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Abstract

In this thesis, we examine how L-Systems can be extended as Hierarchical 

Hidden Markov Model L-Systems to enable the generation of 3D trees with 

more naturalistic variations yet with less tedious script generation demands.

The model also allows for L-System optimization and, in this case, it is 

tuned to fit within visual hulls, which are extracted from multiple images of 

trees, in order to enable the efficient and realistic generation of 3D tree models 

to be consistent with what is sensed by cameras. An automatic process is 

designed to create 3D trees from multiple images of a single tree.
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Chapter 1 

Introduction

1.1 M otivation

Tree simulation and modeling has im portant practical and theoretical appli­

cations. Biology, ecology, and agriculture are im portant application areas. It 

also plays a significant role in the entertainm ent industry, education, archi­

tecture where realistic three dimensional (3D) tree models are required. For 

example, it is used for studying plant growth processes and it is also applied in 

many visualization tasks, such as movies, games where landscapes are common 

scenes. Tree simulation and modeling is also an im portant research problem 

in computer graphics.

In most cases 3D trees have been created simply according to the tree 

species and their sizes with little constrains put on the overall shape of the 

trees. Such a 3D tree creating procedure is usually termed a bottom-up proce­

dure or forward simulation [38]. In reality there are no two identical trees in 

the world and there are cases where one is required to simulate a particular 

tree. One typical application is in Virtual Reality where there is a need to 

reconstruct digital real world scenes. In such a type of tree simulation the 

input is an objective form of a tree and the output is the reconstructed 3D 

geometrical structure of the tree. This is called a top-down tree simulation 

approach or a backward simulation.

This thesis lies within the area of forestry inventory systems where there is 

a need to validate and verify the interpretation of aerial or terrestrial images 

for different tree types, crown geometry by computer vision algorithms, where

1
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3D tree models are needed for both visualization and verifying purposes.

1.2 Background

L-Systems, short for Lindenmayer Systems, are an effective plant modeling 

tool and were first introduced in 1968 by Lindenmayer [23]. They were pri­

marily conceived as a m athem atical theory for plant development. Now they 

are widely used to create plants and other fractal objects [37]. The key con­

cept behind L-Systems is tha t complex biological objects can be generated by 

successively replacing parts of a simple initial object using a set of rewriting 

or production rules. In this scenario, the initial object is considered as a seed 

or an axiom and the rewriting or production rules determine the development 

of the seed.

Markov processes form an im portant class of stochastic processes. A Markov 

process is a system in which the process can be in one of several (numbered) 

states, and the process can pass from one state  to another a t each time step 

with some probability. A first-order Markov process assumes th a t the next 

state (at time f +  1) is only dependent on the current (time t ) system ’s state. 

Markov models “are very rich in m athem atical structure and hence can form 

the theoretical basis for use in a wide range of applications” and “when applied 

properly, work very well in practice for several im portant applications” [39].

1.3 Previous Work

Past researchers have developed different methods for backward tree simula­

tion and modeling [42, 38, 45]. For example, Prusinkiewicz et al. [38] made use 

of positional information such as posture, gradual variation of features, and 

the progression of the drawing process from overall silhouette to local details, 

to interactively control the generation of plant forms. Sakaguchi et al. [42] 

introduced a method to reconstruct volume data, the visual hull, from images, 

and simulated branch structure by applying simple branching rules with some 

restrictions. Shlyakhter et al. [45] introduced another m ethod for reconstruct­

ing 3D tree models from images. They first compute the visual hull [21] from

2
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silhouettes and then extract trunks and branches from the visual hull and, 

finally, add leaves and branch lets onto the branches interactively.

1.4 Proposed Approach

The proposed approach to tree simulation is based on and extend the work 

of Shlyakhter et al. [45]. Briefly speaking, a stochastic version of L-System is 

introduced to create stochastic tree components such as branches and leaves, 

and an autom atic process is used to append these components onto the ex­

tracted large branches to fit the shape of the visual hull. The extensions of our 

work mainly lie in the following two parts: first, we introduced a new version 

of stochastic L-System the autom atic process for fitting small branches and 

leaves within the visual hull. Our work provides a basis for generating 3D tree 

geometrical models from images of trees via a stochastic version of L-System. 

In what follows, we focus on terrestrial images since the application to aerial 

images is straightforward.

Fig. 1.1 illustrates the system model. There are three parts: the visual 

hulls creation and skeleton finding from images, Hierarchical Hidden Markov 

Model (HHMM) L-System setting, and branches fitting into visual hulls. The 

initial input to the system is a series of tree images associated with their re­

spective camera parameters. These images are generated from either synthetic 

or real data. Either way, silhouettes of target trees are manually segmented 

from the input images. A visual hull generation m ethod is then used on the 

silhouettes where visual hull corresponds to a polyhedral approximation of the 

3D object [21].

A skeleton approximation method proposed by Blum [5], extended by Te- 

ichmann et al. [28] and Shlyakhter et al. [45], is employed in our work to 

extract 3D medial axes of visual hulls. These axes are considered as skele­

tons, i.e., trunks and branches, of the reconstructed 3D trees (see Chapter 

4). HHMM L-Systems are initially designed with basic botanical knowledge. 

An Expectation Maximization (EM) algorithm is then proposed to train  the 

HHMM L-System param eters (see Chapter 3). The final step is to generate

3
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stochastic 
EM algorithm

branch

visual hulls

skeletons

tree Images

silhouettes

3D trees

HHMM L-Systems

botanic
knowledge

Figure 1.1: System model

a 3D tree based on the extracted skeletons and visual hull information using 

the HHMM L-System to add adequate branches and leaves within the visual 

hulls.

1.5 Organization

In Chapter 2 a basic introduction to plant biology is provided alone with some 

plant modeling methods, and an im portant and widely used plant modeling 

tool: L-Systems and its variants. We also review Markov models: Markov 

Chain, Hidden Markov Model (HMM) and Hierarchical Hidden Markov Model 

(HHMM). In Chapter 3 We extend L-Systems to Hierarchical Hidden Markov 

Model (HHMM) L-Systems. In Chapter 4 we introduce how to create visual 

hulls from multiple views of objects. In Chapter 5 we examine how a skele­

tonization m ethod can be applied to extract skeletons from polyhedral visual 

hulls, In Chapter 6 we introduce an optimization procedure for fitting HHMM

4
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L-System models within visual hulls. In Chapter 7 we report some experimen­

tal results. In Chapter 8 we conclude this work and discuss its lim itation as 

well as future developments.

5
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Chapter 2 

Survey

In this chapter we review some background knowledge and previous stud­

ies. We first introduce some basic botanic terms related to plant modeling. 

These terms are necessary for readers to better understand the plant model­

ing description. We then review previous work done on plant modeling and, 

in particular, L-Systems are explored in detail. Finally, we review Markov 

processes, including Markov chains, Hidden Markov models, and Hierarchical 

Hidden Markov models.

2.1 Botanic Terms

Most plant models are described in botanic terms. The parts of a plant can 

be divided into two types: vegetative (asexual)  and reproductive parts. The 

vegetative parts include roots, stems, shoot buds, and leaves. The reproductive 

parts include flowers, fruits, and flower buds. In this work, our applications 

deal with forests, and therefore our main interests are on the vegetative parts 

of plants.

Roots are the structures which are the lowest parts of a plant, usually 

underground, and are essential for supplying water and nutrition. Since most 

roots cannot be seen directly, they are not im portant for visualization, or for 

identifying plants. Therefore we ignore the modeling of root in this work.

Stems are structures th a t support buds and leaves. There are several types 

of stems. A shoot is a young stem with leaves. A twig is a stem th a t is one year 

old or less w ithout leaves. A branch is a stem th a t is more than  one year and

6
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is typically a lateral stem. A trunk is a main stem of a woody plant. Buds are 

undeveloped shoots from which leaves or flower parts will arise. A terminal 

bud is located at the apex of a stem (see Fig. 2.1).

A node is the part of the stem where one or more leaves are attached. A 

internode is the region of the stem between two successive nodes. In Fig. 2.1, 

buds, leaves, internodes, and nodes are shown.

terminal bud

'J / f  ^  axillary bud

axillary shootinternode

node
leaf

Figure 2.1: A shoot with leaves, an axillary shoot, axillary buds, nodes, in­
ternodes, and buds.

The growth of a plant is the result of the successive division of some specific 

cellular tissues, called meristems. Apical buds are one type of meristem. A 

growth unit is a set of nodes and internodes th a t are produced by the apical 

buds of the previous node. Growth units can be short, sometimes with only 

one internodes or can be very long. When a growth unit is very long, it usually 

consists of numerous short internodes [13, 16].

The order of an axis reflects the order of the apical buds from where the 

current axis develops. The order 1 axis is a sequence of nodes and internodes, 

and each node or internode is developed from the apical bud of the previous. 

The first internode of a sequence is developed from the seed of the plant. The 

order 2 axis includes another sequence of nodes and internodes with the same 

property except th a t the first internode is developed from an auxiliary bud on 

an order 1 axis. Likewise, an order i axis develops from an auxiliary bud on

7
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an order i — 1 axis. Usually, trunks are order 1 axes. In our work, we denote 

an order i — 1 axis as the parent axis of an order i axis if the order i axis is 

developed from the apical bud on the order i — 1 axis. Subsequently, the order 

i axis is a child axis of the order i — 1 axis. An axis will have a t most one 

parent axis, but might have a number of child axes (see Fig. 2.2).

3 order axis

2nd order axis

Figure 2.2: A tree marked with different orders of axes where the trunk is an 
order 1 axis, branches developed directly from the trunk are order 2 axes, and 
so on.

According to different ramification properties, where “ramification” means 

the act or process of branching out or dividing into branches, we can divide 

different ramification processes into the following three classes: continuous 

ramification, rhythmic ramification, and diffuse ramification [13].

- Continuous ramification: Each node of an axis will develop a higher order

axis, and this node is the root of the higher order axis.

- Rhythmic ramification: Not all nodes of an axis can develop a higher order

axis. Some nodes will develop into leaves and some into the roots of 

higher order axes.

- Diffuse ramification: The nodes th a t can develop higher order axes have

random locations.

Another im portant feature of ramification is the trend of the direction of 

axes (or branches). If a child axis develops following the horizontal direction,

8
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it is plagiotropic; If the orientation of an axis is vertical, it is orthotropic (see 

Fig. 2.3). Most trunks grow up-wards to compete for lights. Therefore, order 

1 axes are usually orthotropic.

Figure 2.3: Illustration of two different branch trends: orthotropic and pla­
giotropic.

The term  phyllotaxy means the arrangement of leaves on the stem or the 

relative positions of leaves of a node with respect to the lateral leaves of the 

previous node. Such arrangements follow regular rules known for each species 

and each order. There are three types of phyllotatic patterns recognized by 

the number of leaves at a node:

• Alternate phyllotaxy — one leaf at a node (see Fig. 2.4). In this type, 

leaves may be spirally arranged, th a t is, the angles between successive 

leaves are approximately 137.5 degrees (related to the Golden ratioi and 

the Fibonacci series). In one sub-type which is called distichous, the 

angles between successive leaves are 180 degrees. For example, aspen, 

elm, and beech leaves are of this type.

•  Opposite phyllotaxy — two leaves at a node (see Fig. 2.4), which are 

opposite to each other; this pair of leaves is offset by 90 degrees relative 

to leaves at adjacent nodes. For example, maple, and ash leaves are of 

this type.

• Whorled phyllotaxy — three or more leaves at a node (See Fig. 2.4)). 

For example, smooth bedstraw and carpetweed have whorled leaves.

Orthotropic Plagiotropic

9
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Alternate Opposite Whorled

Figure 2.4: Three types of phyllotaxy: alternate, opposite, and whorled.

Q ualitative and Q uantitative Characters o f Plants

The characters of a plant can be divided into two categories: qualitative and 

quantitative. Qualitative data  are data  which can be acquired w ithout using 

any measurement tools. For example, the trend direction of branches, or­

thotropic or plagiotropic, phyllotaxy of leaves or branches, ramification types, 

etc. Q ualitative da ta  of the same species plants are the same.

Quantitative data  are data collected by measurement. These d a ta  include 

internode length, angles within lateral shoots, thickness of trunks, etc. Quan­

titative data  vary from specimens other than species. Both qualitative and 

quantitative da ta  make a plant unique in the real world.

2.1.1 Plant Architecture

Plant structures have particular patterns th a t can be characterized by the com­

binations of very few characters such as qualitative characters which include 

branches trend, phyllotaxy, etc. Botanists analyze plants topological struc­

tures and have defined 23 plant architecture models. Each of these 23 plant 

architecture models has its own particular combination such th a t it covers a 

large number of species and is typically dedicated to a botanist, for example, 

R auh’s model, M assart’s model, etc. P lants in the same model may appear 

quite different since plant architecture defines the growth strategies to occupy 

space which is shown as presence or absence of sympodial growth, ramifica­

tion types, continuous or rhythmic, the direction trend of axes, plagiotropy or

10
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orthotropy, etc [13].

Corner
Model

Roux
Model

Rauh
Model

Shoute
Model

Attims
Model

Leeuwenberg
Model

Massart
Model

Scarrone
Model

Figure 2.5: Illustrate some plant architecture models.

P lants belonging to R auh’s model have orthotropic axes for all order axes 

and rhythmic ramification, for example, an aspen tree. P lants belonging to 

M assart’s Model have orthotropic order one axes and plagiotropic order i axes 

when i > 1. They also have rhythmic ramification [13], for example, a spruce 

tree. P lants belonging to Corner’s model have one order 1 axis and no ramifica­

tion, th a t is they have monopodial trunks but no sub-branches. Some tropical 

trees belong to these type, such as coconut trees. In Fig. 2.5, 8 types of plant 

architectures are shown to illustrate the difference among plant architectures, 

please refer to Halle et a l [17] for more details on plant architectures.

P lant architecture analysis was first developed as a qualitative method. 

Soon after, many researchers worked on architectural concepts and their appli­

cations [16]. Now it is regarded as a classic work on plant topological structure 

research and it plays an im portant role in verifying the effectiveness of plant 

modeling methods.

11
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2.2 Plant M odeling M ethods

The purpose of com putational modeling is to construct simple m athem atical 

models, which can simulate objects in the physical world [32]. The task of plant 

modeling is to describe plant spatial structures and their development process, 

where an individual plant is considered as a unit which contains its parts such 

as internodes, branches, and leaves. According to the difference among them, 

the modeling methods can be grouped into two classes: empirical models and 

causal models. Thornley et al. [47] have described the distinction between 

these two classes of models. Essentially, empirical models capture statistical 

characters of plants based on collected empirical data. Therefore, they are 

also called descriptive or statistical models. These models have advantages on 

making practical predictions based on the analysis of the acquired data. On the 

other hand, causal models can be used to explain the underlying mechanisms 

of plant development. They are also called explanatory, physiologically based, 

or functional models [19].

The relationship between empirical and causal models is very similar to 

the distinction between analytic (top-down) and synthetic (bottom -up). In the 

analytic case, we analyze the acquired empirical da ta  based on the selected 

features and then construct models. While in the synthetic case we use models 

to synthesize known mechanisms of plant development.

In the literature, researchers have developed many algorithms to simulate 

plants geometrical structures in the past decades. To name a few, in 1962, 

Ulma [48] simulated branching pattern  development with cellular autom ata. 

Cohen [12, 27] introduced a more realistic model in continuous space. Linden­

mayer introduced the concept of L-System for cellular interaction modeling in 

1968. Thereafter, Honda [18] introduced a model using param eters, includ­

ing the branch angles and the branch length, to represent the shape of a tree 

and his model is considered as the first computer model of tree structures [27]. 

Currently, there are three methods th a t are mainly used. They are L-Systems, 

fractal methods and stochastic methods.

An L-System is a formal language and it uses symbol rewriting meth-
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ods to create complex fractal objects. L-Systems are clearly introduced in 

the book “The Algorithmic Beauty of P lants” by Prusinkiewicz and Linden­

mayer [37], The early stage of L-System is called DOL-System, where the 

prefix “DO” indicates th a t it is deterministic and context free. We will give 

its detail description in the next section. Parametric DOL-Systems can pro­

duce the same structures with varying attributes. Differential L-Systems are 

developed on top of param etric L-Systems by allowing continuous time flow 

instead of the discrete derivation steps and are suitable for anim ating sim­

ulated developmental processes [35]. Stochastic DOL-Systems overcome the 

lim itation of deterministic L-Systems and can produce stochastic plant geom­

etry. Communication between plants modules affects the plants developmen­

tal processes significantly. Lindenmayer distinguished two types of commu­

nications: cellular descent and interaction. Cellular descent transfers infor­

mation from parents to their children and interaction transfers information 

between co-existing modules [23, 24], Cellular descent can be represented 

by context-free L-Systems and context-sensitive L-Systems are able to model 

some extrogenous factors during the plants development process. However, 

context-sensitive L-Systems are considered to have some lim itation on model­

ing interactions between plants and environment and this type of interaction 

is a crucial factor affecting the development of plants and plant ecosystem. 

Environmentally-sensitive L-Systems [36] and Open L-Systems [27] are intro­

duced to model more complicated interactions between plants within a typical 

environment. These two systems extend the formalism of L-Systems and are 

able to model bi-directional information transform ation between plants and 

their environment.

Fractal methods use m athem atical tools which can simulate the self-similarity 

structures of plants. The Iterated Function System  (IFS) is a typical frac­

tal method. Based on IFS Bransley et al. developed recurrent IF S  [3] and 

Prusinkiewicz et al. developed language-restricted IF S  [33]. Aono et al. de­

veloped a model to produce complex 3D branch patterns and their model 

uses a ttracto r algorithm to simulate plant developments affected by some en­

vironment factors such as lighting, gravity, and wind [2], Oppenheimer [30]

13
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developed another fractal method which uses param eters such as branching an­

gle, branch-to-parent size ratio, and stem taper rates. This m ethod is limited 

to a small number of basic trees. Reeves et al. developed a partial system to 

create trees and grass [41]. The partial system is good at modeling landscape 

such forests and grasses lands.

Stochastic methods mainly include the following works, de Rayffe et al. [13] 

developed a procedural model which encodes probabilities of b irth  and death 

of plant components. Godin and Caraglio [16] further developed a multiscale 

model of plant topological structures. Zhao et al. [49] introduced dual-scale 

autom aton which uses microstates and m acrostates and semi-Markov chains 

to model plants.

2.3 L-Systems

L-Systems are an effective modeling tool and were first introduced in 1968 by 

Lindenmayer [23]. They were primarily conceived as a m athem atical theory of 

plant development. The key concept behind L-Systems is th a t complex biolog­

ical objects can be generated by successively replacing parts of a simple initial 

object using a set of rewriting or production rules each consisting of a specific 

geometric operation on an object. They are widely used to  create plants and 

other fractal objects [37]. Each L-System object is ultim ately defined as a 

string generated from an L-System rule, which includes an initial string, the 

axiom, and a set of rewriting rules called productions. An axiom consists of 

symbols with associated numerical parameters. Each production consists of 

a predecessor and a successor, connected by an equal sign, as shown in the 

following example:

• production: predecessor = successor

-  production 1: A — F[+A][-A]

where “A” before “= ” is a predecessor and the string after “= ” is 

a successor of this production.

— production 2: F =  FF

14
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where “F” before “= ” is a predecessor and the string “F F ” after 

“= ” is a successor of this production.

The meaning of a production is th a t its predecessor is replaced by its suc­

cessor during the rewriting processes. At each step of the rewriting process, 

axioms are updated, by replacing all the symbols with their corresponding 

productions, once.

For the previous example, if the axiom is “A”, then the results of 
rewriting processes are shown as follows:

-  Step 0: A

-  Step 1: F [+A][-A]

-  Step 2: FF[+F[+A][-A]][-F[+A][-A]]

-  Step 3: FFFF[+FF[+F[+A][-A]][-F[+A][-A]]][-FF[+F[+A][-A]][-
F [+A ][-A ]]]

Notice that from Step 1 to Step 2, the italic letters “A” were re­
placed by “F[+A][-A]” according to production 1, and letter “F” 
was replaced by “FF” according to production 2. In the result of 
every step, all replaceable symbols (“A” and “F” in this example) 
are replaced by their successors according to the corresponding pro­
ductions. Other symbols which have no productions (“+ ”, “[”,
and “]” in this example) are simply copied to the next step string.

Upon completion of these rewriting processes to a specified recursion step, 

a final string is generated. The final string corresponds to a set of geometric 

operations which can be interpreted by “turtle interpretation” [37].

The turtle  interpretation converts the resultant L-String into a 3D geo­

metrical model. In the 2D case, we can imagine th a t a tu rtle  is on a blank 

sheet, and when the turtle  moves, it will leave moving trails on the sheet. Four 

symbols, “F ” , “f” , “+ ” , and are used to record the trails of the turtle. “F ” 

means the turtle  moves one unit distance in the current heading direction; 

The meaning of “f” is the same as “F ” , except th a t the tu rtle  lifts its tail 

and doesn’t leave a trail on the sheet. Symbols “+ ” and denote th a t the 

turtle rotates to the left or to the right by a specific angle. By this simple 

interpretation, a two dimensional geometrical structure is drawn on the sheet.

As an example, we can interpret the string ’’F + F -F -F + F ” as a simple 

2D geometrical structure using the turtle  interpretation rules just provided.

15
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The resultant structure is shown in Fig. 2.6. A tu rtle  is oriented to the right 

direction before it starts, and it moves forwards for one unit distance ( “F” ). 

It then turns left for 90 degrees ( “+ ” ), and its heading direction is upwards . 

“+ ” is short for “+ (90)” when the default degree is 90. After turning, it keeps 

moving along in its heading direction for another unit distance ( “F” ). These 

two movements create the first two line segments in Fig. 2.6. Upon the ending 

of the full string, the whole structure will be generated as shown in Fig. 2.6.

F+F-F-F+F

Figure 2.6: An L-System string and its resultant structure after the turtle 
interpretation.

In the 3D case, the turtle states are defined by its position and three 

m utually perpendicular orientation vectors i t ,  and i f  which indicate the 

tu rtle ’s heading direction, the direction to the right, the direction to the left, 

and up direction, respectively [38] (see Fig.2.7).

u

► H

Figure 2.7: Illustration of the three directions: heading, left, and up directions 
of a Turtle in 3D space.

The interpretations of some basic symbols in 3D are given below (see the 

Appendix for a full list of symbols):

16
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•  “F” : Move forward a step of unit length and connect the new position 

to the last position by a line segment. (The new position is computed 

by a formula.)

•  “+ ” : R otate left by a unit angle (counterclockwise) around the up axis.

•  : R otate right by a unit angle (clockwise) around the up axis.

•  : pitch down by a unit angle around the left vector.

• “A” : pitch up by a unit angle around the left vector.

•  roll left by a unit angle (counterclockwise) around the forward

vector.

•  roll right by a unit angle (clockwise) around the forward vector

Using these 3D interpretation symbols, we extend tu rtle  interpretation 

from 2D (sheet) space to 3D space and 3D geometrical structures can be 

recorded.

In order to specify the data  structure for presenting axial trees, the concept 

of “strings with brackets” was introduced by Lindenmeyer [23]. W ith brackets, 

the current state  of the turtle can be pushed onto a stack. One or more sub­

structures can be drawn before the saved state is popped up and then we 

can keep drawing the main structure. In this way, with brackets, multi-layer 

structures or tree structures can be represented. In L-Systems, symbols “[” 

and “]” are used as brackets.

• “[” : Push the current state of the turtle  onto a stack.

• Pop a state  from the stack and make it the current state  of the 

turtle.

In Fig. 2.8, a simple axial structure is shown where the main axis consists 

of three segments, from bottom  up, “A” , “C” , and “E” . It includes two sub­

axes, which are drawn inside of two dashed circles, “B” , and “D” . The whole 

structure is represented as “A[B]C[D]E” , which can be viewed as three parallel

17
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growth processes existing at the same time: the process of the main axis and 

the two sub-axes.

A[B]C[D]E

Figure 2.8: An axial structure represented using L-System with bracket struc­
ture.

As a plant modeling language, the L-System has the following benefits [32].

•  Comparing to a general programming language, the programming effort 

needed to develop L-System models of plants is significantly reduced.

•  P lant models can be easily modified in practice.

• The L-Systems make plant models documenting compact and precise.

Prusinkiewicz [34] has surveyed the applications of L-Systems to  the mod­

eling of plants and those L-Systems fall into three types: Deterministic, Para­

metric, and Stochastic L-Systems. The la tter is of interest in our work.

2.3.1 D eterm inistic L-Systems

A deterministic L-System is the simplest type of L-System. An example of 

using deterministic L-Systems to generate a simple geometrical structure is 

given in Table 2.1 and the resultant object is shown in Fig. 2.9. It is obvious 

th a t the patterns of the object parts are the same as the patterns of the whole 

object, and this property is also called self-similarity, which is an im portant 

property of fractal objects.

18
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Axiom :
F
Rules:
F — » F[+F]F[-F]F 
Resulting strings:
Step 1: F[+F]F[-F]F
Step 2: F[+F]F[-F]F[+F[+F]F[-F]F]F[+F]F[-F]F[-F[+F]F[-F]F]F[+F]F[-F]F

Table 2.1: A typical deterministic L-System including an axiom, production 
rules for generating fractal objects.

/
\

\

/

/

Figure 2.9: The object generated by (after scaled) the L-System defined in 
Table 2.1 with recursive depths 1, 2, 3, 4, and 5, respectively.

2.3.2 Parametric L-Systems

To include continuous variations in detail, Lindenmeyer proposed th a t numer­

ical parameters, functions and rules can be associated with L-System symbols. 

Parametric L-Systems operate on param etric words, which are strings of mod­

ules consisting of their symbolic names with associated param eters.

Correspondingly, there are three parts in a production rule, which are 

predecessor, conditions, and successor. Symbols and are used to 

separate these three parts:

predecessor: conditions —» successor

A predecessor is rewritten only when the production condition is met. For 

example, the param etric production given below works only when x < 64,
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where A(x)  is replaced by A (x  +  1). For A(100), since x — 100 >  64, this 

production does not work.

•  A(x)\  (x <  64) —> A (x  + 1)

An example used in Prusinkiewicz et a l  [34] illustrates param etric L- 

Systems with different param eters to create different structures.

w : A(100, w0)

p i  : A(s, w) : s > =  m in  — >l(w)F(s)[+(ai)/('ipi)A(s * r 1; w  * q A e)]

[+(a2) / { ^ 2)A(s * r2,w  * (1 — q) /\ e)]

Fig. 2.10 shows the param eter setting of each variable of the above Para­

metric L-System. The corresponding resultant structures are shown in Fig. 2.11.

Figure rj r i « i «2 <Pi wo 9 € min «
a ,75 .77 35 -35 0 0 30 .50 .40 0.0 to
b .65 .71 27 -68 0 0 20 .53 .50 1.7 12
c .50 .85 25 -15 180 0 20 ,4:5 .50 0.5 9
d .60 .85 25 -15 180 180 20 .45 .50 0.0 10
e .58 .83 30 15 0 180 20 .40 .50 1.0 11
f .92 .37 0 60 180 0 2 .50 .00 0.5 15
g JO .80 30 -30 137 137 m ,50 ,50 0,0 10
h .95 .75 5 -30 -90 90 40 .60 ,45 25.0 '12
t .55 .95 -5 30 137 137 5 .40 .00 5.0 12

Figure 2.10: 9 groups of param eter settings of the Param etric L-System defined 
in the text. This example is from Prusinkiewicz et al. [34], pages 17-18.

2.3.3 Stochastic L-Systems

All plants generated by a deterministic L-System are identical; W ith different 

input param eters sets, a param etric L-System can create different objects. 

However, the appearances of these objects might look different but they have 

the same development patterns, e.g., in Fig. 2.10, every apex develops into 

one internode with a pair of apices. In reality, we all know th a t there are 

no two plants in the world growing in the exact same way. Therefore, it is 

impossible to reuse deterministic or param etric L-Systems to create multiple 

trees. Consequently, stochastic L-Systems have been proposed to overcome 

this problem by introducing probabilistic transitions between symbols. The

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Axiom :
F
Rules:
R l:  F — y  (0.33) F[+F]F[-F]F
R2: F — * (0.33) F[+F]F
R3: F — y  (0.34) F[-F]____

Table 2.2: A common stochastic L-System rule description for generating vari­
ant objects.

simulating process by using probability is a simple approach of simulating tree 

structure regardless the underlying natural rules.

For example, a stochastic L-System in Table 2.2, its production rules are 

three rewriting rules for the letter “F ” . In one derivation step, either R l ,  

R2, or R3  is applied to each occurrence of an “F” according to  the given 

probabilities: 0.33, 0.33, and 0.34. This concept of probability-based selection 

of turtle operators and numerical ranges for the operators to be formulated in 

terms of a stochastic rewriting form of L-Systems.

The first rule, “R l:  F — y F[+F]F[-F]F” , replaces “F ” by “F[+F]F[-F]F” 

with probability 0.33. To interpret it graphically, consider “F ” as a straight 

line with unit length. Rule 1 will replace a unit line by a pattern  shown in 

Fig. 2.12.

The resultant structures in Fig. 2.13 are dissimilar, where each rewriting 

process follows probabilistically selected production.

2.4 The Process View of Plant Developm ent

Plant development can be viewed as a process where some activities occur at 

discretized times. Usually, buds activities are emphasized since they are the 

most active plant parts, de Reffye et al. [13] state th a t the activity of buds 

can be one of the following:

• becoming a flower and die;

• going into sleep (doing nothing during th a t time period);

• becoming an internode which includes axial buds and apical buds;
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•  dying and disappear.

Once one of these activities is activated, more buds may be developed and they, 

in turn, create more activities. The activity is initiated with some probability 

th a t can be acquired from experimental statistic data.

We consider the bud development and all the possible activities as states, 

and consider the states activating processes as state transition processes. Then 

we can describe this plant activity progression by a state  transition graph or 

a Markov chain. The states, state transitions, and probabilities among state 

transitions make it natural to use Markov chains as models [32]. In [32], it has 

been proved th a t a stochastic L-System model can be converted to a Markov 

chain model. A stochastic L-System can also be represented by Markov chains 

and stochastic L-System rules jointly.

2.5 Markov Processes

Compared with deterministic processes stochastic processes are much more 

common in reality. Markov processes are one of the most used stochastic 

processes. In the following section, we introduce Discrete Markov Processes, 

Hidden Markov Models, and Hierarchical Hidden Markov Models.

2.5.1 D iscrete Markov Processes

Given a system with a finite set of states {5i, 52, ,  S n } a t discrete times t  =  

1, 2, . . . ,  the states of the system will change according to a set of probabilities. 

We denote the state  a t time t  as qt and the probability of the current state 

being chosen (at time t) is conditional on all predecessor states. For a first 

order Markov chain, the probability only depends on the preceding state:

P{qt =  Sj\qt- i  = Si,q t - 2  =  S k, ...?i =  S m) = P(qt = Sj\qt- i  = Si).

We consider th a t the process is stationary in time and is defined by a set 

of state transition probabilities a^,

a%j =  P(qt = Sj\qt- i  =  Si), 1 <  i, j  < N ,

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where a -̂ obeys the following standard stochastic constraints:

O i j > 0 ,  Vi, j ;  E f =1Oij = l, Vi.

An example of a Markov chain with three states is shown in Fig. 2.14, 

where the state transition probabilities can be w ritten in m atrix  form as

'0.3 0.2 0.5

IIii 0.3 0.4 0.3
0.2 0.7 0.1

The observations are a set of states which are chosen at each tim e step 

and the states correspond to physical (observable) events. For this reason, the 

above stochastic process is called an observable Markov model [39].

2.5.2 Hidden Markov M odels

Observable Markov models have many restrictions for real life applications as 

they do not dissociate states from observations or param etric values. For this 

reason, a more general model, an Hidden Markov Model (HMM), is typically 

used. The observations of states in HMMs are unobservable, but they can 

be predicted through another set of stochastic processes which generate a 

sequence of observations[39].

The elements of an HMM are:

•  the number of states: N ;

•  the number of distinct observation symbols per state: M;

• the prior probability state vector: 7r;

•  the state transition matrix: A;

• the state-dependent observation m atrix for each state: B.

We use the compact standard notation A =  (A,B,7r) for an HMM. There 

are three questions to answer:
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1. Compute the probability of this sequence generated by the coin model.

2. Determine which coins most likely produce “head” or “ta il” observations 

over time.

3. How do we update the coin tossing model given this observation se­

quence?

The interested readers may see Rabina et al. [39] for detailed discussion of 

these three problems.

In this application, we do not come up with solutions to these three prob­

lems. Rather, HMMs are used here to predict observation sequences. As we 

will see, a variant of the Expectation Maximization (EM) algorithm  for solving 

the third problem can be used to update the model parameters.

2.5.3 Hierarchical Hidden Markov M odels

Hierarchical Hidden Markov Models (HHMMs) are generalized HMMs and 

are structured multi-level discrete stochastic processes introduced by Fine et 

al  [15]. They are originally designed for the study of some pattern  recognition 

areas, such as language, handwriting, speech, since their natural sequences 

have complex multi-scale structures.

Each HHMM state  is also an HHMM, i.e. each state is a similar stochastic 

model and a sequences. Note th a t in HMMs, most observations are single 

symbols. A sequence is produced by recursively activating the sub-HHMMs of 

a state. These recursive processes will end when they reach a special type of 

states called production states, which are considered leaf nodes of the HHMM. 

Only these production states can emit output symbols or observations. These 

symbol em itting processes are done in the same way th a t HMMs emit obser­

vations. Thus, HHMMs observations are chosen according to  some probability 

matrices as well. O ther states th a t can’t  emit observable symbols are called 

internal states.

An HHMM can be viewed as a tree structure and it has two types of 

state transitions: vertical and horizontal. Vertical transitions are the state
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transitions th a t occur when a state activates its sub-HHMM and the sub- 

HHMMs are denoted at a lower level. So vertical transitions are the transitions 

between two different levels. Horizontal transitions only occur in the same 

level. In HMMs only horizontal transitions exist because of their single level 

structures. A production state has horizontal transitions only and an internal 

state has both types of transitions. In addition, there is a final state  at each 

level, denoted by qfnd, except the root level. When a final state  is activated, 

the control will return to the parent level and jum p out of the current level. 

So i t’s also a special vertical transition but it is different from the vertical 

transitions which activate sub-states. As we can see, for these final states, the 

control is returned to the parent level determinately.

More formally, let E be a finite alphabet and E* be the set of all possi­

ble sequences over E. An observation sequence O = 01O2O3 . . .  0 ? is a finite 

sequence in E*. The level index of the root state is 1 and th a t of the produc­

tion states is D. A state of an HHMM is denoted by qf, where d is the level 

index and i is the state index at this level. The numbers of internal states at 

different levels are not necessary to be the same and the number of sub-states 

of an internal state  qf is denoted as \qf\. Similar to HMMs, HHMMs also 

have state  transition matrices and observation matrices. An HHMM has two 

types of state  transition matrices for its vertical and horizontal transitions, re­

spectively. The horizontal transition m atrix is denoted by A qd =  (a?-), where 

afj =  P{qf+1\qf+l) is the probability of making a transition from qf+1 to qd+1,

i.e. a horizontal transition from the Ah state  to the j th  state  at level d + 1, 

which are children of state  qd. Similarly, Uqd =  (7rd(q?+ l)) =  P(q?+1\qd) is the 

initial d istribution vector or a vertical transition vector and includes the proba­

bility th a t the Ah state at level d +  1 is initially activated by state  qd and The 

production states are associated with observation vectors: B q°  =  (bqD(k)), 

where bq° (k) — P(ai0\qD) is the probability th a t the symbol <7*, G E is em itted 

by the production state  qD. Thus an HHMM has the param eters set [15]:

a =  {xqd}de{1,..!D} = {{Ag,d}(ie{l!..)£,_1}, {n 9<i}de{lr.;jD_1}, {B qD}}.

A string (observation) is generated in the following way. The root state
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has the control initially and activates one of its sub-states a t level 2 with 

probability II91. Every internal state qd activated by its parent state, will 

in turn  choose one of its own sub-states with probability f l^ .  In Fig. 2.15, 

the dash lines with arrows illustrate such processes. The recursive process 

will keep on until a production state qD is activated, where a single symbol is 

em itted with probability B q° . In Fig. 2.15, the small black circles are attached 

on production states and these circles denote the observations. Subsequently, 

the control returns to the internal state which activated qD. This internal 

state will pass the control to another state in the same level according to 

this level’s state  transition m atrix (A gd). In Fig. 2.15, the solid horizontal 

lines with arrows illustrate horizontal transitions. The newly chosen state  will 

begin another string generation process. When a final state qdnd, shown in grey 

circles, is reached, the control returns to the parent state of the whole hierarchy. 

In Fig. 2.15, the double dash lines with arrows illustrate such processes. The 

process will repeat till the root state  is reached again and an observation 

sequence is thus created [15].

Fine et al. used HHMMs in handwriting recognition applications and intro­

duced how to estim ate all the parameters in an HHMM. For more information, 

please refer to [15].
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Figure 2.11: 9 structures generated by a param etric L-system with different 
initial param eters given in Fig. 2.10. This example is from Prusinkiewicz et 
al. [34], pages 17-18.
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F[+F]F[-F]F F[+F]F

Figure 2.12: The rewriting option rules defined in Table 2.2 with their associ­
ated probabilities.

Figure 2.13: The objects generated from the stochastic L-System rules defined 
in Table 2.2.
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aii=0.3 822=0.4

0.2

.0.3
.0.3,,-0.5

.0.2

Figure 2.14: A 3-state Markov chain {S i, S2, S's}, with state transition proba­
bilities corresponding to directed edges on the finite state graph.
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Figure 2.15: The topological structure of an hierarchical hidden Markov model 
(HHMM), where single dash lines illustrate vertical transitions, solid lines illus­
tra te  horizontal transitions, and numbers attached on transition lines denote 
the transition probabilities. The black circles are observations of production 
states.
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Chapter 3 

Hierarchical Hidden Markov 
M odel L-System s

In this chapter we introduce a new type of stochastic L-Systems: Hierarchical 

Hidden Markov Model L-Systems or HHMM L-Systems for short.

3.1 HHMM L-Systems

W hat differentiates trees within a given species is the pattern  of their branching 

process. To present all these different patterns as well as all possible stochastic 

rules, a standard stochastic L-System has to define numerous rules and these 

rules appear independent to each other. Moreover, a stochastic L-System lacks 

a clear structure, which causes a designer more managing all its param eters 

and rules.

It has been proved th a t stochastic L-Systems can be re-represented jointly 

by L-System rules and Markov chains [32], There exists a multi-layer Markov 

model, the HHMM, and we integrate the stochastic L-System and an HHMM 

into an HHMM L-System. The HHMM L-System is a new type of stochastic 

L-System and it is highly structured.

Accordingly, different types of object features, at different scales, can be 

created by changes a t a given level of the rewriting procedures. See Fig.3.1 

for the development process of a bud, where the numbers indicate the possi­

bilities of the transitions and they don’t  reflect the natural bud development 

probabilities. The layers in the structure can be simply viewed as the increas-
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ing process tim e step and the top layer is the starting. The bud a t the top 

layer has some probabilities to be developed into branches or branches with 

buds, and the bud at the second layer can be developed into fruits by some 

probabilities, etc. These transitions can be modeled by HHMMs’ vertical and 

horizontal transitions. Also tree parts can have different attributes, e.g, leaves 

can vary from sizes, colors, orientations etc. These attributes can be modeled 

by HHMMs’ hidden observation functions.

-state

0.8 0.1

0.9

0..1 0.5 0.5

■observation

leaf

furit

End

flower

leaf branch
node

internode

node
internode

disappear

bud

bud

disappear

Figure 3.1: An illustration of the development trend of a bud

As with HHMMs, an HHMM L-System also includes two types of states: 

internal and production. The observations of internal states are sub-HHMMs. 

Only production states can emit observation symbols with probabilities. Each 

observation is an L-System symbol associated with a param eter and this pa­

ram eter is randomly generated according to some distribution, which is usu­

ally Gaussian distribution and distribution vectors. For example, the observed 

symbol is “F ” and its associated param eter is generated from a Gaussian dis­

tribution (1, 0.5) i.e. the mean fi =  1 and the standard deviation a — 0.5. 

Its observation, denoted as “F (x )” , has the fixed symbol “F ” and numerical 

variable x, which is randomly sampled from the Gaussian distribution at each 

process. For example, “F(0.8)” , “F(1.2)” , and “F ( l . l ) ” are three possible
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observations. In tu rtle  graphs, these different observations are three line seg­

ments with different lengths. Recall tha t, as we introduced in C hapter 2, plant 

characters can be classified into two categories: quantitative and qualitative, 

where quantitative data  of plants include internode lengths, angles within la t­

eral shoots, thickness of trunks, etc. and they vary from difference specimens. 

To simulate different quantitative data, we use the distribution param eters for 

some L-System symbols to enable the function of creating stochastic lengths, 

angles, and thickness etc.

Accordingly, There are two types of state  transitions in an HHMM L- 

System: vertical and horizontal. A vertical transition occurs when a state qf 

activates its child state  qf+1 1. This type of transitions can also be regarded 

as a predecessor which activates the rewriting process, and the predecessor is 

going to be replaced by its successors. Here the state  qf is the predecessor and 

the successors will be the observation sequence generated when the control is 

given back to the state qf. A horizontal transition is the transition within 

the states a t the same level. So when the same child state  is activated, its 

observations are not determ inate and unpredictable. W ith the functions of 

both vertical and horizontal transitions, a predecessor can be replaced by dif­

ferent successors. Terminal states, or end states, are used to indicate the end 

of a horizontal transition at a certain layer. When a term inal state  is reached, 

the generation procedure will return from the current level back to  its upper 

level. We observed th a t the structure is defined by a hierarchy and so it is

appropriate to call it a type of Hierarchical Hidden Markov Model (HHMM) 
2

In an HHMM L-System, a state can appear at different levels and these 

states th a t appear later are usually omitted. The L-System symbols th a t have 

their default tu rtle  interpretations can also be redefined as HHMM states. 

Thus they can be considered as either production states or internal states de­

pending on the recursive depth, i.e, when the recursive depth is reached, these

1The denotations are used for HHMM states [15] and have been introduced in Chapter
2 .

2There are many different formulations of hierarchical hidden Markov models and this is 
the most similar to the one discussed in Singer et al. [15].
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symbols are considered as L-System symbols with meaningful tu rtle  interpre­

tation, otherwise they are replaced by user defined sub-HHMMs.

An L-String is generated from an HHMM L-System in the following way. 

The root or the first level of the hierarchy, which is considered as the axiom of 

the L-System, has the control initially. Each symbol in the axiom will activate 

a sub-state at the second level by Monte Carlo sampling of the underlying 

probability densities. Every internal state activated by its parent state, will 

in turn  activate one of its own sub-states with probability. If a production 

state is activate, it will emit an observation with probabilities. The “down­

wards” recursive process will keep on until a production state  is activate or 

the specified iteration depth is reached and the control will be returned back 

to the parent state  which was latest activated. This parent state, which is an 

internal state, will pass the control to another state  in the same level. The 

whole process will repeat until the last root state  is reached again and an 

observation sequence is thus created. This process is running in the same way 

with HHMMs except th a t a recursive depth is used to control the recursive 

depth.

Alternatively, we can describe this recursive process as L-Systems rules 

rewriting process. At step one, each symbol in the axiom will be replaced 

by the strings created from its sub-HHMM. The strings consist of both  the 

symbol of internal states name and observations em itted by production states 

and are regarded as the observed L-Strings after step one. At step two, each 

internal states in the L-String will be replaced by the sub-HHMM from the next 

level. T hat is, elements in the L-String will be further replaced by observations 

inferred from the HHMMs. This rewriting procedure iterates until the specified 

iteration depth is reached.

We consider some examples to help understand HHMM L-Systems and 

their relationships to stochastic L-Systems. In a standard stochastic L-System, 

with rules given in Table 2.2(Chapter 2), its first production rule R l  replaces 

“F ” , which is a unit length straight line interpreted as a tree structure th a t in­

cludes a line segment of three unit lengths and two sub-branches (see Fig. 2.12). 

The second rule R2  replaces “F ” with a simpler tree structure which includes
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a main axis of two unit lengths and a left branch. The third rule R3  replaces 

“F ” with a branch structure with one unit length axis and a right branch 

from the axis (see Fig. 2.12). These three rules R l ,  R2, and R3  are chosen 

during the rewriting processes using the probability vector [0.33,0.33,0.34]. 

The resulting structures are different combinations of the above three rules 

(see Fig. 2.13). This rewriting process can be regarded as a Markov chain.

We developed an HHMM L-System th a t can produce similar stochastic 

structures to the above standard stochastic L-System. See Fig. 3.2 for its 

topological structure and the observation m atrix of the state  “D” is

value 1 2
probability 0.34 0.68

Also, to reduce the number of states and the m atrix size, brackets “[” and “]” 

are om itted from the symbol set. States inside a pair of brackets are predefined, 

in this example “B” will be replaced as “[B]” .

0.2

0.8

0.5 0.5

Figure 3.2: The topological structure of the HHMM L-System model generat­
ing objects in Fig. 3.3.

As shown in Fig. 3.2, the states of an HMM are L-System symbols ( such 

as “F” , “+ ” , and “-”) and HMMs symbols (such as “F ” , “D” , “E” , and “B”).
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jr

Figure 3.3: The objects generated by the HHMM L-System defined in Fig. 3.2 
to be compared with the Stochastic L-System objects shown in Fig. 2.13.

Observations of an HMM are variable combinations of these symbols with 

numerical param eter values, for example, “FD(2)” , and these param eter values 

are drawn from given distributions. The root of the HHMM L-System is the 

state “F ” , which is also a predefined L-System symbol. “F ” has the successor 

“FD(a:)” . The observation m atrix for “D” shows th a t two discrete values 1 

and 2 have 66% and 34% probabilities to be chosen, respectively. Thus, the 

results are w ritten as “D (l)” or “D(2)” , respectively. The state  “D” is defined 

as a special type of state  and it involves a self repeat function. The number of 

the self-repeat times is decided by its associated parameters. T hat is, “D (l)” 

will repeat “D” once; “D(2)” will repeat “D” twice, i.e., “D(2) =  DD” ; and 

“D (n)” will repeat “D” n  times. This type of self-repeat state  is term ed as 

“superstate” . For example, during the growth procedure of a tree, from a node 

of a branch, the number of child branches is not fixed. Also, in a growth unit, 

the number of internodes varies. All child branches from the same node can 

be modeled using the same production rules and the internode in the same 

growth unit can also follow same production rules. T hat is, we can reuse some 

production rules but we need to control the number of these rules for each case 

and the superstate is used for this task. We can use botanical knowledge to 

define superstate properties to control the number of repeat processes and we 

control the times by the possible values in an observation m atrix  B.  In this 

example we set these values as 1 and 2 with the associated probabilities.
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For another example, the HMM used to generate

axiom = NNSNNSNNSNNSNNSNNSNNSNNS

has the state  set {N, S, e}. Using this basic HMM, it is difficult to control 

the number of “NNS” in the observations by adjusting the transition m atrix 

parameters. However, using superstates, the number of “NNS” can be easily 

controlled by creating a sub-HHM “M” which can model “NNS” and treating 

“M” as a super-state, and adjusting its self-repeat time, i.e. its observation 

param eters . The sub-states of “M” can either be a simple L-System rule such 

as “M =  NNS” or a sub-HHM “M ” with states “{N, S” .

To balance the growth speeds of all states, we define a growth speed vector 

to control the number of rewriting times in each rewriting step. For example, 

we design three-layer HMMs to simulate a group of tree parts including stems 

and lateral branches with buds, and two-layer HMMs to simulate a single 

branch with buds, and a single HMM to simulate a single bud. And these three 

groups of tree components are possible candidate states of a same parent state 

and one of the three components will be developed in the next growth time 

unit. Whichever HMM states is activated, we expect th a t all their states can 

be traversed in the next rewriting step. Therefore, it is necessary to  specify the 

growth speed of each production rule of an HHMM L-System such th a t tree 

parts which are designed by multi-layer HMMs can be completely developed in 

a single time unit. Growth speeds allow variant number of layers of HMMs for 

constructing different tree parts. As we can see from Fig. 3.2, “F ” is replaced 

by “FD(a;)” , x  e  {1,2}, so a line segment is replaced by a unit line segment 

( “F ”) and branch structures ( “D”). “D” is replaced by either “B F” or “B” . 

T hat is, “D” is replaced by a sub-branch with an unit line segm ent(“B F”) 

or without an unit line segment ( “B”). “B” is not a L-system symbol and 

doesn’t  have any structure meanings, so we let “B” to be replaced by either 

“+ F ” or “-F” , which are two sub-branches in turtle  graphics. T hat is, “D” 

needs to be replaced twice to generate branch structures. Thus, the growth 

speeds for states “F” ,“D” ,“B” ,“E” in Fig. 3.2 are set as 1,2,1,1 respectively. 

Therefore, stochastic structures can be generated using this HHMM L-System
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Axiom:
NNSNNSNNSNNSNNSNNSNNSNNSNNB
Rules:
1. S='(.9)!(.9)
2. N=tF[k '{0 .8) \LBL\zL} > {187)[zk'{.7)\LBL\zL} >  (137)
3. B = ^ [ —/(.8)!(.9)$iC'Z,|^X]/(.9)!(.9)Cf
4. C=tF[+ (.8)\(.9)$LBL\zL]'(.9)\(.9)B
5. L=[ {+ (30)/(10) -  (30)/(10) -  (30)/(10) -  (120)/(10) -  (30)/(10)
-(30 )/(10 )} ]
Rule 1 is used to  reduce the lengths and diameters of the stems generated
later.
Rule 2 is used to generate trunk stems and two lateral branches.
Rule 3 and 4 are used to generate branches.
Rule 5 is used to generate a single leaf.
The axiom consists of a number of ”NNS” , where “N” is a basic unit of the
trunk and “S” can reduce diameters and lengths of upper stems.

Table 3.1: A deterministic L-System for creating simple conifer type trees.

to approximate the stochastic L-System in Table 2.2.

For more examples, to generate a more complex object, such as a natural 

tree, an HHMM L-System model is created from a series of existing determ in­

istic L-System rules. A deterministic L-System rule is given in Table3.1 and a 

3D tree generated using this L-System is shown in Fig. 3.4.

These two models share the same transition matrices at each hierarchy, and 

the same structure(see Fig. 3.5). Fig. 3.6 shows their resulting trees created 

by Monte Carlo sampling of the model parameters.

These two models are different in few observation distributions. All obser­

vation distributions are given in Table 3.2, where the Gaussian distribution 

function for state “s” is briefly denoted as “s” ~  (/ ,̂ cr):

In addition to Table 3.2, the state “C” a t layer 3 has its distribution vector 

as follows:
value 0 1 2  3

probability 0.05 0.1 0.75 0.1

To generate the second row of trees in Fig. 3.6, we set the axiom as “N(12)” ,

the recursive depth as 5, and the growth speed vector for states [N, a, M, C,

B, D] as [1, 1, 4, 3, 2,1],

The HHMM L-System model used to generate the first row of trees has
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Figure 3.4: The conifer generated by the deterministic L-System defined in 
Table 3.1.

Layer 2: ’ -  (0.95,0.05) ! ~  (0.95,0.05)
Layer 3: F -  (1.0,0.1) A ~  (137,10)
Layer 4 & ~  (40,10)

! -  (0.7,0.01)
’ ~  (0.7,0.01)

Layer 5 ’ -  (0.9,0.02) ! ~  (0.9,0.02)
Layer 6 +  ~  (35,10)

’ ~  (0.9,0.02)
-  ~  (35,10)
! ~  (0.9,0.02)

Table 3.2: The state  distribution functions of the HHMM L-System with struc­
ture in Fig.3.5.

the same setting except th a t this Gaussian distribution function for 

a t layer 4 is (40,0) instead of (40,10). Since the variance of the Gaussian is 0, 

from tu rtle  interpretation, the turtle  pitches down around left vector for the 

fixed 40 degrees.

In summary, there are four basic elements in an HHMM L-System:

1. An Axiom.

An axiom of an HHMM L-System consists of a sequence of symbols with 

their associated parameters. It is same with an axiom of a standard 

L-System.
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2. Production rules, which can be defined jointly by classical deterministic 

L-System rules and HHMM rules.

Like an HHMM, an HHMM rule has a hierarchical structure, . It includes 

states, transition matrices, observation matrices, and prior probabilities.

There are two other types of states in an HHMM L-System besides pro­

duction and internal states.

• term inal states. These states indicate the end of the HMM sam­

pling processes. When a term inal state is reached, the generation 

procedure will return from the current level back to  its upper level.

•  superstates. Every superstate is followed by an integer n  which 

indicates th a t this superstate will be repeatedly replaced by its 

successor n  times.

Usually, horizontal transition matrices are of left-right model. Moreover, 

self-loops are reduced by using super-states. In the other words, hor­

izontal transition matrices are restricted left-right model. Observation 

matrices can vary according to the different levels of an HHMM.

3. A recursive depth vector.

If an HHMM L-System axiom consists of a series of parallel HHMM 

rules, we can use a vector to specify recursive depths, i.e., each HHMM 

rule can have a different recursive depth. Intuitively, branches closer to 

roots are better developed than these on top.

4. A growth speed vector.

It can be used to control the repeating process. W hen no growth speed 

vector is specified, all rules are rewritten once a t each rewriting step.

3.1.1 The Relation between HHM M  L-System s and 
Stochastic L-Systems

An HHMM L-System has more constraints on production rule selection and 

observation symbols and thus it has the following advantages:
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•  A clear structure which is more intuitive for tree generation.

•  Observation matrices generate variable observations which allows to gen­

erate stochastic quantitative data  of tree components.

•  Superstates reduce the complexity of horizontal transition matrices and 

eliminate loops on horizontal transition and thus allow users to apply 

numerical botanic parameters, such as the number lateral branches, into 

the L-System rules directly.

•  Growth speed vectors can control the repeating speed of each HMM and 

enable the flexibility of designing the HHMM rules.

3.2 Parameter Estim ation for HHMM L-Systems

Hierarchical stochastic methods do play increasingly im portant roles in many 

application domains, as recently surveyed in [29], including image, video and 

audio processing, robot mapping, etc.. The specific advantage of these hier­

archical methods lies in their capacity to model long-term interactions among 

different portions of the targeting signal sequence. L-Systems, and their vari­

ants, are special cases of the general modeling m ethod th a t caters for the task 

of 3D plant modeling.

Fortunately, param eter estimation of HHMM L-Systems can be further 

constrained by only re-estimating the observation matrices (B) while preserv­

ing the transition matrices (A) and priori (n). To solve this simplified problem, 

we develop a simple extension of the stochastic EM m ethod as follows.

Prior to the detailed descriptions of the algorithms, it is im portant to note 

th a t our task is to construct 3D CAD models based on the following:

1. A series of images, Y ,  th a t have the target object (tree) in the scene.

2. A 3D object D,  th a t is, a 3D object encoding feature of real trees, e.g. 

a visual hull [21] constructed from Y.

In theory, the standard Baum-Welsh (EM) algorithm for HMMs can be 

utilized here for param eter estimation [40]. However, in our situation, the ob-
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servation sequence (the L-String) is not directly observable, and, even worse, 

it is very hard to derive the L-String representation from a given 3D botan­

ical object since several different L-Substrings may have the same 3D result. 

Instead, a sampling approach is a natural choice to overcome such difficul­

ties. Also, because expert knowledge is encoded in the transition matrices and 

needs to be preserved, we propose to estim ate only the observation matrices 

via our proposed stochastic EM algorithm as follows.

Define the hidden variables as x\,  rr2, • • •, and they are matched with 

observation data  D  =  {di, d2, . . . ,  di,} and the associated normal param eters 

for the observation m atrix  are 9i € (ffi, 02) • • ■, $l)> where 9t — (pi, 07), /q is the 

mean and cq is the variance of variable. Notice th a t all the related variables are 

assumed independent. For variable 17, it is difficult to  compute the likelihood 

p(di\9i) from di alone, so we augment di with the hidden variable 27 to:

d t =  [d t , x i \ (3.1)

and

(3.2)

and similarly,

X  =  { [ X U X 2 , • • - , X L ] , X i  ~  N { p h ( 7 i ) } .

We then formulate the Maximum Likelihood (ML) problem as:

(3.3)

6 * =  a rg m ax p (0 |l^ ) 

oc argm axp(L$,9)

=  a rg m a x p (lt|0 )  • p(9)B

Assume df as iid, and 9i as having uniform priors. Then

L -y
9* =  arg max 

6 ,

oc a rg n ia x ]r io g p (d (  \9{).
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The stochastic EM method is employed to solve this ML problem. Define

Let Q(9) = Jx q(x\D) \ogp(x, D\9)dx  and H  = -  f x q(x\D) \ogq(x\D)dx.  Q(9) 

is the expected complete log-likelihood function and H  is the entropy and it 

does not depend on 9.

EM algorithm:

E-Step : qt+1 — argm ax9 L(q,9t)

M-Step: 9t+1 =  argmaxfl Q(9)

We can draw S  samples for x  according to p(x\9), and let:

L  =  \ogp(D\9)

where q(x) is a distribution function. 

Using Jensen’s inequality, we have:

q(x\D) \ogp(x, D\9)dx — / q(x\D) \ogq(x\D)dx

hi,s = p{di\xh 9i).

Given

H = <  x > 

cr2 (x) =  <  [x — p) 2 > 

=  <  x 2 > —u2,

it follows tha t

pi = < x t >
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E?=i h i .

Furthermore, considering the hierarchical characteristics of the HHMM L- 

System, we can derive the following equations:

Hi = < x i >

£ f=  1 hl,s ■ Is ■ Xl,s

Z ) « = l  hi ,8 ' Is
(at ) 2 = < x 2 > - u 2

E s = 1 h l,s  • 7 s  ■ x j s  2

E f = iK s  - i s  ’ 

where qs =  P^(o)-Pn(i)' '  'Pn(pa(i)) are Pr°duct of the sampled vertical/horizontal 

transition probabilities along the path to the current node I.
Finally, the complete stochastic EM algorithm is defined as the follows:

1. Initialization: set the initial 9 values 90 =  {0° : ;

2. Sampling step:

At tim e step t (t= 1, 2, 3, . . . ) ,  draw S  samples of x  by drawing in batch 

mode from each distribution 9t_l =  {9\~l : h \ ~ 1 t ^ _1}-

3. E step:

Calculate

r w  = £ r w  = E X % - 7 , ,  (3.4)
1 =  1 1 =  1 8  =  1

where h\ s ■ j s is the weights of drawn samples;

4. M step:

Compute the parameters

A
£?=i M,» ■ 7. ■ x,,

r w

( s «)2 =  S . =i ^ 7 ,
p  i(9i)
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5. Iterate through step 2 to step 4 until 9 converges.

3.2.1 Experim ents

In our experiments, we initially designed an HHMM L-System according to 

the basic botanic knowledge of the tree species to be estimated. A 3D shape 

was provided to help estim ate the HHMM L-System parameters. We set the 

recursive depth of the HHMM L-System according to the height, width, area of 

the 3D shape, etc. We chose k image planes and projected the 3D shape onto 

these k image planes to obtain k 2D images, each containing a 2D silhouette of 

the 3D object. These 2D silhouettes were used to compare with each sample, 

and denoted as ipj, (j =  1, 2, . . . ,  k).

We then initiated a recursive process and at each loop to  generate n  sam­

ples from the HHMM L-System model. During the generation process, all 

param eters were recorded in stacks and were used for updating the HHMM 

L-System model at the end of each loop.

From each HHMM L-System generated tree sample we obtained its 3D 

geometrical structure and projected the 3D object onto these same k image 

planes and obtained k 2D silhouettes. This resulted in k new silhouettes for 

each sample, denoted by

^ i , 2 )  • • • )  A , A;}A  1 ) 2 , ■ ■ • , n ,

where i is the index of the generated sample in a loop.

We compared each silhouette Ajj of this sample with the corresponding 

2D silhouettes tpj of the 3D shape. T hat is, we compared ipj with \ itj  and we 

calculated a similarity score of the ith  sample by

_ ^i,j)
U f o . A y ) ’

for “H” corresponding to the intersection area of the j th  silhouette of rendered 

samples and the input j th  2D silhouette. To simplify com putation, we used 

the number of overlapped pixels of two silhouettes as the “D” area. Similarly, 

“U” corresponding to the union area of the j th  silhouette of rendered samples
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and the input j th  2D silhouette. We use the number of union pixels of two 

silhouettes as the “U” area.

We reduced the similarity score when parts of the 3D sample were outside 

of the input 3D shape by adding a penalty. For example,

w _  Xj j )  ' cpj_____

where C  is a constant used to adjust the penalty. The larger C  is, the smaller 

the similarity score will be.

After getting all similarity scores for k silhouettes, we can compute the 

overall similarity score of the current sample level by taking Wi to  be the 

average of the ioy for j  =  1, 2, . . . ,  k, i.e.

1 k
Wi = l H Wid

K  3 = 1

After computing n  samples, we have a weight vector:

{wj} : {w i ,w 2, • ■ .,«>„}

The similarity score at each loop was computed by:

Similarity score =  XXu wi

We found the samples which have low weights, say lower 25and set their 

weights as 0 and then normalized the samples weights.

{w[} : {w[,  w ’2, . . . ,  w'n) and E L i  K  =  1

The normalized weight vector is used to update the param eters of the 

HHMM L-System. The samples with low weights d idn’t  count on the updating 

processes.

Different probability distributions need different updating method. Gaus­

sian distribution and distribution vectors were used in our work. For Gaussian 

distribution (/i, cr),Pi was the value drawn from the Gaussian distribution at Ah 

sample, and a t the end of one loop we obtained new param eter values( / / ,  S 4) 

by setting
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n

=  Y , Wi'Pi>
1 = 1

( s *)2 =
i=1

where pij  was the drawn value from 9i : pi, E* for the ith  sample and w\ was 

the normalized weight of the ith. sample.

For a discrete distribution vector, we simply computed the percentage of 

each value and used the new percentage to replace the old param eter. After 

updating all applicable parameters, we obtained a new HHMM L-System and 

repeated the above process for t times, or until param eters converged.

In one experiment, 100 independent samples were generated from the 

HHMM L-System at each loop, and 12 loops were repeated to update the 

param eters of the HHMM L-System. At each loop, 75 samples were counted 

for updating parameters. The scaling factor C  was set as 5. One sample from 

each loop was randomly chosen and shown in Fig. 3.8 and a silhouette is shown 

in Fig. 3.7, and in this experiment, 4 identical silhouettes were used for weight 

estimation. The similarity score curve of estim ating an HHMM L-System is 

shown in Fig 3.9. This curve contains 12 increasing similarity scores for 12 

loops.

We noticed th a t the similarity scores are relatively small since the input 

silhouettes are usually much larger than  the areas of samples and even the 

weight of an ideal sample could not reach 1 since the silhouettes used are the 

overall shape of trees and they don’t  contain holes. However, the projections 

of the sampled trees have much spaces among branches.

Moreover, when a sample goes outside of the silhouette, a penalty will 

rapidly decrease the similarity score.

In the experiments we obtained reasonable branch length and angle pa­

rameters, which makes the generated trees have close live crown ratios 3 with 

the silhouettes.

The lim itation of the estimation is due to insufficient information used for

3Live crown ratio is the percentage of the length of the stem which has live branches.
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weight estimation. In our case, only silhouettes are used to do the comparison 

and the similarity scores only reflect partial weight of the samples, w ith a 

global comparison strategy some param eters are re-estimated more sufficiently 

than  others. In this cases the lower order of axes such as trunks and large 

branches are better estimated.

To this stage we have developed an HHMM L-System for the generation 

of 3D objects where all rewriting rules are replaced by sets of matrices th a t 

define state  transitions and expected values of transformations. It would be 

ideal if we could fit such models with sensed image data. To th a t goal, then, 

we need to explore how to integrate such a model into the visual hull of an 

object constructed from multiple images, the topic of the following chapters.
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Figure 3.5: The structure of the HHMM L-System to generate trees in Fig.3.6. 
Probabilities of 1.0 are om itted in the graph. States “C” , “B” , “D” are defined 
as included in brackets and thus “C” will be converted to “[C]” . The 
HHMM L-System observation functions are given in the text.
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Figure 3.6: Two groups of trees generated from the two HHMM L-System 
Models. To show the branch structures more clearly, the trunk diameters are 
reduced.

Figure 3.7: A silhouette is used for the stochastic EM algorithm in our exper­
iment.
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Figure 3.8: Samples chosen from the 12 loops, one sample from each loop, 
shown from left to right. Samples from the first to the sixth are on the first 
row and seventh to twelfth on the second row.
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Times (t)

Figure 3.9: The similarity score for updating a HHMM L-System model in 
first 12 loops.
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Chapter 4 

Visual Hull Construction

In this chapter, we first introduce the concept of the visual hull and its prop­

erties and then compare four approaches to constructing visual hulls.

4.1 Introduction

A central problem in computer vision is to identify and reconstruct the 3D 

content of a scene. Many approaches are based on using 2D images as sources 

and they are classified as “shape from X ” , where “X ” is the information used, 

such as textures, shadows. [21]. A 2D silhouette, the projection of a 3D object 

onto an image plane, is effective for shape understanding [1] and is relatively 

simple to compute. When the silhouettes of a 3D object are used, the approach 

is named shape from silhouettes (SFS) and the resultant 3D object is called the 

visual hull of the 3D object and the concept of visual hulls was first introduced 

by Laurentini [21].

Visual hulls created by using SFS methods are the maximal silhouette- 

equivalent to the original object. In other words, a visual hull has the same 

silhouettes as the original object. Compared to the corresponding convex hull, 

a visual hull is a more accurate approximation. A visual hull depends on 

both the shape of the object and the visible region from the viewpoints [21]. 

Only the parts of the surface of the original object th a t also lie on the surface 

of the visual hull can be reconstructed. Unfortunately, a visual hull is not 

guaranteed to be identical to the original object due to the lack of complete 

information from the silhouettes including specific concave sub-surfaces which
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cannot be viewed and in practice only a small number of views are used to 

construct the visual hull. Like all contour-based approaches, it has limited use 

for understanding non-convex shapes [21]. Laurentini [21, 22] discussed how 

far a 3D object can be understood by its 2D silhouettes.

4.2 Visual Hull Construction

The implementation of SFS methods is relatively straightforward and can be 

described as follows [10].

Suppose an object O is surrounded by k pinhole cameras. Each reference 

view r  has a silhouette S r where all pixels inside the silhouette belong to the 

object. From each view r, we define a cone-like volume Vr , whose peak is at 

the current projection point, i.e., the camera center, and it passes through all 

interior points of the silhouette on the image plane (see Fig. 4.1). The object 

then lies inside the volume outlined by all silhouettes V H  = DrekVr . When 

the number of views increases, V H  converges to the visual hull of the original 

object.

Figure 4.1: An illustration of the bounding cone intersection modeling (from 
M atusik [26]) for visual hulls.

Many algorithms have been proposed in the literature to compute visual 

hulls, and can be roughly classified into four approaches:

• Voxel-based approaches

• Surface-based approaches
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•  Hybrid approaches

•  Image-based approaches

4.2.1 Voxel-based approaches

Voxel-based approaches, also named volumetric approaches, use a technique 

called “voxel carving” to compute visual hulls. The underlying idea is to divide 

the space of interest into discrete voxels and to classify them  into two classes: 

inside and outside. Each voxel to be classified is projected onto each image 

plane. If all projections on k  image planes are completely inside the silhouettes, 

then this voxel is classified as inside; otherwise it is outside. Outside voxels are 

removed from the voxel space [10] and remained inside voxels are considered 

as belonging to  the visual hull.

Voxel-based visual hull construction is a robust m ethod and is able to 

handle objects with complex geometries. It can be easily implemented giving 

reasonable results regardless of the format of the silhouettes [10]. Obviously, 

the more voxels used, the smaller each voxel is, and the more precise the visual 

hull will be. However, a large amount of memory is required for computing 

a precise visual hull. For a volume of N  x N  x N  voxels, N 3k memory units 

are required for generation and testing, which makes the algorithm slow and 

expensive.

Octree-hierarchies [9] are often used to accelerate the speed of the com­

puting procedures for voxel-based visual hull construction. Some effective ap­

proaches [10] make it possible for real time visual hull construction. Sullivan 

et al  [46] introduced a m ethod to improve visual hull shapes by using splines. 

Seitz et al. [43] made use of color consistency information for carving voxels.

4.2.2 Surface-based Approaches

Surface-based approaches construct the surfaces of a visual hull and provide 

an explicit 3D model. The most direct way to construct the visual hull of 

an object from a set of silhouette images is by intersecting bounding cones: 

bounding cone intersection. A bounding cone is formed from the edges of

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the silhouette and the camera center, as shown in Fig. 4.1. Objects inside 

a bounding cone can be seen from the corresponding camera, and the faces 

of such cones define the bounds of object areas and none-object areas. The 

original object must lie inside all the bounding cones and the faces of bounding 

cones are also on the object surface. Thus, a visual hull can be computed by 

intersecting all bounding cones and the resulting visual hull consists of a set 

of surface facets, which are on the surfaces of the bounding cones. In this way 

the visual hull gives a polyhedral approximation to the object.

Surface-based approaches can be very precise and they give explicit 3D 

models which make them easy to be used in applications such as texture m ap­

ping and rendering. However, it is not easy to express the visual hull facets 

effectively by simple geometrical attributes. The com putational complexity 

and the numerical instability of intersecting surfaces with lines and planes in 

3D make them  impractical for computing visual hulls of complex objects [10].

An early contribution on surface-based approaches was made by Baum- 

gart [4], who used polygonal approximations of the occluding contours. Other 

researchers [20, 14, 11] also used local second order surface approximations 

to reconstruct individual points [8]. Some effective algorithms [8] have been 

introduced by compute surface patches [46] or surface strips [25].

4.2.3 Hybrid Approaches

Recently, Boyer et al. [8] introduced a new approach which takes advantage 

of both the robustness of voxel-based approaches and the precision of surface- 

based approaches. It uses voxels but only the voxels on the surface of the visual 

hull are computed. It then extracts the visual hull surface from a Delaunay 

triangulation by taking the surface delimiting the polyhedra th a t project inside 

the silhouettes. This hybrid approach has equivalent efficiency to voxel-based 

approaches and gives more precise visual hulls together w ith lower tim e and 

space complexities [8]. For detailed description, please refer to  [8].
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4.2.4 Image-Based Approaches

Traditional visual hull construction algorithms are geometry based since they 

all compute 3D geometrical representations. Nonetheless, if the purpose of an 

SFS application is to render new images from different views of an object, then 

an explicit 3D geometry representation is not necessary. M atusik et al. [26] 

proposed an image-based, visual hull (IBVH) algorithm which is a practical 

alternative to the traditional m odeling/rendering framework.

In this method, views of a visual hull can be directly rendered from its 

silhouette images w ithout constructing a volumetric or polyhedral model by 

using view interpolation. This is accomplished by merging the cone intersec­

tion calculation with the rendering process. It is efficient for applications th a t 

do not require an explicit geometric or volumetric representation.

4.3 Experiments: Visual Hull Construction Us­
ing Bounding Cone Intersections

In our study, we are required to infer 3D tree models from images so we use 

one of the geometric modeling methods: the surface-based approach and we 

have applied the following steps to construct polyhedral visual hulls.

Image A cquisition and S ilhouette Extraction. In this study, images 

came from two sources: rendered synthetic 3D digital objects images and real 

photos. For the first source, we first render a virtual 3D tree by assigning 

different camera setting parameters to collect a set of images. In this way, 

all param eters including camera position, orientation, etc., were accurately 

set. We could also eliminate all complex background and get a object w ithout 

any background noise. Moreover after we obtained the visual hulls, we could 

compare them  with the original 3D objects at all view points, so it is an 

effective source for testing and estim ating a visual hull construction algorithm.

The second source was a set of photos of real trees taken by digital cam­

eras. and required more efforts. Experimental errors from facilities, human 

operations, and background noise, cannot be easily eliminated. Once images
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were obtained, the objects of interest were segmented from its background 

manually and the silhouettes were extracted by encoding the object boundary 

in a polygon format, with a silhouette being denoted by Si.

Com pute visual hulls Suppose there are k reference views and associated 

images taken from a calibrated pinhole camera. For each reference view a local 

coordinate system was built which included the cam era’s position as point of 

origin, the optical axis as the z  axis, the horizontal direction of the camera as 

the x  axis, and the vertical direction as the y  axis. Notice th a t the camera 

coordinate system was left-handed.

For each such local camera coordinate system an image plane Pi was per­

pendicular to the z  axis passing through the camera point of focus. The image 

plane could also be represented by z  =  / ,  where /  was the focal length of the 

camera. Therefore, each scene view was projected to their own image planes. 

For each such silhouette, a bounding cone was then computed relative to its 

specific camera model and it consisted of a bundle of lines which all origi­

nated from the camera center and passed through all the silhouette edges on 

the image plane. Since a silhouette was in polygon format, its bounding cone 

V r  was then represented by a set of triangular faces which converged at the 

camera center. The visual hulls could be computed by finding the intersection 

of all the bounding cones, V H  =  n r<znVr. Moreover, all the polygons in the 

resulting visual hulls were on the bounding cone triangular planes.

To compute the visual hull, every intersection point between the faces 

of the bounding cones must be computed. To overcome the complexity of 

this operation in 3D, M atusik et al. [25] proposed, instead of computing the 

intersection of faces in 3D, to project bounding cones Vi to the images plane 

Pj and to find the intersection part of the projected bounding cone Vi w ith the 

S j  silhouette, for all views i , j .

Upon the completion of the intersection process, a series of polygons were 

obtained. These polygons composed the surfaces of the visual hull. The 

pseudo-code for the above algorithm is given in the following Table 4.1, af­

ter we define some notations.
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•  Or\ the r th  camera center;

•  k: the number of reference views;

•  r: the index of reference views;

•  S r: the r th  silhouette;

•  E f  a vertex on S r ;

•  Eiti+i: an edge on S r ;

•  S r =  E 1E 2E 3 . . . ;

•  Ti =  EiOrE i + 1 is an open triangular plane consisting of two lines which

meet a t the r th  camera center.

•  vr =  {Ti} = TiT2T3 . . a bounding cone consists of a number of trian­

gular planes, which share a common peak point Or ;

•  Pi. the projection of Tj on a image plane.

_____
f o r  r  =  1, 2, . . . ,  k

f o r  i =  1, 2, . . . ,  k and i ^  r
f o r  each edge -Ejj+i of s i lh o u e t te  S r

T  =  E jO rE j+x
compute P  by p r o je c t in g  T  onto th e  i th  image p lane  
compute p  by in te r s e c t in g  Si and P  
compute p r  by p ro je c t in g  p back onto p lan e  T  
update  V H  by m erging p r  in to  V H

end
end

end

Table 4.1: The pseudo-code for the visual hull construction algorithm.

Fig. 4.2 shows an example visual hull on the second row created from the 

four input images on the first row. Objects on the same column are viewed at 

the same view points.
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Figure 4.2: Four different views of a visual hull created from the four different 
views of an aspen correspondingly.
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Chapter 5 

Extracting Skeletons from  
Visual Hulls

Visual hulls do not provide an “object-centered” model and so for more accu­

rate and robust 3D models we need to integrate full 3D model structures with 

a given visual hull. To generate a 3D tree model, we need to find its skeleton 

from its visual hull. In such a case, tree skeletons refer to the trunks and the 

main large branches of a tree th a t we assume determine the predom inant view 

of the tree shape. In our study, we assume th a t the Medial Axis of a visual 

hull approximates the tree skeleton.

5.1 Medial Axis Transform

The medial axis of an object is the locus of centers of a sequence of circles, or 

spheres in 3D space, and these circles and spheres have maximal radii within 

the object. The Medial Axis Transform  (MAT) is the medial axis together 

with the associated radius [44]. The MAT encodes im portant visual cues such 

as local diameters and symmetries. The concept of MAT was first introduced 

by Blum et al. [5] and further developed by Blum et al. to apply to biological 

shapes [6, 7]. A 2D example illustrates a rectangle and its MAT in Fig. 5.1 

In general, there are two approaches to compute the MAT of an object. 

The first approach is to use a type of morphological thinning th a t successively 

erodes away pixels from the boundary and preserves the end points of line seg­

ments at the same time until no more thinning is possible. After the thinning
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Figure 5.1: The medial axis of a rectangle is shown as solid lines inside the 
rectangle. The maximal circles in dash lines, and the circle centers are also 
shown.

process, the remaining pixels approximate the medial axis. The alternative 

approach is to first calculate the distance transform of the image. The skele­

ton then lies along the singularities, i.e., creases or curvature discontinuities 

in the distance transform  [44].

5.1.1 Voronoi Diagram and Delaunay Diagram

Before we go through the detailed MAT algorithm, we introduce two terms: 

Voronoi diagram and Delaunay diagram.

The definition of a 2D Voronoi diagram is given as follows:

• Let P  be a set of n  distinct points on a plane. These points are called 

sites.

• The Voronoi diagram of P  is the subdivision of the plane into n  cells or 

subdivisions and each cell includes one and only one site.

• Any point q lies in the cell corresponding to a site Pi E P  if and only if 

for each pj E P  (j 7̂  i) the Euclidean distance between q and pi is less 

than  the Euclidean distance between q and pj.

Some example illustrations of 2D Voronoi diagrams are shown in Fig.5.2. The 

Voronoi diagram for one site is the plane itself (see Fig.5.2(a)). The Voronoi 

diagram for two sites is a line th a t extends infinitely in both directions and 

the two half planes on the sides. This line is the perpendicular bisector of the 

two sites (see Fig.5.2(b)). The Voronoi diagram for n  sites th a t are collinear is 

a series of parallel lines th a t extends infinitely in both  directions. Each line is
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the perpendicular bisector of each two neighboring sites (see Fig.5.2(c)). The 

Voronoi diagram for n  sites th a t are non-collinear is half lines th a t meet at 

vertices. Each line is the perpendicular bisector of two sites and the Voronoi 

vertices are the centers of empty circles with three or more sites on their 

boundaries. Em pty circles mean th a t no more sites are inside of them  (see 

Fig.5.2(d)).

n  n  n

I F  I F  H

d

Figure 5.2: Voronoi diagrams for different set of sites on a plane, a. the Voronoi 
diagram of a single site is the plane itself b. The Voronoi diagram for two sites 
is the bisector of these two sites, c. The Voronoi diagram for collinear n  sites 
is a series of bisectors of each two neighboring sites, d. The Voronoi diagram 
for non-collinear n  sites is a series of bisectors of sites on the edges of empty 
circles. The circle centers are called Voronoi vertices.

A Delaunay Diagram is the dual structure of the Voronoi diagram, see 

Fig 5.3. Each site is a Delaunay vertex and two vertices are connected if their 

associated cells in the Voronoi diagram share a common boundary edge.

a b

Figure 5.3: The Voronoi diagram (a) and Delaunay diagram (b) of a same set 
of points.
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5.2 Computing the MAT

In this study, we use the algorithm proposed by Hubbard [31], which approxi­

mates the medial axis of a polyhedron. To compute a better approxim ation of 

the medial axis, we require dense mesh vertices. The density of mesh vertices 

is closely related to the precision of the resultant medial axis and the compu­

tation time. In our application, we set a distance threshold and then measure 

the distance among vertices in each polygon. If the measured distances of a 

polygon are larger than the threshold, more points will be added to  the interior 

of the polygon. The distance between any pair of points including vertices of 

the polygon must be less than the threshold. Based on these 3D points, we first 

compute the Delaunay diagram consisting of a number of tetrahedra. Then 

for each tetrahedron, we compute its circumsphere. Both the centers and the 

radii of the circumspheres are kept for further use. As mentioned before, De­

launay triangulation is the dual structure of Voronoi diagram and the centers 

of circumspheres are the Voronoi vertices. In addition, for every tetrahedron 

we can find the neighboring tetrahedra th a t share one face with the current 

one. Once we determine th a t two tetrahedra are neighbors, an edge is added 

to link their Voronoi vertices. Upon completion we have a Voronoi diagram 

consisting of Voronoi vertices and Voronoi edges.

We examine all the edges in the 3D Voronoi diagram. If an edge completely 

lies inside of the polyhedron, which is the visual hull in our application, it is 

remained. Otherwise, this edge will be removed from the Voronoi diagram.

Teichmann et al. [28] introduced a skeleton simplification m ethod which 

allows the use to specified Voronoi vertices th a t are the closest to  the “ends” of 

each branch. These vertices will be kept when simplifying the Voronoi diagram. 

The Voronoi diagram also includes bi-connected components 1. Our task is to 

create a tree structure so no such bi-connected components are allowed. To 

remove bi-connected components, a skeleton simplification m ethod is used as 

follows:

1A bi-connected component is one that when one edge of the component is removed, the 
component is still connected.
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1. Compute the bi-connected components and remove the vertex which is 

the closet to the mesh surface. The distances from the vertex to  the 

surfaces of the polyhedron can be set to the radii of the circumsphere 

approximately.

2. All the articulation points 2 and the user specified vertices are not allowed 

to be removed.

3. Repeat the above 2 steps, until the graph is a tree or no more points are 

removed.

Shlyakhter et al. [45] extended the above algorithm by developing a m ethod 

to autom atically find a set of Voronoi vertices which match the tips of m ajor 

branches. These vertices are obtained by finding “interesting” vertices in 2D 

silhouettes by the following steps.

1. “Interesting” vertices are selected from the convex hull and the even- 

order convex hulls of silhouettes. Such vertices are chosen by some 

heuristic, for example, vertices where the convex hull makes a shape 

angle or vertices adjacent to a long edge.

2. Once these interesting 2D points are located, their corresponding 3D 

points can be obtained by finding the Voronoi vertices which are the 

closest to these 3D points and are marked as “un-removable” for the 

skeleton simplification algorithm.

Using this simple algorithm, no user interaction is required and the in­

teresting points for capturing the significant features of the objects can be 

found.

5.3 Post-processing

The obtained medial axes can be represented in graph form: G  =  {V ,E } , 

where V  are a set of 3D points, and E  are the edges connecting points. The

2 An articulation point is one which will cause the diagram fall into two parts when it 
and its incident edges are removed.
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medial axes were computed simply using a m athem atical m ethod and didn’t 

have any botanic meanings. To convert the graphs into tree structures, we 

used a simple heuristic m ethod to classify all points into different axis orders, 

where the order of axis has been introduced in Chapter 2 (on page 8). After 

this classification all order one points belong to the trunk of the target tree, 

and order i axes consist of all the order i points. A point belonging to order 

i — 1 connects to the order i axis.

The classification was done as follows. We first found the root point by 

its coordinate since the root point is on the ground or the lowest point. Then 

starting from the root point, we searched for a longest path. For monopodial 

trunks w ithout ramifications, these paths are very close to the expected trunks. 

A dichotomous trunk ramifies into several order two axes and so the found 

longest path consists of the trunk and a order two axis. In this case, we 

keep the partial points of the path which locate at the lower part of the path 

and their projections on the ground are close enough to the root point. By 

this method, order one axes, or the trunks, were extracted. We then started  

from each growth point on the trunk and found the longest path  starting  from 

it. During the new search procedure all classified points were removed from 

consideration. We regarded the points on the new longest paths as order two 

axes. By recursively repeating these steps all higher order axes were found.

As a lim itation of the MAT method, a shape’s boundary noise can induce 

several small branches or spurs on its MAT, even though the noise is minor 

and does not significantly contribute to the overall structure (see Fig. 5.4). 

Moreover, the MAT is maximally axial to the shape, i.e., it provides the 

local axis of symmetry of the shape everywhere. Nonetheless, in general the 

growth of a natural tree is fairly symmetric along its trunk  a t all direction 

yet its symmetry is not strict. In reality, an individual tree is never perfectly 

symmetric in all directions at all heights. So the tree skeletons extracted using 

this MAT algorithm are different from the botanical trunks as we expected. 

Indeed, sometimes the extracted skeletons have too many undesirable artifacts 

which make them  unnatural tree axes. Therefore, it is necessary to use some 

post-process to eliminate these artifacts.
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Figure 5.4: Skeletons constructed from 2 objects: a) the medial axis of a sym­
metric object; b) the medial axis of a non-symmetric object and the asymmetry 
is caused by minor noise.

In our experiments, we used the B-Spline curve fitting m ethod to smooth 

all the axes since B-Spline curves have an advantage over Bzier curves in 

tha t they are smoother and easier to control. Furthermore, we assumed th a t 

the trunk of some species trees are straight, We then derived the best fitting 

straight trunks from their curve shape trunks.

As we can see in Fig.5.5, the first medial axis includes zigzag axes. After 

spline fitting all the axes appear more smooth and look more natural.
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initial skeleton skeleton after spline fitting skeleton after main trunk 
modification

Figure 5.5: Skeletons constructed from the visual hull shown in Fig. 4.2. The 
left skeleton, initial skeleton, is created from Medial Axis extraction method. 
The middle skeleton is created by applying B-Spline fitting on the initial skele­
ton The right skeleton is created by replacing the middle skeleton’s trunk with 
a straight vertical trunk.
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Chapter 6 

Fitting Branches inside V isual 
Hulls

The skeletons created from visual hulls include trunks and main branches. To 

create more realistic trees, we also need to create small branches and leaves. 

The HHMM L-System models created for the same tree type can be used to 

fulfill the task.

Basically, the process starts from the root of the skeleton and traverses 

all branches. During the process, new branches are added if the distance 

between two growth points, i.e. the distance between two neighboring points, 

is greater than  a specified threshold branches will be added. All branches are 

fitted within the visual hull.

6.1 Previous work

Previous researchers proposed some methods for generating branches inside 

of visual hulls. Sakaguchi et al. [42] simulated branch structure by applying 

simple branching rules with some restrictions. They first generated a number 

of tem porary branches inside of volume data  of input tree images, where the 

volume da ta  are very similar to visual hulls. These branches were generated 

at different orientations, and the tem porary branches, th a t occupied the most 

space, and met the predefined restrictions, were kept. Using this method, a 

large number of tem porary branches were created during the fitting process 

and the generated branches used were in simple form and not specialized to
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make a botanical tree, thus the process is slow and the resulting trees are not 

natural enough.

Shlyakhter et al. [45] extracted the tree skeleton from visual hulls and wrote 

the tree skeleton as an axiom to an L-System. Buds were appended on the last 

two levels of branches. They then applied open L-System models of the tree 

type for tree growth process. They manually decided the recursive depth of 

each open L-System to make the generated branches fit the tree shape the best. 

Using this method, interaction between human and computer is required.

In our work, we proposed a fully autom atic process to do the task. The 

fitting process is described on the following sections.

6.2 Converting MAT Skeletons into L-Strings

Branches created by HHMM L-System models are represented in the L-String 

format. The skeletons are represented in a common graph form at G = {V, E }  

with order information. We first unify them by converting the MAT skeletons 

into the L-Strings format. L-System symbols “A” , “F” , “[” ,

“]” , . . . ,  will be used in this conversion.

A skeleton consists of a set of axes and each axis consists of numerous 

connected line segments. For example, an order i axis consists of a set of 

connected line segments: {p t p t  ■ ■ where p i =  (xPi, yPi, zPi), and each

point is connected to its neighbors, i.e. point p t  is connected to point p t, 

which in tu rn  is connected to point p t, and in general, point p t is connected 

to point p^i+1.

We initialized a standard coordinate system with three unit orthogonal 

axes i t ,  F^, and which correspond to the “left” , “up” , and “forward” 

directions, respectively. We regarded this coordinate system as the standard 

coordinate with the original point placed on the root position of the skeleton. 

We assumed th a t there is a “tu rtle” coordinate system which is initially the 

same as the world system.

To represent a sequence of joint line segments in the L-Strings form, we first 

rotate the turtle  coordinate to align its “forward” and the first line segment
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directions Then move the turtle coordinate forward the length of the first line 

segment. After tha t, rotate the turtle  coordinate to align its “forward” and 

the second line segment direction, and then move forward the length of the 

second line segment. This process is repeated for all line segments.

To ro tate  the coordinate and align its “forward” axis, or Z  axis,and the line 

direction Pi+ip). we first transformed the original turtle  coordinate ( j£ , 

to the target coordinate system (Jt', Y ,̂ In the target system, only ^  is 

known to be , where |pi+Ii^| is the norm (or the length) of

We assumed th a t no rotation around the i f  axis was required. Based on 

this assumption, we first rotated the coordinate system around its Ŷ  axis for 

a  degrees to align j t  and i t '. Using L-System symbols, we can denote this 

rotation process as &c(a) when a  > 0 and A (|ck|) when a  < 0, where function 

\X \ returns the absolute value of X .  After this is done, we rotated the new 

coordinate system around i t  axis for j3 degree, and aligned Ŷ  and Y ,̂ i t  and 

respectively. Using L-System symbols, it could be denoted as “+ (/? )“ if 

fd >  0 or “— (|/? |)“ if < 0. After these two rotation steps, we translated 

the turtle  coordinate system to the end point of the current line segment and 

measure the distance of the translation d. This movement using L-System 

symbols is denoted as “F (d)".

We repeated these processes to present the whole sequence of line segments 

in the L-String format. W hen a point which connects more than  one points 

was encountered, we first processed children axes one by one. To do so, the 

current states were first saved in a stack and then used the same m ethod to 

process a child axis. W hen the axis was done, the saved states were popped up 

and were used to process the next axis. When all children axes were processed, 

we popped the states from the stack and then continued to process the rest 

part.

We used brackets “[” and “]” to push and pop the states into and out of 

stacks:

L i [ L i + i [ L i + 2 ] L i + i \ [ L i + ± [ L i + 2  ■ ■ - \ L i + i \ L i  

where Li is a substring of an order i axis L-String. Taper functions were

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



used to modify the thickness of trunks at different height.

An example of a resultant trunk L-System string is given as below (only a 

small part of the string is shown):

F(12) [&(145) —(52)F(17) A (23)-(7)F(1) [&(82)+(15)F(10) A (18)-(12)F(3) 

A (4)-(3 )F (9)A (4)-(5)F (2) A (11)-(7)F(3) A(4)F(4) &(10)+(10)F(15)] ]F(2)

6.3 Adding Branches and Leaves

During the above converting procedure, we examined the length of each line 

segment of the medial axis. If the length was greater than a threshold, it was 

divided into several short line segments and each is shorter than  the threshold. 

The distance threshold was varying at different positions of the skeleton. The 

threshold decreased when either the height or the order of axes increased to 

make the internode at the bottom  of a tree longer than  the top of the tree.

At each line segment joint point we inserted an axiom to create a stochastic 

sub-branch with a selected probability. We used the extracted medial axis as 

the main skeleton of the tree, so we don’t used axioms to generate trunks. At 

a growth point on the first order axis of the skeleton, we added an axiom with 

recursive depth n  which can generate second order branches. At a growth 

point on the zth order axis of the skeleton, we added an axiom with recursive 

depth n — i +  1 which can generate i + 1 order branches. The zth order axes 

and (z + l ) th  order axes might share the same HHMM L-System axiom, and 

recursive depths are the only difference. At each growth point, an axiom can 

generated more than  one branches, and the number of branches is decided by 

the tree species and is designed in the axiom.

For example, if we use the HHMM L-System model defined in Fig. 3.5 

(Chapter 3) as the tree model, then “M” can be appended on the first order 

axis to generate its sub-branches, which are lateral branches on the trunk. 

And “B” can be appended on the second or higher order axes to generate 

their sub-branches.

Once an axiom was inserted, the HHMM L-System commenced rewriting
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to expand the axiom to an L-String for a branch. We used the tu rtle  interpre­

tation to convert the L-String into a 3D geometrical structure. We compared 

the 3D branch structure with the visual hull to test if the branch is inside the 

visual hull.

We noted th a t the 3D structure was represented in the tu rtle  coordinate 

system. Therefore, before comparison, we needed to transform the 3D struc­

ture into the standard coordinate system. For example, an axiom was inserted 

a t =  [Xp, Yp, Zp\ on the line segment and the tu rtle  interpretation started 

at p. In the resulting 3D geometry, would have its new coordinate in the 

turtle coordinate system as — [0,0,0], which was inconsistent.

We computed a transform m atrix to transform  the turtle  coordinate system 

back into the standard coordinate system. Using the transform ation matrix, 

we transformed the 3D branch structure back into the standard coordinate 

system and compared the whole branch with the visual hull.

On the standard coordinate system, to test if a point was inside a visual 

hull or not, we projected it onto k 2D image planes each of which contains a 

silhouette, and compare the projected 2D points with all 2D silhouettes. If all 

projected points were inside its respective silhouettes, then we concluded tha t 

the point was inside the visual hull. This method avoids complex 3D compu­

tations since an im portant property of a visual hull is th a t it is equivalent to 

the silhouettes of the object [21].

To meet the optimum criterion th a t the branch was completely inside the 

visual hull and at the same time, occupied as much space as possible, we 

started  a recursive process, at each step of which we measured all points on 

the branch. If all the points were inside the visual hull, a scalar was increased to 

enlarge the branch; otherwise the scalar was decreased. This recursive process 

continued until the scalar difference between two adjacent steps reached a 

minimum threshold. Once a branch associated with its scalar was accepted, 

its L-String included in two brackets replaced the axiom.

After traversed all the axes on the skeleton, we stopped the process.

Four sets of experimental results are reported on the next chapter.
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Chapter 7 

Experim ental R esults

We have performed experiments on both synthesized and natural trees. Some 

results are shown below.

7.1 A Synthesized Tree 1

Four input images a synthesized tree are shown in the first row in Fig 7.1. 

The generated visual hull and 3D tree viewed a t the four corresponding view 

angles are shown on the second and th ird  row respectively in Fig 7.1.

7.2 A Synthesized Tree 2

Four input images which contain a synthesized tree are shown in the first 

row in Fig 7.2. The generated visual hull and 3D tree viewed at the four 

corresponding view angles are shown on the second and th ird  row respectively 

in Fig 7.2.

7.3 A Natural Aspen

Four input images which contain an aspen are shown in the first row in Fig

7.3. The generated visual hull and 3D tree viewed at the four corresponding 

view angles are shown on the second and third row respectively in Fig 7.3.
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Figure 7.1: Four different views of a tree which has a dichotomous trunk  are 
on the first row,. The visual hull and reconstructed 3D tree are shown on the 
second and third row.

7.4 A Natural Spruce

Four input images which contain an spruce are shown in the first row in Fig

7.4. The generated visual hull and 3D tree viewed at the four corresponding 

view angles are shown on the second and third row respectively in Fig 7.4.
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Figure 7.2: Four different views of a tree which has a monopodial trunk are 
on the first row. The visual hull and reconstructed 3D tree are on the second 
and third row.
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Figure 7.3: Four different views of a real aspen are shown on the first row.
The visual hull and reconstructed 3D tree are shown on the second and third 
row.
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Figure 7.4: Four different views of a real spruce are shown on the first row.
The visual hull and reconstructed 3D tree are shown on the second and third 
row.
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Chapter 8 

Conclusions

This is an example of how computer vision, and machine learning, can be 

integrated with stochastic process to create new types of com puter graphics 

models.

A new type of stochastic L-System, HHMM L-Systems, were developed for 

creating trees with stochastic appearances. This HHMM L-System inherits 

the properties of standard stochastic L-Systems, but has a better hierarchical 

structure, and provides more parameters to adm it stochastic behavior of tree 

growth. The stochastic EM algorithm is used to train  the partial param eters 

of the HHMM L-Systems.

We created a framework to generate 3D trees from 2D images. In our sys­

tem  model, immediately after the tree images are manually segmented, the 

intermediate stages such as visual hull generation, medial axes creation, and 

branches fitting process are all autom atically done. The new fitting algorithm 

was designed to autom atically add adequate branches and leaves within the 

visual hull. Our work distinguishes from existing work through a number of 

autom ated processes. The autom ation is potentially valuable to those appli­

cations th a t required autom ated reconstruction of trees th a t fit within visual 

hulls.
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A ppendix A  

A ppendix

A .l Turtle Orientation commands
+  tu rn  left around up vector 
+  (x) tu rn  x left around up vector
— tu rn  right around up vector
— (x) tu rn  x right around up vector 
& pitch down around left vector
&(x) pitch x down around left vector
A pitch up around left vector
A(x) pitch x up around left vector
<  roll left (counter clockwise) around forward vector 
<(x) roll x left around forward vector 
>  roll right (clockwise) around forward vector 
>(x) roll x right around forward vector

A .2 Special Orientation commands
| tu rn  180 degrees around up vector
% roll 180 degrees around forward vector
$ roll until horizontal
~  tu rn /p itch /ro ll in a random direction
~(x) in a random direction with a maximum of x degrees
t  correction for gravity with 0.2
t(x) correction for gravity with x
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A .3 M ovement commands

F move forward and draw full length
when {} active 
record vertex

F(x) move x forward and draw record vertex
Z move forward and draw half length record vertex
Z(x) move x forward and draw record vertex
f move forward with full length record vertex
f(x) move x forward record vertex
z move forward with half length record vertex
z(x) move x forward record vertex
g move forward with full length don’t  record vertex

g(x ) move x forward don’t record vertex
don’t  move record vertex

A .4 Structure commands
[ push current state 
] pop current state 
{ start polygon shape 
} end polygon shape

A .5 Increase/Decrease commands
” increment length with 1.1
’ decrement length with 0.9
” (x) multiply length with x also ’ (x)
; increment angle with 1.1
: decrement angle with 0.9
:(x) multiply angle with x also ;(x)
? increment thickness with 1.4 
! decrement thickness with 0.7 
?(x) multiply thickness with x also !(x)

A .6 Additional commands
c increment color index
c(x) set color index to x 
@ end of object
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