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ABSTRACT

The Okanagan Falls area, located about 16 kilometers south of Penticton in southern
British Columbia, hosts a number of occurrences of epithcrmal-type ore deposits. The
Vault property is one of them. The primary objective of this study is to characterize
mineralization on the Vault property using petrographic, fluid inclusion and stable isotope
studies. The second objective is to evaluate stable isotope results in conjunction with fluid
inclusion as an exploration tool for epithermal systems.

Located 3.0 km northwest of Okanagan Falls, southern B.C., the Vault property is
an epithermal deposit of adularia-sericite type. Homogenization temperatures (Th) of
primary inclusions range from 143 to 347°C. Pseudosecondary inclusions have a Th
range from 120 to 186°C with an average Th of 146+15°C. Secondary inclusions have
Th ranging from 93 to 144°C with an average nf 119£17°C. According to Th from well
preserved early stage inclusions, the deposit is likely to be formed around 270°C. Final
ice melting temperatures (Tmjce) of primary and pseudosecondary inclusions range from
-2.0 to 0°C (corresponding to a salinity range of 0 to ~3.4 eq.wt.% NaCl). Two peak
Tmice are observed. One is at -0.1 to 0.0°C, and another one is at -0.8 to -0.6°C. Fluid
inclusions in calcites with bladed textures have relatively lower Tmijce (-0.940.5°C),
whereas fluid inclusions in minerals of non-bladed textures have relatively higher Tmjce
(-0.1% 0.1°C). The relatively lower Tmjce for calcites with bladed exture were due to a
boiling effect.

Stable isotope analyses of quartz samples from main stage quartz-calcite veins yield
5180 values ranging from -0.2 to +6.6%c (SMOW). 3180 values of calcites range from
-3.6 to +13.7%e. Calculated 8180gqy;q values suggest that three types of fluids were
involved in the formation of mineralization on the property. For the main stage of quartz-
calcite veins, &180qyiq values indicate two fluid reservoirs. One has 8180y values

ranging from +1.3 to +7.7%o. The other has 8!80fqyig values ranging from -7.2 to



-4.0%s. For later calcite veins and fluorite-calcite veins, fluids with 8!80 values (~ -15 to
~ -10%s.) close to those of pristine meteoric waters (-15 to - 13%c) were involved. Carbon
isotope data demonstrate that carbon reservoirs are strongly controlled by host rocks. For
the carbonates hosted by mudstone, their 3!3C values may suggest an organic carbon

signature. In contrast, the carbonate samples hosted by trachyte have an igneous carbon
signature.

The 580 data of volcanic rocks on a regional scale in the Okanagan Falls area
indicate that there are two !80 depletion zones with mineralization and two 80 depletion
zones without mineralization. The 180 depletion zones with mineralization are
characterized by moderate depletions in 130 (the lowest 8'8Oupnote.rock Values > -2%o) and
moderate calculated water to rock rativs (1.5 to 2.5), whereas 130 depletion zones
without mineralization are characterized by extreme depletions in !30 (the lowest

8180, hole-rock Values < -6%o) and very high calculated water to rock ratio (up to 7.5).

iv
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I. INTRODUCTION

The Okanagan Falls area, located about 16 kilometers south of Penticton in
southern British Columbia, hosts a number of occurrences of epithermal-type ore deposits.
There are two epithermal Au-Ag deposits in the area, e.g., the Vault property, three
kilometers northwest of the town of Okanagan Falls, and Dusty Mac, one and half
kilometers east of Okanagan Falls (Fig. 1). From 1975 to 1977, 93,000 tonnes of ores
(Minister of Mines and Petroleum Resources, B.C., 1975, 1976), with 19,483 oz of gold,
and 339,283 oz of silver, were produced from the Dusty Mac deposit (Schroeter et al.,
1989, p.35). The Vault property with an estimated gold reserve of 200,000 oz (Schroeter ez
al., 1989) is currenily held by Inco Exploration and Technical Service Inc. and Seven Mile
High Resources Inc.

Previous studies on epithermal deposits in this region focused on the Dusty Mac
property. Church (1973, 1983) proposed a simple geological model for the Dusty Mac
deposit. Firstly. dilations in major shears were developed. Then the dilations were filled
with quartz accompanied by gold and silver. Tempelman-Kluit (1984) suggested a meteoric
water circulation model for the deposit in which meteoric water, flowing through a
detachment fault system, leached the metals from the country rock, and then deposited
hydrothermal minerals when the fluid discharged. In 1986, Zhang conducted a stable
isotope and fluid inclusion study on the Dusty Mac. He concluded that the Dusty Mac
deposit was characterized by meteoric fluid with characteristics of low salinities, and
relatively low homogenization temperatures (161°C - 3030C), which are typical of
epithermal deposits (Zhang, 1986; Zhang et al., 1989;

Compared with other epithermal mining districts, the epithermal deposits in this
area are not well known. This is partly due to the relatively small size of the presently
discovered deposits in this area, in comparison with the giants of this style such as the

Republic i neighboring Washington State (Muessig, 1967; Ivosevic, 1984) and the Creed
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district in Colorado (Barton et al., 1977), and partly due to the poor understanding of the
epithermal systems in this region. This latter aspect points to a need for more detailed study
on the epithermal systems in this area. In addition, epithermal systems in this area differ
from those in Colorado such as Creede mine (Barton ez al., 1977) in that they are situaied
on the hangingwall side of a detachment fault, and consequently, the role of detachment
faulting in formation of epithermal deposits needs to be explored.

The primary objective of this study is to characterize mineralization on the Vault
property using petrographic, fluid inclusion and stable isotope studies. The second
objective is to evaluate stable isotope results in conjunction with fluid inclusion as an
exploration tool for epithermal systeme. The third objective is to study calcite samples on a
regional scale (both vein calcite and amygdaloid calcite in volcanic rocks) to determine the

sources of carbon in hydrothermal fluids in this region.



II. REGIONAL GEOLOGY
Tectonic Setti
In order to understand the geological history and the generation of epithermal
mineralization in the study area, it is helpful to summarize briefly the tectonic development
of the Canadian Cordillera and to review the regional geology of the district.

- The Canadian Cordillera is composed of five tectonic belts. From east to west,
these are the Rocky Mountain, Omineca Crystalline, Intermontane, Coast Plutonic, and
Insular Belts (Monger et al., 1982; Gabrielse and Yorath, 1989) (Fig. 2). Generally
speaking, the Rocky Mountain Belt is composed of autochthonous terrane (North American
Terrane, i.c., ancestral North America). Autochthonous and pericratonic terranes comprise
the Omineca Crystalline Belt. Other belts are composed of allochthonous terranes (Gabriels
and Yo-ath, 1989). According to Gabriels and Yorath (1989), the present architecture of
the Canadian Cordillera is the product of an evolution that spans an interval of about 1.7
Ga., and the tectonic history of the Canadian Cordillera could be outlined as follows.
Gneissic Precambrian basement rocks mainly occur in the Omineca Belt and the southern
part of the Rocky Mountain Belt. In the Middle Proterozoic, clastic and carbonate
sequences of miogeoclinal character were developed in a passive margin setting. In the Late
Proterozoic, thick, dominantly clastic strata were deposited throughout the full length of the
Cordillera. From the Cambrian to Middle Devonian, a miogeocline in a passive margin
setting occurred on the margin of ancestral North America. In contrast, in the allochthonous
terranes, island arc environments prevailed. In the Late Devonian to Triassic, in ancestral
North America, sediments were deposited on marine shelf in a miogeoclinal environment,
whereas in allochthonous terranes, plutonism, vcicanism and sedimentation took place in
island arc environments. The Early Jurassic marked a transition from terrane-specific
volcanism, plutonism and sedimentation to the deveiopment of overlap assemblages. In the
Middle Jurassic, there was an important accretion event resulting in the formation of the

Omineca Belt, and at the same time, the beginning of the development of the clastic wedge
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of the Rocky Mountain Belt Belt. By mid-Cretaceous, the Insular Superterrane collided
with the Intermontane Superterrane. By the beginning of Late Cretaceous time, the Coast
and Omineca belts were well established as uplifted metamorphic and plutonic welts. The
latter, for the most part, had undergone renewed uplift, whereas the Coast Belt had just
evolved from an island arc into a fully developed plutonic-metamorphic welt. In Late
Cretaceous to Paleocene, throughout the Intermontane Belt, block faulting was associated
with local plutonism and volcanism. In Eocene, a short-lived (55 to 45 Ma), intense and
widespread phase of granitic magmatism and uplift in the Coast and Omineca belts
(Armstrong, 1988) postdated the last main episode of contractional deformation and
sedimentation east of the Insular Belt. In the Omineca Belt of south-central British
Columbia, Eocene uplift was synchronous with volcanism and extension faulting.
Regional Geology

The Okanagan Valley is located in the southernmost part of the Quesnel terrane of
the Intermontane Belt (Fig. 3). The regional geology is shown in Fig. 4.

Pre-Tertiary Geology

In the eastern part of the region, "Okanagan Gneisses" are exposed. They consist of
massive, biotite granodiorite gneisses, which are Proterozoic to Paleozoic in age
(Tempelman-Kluit, 1989). In the southern part of the region, the Carboriferous or older
Kobau Group is exposed and composed of amphibolite, greenschist, quartzite, and mica
schist (Little, 1961). Only a small portion of Knob Hill Group of Carboniferous or
Permian age is exposed in the southeastern part. This group is characterized by massive
'chert’ (largely silicified greenstone), greenstone and amphibolite (T empelman-Kluit,
1989). The Old Tom and Shoemaker Groups of Ordovician to Upper Triassic age exist in
the southwestern part. The main components of these groups are massive andesitic
greenstone, greenstone breccia, and silicified volcanic rocks. A small portion of the Nicola
Group of Upper Triassic/Lower Jurassic age is exposed in the westemn part of the region.
This group mainly consists of greenstone, andesite, latite, and agglomerate. Most of the

6
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west-central part of the region is occupied by the Nelson Intrusive Rocks, which are
Middle Jurassic in age (Tempelman-Kiluit, 1989). The intrusions largely consist of
moderately foliated, homblende biotite granodiorite, quartz diorite, and granite. In the
northwestern part of the region, a large portion of the Okanagan Batholith is exposed. This
intrusion is mainly composed of unfoliated to weakly foliated bicotite granodiorite and
granite, and is Cretaceous-Jurassic in age (Tempelman-Kluit, 1989).

Tertiary Rocks

Subdivisions of Tertiary Rocks: Bostock (1941) made the first
comprehensive geological survey of the area. He divided the Teriary rocks into a lower
sedimentary unit, the Springbrook Formation, overlain by a succession of lavas, the
Marron Formation, overlain in turn by volcanic rocks and fluvial and lacustrine
sedimentary rocks, the White Lake Formation, and an upper unnamed volcanic and
sedimentary unit. This division of the Tertiary rocks in the White Lake basin has largely
been followed in later studies (Church, 1973; Tempelman-Kluit, 1989) (Figs. 5 and 6).
Church (1973) further divided the Marron Formation into Yellow Lake Member, Kitly
Lake Member, Keams Creek Member, Nimpit Lake Member, and Park Rill Member. In
addition, he added a new formation, the Skaha Formation, which overlies White Lake
Formation. Church (1983) proposed the Penticton Group which includes the Springbrook
Formation, Marron Formation, Marama Formation, White Lake Formation, and Skaha
Formation. He considered that the Olalla Rhyolite is the youngest rock in Penticton area.
He also tentatively correlated the Tertiary rocks in Okanagan Falls area with those in the
Hat Creek area near Cache Creek, the Terrace Mountain area near Vernon, the Kelowna
area, the Midway area close to the international border in British Columbia, and the
Republic area in Washington State (Fig. 6).

As shown in Fig. §, the Tertiary rocks are surrounded by pre-Tertiary granitic
intrusions, greenstones and gneisses. The Springbrook Formation unconformably overlies
the pre-Tertiary rocks, and is exposed only in the southwestern part of the Okanagan Falls
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area. This formation is composed of polymictic conglomerates and breccias of which 90%
of the fragments are from the Old Tom and Shoemaker Group. A Middic Eocene age was
tentatively assigned to the Springbrook Formation by Church (1973). The Ketde River
Formation, exposed in the north of the map area, is coeval with the Springbrook
Format »n. This is followed by the Marron Formation which is composed mainly of thick
andesite, trachyte, and phonolitic lava flows exposed in a very large portion of the map-
area. The Marron Formation is subdivided into five members as outlined in Fig. 6 (but not
shown in Fig. 5). This formation having a K-Ar age of 51.6t1.8 Ma (a biotite sample from
the Kitley Lake Member) (Church, 1973) also belongs to Middle Eocene. The Marron
Formation is unconformably overlain by dacitic domes of the Marama Formation, which is
chiefly distributed in the central part of the map-area. Unconformably above the Marama
Formation is the White Lake Formation composed of volcanic breccias, lacustrine and
fluvial sediments rocks (such as mudstone), which is mainly located in the east-central part
of the study area. Most of the clasts in the White Lake Formation sediments are products of
erosion of earlier Tertiary volcanic rocks. The White Lake Formation is probably Eocene,
but may be Oligocene in age. The Skaha Formation consisting of a landslide complex and
fanglomerate beds is exposed in southeastern part of the map-area. The Skaha Formation
overlies the White Lake Formation with minor unconformity, and is just slightly younger
than the White Lake Formation (Church, 1973, 1983).
Okanagan Valley Detachment Fault

The Okanagan Valley follows a Tertiary, low-angle, west-dipping 8-25°
detachment fault, which bounds the west side of a 170 km wide complex (Fig. 4; Fig. 5).
This fault has been termed as the Okanagan Valley Detachment Fault (Tempelman-Kluit and
Parkinson, 1986; Journeay and Brown, 1986; Carr et al., 1987, 1992; Parrish et al.,
1988). This detachment fault, including the Eagle River detachment to the north, has a
strike length of over 250 km (Carr and Brown, 1989). The detachment fault has been
confirmed by geophysical studies (Cook et al., 1989, 1990). Structure contouring of the
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fault surface in the Vemon area indicates that the fault is locally an irregular surface (Carr
and Brown, 1990a, 1990b). The plastic-brittle Okanagan Valley fault is lisiric into a
subhorizontally layered middle crust (Carr and Brown, 1990a, 1990b).

A detachment fault, as defined by Reynolds and Spencer (1985), is a fault that
formed at a lov ngle, has significant displacement, and is of subregionai scale. According
to the crustal siicar model of Wernicke and Burchfiel (1982), a detachment fault is
composed of three elements, i.e., the lower plate, the detachment zone (shear zone), and
the upper plate.

The upper plate of the Okanagan detachment fault is composed of various rocks,
including Mesozoic granite, Mesozoic and Paleozoic metavolcanic and metasedimentary
rocks, the Old Tom and Shoemaker Formations, and Eocene volcanic rocks whose K-Ar
ages are between 55-45 Ma near Penticton and between 53-43 Ma near Kelowna (Church,
1973, 1983; Parkinson, 1985). A few of the pre-Eocene rocks (granodiorite and granite)
have Eocene K-Ar ages because of Eocene thermal resetting (Tempelman-Kluit and
Parkinson, 1986; Medford, 1975). The detachment zone consists of mylonitiz>d ortho- and
para-gneisses of middle to upper amphibolite grade, which yield Eocene K-Ar dates
ranging from 60 to 40 Ma (Parkinson, 1985). The lower plate is composed of deformed
Mesozoic granitic rocks and para-gneiss of uncertain age (Parrish et al., 1988). Intrusive
rocks in the deformed lower plate range in age from Early Jurassic to Middlz Eocene
(Parkinson, 1985). The lower plate was ductilly deformed in the Okanagan Valley fault as
late as 50 Ma (Parrish ez al., 1988).

Based on regional geochronometry of minerals with different blocking
temperatures, Parkinson (1985) invoked a larg~ (10 km) and rapid (1 km/Mé; 1 mm/year)
unroofing rate to bring the gneisses east of the fault to near surface temperatures in Eocene
time, before the end of the volcanic episode. This unroofing rate is same as that suggested

by Jowurneay and Brown (1986) based on the regional geochronometry of gneissic rocks
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within the footwall of the fault. This also means that heat produced by detachment faulting
would soon be dispersed by rapid unroofing processes.

Regarding the displacement of the fault, Tempelman-Kluit and Parkinson (1986)
suggested an offset on the order of about 90 km based on the matching of the lower- and
upper-plate rocks for the fault in the Middle Eocene. Bardoux (1985a, 1985b) suggested
that minimum displacements on the fault would be on the order of 25 km in Eocene, if the
denudation rate is at least as 1.5mm/year. Large displacements in post-Eocene time
involving the shear zone can be ruled out due to the observation that dykes considered as
feeders to nearby Eocene and Miocene volcanics have been found to cut and locally

brecciated the mylonites (Bardoux, 1985a, 1985b).
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II1. GEOLOGICAL, STABLE ISOTOPE AND FLUID INCLUSION
STUDIES ON THE VAULT PROPERTY
(I) Geology of the Vault Property

On the Vault property area, only the White Lake, Marama and Marron Formations
are exposed (Fig. 7). The Marron Formation is at the base, and is overlain by the Marama
Formation, which in turn is overlain by the White Lake Formation. These rocks are gently
folded about northeasterly trending synclinal and anticlinal axes and offset by northwards
and northeastward trending faults. Precious metal mineralization is related to an east-west
fracture system confined largely to the lower Marainia Formation and crossing the north-
central part of the claim block (Meyers, 1989).

The section of Marron Formation on the property belongs to the Kitly Lake member
described by Church (1973). It consists of purplish brown to grey, fine-grained
plagioclase-porphyritic lavas of trachyte to trachyandesite composition. The upper contact
of this unit is strongly weathered and may represent an eroded angular unconformity
described by Church (1973).

The overlying Marama Formation is subdivided into upper and lower sections
(Meyers, 1989). At the base of the lower Marama Formation is a coarse pyroclastic and /or
epiclastic unit. Much of this section varies from lapilli to ash tuff, with coarse fragments
and massive fine-grained trachyte porphyry flows intercalated with thinly laminated
mudstone and sandstone. The upper Marama Formation is a massive, aphanitic dacite flow
unit, with alkali feldspar, minor hornblende and biotite. Sheeted dacite feeder dykes of the
Marama Formation, averaging about 1 meter in width, intrude the dacite in the central part
of the property (Meyers, 1989).

At the top of the Vault property, the White Lake Formation consists of coarse

agglomerate and laharic rocks interlayered with andesitic and trachytic flows,
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conglomerates and carbonaceous mudstones. Church (1973) defined the unit as being
derived entirely from underlying Eocene rocks, with no pre-Tertiary components.
(II) Hydrothermal Alteration of the Wall Rocks on the Vault property

Numerous studies have been done on hydrothermal alteration of epithermal
deposits. Based on alteration styles of epithermal deposits, Heald et al . (1987) classified
epithermal deposits hosted by volcanic rocks into two types: acid-sulfate-type characterized
by the presence of enargite+pyritetcovellite and an argillic assemblage including abundant
hypogene alunite+major amounts of kaolinite, and adularia-sericite-type characterized by
the presence of adularia and sericite in or near the veins and by the absence of the
enargite+pyritezcovellite assemblage and hypogene alunite. Because of the presence of
adularia on the Vault property, the epithermal mineralization on the Vault property has been
considered to be an adularia-sericite-type deposit (Meyers, 1989).

According to Heald ez al. (1987), sericitic alteration usually borders a silicified zone
near the vein in an adularia-sericite-type deposit. The sericitic zone typically grades into a
potassium metasomatized zone. An argillic zone is sometimes present . However, Heald et
al. (1987) also cautioned that in fact, the alteration "pattern” is so variable among the
adularia-sericite-type that generalization is itapossible. Because alteration terminology is
often used inconsistently due to such problems as overlap of assemblages, metastability of
certain phases, this paper will follow the definition of alteration terminology of Heald et al.
(1987) (Table 1). In their model, the zonation pattern in an adularia-sericite-type deposit is:
silicified zone = sericitic => (argillic) =» propylitic (or a potassium metasomatized zone)

with a sericitic cap formed over the orebody.

On the Vault property, the groundmass volcanics typically have undergone

alteration to hydrothermal minerals such as quartz, adularia, calcite, dolomite, and clays.
Feldspar phenocrysts (plagioclase; sanidine) most commonly alter to calcite, adularia, or
clay; less commonly to clays + opaques, or opaques, or clay + minor chlorite + quartz; and
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Table 1 Alteration terminology used in this study (based on Meyer and Hemley, 1967, and Heald er

al, 1987)

Alteration Terminology

Characteristics of Alteration Terminology Notes

Silicic

Sericitic

Sericitic-argillic

Argillic

Advanced argillic

Propylityic

Characterized by introduction of silica Wall rock silicified;
amethyst or chalcedony
typically in veins

Consists of a mica-type mineral + quartz
+pyrite; with addition of K-fel and/or
biotite, alteration grades into possium
silicate assemblage

Consists of both white mica-type and kaolin-
smectite-group minerals

Characterized by kaolin- and smectite- Often zoned, with
group mineras}; does not typically kaolinite nearer
include mica-type minerals; K-feldspar veins and montmo-
may be present (metastably) and biotite rillonite farther from
may be partly recrystallized from chlorite.  veins

Characterized by minerals representing
extreme base leaching (e.g., kaolinite)

and sulfate or halogen fixation (e.g.,
alunite, zunyite). Asseinblage: dickite,
kaolinite, pyrophyllitc; usually sericite,
quartz; frequently alunite, pyrite, tourmaline
topaz, zynyite, amorphous clays.

Characterized by chlorite, albite, epidote,  Typically a regional
charbonate * pyrite, iron oxides, and alteration
minor sericite
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rarely to quartz or chlorite + calcite + hematite. Ferromagnesian minerals (pyroxene,
homnblende, biotite) most commonly alter to opaques; less commonly to clay or chlorite or
chiorite + opaques % calcite; and rarely to calcite, or chlorite + clay * limonite. Other
hydrothermal minerals seen include apatite (Plate 1), jarosite, sericite. In addition,
according to the thin section descriptions of Groeneweg and Hunter's consulting report
(1987), clay mineral montorillonite and trace tremolite were observed in their thin section
examination.

The prime area of intense silicification and stockwork veining is in an elongate zone
parallel to the east-vest baseline (Meyers, 1989; Meyers and Hubner, 1991). It was
originally traced on surface for 350 meters in the Discovery area and is coincident with
geochemical and geophysical anomalies. Drill information indicates that the zone occurs
above the Marron/lower Marama contact and the original zone is on the west side of the
area currently being explored. Recent exploration has extended the zone of silicification and
veining discontinuously for about 900 meters along strike (Meyers, 1989).

Zonati { the Hydrot! | Alterati

Lateral Zonation: In the mineralized areas such as the vein systems in the North
trench from 550E to 425E of the property, argillic alteration is generally dominant. In
order to determine the lateral variation of mineral assemblages in the argillic alteration zone,
systematic samples have been collected. From observations of thin section and X-ray, it
seems that even though chlorite and epidote, typical of propylitic alteration, are present in
the eastern part of the property (550E), they become unstable and are completely destroyed
westwards (from 525E to 425E)(Table 2, and also refer to Property Geological Map). This
may mean that the area from 525E to 425E was the centre of hydrothermal system. If the
alteration patterns in different drill holes in the depth of 300-450 m are compared, a lateral
zonation appears to be present in a pattern of propylitic = sericitic =» silicic =» argillic,

from 950E to S560E, and from 200E to 560E. This lateral zonation pattern is slightly
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different from that proposed by Heald et al. (1987) for adularia-sericite type epithermal
deposits in which an argillic zone is between a propylitic zone and a sericitic zone.

Vertical Zonation: On the property, the vertical zonation of hydrothermal
alteration is more apparent. Alteration samples from different drill holes were collected to
determine variations in alteration. At depth, the alteration assemblage is mainly composed
of chlorite, epidote, calcite, pyrite, and quartz, typical of propylitic alteration. Near surface,
the alteration assemblage typical of argillic alteration consists of clay (kaolinite, determined
by X-ray), quartz, calcite, hematite, and chlorite. This argillic alteration was occasionally
overprinted by silicic alteration which is mainly composed of quartz, calcite, and pyrite.
Vertically, sericitic alteration chiefly occurred between argillic and propylitic alterations.
Sericitic alteration is composed of sericite (sometimes muscovite), quartz, calcite, adularia,
pyrite, and trace apatite. The results are listed in Table 3. Combined with X-ray
identification, the systematic thin section descriptions in Table 3 reveal that from present-
day surface to depth, the zonation sequence is from argillic (surface) = silicic (near surface
to 290m) = argillic-sericitic (13m - 324m) = sericitic (143m - 415m) = propylitic
(deepest). Silicic alteration is more pronounced in S60E-350E, which is the high grade
mineralized area.

* Variation of trace element contents with associated hydrothermal alteration implies
that Au, Mo, and As were mainly introduced by silicic and sericitic alterations (sce Fig. 8A,
8B, and 8C)(assay data from Inco Inc.). Argillic-sericitic and argillic alterations also
introduced some As (Fig. 8B). The propylitic alteration introduced some Au and the least
As (see Fig. 8A and 8B).

(III) Mineralization at the Vault property
There are two types of ores on the property (Meyers, 1989). One is stockwork ore
characterized by disseminated sulfides. Sometimes sulfides congregate as massive sulfides.

This type of mineralization is earlier than quartz-vein mineralization as indicated by cross
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cutting relations. The stockwork mineralization is mainly composed of sulfides, which
have botryoidal textures (Plate 2), and a small amount of quartz and calcite. Sphalerite and
pyrrhotite are earlier than pyrite, whereas chalcopyrite is later than pyrite. Pyrite has two
forms. One is small in size (0.006-0.004 mm) and the other is larger (0.2-0.4 mm).
Another characteristic of this type of mineralization is that it is related to propylitic
alteration. This relation is demonstrated by high Au concentrations in propylitic zone (Fig.
8A).The parageneses of different mineralizations on the property are shown in Fig. 9.

The second type of ore is quartz-vein ore. In quartz-vein mineralization, quartz and
calcite are the dominant phases. They intergrow with each other to form bladed textures
(Plate 3), which are quite common near the present-day surface. Sericite is late; it usually
replaces quartz (Plate 4). Adularia is present in some thin sections; it commonly
accompanies quartz. Sulfides in quartz veins are usually low in abundance. The sulfides are
disseminated in quartz veins, and rarely aggregate to massive sulfides. Pyrite, the most
abundant sulfide, is euhedral and has growth textures (Plate 5). Pyrrhotite is minor; it
intergrows with sphalerite. Sphalerite is anhedral, and is minor in abundance. Both
pyrrhotite and sphalerite are later than pyrite. Native gold is observed in association with
pyrrhotite (Plate 6). Some of the pyrrhotite is altered by late hematite.

In order to determine the relations between Mo and Au, between Ba and Au, and
between As and Au, respectively, and the variations of Mo, Ba, As concentrations with
depth, relevant diagrams are compiled (Fig. 10, Fig. 11, Fig. 12)(assay data base from
loggings of Inco Inc.). In the eastern-most part of the property represented by DDH72468
(950E), where mineralization was weak, Mo shows no correlation with Au, whereas As
shows negative correlation with depth (Fig. 10). In the east-central part of the property,
represented by DDH38898 (875E), where mineralization is strong, Mo is positively
correlated with Au, whereas As shows a weak negative correlation with Au. Both Mo and
As concentrations decrease with depth. Ba seems to not vary with the depth (Fig. 11). In
the western part of the property represented by DDH72450 (200E), where mineralization
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was also weak, Mo did not show clear correlation with Au, neither Mo nor As show clear
correlation with depth (Fig. 12). The above data demonstrate that gold positively correlates
with Mo in mineralized areas, as suggested by Meyers (1989), and in strongly mineralized
areas, Mo and As negatively correlate with depth. These results may imply that in strongly
mineralized areas higher concentrations of As and Mo should be expected at shallower
depths.

At least two stages of mineralization are later than the main quartz-caicite stage. The
fluorite-calcite stage was only observed in a near surface sample (depth of 18 m) in
DDH?72450. The fluorite is intergrown with calcite. The inclusions from the fluorite-calcite
stage have relatively low homogenization temperatures, indicating that the fluorite-calcite
stage may be later than main quartz-calcite stage (see the following section). Both field
observations and thin section examination demonstrate that the calcite-quartz stage (calcite
veins containing small amount of quartz) was the latest vent. Its crosscutting relations with
quartz-calcite vein are apparent both macroscopically and microscopically. These two late

stage mineralizations are unimportant to concentrations of Au on the Vault property.
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(IV) FLUID INCLUSION STUDIES

Calcite. quartz and fluorite samples were selected for fluid inclusion studies. On
this property, quartz contains few workable inclusions, whereas calcite crystals do contain
workable inclusions. Generally, the fluid inclusions studied were large (> 10 um in
diameter). The criteria for recognition of primary inclusions are that the inclusions were
distributed individually or in random clusters (Roedder, 1984). Smaller inclusions, which
were clustered along the healed fractures, were considered to be secondary in origin
(Roedder, 1981). Possible pseudo-secondary inclusions were identified on the basis of
their oriented pattern along healed fractures but these fractures terminated over a short
distance.

Fluid inclusions were examined in thin (thickness= 0.3-0.6mm), doubly polished
chips. Temperature determinations were made using a FLUID INC. adapted, U.S.G.S.
gas-flow heating/freezing system with a Doric Trendicator 410A digital thermometric
control system attached to a Leitz-Wetzlar microscope with 10 times periplan oculars and 4,
10, and 32 times objective lenses.The heating-freezing stage was calibrated using a distilled
water (ice), pure CO; inclusions in Alpine vein quartz, liquid nitrogen, and Merck
standards. Standard errors are +0.2°C for freezing measurements and £2.0°C for heating
to 300°C.

The abbreviations used in this thesis are: Th-homogenization temperature of the
inclusion, Tfc.- formation temperature of the ice; and Tpice- final melting temperature of
ice.

All of the fluid inclusions observed on the Vault property are aqueous inclusions
containing vapour and liquid. Primary inclusions are usually large (15-20 pm) in size, and

equant in shape (Plate 7), whereas secondary inclusions are irregular in shape and
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Plate 7 Primary (P) and secondary (S) fluid inclusions in calcite from main lagc
yuartz-calcite vein in sample X-37. (Plane polarized light) (10x63)

Platc 8 Fluid inclusions with a wide range of filling ratios in bladed calcite in sample
X-16B. (plane polarized light) (10x25)
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distributed along healed fractures. The size of secondary fluid inclusions varies from 6 um
to 30um (Table 4).

The bubble percentages of inclusions range from less than 5 to 80% volume. Most
of vapour bubbles occupy 10-15% volume. Fluid inclusions in fluorite and quartz have
relatively narrow ranges of vapour percentages (10-35%), whereas inclusions in calcite
have a wide range of vapour percentages (5-80%) (Table 4).

Temperature Measurements

Three temperatures: final ice melting temperature, ice formation temperature, and
homogenization temperature of an inclusion, were measured in this study. The data are
summarized in Table 4. Salinity determinations were based on freezing point depressions
of ice in the system of NaCl-{1;0 (Potter et al., 1978) for aqueous inclusions:

eq. wt.% NaCl = 1.76958T + (4.2384x10-2)T2 + (5.2778x10-4)T3(°C)
where T is freezing point depression, i.e., final melting temperature of ice.

Homogenization temperatures for primary inclusions range from 1439 to 347°C.
Two populations can be grouped in the histogram of homogenization temperatures for
primary/pseudosecondary inclusions (Fig. 13). The first population has a homogenization
temperature range from 110°C to 210°C, whereas the second population has a
homogenization temperature range from 2200C to 3479C. The majority of measurements
for primary inclusions falls into the first population with a peak at 1500-160°C.
Homogenization temperatures of probable pseudosecondary inclusions range from 1100 to
190°C. The peak temperature of homogenization temperatures of pseudosecondary
inclusions is 140°0-150°C (Fig. 13), whereas the average temperature of 26 inclusions is
146 £15°C. Secondary inclusions have homogenization temperatures ranging from 93° to
144°C. The average temperature of 8 secondary inclusions is 1199£179C. Note that there
is an overlap in terms of homogenization temperatures for primary/pseudosecondary
inclusions in the temperature range of 140°C to 150°C (Fig. 13). Because the pressure is
low for the Vault property and boiling was observed for fluid inclusions homogenized at
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270°C (see following section), the pressure corrections will be so low that these
homogenization temperatures are close to the temperatures of formation (Roedder, 1984).

Final melting temperatures of ice for primary and pseudosecondary inclusions range
from -2.0° to 0°C, which corresponds to a salinity range of 0 to ~3.4 eq. wt.% NaCl. Two
peaks in the final melting temperatures of ice are observed. One is at -0.1° to 0.0°C
(corresponding to a salinity range of 0 to ~0.2 eq. wt.% NaCl), representing non-bladed
samples, and the other one is at -0.8° to -0.6°C (corresponding to a salinity range of ~1.0
to ~1.4 eq. wt.% NaCl), representing calcite samples with bladed texture (Fig. 14). The
average ice melting temperature of 33 primary and pseudosecondary inclusions is
-0.4040.3°C, which corresponds to a salinity of ~0.8 eq. wt.% NaCl. The final ice melting
temperature data for both primary and pseudosecondary inclusions indicate that the
mineralizing fluids were very dilute in nature. In addition, a number of final melting
temperatures of ice above 0°C ( in the range of +0.1° to +6.7°C) have been observed
(Table 4). They are most likely to be indicative of metastability (Roedder, 1981, 1984). As
pointed out by Hollister ez al. (1981), when a water-rich inclusions with a small vapour
bubble at room temperature freezes, the vapour bubble can totally disappear. On warming,
the ice can persist metastably in this vapour-free situation at least to +6.5°C. Since all of
fluid inclusions on the property are water-rich, and all of the inclusions with final melting
temperatures of ice higher than 0°C have high filling degrees (285% of liquid), it is likely
that final melting temperatures of ice higher than 0°C indicate metastability.

1. Evidence of Boiling: Wheh a homogeneous phase rises in a hydrothermal
system, and if it experiences a decrease in pressure, boiling will occur (Reed and Spycher,
1985). Boiling induces a temperature decrease and a pH increase which causes minerals to
precipitate (Reed and Spycher, 1985). Fluid inclusions trapped during a boiling process
would have a wide range of filling ratios but the same or very close homogenization
temperatures, and such fluid inclusions are strong evidence for boiling if observed
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(Roedder, 1984). On the Vault property, fluid inclusions in samples X83-6 and X-16B
(Plate 8) have a wide range of filling ratios, but give very close homogenization
temperatures (refer to Table 4, X83-6), which is clearly indicative of a boiling process. In
addition, the boiling process is apparently suggested by the systematic trend, i.e., a boiling
trend in a homogenization temperature against salinity diagram (Fig. 15, Trend I).
According to Hedenquist and Henley (1985) and Shepherd et al. (1985), analysis of
systematic trends in homogenization temperatures and final melting temperatures of ice
(i.e., salinities) may yield evidence for the occurrence of boiling in a fossil hydrothermal
system, and in some instances may be more definitive than many of the observational
criteria often used. Such an analysis 2’ . . »st rely upon the preservation of vapour-rich
inclusions. In Fig. 15, there is an obvious boiiing irend for samples with bladed textures.
In this‘boiling trend, fluid inclusions having higher homogenization temperatures have
lower salinities (0.7 to 0.8 eq. wt.% NaCl), whereas fluid inclusions having lower
homogenization tempeatures have higher salinities (1.0 to 1.5 eq. wt.% NaCl). This
difference implies that boiling may have slightly increased the salinity of the fluids.

2. Boiling Depth: According to Roedder (1984, p.273),

"if a boiling liquid and its coexisting vapour phase are trapped separately in a pair of
inclusions, these two inclusions will homogenize in the liquid and in the vapour phase,
respectively. These two homogenizations must be at the same temperature, and if the
boiling curve is known for that fluid, the pressure can be determined from this Th."

Fluid inclusions of X83-6 are just this case. The vapour-rich inclusion (~80 %
volume of vapour) homogenized to a vapour phase at 269°C and the liquid-rich inclusions
(~70% volume of liquid) homogenized to a liquid phase at 2680C (Table 4). The salinity
for this sample is about 0.7 eq. wt.% NaCl. Therefore, the fluid inclusion data from this
inclusion can be used to estimate the depth of boiling. According to Haas (1976), at the

temperature of 270°C, the pressure and density for fluids experiencing boiling with a
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salinity of 0.0 eq. wt.% NaCl, and with a salinity of 2.84 eq. wt.% NaCl, respectively, are
listed in Table 5.

Table 5 Pressure and density data for H;O-NaCl solutions with salinities of 0.0 eq wt.%
NaCl and 2.84 eq. wt. % NaCl at 270°C. respectively (Haas, 1976), and interpolated
pressure and density data for a H;O-NaCl solutions with a salinity of 0.7 eq. wt.% NaCl
for fluids on the Vault property

Salinity Pressure (bars) Density (g/cm3)
0.0 55.0 0.768
0.7 53.755 0.775
2.84 54 0.795

Based on the following equation (Shepherd ez al., 1985), the boiling depths for these two
fluids are calculated:

P=Hp * 0.0981
where P is pressure in bars, H is boiling depth in meters, and p is density in 1000kg/m3.
According to this equation, the boiling depths for the fluids with a salinity of 0.0 eq. wt.%
NaCl and a salinity of 2.84 eq. wt.% NaCl are ~730m and ~694m, respectively. By
interpolation, a fluid with a salinity of ~0.7 eq. wt.% NaCl taken as a representative of
fluids on the Vault property at a temperature of ~270°C would have a boiling depth of
~707m.

In addition, the fraction of water converted to steam (S) may be calculated from the

foﬂowﬁg formula (Drummond and Ohmoto, 1985; Lynch, 1989):

HLt; = (1-S) HLp, +SHSny
where HL and HG are the enthalpy of H,O! and H,0C in saline solutions (Haas, 1976),
and T is the temperature at the beginning of boiling while 72 is the lemperature at the end
of boiling. Assuming that the minimum temperature at beginning of boiling on the Vault
property is 2700C (salinity =0.7 eq. wt.% NaCl) and the temperature at the end of boiling
is 150°C (refer to Fig. 15) (salinity =1.5 eq. wt.% NaCl), the enthalpy data for such fluids



can be interpolated based the enthalpy data provided by Haas (1976) for fluids with 0.0 eq.
wt% NaCl and 2.84 eq. wt.% NaCl (Table 6):
Table 6 Enthalpy data for H;OL at 270°C, H,0L and H,OFC at 150°C at salinities of 0.0

and 2.84 eq. wt.% NaCl, respectively (Haas, 1976), and interpolated corresponding
enthalpy data for fluids with salinities of 0.7 and 1.5 eq wt.% NaCl, respectively, on the

property
Salinity Temperature HL (J mol-1) HG (J. mol-!)
0.0 150°C 11370 49474
1.5 150°C 11357* 49481*
2.84 150°C 11345 49488
0.0 270°C 21405
0.7 270°C 21378*
2.84 270°C 21297

* Interpolated data

According to the interpolated data, the calculated steam fraction § is equal to 26%
for a fluid with a salinity of 0.7 eq wt.% NaCl at temperature of 270°C. Since the enthalpy
data for a fluid with a salinity of 0.7 eq. wt. % NaCl at a temperature above 270°C are
always larger than 21378 J. mole-!, the steam fraction S on the Vault property should be
226%.

3. Deposition Mechanisms for Main Stage Quartz-Calcite Veins: As
suggested by Fig. 15, there may be two processes responsible for the deposition of
minerals:boiling and mixing. Boiling began with a fluid with a salinity of ~0.7 eq. wt.%
NaCl, and was responsible for the formation of bladed textures. Because the boiling
process tends to cause dramatic physicochemical changes for fluids (Reed and Spycher,
1985), it could be also responsible for the precipitation of gold.

Mixing process probably involved two endmembers of fluids. One endmember was
characterized by a salinity close to zero and a temperature of £ 150°C. The other
endmember was characterized by a salinity close to 0.7 eq. wt.% NaCl and a temperature
of 270°C. Since a mixing process also results in large physicochemical changes, this
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process may also be important for the deposition of gold. In addition, the calculated

§1804q,;q Values in the range of -3.8 to -0.1%0 may be indicative of a mixing (see isotope

study section).
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(V) Stable Isotope Studies

Over 20 samples of quartz and carbonate from the Vault property were analyzed in
the stable isotope study. Quartz vein samples were crushed to -115 mesh size and were
cleaned by first treating with hydrogen peroxide and nitric acid to remove any sulfides and
then by boiling in aqua regia for about one hour. Calcite and whole rock samples were
crushed and ground below -115 mesh size.

Isotope data are reported in the standard delta notation where 8 is defined in units of

per mil (%o) as: R
o S>sample
5 [ Retandard 1}x103

where R is the heavy/light isotope ratio. For oxygen,
180
R= T

whereas for carbon,
13¢
R=1¢
Isotopic fractionations between two phase are reported Aap, defined as:
AAB = 1000 In apR
where o = %ﬁ
Oxygen isotope analysis of silicate samples (and whole rock samples) was by the
BrFs technique of Clayton and Mayeda (1963), where carbonate samples were analyzed by
the standard technique of McCrea (1950). All samples were analyzed on a VG 602D mass
spectrometer. All these analyses were carried out in the laboratory of Karlis Muehlenbachs
at the University of Alberta. Oxygen isotope data are reported relative to the SMOW
standard (Craig, 1961) and carbon isotope data are reported relative to the PDB standard
(Craig, 1953). Analytical errors (20) are $0.3 per mil for oxygen and +0.05 per mil for
carbon. The mass spectrometer was checked using NBS-28 standard at the beginning of

experiment run and the result was +9.60%o for oxygen isotope.
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Carhonate Isotope Data

The isotopic data and sample types for carbonates are shown in Table 7 and Figure

16. The samples exhibit a wide range of 8180 values, from -3.6 to 13.7 %o. A wide range
of 813C values is also exhibited, ranging from -4.6 to -12.5%o. Disseminated carbonate
samples from propylitic trachyte have 5180 values from -1.1 1o +1.2%o and §13C values
from -10.2 to -4.6%o. Calcite samples from main stage quartz-calcite veins (Stage IT) have
5180 values ranging from +1.3 to +13.7%o and $13C values ranging from -12.5 to ~4.5%o.
Calcite sample from a fluorite-calcite vein (Stage III) has a 180 value of +1.0%0 and a
813C value of -5.0%e. Carbonate samples from calcite-quartz veins (Stage IV) have 180
values ranging from -3.6 to +2.7%o and 813C values ranging from -11.8 to -10.3%e.
Because calcite on the Vault property has large grain size (up to ~10mm), and did not
experience recrystallization, the original isowopic signatures of carbonates should be
preserved, and should not be reset by later low temperature underground meteoric water
(O'Neil, 1987).

Silicate Isot Dat

Six quartz samples from main stage quartz-calcite veins are analysed for 180, The
8180 values range from -0.2%o to +6.6%o. The 8180 values of quartz samples do not show
correlation with elevations, because the subsurface samples have 6180 values ranging from
+1.5 to +6.6%0, whereas the present-day surface samples have 8130 values ranging from
0.2 10 +3.8%0. Compared with 8180 values of calcite samples from main stage quartz-
calcite veins, 3180 values of quartz samples are always lighter. Quartz samples from main
stage quartz-calcite veins with bladed textures usually have lower 6!80 values (-0.2 to
+3.8%o) than those from the same stage quartz-calcite veins without bladed textures (+4.0
to +6.6%o). The sample of vuggy quartz (X98-12) has the highest 6180 values (+6.6%«).
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Fig. 16 Carbon and oxygen isotope data for calcite samples on the Vault property




Interpretation of Isotope Data
1. Reservoirs of Fluids
Based on isotopic fractionations between calcite and water in the temperature range
of 0 to 500°C (O'Neil et al., 1969), and between quartz and water in the temperature range
of 250° to 500°C (Clayton et al., 1972),
Acalcite-water = 1000 In Ocalcite-water = 2.78 (106T-2)-3.39
Aquartz-water = 1000 In Oquartz-water =3.38 (106T -2)-3.40
and homogenization temperatures, the isotopic compositions of fluids precipitating calcite
and quartz were calculated (Table 8). Since on this property the temperature variation is
about 100°C, this temperature change will only cause 8130 variation by 5.0 %o for both
calcite-water and quartz-water fractionation pairs. So the large variations (-3.6 to +13.7 %o)
in 8180 for calcites on this property are probably due to different reservoirs of fluids or the
same fluid at different water/rock ratios. The calculated fluid isotopic compositions suggest
that fluids with wide range of 8180 values (+7.7 to -15 %o) interacted with rocks on the

property.
Table 8 Calculated 8180gq,;q Values for Mineralizations on the Vault property

Mineralization Type  Temperamre  818Ocyciee 3180 a1ty 5180q,4

Main Stage Quartz-
calcite Vein (Stage )  140°-300°C~ -13to +13.7 -02t0 +6.6 -7.2t0+7.7

Fluorite-calcite vein

(Stage I1T) ~157°C£7.0°C  +1.0 -10.7
Calcite-quartz Vein

(Stage IV) ~155°C -3.6 to +2.7 -15.0t0-9.1
Disseminated Calcite  ~155°C -1.1t0 +1.2 -12.9t0 -10.6

Note: Calculations for calcite are based on the fractionation equation between calcite and

water of O'Neil et al. (1969), 1000In 0icaCO3-H20 = 2.78 (106T-2)-3.39; Calculations for
quartz are based on the fractionation equation between quartz and water of Clayton ez al.

(1972), 1000in a5i02-H20 = 3.38 (106T-2)-3.40.
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For samples formed at later calcite stage (Stage IV) (calcite-quartz vein in X98-12,
X98-13, X778-8, X778-9), the $1804,;4 values are very light (from -15.4 t0 -9.1 %.).
These calculated values are similar to pristine or near pristine meteoric water of Tertiary-age
in southern British Columbia (8180444 = - 13 %o; Magaritz and Taylor, 1986). A calcite
sample from fluorite-calcite vein (X50-3) (Stage HI) also yields verv' , « J180q,q value
(8180pyig = -10.7 %o). For the samples formed at propylitic altere' . ge as disseminated
calcite (X50-18, X49-31), the 3180y,;4 values are also very light, ranging from -12.9%o to
-10.6%o. These values only show slight shifts from meteoric water values (-15 to -13 %o) at
that time, suggesting that propylitic alteration was formed at high water to rock ratios. All
of the samples mentioned above demonstrate the predominance of meteoric waters.

In contrast, samples from main stage quartz veins (Stage II) have a wide range of
calculated 8180¢q,;4 values from -7.2%o to +7.7 %o. They can be subdivided into three
categories (Fig. 17). The first category is in the range of +1.3 to +7.7%o such as XD-8,
X50—7; X50-10 and X49-17. The second category is in the range of -3.8%o t0 -0.1%o. This
category includes all the surface samples. The third category has 81804 value of -7.2%o
t0 -4.0%o. It is important to note that the calculated §180g,;4 values for quartz samples
(X98-12, X-55b, and X49-6) (-7.2 to -4.0%o0) are most reliable because quartz is resistant
to oxygen isotope exchange below 4500C (Giletti and Yund, 1984) and homogenization
temperatures used in the calculations of 8180p,;4 values are obtained from X98-12 and X-
55b.

Meteoric water having a §180 value of -13%o can achieve the 8180p,;4 values
characteristic of the third category (-7.2 to -4.0%o) by interaction with volcanic rocks at
temperature about 300°C at water to rock ratios (mass ratios) of ~1.00 to ~0.4 (Field and
Fifarek, 1985), which is consistent with water/rock ratio calculations (see following
Chapter). It is hard, however, to explain the fluids with 518044 values of -3.8 to -0.1%
by equilibration of meteoric water with volcanic rocks because those 51804 values can

only be achieved when water to rock ratio is low (~0.4 10 < 0.1) and temperature is above
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Fig. 17 Histogram showing three types of fluids for main stage quartz-calcite
veins on the Vault property. The first and second types of fluids are calculated
from the data for calcite samples. The third type of fluids is calculaied from the
data for quartz samples.

57



3000°C, which are inconsistent with both water to rock ratio calculations and temperature
data from fluid inclusion studies. Similarly, it is even more difficult to invoke the
equilibration mechanism to explain the 818044 values of +1.3 to +7.7%e. since these
818044 values requires a water to rock ratio of 0.01 or lower and a temperature of greater
than 300°C. One possible explanation is that the 8180 values close to 0.0%o are produced
by boiling of fluids with 8180 values o about -4.0%o because boiling tends to result in
increase in 8180 values for fluids (Truesdell et al., 1977). For single-stage steam
separation (boiling), the oxygen isotope composition difference between the final water
(water experienced boiling) and the initial water (water did not experience boiling) is a
function of initial temperature and steam separation temperature (Truesdell et al., 1977).
According to Truesdell ez al. (1977), for a fluid with the initial temperature about 300°C
and the boiling temperature about 2500C, the 5180 difference between the final water and
initial water is only about 0.5%e; for a fluid with the same initial temperature as the above,
but with a boiling temperature of 93°C, the 5180 difference is about 3%.. Since fluid
inclusion data suggest that boiling probably occurred at around 270°C, it is unlikely that
hoiling can produce a 8180 difference of at least 8%o between the initial water and final
water required to account for the 8180 differences between +1.3-+7.7%0 and -7.2 to
-4.0%0, and between +1.3-+7.7%o and -3.8%o t0 -0.1%c. Instead, it is likely that fluids
with 8180 values ranging from +1.3 to +7.7%, were contributed by a magma or a meteoric
water source equilibrated with rocks equilibrated with rocks over long flow length. The
latter is more likely since high salinity inclusions have not been observed. It is possible that
meteoric water can have long equilibrium history with rocks by entering the detachment
fault. The fluid with 8180 values ranging from -3.8 to -0.1%0 may be a result of mixing
process between a fluid with 3180 values ranging from -7.2 to -4.0%o equilibrated with
volcanic rocks and fluid with 5180 values ranging from +1.3 to +7.7%e.

However, the high 3180 values of calcite samples us.d in calculations of the fluids
of the first and second categories might be achieved when the calcites continued to be in
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isotopic equilbrium with a fluid with 8180 of -7.2 to -4.0%o below 100°C. As mentioned
before, the temperature change on the property is no more than 120°C (270°C = 150°C)
(the temperature at beginning of boiling on the Vault property is 270°C, and the
temperature at the end of the boiling is 150°C; refer to Fig. 15). Therefore, it is not likely
that temperature by itself can account for the 5180 variations (+1.3%0 = +13.7%o) for the
calcite samples.

2. Carbon Sources in Fluids

Carbon in hydrothermal fluids can be present in a number of forms but primarily as
CO, or CHy. According to Chmoto (1986), only the 813C value of ZCO2 may be
diagnostic of its source. Carbon-isotope compositions of hydrothermal carbonates are a
function of the T, Eh, and pH during precipitation, as well as the §13Cgc of the
hydrothermal fluids (see Ohmoto and Rye, 1979). The 813C value of XCO; can be
calculated from the §13C value of the carbonate mineral using (i) the fractionation factors
between the mineral, H)CD3apparent (CO2,aq. + H2CO3) or HCO3™ , and between the
aqueous carbonate species, and (ii) the relative abundance of H2CO3apparent and HCO3™ in
the fluid (Ohmoto, 1972; Ohmoto and Rye, 1979). Because most homogenization
temperatures of fluid inclusions are above 150°C, the amount of HCO3" is negligible
compared to the amount of H2CO3apparent, therefore, the following approximation can be
made (Ohmoto, 1986):

13C002 = 13Ccarb. min.- Acarb. min.-H2C03 apparent

Since typica! epithermal (geothermal) fluids usually exist at temperatures less than
those needed to establish isotopic and chemical equilibrium between CO2 and CH4
(Ohmoto, 1986), and the condition of fo is above CO2-CH4 and close to QFM (hematite
is observed in altered rocks on the Vault property), the 813Cg 0y, is approximately equal to
813Cxc (Ohmoto, 1986), and equal to 813Cgqyig. Carbor isotope fractionation factors,
Acarb.min.-H2CO3 apparent, for systems containing HyCOj3, are not known, but this
species can probably be isotopically approximated by CO2(gas) (Ohmoto, 1986). Thus the
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CaCO3-CO, calculated carbon isotope fractionation factors of Bottinga (1969) can be used
to approximate CaCO3-H2COs fractionation. Assuming that the homogenization
temperatures of 150-160°C is representative temperatures of trapping for the majority of
calcite samples, the fractionation between C02-CaCO; at 150-160°C is about -1.5%0
(interpolated from Fig. 6 of Chacko et al., 1991) for 13C, which can be neglected.
Therefore, the following assumption is justified,
313Ccaco3=813CH2003 apparent=813CzC02=8'3Cayig

Based on the above assumption, half of 513C values fall into the probable range of
igneous carbon (-5%o to -8%o, Taylor et al., 1967), and six samples cluster around -5%o,
the best average value for igneous carbon (Craig, 1953). Six samples fall into the range of
organic carbon area (8!3C <-10%oc, Ohmoto, 1986). Carbon isotope data demonstrated that
carbon reservoirs are strongly controlled by host rocks. For the carbonates hosted by
mudstone, such as X98-12, and X98-13, etc., their 813C values (-12.5 to -10.3%0) may
suggest an organic carbon signature (Table 7). Alternatively, these values might represent a
mixture of organic and igneous carbon sources or a mixture of organic and soil carbon
sources. However, because the hydrothermal activities in the study area immediately
followed the volcanism (see Chapter V), there would be little soil formed at the time of
mineralization, which would make the latest alternative unlikely. In contrast, the carbonate
samples hosted by trachyte have an igneous carbon signature. The igneous carbon for the
fluid can be contributed from interaction of the fluid with condensates of volcanic gas or
from interaction of the fluid with igneous carbon trapped in volcanic rocks in the form of
fluid inclusions, or from magmatic fluid from plutonic rocks. Only sample X49-17 is an
exception. It is hosted by trachyte, but has a $13C value of -10.2%. This sample probably
represents a mixing of organic carbon and magmatic carbon. No samples fall into the
marine limestone carbon region. In addition, the relatively small range of 313C values for
samples in the magmatic carbon ficld and adjacent samples implies that the solution was
buffered such that the dominant carbonate species was HyCO3,pparent, as suggested by

60



Golding and Wilson (1983) for the 813C values in Kalgoorilie, Western Australia, The
conclusion that dominant carbonate species was HyCO3apparent, is also supported by the
positive correlation between 813C and 5180 values of calcites for the samples at the
present-day surface (Fig. 16), because the positive correlation between 813C and §180 of
carbonates is usually yielded by the precipitation of calcite from a H2CO3 fluid (Zheng,
1990). This conclusion also supports the assumption at the beginning of this paragraph.

Fig. 18 shows that most of samples did not show variations of §13C and 8180
values with elevation. Only samples from DDH72449 shows a slight positive correlation
between 813C and elevation, and between 8180 and elevation. So the isotopic variations on
the property are probably due to different source reservoirs, not due to elevation or
temperature effect as observed in the Golden Cross, New Zealand (de Ronde and Blattner,
1988) or in San Juan Mountains, Colorado (Bethke and Rye, 1979).

3. Isotopic Disequilibrium

In sample X-55B, 8180 values for quartz and calcite are -0.2%o and +1.3%,
respectively. According to the fractionation relation between quartz and calcite (Clayton and
Kieffer, 1991),

Aquartz-calcite = 1000 Clquartz-calcite = 0.335 (10T-2)+0.05 (106T-2)2 - 0,0035 (106T-2)3
at temperature of 300°C (homogenization temperature for X-55b), the calculated 3180
value for calcite should be -1.58%o. In comparison with its measured 8180 value (+1.3%o),
the difference is about 2.8 per mil, clearly indicating that quartz and calcite are not in
isotopic equilibrium. This slight disequilibrium is also observed in the data set of X50-7
(8180, q1cite = +10.6%o0; 8180 yart = +4.0%o0), X49-17 (5180 qycite = +8.4%o; 3180 yary; =
+2.0%o), and X-119 (8180cqicite = +5.9; 8180qyan, = +3.8%0). This slight isotopic
disequilibrium may mean that calcite samples might suffer retrograde process to some
degrees. However, because the quartz and calcite pair is only in slight isotopic
disequilibrium as indicated by sample X-55b, the calculated 5180y,;4 values for calcite
samples are still valid.
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Fig. 18 Variations of 5'3C and 5180 values of calcite samples with
elevations on the Vault property
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IV. STABLE ISOTOPE AND FLUID INCLUSION STUDIES ON
REGIONAL HYDROTHERMAL SYSTEMS

Introduction

As pointed out by Criss and Champion (1991), oxygen isotope studies, especially
on igneous whole rocks, have tremendous potential in deciphering the nature of
hydrothermal processes on a regional scale, in part because the 8180 values of unaltered
rocks fall within rather narrow and well understood ranges. Deviations from these ranges
produced by alteration are therefore readily apparent. Regarding fossil meteoric water-
dominated systems, a number of studies have been made following two subparallel paths
(Seal and Rye, 1992). One approach has been to study regional isotopic alteration patterns
in country rocks surrounding shallow-level intrusions and interprets these patterns in terms
of interactions with altering hydrothermal fluids (Criss and Taylor, 1986; Criss and Fleck,
1987; Criss and Champion, 1991; Soloman and Taylor, 1991; Larson and Zimmerman
1991). The other approach has been to study the isotopic evolution of ore fluids from
specific ore deposits and interprets the evolution of ore fluids in terms of interactions
between the hydrothermal solutions and country rocks (Taylor, 1979; Campbell ez al.,
1984). To date, however, few studies have united both lines of research (Seal and Rye,
1992).

Previously, the isotope studies on regional and ore deposit scale in the Okanagan
Valley region had been conducted separately by Taylor and Magaritz (1978), Magaritz and
Taylor (1986), and Zhang et al. (1989). As a part of their systematic regional stable isotope
studies on plutonic rocks in the Canadian Cordillera, Taylor and Magaritz (1978) and
Magaritz and Taylor (1986) studied the Okanagan and Nelson batholiths. Magaritz and
Taylor (1986) found that most of the granitic rocks of Okanagan Batholith (185-150 Ma,
RW/Sr ages; Armstrong, 1988) in Okanagan Lake traverse were intensely chloritized and
were depleted in 130 (e.g., 8'80 erdspar = -2.8 t0 +6.7 in samples collected along the edge
of Okanagan Lake). Magaritz and Taylor (1986) concluded that hydrothermal systems
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associated with the Tertiary porphyries are responsible for the 180 depletions, because at a
given locality, the dikes and porphyries consistently have lower 8180 values than the
granitic country rocks that they had intruded.

Zhang (1986) and Zhang et al. (1989) studied the Dusty Mac property. On an ore
deposit scale, Zhang et al. (1989) concluded that the mineralization was formed by fluids
with 8180 values of -7 to -9%o.. Based on these data in combination with fluid inclusion
data, they proposed that meteoric water was responsible for the formation of epithermal
mineralization on the Dusty Mac property.

The present study seeks to combine both approaches to help characterize the
relationship between regional water-rock interactions and ore-forming processes. On the
basis of the studies on the Vault property, the regional stable isotope study focuses on the
Tertiary volcanic rocks, since epithermal systems in this region are hosted by the Tertiary
volcanic rocks. In addition, the present study is also different from other regional isotope
studies in that this study deals with a smaller scale area (about 340 km?) in comparison
with similar studies which dealt with large scale regions (more than 5000 km2) (Criss and
Taylor, 1986; Criss and Fleck, 1987; Criss and Champion, 1991). So the results from
such a medium scale study may be more useful for exploration.

Data from This Study

In this study, about 50 whole rock volcanic samples plus 13 calcite samples were
collected to analyze for oxygen and carbon isotope compositions. The results are listed in
Table 9. The 8!80ypoje-rock Values range from -6.8 to +9.9%c. The 8180t Values range
from -3.8 to +15.5%o, and 8!3C i values range from -15.0 to -4.3%o.

Data in Table 9 and Fig. 19 show that fresh felsic volcanic rocks in the area from
Yellow Lake to Twin Lakes, and to the Marron Valley have 8!80yp04e.rock Values ranging
from +5.8 to +7.0%o. Such values are normal for felsic igneous rocks (Taylor, 1968).
However, from the Marron Valley to Okanagan Falls, and to Penticton, 5180 analyses of
whole rock samples indicate mild to extreme depletions in 180 (Fig. 19). Based on the
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Legend
Isotopically "Normal" Population
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Fig. 19 Histogram of whole-rock 513C de.. zainations for surface samples

from the Okanagan Falls ar=a. The histogram displays a population of isotopically
"normal” rocks (8180 > +6), a population of weakly altered rocks (+3 < 8180 < +6),
a population of altered rocks (-2 < 8180 < +3), and a population of "strongly altered”
rocks (§!80< -2) affected by exchange with significant volumes of low-180 fluid.
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3180 data on whole rocks, four depletion zones are defined: one around the Dusty Mac (the
Dusty Mac Hydrothermal System, 8180gh05e.rock Values ranging from -4.0 to +1.8%o), one
around the Vault property (the Vault Hydrothermal System, 818Q0gpoje-rock Values ranging
from about -1.8 to +4.1 %o), one in the south, around Willowbrook (the Southern
Hydrothermal System, 6!80ypoie.rock Values ranging from -3.9 to +7.59 %o), and one in
the norti: - the Northern Hydrothermal System, 8180 ypoje.rock Values ranging from -6.8 to
+3.9 %0) (Fig. 19, and also refer to Fig. 20, and Fig. 21).
Interpretation of the Whole Rock Oxygen Isotope Data

(1) The Relation Between Depletions in 1830

and Alterations of Rocks

There are four populations of 8180, poje.rock Values divided in Fig. 19 in terms of
degrees of depletions in , i.e., one population of isotopically "normal” rocks (8130=+6%o),
one population of weakly altered rocks (+3.2%0<3!30<+6%o), one population of altered
rocks (-2.2%0<8!80<+3.2%o), and one population of extremely altered rocks (8 80
< -2.2%o).

The results shown in Fig. 19 in combination with petrographic data in Table 9
suggest that there is a correlation between depletion in §!80 and the degree of mineralogical
altcratibn of the rocks. In the area from Yellow Lake to Twin Lake to Marron Valley, the
O18304h e wck values are typical of "normal” igneous rocks (Taylor, 1968). The normal
8180y hole-rock Values correspond to fresh or only very weakly altered samples. In this
group samples, only XY-20 has been propylitically altered. It has lower 3130 pole.rock
value (+5.0%0) compared with the rest of samples in this group. In contrast, the samples in
*ne area from Penticton to Kaledan have extremely low 880, p05e.rocx Values (ranging from
-6.8 to +3.9%o). The rocks in this area are characterized by weak silicic alteration (XP-1,
+3.9%o), strong silicic alteration (XP-4, -6.1%o), and strong propylitic alteration (T-1, -
6.8%0). Thin section examination shows that T-1 is strongly altered to calcite. In the less
altered area from Green Lake to Willowbrook, and to the Astrophysical Observatory, the
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5180, hate.rock Values cluster into two populations, with one being characteristic of fresh
rocks (+7.0 to +7.5%c) and the other being characteristic of strongly altered (-3.9%c) to
weakly altered rocks (+6.5%0, metamorphic breccias). In the area from the Vault property
to the Astrophysical Observatory, the 8!80ypoje.rock Values range from +7.3 to +1.8%e.
The rocks from this area are characterized by no alteration or weak alteration (propylitic
alteration). The overprint of propylitic alteration by silicic or argillic alteration is not
common. However, in mineralized areas, even though alteration was intense, a more
narrow range of higher 8'8Oypole.rock Values is observed compared with the extremely
180-depleted areas. The samples around the Vault property have a small range of

8180y pote-rock Values from -1.8 to +4.1%e. In this area, the dominant alteration styles are
argillic and silicic with propylitic alteration as a background alteration. The propylitic
alteration is commonly overprinted by argillic or silicic alteration. Similarly, in the area
around the Dusty Mac deposit, the 3180 values also exhibit a small range for the majority
of 5180 wpole-rock Values (-2.0 to +1.8%o). Yiv: 1ropylitic alteration is also commonly
overprinted by argillic or silicic alteration.

The above data show that in the mineralized areas overprin: of propylitic alteration
by argillic or silicic alteration is typical. It seems that this overprinting process tends to
constrain the 8180y pje-rock Values to a relatively narrow range, and to have relatively
higher 8180ypole rock compared with extremely 180-depleted areas. This implies that the
mineralized fluids are evolved meteoric waters which are unlikely to produce extremely
depleted 8180 values. In contrast, extremely 180-depleted areas are unmineralized (see the
Mineralization Model chapter).

(2) The Relation between Depletions in 130 And the Distance away

from the Detachment Fault

Figure 20 shows the relation between depletions in 8!8Oyhoje.rock and the distance
away from the detachment fault. There is a negative correlation between the distance away
from the detachment fault and the depletion in 130 in whole rocks. For example, in the
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areas far away from the detachment fault such as in the Yellow Lake, normal 880 pote-rock
values are observed, whereas in areas close to the detachment fault such in the area from
Penticton to Kaleden extremely depleted 880y polerock Values are obs. rved.

This relation may imply that the detachment fault provided channelways for pristine
meteoric waters to penetrate into volcanic rocks. As suggested by Criss and Champion
(1991), the most direct and straightforward way to determine whether the fluid flow in a
fossil hydrothermal system was channelized or pervasive is to examine lateral §!80ypole-
rock Variations on different scales. According to these workers, if the subsurface flow was
dominantly channelized on a regional scale, then extremely sharp gradients in the
S180ypole-rock Values should occur near the major structures, and rocks furti o~ awav
should all have normal values. If the flow was dominantly channelized t-. > & >r.al’er

scale, then different samples from individual outcrops should have highl_ .. . .

8180 pole-rock Values, depending on the proxir © . ¢ solling minor structures such as
small faults and joints. If, on other hand, the f' - .+ . .. »minantly pervasive, the
0180y pole-rock Values should exhibit smooth fate. .  —iations on a large scale, and different

samp'! ‘rom single outcrops would have similar 8:8Qypo)erock Values. Generally

speaking, the results of this study demonstrate that the fossil hydrothermal systems in the
Okanagan Falls area were channelized on a regional scale and pervasive on a small scale as
shown by the sharp contrast in 8!8Q0ypgje.rock Values between th . « cllow Lake area (far
away from the detachment fault) and Penticton-Kaleden area (close to tie detachment fault),
and similar $180ye.rock Values in a mineralized hyd.othermal systen:, respectively. This
is ¢ifferent from the case in the Comstock Lode Mining District, Nevada (Criss and
Champion, 1991), wiere the fossil hydrothermal systems were pervasive on a regional
scale as suggested by uniform 8!30 values of rocks in the strongly altered zone whose

permeability is dominantly controlled by micro-fractures.
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(3) The Relation between Depletions in 130 and Locations of
Mineralization

To show the relation between depletions in 180 in whole rocks and localities of
mineralized hydrothermal system, a 8!¥Oyoje.rock Value contour map is compiled (Fig.
21), since according to Criss and Champion (1991), contour maps of 5180 values provide
remarkably regular images of the integrated intensity of fluid circulation in fossil
hydrothermal systems, and many different types of ore deposits are hosted in rocks with
anomalous 8180 values, with mineralization being particularly concentrated in zones where
gradients are steepest.

The 8'80gpote-rock Valuie contour map shows that there are sharp isotopic gradients
between the mineralized area(s) and non-mineralized area. In the neighborhood of the
Dusty Mac deposit, 8180ypole.rock values sharply decrease from about +1.6 to -2.0 %o over
a distance of less than 700 m. Similarly, in the neighborhood of the Vault property,

3180 hoje-rock Values also sharply decrease from about +2.5 to 0.0 %o over a distance of
less than 850 m (Fig. 21). This phenomena may be partly due to higher density of
sampling around the mineralized areas. In addition, in the neighborhood of Green Lake,
where Skaha Formation, composed or gneissic fragments, occurs, the 8180 analysis
(+6.6%o) for a sample from a mineralized outcrop mapped by the author in 1991 in Skaha
Formation also shows a depletion since normal 8180 values for gneisses are usually larger
than +10.0%0 (Valley, 1986). The conclusion that mineralization is associated with sharp
8180 gradients but not associated with extremely 180-depleted areas may be of exploration
significance.

Additionally, in the mineralized areas, such as the Vault property and the Dusty Mac
deposit, one interesting feature is that §!30ypje.rock Values are in a narrow range, which
means that the mineralizing fluids were isotopically homogenized and that the mineralizing
fluids are pervasive on a small scale. The pervasive nature of fluid flow on a small scale
and the homogenization nature of the mineralizing fluids in terms of oxygen isotopes are
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Fig. 21 8180 wnote-rock Value contours and sample locations in
the Okanagan Falls area
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further indicated by a series of samples from the Dusty Mac deposit and the west of the
Dusty Mac deposit. The 8!80,,h05.rock Values of the samples from the Dusty Mac deposit
(Ma-5, Ma-7) range from -1.1 to -0.1%eo (Table 9), which is very similar to the range of
5180 values those samples (M-3, M-4, and M-7) from the west of the Dusty Mac deposit
(3'80 from -1.3 to -1.1%c). Samples from the Vault property are also indicative of the
homogerization of mineralizing fluids with respect to oxygen isotopes as demonstrated by
the 8!'80ynole-rock Values of X-46¢ (+3.4%0) and X-83 (+3.4%).
~ The isotopic data also show that meteoric water may have penetrated into pre-

Tertiary units in this region. Onc sample from Old Tom and Shoemaker Formatior in the
neighborhood of Willowbrook, whose 8180 value is -3.4%0 (XW-1), documents large
depletion in 180, The implication (. the depletion in 180 in this sample is that meteoric
water had penetrated into the pre-Tertiary unit.

(4) The Relations b 'v.een Depletions in 180 and Calculated Water to

Rock Ratios

In order to know the diference between the hydrothermal systems in terms of water

to rock ratios, water to rock :atios in a close system are calculated using the following

equation (Taylor, 1474, 1979;:
1.9,
wr=—01 %)
(Uw‘ - 8'-' + A)

where W is the atom percent water oxygen and R is the atom percent rock oxygen in the
system, r stands for rock, w stands for water, ,and i are final 3180 value and initial
8180 value for rocks or waters, respectively, and A = f, - f,, . Assuming that the 5180
value of plagioclase (An=30) is approximately equal to the 8!80 value at equilibrium
(Taylor, 1974), and that 3,,i for Tertiary meteoric waters is -13%o (Magaritz and Taylor,
1986), then the oxygen isotope fractionation between plagioclase (An=30) and water
(O'Neil and Taylor, 1967),

818014 - 0180y qer = 2.68 ( 106T-2) - 3.53
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can be used as A for calculating water to rock ratios. The water to rock ratios for selected

hyd..othermal systems are listed in Table 10.

Table 10 Calculated water to rock ratios for selected hydrothermal systems in the Okanagan

Falls area
Hydrothermal system of o TeC A (W/R)max (W/R)min
Area from Penticton to T
Kaledan +3.9 +6.5 257 6.01 0.24
5.4 +46.5 257 6.01 748 0 eeee-
Area around the Vauit
property +4.1 +6.5 270 5.56  ----- 021
-1.8 +6.5 270 5.56 147 -
Area around the Dusty
Mac +1.8 +6.5 240 6.65  ----- 0.57

20 +6.5 240 6.65 253 e

Note: (W/R)pax - maximum w/r ratio; (W/R)myi -~ minimum w/r ratio;
A=Apiagioclase-water ; Temperature for the area from Penticton to Kaledan based on Thof T-

1; Temperature for the area around the Vault property based on the best Th for the property;
Temperature for the area around the Dust Mac deposit based on peak Th for the deposit
(Zhang, 1986).

The calculated water to rock ratios suggest that in the extremely 30-depleted
area(s), the maximum water to rock ratios are very high (Table 10), whereas in the
mineralized areas where volcanic rocks are moderately depleted in 180, the maximur water
to rock ratios are larger than 1, but are smaller than those in the extremely 80-depleted
area.

The calculated water to rock ratios once again demonstrate that the detachment fault
provided pristine meteoric water with channelways as evidenced by the hydrothermal
systems close to the detachment such as the Northern Hydrothermal System which have

very high water 0 rock ratios.
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Oxygen and Carbon Isotope Data of Regional Calcitc Samples and
Interpretation

Oxygen and Carbon Isotope Data of Regional Calcite Samples

Twelve regional calcite samples are analysed for oxygen and ¢+irbon isotopes. The
data are presented in Table 9 and Fig. 22. In the area from Penticton to Kaleden, 813C,icire
and 8'80,cite values vary from -6.6 to -6.0%e and from -3.6 to +1.0%. , respectively
(Table 9). Although there is not much difference in 8!3C qci¢, Value between the
disseminated and vein calcites in propylitic trachyte, the disseminated calcite as an alteration
product of plagioclase phenocrysts is heavier in 130 than vein calcite. This difference
implies that the fluid responsible for the propylitic alteration is more enriched in 180
because these samples were formed under similar temperatures. In the a.2a near tue Vault
propenty, 813C qicite and 8'80)cie values range from -14.4 to 4.9%o, and from +2.2 to
+7.0%o, respectively. There is no large difference in §180y;e value between vein and
disseminated calcites. In the area from Green Lake to Willowbrook and to Astrophysical
Observatory, 813Ccaicite and 818Qcq1cire are in the ranges from -14.9 to -6.6%o -
-1.8 t0 +6.8%o, respectively. Disseminated cdcite is again heavier in 180 than vein calcites.
In the area near the Dusty Mac deposit, 813Ccqcite and 8!8Qc4q;. values range from -6.1 to
-4.3%0 and from -3.8 to 15.5%e. In this area, all samples are vein calcites.

Interpretation

(1) The Relation between Depletions in 130 in Whole Rocks and

5180 Values for Calcite Separates

The 8180 values for calcite separates of vein and disseminated forms show a
weakly positive correlation with 8!80yphoje-rock in the same sample (Fig. 23). This may
imply that fluids responsible for alteration are related to fluids responsible tor precipitation
of carbonates in vein and disseminated forms. For instance, extremely depleted 8130y01e.
rock Values correspond to very light 8180 values for calcite separates. In addition, in the

mineralized areas, around the periphery of the hydrothermal system, 8130 values for calcite

79



eaJe sile4 uebeuexg au ut

(31dWeS JWeS Ul Wo4j 34e S1LLdS 311D PUR %204-3(0UM Y10Q) S3{dwes
3113183 4O} S3N(RA (4@ PalE(NI(eD 1sutebe santea >0 Mg e z7 Gid

(moms) (=) 1o 0

] L S S 14 12 4
AL

A L " L i A

L-X
o.l>x o

(MOWS) (%) F20J-8l0uMqg o

30



O Northern Hydrothermal System
® Vvault Hydrothermal System

127 | @ southern Hydrothermal System

%10. ® Dusty Mac Hydrothermal System
=
8 s
L P ®
2 -
o °
s
L 49 o
©
o ® ®
(@] < °
S 2
® °
@
-24 o
- 4T T T T 1—4'—-r—'1-‘r—-r~r—“
-16 -14 -12 ~10 -8 -6 -4 -2 o
3~
5 “calc!te(%")(PDB)

Fig. 23 8'3C and §'80 data for calcite sampl2s from
regional hydrothermal systems in the area of Okanagan Fails

81



separates are close to those at the center of the hydrothermal system (i.e., the Vault
property). Because the temperatures in the peripkery of the Vault property are lower than
those at the center, These close d180 values for calcite separates ~1ay imply that the inflow
fluids were more close to pristine meteoric fluids, while the out{l, » mineralizing fluids
were 180-positively-shifted meteoric waters (Table 9).

(2) Carbon Sources for the Regional Hydrothermal Systems

In the area from Penticton to Kaledan, 8'3C qciie Values range from -6.6 t0 -6.0%s.
Samples from the area around the Vault property have 8!3Cqcie values ranging from
-14.4 t0 -5.3%o, a similar 813C 4c:;c range to values observed on the property. Samples
from the area from Green Lake to Willowbrook and to the Astrophysical Observatory have
813Cealcite Values ranging from -14.9 to -6.6%o, reflecting that at least two different carbon
sources may have existed in the southern part of the study area. Samples around the Dusty
Mac deposit have a narrow range of 813C4jcj, values (-6.1 to -4.3%o), similar to the
majority of 813C acite V2lues observed on the Vault property.

The regional carbon isotope data demonstrate that 3!3C values of the fluids are
strongly controlled by host rocks, similar to the conclusion on the Vault property. The
majority of samples hosted by trachyte falls into the range of -7.0 to -4.5%o, probably
indicating a magmatic carbon signature, while only two carbonate samples (-14.9%o and -
14.4%o) (one hosted by gneiss from the Southern Hydrothermal System and the other
hosted by pyroclastic rock from the Vault Hydrothermal Systein) have an organic carbon
signature (Fig. 22). A few samples (-10%o < 8!3C aicite < -7%0) may indicate mixing
between a igneous carbon source and an organic ¢ar©or source.

Di .

As mentioned in the introduction of this chapter, numerous stable isotope studies on
whole rocks from hydrothermal systems have been conducted. The present study indicates
that mineralization: is not associated with extreme depletions in 130 and extremely high
water to rock ratios, which to some extent is opposite to the conclusion reached by Criss et
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al (1983, 1985), Criss and Fleck (1987), and Criss and Champion {1991). Criss and
Fleck (1987) concluded that " an important corollary is that future exploration for Eocene
ore deposits in the Bitterroot lobe should be concentrated in the the relatively small areas of
intense meteoric-hydrothermal alteration which occur within and near areas having the
lowest 5180 values". In 1983, Criss et al. (1983) observed that anomalies associated with
epithermal Ag-Au deposits at volcanic centers (e.g., Tonopah, Yankee Fork, Comstock,
Bohemia) are smaller (10 to 150 km), sharply bounded, and have central zones
characterized by very low-180 host rocks, indicative of interaction with meteoric waters at
high water to rock ratios (>1). The highest-grade ore bodies are commonly associated with
the steepest gradients, just inside the perimeter of the anomaly. Subsequently, Criss et al.
(1985) reported that in the Yankee Fork mining district, Custer County, Idaho, two major
mines in this region, Sunbeam Mine and General Mine, are in very low contour area (zero
value area) (p. 1282, fig. 2). Recently, Criss and Champion (1991) found that in the
Comstock Lode Mining District, Nevada, extreme depletions occur in a 75 km?2 20ne where
pervasive fluid-rock interactions resulted in regional propylitization and where
mineralization is present. This difference may result from the fact that in the Okanagan
Valley region the fluids channelized by the detachment fault may be dominant, whereas in
the regions studied by Criss and co-workers pervasive fluids are dominant.

This study, however, is similar to previous studies in that "bullseye" isotopic
anomalies exist (Fig. 21), even though the "bullseye"” isotopic anomalies are smaller in
scale (~20km?2) in the present study compared with "bullseye” isotopic anomalies in other
regions. "Bullseye" meteoric-hydrothermal anomalies that are approximately 50 to 75 km?
in areal extent have been found and studied in (1) the Miocene volcanic rocks of the
Western Cascades, particularly in the Bohemia mining district, Oregon (Taylor, 1971); (2)
Eocene rocks of the Challis volcanic fields, Yankee Fork mining district, Idaho (Criss et
al., 1985); (3) late Precambrian metavolcanic rocks of the Carolina Slate belt at Pilot
Mounfain, North Carolina (Klein and Criss, 1988). All three of these areas are
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characterized by thick sequences of andesitic rocks that include zones of propylitic or
sericitic alteration associated with major zones of depletion. Associated with these altered
areas in every casc are anomalous concentrations of precious and base metals. According to
Criss and Champion (1991), when volcanism is subaerial, it would be typically associated
with meteoric groundwaters, and would logically be associated with symmetrical geologic

features such as "bullseye” isotopic anomalies.
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V. IMPLICATIONS, DISCUSSION AND MODEL FOR MINERALIZATION
Implicati for_Explorati

In comparison with known epithermal precious metal deposits, the homogenization
temperatures of the Vault property fall into the known range (1500-300°C) of
homogenization temperatures for such systems (Roedder, 1979). However, the
homogenization temperatures of the majority of measurements on the property are lower
than those of most epithermal deposits, e.g., 250°-3000C for stage I to IV mineralizations
at Sunnyside, 250°-290°C for stage I to IIl mineralizations at Finlandia, 220°-300°C for
main and later stage mineralizations at Mayflower, 1900-270°C for mineralizations at
Creede, and 200°-300°C for gold-quartz-adularia vein deposits in Nevada (summarized by
Spooner, 1981). It is possible that the representative temperatures for the mineralizing fluid
at the Vault property is ~270°C as recorded by sample X83-6 (Fig. 15). The
homogenization temperatures (~140° to 160°C) for the majority of measurements most
likely reflect either the trapping temperatures when fluids experiencing boiling cooled down
(Fig.15, Trend I), or reflect the homogenization temperatures for a mixing fluid between a
low temperature endmember with a salinity of ~0.0 eq. wt.% at temperature of <150°C and
the other endmember with a salinity of ~0.7 eq. wt.% at temperature of 270°C. The
predominance of measurements around 165°C may imply that the host calcite samples were
later in mineral paragenesis, i.e., the measuremenis are biased toward later stage
mineralizations.

Compared with the calcite samples from unmineralized systems outside the Vault
property, three populations of homogenization temperatures for all type of fluid inclusions
from main stage quartz-calcite veins on the Vault property are grouped (Fig. 24). The first
populaﬁon is in the range of 90°C to 100°C, representing secondary fluid inclusions. The
second population is in the range of 110°C to 210°C with a peak at about 150°-160°C.
The third population is in the range of 220°C to 347°C. Similarly, three populations of
homogenization temperatures are also divided for the samples outside the Vault property.
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Fig. 24 Homogenization temperatures for samples on the Vault property versus those

from un-mineralized systems in the Okanagan Falls area. It is obvious that three populations
of homogenization temperatures can be subdivided for both cases. The very low temperature
and low to moderate temperature populations of the regional samples are very similar to those
of samples from the property. However, the relatively high temperature population for the
samples on the property is in the range of 220°C to 347°C with several measurements higher
than 270°C, whereas that population for the regional samples is in the range of 190°C to 270°C
with no measurement above 270°C.,
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The first population is in the range of 90°C to 100°C, the same as that observed on the
Vault property. The second population is in the range of 110°C to 180°C with a peak at
1600°-170°C. The third population is in the range of 190°C to 270°C. It is obvious that the
first and second populations on the property are similar to those for regional samples. The
similari'y between homogenization temperature measurements on the property and those on
the regional scale points to that a low temperature (~100°C) fluid and a low to moderate
temperature (~150-170°C) fluid arc universal in this region. The difference between
homogenization temperature measurements on the property and those on the regional scale
lies in that the high temperature population for the samples on the property is in the range of
220°C to 347°C with several samples above 270°C, whereas the high temperature
population for the measurements from regional samples is in the range of 190°C to 270°C
with no measurements above 270°C. The high temperature population similar to that on the
Vault property is also observed at the Dusty Mac deposit. The fluid inclusions from the
Dusty Mac deposit have a peak homogenization temperature of 245°C with an average of
2330+31°C (Zhang, 1986). Therefore, the data from the Vault and the Dusty Mac
properties may imply that fluids responsible for the formation of ores were hotter than most
of the regional fluids.

In addition, final melting temperatures of ice on the property (averaging at -0.4°C)
are relatively lower than those from the samples outside the property, even though some
samples from the property also have ice melting temperatures close to 0°C (Fig.14). This
may suggest that fluids on the property were slightly more saline (salinities averaging at
~0.8 eq. wt.% NaCl equivalent) compared with the pristine meteoric water on the regional
scale.

Even though precise dating of the mineralization is lacking, the timing of
mineralization can be roughly constrained based on geological evidence and existing dating
on the volcanic rocks. Since the volcanism in the Okanagan Falls area is Eocene in age
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(Church, 1983; Tempelman-Kluit and Parkinson, 1986; Parrish et al., 1988), and is
broadly coeval with detachment favlting, the hydrothermal activities must also be Eocene in
age because of lack of major thermal events after volcanism and detachment faulting. In
other words, the hydrothermal activities should immediately follow volcanism, and be

roughly contemporaneous with the detachment faulting.

The Heat S for the Mi lizati
Conceming the thermal history along the Okanagan Valley fault, Mathews (1981)

suggested the following geothermal history based on K-Ar ages in the Okanagan Valley.
About 60 Ma, temperatures greater than 500°C prevailed in the gneisses so that radiogenic
argon could largely or completely escape from the system. Within a few million years, the
temperatures fell below the blocking temperature (450°-500°C) of hornblende. After
another 6-9 Ma later (i.e., about 50 Ma ago), the temperature fell below 250°C, the
blocking temperature for biotite, and moreover, the 250°C isotherm would sink through the
gneisses at rate of about 1 km in 5 Ma. By about 46 Ma ago, the upper part of the gneiss
block was exposed by Eocene erosion. Within the next few million years, the gneisses
were covered by a blanket of sedimentary and volcanic rocks at least 1.5 km thick. If this
geothermal history is valid, it means that detachment faulting could provide heat for
hydrothermal systems established since Eocene. The other possible heat source may be
from the plutons. The other probable heat source is from possible plutonic bodies beneath.
The characteristics of the hydrothermal fluids for the Vault property, the Dusty

Mac, and the regional hydrothermal systems are tabulated in Table 11.
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Table 11 Comparisor: of the characteristics of hydrothermal fluids responsible for veining
on the Vault property with those on the Dusty Mac deposit, and with those in the area from

Penticton to Kaledan
the Vault property Dusty Mac deposit* Penticton-Kaleden

Temperature ~270°C ~2400C ~229 to ~257°C
Depth (meters) ~707 m 238Cm 7
Salinity (eq. w.% NaCl) Two populations: ~0.5 ~0.0 o

~0.0-0.2 and ~1.0-1.4
O180p,ia SMOW  ~Two reservoirs: -710-9 ~-11.3

+1.3t0 +7.7

-71.2t0 -4.0
W/R 1.5 2.5 1.5
* Data from Zhang (1986)

Numerous studies in Tertiary epithermal precious metal deposits in the U.S. have
demonstrated that in this type of deposit, the fluid inclusions usually have homogenization
temperatures of 200°-300°C and low salinities. Stable isotope studies have suggested that
mieteoric water plays a dominant role in the formation of this type of deposit even though a
few of deposits may have been involved in magmatic water such as in the Cortez gold
deposit, Nevada (Rye et al, 1974). These observations provide the basis for the widely
cited mineralization model involving the circulation of meteoric water in the formation of
epithermal deposits (Bethke, 1988). A central part in this model is that volcanic rocks have
access to meteoric waters because of the presence of cauldron craters and ring faults caused
by volcanic activities.

The data from the Okanagan Falls area seem to offer a mineralization model (Fig.
25) slightly different from the model largely based on data from the western United States
in that the detachment fault provided a major channel for meteoric water to penetrate the
existing rocks in the Okanagan Falls area. This model is supported by several lines of

evidence. Firstly, the systematic variations in calculated water to rock ratios (Table 11)
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from Penticton-Kaleden (7.5), to Dusty Mac (2.5), and to the Vault property (1.5) seem to
indicate that the closer a site is to the detachment fault, the closer the fluids were to pristine
meteoric water. This implies that the fluid on the Vault property had the longest interaction
history with volcanic rocks and the fluid at the site close to the detachment fault such as in

the area around Penticton and Kaledan had the shortest interaction history. Secondly,

altered volcanic rocks of the same alteration styles, i.¢., argillic alteration, have quite

different 8!30 values in the Vault property (8!80=~+3.4%0) and in the Dusty Mac
(8180=~-1.0%0 t0 -2.0%c) Thirdly, two peaks of salinities are observed on the Vault
property. One peak corresponding to the : .mples with bladed texture is in the range of 1.0
to 1.4 eq. wt.% NaCl. This peak salinities is higher than the peak salinity observed on the
Dusty Mac deposit (~0.5 eq. wt.% NaCl, Zhang, 1986). Since the fluid temperature in
these two properties are similar (~270°C at the Vault property, ~240°C at the Dusty Mac
deposit), the differences in 8180 value in altered rocks and in salinity in mineralizing fluids
between the Vault property and Dusty Mac deposit may reflect the fact that the mineralizing
fluids on the Vault property were more enriched in 180 and were in longer interaction
history with host rocks than those on the Dusty Mac property. So the oxygen isotope and
salinity data suggest that the mineralizing fluids on the Vault property are more evolved
than those on the Dusty Mac property. This is consistent with the observation that the Vault
property is farther away from the detachment fault than the Dusty Mac deposit. Meteoric
waters entering the detachment fault would reach the Dusty Mac earlier than they would
reach the Vault property and hence would be less evolved. This model also explains that
why the relationship between the 3180 anomalies and mineralization is different from those
observed in the western United States.

Tempelman-Kluit (1984) proposed a mineralization model similar to the above
model. In his model, he considered that meteoric waters flowed from west to east. If this
model was correct, meteoric water would become heavier in 180 westwards. Clearly, his
model is not consistent with the isotope and salinity data presented above.
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SUMMARY

The Okanagan Valley is tectonically situated in the southernmost part of the Quesnel
terrane of the Intermontane Belt. The valley follows a low angle detachment fault, wh:
was active in ductile deformation in Mesozoic (and possibly until Early Eocene) and in
b “tile deformation until Middle Eocene. The conservative estimate of the displacement of
the jetachment fault is on the order of 25 km in Focene (Bardoux, 1985). The denudation
rate is in the range of ~1.5 mm/year.

The Vault property is on the upper plate of the detachment fault. There are two
types of Au-Ag mineralization on the property. One is quartz-vein ore of adularia-sericite
type. The other is stockwork ore characterized by disseminated sulfides. The lateral
hydrothermal alteration seems to be zoned towards the center of alteration in a pattern of
propylitic = sericitic = argillic = silicic. Similarly, the alteration is also vertically zoned
from depth to surface in a pattern of propylitic = sericitic => argillic-sericitic = silicic =
argillic. Au, As and Mo are strongly associated with silicic alteration, and As is most likely
to be introduced during argillic-sericitic and argillic alterations.

Workable fluid inclusions on the Vault property are mainly hosted by calcite. The
mineralizing fluids were likely to have temperatures around 270°C, even though the
majority of homogenization temperature data is biased to temperatures around 160°C,
which may reflect relatively late stage mineralization(s). Salinity data indicate that the
mineralizing fluids were very dilute (0 to ~3.4 eq. wt.% NaCl). Boiling of such fluids was
evidenced by a wide range of filling ratios and systematic trends in salinity and

homogenization temperature data.
There are three populations of 8!80g,;4 values for main stage mineralization at the

Vault property. The first population ranges in §180gqy;4 from +1.3 to +7.7%o. The second

population of 8!80gq,;4 values ranges from -3.8 to -0.1%o, followed by a third population

of 8180¢,;q values ranging from -7.2 to -4.0%e.. The first population may represen: 2

possible magmatic or highly-evolved meteoric water. The third population may represent a
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meteoric water (pristine to slightly-evolved meteoric water). The second population may
represent a mixture between a magmatic/highly-evolved meteoric water and a meteoric
water.

The 830 data of volcanic rocks on a regional scale in the Okanagan Falls arca
reveal that there are two 80 depletion zones with mineralization (i.e., the Vault
Hydrothe-mal System, and the Dusty Mac Hydrothermal System) and two 130 depletion
zones without mineralization (i.e., the Southern Hydrothermal System, and the Northemn
Hydrothermal System). The 130 depletion zones with mineralization are characterized by
moderate depletions in 180 (the lowest 8!80ynoie-rock Values > -2%o) and moderate
calculaicd water to rock ratios (1.5 to 2.5), whereas !3Q depletion zones without
mineralization are characterized by extreme depletions in 180 (the lowest 8!8 0uhole-rock
values < -6%o) and very high calculated water to rock ratio (up to 7.5).

The oxygen data in combination with fluid inclusion data from the Okanagan Falls
area offer a mineralization model (Fig. 25) slightly different from the model largely based
on data from the western United States. The main difference lies in that the detachment fault
provided a major channel for meteoric water to penetrate the existing rocks in the Okanagan
Falls area, whereas ring faults and cauldron craters related to volcanic activities are main
channels for meteoric waters in the mineralization model based on data from the western

United States.
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Appendix I. SAMPLE

SAMPLE NUMBER

X98~-1
X98~-2
X98~3
X98-4
X98-5
X98-6
X98-7
X98-8
X98-9
X98-10
X98-11
X98-12
X98-13

X778-1
X778-2
X778-3
X778-4
X778-5
X778-6
X778-7
X778-8
X778-9
X778-10
X778-11
X778-12
X778-13
X778-14
X778-15
X778-16
X778-17
X778-18

X49-1
X49-2
X49-3
X49-4
X49-5
X49-6
X49-7
X49-8
X49-9
X49-10
X49-11
X49-12
X49-13

about

about
about

about
about

about
about
about

about

about

about

about
about
about
about
about
about
about
about

RECORD FROM THE CORES OF THE VAULT PROPERTY

DEPTH

454.2n
437.8nm
434.0m
410.0m
410.0m
393.7n
386.0m
374.8n
373.1n
369.2n
333.0m
328.6m
324.0m

3.5m
12.2
18.09
18.1
35.0
42.3
49.6
53.8
56.4
93.6
108.4
132.0
133.5
134.47
141.8
147.76
151.49
172.8

33.9
38.4
41.8

208.75
213.88
225.25
226.44
240.1
253.8
265.2
263.85
269.6
269.8

DESCRIPTION CORE NUMBER SECTION
trachyte DDH38898 87S5E
lahar containing small quartz vein
lahar

ultramafic

ultramafic containing small quartz vein
lahar

sandstone

qguartz vein containing sulfide
breccia

felsite

mudstone

mudstone

nudstone

dacite DDHE2778 350E

mudstone
]

siltstone

lahar

quartz vein

quartz vein
n

andesite
n

quartz vein
[, ]

andesite
trachyte
"

siltstone DDH72449 S00E
lahar

conglomerate containing sulfide
quartz vein

quartz vein
”n
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X49-14
X49-15
X49-16
X49~-17
X49-18
X49-19
X49-20
X49-21
X49-22
X49-23
X49-24
X49-25
X49-26
X49-27
X49-28
X49-29
X49-30
X49-31
X49-32
X49-33

X83-1
X83-~-2
X83-3
X83-4
X83-5
X83-6
X83-7
X83-8

X68-1
X68-2
X68-3
X68-4
X68-5
X68-6
X68~7
X68-8
X68~-9
X68-11
X68-12

X50-1
X50-~2
X50-3
X50-4
X50-5
X50-6
X50-7
X50-8
X50-9

about
about
about
about

about
about

about
about
about
about
about
about
about
about
about

about
about

about

about

about
about

about

275.54
288.66
290.1
295.5
305.2
312.04
318.9
319.7
326.31
333.9
339.55
340.56
344.8
343.54
352.0
373.8
404.6
411.75
412.9
445.16

394.39
417.18
420.43
426.05
427.05
432.05
437.97
444.3

470.38
469.49
463.49
450.55
436.36
435.15
431.42
421.86
415.14
396.15
386.54

9.77
11.79
18.37
31.2
113.13
117.9
123.95
140.51
143.67

lahar
quartz vein
lahar
quartz vein

2 23232333

lahar
lahar
n

quartz vein
trachyte
n

trachyte DDH82783
quartz vein
trachyte

L

dike

dike

trachyte
”

trachyte DDH72468
]

”
n
ultramafic
lahar containing quartz vein
quartz vein
n

lahar
dacite containing sulfide veinlet

trachyte DDH72450
]

quartz vein
trachyte
lahar

lahar
breccia
quartz vein
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X50-10 about 150.9 lahar containing calcite vein

X50-11 161.37 quartz vein

X50-12 164.0 andesite containing quartz veinlet
X50-13 221.21 felsite containing disseminated sulfide
X50-14 248.95 mudstone

X50-15 325.5 lahar

X50~-16 349.0 b

X50-17 370.97 sandstone

X50~-18 378.5 trachyte containing quartz veinlet
X34-1 637.5 andesite DDH72434 800E
X34-2 619.94 lahar

X34-3 609.18 andesite

X34-4 597.36 andesite

X34-5 562.82 b

X34-6 about 534.11 quartz vein

X34-7 502.64 trachyte

X34-8 490.18 "

X34-9 485.34 "

X34-10 482.63 quartz vein

X34-11 477.92 "

X34-12 460.49 felsite

X34-13 456.00 quartz vein

X34-14 435.46 lahar

X34-15 431.7 quartz vein

X34-16 430.77 lahar

X34-17 420.73 lahar

X34-18 411.85 lahar

X34-19 404.85 b

X34-20 388.62 felsite

X34-21 370.95 quartz vein

X34-22 353.04 lahar

X34-23 345.8 quartz vein

X34-24 343.9 trachyte

X34-25 332.4 w
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Penticton
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LEGEND
[N] Highway/Road
El:] Sample Location

Sample Number

\/\7 Oxygen-18 Value

Appendix Il. Whole Rock and Carbonate Sample Locations and Oxygen-
18 Value for wWhole Rock Samples in the Okanagan Falls Area.
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