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Abstract

Floor vibrations caused by human activities, such as walking and running, should typically be
addressed during the design phase. However, post-construction evaluations often fail to revisit
these vibrations. This gap suggests a need for ongoing assessments to ensure that living
experiences align with initial design intentions. To analyze the vibration levels of structures,
accurately determining the Ground Reaction Force (GRF) is crucial, as it is one of the most critical
components for identifying and predicting floor vibration serviceability. Estimating the floor
response to vibrations requires precise input of the excitation load, which involves real-time data
from human walking or running activities. In this study, the real-time GRF is estimated using
mobile sensing and computer vision methods. The thesis is divided into three key parts. The first
part involves developing a Computer Vision (CV) based method to estimate the human walking
GREF on a treadmill. This method, based on OpenPose, a deep learning algorithm for multi-person
pose estimation, detects key points of the human skeleton. The time-history of displacement from
the middle waist is converted into GRF, and the results are compared with those obtained from
professional wearable force measurement sensors (Loadsol). The findings indicate that the CV-
based method can accurately measure real-time human walking GRF on a treadmill with a root
mean square error (RMSE) of 10% in total.

The second part of the thesis demonstrates the use of a smartphone accelerometer to measure GRF.
Smartphone accelerometers can record the real-time acceleration of GRF, which can then be
converted to real-time GRF. The output GRF is compared with that from the force measurement
sensor Loadsol. The results show that the smartphone accelerometer method can accurately record
the vertical GRF (with a RMSE 0f 9.6% in total) when Newton's second law is applied. In the final

part, the smartphone mobile sensing method and CV estimation method are evaluated as a cost-
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effective and efficient alternative to the Loadsol reference. The thesis concludes with a discussion

of the current work's limitations, recommendations, and potential directions for future research.
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CHAPTER 1: INTRODUCTION

1.1 Introduction to Floor Vibration Serviceability Assessment

Vibrations resulting from human activities, such as walking, running, and rhythmic movements,
can cause significant floor vibrations. Hanagan (1997) confirmed that human-induced Ground
Reaction Force (GRF) is a major source of floor vibrations. GRF refers to the human-induced force
applied to the floor, which may cause floor vibration and make occupants uncomfortable. These
forces occur frequently and cannot be easily isolated. encompasses loads from activities such as
walking, running, and cadence movements. Setareh (2010) also claimed that residents are very
sensitive to unexpected vibrations; even a small level of vibration caused by walking can annoy
the occupants. With the development of efficient materials, slender spans, and lighter-weight
constructions, occupants begin to be concerned about excessively human-induced vibrations, even
under normal service conditions (Z. O. Muhammad & Reynolds, 2019). While these vibrations do
not usually cause structural damage, they can make occupants feel uncomfortable. Therefore, it is

necessary to estimate structural vibrations during a building's service life.

There have been multiple complaints about floor vibrations in recent years. For instance,
employees at Canada Revenue Agency reported about strong floor vibrations at 441 University
Ave. After inspections by three engineering companies, it was confirmed that there was no risk of
spontaneous collapse. However, around 300 employees in the Windsor tax building were sent
home (CBC News 2019). Similarly, Twenty-One Pilots fans bouncing to the beat at Ottawa’s Place
arena caused vibrations severe enough to dislodge ceiling tiles, resembling the effects of damage
consistent with a low-level earthquake, (CBC News 2016). There have also been complaints from

New York City residents; a family purchased an upscale house with an open floor plan but were



bothered by floor vibrations in certain rooms. Other documented cases of unpleasant floor
vibrations reported from around the world include iconic structures such as Taipei 101 skyscraper
and London's Millennium Bridge (Ashburn and Tech, 2024). Since 1931, when Reiher and Meister
began investigating the serviceability limitations of structures, there has been significant progress
in understanding and defining human comfort levels related to structural vibrations. Reiher and
Meister initially categorized vibrations as 'strongly perceptible' and 'easily perceptible' to describe
human sensitivity to structural vibrations. This work marked a milestone in the research on
structural serviceability. Those investigations and complaints indicated that floor vibrations can
seriously affect residents' lives, with some even unable to work or remain on the premises due to

the discomfort.

There remains a gap between controlling vibrations during the design phase and addressing
vibration effects post-construction floor because of the lack of adequate design guidelines and
fundamental data (Shahabpoor et al., 2017). In other words, the designed vibration and the actual
response of a structure may differ due to variations in construction materials and unforeseen human
activities. This is largely because the simplified single-human-induced load model is commonly
used in dynamic simulation analysis, where the mass ratio of the single-human-induced load is
typically too small for accurately estimating vibration comfort. However, most issues with
vibration comfort are often caused by crowd-induced excitation (Xie & Hua, 2024). Furthermore,
the dynamic parameters of human activities are influenced by various factors, such as weight,
height, and the random distribution of crowd loads. The structural response is also affected by the

building's function, spatial design, and unpredictable human activity (Helbing et al., 2005).

Previous design codes estimated vertical walking loads without accounting for floor vibration

interaction (Racic et al., 2009) and simplified the human walking load into a periodic Fourier series



equation, neglecting individual variations in human walking loads and movement (Bucknall et al.,
2011). The previous observations are based on factors like floor natural frequencies, the posture
of residents, and the mass ratio between occupants and structures in controlled laboratory
environment Thus there is a need for real-world human-floor interaction analysis to prevent
overestimating floor dynamic responses (Salyards & Noss, 2014). Recent trends in the
construction industry have led to the increased the use of large and slender floors in office
buildings, which has resulted in damping, now a critical issue in modern structural design. This
shift has made dynamic football excitation a governing limit in today’s structure design. As a
result, discomforting vibrations can occur in the post-construction phase (Z. Muhammad et al.,
2019). Therefore, current research should focus on human-floor interaction vibration analysis to
accurately estimate the post-construction phase floor vibration. However, before that, GRF must
be considered as the most important input value for real-time floor vibration estimation based on
individual human walking loads. GRF is fundamental to floor vibration estimation, and the

methods of GRF measurement will be introduced in Section 1.2.

1.2 Introduction to Ground Reaction Force Measurement Methods

1.2.1 Direct GRF Estimation methods

There are two main methods to estimate the GRF: direct measurement using force plates and
MEMS sensors, and indirect measurement using inertial, acceleration, CV, and motion sensors.
For direct GRF estimation, Bocca et al. (2011), and Navabian et al. (2022) confirmed that Micro-
Electro-Mechanical Systems (MEMS) sensors are widely used for real-time structural vibration
estimation. The MEMS based estimation method requires on-site data collection, but structural
vibrations need to be assessed both before and after construction. Therefore, it is essential to

evaluate structural vibrations caused by human activities during both phases. Before construction,



vibration levels can be estimated using response-based floor vibration design guides, with human
activity loads serving as input for analysis. The resulting simulations provide a prediction of the

floor's response to vibrations under GRF.

1.2.2 Indirect GRF Estimation methods

For indirect CV-based GRF estimation, marker-based detection is the traditional way to measure
human motion, which can then be applied to GRF measurements. Carroll et al. (2013) computed
the GRF by tracking 31 markers on objects and compared the results with treadmill-collected GRF,
confirming the accuracy of marker-based CV GRF detection. Racic et al. (2010) applied code
markers on two objects at 200 Hz to measure the jumping GRF, validating the accuracy of the
marker-based GRF detection method by comparing it with force plate data. These methods
primarily rely on numerous markers placed on objects, such as optical markers. Nowadays, various
marker-free methods are available that can track human motion, such as AlphaPose, BlazePose,
and OpenPose. Mundt et al. (2023) noted that AlphaPose and OpenPose have demonstrated
reliable accuracy in detecting key points across varying movements, whereas BlazePose is less

effective for key point estimation.

Smartphone-based GRF estimations have gained popularity because smartphones are widely used,
and their internal accelerometers and gyroscopes are free for most applications on the digital
market. This has led to a trend of using smartphones for estimating structural vibrations. Compared
to professional sensors, smartphones offer additional benefits due to their small and compact size.
They can be easily attached to the human body using tape, allowing them to collect real-time
walking or running accelerations and angular velocity in all directions, which can then be
computed into GRF for further analysis. This field began with the Nokia N95 mobile device test,

equipped with triaxial and uniaxial accelerometers (Lau & David, 2010). Feng et al. (2015) found



that smartphones can track the vibrations of a prestressed reinforced concrete bridge with an
extremely small error (only 1%) when compared to professional sensors. Ozer and Feng. (2017)
claimed that direction-sensitive acceleration data could be corrected using coordinate system

transformation, further enhancing the accuracy of the estimation process.

Feldbusch et al. (2017) developed an application called iDynamics, which can record real-time
acceleration and angular velocity using the accelerometer and gyroscope inside a smartphone. The
accuracy of mobile devices has been validated by comparing them to professional equipment for
semi-professional vibration measurement on a bridge. Smartphone vibration estimation has also
been used to evaluate dynamic parameters for inspecting concrete bridges, with results compared
to finite element models (FEM) of the bridges, demonstrating the potential of smartphones in

estimating structural vibrations (Pravia & Braido, 2015).

In recent years, analyzing the reliability of smartphones attached to the human body to collect
related GRF has gained attention. To investigate the walking-induced vibration estimation
mentioned above, a slender prefabricated prestressed concrete floor was measured using an
accelerometer to collect the acceleration data from the lower back as the subject walked across the
floor. Martinelli et al. (2020) justified the advantage of smartphones for structural vibration testing,
making such surveys cheap and efficient, though still limited in comparison to the accuracy and
precision of professional sensors. Smartphones have also been used for vibration serviceability
analysis (Cao & Chen, 2020). Smartphone applications and questionnaires were used by volunteers
to assess real environmental vibrations and their subjective feelings about the vibration levels,
yielding favorable results for smartphone-based estimation (Cao & Chen, 2020). This further

demonstrates the reliability of smartphones to monitor vibration levels effectively.



Overall, two new methods—smartphone-based and CV-based—can serve as cost-effective and
highly accurate solutions for GRF estimation. These methods allow for real-time GRF data to be

imported into Finite Element Modeling (FEM) for floor response vibration estimation.

Before improving the structure design by computing the floor vibration response, the real-time
GRF must first be recorded first and then imported into a numerical analysis system for floor
serviceability assessment. According to previous research, Chang (1973) identified the perception
threshold at 0.1 m/s?. Subsequent standards, including ISO 2631-1 (Eger et al., 2008) and SCI
P354 (Smith et al., 2009) established that perceptible vibration acceleration ranges from 0.015 to
0.02 m/s?, as confirmed in studies conducted between 1997 and 2009. These findings indicated
that people are sensitive to structural vibrations in various types of buildings, including tall
buildings and residential structures. Thus, assessing floor vibration performance is essential for

enhancing human comfort.

1.3 Problem Statement

The traditional floor vibration comfort assessment system is based on the single-human-induced
load model, which does not account for crowd dynamics, variability, or unexpected human
activities that contribute to floor vibrations. As a result, there is a gap between the expected floor
vibrations in design and those observed in real-world conditions. Therefore, it is necessary to

update the methods for estimating human-induced loads.

Previous research has introduced two new methods to estimate GRF compared to the traditional
direct force plate measurement. The first method uses a marker-based CV GRF estimation
technique, while the second involves attaching a smartphone to the human waist to collect GRF

data. However, the first method relies on multiple markers and depth cameras, making it less cost-



effective than the smartphone-based GRF estimation method. Meanwhile, the smartphone-based
GRF estimation method has not been directly compared to direct GRF estimation, which means it
lacks systematic comparison and evaluation. Therefore, this research aims to develop a more cost-
effective, non-depth camera-based GRF estimation method and fully evaluate the smartphone-
based method by comparing it with the Loadsol system, a widely used direct GRF estimation

method.

Systems like Loadsol and other wearable sensors are not cost-effective for large-scale GRF
estimation. Specifically, a basic pair of Loadsol insoles costs 2,000 US dollars, and they are highly
sensitive to human motion during testing, thus requiring calibration every 30 minutes or less during
testing. Additionally, Loadsol insoles are limited by foot size, restricting their use for larger data
collection and only allowing GRF measurements on hard floors. In large group GRF estimation
scenarios, the smartphone-based method will not be cost-effective enough because all subjects
need to use the same brand and version of smartphones. However, the CV-based GRF estimation
can detect and analyze multiple subjects simultaneously in real-time, making it a more scalable
solution. In this case, CV-based GRF estimation has a better blue picture than smartphone-based
GRF estimation. Therefore, the CV-based GRF estimation method combined with a fully
evaluated mobile sensing GRF estimation method holds great potential as a cost-effective and

time-saving alternative for future GRF analysis.

1.4 Objective and Scopes

The primary objective of this thesis is to comprehensively develop a new marker-free CV-based
method and evaluate a cost-effective method (smartphone) for estimating GRF, and to assess their

implications for the serviceability of floor vibrations. Specifically, this study aims to:



1. Develop and validate the marker free CV-based GRF estimation method, using the
OpenPose library, to process GoPro video recordings, alongside professional Loadsol GRF
estimates.

2. Evaluate the performance of smartphone-based GRF estimation methods with those of the
professional Loadsol (internal sensor) GRF estimation methods.

3. Analyze and contrast the data collected from smartphone and CV-based estimation

methods to identify discrepancies and recommend areas for future improvement.

1.5 Organization of the Thesis

The organization of the thesis is as follows:

Chapter 2 presents the literature review on structural vibration serviceability assessment and GRF
estimation methods. It covers the progress of direct and indirect methods for GRF measurement in

recent years and the latest achievements in this field.

The chapter 3 focuses on the methodology and experimental design for using CV and smartphones
to measure GRF, specifically, implementing and evaluating the effectiveness of the CV algorithm

and mobile sensing for GRF estimation.

The chapter 4 focuses on demonstrating how the CV-based method and smartphone-based method

can offer scalable and less intrusive alternatives for measuring GRF.

Finally, conclusions, recommendations, and possible future directions are provided in Chapter 5.



CHAPTER 2: LITERATURE REVIEW

2.1 Literature Review on Structure Vibrations Serviceability

The serviceability of structures gained significant attention following the infamous swaying of the
London Millennium Footbridge, caused by pedestrian movement in 2000. Located across the
Thames River in central London, this incident prompted professionals to analyze the problem in
greater detail (Dallard, 2001). Kumar and Kumar. (2014) claimed that various types of structures
can be affected by human loading, including floors, footbridges, stadiums, and other buildings.
Human activities such as walking, running, jumping, and bouncing can induce vibrations. When

these vibrations exceed certain limits, the structures face serviceability issues.

Cao and Chen. (2020) indicated several causes of vibrations: human activity (34.5%), traffic
(26.4%), wind (19.1%), machines (12.7%), construction (5.8%), and other sources (1.5%). Their
research shows that most structural vibrations are caused by human activity. While these vibrations
usually do not cause serious structural damage or failure, they can be problematic if people jump
at the same frequency as the structure, potentially causing resonance and structural failure.
However, even without causing damage, these vibrations can be felt by people in the building,
leading to discomfort or feelings of unsafety. Moreover, people have different definitions of
comfort levels. Cao and Chen. (2020) found that individuals with a body mass index (BMI) ranging
from 20 to 22 are most sensitive to vibrations. Jones and Saunders. (1972) claimed that women are
more sensitive than men at both low and high levels of vibrations. Since a BMI of 20 to 22 is
common among adults, structural vibrations can be significant for most residents in a building.

Therefore, it is necessary to monitor structural vibrations caused by human activity.



In this century, smart technology is widely used to estimate structural vibrations, such as wireless
sensors for collecting vibration data. Estimating structural vibrations is important for assessing
structural serviceability, which can optimize a structure's service life. Traditional inertial sensors
need to be installed in the structure and transfer data using wires, which involves significant work
if the sensors need to be removed, or batteries changed. This process is expensive and invasive.
Kim et al. started analyzing these systems in the 1990s. The development of Wireless Sensor
Networks (WSNs) provided a low-cost system for structural estimation by integrating sensors and

upgrading transmission capabilities (Kim et al., 2007).

Micro-Electro-Mechanical Systems (MEMS)-based sensors reduce installation costs and require
less invasive procedures, allowing wireless sensors to be easily installed (Fortino et al., 2012). As
a result, wireless sensors have become widely used in the field of structural serviceability
estimation. Wireless sensors have four principal components: a sensing interface, signal
conditioning section, computational core, and radio transceiver. The transmitter board transfers

signals, while the receiver board saves them in computers (Lynch, 2006).

Numerous researchers have demonstrated the reliability of wireless sensors. For example, Jerome
Peter Lynch et al. confirmed that wireless sensors offer excellent performance in low-cost
solutions for short-term structural vibration acceleration and displacement estimation. However,
wireless sensors still have limitations for structural estimation, such as weak high-speed data
sampling, high-duty cycles, lack of cost-effectiveness, inability to be stored on a notched surface,
and non-wearability (Ruiz-Sandoval et al., 2003). In 2020, wireless sensors were used to collect
ground reaction acceleration, which was then converted into GRF (Martinelli et al., 2020). MEMS
have achieved wireless data transmission without contact, extending the capabilities of wireless

sensors for structural vibration estimation (Sabato et al., 2017). Bridge vibrations were measured
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by using 113 wireless sensors at multiple points on the South Korean cable-stayed Jindo Bridge,
connecting the sensors to a computer to process data and send commands. They found that wireless
sensors performed well in estimating bridge vibrations by analyzing cable tension forces (Ju et al.,
2015). Whelan et al. (2009) demonstrated the accurate acquisition of vibration acceleration from
highway bridges in a real service environment, using wireless sensors set at a sampling rate of 128
Hz collected from 40 channels, achieving high-rate and lossless data collection. Their results

confirmed the maturity of wireless sensors to a degree comparable to cable-based systems.

Balageas et al. (2010) stated that MEMS-based wireless sensors perform as well as their macro-
scale counterparts but with lower installation costs and less invasive effects. Bocca et al. (2011)
demonstrated the high accuracy of wireless sensor structural estimation by comparing time
synchronization and high-frequency sample collection results with high-quality wired sensors.

Thus, wireless sensors show high performance in estimation, low cost, and easy installation.

Ruiz-Sandoval et al. (2003) highlighted that wireless sensors can address critical structural
serviceability requirements, such as synchronized data transmission, dealing with data loss, and
identifying damages even with limited collection resources. Navabian et al. (2022) verified that
smart wireless sensors can provide accurate time synchronization and high-fidelity structural

response with high resolution by testing them on a bridge model excited by a shake table.

Over the past decade, wireless sensors have proven highly effective due to their accurate and high-
frequency acceleration recording capabilities. However, practical challenges such as complex
installation and removal processes and significant costs hinder their application in structural
vibration estimation. These limitations underscore the need for more adaptable and cost-efficient

alternatives, prompting the recent shift toward mobile device estimation technologies.
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2.1.1 Literature Review on Techniques for Contact GRF Estimation

In recent years, the interest in the evaluation of structural comfort analysis has increased. Wang et
al. (2022) noted that although equipment for estimating structural comfort, such as wireless sensors
and laser detectors, is expensive, it is simple to install and remove. However, the data collected is
typically processed offline resulting in low real-time performance and making it challenging to
integrate with big data on the internet. They conducted experiments using an Android device with
a self-frequency accuracy of 100 Hz, comparing its estimation results with those from professional
instruments, namely a 941B servo sensor and a piezoelectric sensor. The vibrations for the tests
were generated by a shaking table that produced three types of vibrations: simple harmonic, white
noise excitation, and seismic wave. The data was analyzed using Root Mean Squared Error
(RMSE), and the results showed that smartphones could address many limitations of professional
instruments, achieving RMSE results of less than 0.2 when compared with the two professional
sensors. This suggests that smartphones are particularly effective in estimating structural

vibrations, especially when the excited acceleration exceeds 0.05m/s"2.

Previously, researchers fixed smartphones in place to monitor vibration acceleration in a fixed
position. Infect, several researchers have verified the reliability of smartphone acceleration
estimation on a stable plane. This field began with the Nokia N95 mobile device test, using triaxial
and uniaxial accelerometers (Lau & David, 2010). Feng et al. (2015) found that smartphones can
track the vibrations of a prestressed reinforced concrete bridge with an extremely small error (only
1%) when compared to professional wireless sensors. Ozer and Feng. (2017) claimed that
direction-sensitive acceleration data can be corrected using coordinate system transformation,
improving the accuracy of the estimation process. Smartphones have been used in the field of

ground vibration acquisition to measure and analyze ground vibrations and determine their effects

12



on structures and subjects, provided the vibration amplitude is above the noise amplitude threshold
(Shiferaw, 2021). Smartphones have also proven capable of estimating vibrations in steel bridges
and can be used to assess natural frequency under the impact of jumping excitation (Yoon et al.,
2013). Sony et al. (2019) summarized that mobile devices can be applied without additional
training, are more affordable for big data collection, and can be easily controlled by software

platforms remotely to monitor real-time data.

Feldbusch et al. (2017) developed an application called iDynamics, which can record real-time
acceleration and angular velocity using the accelerometer and gyroscope inside a smartphone. The
accuracy of mobile devices has been validated by comparing them to professional equipment for
semi-professional vibration measurement on a bridge. Smartphone vibration estimation has also
been used to evaluate dynamic parameters for inspecting concrete bridges, with results compared
to finite element models (FEM) of the bridges, demonstrating the potential of smartphones in

estimating structural vibrations (Pravia and Braido, 2015).

Zhang et al. (2020) concluded that smartphones can monitor structural behaviour under a shaking
table excitation due to the accurate identification of tested three-story bench-scale modal
parameters. The accuracy of smartphones was also confirmed by Feldbusch et al. (2017), who
verified that smartphone accelerometers can capture structural vibrations well when compared

with professional sensors.

Cao and Chen. (2020) confirmed that most floor vibrations are caused by human activity loads
(GRF), which are much higher than other natural or transportation-related exceptions. Residents
in buildings are particularly sensitive to these vibrations, especially when they are still. Although

these loads usually cannot cause structural failure, only the GRF leads to sympathetic vibrations,
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which may result in floor failure. After construction, this method can also be used to evaluate floor
vibrations to enhance occupant comfort and structural serviceability, especially if there are many
occupants in the building or if their synchronized jumping movements cause resonance (Tuan &

Saul, 1985).

Additionally, smartphones have been used in the field of ground vibration acquisition to measure
and analyze ground vibrations and determine their effects on structures and subjects, provided the
vibration amplitude is above the noise amplitude (Shiferaw, 2021). Smartphones have also proven
capable of estimating vibrations in steel bridges and can be used to assess natural frequency under
the impact of jumping excitation (Yoon et al., 2013). Sony et al. summarized that mobile devices
can be applied without additional training, are more affordable for big data collection, and can be

easily controlled by software platforms remotely to monitor real-time data (Sony et al., 2019).

Kang et al. (2023) also confirmed that smartphones can monitor the acceleration and displacement
of two-story structures with a high accuracy of 90%. Feldbusch et al. (2017) developed an
application called iDynamics, which estimates structural vibrations using the internal
accelerometer of smartphones. They verified the achievements and limitations of this MEMS-
accelerometer-based application. They confirmed that the main differences between professional
sensors and smartphones are resolution and measuring range. The resolution for professional
sensors is up to 107° g and the measuring range is below negative or positive 1 g, but for
smartphones, resolution is commonly from 0.1 to 15 mg with a measuring range of +4 g. They
claimed that higher smartphone sensor resolution reduces noise, improving accuracy. A 100 Hz
sampling rate enhances recording quality for all frequencies. Low-resolution devices (10 mm/s?)
have higher noise than high-resolution ones (I mm/s?). Amplitude determination requires levels

that are well above the noise threshold. Reliable measurements for high-frequency vibrations need
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sampling rates over 50 Hz. Additionally, Feldbusch et al. (2017) verified that smartphones cannot
measure ambient vibrations well because these vibrations are too small. However, they can

measure induced vibration effectively, yielding good results compared to professional sensors.

Feng et al. (2015) tested two types of smartphones equipped with MEMS accelerometers. First,
they tested them on a shaking table, excited by sinusoidal motions at different frequencies ranging
from 0.5 to 20 Hz and discovered that the collected acceleration signal was not perfectly
synchronized with the reference signals (PCB Piezotronics sensors), resulting in slight phase
differences. They calculated a maximum error of 0.96% in the smartphone frequency acceleration
domain estimation. They also tested the capability of smartphones on a large-scale seismic shaking
table and a real pedestrian bridge. The results of operational vibration, white-noise excitation, and
earthquake excitation confirmed the excellent performance of smartphone vibration estimation,

with errors between smartphones and sensors being less than 1%.

In recent years, analyzing the reliability of smartphones attached to the human body to collect
related GRF has gained attention. To investigate the walking-induced vibration estimation
mentioned above, a slender prefabricated prestressed concrete floor was measured by an
accelerometer to collect the acceleration from the lower back when the subject was walking across
the floor. Martinelli et al. (2020) first justified the advantage of smartphones for civil structure
vibration testing, making surveys cheap and efficient, though still limited by the accuracy and
precision of professional sensors. If the vibration level exceeds the human comfort threshold, the
structure can be improved by increasing floor slenderness and reducing floor damping (Pavic and

Reynolds, 2002).
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Overall, previous tests have demonstrated the accuracy of smartphone capabilities in estimating
structural vibrations. However, all these experiments were conducted on flat surfaces. A new trend
in smartphone vibration estimation involves having humans carry the phone or wearable sensors
during the test. This trend focuses on estimating pedestrian-induced GRF. In previous estimations,

the GRF can be computed using eighth-order polynomial equations (Sedlacek et al., 2004):

EO Ky X t+ Ky X 62+ Ky X 83+ Ky X t* 4+ Ks X 5+ Ko X t0+ K x 67+ Kgx t8 (1)

The coefficient K is related to the walking frequency according to the linear regression equations.
K varies based on the walking frequency and linear regression equations, which are shown in the
following equations from 2 to 9. From k; tokg, they can be computed by linear regression

equations, which stands for the walking frequency range from less than 1.75 Hz (Sedlacek et al.,

2004).
K, =-8xf, +38 (2)
K, =379 x f, — 844 (3)
Ky = —2804 X f, + 6025 (4)
K, = 6308 X f, — 16573 (5)
Ks = 1732 X f, + 13619 (6)
K = —24648 X f, + 16045 (7)
K, = 31836 X f, — 33614 (8)
Kg = —12948 X f, + 15532 )
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Pedestrian loading is usually computed using the Fourier series with a limited number of harmonic

orders (typically less than 5). The Fourier series equation is shown below ((Martinelli et al., 2020):
F,(t) = G[1 4 XN_ agsin (n2nft + ¢,)] (10)

In equation 10, F,(t) stands for the interaction force in real-time series, N indicates the order
number of harmonics which is typically less than 5, the G presents the person weight, f, shows

the pacing frequency in Hz, ¢,, is the phase angle for the corresponding n-t4 harmonic, a,, is the

Fourier amplitude for n-¢4 harmonic normalized to person weight.

However, those linear regression empirical formulas cannot accurately reflect the real walking or
running load due to various human body walking parameters. Thus, researchers have begun to
focus on recording real-time GRF using technical tools such as smartphones, IMUs, and wearable
sensors. Martinelli et al. (2020) demonstrated that smartphones with MEMS and triaxial
gyroscopes can measure the heel drop test by comparing it with sensors fixed on the floor. They
attached the smartphone to the lower back of the subject and compared the acceleration
measurements from the smartphone with those from a reference accelerometer on the floor. As a
result, smartphones performed well as references. They also tested smartphone GRF estimation by
comparing it with reference accelerometers. However, the four reference accelerometers were
affected by distance and location on the floor, resulting in about a 30% difference at the farthest
reference accelerometer. This discrepancy indicates that smartphones tied to the lower back may

not measure real-time GRF as accurately as reference accelerometers.

Therefore, reference sensors are needed to measure the GRF without displacement limitations.
Examples include force plates and wearable sensors, which allow humans to walk in the same

location or move while walking. McDonald and Zivanovic. (2013) introduced the Constant
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Coefficient Method (CCM), a theory that confirms the individual measurement of the total vertical
jumping and GRF by the 7th cervical vertebra (C7). This method follows the assumption that the
Center of Mass (COM) represents the whole-body mass. By multiplying the acceleration on C7,

the GRF can be computed in the time domain. The equation is shown below:

GRE,(t) = Meopaqr X (g + Xyc7 (1)) (In

In equation 11, m,,; indicates the person’s weight, g is the gravity acceleration, and x,,¢7(t) is
the acceleration at the C7 point in real-time series. Based on McDonald’s theory and empirical
formula, Shahabpoor and Pavic. (2018) applied Opal Internal Measurement Units (IMUs) to
measure the GRF, comparing the estimated GRF with a force plate (reference). They found that
IMUs collected GRF from C7 and the head with the highest accuracy (0.95 correlation) compared
to other body parts. They proposed a Scaled Acceleration (SA) model to process the overestimation
of GRF from the CCM theory, thus evaluating McDonald’s empirical formula by adding the scale
model coefficient. This coefficient can be easily affected by the subject’s height, pacing frequency,

and weight, and they computed a new formula to calculate vy:

y() = (GRFv(t) — Miotar X 9)/(Meotar X xc.,.C7(t)) 4)

They also evaluate the McDonald’s equation by adding vy:

GRFv(t) = Miotai X (g + xv',.C7(t) X V(t)) (5)

In their results, they clarified that the SA method improved the accuracy of GRF estimation by
25% compared to the previous CCM model. They also noted that C7 can measure the GRF

accurately after applying the SA model.
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In the past, researchers have widely used visual markers to track human movement by dividing
key points on the human body, such as on shanks, thighs, hands, and other sections. Racic et al.
(2010) used optical markers attached to the skin’s surface to build a three-dimensional (3D)
representation of movement. They divided the body into 15 parts and located the positions of each
mass center to determine the ground reaction force (Bobbert et al., 1991). This research is primarily
based on markers on the body. Additionally, we need to compute the GRF from multiple markers
(usually 15 to 31), which requires numerous depth cameras and complex computer vision codes to

process.
Fer = Zis=1 m;(a; — g) (3.1)

where m; is the mass of i th segment of the human body, a; is the vertical acceleration of i th
human body segment, and the g stands for the gravity acceleration (-9.81 m/s?). The total number

of human body segments is 7 in this equation.

Wearable sensors, such as inertial measurement units (IMUs), can be worn on various body parts
to collect partial acceleration from each part. Shahabpoor and Pavic. (2018) applied six opal IMUs
from C7 to the fourth metatarsal to measure tri-axial accelerations and confirmed that IMUs are
powerful tools for measuring GRF by collecting acceleration from C7. They found only a 4-8%
root mean square error compared to force plate recordings (GRF). The opal inertial measurement
units (IMUs) are also used to measure tri-axial accelerations and orientations at the sternum, fourth
metatarsals, lumbar vertebrae, and waist-front. The ground reaction force is computed using

Equation 3.2.

GRE,(t) = T m; X x,, (£) + g (3.2)
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Where m;is the mass of segment i th of the human body, xv,t(f) is the vertical acceleration, and g
is the gravity acceleration. The total number of segments is 13 in this equation. Additionally,
humanoid robots can make eye contact and communicate with subjects, recording the head
position as the subject walks. Nakanishi and their team built a three-dimensional (3D) head-
position model to detect the first-person view of the head pose, allowing the displacement of the

human head pose to be tracked during walking or running (Tamaru et al., 2022).

Furthermore, Azure Kinect devices are used for body tracking information collection, which can
detect and predict human movement (Posner et al., 2023). The methods mentioned above can track
human motion using various equipment, such as IMUs, force plates, and Loadsol. However, this
equipment is not cost-effective and is often limited to laboratory environments due to the
sensitivity of precise instrument requirements. Therefore, the first experiment of this research uses

a more cost-effective and non-laboratory-limited method: CV-based human key-point tracking.

Due to their cost-effectiveness and relative accuracy compared to traditional equipment like force
plates, Loadsol sensors have gained widespread use in GRF measurement recently. Insoles can
record GRFs for consecutive steps without imposing constraints on foot placement. By comparing
the validity and repeatability of three types of insoles (Pedar, Medilogic, and Tekscan), Price et al.

confirmed that the Pedar insole has the best accuracy and repeatability (Price et al., 2016).

Insole-based estimation of the vertical GRF was compared to force plates using Gaussian process
regression from two walking steps, estimating vertical ground reaction force with mean errors of
8% (Eguchi et al., 2020). For walking, 11 sensors are considered suitable, and for jogging, between

7 and 11 sensors are suitable (Fuchs et al., 2022). A Long Short-Term Memory (LSTM) model
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was developed for predicting 3D GRF, and after integration, it can reflect real-time forces

(Hajizadeh et al., 2023).

The Loadsol, investigated by Novel Company, is a powerful wearable insole sensor that measures
GREF by integrating all the pressure from the insole and converting pressure to force in Newtons.
The novel nanocomposite piezo-responsive foam (NCPF) developed by Parker et al. is a wearable
sensor that can estimate the 3D GRF during human walking with a mean average error of 2.15%
in the vertical direction (Rosquist et al., 2017). Kim et al. (2020) also designed a two-dimensional
force sensor (M2D) wearable GRF estimation sensor, demonstrating high accuracy in measuring

vertical GRF, with errors ranging from 2.52% to 3.1%.

Seiberl et al. (2018) tested the GRF estimation capabilities of a new wireless insole (Novel
Loadsol) force sensor by comparing it with a gold standard reference (force plates). They measured
vertical GRF simultaneously with force plates (1 kHz) and Loadsol sensors (100 Hz) during
running movements among 10 subjects. The results showed that the main bias for ground contact
time, peak load, and impulse ranged from 0.6% to 3.4%, demonstrating the high performance of

Loadsol in capturing the dynamic behaviour of GRF.

Weizman et al. (2019) used Pedar insoles and Smart insoles to measure the Center of Pressure
(COP), validating the results against a reference device (Kistler force plate). They noted that the
RMSE showed a strong correlation between Pedar insoles (5.6%) and the force plate. Additionally,
the coefficient of determination for Pedar insoles was 0.9964, indicating a good correlation

between Pedar insoles and force plate COP measurements.

Fong et al. (2008) demonstrated the high accuracy of the Novel Pedar insole for multi-directional

GRF estimations. They tested the correlation between the Novel Pedar insole (100 Hz) and a force
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plate (1000 Hz) for anterior-posterior, vertical, and medial-lateral direction GRFs. The correlation
coefficients were 0.928, 0.898, and 0.719, respectively, proving that Pedar insoles can

independently measure GRF in any direction, even outside a laboratory environment.

Kong et al. (2023) validated that the Pedar Loadsol is useful for in-field measurement. They tested
the GRF collected from Pedar Loadsol and an instrumented treadmill on flat, inclined, and declined
surfaces, confirming that Pedar Loadsol can measure GRF accurately even when multiple subjects
were carrying heavy loads on the treadmill. The Bland-Altman and Limits of Agreement (95%)
methods were applied for insole validation, showing strong similarities between the insole and
instrumented treadmill tests. Using the intraclass correlation coefficients (ICC) comparison
method, the validity of ICC results ranged from moderate to excellent (0.686—0.982). Peebles et
al. (2018) claimed that the repeatability ICC results from Loadsol sampled at 100 Hz and 200 Hz

were 0.686-0.982 and 0.765-0.987, respectively.

Peebles et al. (2018) introduced that the Novel Loadsol can compute GRFs with high accuracy by
comparing it with an instrumented treadmill during walking and running. The intraclass correlation
coefficients (ICCs) between Loadsol and the treadmill ranged from 0.88 to 0.96, while the reliable
across-session ICCs ranged from 0.00 to 0.03. These results indicate that the novel insole pressure
measurement is a valid tool for GRF estimation. Additionally, frequent calibration and a rapid

decrease in sensitivity for insole running tests make insoles less reliable (El Kati et al., 2010).

The Loadsol features a unique, flexible sensor that covers the entire plantar surface, capturing
forces exerted between the foot and shoe at any contact point. This sensor employs a patented

technology for linear measurement, enabling precise quantification of partial loads. By integrating
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data from 99 sensors embedded in the Loadsol, the pressure generated during human walking can

be accurately converted into ground reaction force (GRF).

The accuracy and reliability of Loadsol have been confirmed by previous research. Price et al.
demonstrated that Loadsol has excellent validity, with a Root Mean Square Error (RMSE) of 2.6
kPa and a 3.9% difference compared to force plates (Price et al., 2016). Additionally, Kong et al.
highlighted that Loadsol's high accuracy aligns well with standard laboratory equipment, such as
instrumented treadmills. They affirmed that Loadsol is an effective tool for measuring GRF during
walking (Kong et al., 2023) In summary, various technical tools, including sensors, Novel Loadsol,
Pedar Loadsol, IMUs, and smartphones, have demonstrated high accuracy in GRF estimation.
However, some of these tools are not cost-effective for widespread use, indicating the need for

more economical methods in future developments.

2.1.2 Literature Review on Contactless Techniques in GRF Estimation

Nowadays, computer vision has emerged as a promising method for GRF estimation due to its
cost-effectiveness and high-frequency estimation capabilities. Computer vision techniques can be
broadly categorized into two approaches: the first involves using markers attached to subjects,

while the second utilizes marker-free detection for GRF estimation.

For marker-based GRF estimation, Racic et al. (2009) employed a motion-capturing system based
on video optoelectronic technology to verify position and displacement with a three-dimensional
reproduction of human body movement. They used Coda motion technology to process the GRF
estimated by the video optoelectronic system and validated it against GRF collected by a force
plate during jumping movements. The results from the two methods showed that the first dominant

harmonic of the Fast Fourier Transform (FFT) processed GRF had less than a +2 percent difference
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compared to the force plate recordings. The difference for the second harmonic GRF was within
4%, and for the third harmonic GRF, it was less than 5%. These results demonstrate a good match

between force plate recordings and the reproduced GRF in the frequency domain.

For marker-free detection tools, Albert et al. (2020) utilized a Microsoft Kinect camera (Azure
Kinect) to assess tracking performance by comparing it with a gold standard Vicon multi-camera
system and a 39-marker plug-in Gait model. They confirmed the high performance of Azure Kinect
for tracking. However, there are several open-source tools available on GitHub that can serve as
alternatives to this depth camera for human motion tracking, such as OpenPose, AlphaPose,

BlazePose, and OpenCap.

Mundt et al. (2023) reported that OpenPose and AlphaPose are two highly effective computer
vision tools for GRF estimation. They applied multiple camera-based systems, including
OpenPose, AlphaPose, and BlazePose, to detect key points on a running human body. Their
findings revealed that AlphaPose (98.4%) and OpenPose (94.5%) achieved similar accuracy in
key point detection. In contrast, BlazePose exhibited lower accuracy (65.2%), missing
approximately half of the key points during detection. They utilized Artificial Neural Network
(ANN) and Long Short-Term Memory (LSTM) methods to process the key points, comparing
them with a force plate reference. The resulting RMSE values for GRF were 0.36 for OpenPose

and 0.34 for AlphaPose.

Verheul et al. (2024) used a new marker-less motion capture tool, OpenCap, to estimate GRF
during human jumping. When validated against a gold-standard force plate, they observed that the

bias and limits of agreement between OpenCap and the force plate ranged from 5% to 15%. They
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also determined that a variable bias of less than 15% can be considered indicative of good

performance for detecting changes in GRF variables between different jumping movements.

In summary, previous research has demonstrated that computer vision-based methods can be
highly effective for human motion and GRF estimation. However, earlier CV detection methods
predominantly relied on markers or neural network training. Consequently, there is a need for tools
that do not depend on depth cameras, markers, or neural network learning to estimate GRF in non-

laboratory environments.
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CHAPTER 3: METHODS AND EXPERIMENT DESIGN

3.1 CV-based GRF estimation

Traditional marker-based methods typically require 15 to 31 markers attached to the subject's body
(Bobbert et al., 1991) and using depth cameras for displacement tracking. For multi-marker GRF
estimation, the human body mass is divided into several segments, and the GRF of each segment
is integrated to calculate the overall GRF (Shahabpoor & Pavic, 2018). However, this approach
can introduce errors in measuring the weight of individual body segments and relies on numerous
markers, complicating the measurement and processing of GRF. To address these challenges, this
thesis develops a marker-free CV-based GRF estimation method that eliminates the need for depth
cameras, body segment mass measurements, and markers, thereby simplifying the process and

enhancing cost-effectiveness.

The method utilizes the OpenPose library, which is based on Convolutional Neural Networks
(CNN). The reliability of the method is evaluated by comparing its results with those obtained

from the professional Loadsol reference.

3.1.1 Loadsol Reference for CV-based GRF Estimation

In this research, the Novel Loadsol will be used as the reference for GRF measurements. Loadsol
sensors have recently gained popularity for GRF measurement due to their cost-effectiveness and
relative accuracy compared to traditional equipment, such as force plates. These insoles can record
GRFs for consecutive steps without imposing constraints on foot placement. Extensive data
experiments by Price et al. (2016), Seiberl et al. (2018), Fuchs et al. (2022), Hajizadeh et al.,

(2023), and Kong et al. (2023) have all validated the high performance of Loadsol for GRF
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estimation. Therefore, the Novel Loadsol will be utilized as the reference for evaluating the CV-

based GRF estimation method.

Figure 3.1. Flow The Novel Loadsol Overview

In summary, Loadsol demonstrates high performance in GRF estimation and will be used as the
reference in this thesis. The Loadsol system supports sensor scanning at frequencies of up to 200
Hz, providing detailed insights into the force dynamics under the foot. A key feature of this system
is its smartphone app, which delivers immediate auditory and visual feedback based on the
collected force data. The app also offers comprehensive analytics on parameters such as peak force,

cadence, loading rate, contact time, and symmetry.

3.1.2 The Methodology of OpenPose Detection

OpenPose is a real-time multi-person detection system developed by the Perceptual Computing
Lab at Carnegie Mellon University. It is capable of tracking multiple human body parts, including
the face, hands, neck, and feet, and is widely used in both computer vision and machine learning
fields (Cao et al., 2021). OpenPose operates based on real-time multi-person 2D motion estimation,

which involves detecting key points of individuals in images and videos. This method employs a
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nonparametric representation known as Part Affinity Fields (PAFs) to learn and identify body parts
within images. Additionally, the algorithm leverages Convolutional Neural Networks (CNNs) to

enhance the accuracy of body part observations.

The primary neural network underlying OpenPose is based on Convolutional Neural Networks
(CNNs). In CNNs, each unit in a layer is connected to a small neighborhood of units in the previous
layer, allowing for the extraction of local features such as edges and corners. For feature maps,
sets of units with identical weights consistently detect features across all images, making the
system resilient to shifts and distortions. Subsampling layers further enhance this robustness by
performing local averaging and reducing resolution, which minimizes sensitivity to minor shifts
and distortions. Consequently, CNNs can be efficiently implemented in hardware, achieving high

speeds for tasks such as character recognition (LeCun & Bengio, 1995).

The core of this method employs the CNN-based OpenPose library to process video recordings of
subjects walking, captured using a standard camera (not depth-based). OpenPose detects key point
displacements in two dimensions, particularly tracking waist displacement, which is then
converted into real-time acceleration. By multiplying this acceleration by the subject's total body
weight, the GRF is calculated. This computed GRF is compared with the results from the

professional Loadsol estimation to evaluate the accuracy of the method.

For detection applications, OpenPose is highly effective as it can simultaneously detect multiple
key points and distinguish between individuals even in crowded environments. Beyond full-body
detection, OpenPose offers specialized models for tracking various key points with detailed
precision. As open-source software, OpenPose is accessible for integration into individual projects

focused on human movement tracking. Unlike other computer vision methods, OpenPose excels
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in real-time detection of multiple subjects within the same image or video, accurately identifying

and tracking different body parts independently for each subject independently.

OpenPose can detect 25 key points on the body, including hands, ankles, arms, face, and feet. It
provides real-time performance for multi-person 2D pose detection, which is essential for accurate
human walking estimation. The algorithm is built upon convolutional neural networks (CNNs) and
relies on two main components: heatmaps and part affinity fields (PAFs). Heatmaps represent the
confidence levels of detecting each body part at every pixel, while PAFs indicate the degree of

association between different body parts, enabling accurate differentiation within the same image.

PAFs have been employed in previous models for benchmarks such as the COCO2016 key points
challenge and the MPII Multi-Person benchmark due to their accuracy and efficiency. This method
uses a two-branch CNN to predict heatmaps and assemble body parts into whole-body poses (Cao
et al., 2021). Wei et al. (2016) advanced pose estimation by integrating Convolutional Pose
Machines (CPMs), which combine the strengths of convolutional networks and Pose Machines.

This approach effectively processes diverse poses and views from multiple angles.

For object manipulation or situations involving multiple interactions, OpenPose can still generate
geometrically consistent annotations, addressing challenges in scenarios prone to occlusion

(Simon et al., 2017).

3.1.3 The Process of OpenPose GRF Estimation

The flow chart of the CV method is shown in the figure below:
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Figure 3.2. Flow chart for OpenPose GRF estimation process.

In In this experiment, the subject's walking motion is recorded using a GoPro Hero 9 camera. Prior

to utilizing OpenPose for tracking, a distortion check is performed to ensure overall detection

accuracy, addressing common issues related to camera distortion.

The subject will walk on a treadmill, with the GoPro Hero 9 mounted on a tripod to record
the subject’s motion.

The recorded motion video will be imported into the OpenPose library for key point
displacement detection, measured in pixels at this stage.

After walking on the treadmill, the subject will hold a chessboard, and the real-world
dimensions of the chessboard will be recorded for distortion check purposes.

The GoPro camera's frame rate is set to 240 fps, capturing 240 frames per second, with a
resolution of 1080P in this experiment. This information will be used to convert fps to time
in seconds.

Due to the high frequency of the GoPro and potential detection errors at each detection
step, there may be high-frequency detection noise that could affect the key point
displacement results. Therefore, stationary noise detection will be conducted before

converting the displacement to GRF.
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e The high-frequency noise can be removed using a filter that only allows low-frequency
components to pass through, thereby eliminating the high-frequency noise.

e After noise removal, the real-world displacement will be converted to acceleration using
Newton’s second law. The GRF can then be calculated by multiplying the acceleration by
the body mass.

¢ Finally, the GRF will be computed.

There are two main types of distortion (OpenCV, n.d.). Retrieved from

https://docs.opencv.org/4.x/dc/dbb/tutorial py_calibration.html

¢ Radial distortion, which causes straight lines to appear curved
e Tangential distortion occurs when the lens is not aligned with the image plane, making

objects appear closer than they are.

Both types of distortion will be explained and checked in the experiment section of this chapter.

3.2 Smartphone Based GRF Estimation

To investigate the capabilities of smartphones for estimating GRF, mobile devices are attached to
the subjects' waists (the central body mass) to collect acceleration data. This acceleration data is
then converted to GRF using Newton's second law. The estimated GRF from the mobile devices
1s compared with the reference measurements from Loadsol to evaluate the reliability of mobile

device accelerometers for GRF estimation.

This thesis will introduce a new approach using mobile device apps to estimate the GRF in various

scenarios, including different applications, specific walking frequencies, and individual weight
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parameters. The results will be compared with Loadsol, a cutting-edge technology that provides

real-time GRF measurements.

In this experiment, two Samsung Galaxy S21 smartphones (Model SM-G991W) are used for GRF
estimation. These smartphones are equipped with MEMS accelerometers with a sensitivity range
from +2¢g to +£16g. The applications employed are MATLAB Mobile and Phyphox, which can
connect to a computer or laptop (MathWorks, n.d.). The Y-axis (as shown in Figure 3.3) is oriented
longitudinally to the screen and perpendicular to the ground. For the experiment, only the
acceleration data in the Y-axis (excluding gravitational acceleration) will be utilized for analysis.
The smartphones are securely attached to the subject's front waist and ankle using transparent

adhesive to prevent any movement or slippage during the test.

Figure 3.3. Orientation sensors log data in relation to the X, Y and Z axes.

During the test, subjects walk at a comfortable pace to acclimatise themselves to the smartphone.
GRF acceleration data is recorded in real-time throughout the walk. The subjects walk on a flat
floor in an office building, free from external disturbances, following only the start and stop
commands. Walking begins when the MATLAB code is initiated and the accelerometer starts

recording acceleration data, synchronized with the start command.
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The test is repeated three times for each subject, and the most stable and consistent results are

selected for further GRF analysis.

3.3 Experiments

331 CV

3.3.1.1 Experiments for CV-based Camera Distortion Check

Before recording the real-time walking motion of the subject, it is essential to check camera
distortion to ensure the lens is perfectly parallel to the ground. Two types of distortions need to be
addressed: radial and tangential distortion. These distortions can be computed using the following

equations:
The radial distortion can be calculated using the following equations (OpenCV, n.d.):
Xaistortea = X(1 + ky7? + kor® + k3r®) (3.3)
Yaistortea = Y(1 + kqr? + kv + k3r©) (3.4)
The tangential distortion can be determined by the equations below (OpenCV, n.d.):

Xdistorted — X + [Zplxy + pz(rz + ZXZ)] (3-5)
Yaistortea =Y + [P1(r? + 2y?) + 2p,xy] (3.6)
Where k4, k;, k3 stand for the distortion coefficients, p;and p,stand for the tangential distortion
parameters. For radial distortion, X4;s¢ortea a0d Yaistorteq are distorted coordinates, x and y are

original coordinates in the picture, r stands for the distance from the center of the image (radial

distance). The process of flow chart is shown in figure below:
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Figure 3.4. Flow chart for checking camera distortion.

To achieving this progress, 20 chess board pictures are used for distortion coefficient calculations,

the pictures are shown below:

Figure 3.5. Pictures for checking camera distortion.

To perform a camera distortion check, key information including the dimensions and cell size of
the chessboard is essential. Specifically, the number of inner corners per row and column of the
chessboard (e.g., 8x8 in the figure above) must be known. Additionally, the size of each square on
the chessboard is required to ensure accurate distortion check results. These parameters are crucial
for detecting the chessboard pattern in images and calculating the camera’s intrinsic and extrinsic

parameters accurately.

In the distortion check process, relative points on a chessboard are crucial. The corners of each

chessboard square are used as reference to establish points for real-world coordinates. A minimum
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of ten test images is required. The input data for the distortion check consists of a set of 3-
dimensional real-world coordinates and the corresponding 2D image coordinates, where the

chessboard is kept in the X and Y planes, with Z-axis values consistently set to zero. Figure 3.6

shows the original image and the image with circles overlaid on the corner coordinates.

Figure 3.6. Original image (on left) and image (on right) with circles overlaid on corner

coordinates.

The image is then processed using a grayscale filter provided by OpenCV, which refines the
corners to sub-pixel accuracy. Figure 3.7 shows the comparison between the original corners and

the refined corners in the grayscale image.
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Figure 3.7. Comparison between original corners and refined corners.

After the corner refinement process, the refined corners are displayed as red circles if the board is

not found, or as colored corners if detected successfully, as shown in Figure 3.8.

Figure 3.8. Display of corners.

In this distortion check process, 20 images were used for training and testing. The distortion matrix
for the GoPro Hero 9 indicated minimal distortion, and the distortion parameters were found to be
insignificant. As shown in Figure 3.12, there is no noticeable distortion correction, and the output

distortion coefficients are small enough to be considered negligible.
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Figure 3.9. Comparison between raw picture and corrected picture by applying calibration.

The camera matrix and distortion coefficient are shown in the following matrix.

303.116 0 318.459
Camera Matrix = 0 304.868 240.835
0 0 1

Distortion Coef ficient = [0.019 —0.032 0.001 0.000 0.025]

To minimize potential distortion, it is important to keep the subject centered within the video
frame, as distortion primarily occurs at the corners. While this distortion check process can also
be applied to calibrate video distortion, it is not required in this case since the distortion matrix is
specific to each camera. Therefore, recalibration during the video recording process is
unnecessary. In summary, the distortion coefficients confirm the accuracy of camera detection,

making further distortion calibration redundant.

3.3.1.2 Experiments for CV-based GRF Estimation Setup

Computer vision is applied using the open-source code OpenPose, which tracks human motion by
identifying key points on the human body. These key points are highlighted and connected by
colored lines, as illustrated in Figure 3.10. The coordinates of each key point can be extracted from

this motion detection process. Notably, the coordinates for the neck and waist are not derived from
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real-time position data but are instead calculated as the average coordinates of the two shoulders
and thighs. Despite this, the coordinates for the neck and waist are considered stable and reliable

for body coordinate measurements.

Figure 3.10. Key points detection of subject.

At the beginning of the test, the subject walks along a path parallel to the camera, simulating a
typical indoor walking scenario. A GoPro camera is positioned in front of the subject to record
their walking motion. However, using a non-depth camera like the GoPro presents a challenge. In
the images, horizontal features at the bottom and vertical lines do not align as expected with the
camera model. Specifically, the horizontal features at the bottom of the images suggest that the
camera is tilted upward. This tilt causes a distortion in the photo, affecting the apparent size of the

features in the images (Jin et al., 2023).

In this experiment, the subject is asked to walk on a treadmill to ensure that all movements occur
within the same dimension and are not affected by changes in lighting or camera depth issues. The
camera depth issue can cause significant decreases in amplitude, which can affect the accuracy of

acceleration derived from real-time displacement. This issue could be influenced by multiple
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factors. First, vertical displacement from the subject to the GoPro camera is inconsistent. Although
the subject walks in a linear direction, the distance between the camera and the subject is not stable
all the time, as the camera remains stationary. This can cause slight perspective distortion due to
the lens curvature and angle of view in the camera field. The second factor is that OpenPose can
only analyze posture or motion in a 2-dimensional field, which can result in incorrect depth
information and affect displacement tracking. These issues cause incorrect displacement
measurements in the experiment, making this method unsuitable for further consideration. To
accurately track key points, the subject is required to wear shorts or sports tights. The camera is
positioned approximately one meter away on the right side of the subject to capture all walking
movements at the center of the frame, where distortion is minimized, as distortion typically occurs

at the corners of the video frame.

3.3.1.3 Experiments for CV-based GRF Estimation Key Points Units Conversion

The output from tracking the key points of the subject’s walking is measured in vertical
displacement in units of pixels. However, pixels cannot be directly used for acceleration analysis
and must be converted into real-world dimensional displacement. To facilitate this conversion, the
subject holds a chessboard with known dimensions before the experiment begins. The conversion
factor is then calculated by establishing the relationship between the real dimensions of the
chessboard and the corresponding dimensions in pixels, allowing for accurate computation of
displacement. The actual dimensions of the chessboard are 276 mm in width and 274 mm in height.

The conversion factor can be computed using the following equations (GitHub, 2023):

Width Conversion Factor = real width -+ width in pixel (3.7)

Heigh Conversion Factor = real heigh -+ heigh in pixel (3.8)
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These formulas can translate pixel measurements from digital images into actual physical

dimensions. This process is essential for object detection. The assumptions are:

e Planar Movement: these two formulas assume that the objective movement is parallel to
the GoPro camera, in other words, there is no movement along the depth axis, such as
moving toward or away from the GoPro Camera.

e Known Real-word Dimensions: The real-world dimensions which include the width, and
the length of chessboard must be known correctly. These real-world dimensions
information is the reference for the conversion factors.

e Camera Distortion Check: The camera must be calibrated before conversion to ensure that

the pixel dimensions accurately reflect the scene.

The large difference in displacement detection when the object is moving away is caused by
movements in a plane parallel to the Complementary Metal-Oxide-Semiconductor (CMOS)
sensors. These assumptions can address the issue of decreased acceleration. The large difference
in the previous floor walking test is caused by the object's size change during recording, leading

to errors in displacement estimation and dimension conversion.

To find the dimensions in pixels, a Region-of-Interest (ROI) is introduced into the conversion
process. ROI is a subset of an image that focuses on a certain area for further analysis, such as
zooming in on a part of the image that researchers are interested in. In this experiment, ROI is used
in the computer vision field for chessboard detection. ROI can detect where the object is and

measure its dimensions in pixels.

The chessboard is selected using the OpenCV algorithm, which focuses on the chessboard

throughout the entire image. This isolates the chessboard from the rest of the image and potentially
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improves the accuracy of the analysis. Additionally, ROI performs well in edge detection,

contributing to the precise visualization of dimension data.

Figure 3.11. OpenPose GRF estimation test on treadmill.

The video frame rate is set to 240 frames per second (FPS) or 240 Hz, with a video resolution of
1080P during the test. The FPS stability is confirmed before the test. For the reference load

measurement, Loadsol is used with a sampling frequency of 100 Hz.

Next, the walking motion recording is processed using the OpenPose algorithm to detect key point
displacements. The displacement of the waist key point is then converted into real-time
acceleration. By subtracting gravitational acceleration and multiplying it by the subject's body

weight, the GRF estimated by OpenPose is compared with the Loadsol reference.

3.3.2 Smartphone

3.3.2.1 Smartphone-based Experiments Setup

For this study, the reference data is collected using Loadsol and the Loadsol application.
Traditionally, treadmills and force plates have been used for GRF reference, and their accuracy

has been validated by multiple experiments. Analysis of gait using a treadmill has been found to
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be functionally equivalent to evaluating overground gait (Riley et al., 2007). However, while these
two types of equipment are reliable for high-frequency estimation and allow individuals to choose
their walking speed, they are confined to laboratory environments and are not cost-effective for

broader applications.

Figure 3.12. Immobilization of smartphone for GRF acceleration estimation.

For smartphone accelerometer estimation, the primary challenge lies in the coordinate system and
rotation correlation. The smartphone cannot remain perfectly vertical while humans are walking
due to the cyclical shift in body weight from the left foot to the right foot. This results in the body
tilting at various angles throughout the walking cycle, regardless of walking frequency. To address
this issue, angular velocity is incorporated into the estimation process. Time-domain angular data
is extracted from the gyroscope sensor and combined with the acceleration data in the vertical

direction to improve accuracy.

The goal is to isolate the true vertical acceleration from measurements that may be influenced by

features in other orientations. In MATLAB, acceleration is typically measured along three
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perpendicular axes, labelled X, Y, and Z corresponding to the device’s orientation-based

coordinate system.

3.3.2.2 Smartphone-based Experiments Angular and Time Step Correction

There are two technical issues that need to be addressed. The first is vertical acceleration, which
may include components from other directions during data collection. The second is time
synchronization, as the two phones might have different time steps, leading to delays or advances

during the test. Both issues must be corrected before proceeding with further analysis.

For vertical GRF acceleration correction, only the acceleration in the vertical (Y) direction is
needed because the GRF collected from the Loadsol reference monitors the load in the true vertical
direction. However, during human walking, weight shifts from the left foot to the right foot,
causing changes in the center of mass. As a result, the subject cannot always maintain a perfectly
vertical orientation relative to the ground. This leads to some rotation and tilt during walking,
causing orientation changes and rotations around one or multiple axes. These rotations can cause
the accelerometer to record acceleration that is not aligned with the subject’s movement in specific

directions along certain axes.

To correct the collected vertical GRF acceleration, the angular velocity should be recorded
simultaneously to measure the rotation and tilt during the subjects' walking. The angular velocity
indicates the rate of rotation around the corresponding axes. By integrating the angular velocity
over time, the rotation of each axis can be computed. Trigonometry and correction functions are
then used to determine the relationship between angles and side ratios. The mathematical function

used in this correction is shown below:

Yeorrectea = Y Xcos (Angley) — X xsin (Angley) — Z X sin (Angley) (3.1)
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The theory for vertical (Y) direction acceleration correction is that the angle of rotation is used to
ensure that they correctly represent the movement around the certain axes and adjust for tilt and
rotation in X, Y, and Z direction respectively. The recorded vertical acceleration is corrected by
using equation 3.1, after that the pure vertical acceleration is saved for further analysis. Equation
3.1, Yeorrectea Presents the corrected value of acceleration in the Y direction after accounting for
angular adjustments, X, Y, and Z all stand for the principal directions along the screen. The is the
cosine of the angle associated with the Y coordinates, this term adjusts the acceleration in the Y
direction based on its angular displacement, and the same for the rest of the angular adjustment

process. The raw phone estimated GRF and corrected GRF are shown in figure 3.13.

Comparison between phone estimated raw GRF and corrected GRF

—— Raw Phone Estimated GRF[N]
——=- Corrected Phone Estimated GRF[N]
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Figure 3.13. Comparison of GRF between before and after angular adjustment.

For time synchronization correction, it is essential to ensure that all smartphones are set to the
same time zone. The synchronization of the two phones is achieved via General Packet Radio
Service under the same mobile network. The screenshot of the two same-system mobile devices is
shown below. From the time zone readings, it is evident that both devices are in the same time

zone, controlled by internet time synchronization.
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Figure 3.14. The synchronization adjustment screenshot.

For this experiment, the Loadsol is calibrated using the calibration function in the mobile

application. The subject is asked to first unload one foot, then reload onto the Loadsol, and finally

unload the foot again. After calibrating one foot, the same process is repeated for the other foot.

This process is repeated several times for both feet until Loadsol reflects the subject’s body weight

within a tolerance of 5% difference. Once calibration is complete, the GRF data can be exported

from the application. The result of the GRF at a comfortable walking frequency is shown in Figure

3.15.

Comparison between phone estimated raw GRF and corrected GRF

—— Loadsol Estimated Left Foot GRF[N]
=-== Loadsol Estimated Right Foot GRF[N]
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Figure 3.15. Loadsol GRF reference results.

The waist is one of the most stable parts of the human body. Since high-frequency signals from
other parts can interfere with estimation, it is necessary to choose a stable body part to minimize
these high-frequency signals. In this experiment, the load collected from the subject’s waist is
compared with the reference load. Newton's second law is applied to convert acceleration to GRF,
using the whole-body mass in the equation. The human body mass distribution does not
significantly affect the GRF, as the waist is the body's center of mass. In other words, the

acceleration is multiplied by the whole-body mass.
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CHAPTER 4: RESULTS AND DISCUSSION

4.1 CV-based GRF Estimation Results

4.1.1 Data Processing

There is a self-frequency difference between the Loadsol reference (100Hz) and OpenPose
(240Hz) tracking, which is intentional. For video tracking, there is a lot of noise, and this noise
can be reduced by using smoothing filters. However, these filters can influence the amplitudes of
walking displacement. Setting the FPS to match the Loadsol self-frequency results in the smoothed
displacement losing numerous features, particularly at each amplitude. Therefore, to reduce the
influence after real-time displacement signals pass through smoothing filters, set the FPS of the

camera higher than the Loadsol self-frequency.

Normally, the monitored key point data cannot be directly analyzed or processed because the self-
frequency of the camera is high (240 Hz in this experiment), while the walking frequencies are
only between 1.5 and 2.0 Hz. Thus, it is necessary to remove some noise and high-frequency
components before data analysis. The Savitzky-Golay filter is suitable for up-sampling or down-
sampling the OpenPose data and enables synchronization with the reference force data (Mundt et

al., 2023).

The Savitzky-Golay filter smooths and differentiates time-domain data. The idea behind this filter
is to process subsets of adjacent data with least squares using a low-degree polynomial. The
polynomial degree can be adjusted to achieve the desired smoothness according to the natural
signal. One significant advantage of the Savitzky-Golay filter is its ability to preserve the original

signal amplitudes compared to the Butterworth filter and Bandpass filter (Shahabpoor & Pavic,
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2018). This preservation includes important features of the raw signal, such as amplitudes, minima,

and widths, which are crucial for GRF or ground reaction load analysis.

In this experiment, the Savitzky-Golay filter is applied to smooth the displacement, velocity, and

acceleration time-domain signals, while maintaining the original features and shapes of the signals.

4.1.2 OpenPose Detection Results

OpenPose can detect the subject's walking motion and locate the waist key point for each frame,
allowing the 2D location of the waist key point to be recorded and exported for every frame. The
key point detection results from OpenPose are exported in pixels, and only the waist displacement
key point is saved for further analysis. The subject's waist displacement must be converted to real-

world dimensions using a conversion factor derived from the chessboard.

The velocity of the subject’s walking can be computed by taking the first derivative of the real-

world waist key point displacement in the time domain. The acceleration of the subject's walking

can then be computed by taking the derivative of the velocity.

Comparison of Original Displacement and Down Sampled Displacement
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Figure 4.1. Smoothed displacement estimated by OpenPose.
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Figure 4.2. Smoothed velocity estimated by OpenPose.
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Figure 4.3. Smoothed acceleration estimated by OpenPose.

From the smoothed acceleration time-domain signal, there is still noise present, caused by the high
self-frequency of the GoPro camera. As mentioned before, the self-frequency of the GoPro is 240

Hz (240 FPS), while the self-frequency of the Loadsol reference is only 100 Hz. To address this
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discrepancy, it is necessary to reduce the self-frequency of the GoPro-collected signal and align it
with the Loadsol self-frequency. To achieve this, a Gaussian filter is applied to the smoothed
acceleration time-domain data, reducing the data from 240 Hz to 100 Hz and aligning it with the

reference data for further analysis.

4.1.3 OpenPose GRF Estimation
The down-sampled acceleration is then converted to GRF using Newton’s second law. The results

are displayed in Figure 4.4.

Comparison between Loadsol estimated and Openpose estimated GRF
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Figure 4.4. GRF collected from Loadsol and OpenPose estimation.

From Figure 4.4, the two types of measurements show similar peaks during the test, but there are
high-frequency components observable in the OpenPose GRF estimation, especially between the
two high curves. It is necessary to analyze the source of these high frequencies and remove them
from the raw signals. In Figure 4.5, the Fast Fourier Transform (FFT) shows that the high
frequencies are mainly in the range between 5 and 13 Hz compared to Loadsol power distribution.

These noises are from the walking frequency and can be removed. At the walking frequency
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(around 1.7 Hz), the Power Spectrum Density (PSD) indicates that the two signals have similar
magnitudes, which means OpenPose can estimate the GRF accurately, especially at the walking
frequency. In GRF estimation, PSD helps identify the main frequencies in the forces exerted during
activities like walking. By looking at the PSD, we can see how the power is spread across different
frequencies and spot any patterns or noise. The rest of the extremely high-frequency components

can be neglected since GRF should be in the low-frequency range only.

Filtered FFT Comparison (0-50 Hz)
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Figure 4.5. FFT for two types of estimation.

4.1.4 OpenPose Noise Identification and Removal

To analyze the origin of the high-frequency noise, a stationary test is included in this experiment.
The stationary test involves the subject standing still on the treadmill without any movement,
keeping the body stationary the entire time while using the same GoPro Hero 9 to record at the
same FPS (240 Hz). The main goal of this test is to confirm whether OpenPose gesture estimation
contains noise that affects GRF estimation. The results of the stationary displacement test are

shown in Figure 4.6.
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Figure 4.6. The waist key point displacement in the vertical component.
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Figure 4.7. The waist key point displacement down sampled coordinates.

As observed in Figures 4.6 and 4.7, OpenPose exhibits a measurement error of about 4 mm in the
vertical component during testing, constituting a tolerance of approximately 0.6% of the total test.
This error is negligible, as it is extremely insignificant compared to the major vertical displacement

components. However, it is important to note that these minor, rapid vertical displacements contain
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high-frequency information that could potentially impact further analysis, particularly in scenarios

involving high-frequency self-estimation.

To address this issue, the high-frequency components must be filtered out of the signals. The initial
step involves calculating the predominant frequencies of this noise. Subsequently, a bandpass filter
is employed to eliminate noise within this frequency range, thereby allowing only signals within a

specific range to pass through the filter. The FFT results for this noise are illustrated in Figure 4.8.

Filtered FFT Comparison (0-50 Hz)
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Figure 4.8. FFT for OpenPose estimation noise.

According to Figure 4.8, the main range for this noise is from 5 to 10 Hz, which is much higher
than the walking frequency of interest. This means it is safe to remove all signals in the range
between 5 and 10 Hz to reduce the noise, and this removal will not affect the analysis of the
frequency of interest. After removing the noise, the displacement detected by OpenPose is
processed with a second time derivative and converted to time-domain acceleration. Then, it is

converted to GRF after applying Newton’s law.

GRF(t) = Mot X (g + Awaist(£)) (1
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Comparison between Loadsol estimated and Openpose estimated GRF
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Figure 4.9. Two GRF estimated from OpenPose and Loadsol.
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The estimation results from OpenPose and Loadsol are shown in Figure 4.9. Both signals indicate
that the GRF ranges from 600 to 1200 Newtons. Significantly, the previous high-frequency
components have been clearly removed from the original OpenPose signal, and both signals
display similar fluctuating patterns in GRF. However, high-frequency components within the
range of 0 to 5 Hz cannot be removed. Additionally, the peak values monitored by OpenPose are
smaller than those estimated from the Loadsol reference, indicating the necessity for further signal

4.1.5 OpenPose Noise Removal Results

processing.
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Filtered FFT Comparison (1-5 Hz)
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Figure 4.10. FFT for two signals in the range 0-5 HZ.
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Figure 4.11. PSD for two kinds of estimation methods.

Observing the signals in Figures 4.10 and 4.11, the GRF estimated from OpenPose and Loadsol
have close amplitudes and similarities in the range from 0 to 5 Hz. For the FFT results, both lines
show peaks and troughs across the frequency spectrum, representing the dominant frequencies

within the GRF signals.
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Figure 4.10 shows the coherence values between 0 and 1, where 1 would indicate a perfect linear
correlation between the two signals. This plot denotes that the two signals correspond well in the

range from 0 to 5 Hz.

Figure 4.11 presents the comparison of the PSD of the two signals, indicating how the power
variance of the signal is distributed over this frequency range, with most power concentrated at the
GREF frequency. As a result, the two signals have peaked that line up closely, and coherence values

are consistently near 1 across most frequencies, demonstrating that they are highly correlated.

As mentioned above, the signal still contains some noise after removing the main noise from the
measurement error. This issue can be further addressed by applying Dynamic Time Warping
(DTW) functionality. This filter relies on the Loadsol GRF estimation reference to minimize the
Euclidean distance between the two signals. Without the reference GRF results, the DTW filter

cannot be applied.

Shahabpoor and Pavic (2018) applied DTW to C7 human IMU estimation to average signals for
different gait cycles. According to DTW theory, this algorithm finds the optimal alignment
between two sequences through dynamic programming. In other words, the main goal is to
minimize the total warping cost. The DTW method does not cause distortions and transformations
in the time step, which enhances robustness. This property is particularly suitable for time phase
variation analysis. Additionally, it is not very sensitive to noise and can deal with sequences of
different time lengths. In summary, DTW can minimize the Euclidean distance between two
signals, and it can also stretch or compress two sequences to allow for the best alignment between

them. Finally, it adjusts temporal shifts effectively.
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Therefore, DTW can be applied to this experiment to adjust the signal estimated from OpenPose.

The adjusted GRF signal is shown in Figure 4.12.

Comparison between Loadsol estimated and DTW Processed Openpose estimated GRF
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Figure 4.12. GREF after applying DTW function to OpenPose monitored signal.

Figure 4.12 reveals the absence of GRF peaks, despite the critical role of peak information in real-
time GRF estimation. Therefore, the peaks collected from OpenPose need to be scaled using the

Loadsol GRF reference. The results for the scaled GRF signal and reference are shown in Figure
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Figure 4.13. The comparison among scaled signal, before scaled signal, and reference GRF.
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Figure 4.14. FFT for OpenPose and Loadsol GRF estimation.
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Figure 4.15. Comparison of PSD between OpenPose and Loadsol GRF estimation.

Figure 4.14 compares the FFT of the two signals. Both signals display a prominent peak at low
frequencies, especially around 1.7 Hz (the GRF frequency), suggesting that the two signals have

strong components around this frequency. After that, the magnitude decreases rapidly as the
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frequency increases. The OpenPose signal has stronger frequency components compared to the
Loadsol signal, particularly at lower frequencies. The second graph shows the PSD, which
measures the power present in each frequency component on a logarithmic scale, further
confirming that the OpenPose signal has more power across the frequency spectrum, especially in
the lower frequency range. Overall, according to these graphs, there is a strong correlation between

the Loadsol and OpenPose signals at low-frequency components.

In conclusion, OpenPose is a potentially powerful GRF estimation tool because it can capture the
GRF frequency and compute GRF within a tolerance of around 15% when compared with the
Loadsol reference. However, there is still room for improvement in addressing the limitations of
the algorithm. OpenPose can effectively measure GRF in both time and frequency domains,
accurately reflecting the subject's walking frequency. However, when compared to the Loadsol
GREF estimation reference, OpenPose GRF amplitudes are not perfect. Some peak GRF values are
underestimated due to noise reduction filters. Additionally, the subject in this experiment had
unequal walking pressure between the feet, causing adjacent peaks to differ by around 150
Newtons. Therefore, it is necessary to validate OpenPose GRF estimation accuracy by involving

more volunteers for CV-based GRF estimation.

4.2 Smartphone-based GRF Estimation Results

4.2.1 Smartphone-based (MATLAB) Experiments Results
The time-domain and frequency-domain load signals collected from MATLAB and Loadsol

results are shown below.
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Comparison between MATLAB estimated GRF and Loadsol estimated GRF
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Figure 4.16. Comparison between Loadsol and phone GRF estimation.
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Figure 4.17. Comparison between Loadsol and phone GRF estimation after applying FFT.

According to the two figures above, the time-domain GRF collected from the waist shows a

correlation with the reference GRF (Loadsol). In the frequency domain, the GRF signals also

display a correlated frequency distribution. Despite the amplitudes not exactly matching, their

distribution patterns still exhibit similarities.
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Power Spectral Densities (0-50 Hz)
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Figure 4.18. Power Spectral Densities comparison analysis for two methods of GRF estimation.
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Figure 4.19. Cross-Correlation results for observing time lags between smartphone and Loadsol

reference GRF estimation.

By observing Figures 4.16 and 4.19, there is a clear frequency offset between the two estimation

methods, and this offset can be caused by the random offset occurring in the MATLAB Mobile

App.
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Cross-correlation was calculated in this experiment. As shown in Figure 4.19, the same periodic
pattern indicates that the two signals are correlated at the same intervals. Zero-lag correlation
indicates a strong similarity between the two signals without any shift, as the peak at zero is the
highest. The amplitude of the peaks represents the strength of the correlation at different lags,
suggesting a strong correlation at certain intervals. The symmetric curve typically occurs when

both signals are similar in shape and share the same periodicities.

However, two secondary amplitudes indicate that the two signals do not perfectly align with each
other during the test. This misalignment can be seen in the signals' plots, where the signals are
offset from each other in the first and last two seconds. This misalignment is why there are two
extra high magnitudes in the cross-correlation results. This issue is not unique to GRF estimation
using mobile devices; it occurs in each test. These time lags can be seen as a recording issue in
MATLAB mobile devices' time synchronization estimation, causing small accelerations to be
recorded either slightly ahead or behind time during the test. After several tests, this issue cannot
be simply solved by aligning time zones or adjusting angular degrees. Therefore, it is necessary to
use alternative applications for further testing to determine whether the problem is specific to

MATLAB or common to all accelerometers.

4.2.2 Smartphone-based (Phyphox) Experiments Results

4.2.2.1 Data Processing

Phyphox is introduced as an alternative application for these experiments, with the smartphones
and Loadsol reference remaining the same as in the previous tests. In other words, the only variable
being changed is the application system. If the random time delay issue is resolved by switching

applications, it indicates a problem with the MATLAB application. However, if changing the
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application does not fix the issue, it suggests a potential problem with smartphone accelerometer

estimation in general.

Phyphox is another mobile device physics experimental application that allows users to customize
different sensors present in the mobile device for various physics experiments. These experiments

include harmonic vibration, human walking, sound, light, and more.

Figure 4.20. The coordinate system for Phyphox.

In the Phyphox coordinate system, the Y axis points straight upwards along the screen of the phone,
the Z axis is perpendicular to the screen, and the X axis points to the right along the screen. The
acceleration collected from the subject’s waist and the angular velocity are exported using a laptop
remote control model. Then, the pure vertical acceleration is corrected using the angular velocity
in the X, Y, and Z directions as before. Finally, the pure vertical acceleration is multiplied by the
center body mass and converted to GRF in units of Newtons. The results of the GRF comparison

in the time domain are shown in Figure 4.21.
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Comparison between Phyphox estimated GRF and Loadsol estimated GRF
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Figure 4.21. Comparison between GRF collected from Phyphox and Loadsol.

Figure 4.21, the time offset problem does not occur when using the Phyphox application. This
confirms that the time offset problem is specific to the MATLAB application and does not affect
all sensor applications. Additionally, the amplitudes from Phyphox estimation are significantly

close to the reference load amplitudes.

There is a special observation from this test: the first step GRF from the reference Loadsol and
Phyphox estimation are significantly different. This amplitude difference is much larger than for
other steps and is a common issue observed in every test. The mobile device estimation load is
usually much larger than the reference GRF for the first two steps. This issue is caused by Loadsol
error estimation for the first two steps, as observed from Figures 4.22 to 4.23. At the beginning of
the first two steps, there are two smaller amplitudes (780 Newtons and 800 Newtons, respectively)
from the left Loadsol and right Loadsol, and these smaller amplitudes cause a large difference in

the first two steps of GRF estimation.
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The reason for this discrepancy is that Loadsol estimation is based on pressure integration from
multiple sensors within the Loadsol device. The Loadsol device integrates the pressure to calculate
the load. However, this pressure integration has strict requirements for the walking position. For
example, if only the heel, half side of the foot, or toes are in contact with the Loadsol, it can cause
integration errors. This situation typically occurs during the first few steps of human walking
because the subject usually needs to adjust their walking speed and movement. As a result, only

the toes, half side of the feet, or heels might be in contact with the Loadsol during this initial period.

Comparison between Loadsol estimated left and right foot GRF
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Figure 4.22. GRF collected from left Loadsol and right Loadsol.
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Figure 4.23. Total GRF estimated by Loadsol.

constant period is caused by the subject’s reaction after hearing the start command. Therefore, this

From observations in the previous figures, there is a constant load between 0 and 1.5 seconds. This

period should be removed from the data processing.

4.2.2.2 Phyphox GRF Estimation Results

Comparison between Loadsol estimated and Phyphox estimated GRF

Loadsol Estimated GRF[N]
=== Phyphox Estimated GRF[N]

1400

The removal of reaction signals is displayed in Figure 4.24.
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Figure 4.24. GRF comparison after removing reaction period.

The processed signals are transformed using FFT and MSC. The results are shown in Figures 4.25

to 4.27. This process aims to analyze the amplitude features at walking frequency and determine

whether the mobile device accelerometer GRF estimation is as reliable as the Loadsol reference,

especially at walking frequency.
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Figure 4.25. FFT for two signals collected from Phyphox and Loadsol.
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Figure 4.26. Comparison of PSD between two signals collected from Phyphox and Loadsol.
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Figure 4.27. Magnitude Squared Coherence between two signals.

From the FFT analysis, it is evident that the most matched frequency period is from 1.5 to 2.1 Hz,
which corresponds to the subject’s comfortable walking frequency range. In this range, the
magnitude of the signals is highly correlated with each other, indicating that mobile devices can

estimate GRF well within the walking frequency range.

By observing the PSD diagram, the power density exported by mobile devices closely matches the
Loadsol collected signal. This means that the walking power density perfectly coincides with the

reference signal in the range from 1.5 to 2.1 Hz.

In the Magnitude Squared Coherence (MSC) diagram, which is a statistical evaluation used in
signal processing, the degree of linear correlation between the CV-estimated GRF and the Loadsol
reference GRF in the frequency domain is determined. Specifically, MSC quantifies how well one
signal can be predicted from another in the frequency domain. MSC results confirmed that in the

range of 1.5 to 2.1 Hz, the coherence is close to 1. This indicates that the two signals collected
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from the mobile devices and Loadsol are linearly related at this frequency range. In other words,
mobile devices accurately estimate GRF at the walking frequency range and exhibit almost perfect

correlation with the Loadsol reference.

From the observations above, all the signal data analysis and comparison strongly indicate that the
signal collected from mobile devices is highly correlated with the Loadsol reference signal,
especially for magnitudes in the range from 1.5 to 2.1 Hz, which is the subject’s comfortable
walking frequency range. Therefore, this strong correlation between the two signals justifies that
mobile devices are not only sufficient for estimating the GRF but, more importantly, can also
address the tracking error in the first two steps of the Loadsol reference by collecting acceleration

from the waist of the subject.

4.2.2.3 Comparison Between Phyphox and MATLAB GRF Estimation Accuracy

There is a comparison of GRF estimation results from MATLAB and Phyphox (Table 4.1).

Table 4.1. The correlation coefficients from MATLAB and Phyphox measurements.

RMSE | Pearson Correlation Coefficient | Euclidean Distance | Standard Deviation
Phyphox 115.74 0.83 4983.03 180.92
MATLAB | 245.59 0.13 7509.86 179.99

The Root Mean Square Error (RMSE) measures the average size of errors between predicted
values (smartphone measurements) and reference values (Loadsol estimates). The value range can
influence the RMSE, which gives more weight to large errors Therefore, we also consider the
standard Deviation (SD) to account for data variability. If the RMSE is less than the SD, the error

is considered relatively small.
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As shown in Table 4.1, the RMSE for the Phyphox estimate is 115.47, which is less than the SD
of 180.92. This means the error for the Phyphox ground reaction force (GRF) estimate is small.
However, the RMSE for the MATLAB estimate is 245.59, much higher than the SD of 179.99.

This larger error is due to a time offset issue.

The Pearson Correlation Coefficient (PCC) measures the linear correlation between the measured
GREF and the Loadsol reference. The PCC for Phyphox is 0.83, which is higher than MATLAB's
0.13, indicating a better correlation for Phyphox. The Euclidean Distance measures the difference
between the measured GRF and the reference, with a larger value indicating a larger error. Based
on the values from Phyphox and MATLAB, Phyphox provides a better GRF measurement

compared to MATLAB.

In summary, MATLAB has a time step offset problem for real-time GRF estimation, while
Phyphox estimates GRF well in both correlation and RMSE results. Therefore, Phyphox will be

used for further GRF estimation in this thesis.

4.2.2.4 DTW Processed Phyphox GRF Estimation

Comparison between Loadsol and DTW Processed Phyphox estimated GRF
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Figure 4.28. Comparison of reference signal and DTW processed signal.
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Finally, the GRF collected from Phyphox is processed using DTW, which minimizes the Euclidean
distance between the raw signal and the reference signal. The normal offset mathematical method
cannot be applied to this problem. Instead, DTW can solve this problem by using temporal
sequences that can vary in speed. For instance, DTW can detect similarities during walking,
regardless of differences in walking speeds or variations in accelerations and decelerations during

observation.

The comparison between the reference signal and the adjusted signal is plotted in Figure 4.29. The

two signals exhibit perfect time synchronization and closely match amplitudes for each gait.

In conclusion, for mobile device applications, MATLAB has a significant time recording problem
that cannot be solved by aligning the time zone. This error causes serious delays and advances
during the test, leading to a complete walking estimation offset, which is unacceptable for real-
time ground reaction force estimation. However, Phyphox does not have this issue and can
estimate GRF accurately compared to the Loadsol reference. Therefore, Phyphox will be used for

further GRF estimation analysis.

4.3 Comparisons

4.3.1.1 Objectives Information

In this chapter, the serviceability of OpenPose and smartphones for GRF estimation is compared,
and the results confirm that smartphone GRF estimation performs better than OpenPose
estimation. The OpenPose GRF estimation method is tested on four volunteers, and the reliability

of OpenPose estimation will be discussed.

In the previous experiments, all CV-tests were conducted on the same person (objective 1).

However, the results cannot be confirmed by only one subject, as many parameters can affect the
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experiment, such as body weight, comfortable walking frequency, and walking motion. Therefore,
it is necessary to conduct additional analyses by testing the same process on different subjects
while keeping the parameters for Loadsol and Phyphox the same. In this alternative experiment,

four more subjects are involved, and their information is shown in Table 4.2 below.

The volunteers, all female, range in height from 163 cm to 171 cm and self-weight from 65 to 70
kg. They walk at their comfortable frequency of 1.6 to 1.7 Hz during the test. The photos taken
during the tests and the OpenPose detection results are shown in Figure 4.31. During the test, the
five volunteers are asked to walk on the treadmill at their comfortable walking frequency and
maintain that frequency. They are informed that their walking is being recorded, and their
smartphones are fixed to their waists (around the navel by using tape wrapped around the waist).
The data is then exported for further analysis. After the same signal processing as previously, the
signal collected from the smartphone is corrected to vertical GRF, and the signal exported from

OpenPose is processed by down-sampling and noise removal.
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Table 4.2. The Alternative subjects’ data collection table.

Subject 2 Subject 3 Subject 4 Subject 5
Height 171 cm 163 cm 168 cm 170 cm
Body Weight 63 Kg 70 Kg 62 Kg 63 Kg
Loadsol Size V (8-9 US Size) V (8-9 US Size) V (8-9 US Size) V (8-9 US Size)
Number of
Sensors 99 99 99 99
Pressure
Range 20-600 20-600 20-600 20-600
Loadsol Self-
frequency 100 Hz 100 Hz 100 Hz 100 Hz
APP Phyphox Phyphox Phyphox Phyphox
APP Self-
frequency 100 Hz 100 Hz 100 Hz 100 Hz
Walking
Frequency 1.6 Hz 1.6 Hz 1.7Hz 1.7Hz

4.3.1.2 OpenPose Detection Results Comparison

This process aims to clarify that mobile device accelerometers and OpenPose can estimate GRF

accurately under varying subjects' parameters. Once this analysis is complete, the reliability of

mobile device accelerometers and OpenPose estimation can be officially confirmed.

Figure 4.29. Phyphox, GoPro, and Loadsol.
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Figure 4.30. The photos during test and OpenPose detection results.

Comparison between Loadsol estimated and Openpose estimated GRF
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Figure 4.31. The comparison between GRF measured from Phone and OpenPose.
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Filtered FFT Compariscn (1-10 Hz)
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Figure 4.32. The comparison between FFT processed GRF measured from Phone and OpenPose.
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Figure 4.33. The comparison of PSD between phone and OpenPose measurement.
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Comparison between Loadsol estimated and Openpose estimated GRF
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Figure 4.35. The comparison of FFT between signal collected from OpenPose and Phone for the
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Figure 4.36. The comparison of PSD from OpenPose and Phone GRF collection for the second

objective.
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Figure 4.37. Comparison between OpenPose and smartphone GRF estimation for the third

objective.
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Comparison between Loadsol estimated and Openpose estimated GRF
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Figure 4.38. Comparison between OpenPose and smartphone GRF estimation for the fourth

objective.

Table 4.3. The objects’ alternative impact information for OpenPose GRF Estimation.

Object 2 Object 3 Object 4 Object 5
Height 170 cm 163 cm 168 cm 170 cm
Weight 62 Kg 70Kg 65 Kg 65 Kg
RMSE 104.98 134.93 116.15 86.80
Standard Deviation of OpenPose 72.51 82.96 68.71 67.53
Standard Deviation of Loadsol 78.96 127.28 110.35 72.43

As seen in the previous figures from 4.31 to 4.38, the magnitude of GRF collected from the Loadsol

is slightly higher than the GRF computed by OpenPose. This issue also surfaced in Chapter 3’s
CV-based GRF estimation and it continues to be a common concern in this research. Additionally,

by observing the comparison between OpenPose and smartphone estimated GRF, another issue

appears during the alternative tests: a slight time offset.
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This time series offset did not occur during the phone and Loadsol comparison because the time
series were controlled by the local time zone. However, the GoPro time series cannot be controlled
by the local time zone and are instead controlled by the frame rate. After down-sampling and
applying smoothing filters, the time series can be offset from the reference signal. Nevertheless,
this offset is not significant compared to the reference, with most offsets around 0.5 seconds for

each peak.

From the following FFT and PSD analysis, the magnitude of signals at the walking frequency (1.6
Hz) is close to the Loadsol reference amplitudes, indicating that OpenPose can measure the key
features of GRF during the test. It shows a similar decreasing trend in FFT and PSD processing.
In other words, OpenPose can measure the GRF when the Loadsol is serving as a reference on the

treadmill and is not affected by alternative factors such as height, weight, or walking frequency.

However, the underestimation of GRF is a primary issue in this research. This underestimation is
mainly caused by the smoothing and down-sampling filters used during noise removal processing,
which reduce the amplitudes of OpenPose-detected GRF. The main noise comes from OpenPose
skeleton key point detection. The video is recorded at 240 FPS during the test, meaning there are
240 frames per second, and OpenPose needs to detect key points for over 9000 frames during the
recording. Consequently, the key point detection at the waist varies over time, causing unstable

displacement detection that needs to be removed during signal processing.

This issue could potentially be solved by upgrading the COCO dataset of OpenPose or upgrading
the model itself, which can improve the accuracy of detection during high-quality and high-speed
video recording. If this issue can be resolved through COCO data training, then smoothing and

down-sampling will not be necessary in the future, preserving the original amplitudes after
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processing. By observing from 5 subjects, there is a special finding that subject 3, who is much
shorter and heavier than the other four subjects, got the highest RMSE results (12%) and the most
non-ideal estimation accuracy. This might be caused by the lack of variance of COCO training

data, which, as a result, caused the low accuracy of GRF estimation.

In addition to analyzing the reliability of smartphones and OpenPose detection, the recording
position is also examined in this study. Four volunteers were recorded from the side and back,
respectively, and the results of GRF estimation are compared to the Loadsol reference. The results
indicate that recording from the side yields much better results than recording from the back,

especially in terms of waist key point detection accuracy.

4.3.1.3 Smartphone Estimation Results Comparison
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Figure 4.39. Comparison between GRF measured by phone and Loadsol of the first subject.
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Filtered FFT Comparison (0-50 Hz)
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Figure 4.40. The comparison of FFT between Loadsol and Phone collected signals.

Power Spectral Densities (0-50 Hz)
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Figure 4.41. The comparison of PSD between Loadsol and Phone collected signals.
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Comparison between Loadsol estimated and Phyphox estimated GRF
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Power Spectral Densities (0-50 Hz)
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Figure 4.47. Comparison of PSD between two signals of third subject.

Loadsol Estimated GRF[N]
=== Phyphox Estimated GRF[N]

Comparison between Loadsol estimated and Phyphox estimated GRF

900

400

12

T
11

T
10

Time [sec]

Figure 4.48. Comparison between GRF measured by phone and Loadsol of forth subject.
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Figure 4.49. Comparison of FFT between two signals of forth subject.
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Table 4.4. The objects’ alternative impact information for smartphone GRF Estimation.

Object 2 Object 3 Object 4 Object 5
Height 170 cm 163 cm 168 cm 170 cm
Weight 62 Kg 70Kg 65 Kg 65 Kg
RMSE 90.7 131.25 76.5 93.03
Standard Deviation of Phone 123.05 235.94 124 .46 68.50
Standard Deviation of Loadsol 102.38 218.48 102.27 73.39
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As seen from the previous results, the GRF estimation from the phone is still highly correlated
with the Loadsol reference at walking frequency, according to PSD and MSC analysis. This
observation indicates that mobile devices are accurate enough to measure GRF under various
conditions, such as different body weights, center mass, center location, and comfortable walking

frequencies.

By comparing several correlation coefficient values, such as RMSE, SD, and Euclidean Distance
between smartphone app estimates and Loadsol references, Phyphox shows better performance for
GRF estimation in both time and frequency domains. Phyphox also captures GRF peak features

well.

In conclusion, mobile device accelerometers are stable and reliable enough to estimate GRF at any
frequency on a flat surface. Results collected from mobile devices are highly correlated with the
Loadsol reference, especially at walking frequency (comfort frequency). Additionally, there is a
significant issue with Loadsol in tracking the first gait load, caused by only the toe or heel touching,
or only half of the foot working on the Loadsol, leading to incorrect pressure integration at the first
gait. However, mobile devices do not have this issue; they can measure the GRF from the first gait

to the last gait perfectly.

4.3.1.4 CV and Smartphone GRF Estimation Metric Parameter Comparison
In Tables 4.3 and 4.4, three parameters: Root Mean Square Error (RMSE) and Standard Deviation

(SD) will be analyzed in this chapter.

e The standard deviation of the phone is higher than the standard deviation of the

Loadsol reference, indicating a greater spread of the measurements from their
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respective means. The higher value for the phone means the measurements from
the phone are more spread out compared to the data from the Loadsol reference.
e The second parameter discussed in the table is RMSE. This parameter measures
the average error between pairs of observations from two signals, indicating how
well OpenPose and the smartphone perform compared to the Loadsol reference.
Lower RMSE indicates a better correlation between two signals, and vice versa.
However, RMSE also depends on the range of values for the two signals. The
RMSE value in this research shows how much the OpenPose and smartphone
computed value differs from the Loadsol reference and should be considered in
relation to the data range. For example, the RMSE for the first object is 90.07,
but the overall data range is around 850. Thus, the total error percentage
according to the data range is around 10%. Similarly, for the rest of the estimates,

the overall tolerance is around 10%.

Overall, the correlation between the Loadsol reference GRF estimation and the two new GRF
estimations is not perfectly aligned due to the time series offset and computer vision estimation

noise. However, they still exhibit correlation and similarities in GRF estimation.

88



CHAPTER 5: CONCLUSION

5.1 Conclusion

In this thesis, a CV-based marker-free GRF estimation method has been developed and evaluated
by comparing the results with the Loadsol GRF reference. The method’s reliability was verified
through five objectives. Additionally, a smartphone-based GRF estimation method was thoroughly
assessed by collecting walking acceleration and converting it to GRF. The accuracy of the

smartphone method was also verified against the Loadsol reference.

In the first part, traditional pressure integration using Loadsol served as the GRF reference, and an
CV-based method called OpenPose was involved in this research. Instead of using a depth camera
or multiple camera setups, this study employed a single GoPro Hero 9 for key point detection,

making it more cost-effective and practical, this method achieved an RMSE of approximately 10%.

In the second part, while the traditional pressure integration using Loadsol served as the GRF
reference, smartphones were employed as a new application for acceleration-based GRF
estimation. It showed the best correlation with the GRF values computed by the professional

Loadsol in the time domain.

In summary, by comparing with previous GRF estimation methods, this research introduces two
more cost-effective and high-performance GRF estimation methods: OpenPose and phone

accelerometer estimations. The main unique advantages are summarized as follows:

1. Cost-Effectiveness: The two new GRF measurement methods mentioned in previous
chapters are more cost-effective than traditional wireless or wearable sensors. The

wearable sensors referenced in this research cost around 2000 US dollars. However, the
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Phyphox app is free for all users, and the GoPro camera costs only around 200 US dollars,
making it more affordable and accessible for researchers.

Simplicity and Efficiency: Unlike previous experiments that require multiple cameras and
angles, this research uses only one standard camera for GRF estimation. It can effectively
monitor displacement in two dimensions, simplifying the process while increasing
efficiency.

Accurate GRF Analysis: According to the results computed by phone and OpenPose
estimation, the real-time GRF can be imported into FEM analysis to predict floor vibration
response. This is more accurate than the Fourier 8th polynomial method, which lacks
precision and real-time response.

Improved Living Comfort: The results can potentially be used for real-time structural
response to enhance human living comfort levels, which are often overlooked post-
construction. The GRF and floor vibration response can be further analyzed to improve

living comfort experiences.

The estimated GRF can be used for human and floor vibration interaction analysis to bridge the

gap between the design phase vibration considerations and the actual vibrations occurring in the

floor during the post-construction phase. This can enhance human comfort level by addressing

real-time walking loads of individual occupants.

5.2 Limitations and Future Work

The first limitation for CV-based GRF estimation is the COCO data detection error. The COCO

data-based OpenPose computer vision methods cannot detect human key points 100% accurately

at the same location. There is an error of around +6 millimeters when the video frame rate is 240

frames per second. This high-frequency detection error causes high-frequency noise during
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computer vision-based GRF estimation. To remove this noise, the signal needs to be processed by
several filters, which consequently leads to amplitude loss, identified as the main error in this
research. This issue can potentially be resolved by upgrading the OpenPose COCO data or neural
networks from OpenCV, which could improve detection accuracy and reduce high-frequency

noise.

The second limitation is the time offset caused by the internal clock of the GoPro camera. There
were instances of time being ahead or delayed during the test, which resulted in low correlation
coefficients. This issue can potentially be solved by applying DTW filters. However, these filters

can be aggressive for underestimated signals, leading to a flat period at the end.

The third limitation is that subjects cannot walk on flat ground; instead, they can only walk on the
treadmill to avoid displacement errors caused by moving out of the center of the pinhole camera's
view, leading to incorrect displacement outputs. Future work can focus on applying a depth camera
to monitor key point displacements, allowing subjects to walk on a normal flat ground instead of
a treadmill. Additionally, using machine learning can potentially solve this issue. The GRF
collected from treadmill walking can serve as a reference, and based on this reference, the signal
collected from walking on flat ground can be trained to match the reference, thus outputting similar

signals.

The estimated GRF can be imported into simulation systems to analyze the human-floor interaction
vibration. Meanwhile, the reference GRF should also be imported into simulation analysis, which
can verify the accuracy of smartphone and CV-based GRF (with RMSE around 10% difference

with Loadsol reference GRF estimation) for floor response vibration estimation results.
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The CV-based GRF estimation is highly recommended in this thesis. In the future, CV-based
estimation can work effectively on multiple subjects’ GRF estimation by using two non-depth
cameras set up on the ground, which is more cost-effective than individual-based smartphone

estimation.

Finally, the development of these research methods enables the collection of real-time GRF, which
can be imported into simulation system for floor response analysis. Consequently, the floor

vibration response can be analyzed to study human living comfort levels in the future.
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