed; these should serve 1o
give the interested reader an insight into the
various ways in which the statistics can be
used, Since most of the author's own studies
have involved the Silurian and Devonian
brachiopods of Arctic Canada, examples
have been drawn from those in order to
demonstrate the points being made. In addi-
tion, two complete sets of data are provided
in Appendices 1 and 2 so that interested
students can utilize them in their own deriva-
tion of the statistics used in this paper.

The processing of statistical data can
pose a problem in itself. In years past this
problem was overcome simply by using
various statistical programs that are associ-
ated with mainframe computers. In some
cases, howevar, it is necessary to write
programs that are specifically tailored to the
problem at hand. The latter course of action
also has the advantage of leading to a
greater understanding of the mechanics
behind the statistics being used. The last two
years or so have seen the advent of micro-
computers with large memories and power-
ful programs. Indeed, virtually any of the
univariate or bivariate statistics outlined in
this paper can be derived from standard pro-
grams associated with most microcomputers.
A note of caution must be added in this
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raspect, however, for many of these pro-
grams do not document the actual methods
used in the derivation of the stalistics. In
some cases this is not critical because it
involves statistics that can only be calculated
in one way (e.g., mean). Conversely, many
graphical programs allow the computation of
the equation relating the x and y variable
without specifying the method used. Given
that there are many different methods of
deriving such equations, each with ils spe-
cific set of problems, it is imperative that the
method of calculation be known. In some
respacls, lack of knowledge of the methodol-
ogy negates the equation that is calculated.
Nevertheless, the usefulness of microcom-
puters cannot be underestimated. In addition
to the calculation of the statistics, many ofthe
present microcomputers offer excellent
graphic packages that can be easily used to
present the statistical information cbtained
from any analysis. To demonstrate this point,
all of the figures in this paper, with the excep-
tion of Figures 4 and 13, have been gener-
ated directly from a Macintosh Plus®
computer with the aid of programs such as
MacDraw*, Macpaint™ and Superpaint®,

Acquisition of Data

Thastarting point of any statistical analysis is
obviously the acquisition of the data base.
Great care must be taken in this respect
since poor data will invariably lead to even
poorer statistical results. If the statistics are
1o be used for taxonomic purposes, such
problems can be reduced to a minimum by
(1) carefully selecting the parameters that
are to be used, and (2) exercising greal care
in the actual measurement of the
parameters.

Selection of parameters. In most cases
the selected parameters will be (1) a straight
line measurement (e.g., length of shell - Figure
1A); {2) an angle (e.g., apical angle - Figure
1A); or (3) the numbers of a particular feature
that are present (e.g., number of ribs on a
brachiopod shell). Further parameters can
be generated by combining any of the above
parameters (e.g., length/width ratio). Such
derived parameters are commonly very use-
ful although some care must be exercised if
they are used in the plotting of bivariate
graphs. For example, a plot of length versus



length/width ratio witl produce a graph and a
correlation coefficient which is, at least in
part, a function of the fact that length is
involved in both parameters.

An inherent problem with some of these
parameters stems from the fact that they are
straight line measurements. For example,
the length of a shell as defined in Figures 1A
and 1B is actually the shortest distance
between the anterior and posterior ends of
the shell — it is hot a measurement of the
actual length of shell material between those
two points. Thus, shells of vastly different
convexitias will have the same length if the
standard measurement of shell length is
used. Inall probability the shelllength should
be measured along the shell surface that
stretches from the posterior to the anterior
margins (Figure 1B). While this may well be
the best measurement, it does leave the
paleontologist with the problem of trying to
measure the distance on these curved
surfaces.

The computation of ratios such as the
length/width ratio is commenly done on the
premise that it will give an indication of the
shape of the shell being considered. This
musl, however, be treated with caution since
a ratio such as the length/width ratio is
in reality only a crude measure of the
shell shape. This is easily demonstrated by
the fact that an ellipse and a rectangle,
while being substantially ditferent shapes,
may have the same length/width ratio
(Figure 1C).

Measurement of parameters. Once the
parameters have been selected for study itis
important to take every care in deriving their
values from each fossil being considered.
There will always be some operator error
related to the use of the measuring instru-
mants or in some cases to the measuring
instrument itself. The aim is therefore one of
reducing that error to a minimum. The best
possible test for determining the accuracy of
measurement is to have at least one set of
fossils measured threetimes: (1) once by the
primary investigator; (2) asecondtimebythe
primary investigator some days after the
initial measuring; and (3) by somebody other
than the primary investigator, preferably with
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adifferent measuringinstrument. Each setof
measurements should then be analysed and
tested 1o see if significantly different statisti-
cal measures are being derived from the
different data sets. If this should be the case,
then the causes of such differences must be
determined before further measuring is
done.
Collection of data for comparison of
faunas. The comparison of faunas from
different localities is obviously dependenton
the quality of the collections made from those
localities. Poor or biased collections will lead
to poor statistical results. Although the col-
lection of such data might appear to be
straightforward, it is actually fraught with
problems that can seriously affect the final
results. It one of the objects of a study is to
delineate communities or faunal associa-
tions, there are a number of ways in which
such collections can be made in order to
minimize the problems typically associated
with this stage of the data acquisition,
namely: {1) collect all the fossils that can be
found at a given outcrop with particular care
being taken to ensure that all sizes of fossils
are collected; (2) select a given area and
collect all the fossils in that area — for exam-
ple, it bedding plane exposures are available
then one square metre quadrants can be
used as the standard sampling area; or
(3} coliect as much material from an oulcrop
as possible within a given time interval — for
example, allocate one hour per gutcrop.
Each of these technigues, as well as any
other techniques that are used, has its own
set of associated problems. The paleontolo-
gist must select a collecting method which is
deemed best suited to the material and out-
crops being considered. At all times the
paleontologist should be aware of such prob-
lems and select the techniques which mini-
mize the possible sources of error. It should
be remembered, however, that these types of
collecting problems are common to all
aspects of paleontology and not just those
involving statistical procedures.
Micropaleontologists commonly follow a
different collecting technigue since the suc-

to their laboratories. Many would claim that
such techniques are without bias for the
sampling commonly involves the collection
of a certain amount of sample from fixed
intervals throughout a section (e.g., 5 kg of
sample atevery 5 mthroughout the section).
Even this technique, however, has biases
because the micropaleontologists (1) com-
monly sample the rocks which they know
trom experience have a higher probability of
yielding the microfossils that they are inter-
ested in; {2) musl assume that there is no
contamination during their processing;
{3) must assume that no fossils are
destroyed during processing; and (4) must
assume that all specimens are actually
picked from the residue that is left after
processing. As with the megafossils, these
potential problems can be minimized by
careful sampling and processing.

Univariate Statistics

As the name implies these are statistics that
refer to a single variable of a given dala set.
Such basic statistics are important because
they allow detailed description and,
ultimately, comparison of a single variable
from different data sets. The following statis-
tics are important:

Minimum = Lowest value determined
for variable
Maximum = Highest value determined
for variable
Range = Maximum - minimum
_ 2x
Mean (x) = -

N2 x-xR

(- 1)

Standard Deviation (s} =

Coefficient of variation (V) = 1—00 Esx)
X
SX
Standard errorofthemean(s,) =
vn

cess of their collecting is uncertain until they where n = sample size
have processed their bulk samples on return x = variable being considered.
Height
Length

True Length
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Figure 1 {A) Definition of parameters that have been used in the statistical analysis of the brachiopod Atrypoidea. (After Jones, 1974).
(B) Comparison of straight line measurement of shell length (L) as opposed to true langth measured along shelf surface (TL}.

(C) Diagrammatic illustration of a rectangle and an ellipse that have the same length/width ratios.
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Table 1 gives examples of these stalistics
derived from data for assemblages W1 (A.
phoca) and X14 (A. foxi . A) that are given in
Appendices 1 and 2.

Portrayal of data. Univariate data are typ-
ically portrayed as a histogram which gives a
very good and clear visual impression of the
distribution of the recorded values
throughout the total recorded range of the
variable (Figure 2). Attention has been
focussed on the form of histograms since
they can yield information about population
dynamics. Before such studies can be com-
menced, however, itis important to be satis-
fied that the form of the histogram is not due
to (1) poor sampling, or (2) closure. Poor

sampling, usually caused by small sample
size or bias to large specimens can produce
histograms that have more than one mode,
badly skewed histograms, or histograms
with very little spread. The easier way of
avoiding these potential problems is to col-
lect large samples and avoid collecting bias.
If this is impossibie, as is the case in certain
instances, then the use of histograms for the
interpretation of population dynamics should
be avoided. The problem of closure, which is
common to virtually all paleontological data,
occurs when a particular parameter has an
upper limit. For example, a brachiopod may
have a well developed sulcus with 1 to 5 ribs
init, depending upon the age of the individual

Table 1 Univariant statistics for length, width, and apical angle for
assemblages X14 (Atrypoldea foxi f. Ayand W1 (Atrypoidea phoca).
SEM = standard error of the mean; Std. Dev. = standard deviation.
(Original data given in Appendices 1 and 2.}
X14 w1
Statistic Length  Width AA Length Width AA
Minimum 1.67 1.47 35.00 0.96 0.93 40.00
Maximum 3.94 3.03 60.00 219 215 76.00
Range 2.27 1.56 25.00 1.23 1.22 36.00
Mean 2.59 2.27 47.94 1.69 1.64 55.32
SEM 0.05 0.04 0.61 0.04 0.03 0.89
Std. Dev. 044 0.33 5.06 0.27 0.26 6.82
Coett.
Variation 16.87 14.58 10.55 15.97 16.05 12.33
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Figure 2 Exampie of a histogram for shell width of Atrypoidea loxi 1. A (assemblage X14 - Appendix 2).

shell. If a particular popuiation of that
brachiopod contains mostly adults then the
resultant histogram of the number of ribs in
the sulcus will be skewed to the right with the
mode in the 5 rib category. While there willbe
a tail developed to the left (1 to 4 ribs) there
will be no tail to the right for the simple reason
that the brachioped never has more than 5
ribs in its sulcus. In cases such as this, the
skewed distribution is correct — itis not an
artifact of poor collecting or poor data ¢oliec-
tion. If sampling was good and there is no
avidence of closure then the shape of the
histogram can yield valuable infarmation
about the population dynamics. Craig and
Hallam {1963) clearly demonstrated that the
shape of a histogram is a function of growth
rates, recruitment rates and mortality rates.
Interested readers should refer to Craig and
Hallam’s (1863) classic work for more infor-
mation on how these faclors control the form
of histograms.

The impact of histograms can be accentu-
ated by indicating the position of the mean
value, median value and mode on that dia-
gram. Histograms, however, have a number
of disadvantages which seriously hinder
their use, namely: (1) statistical parameters
other than mean, median and mode canngt
be shown on them, and (2) their drawing
requires a ceriain vertical height; ifa number
of samples is being shown on the same
diagram, a space problem may resuft. In
certain cases, the latter problem may be
more serious than the former problem.

Averyuseful alternative involves the use of
Dice-diagrams which are relatively easy lo
construct (Figure 3). The Dice-diagrams are
particularly useful because (1}they allow
clear and accurate portrayal of the minimum,
maximum {and hence the range), mean,
standard error of the mean and the standard
deviation (Figure 3), and (2) the Dice-dia-
grams are relatively small in size and are thus
more convenient to use in situations where
numerous samples are being compared
(Figure 4).

Comparison of data. Both histograms
and Dice-diagrams can be easily used 1o
examine the similarity between two vari-
ables. If only two or three samples are
involved then histograms can be used and a
good visual impression of the similarity of
two samples can be obtained (Figure 5). It
must be emphasized, however, that this is
strictly a visual comparison and, apartfroma
comparison of the means, there can be no
statistical measure of the similarity or dis-
similarity between the various data sets
being compared. In such a situation, judge-
ment as to similarities andlor dissimilarities
can be severely impaired by the wish or need
to see differences. If this is the case, the
whole reason for using statistics is negated.

Dice-diagrams can be used for the com-
parison of numerous samples with great
effect (Figure 4). This is especially true in
situations where stratigraphically ordered



samples are involved (Figure 4; see also
Table 2). Like histograms, comparison using
Dice-diagrams gives a good visual impres-
sion of differences and similarities. Dice-
diagrams, however, have a distinct advan-
tage in that they can be used to test whether
the mean values of two data sets are statis-
tically the same or different. Since the central
box of the Dice-diagram {defined by the
mean 1 2 SEM}is avery good approximation
of the 95% confidence limils about the mean,
it can be used for comparing the mean of one
data set with the mean of another. If
the centrai boxes of the two samples overlap,
then the means cannot be considered statis-
tically different (Figure 6). Conversely, if the
central boxes do not overlap, the mean values
can be considered statistically different
(Figure 6).

When only two samples are involved the
comparison of the mean values in this man-
ner is straightforward since the result is
either (1) the mean values are different, or
(2) the mean values are not different (Fig-
ure 6). In situations involving 3 or more sam-
ples, however, some care must be exercised
since unusual results can be obtained in
certain circumstances. This problem can be
demonstrated by considering a contrived
example involving samples A, B and C (Fig-
ure 7). Comparison of the mean values of A,
B and C using the method just described
yialds the result that:

(1) A is not significantly different from B,

(2) B is not significantly different from C,

(3) C is significantly different from A
Combining results 1 and 2 would lead to the
conclusion that the mean value of C is not
significantly different from the mean value of
A — a conclusion that is in direct contradic-
tion to result 3. This enigma is not unique to
comparisons generated from the use of Dice-
diagrams since similar results can be
obtained using other statistical tests. This
type of result commonly occurs in situations
in which there is a distinct increase or
decrease in the mean value of a parameter
from a sel of samples arranged in strati-
graphic order (Figures 4 and 7). in such
situations, emphasis should be placed onthe
trend rather than the comparison between
successive pairs of samples.
Studies with univariate comparisons
involving histograms.Brachiopods:
Amsden (1974), Copper (1986), Harper
{1969), Hewitt and Hurst (1977), Imbrie
(1956), Jones (1974, 1977, 1978, 1979a, 1981},
Watkins (1975); Bivalves: Craig and Hallam
(1963}, Hallam (1967), Sgrensen (1984);
Microfossils: Nyberg and Schopf (1984).
Studies with univariate comparisons
involving Dice-Diagrams.Methodology:
Jones {1974); Brachiopods: Alvarez (1982,
1984), Jones (1877 1978, 1979a, 1981);
Gastropods. Graus (1974 - variation of Dice-
diagram); Radiolarians: Lazarus et al. (1985
- variation of Dice-Diagram);, Micro-
crinoids: Lane and Sevastopulo {1985 - vari-
ation of Dice-Diagram).

SCALE BAR
| ] ] |

Minimum | I Maximum

% - 1Sx% —
X+ 1S5S«

% - 2S5EM X + 2SEM

Figure 3 Construction of Dice-diagram. {1) The base line stretches from the mumimum to the maximum value
of tha parameter, {2) the open box is defined by the mean plus and minus 1 standard deviation, (3) the litted box
i3 defined by the mean plus and munus 2 standard errors of the mean {SEM); and {4) the small vertical tick at the
top of the fifled box is defined by the mean value of the parameter.

Table 2 Example of correlation table for parameters derived from Atrypoidea
phoca from locality GF-F (Goose Fjord, Ellesmere Island). (From
Jones, 1981, Table 3).
L = length; W = width; H = height; ADAC = absolute deflection of
anterior commissure; RDAC = relative deflection of anterior
commissure; AA = apical angle; PC! = plan circularity index; SCf =
side circularity index,
L w H ADAC RDAC AA PCI SCI
L 1.00 0.86 0.86 0.75 0.52 0.25 0.48 0.55
w 1.00 0.77 0.65 0.43 0.10 -0.02 0.54
H 1.00 0.88 0.59 0.34 0.37 0.89
ADAC 1.00 0.89 0.35 0.36 0.77
RDAC 1.00 0.29 0.28 0.53
AA 1.00 0.34 0.33
PCI 1.00 0.18
SCI 1.00
RDAC = ADAC x 100 pel = L x 100 SC = H x 100
H L+W L+H
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Flgure 4 Example of use of Dice-diagrams for the comparison of the length and the apicel angle of Alrypoidea phoca and Atrypoidea netserki from Silurian strata of
Arctic Canada. (From Jones, 1981, fig. 2).
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and Atrypoidea phoca (assembiage W1). See Appendices 1 and 2 for data.
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Figure 6 Comparison of mean values using Dice-diagrams. Samples A and B
are not significantly oifferent; sample C is significantly different from both

samples A and B.

Figure 7 Dice-diagrams in which comparison of the mean values yield the
results that A = B, B = Cbut C = A. See text for lurther giscussion.
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Bivariate Statistics
As the name implies, these types of statistics
investigate the statistical relationship
hetween two variable parameters that are
usually termed the X and Y variables. The
simplest way of portraying the relationship
hetween the two variables is a bivariate
graph {g.g., Figure 8). Once such a graph
has been constructed it is necessary to
derive statistical measures of the relation-
ship between the two variables. These
include correlation coefficiemt and deter-
mination of growth equations.
Correlation coefficient. One of the basic
statistics applicable to bivariate analysis is
the correlation coefficient (r) which is calcu-
lated by:

Z(x- Xty -7

vV Zx-RR Ly -y2

The value of r will range from 0.0 (no
correlation) to plus or minus 1.0 {perfact
correlation). Values between 0 and 1 give a
measure of the correlation between vari-
ables X and Y. Thus, a value of 0.50 or less is
generally indicative of a poor correlation
{e.g., Figure 9) while a value of 0.80 or above
is generally indicative of a good correlation
{(e.g., Figure 8). It is important to note, how-
ever, that a vatue of 0.80 does not mean that
the correlation is twice as good as a correla-
tion coefficient of 0.40.
Relative growth. Bivariate statistics pro-
vide a method of studying relativa growth
(i.e., how one variable changes relative to
another variable). This is important in many
taxcnomic studies because the paleontolo-
gist is commonly interested in how one
parameter {e.g., width of shell) behaves reia-
tive to another parameter (g.g., shell length)
during ontogeny. The bivariate graph, which
provides a good visual impression of this
relationship, is of paramount importance in
this type of study. Visual inspection can
determine whether allometric (points follow a
curved line — Figure 10) or isometric (points
follow a straight line) growth relationships
are present. This basic assessmant is neces-
sary bacause different statistics are involved
in the determination of growth lines ( = line
of relative growth) for allometric and isc-
metric growth.
Allometric Growth. Tha growth line tor
allometric growth is given by:

y = bx* , whare

xandy = variablesbeingconsidered, and,
banda = mathematical parameters which
vary according to the nature of the curve.

The fact that the growth line is a curve
indicates that the two variables are increasing
at different rates and that the x/y ratio
changes as the animal grows (Imbrie, 1956,
p. 228}). Although the specific growth rates
(.., rate at which the logarithm of a variable

r

is changing) are unequal, they maintain a

Figure 8 Examples of bivariate graphs that compare length versus width (A), length versus height (B),
ratio that is constant and equal to a (Imbrie,

and width versus apical angle (C) for Atrypoidea foxi . A (assembiage X14) and Atrypoidea phoca
tassemblage W1). Note high correiation coefficients (r) associated with each piol.



1956, p. 228). The value of a, which is the
growth ratio, is the slope of the growth ling on 90
double logarithmic graph paper while b (ini- | o
tial growth index) is the absolute value of y
when x = 1 (Imbrie, 1956, p. 228). These 80 o
values can be obtained by plotting data on
double logarithmic graph paper and solving
the equation:

Y = aX+B , where
Y = logy X = logx B = logb.
isometric growth. In many cases, bivari-
ate plots of paleontological data do not show
any hint of a logarithmic relationship i .
hetween the xandy variables. In some cases . g
this indicates that a real linear trend exists 40 . "
(i.e., isometric growth). In many cases, how- h .
ever, the apparent linear trend results 30 v T v T v 1
t?ecguse (1) the curvature of the truf_e gro_wth 0.0 05 1.0 15 20 25 30
line is very slight and becomes disguised
because of the scalter of points around it HEIGHT (cms)
(Figure 10 - curve B); and/or (2) the sample
being studied is somewhat restricted and _
only plots around the linear portion of the true o X14 r =0.05
curved growth line (Figure 10 - curve C). « W1 r=-0.09
Irrespective of the underlying cause, this
growth can be treated as isomelric growth
(= allomelric growth with @ = 1) and much
simpler mathematicaltreatments of data can
be used. Essentially, the growth line will have
the form y = ax + b, where a = gradient
of ling and b = y-intercept of line (i.e., value
ofy when x = 0).
Determination of growth lines for iso-
metric growth. |fthe two variables have a
correlation coefficient of 1.0, it means that
there is no scatter of points around the linear
growih line. In such cases, the equation of
the growth line can be easily and accurately
givenby anequationoftheformy = ax + b.
Unfortunately, most paleontological data
result in a scatter of points on a bivariate
graph and methods for deriving the best
estimate of the growth line must be exam-
ined. Essentially, there are three ways of
estimating the equations of growth lines,
namely: {1) Regression Equations, (2) Major
Axis, and (3) Reduced Major Axis. VARIABLE X

a

70 - o 0
. u%n%ug
o oo

50 H . ' l‘.l

APICAL ANGLE

Curve A «—Segment A

VARIABLE ¥

/Curve C

Figure 9 (upper) Example of bivariate graph
with very fow correlation between the height and
apical angle of Atrypoidea foxi . A (assemblage D-
X14) and Atrypoidea phoca (assemblage W1). Reduced M aj or

Axis

1

)

L]
Figure 10 (middle) Examples of atfometric C .
growth curves. Curve A is well defined and thus L™ g J
easy !0 recognize as allometric growth. Curve B is
less pronounced and if coupled with a wide scatler
of piotted points, as shown, would be difficult to
recognize as aftometric growth. If the plotted points
only occurredin sagment Aof curve C a more or loss
linear reiationship between variables x and y would
be suggested.

Major Axis

VARIABLE Y

Regression of x on y

Figure 11 (lower) Diagram showing the ReQressujn of y on x
different distances used in the computation of o —

regression equations (x on y and y on x), a Major
Axis, and a Reduced Major Axis. {Based on Imbria, VARIABLE X
1956, fig. 2). See text for meaning of letters A 10 J.
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Regression equations. This proce-
dure actually involves the calculation of two
equations, one for the regression of y on
x and one for the regression of xony. The
regression of y on x is defined as the line
that minimizes the sum of the squares of the
deviations from that line (line AE on Fig-
ure 11), the deviations being measured per-
pendicular to the x-axis (Imbrie, 1956,
p. 230). The regression of x ony is similar
except that the deviation is measured in a
direction perpendicular to the y-axis (line BF
on Figure 11), In both cases, there is the
underlying assumption that one variable is
independent and the other variable depend-
ent. From a paleontological point of view this
means that the procedure cannot be used
since biclogical data always involve vari-
ability (both real and observed) of both the x
and y variates (Kermack and Haldane.
1950; Kermack, 1954; Imbrie, 1956).

Major axls. “A line thal minimizes the
sum of the squares of the perpendicular dis-
tances from each point to the desired line is

called the major axis” {Imbrie, 1956, p. 230;
line CG on Figure 11). Although seemingly a
reasonable way of treating variable paleon-
tological data. it has been shown that the
slope of the major axis changes with the unit of
measurement (Kermack and Haldane, 1950).
It 15 thus unsuitable for use in taxonomy
{Imbrie, 13586, p. 230).

Reduced major axis. “This line mini-
mizes the sum of the areas of the triangles
formed by lines drawn from each point to the
desired line and paratlel with the x and y
axes” (Imbrie, 1956, p. 230; HDI on Fig-
ure 11}. This line is particularly useful since
(1) it makes no assumptions of indepen-
dence, (2) it is invariant under change of
scale, (3)it is simple to compute, and
(4) results obtained from its use are intu-
itively more reasonable than the correspond-
ing results obtained from regression analysis
{Imbrie, 1956, p. 231). Furthermore, the use
of a reduced major axis allows the computa-
tion of further statistics for the comparison of
two ar more such axes.

Table3 Example of calculated or z statistics for the comparisons of two growth
axes for the width (x-axis) versus length {y-axis) from assemblages
BJ8D (Atrypoidea phoca) and BJ33 (Atrypoidea foxi). Both
assemblages from the Douro Formation, Goodsir Creek, Cornwallis
Island, NWT.
Asgsemblage Equation Error of slope Dispersion
Absolute Relative
BJBD y=101x + 013 0.05 on 6.01
BJ33 y = 123x-013 0.07 0.09 4.63

For comparison of gradients with Null Hypothesis that both equations have the same slope:

. = (a - az) _ _ (2s-10) ) 022 _ e

N 551 + sgz +/ 0.072 + 0.05% 4/ 0.0074

Since z > 1.96, P < 0.05 and Null Hypothesis of equal slopes is rejected.

Forcomparison of constants with Null Hypothesis that both equations have same constant
{i.e., initial growth indices):

Xo {84 - 8,) + (by - b2)
V2 o T + B, (-

Given that X, = 140 and x, = 1.28,
Let x, = X, then,

o
3

140 (140 - 1.28) + {-013 - 013} 017 - 0.26

1/ 0.05 (140 - 1.07) 0.02 0.1

Since z < 1.86, P > 0.05 and Null Hypothesis of equal y-intercepts cannot be rejected.

-

1

Calculation of Reduced Major Axis and
associated statistics. For a straight line
with the equationoftheform y = ax + b,

= Y 1-r2
a = = g = a n
Sx

b = y-xa s where

a = growth ratio

s, = standard deviation of x

s, = standard deviation of y

s, = standard error ofa

r = correlation coefficient

n = sample size

b = initial growth index.

Comparison of Reduced Major
Axes. The simplest way of comparing two
or more growth lines ( = Reduced Major Axis)
is to plotthemon a graph and visually inspect
them. In many cases, the axes involved may
be sodifferent that further statistical tests are
not needed. With some sets of growth axes it
may be difficult 1o decide confidently if the
growth lines are the same or different. In this
situation a number of very useful statistical
tests can be applied to the data (Table 3). In
effect, the comparison of two reduced major
axes can be treated as (1) a comparison of
the gradients of the two lines, and (2) the
position of the y-intercepts of the two lines
{i.e., the initial growth indices).
Comparison of gradients of growth
{ines. This test, conducted under the
hypothesis that the two growth lines being
considered have the same slope, is done by
calculating the statistic 2, where:

a,-a,
lf 2 2
Sa‘ + saz

If the value of 2 < 1.96, the probability (P)
that the observed difference (a, - a,) arose
by chance is greater than 0.05 (Imbyrie, 1356,
p. 237). Conversely, if z > 196, then the
probability that so great a difference arose by
chance is 0.05 or less (Imbrie, 1956, p. 237).
If a z value of 2.58 is used, then the proba-
bility can be expressed at the 0.01 level. If
P < 0.05 {z > 1.96), then the hypothesis of
equal slopes can be rejected and the
observed differences are considerad signifi-
cant{lmbrie, 1956, p. 237). It this is true then
no further slatistical tests are needed.

Comparison of Initial growth indices.
This comparison is only used in situations
where the gradients of the growth line are not
considered significantty ditferent. The z sta-
tistic is caiculated by:

Xo(a1-25) + (bl - ba) , where

r4 =

I =

85,0 - Xy) + 8] (%o - X2)
x, = some biologically significant value.

Once the z value has been determined, itis
treated in the same manner as the z value
was in the comparison of the gradients of the
growth lines.
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One of the main problems with this test is
the choice of X since it is difficult to define a
"biologically significant value™ without bias.
A simple solution is to make xq equal to X,
since this reduces the above formulae to:

z = X, (31 B 32) + (b1 - bz)

Saz (%, - EE)

Other possible values for x , include the x
value for which the vertical distance
between the growth lines is (1) at aminimum
— if the wish is to demonstrate that a signifi-
cant difference exists between the initial
growth indices, or (2) at a maximum — if the
wish is to demonstrate that there is not a
significant difference between the growth
lines (Imbrie, 1956, p. 237). If a means of
choosing x, without bias can be derived,
then the test can be used with some
success.

Other methods for comparing
Reduced Major Axes. If only two or three
growth axes are being compared, then the
method of comparing pairs of axes in terms
oftheirgradientandinitial growth indices can
be used without difficulty. if, however, the
taskis tocompare many growth axes(e.g., 10
or more), then various practical problems are
created by using these test procedures
(Jones, 1983). For example, a situation in
which 10 growth axes are all being com-
pared, one with another, would require
(n(n-1))/2 or 45 comparisons. This is com-
pounded by the fact that each comparigon of
two reduced major axes usually involves two
separale lests. Thus, a total of 90 z values
may be obtained from an investigation of 10
growth lines. As noted by Jones (1983}, the
problem then becomes one of deciding how
1o deal with this amount of data, and, more
impaortantly, how to decipher the information.
This problem can be overcome quile simply
by plotting a bivariate graph which plots a
(f.e., the growth ratio) against b (ia., the
initial growth index). Inspection ol such a
graph can give a very clear visual impression
of the relationships betwsen the various
growth lines being considered (Figure 12;
Tabie 4). If needed, additional statistical proce-
dures can be applied 1o this type of bivariate
graph (see Jones, 1983).

Scatter of poinis around a growth
axis. Insome cases, itis desirable 1o have
a measure of the spread or dispersion of the
plotted points around the reduced major
axis. This can be obtained by calcuiating
either the Absolute Dispersion or the Rela-
tive Dispersion about the Reduced Major
Axis {Table 3). Both of these calculations
hinge on the fact thal each point deviates
from the axis by the horizontal distance d
and the vertical distance dy (Imbrie, 1956,
p. 239). A measure of the dispersion of the
points can therefore be derived by calculat-
ing the vector sum of dx and dy. The total
dispersion, which can be expressed as the
standard deviation (s,4) of those diagonal
distances (Imbrie, 1956, p. 239), is given by:

Sq = \/2(1-r)(s§+ s§)

Imbrie (1956, p. 241) has pointed out, how-
evar, that the absolute dispersion is a meas-
ure of shape variability since deviation in
either x or y will affect s4. To overcome this
probiem relative dispersion is used by
calculating:

100 s,

Vv X2+ ¥y

Imbrie (1956, p. 241), who termed this the
Coefficient of Relative Dispersion about the
raduced major axis, noted that it expresses
the amount of shape variation as a proportion
of the average shape altained by the sampie.

A visual measure of the dispersion of the
plotted points on a bivariate graph can be
obtained by contouring the graph according
1o the density of points per unit area on the
graph (Figure 13). This technique allows a
clear visual impression of the spread of the
points {e.g., Trewin, 1976) as well as the
identification of modal groups (Figure 13).

Z =

Caution in use of bivariate graphs. Iftwo
assemblages of brachiopods are being com-
pared through the use of bivariate graphs,
then some care must be exercised in the
manner inwhich that comparison is made. In
many cases, it is lempting to make such a
comparison on the basis of a single graph, for
example a length versus width graph. Sucha
graph may suggest thatthere is no difference
between the two assemblages of
brachiopods being considered. It is impor-
tant to emphasize, however, that this only
means that the two assemblages are alike in
terms of this aspect of their growth. It may
well be that they are significantly different in
other aspects of their growth. Thus, it is
important in this type of study lo investigate
as many bivariate graphs as possible.

An insight to this problem is provided by
the comparison of assemblage X14
(Atrypoidea foxi f. A) and W1 (Atrypoidea
phoca) through the use of length versiss
width, length versus height and width versus
apical angle (Figure 8}. If the length versus

Table 4 Data used for plotting graph in Figure 12. Data from Jones (1983).
Gradient (a) and constant (b) from the reduced major axes relating
width (x-axis) to length (y-axis).

Species Assemblage Gradient (a) Constant (b)
A foxi 1. A X114 1.32 -0.41
Y18 1.22 -0.21
T43 1.41 -0.51
A foxi f.B FAG0A 1.20 -0.15
X2 1.25 -0.26
T22A 1.23 -0.08
BJ33 1.13 -0.13
M113 1.10 -0.01
GCS5 1.09 -0.02
A. phoca 218 0.96 0.10
Wi 0.99 0.14
T31 1.07 -0.01
FA22 1.01 0.05
0.2 b N "
. o Alrypoides foxi T. A
- * _ B
o0 . n Alrypoides foxi 1. B
- 7] A4 -
- ) - * Alrypoides phocs
= =
4 ]
= - .
= 0.2 o
=
= J
(A
-0.4 4 o
o
-0.6 v T T T T T T 1 1

09 1.0 1.1 1.2

GRADIENT

Figure 12 Example of bivariate graph in which the gradient {a} is plotted against the constant (b) of reduced
major axes calculated for the width (x-axis) versus fangth (y-axis) of various assermblages of Atrypoidea foxi f.
A, Atrypoidea foxi f. B and Atrypoidea phoca. Qriginal data given in Table 4.
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width (Figure 8A} and the length versus
height {Figure 8B} graphs were considered
alone, it would be difficult to argue that two
difterent species were involved in the com-
parison. Conversely, a plot of width versus
apical angle (Figure 8C} suggests that the
two assemblages are quite different in this
aspect of their growth.

Examination of the same data using three-
dimensional graphs also illustrates the prob-
lems that can be encountered if attention
were focussed on a single bivariate graph
(e.g..Figure 14).[fsuchagraphisviewedina
direction parallel to the Z axis (height), then
the view is in effect a bivariate graph of length
versus apical angle (Figure 14A) and therg is
little apparent difference between the two
assemblages of brachiopods being consid-
ered (Figure 14A). By rotating the graph in
three-dimensional space (using MacSpin®
program), it is possible to obtain an cblique
view of the graph and the clusters of points
for the two assemblages (Figure 14B). An
exploded view of such a plot clearly shows
the difference between the two assemblages
of brachiopods (Figure 14C).

Studies with bivariate graphs.

Methodology: imbrie (1956), Kermack
(1954), Kermack and Haldane {1950), Jones
(1983); Contoured bivariate graphs: Jones
(1978), Trewin (1976); Brachiopods. Alvarez
(1982, 1984), Amsden (1974, 1978), Amsden
and Boucot (1958); Cooper (1872), Copper
(1986), Hewitt and Hurst (1977}, Imbrie

(1956), Jones (1974, 1977, 1978, 1979b, 1981,
1983), Jones and Rong (1982), Mergl (1985).
McGugan and May (1965), Mills and Lan-
genheim (1987), Peck et al. (1987), Pocock
(1966), Watkins (1975); Ostracodes: Berdan
(1972, 1986); Crinoids: Pabian and Strimple
(1979); Corals: Dixon (1979, 1986}, Elias
(1985), Hodges and Roth (1986); Cono-
donts: McHargue (1982), Murphy and
Cebecioglu (1986}, Eurypterids. Kues and
Kietzke (1981); Sponges.: Laghi et al. (1984);
Blastoids: Waters et al. (1985}).

Comparison of Faunas from Different
Localities

A common result of paleontological research
are data pertaining to the number of speci-
mens of each species at a particular locality.
This invariably leads to the guestion of how
the fauna at one locality compares to the
fauna at ancther locality. Although there are
a number of different ways in which this
question can be approached from a statisti-
cal point of view, only two will be considered
here, namely (1) simple graphical methods,
and (2) cluster analysis.

Graphical comparison of faunal
data. One possible way of comparing the
composition of faunas from different
localities is by using various graphical pre-
sentations ot the data. Thiscan beintheform
of graphs that show the number of speci-
mens of a given species for all the localities
being considered (e.g., Jones and

Smith, 1985, fig. 9). This method is quite
useful in certain circumstances and can be
used to determine trends in the distribution
of species in a given area (e.g., Jones and
Smith, 1985, fig. 9). Alternatively, the data
can be presented in the form of a histogram
with the different components of the fauna
illustrated on the individual columns (Fig-
ure 15), Inmany cases, such plots give avery
clear picture of any major trends that may
exist in the data. While these methods give a
good visual impression of the data, they do
not allow any statistical evaluation of those
trends and they must therefore be described
in qualitative terms.

Cluster analysis. Cluster analysis is a

powerful statistical procedure that is
extremely usetul in the evaluation of paleon-
tological data. In the particular case being
considered here, the data comprise a num-
ber of localities for which the number of
specimens of each spacies is known. Before
cluster analysis can be performed, however,
a number of important decisions must be
made, namely (1) choice of data type,
{2) choice of similarity index, and (3) choice
of clustering method.
Choiceofdata. Withmostpaleontological
information there is a choice between binary
data and variable data ( = numerical data).
This is especially true if the data had been
assembled with the knowledge that statisti-
cal procedures were to be used in their
manipulation.
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Figure 13 (A) Contoured bivariate graph of apical engle versus Plan Circularity index for Protathyris pragcursor which alfows the identification of a modai group.
(B} Comparison of modal groups for different assembiages of Protathyris praecursor. (From Jones, 1378, fig. 9).
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(2)

E

L (X)

Figure 14 (upper)

{A) Three-dimensional plot of length (L), apical
angle {AA) and height (H) oriented so that the
2-axis is coming straight out of the paper. This
gives the effect of a bivariate graph involving
only the length and the apical angie.

(B) Same graph as in Figure 14A except that it has
been rotated around the origin in order to obtain
& better view of the plotted points.

{C) Exploded view of plot shown in Figure 148 in
order to illustrate the difference between
assemblages X 14 and W1. The scale has been
omitted from the axes in order lo prevent
crowding and confusion on the diagrams. Plots
derived using MacSpin® program on &
Macintosh Plus® microcomputer.

Figure 15 {lower right) Example of stacked
histograms showing variation ana hence the trends
in faunas from diffarent localities. This particular
example shows the variation and trends in
gastropod faunas that occur on a rocky shoreling on
the northwest coast of Grand Cayman Island.
Sampies are from 1 m?2 quadrants measured
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Table 5

Type
dis
dis
sim
sim
s$im
sim
sim
sim
sim
sim
sim
sim
sim
sim
sim
sim
sim
sim
sim
dis
dis
dis
dis
dis
dis
sim
sim
sim
dis
dis
dis
sim
sim
dis
dis
dis
dis
sim
$im
dis

Listing of similarity indices showing the type (dis = distance;
sim = similarity), the type of data it can be used with (num =
numetical or variable; bin = binary) and the name. {Modified
from cLUSTAN; Wishart, 1978, p. 112).

Data Name or originator or reference
num Squared euclidean distance
bin Squared euclidean distance
num Product-moment correlation
bin Simple matching coefficient
bin Similarity ration (Jaccard)
bin Czekanowski-Dice

bin Sokal-Sneath

bin Sokal-Sneath

bin Rogers-Tanimoto

bin Kulczynski

bin Sokal-Sneath

bin Hamann

bin Dot product (Russell-Rao)
bin Kulczynski

bin Sokal-Sneath

bin Cosine (Ochiai)

bin Sokal-Sneath

bin Product-moment correlation
bin Yule

bin Size difference

bin Pattern difference
num Average distance

bin Average distance

num Error sum of squares
bin Error sum of squares
num Dot product

num Cosine

num Similarity ratio

num Size difference

num Shape difterence

bin Shape difference

num Dispearsion

bin Dispersion

num Variance

bin Variance

num Nonmetric (Bray-Curtis)
bin Nonmetric (Bray-Curtis)
num USER coefficient

bin USER coefficient

bin Information statistic

15

Binary data is based on the very simple
premise that a species is either present of
absent at a particular locality. In many
respects, such data are very useful because
no emphasis is placed on the abundance ofa
particular species. Thus, a species is
regarded as being present irraspective of
whether itis represented by one specimen or
by 1,000 specimens. It is this aspect of the
data that can cause potential problems. In
the case of brachiopod faunas, one or two
species commonly dominate while the
remaining species are present in minor num-
bers. The dominant species change as
environmental or stratigraphic positions
change. Thus, a species that is dominant at
one locality may only be a minor element of the
fauna at another locality. This aspect of domi-
nance, which is of extreme imporiance in the
comparison of brachiopod faunas, cannot be
accommeodated by the use of binary data.

Given that binary data cannot accommo-
date the aspect of dominance, it would seem
logical to suspect that variable data — i.e.,
data which record the actual number of each
species collected — couid be used to over-
come the problem. From both theoreticaland
siatistical points of view, this is the case.
Unfortunately, there are practical problems
which can cause some serious difficulties
with such data; these focus onthe problem of
sampling, since there can be no assurance
thatthe collection athandis truly representa-
tive of the actualfauna. Biasesinthe datacan
be introduced by collecting problems {e.g..
bias toward collecting the larger shells at the
expense of smaller shells), preservation
problems {e.g., larger shells badly crushed),
or simply the time available for coltecting at
each locality. These faclors, as well as many
others, all have the potential to affect the
number of specimens actually collected.
This, in turn, will affect the statistical
results.The problems with the variable data
can be minimized to a certain extent by
careful collecting techniques that reduce the
known sources of error. Even with such care,
problems may exist, since one collection
may contain 2,000 specimens while another
collection may only contain 200 specimens.
Since the computation of the similarity
indices may involve actual numbers of speci-
mens, the very fact that one collection is so
much bigger than the other will affect the
rasults. The problem of sample size can be
overcome 10 a certain extent by reducing all
the datato a percentage basis. Ineffect, each
sample is treated as being of a standard size
(i.e., 100 shelis). Where large samples are
involved this procedure seems to be quite
effective.

Choice of similarity coefficients. The
choice of a similarity index is not as straight-
forward as might be expected since there are
numerous indices that can be used. For
example, the computer package CLUSTAN
(Wishart, 1978) lists 40 different similarity/
dissimilarity coefficients (Table 5) that can
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be used for binary data(27) and variable data
(13). With binary data, most coefficients
revolve around the assessment of the fre-
quency counts A, B, C, and D where, with
referance to samples | and K:
A = number of species common to both land
K; B = number of species presentin | and
absent in K; C = number of species
absemtinlandpresentinK;and, D = num-
ber of species absent from both | and K.
Once these frequency counts have baen
established, a similarity or dissimilarity
coefficient can be computed. Of the 27 pos-
sible coefficients listed in cLUSTAN (Wishart,
1978), some are more useful than others.
This can be demonstrated by considering the
Jaccard Coefficient, the Rogers and Tani-
moto Coefficient, and the Simple Matching
Coefficient.

Jaccard coefficient — a similarity
coefficient that ranges from 0 to 1 which is
calculated by: A .

A+B+C
Thus, emphasis is placed on those species
which are common 1o both samples being
considered. At the same time, those species
which are absent from both samples (D) do
not enter into the computation.

Rogers and Tanimoto coefficient - a
similarity coefficient that ranges from 0 to 1
which is calculated by: (A + D)

(A + D)+ 2B+ C)

This coefficient places emphasis on the
species that are present in both samples (A)
as well as the species that are absent from
both samples (D). The mismatches (B and C)
are given double weight. This coefficient
tends to give poor results, betause
(1) emphasis is placed on joint absences
{which can be increased simply by adding
more and more species that are known to be
absent from both samples), and (2) in the
denominator double weight is given to the
mismatches (B and C).

Simple matching coefficient - asimi-
larity coefficient that ranges from 0 to 1 which
is calculated by: A+D

A+B+C4+D

This is a straightforward computation
which takes into account both the joint pres-
ences (A) and the joint absences (D) of spe-
cies relative to the total number of species
present (A + B + C + D).

Three coefficients based on binary data
have been presented in order to demonstrate
the various approaches that have beentaken
in the computation of similarity and dis-
similarity coefficients. It is apparent from
these, however, that great care must be
taken in the selection of a suitable coefficient
(Table 6). While it is possible to evaluate the
merits of each coefficient simply by consider-
ing the equation by which it is derived, the
ultimate testinvolves the application of all the
coefficients to a single data set (Table 6). Itis
advisable when dealing with any data set

for the first time to calculate a number of
different coefficients and then thoroughly
avaluate the results prior to choosing a
particutar one.

There are also numerous similarity/dis-
similarity coefficients that can be used when
dealing with variable data (Table 3). Many of
these coefficients invoive the calculation of
the distance between points plotted in Eucli-
dean space. The concept behind this can best
be understood by considering two points plot-
ted on a simple bivariate graph. The distance
between such points can be easily caiculated
by applying the Pythagoras Theorem; thus,

d = \/(x1 -%2)? + (¥, 'y2)2 .
where d = shortest distance between the
two points that are defined by the co-ordi-
nates (x,, y,) and (Xz, ¥z).

If the data were plotted on a three-dimen-
sional graph, then the Pythagaras Theorem
can be extended so that:

d = (% - %)% + (yr - ¥2)? + (2, - 22)°
where d = shorlest distance between the
two points that are defined by the co-ordi-
nates (x,, ¥, 2,) and (X, ¥, Zz)-

in the case of paleontological data, there
are commonly more than three variables
involved and it is sometimes necessary o
compute similarity coefficients using all the
variables. This can be done through the use
of Euclidean space which is an n-dimen-
sional extension of the three-dimensional
graph with the axes X, Y and Z. In the case of
Euclidean space, the graph is considered to
have n axes (where n = number of variables
being considered), each axis being at right
anglestoallother axes. Itis obvious that such
a graph would be impossible to construct.
Nevertheless, the distances between pairs
of points can be calculated by extending the
Pythagoras Theorem such that:

d = Vi (x,y - %50 )
i=1

where

i = number of variables being considered
Xy, = first variable of group 1

x;, = first variable of group 2.

In many situations, it is more useful to
express the similarity scale on a scale of 0.0
to 1.0; thus the formula becomes:

3 (x,, - %)
i=1 N

The above formulae will only work if x, is
positive and less than 1.0. Thus, x, must be
normalized on a scale of 0 to 1.0. Maximum
use of the scaling can be achieved by setting
the minimum value of x; to 0 and the manxi-
mum value of x; to 1.0 by:

d = 1-

Normalized data =

(True value - Minimum value)
{(Maximum value - Minimum value)

If five samples are being compared using

thistechnique, thena5 x 5 similarity matrix
will be obtained in which all possible pairs of
samples have been compared. Cluster
analysis then proceeds as follows:
(1) matrix is searched for the highest simi-
larity index; {2) the data for the two samples
having the highest similarity index is com-
bined and averaged using a weighting factor
of 1 for each sample (i.e., if the new data
comprise two samples, the weighting factor
is 2); (3) one of the two samples is deleted
from further consideration while the other
one is retained; {4) a new similarity matrix is
calculated using the averaged data obtained
in step 2 and ignering the sample deleted in
stap 3; (5) the procedure starting al step 1is
repeated.

The calculation of similarity indices and the

following clusier analysis is relatively straight-
forward. It is, however, a long process which
involves the repeated computation of simi-
larity matrices. For this reason, it is best to
either write the necessary computer program
or make use of some of the readily available
computer packages. CLUSTAN (Wishart, 1978)
is excellent in this respect since it allows the
use of many ditferent similarity indices (Table
5) and clustering techniques (Table 7).
Choice of clustering procedure. Once
the similarity matrix has been derived, it is
necessary to analyse it further in order to
determine the clusters that are present. One
of the more straightforward techniques has
been described in order to demonstrate the
general principles involved in the derivation
of clusters. There are, however, numerous
other statistical procedures that can be used
to derive such clusters (Table 7) and it is thus
necessary to decide which technigue should
be used for the particular set of data being
considered. Unfortunately, there are no rules
governing the choice of such procedures and
it essentially becomes a question of personal
choice. In most cases, it is advisable to run
the same similarity matrix through a number
of different clustering procedures in order
that an assessment of the relative merits of
each can be obtained. Any procedure pro-
ducing a dendrogram that exhibits chaining
{e.g., Figure 16B) should not be used. This
results from successive samples being suc-
cessively combined with the previously
defined cluster and should be discarded
because it does not provide a good means of
subdividing the databeing considered. Apart
from this, the choice of method is cpento the
investigator. Of the procedures listed in Table
7. Ward's method (error sum of squares)
seems to give the best resulls.
Q-mode and R-mode Cluster Analysls.
Data pertaining to the distribution of species
are typically arranged in a lable with species
on the horizontal axis and localities on the
vertical axis. In terms of cluster analysis,
such data can be investigated by perlorming
both (1) Q-mode, and (2) R-mode cluster
analyses.
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Table 6 Computation and comparison of the Jaccard
Coetficient (1), Rogers and Tanimoto's Coeffi-
cient (2) and the Simple Matching Coefficient (3)
using the artificlal samples | and K with
A=7,B=3C=4,D=5.

A 7 7
1 = = = — = 050
) A+B+0C 7+3+4 14

A+ D) 7+5 12

= 0.46

@ =G B0 T s 208 2%

Table 7 Listing of methods that can be used 1o derive
clustering from similarity matrices. (Modified
from cLusTaN: Wishart, 1978, p. 32).

Maethod Usual coefficients
Nearest neighbour (single linkage) all
Furthest neighbour (complete linkage}  all
Group average (average linkage) all
Centroid distance

size difference
shape difference

@) = A+D - T+5 -2 _ o6 Median (Gower's method) distance
A+B+C+D 7+5+3+4 ¥ Ward's method (error sum of squares}  distance
Lance-Williams flexible BETA distance
McQuitty's similarity analysis all
SIMILARITY COEFFICIENT
SIMILARITY COEFFICIENT
2 0 s . 3 2 1 °
| § 3 , . " " N N
L. ANGULIFERA
CHITONS PATULA
N. TESSELLATA P. PUPA
L ZICZAC KEYHOLE LIMPETS
N. PELORONTA
N. PELORONTA L. LINEOLATA
P. PUPA £. NODULOSUS
L. ANGULIFERA TRUE LIMPETS
— PATULA N. VERSICOLOR
KEYHOLE LIMPET TOP SMELLS
L. LINEOLATA L ZICZAC
E. NODULOSUS ECHINOMETRA
S rrr———— N. YERSICOLOR L. MESPILLUM
————t |17 T N. TESSELLATA
TOP SHELLS r— CHITONS
L e uweers T. MURICATUS
ECHINOMETRA N. TUBERCULATA
T. MURICATUS

H. TUBERCULATA

Figure 16 A-mode cluster analysis based on variable data using 39 sampies of rocky shorekine faunas from the coasts around Grand Cayman Island. Al sampies based
on collections from 1 mz quadrants made by B. Jones and S.G. Pemberton.
(A) Similarity index based on Squared Euciidean Distance (Table 5) and clustering by Ward's Method (Table 7).
(B) Similarity index based on Squared Euclidean Distance and clustering by the Nearest Neighbour (single linkage) method (Table 7).
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Q-mode analysis investigates the relation-
ship between localities; in other words, which
localities are most similar in terms of the
species present at each locality. Conversely,
R-mode analysis investigales the relationship
hetween the species; in other words, which
species typically occur together.

With any data set both Q-mode and
R-mode analyses should be used since both
will yield valuable information.

SIMILARITY COEFFICIENT

Presentation and interpretation of cluster
analysis. The results of cluster analysis
are typically displayed in the form of dendro-
grams (tree diagrams) since these provide
the best visual impression of the relation-
ships present (e.g., Figures 16 and 17). Such
diagrams usually permit the establishment of
distinct “clusters” of samples (for Q-mode
analysis) or species {for R-mode analysis) by
simple visual inspection. A more rigorous

division of the dendrograms can be achieved
by selecting a certain similarity index and
extending it as a line across the dendrogram
{this is termed a phenon line). The phenon
line serves to segment the dendrogram into
distinct clusters (Sokal, 1966; Jardine and
Sibson, 1971). There are no sel rules govern-
ing the position of the phenon ling although it
should obviously be selected with some care.
Once such clusters have been delineated

SIMILARITY COEFFICIENT
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I_ wr —— CHITONS
I_ L—— Tor suRLLS
DPS-W [ ECHINOMETRA
BP$-V L— rrox LINPET
DPS-X FEYHOLE LINPET
t DPS-Y [ ¥. FELORONTA
DPS-Z L 1. ancuLiFERa
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H-D [ N. VERSICOLOR
——— H-B L x. ressprzama
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van — [ e
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—[ e 3
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DPS-FF Figure 17 Cluster analyses based on binary data derived
I DPN-F from the same collections used in the computation of the
l_ cluster analyses shown in Figure 18.
DPN-G {(A) R-mode analysis showing clustering of localities.
I_ DPS-J (B) Q-mode analysis showing clustering of species. Both
dendrograms based on the Jaccard Coefficient and Ward's
DPN-H Method of clustering.
DPN-I1
DPN-K
DPS-H

DPS-K
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they can be labelled and then incorporated
into any subsequent discussion concerning
the distribution of various faunas.

If a large number of samples and/or spe-
cies is involved in a study, deciphering the
patterns obtained from the Q-mode and

R-mode analyses can be awkward and cum-
bersome. This can be overcome by con-
structing a table in which (1) the species are
ordered according to the sequence defined
by the R-mode analysis, and (2) the localities
are ordered according to the sequence

< = 1o
2zl E <|z| 55 a| |« % sle No. SPECIES (DASHED) ui
mjﬁi“ Bl 13121211513 §§ No. SPECIMENS (X100) &)
HHHEEHEH RN S =
Eg%%é!ﬁggﬂ'ﬁS:gagé 3]
8 = A 1= 0 P R O 2 O D I D A R
H-F
H-E A
DPS-W
fops.v
DPS-X
DPS.Y B
DPS-Z
C1
D
E1
E2
F1
F2

Figure 18 Cross-plot of localities (ordering based on dendrogram in Figure 17A) versus species (ordering
based on dendrogram in Figure 17B). Dark shading indicates that the species is the most common element of
the fauna in a sample while the light shading indicates which species are present. The bar graphs on the right
side of the diagram indicate the sample size and the species diversity for each locality. This cross-plotis usedto

define clusters A to F.
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defined by the Q-mode analysis (Figure 18).
This creates a grid which is, in effect, a cross-
plot of the Q-mode cluster dendrogram
against the R-mode cluster dendrogram (Fig-
ure 18). This diagram is completed by cycling
through each locality and marking or shading
the appropriate squares to indicate the spe-
cies that are present at the particular locality
being considered. This basic cross-plot can
be modified by:

(1) in the case of binary data, the aspect of
dominance by one or more species can
be incorporated into the plot by showing
the numbers of specimens (expressed as
actual number of specimens collected or
percentage of the fauna) of each species
that were collected; while this gives an
accurate assessment of totals, it is diffi-
cult to identify visually any patterns that
may be present;

(2) ranking the species accordingto the num-
bers of individuals collected at each
locality. In many cases, the faunas can be
broken down in 1 to 4 fairly common
species and numerous other relatively
rare species. The corresponding squares
in the grid created by the cross-plot can
then be shaded according to the ranking
of the species (e.g., black for the most
common species and successively
lighter shades of grey for the 2nd, 3rd and
4th ranked species). The rarer elements
of the fauna are recorded as being pres-
entwithoutany ranking. Thisis a powerful
technique because it permits easy
division of the grid by simple visual
inspection (Figure 18);

(3)an alternative to the procedure
described in (2) is to construct a cumula-
tive bar graph on the right hand side of
the cross-plot which shows the actual
numbers (or percentage) or each species
present at the locality being considered
(Figure 19). Again, the rarer elements of
the fauna (for example, all those species
that constitute less than 10% of the
fauna) need not be incorporated in the
graph. This method, like method 2, also
provides an excellent visual impression
of the data;

(4) in addition to either method 2 or 3, a
second bar graph or scatter graph can be
constructed which shows (a) the number
of species present (species diversity) at
each locality, and (b) the number of speci-
mens collected at each locality (Fig-
ure 18). These plots can be extremely
useful for they provide an excellent visual
impression of the overall nature of the
data base. In many cases, it becomes
apparent that there is a strong correlation
between the defined clusters, the species
diversity and the number of specimens
collected (e.g., Figure 18). The problem
then becomes one of deciding if the cor-
relation is a real one or one created by the
collecting techniques that were
employed.
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Cluster analysis is a powerful, but proba-
bly underused, tool which can be of consider-
able use in the analysis of faunal
associations. As with most statistical proce-
dures, itis important to have an understand-
ing of the basic mathematical concepts
involved since this can have a radical affect
on the interpretation of the results obtained.
Studies involving cluster analysis.
Methodofogy: Harbaugh and Merriam
(1968), Harper (1978), Hazel (1970), Jardine
and Sibson (1971), Ludvigsen et al. (1986},
Parks (1966), Sokal (196€); Total fauna:
Baarli (1987), Beus (1984), Fox (1968),
McDonald (1975), McGhee and Sutton
(1981}, Scott (1974}, Sepkoski and Sheehan
(1983), Springer and Bambach (1985),
Thayer (1974); Brachiopods: Jones and
Smith (1985), Noble et al. (1976); Gastropods
and Bivalves: Colbath (1985}, Valentine and
Peddicord {1967); Bryozoans: Anstey
(1986), Pachut and Anstey (1984); Cringids:
Webster {1981); Echinoids: McKinney and
Zachos (1986); Ostracodes. Benson (1975),
lzuka and Kaesler (1986); Traces: Kitchell
and Clark (1979); Trilobites: Ludvigsen and
Westrop (1983); Foraminifera: Mello and
Buzas (1968), Rogers (1976), Hallock and
Glenn (1985); Conodonts: von Bitter (1372),
Nowlan and Barnes (1981).

Concluding Remarks
There are many statistical procedures that
can be of considerable use to the paleoniolo-
gist. Although some of the more common ones
have been outlined in detail in this paper, it
must be realized that there are numerous
other statistical procedures that can be of
considerable use 10 the paleontologist. Vir-
tually any paleontological study could be
improved by the addition of statistical informa-
tion even if it is of the basic univariate type.
The advent of image analysis will have a
seriousimpact on the appiication of statistics
in pateontology. Such systems permit (1} the
easy and very accurate acquisition of param-
eters from fossils, and (2) the easy and very
accurate derivation of parameters such as
area of shell. Although the first has consider-
able practical advantages, it is really the
second aspect that will substantially
advance the use of statistics in paleontology.
This is because the image analysis systems
wili allow the easy computation of param-
eters that have been very difficult to
obtain in the past. With the availability of
parameters such as area of shell or the center
of gravity of an area being considered, more
meaningful statistical analyses should be pos-
sible. Wilson (1983) and Klapper and Foster
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