
U niversity of A lberta

3D S t o c h a s t i c T r e e G e n e r a t i o n F r o m M u l t i p l e V i e w s

by

Qiongyan Fang

A thesis subm itted to the Faculty of G raduate Studies and Research in partial
fulfillment of the requirements for the degree of M aster o f Science.

Departm ent of Computing Science

Edmonton, A lberta
Spring 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-96472-8
Our file Notre reference
ISBN: 0-612-96472-8

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In this thesis, we examine how L-Systems can be extended as Hierarchical

Hidden Markov Model L-Systems to enable the generation of 3D trees with

more naturalistic variations yet with less tedious script generation demands.

The model also allows for L-System optimization and, in this case, it is

tuned to fit within visual hulls, which are extracted from multiple images of

trees, in order to enable the efficient and realistic generation of 3D tree models

to be consistent with what is sensed by cameras. An automatic process is

designed to create 3D trees from multiple images of a single tree.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

I would like to thank Dr. Terry Caelli for his guidance and his enthusiasm
for this research work at University of Alberta. I would also like to thank Li
Cheng for his many helpful discussions on the optimization algorithms and his
kind support for my graduate studies at the University of Alberta.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 M otiva tion .. 1
1.2 B a c k g ro u n d ... 2
1.3 Previous Work .. 2
1.4 Proposed A p p ro a ch ... 3
1.5 Organization ... 4

2 Survey 6
2.1 Botanic T e rm s .. 6

2.1.1 P lant A rc h i te c tu re ... 10
2.2 Plant Modeling M e th o d s ... 12
2.3 L -S y s tem s .. 14

2.3.1 Deterministic L -S y s te m s 18
2.3.2 Param etric L-Systems .. 19
2.3.3 Stochastic L -S y stem s... 20

2.4 The Process View of Plant D e v e lo p m e n t....................................... 21
2.5 Markov P ro ce sse s ... 22

2.5.1 Discrete Markov P ro ce sse s ... 22
2.5.2 Hidden Markov M odels .. 23
2.5.3 Hierarchical Hidden Markov M odels 24

3 Hierarchical H idden Markov M odel L-System s 31
3.1 HHMM L-Systems ... 31

3.1.1 The Relation between HHMM L-Systems and
Stochastic L -S y stem s... 40

3.2 Param eter Estim ation for HHMM L -S ystem s.................................. 41
3.2.1 E xperim en ts .. 45

4 V isual H ull C onstruction 52
4.1 In tro d u c tio n ... 52
4.2 Visual Hull C o n stru c tio n ... 53

4.2.1 Voxel-based approaches.. 54
4.2.2 Surface-based A p p ro a c h e s .. 54
4.2.3 Hybrid A p p ro ach es ... 55
4.2.4 Image-Based A pproaches... 56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Experiments: Visual Hull Construction Using Bounding Cone
In tersec tions... 56

5 E xtracting Skeletons from V isual H ulls 60
5.1 Medial Axis T ran s fo rm .. 60

5.1.1 Voronoi Diagram and Delaunay D ia g ra m 61
5.2 Computing the M A T ... 63
5.3 P o s t-p ro cessin g ... 64

6 F itting Branches inside V isual Hulls 68
6.1 Previous w o r k ... 68
6.2 Converting MAT Skeletons into L-Strings 69
6.3 Adding Branches and Leaves .. 71

7 Experim ental R esults 73
7.1 A Synthesized Tree 1 ... 73
7.2 A Synthesized Tree 2 ... 73
7.3 A N atural A s p e n ... 73
7.4 A Natural Spruce ... 74

8 Conclusions 78

A A ppendix 83
A .l Turtle Orientation c o m m a n d s ... 83
A.2 Special Orientation com m ands... 83
A.3 Movement com m ands.. 84
A.4 Structure c o m m a n d s .. 84
A.5 Increase/Decrease commands .. 84
A .6 Additional com m ands.. 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 System m o d e l .. 4

2.1 A shoot with leaves, an axillary shoot, axillary buds, nodes,
internodes, and buds... 7

2.2 A tree marked with different orders of axes where the trunk is
an order 1 axis, branches developed directly from the trunk are
order 2 axes, and so on... 8

2.3 Illustration of two different branch trends: orthotropic and pla-
giotropic.. 9

2.4 Three types of phyllotaxy: alternate, opposite, and whorled. . 10
2.5 Illustrate some plant architecture models... 11
2.6 An L-System string and its resultant structure after the turtle

in terpretation.. 16
2.7 Illustration of the three directions: heading, left, and up direc­

tions of a Turtle in 3D space... 16
2.8 An axial structure represented using L-System with bracket

structure ... 18
2.9 The object generated by (after scaled) the L-System defined in

Table 2.1 with recursive depths 1, 2, 3, 4, and 5, respectively. . 19
2.10 9 groups of param eter settings of the Param etric L-System de­

fined in the text. This example is from Prusinkiewicz et al. [34],
pages 17-18.. 20

2.11 9 structures generated by a param etric L-system with differ­
ent initial param eters given in Fig. 2.10. This example is from
Prusinkiewicz et al. [34], pages 17-18.. 27

2.12 The rewriting option rules defined in Table 2.2 with their asso­
ciated probabilities.. 28

2.13 The objects generated from the stochastic L-System rules de­
fined in Table 2.2.. 28

2.14 A 3-state Markov chain {Si, S2, S3}, with state transition prob­
abilities corresponding to directed edges on the finite state graph. 29

2.15 The topological structure of an hierarchical hidden Markov model
(HHMM), where single dash lines illustrate vertical transitions,
solid lines illustrate horizontal transitions, and numbers a t­
tached on transition lines denote the transition probabilities.
The black circles are observations of production s ta tes 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 An illustration of the development trend of a b u d 32
3.2 The topological structure of the HHMM L-System model gen­

erating objects in Fig. 3.3.. 35
3.3 The objects generated by the HHMM L-System defined in Fig. 3.2

to be compared with the Stochastic L-System objects shown in
Fig. 2.13.. 36

3.4 The conifer generated by the deterministic L-System defined in
Table 3.1... 39

3.5 The structure of the HHMM L-System to generate trees in
Fig.3.6. Probabilities of 1.0 are om itted in the graph. States
“C” , “B” , “D” are defined as included in brackets “[” and
thus “C” will be converted to “[C]” . The HHMM L-System ob­
servation functions are given in the tex t.. 49

3.6 Two groups of trees generated from the two HHMM L-System
Models. To show the branch structures more clearly, the trunk
diameters are reduced... 50

3.7 A silhouette is used for the stochastic EM algorithm in our
experim ent... 50

3.8 Samples chosen from the 12 loops, one sample from each loop,
shown from left to right. Samples from the first to the sixth are
on the first row and seventh to twelfth on the second row. . . 51

3.9 The similarity score for updating a HHMM L-System model in
first 12 loops.. 51

4.1 An illustration of the bounding cone intersection modeling (from
M atusik [26]) for visual hulls.. 53

4.2 Four different views of a visual hull created from the four dif­
ferent views of an aspen correspondingly... 59

5.1 The medial axis of a rectangle is shown as solid lines inside
the rectangle. The maximal circles in dash lines, and the circle
centers are also shown... 61

5.2 Voronoi diagrams for different set of sites on a plane, a. the
Voronoi diagram of a single site is the plane itself b. The
Voronoi diagram for two sites is the bisector of these two sites,
c. The Voronoi diagram for collinear n sites is a series of bisec­
tors of each two neighboring sites, d. The Voronoi diagram for
non-collinear n sites is a series of bisectors of sites on the edges
of empty circles. The circle centers are called Voronoi vertices. 62

5.3 The Voronoi diagram (a) and Delaunay diagram (b) of a same
set of points... 62

5.4 Skeletons constructed from 2 objects: a) the medial axis of a
symmetric object; b) the medial axis of a non-symmetric object
and the asymmetry is caused by minor noise................................. 66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Skeletons constructed from the visual hull shown in Fig. 4.2.
The left skeleton, initial skeleton, is created from Medial Axis
extraction method. The middle skeleton is created by apply­
ing B-Spline fitting on the initial skeleton The right skeleton is
created by replacing the middle skeleton’s trunk with a straight
vertical tru n k ... 67

7.1 Four different views of a tree which has a dichotomous trunk
are on the first row,. The visual hull and reconstructed 3D tree
are shown on the second and third row... 74

7.2 Four different views of a tree which has a monopodial trunk are
on the first row. The visual hull and reconstructed 3D tree are
on the second and third row... 75

7.3 Four different views of a real aspen are shown on the first row.
The visual hull and reconstructed 3D tree are shown on the
second and third row... 76

7.4 Four different views of a real spruce are shown on the first row.
The visual hull and reconstructed 3D tree are shown on the
second and th ird row... 77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

2.1 A typical deterministic L-System including an axiom, produc­
tion rules for generating fractal objects... 19

2.2 A common stochastic L-System rule description for generating
variant objects... 21

3.1 A deterministic L-System for creating simple conifer type trees. 38
3.2 The state distribution functions of the HHMM L-System with

structure in Fig.3.5.. 39

4.1 The pseudo-code for the visual hull construction algorithm. . . 58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 M otivation

Tree simulation and modeling has im portant practical and theoretical appli­

cations. Biology, ecology, and agriculture are im portant application areas. It

also plays a significant role in the entertainm ent industry, education, archi­

tecture where realistic three dimensional (3D) tree models are required. For

example, it is used for studying plant growth processes and it is also applied in

many visualization tasks, such as movies, games where landscapes are common

scenes. Tree simulation and modeling is also an im portant research problem

in computer graphics.

In most cases 3D trees have been created simply according to the tree

species and their sizes with little constrains put on the overall shape of the

trees. Such a 3D tree creating procedure is usually termed a bottom-up proce­

dure or forward simulation [38]. In reality there are no two identical trees in

the world and there are cases where one is required to simulate a particular

tree. One typical application is in Virtual Reality where there is a need to

reconstruct digital real world scenes. In such a type of tree simulation the

input is an objective form of a tree and the output is the reconstructed 3D

geometrical structure of the tree. This is called a top-down tree simulation

approach or a backward simulation.

This thesis lies within the area of forestry inventory systems where there is

a need to validate and verify the interpretation of aerial or terrestrial images

for different tree types, crown geometry by computer vision algorithms, where

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3D tree models are needed for both visualization and verifying purposes.

1.2 Background

L-Systems, short for Lindenmayer Systems, are an effective plant modeling

tool and were first introduced in 1968 by Lindenmayer [23]. They were pri­

marily conceived as a m athem atical theory for plant development. Now they

are widely used to create plants and other fractal objects [37]. The key con­

cept behind L-Systems is tha t complex biological objects can be generated by

successively replacing parts of a simple initial object using a set of rewriting

or production rules. In this scenario, the initial object is considered as a seed

or an axiom and the rewriting or production rules determine the development

of the seed.

Markov processes form an im portant class of stochastic processes. A Markov

process is a system in which the process can be in one of several (numbered)

states, and the process can pass from one state to another a t each time step

with some probability. A first-order Markov process assumes th a t the next

state (at time f + 1) is only dependent on the current (time t) system ’s state.

Markov models “are very rich in m athem atical structure and hence can form

the theoretical basis for use in a wide range of applications” and “when applied

properly, work very well in practice for several im portant applications” [39].

1.3 Previous Work

Past researchers have developed different methods for backward tree simula­

tion and modeling [42, 38, 45]. For example, Prusinkiewicz et al. [38] made use

of positional information such as posture, gradual variation of features, and

the progression of the drawing process from overall silhouette to local details,

to interactively control the generation of plant forms. Sakaguchi et al. [42]

introduced a method to reconstruct volume data, the visual hull, from images,

and simulated branch structure by applying simple branching rules with some

restrictions. Shlyakhter et al. [45] introduced another m ethod for reconstruct­

ing 3D tree models from images. They first compute the visual hull [21] from

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

silhouettes and then extract trunks and branches from the visual hull and,

finally, add leaves and branch lets onto the branches interactively.

1.4 Proposed Approach

The proposed approach to tree simulation is based on and extend the work

of Shlyakhter et al. [45]. Briefly speaking, a stochastic version of L-System is

introduced to create stochastic tree components such as branches and leaves,

and an autom atic process is used to append these components onto the ex­

tracted large branches to fit the shape of the visual hull. The extensions of our

work mainly lie in the following two parts: first, we introduced a new version

of stochastic L-System the autom atic process for fitting small branches and

leaves within the visual hull. Our work provides a basis for generating 3D tree

geometrical models from images of trees via a stochastic version of L-System.

In what follows, we focus on terrestrial images since the application to aerial

images is straightforward.

Fig. 1.1 illustrates the system model. There are three parts: the visual

hulls creation and skeleton finding from images, Hierarchical Hidden Markov

Model (HHMM) L-System setting, and branches fitting into visual hulls. The

initial input to the system is a series of tree images associated with their re­

spective camera parameters. These images are generated from either synthetic

or real data. Either way, silhouettes of target trees are manually segmented

from the input images. A visual hull generation m ethod is then used on the

silhouettes where visual hull corresponds to a polyhedral approximation of the

3D object [21].

A skeleton approximation method proposed by Blum [5], extended by Te-

ichmann et al. [28] and Shlyakhter et al. [45], is employed in our work to

extract 3D medial axes of visual hulls. These axes are considered as skele­

tons, i.e., trunks and branches, of the reconstructed 3D trees (see Chapter

4). HHMM L-Systems are initially designed with basic botanical knowledge.

An Expectation Maximization (EM) algorithm is then proposed to train the

HHMM L-System param eters (see Chapter 3). The final step is to generate

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stochastic
EM algorithm

branch

visual hulls

skeletons

tree Images

silhouettes

3D trees

HHMM L-Systems

botanic
knowledge

Figure 1.1: System model

a 3D tree based on the extracted skeletons and visual hull information using

the HHMM L-System to add adequate branches and leaves within the visual

hulls.

1.5 Organization

In Chapter 2 a basic introduction to plant biology is provided alone with some

plant modeling methods, and an im portant and widely used plant modeling

tool: L-Systems and its variants. We also review Markov models: Markov

Chain, Hidden Markov Model (HMM) and Hierarchical Hidden Markov Model

(HHMM). In Chapter 3 We extend L-Systems to Hierarchical Hidden Markov

Model (HHMM) L-Systems. In Chapter 4 we introduce how to create visual

hulls from multiple views of objects. In Chapter 5 we examine how a skele­

tonization m ethod can be applied to extract skeletons from polyhedral visual

hulls, In Chapter 6 we introduce an optimization procedure for fitting HHMM

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L-System models within visual hulls. In Chapter 7 we report some experimen­

tal results. In Chapter 8 we conclude this work and discuss its lim itation as

well as future developments.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Survey

In this chapter we review some background knowledge and previous stud­

ies. We first introduce some basic botanic terms related to plant modeling.

These terms are necessary for readers to better understand the plant model­

ing description. We then review previous work done on plant modeling and,

in particular, L-Systems are explored in detail. Finally, we review Markov

processes, including Markov chains, Hidden Markov models, and Hierarchical

Hidden Markov models.

2.1 Botanic Terms

Most plant models are described in botanic terms. The parts of a plant can

be divided into two types: vegetative (asexual) and reproductive parts. The

vegetative parts include roots, stems, shoot buds, and leaves. The reproductive

parts include flowers, fruits, and flower buds. In this work, our applications

deal with forests, and therefore our main interests are on the vegetative parts

of plants.

Roots are the structures which are the lowest parts of a plant, usually

underground, and are essential for supplying water and nutrition. Since most

roots cannot be seen directly, they are not im portant for visualization, or for

identifying plants. Therefore we ignore the modeling of root in this work.

Stems are structures th a t support buds and leaves. There are several types

of stems. A shoot is a young stem with leaves. A twig is a stem th a t is one year

old or less w ithout leaves. A branch is a stem th a t is more than one year and

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is typically a lateral stem. A trunk is a main stem of a woody plant. Buds are

undeveloped shoots from which leaves or flower parts will arise. A terminal

bud is located at the apex of a stem (see Fig. 2.1).

A node is the part of the stem where one or more leaves are attached. A

internode is the region of the stem between two successive nodes. In Fig. 2.1,

buds, leaves, internodes, and nodes are shown.

terminal bud

'J / f ^ axillary bud

axillary shootinternode

node
leaf

Figure 2.1: A shoot with leaves, an axillary shoot, axillary buds, nodes, in­
ternodes, and buds.

The growth of a plant is the result of the successive division of some specific

cellular tissues, called meristems. Apical buds are one type of meristem. A

growth unit is a set of nodes and internodes th a t are produced by the apical

buds of the previous node. Growth units can be short, sometimes with only

one internodes or can be very long. When a growth unit is very long, it usually

consists of numerous short internodes [13, 16].

The order of an axis reflects the order of the apical buds from where the

current axis develops. The order 1 axis is a sequence of nodes and internodes,

and each node or internode is developed from the apical bud of the previous.

The first internode of a sequence is developed from the seed of the plant. The

order 2 axis includes another sequence of nodes and internodes with the same

property except th a t the first internode is developed from an auxiliary bud on

an order 1 axis. Likewise, an order i axis develops from an auxiliary bud on

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an order i — 1 axis. Usually, trunks are order 1 axes. In our work, we denote

an order i — 1 axis as the parent axis of an order i axis if the order i axis is

developed from the apical bud on the order i — 1 axis. Subsequently, the order

i axis is a child axis of the order i — 1 axis. An axis will have a t most one

parent axis, but might have a number of child axes (see Fig. 2.2).

3 order axis

2nd order axis

Figure 2.2: A tree marked with different orders of axes where the trunk is an
order 1 axis, branches developed directly from the trunk are order 2 axes, and
so on.

According to different ramification properties, where “ramification” means

the act or process of branching out or dividing into branches, we can divide

different ramification processes into the following three classes: continuous

ramification, rhythmic ramification, and diffuse ramification [13].

- Continuous ramification: Each node of an axis will develop a higher order

axis, and this node is the root of the higher order axis.

- Rhythmic ramification: Not all nodes of an axis can develop a higher order

axis. Some nodes will develop into leaves and some into the roots of

higher order axes.

- Diffuse ramification: The nodes th a t can develop higher order axes have

random locations.

Another im portant feature of ramification is the trend of the direction of

axes (or branches). If a child axis develops following the horizontal direction,

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it is plagiotropic; If the orientation of an axis is vertical, it is orthotropic (see

Fig. 2.3). Most trunks grow up-wards to compete for lights. Therefore, order

1 axes are usually orthotropic.

Figure 2.3: Illustration of two different branch trends: orthotropic and pla­
giotropic.

The term phyllotaxy means the arrangement of leaves on the stem or the

relative positions of leaves of a node with respect to the lateral leaves of the

previous node. Such arrangements follow regular rules known for each species

and each order. There are three types of phyllotatic patterns recognized by

the number of leaves at a node:

• Alternate phyllotaxy — one leaf at a node (see Fig. 2.4). In this type,

leaves may be spirally arranged, th a t is, the angles between successive

leaves are approximately 137.5 degrees (related to the Golden ratioi and

the Fibonacci series). In one sub-type which is called distichous, the

angles between successive leaves are 180 degrees. For example, aspen,

elm, and beech leaves are of this type.

• Opposite phyllotaxy — two leaves at a node (see Fig. 2.4), which are

opposite to each other; this pair of leaves is offset by 90 degrees relative

to leaves at adjacent nodes. For example, maple, and ash leaves are of

this type.

• Whorled phyllotaxy — three or more leaves at a node (See Fig. 2.4)).

For example, smooth bedstraw and carpetweed have whorled leaves.

Orthotropic Plagiotropic

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Alternate Opposite Whorled

Figure 2.4: Three types of phyllotaxy: alternate, opposite, and whorled.

Q ualitative and Q uantitative Characters o f Plants

The characters of a plant can be divided into two categories: qualitative and

quantitative. Qualitative data are data which can be acquired w ithout using

any measurement tools. For example, the trend direction of branches, or­

thotropic or plagiotropic, phyllotaxy of leaves or branches, ramification types,

etc. Q ualitative da ta of the same species plants are the same.

Quantitative data are data collected by measurement. These d a ta include

internode length, angles within lateral shoots, thickness of trunks, etc. Quan­

titative data vary from specimens other than species. Both qualitative and

quantitative da ta make a plant unique in the real world.

2.1.1 Plant Architecture

Plant structures have particular patterns th a t can be characterized by the com­

binations of very few characters such as qualitative characters which include

branches trend, phyllotaxy, etc. Botanists analyze plants topological struc­

tures and have defined 23 plant architecture models. Each of these 23 plant

architecture models has its own particular combination such th a t it covers a

large number of species and is typically dedicated to a botanist, for example,

R auh’s model, M assart’s model, etc. P lants in the same model may appear

quite different since plant architecture defines the growth strategies to occupy

space which is shown as presence or absence of sympodial growth, ramifica­

tion types, continuous or rhythmic, the direction trend of axes, plagiotropy or

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

orthotropy, etc [13].

Corner
Model

Roux
Model

Rauh
Model

Shoute
Model

Attims
Model

Leeuwenberg
Model

Massart
Model

Scarrone
Model

Figure 2.5: Illustrate some plant architecture models.

P lants belonging to R auh’s model have orthotropic axes for all order axes

and rhythmic ramification, for example, an aspen tree. P lants belonging to

M assart’s Model have orthotropic order one axes and plagiotropic order i axes

when i > 1. They also have rhythmic ramification [13], for example, a spruce

tree. P lants belonging to Corner’s model have one order 1 axis and no ramifica­

tion, th a t is they have monopodial trunks but no sub-branches. Some tropical

trees belong to these type, such as coconut trees. In Fig. 2.5, 8 types of plant

architectures are shown to illustrate the difference among plant architectures,

please refer to Halle et a l [17] for more details on plant architectures.

P lant architecture analysis was first developed as a qualitative method.

Soon after, many researchers worked on architectural concepts and their appli­

cations [16]. Now it is regarded as a classic work on plant topological structure

research and it plays an im portant role in verifying the effectiveness of plant

modeling methods.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Plant M odeling M ethods

The purpose of com putational modeling is to construct simple m athem atical

models, which can simulate objects in the physical world [32]. The task of plant

modeling is to describe plant spatial structures and their development process,

where an individual plant is considered as a unit which contains its parts such

as internodes, branches, and leaves. According to the difference among them,

the modeling methods can be grouped into two classes: empirical models and

causal models. Thornley et al. [47] have described the distinction between

these two classes of models. Essentially, empirical models capture statistical

characters of plants based on collected empirical data. Therefore, they are

also called descriptive or statistical models. These models have advantages on

making practical predictions based on the analysis of the acquired data. On the

other hand, causal models can be used to explain the underlying mechanisms

of plant development. They are also called explanatory, physiologically based,

or functional models [19].

The relationship between empirical and causal models is very similar to

the distinction between analytic (top-down) and synthetic (bottom -up). In the

analytic case, we analyze the acquired empirical da ta based on the selected

features and then construct models. While in the synthetic case we use models

to synthesize known mechanisms of plant development.

In the literature, researchers have developed many algorithms to simulate

plants geometrical structures in the past decades. To name a few, in 1962,

Ulma [48] simulated branching pattern development with cellular autom ata.

Cohen [12, 27] introduced a more realistic model in continuous space. Linden­

mayer introduced the concept of L-System for cellular interaction modeling in

1968. Thereafter, Honda [18] introduced a model using param eters, includ­

ing the branch angles and the branch length, to represent the shape of a tree

and his model is considered as the first computer model of tree structures [27].

Currently, there are three methods th a t are mainly used. They are L-Systems,

fractal methods and stochastic methods.

An L-System is a formal language and it uses symbol rewriting meth-

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ods to create complex fractal objects. L-Systems are clearly introduced in

the book “The Algorithmic Beauty of P lants” by Prusinkiewicz and Linden­

mayer [37], The early stage of L-System is called DOL-System, where the

prefix “DO” indicates th a t it is deterministic and context free. We will give

its detail description in the next section. Parametric DOL-Systems can pro­

duce the same structures with varying attributes. Differential L-Systems are

developed on top of param etric L-Systems by allowing continuous time flow

instead of the discrete derivation steps and are suitable for anim ating sim­

ulated developmental processes [35]. Stochastic DOL-Systems overcome the

lim itation of deterministic L-Systems and can produce stochastic plant geom­

etry. Communication between plants modules affects the plants developmen­

tal processes significantly. Lindenmayer distinguished two types of commu­

nications: cellular descent and interaction. Cellular descent transfers infor­

mation from parents to their children and interaction transfers information

between co-existing modules [23, 24], Cellular descent can be represented

by context-free L-Systems and context-sensitive L-Systems are able to model

some extrogenous factors during the plants development process. However,

context-sensitive L-Systems are considered to have some lim itation on model­

ing interactions between plants and environment and this type of interaction

is a crucial factor affecting the development of plants and plant ecosystem.

Environmentally-sensitive L-Systems [36] and Open L-Systems [27] are intro­

duced to model more complicated interactions between plants within a typical

environment. These two systems extend the formalism of L-Systems and are

able to model bi-directional information transform ation between plants and

their environment.

Fractal methods use m athem atical tools which can simulate the self-similarity

structures of plants. The Iterated Function System (IFS) is a typical frac­

tal method. Based on IFS Bransley et al. developed recurrent IF S [3] and

Prusinkiewicz et al. developed language-restricted IF S [33]. Aono et al. de­

veloped a model to produce complex 3D branch patterns and their model

uses a ttracto r algorithm to simulate plant developments affected by some en­

vironment factors such as lighting, gravity, and wind [2], Oppenheimer [30]

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

developed another fractal method which uses param eters such as branching an­

gle, branch-to-parent size ratio, and stem taper rates. This m ethod is limited

to a small number of basic trees. Reeves et al. developed a partial system to

create trees and grass [41]. The partial system is good at modeling landscape

such forests and grasses lands.

Stochastic methods mainly include the following works, de Rayffe et al. [13]

developed a procedural model which encodes probabilities of b irth and death

of plant components. Godin and Caraglio [16] further developed a multiscale

model of plant topological structures. Zhao et al. [49] introduced dual-scale

autom aton which uses microstates and m acrostates and semi-Markov chains

to model plants.

2.3 L-Systems

L-Systems are an effective modeling tool and were first introduced in 1968 by

Lindenmayer [23]. They were primarily conceived as a m athem atical theory of

plant development. The key concept behind L-Systems is th a t complex biolog­

ical objects can be generated by successively replacing parts of a simple initial

object using a set of rewriting or production rules each consisting of a specific

geometric operation on an object. They are widely used to create plants and

other fractal objects [37]. Each L-System object is ultim ately defined as a

string generated from an L-System rule, which includes an initial string, the

axiom, and a set of rewriting rules called productions. An axiom consists of

symbols with associated numerical parameters. Each production consists of

a predecessor and a successor, connected by an equal sign, as shown in the

following example:

• production: predecessor = successor

- production 1: A — F[+A][-A]

where “A” before “= ” is a predecessor and the string after “= ” is

a successor of this production.

— production 2: F = FF

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where “F” before “= ” is a predecessor and the string “F F ” after

“= ” is a successor of this production.

The meaning of a production is th a t its predecessor is replaced by its suc­

cessor during the rewriting processes. At each step of the rewriting process,

axioms are updated, by replacing all the symbols with their corresponding

productions, once.

For the previous example, if the axiom is “A”, then the results of
rewriting processes are shown as follows:

- Step 0: A

- Step 1: F [+A][-A]

- Step 2: FF[+F[+A][-A]][-F[+A][-A]]

- Step 3: FFFF[+FF[+F[+A][-A]][-F[+A][-A]]][-FF[+F[+A][-A]][-
F [+A][-A]]]

Notice that from Step 1 to Step 2, the italic letters “A” were re­
placed by “F[+A][-A]” according to production 1, and letter “F”
was replaced by “FF” according to production 2. In the result of
every step, all replaceable symbols (“A” and “F” in this example)
are replaced by their successors according to the corresponding pro­
ductions. Other symbols which have no productions (“+ ”, “[”,
and “]” in this example) are simply copied to the next step string.

Upon completion of these rewriting processes to a specified recursion step,

a final string is generated. The final string corresponds to a set of geometric

operations which can be interpreted by “turtle interpretation” [37].

The turtle interpretation converts the resultant L-String into a 3D geo­

metrical model. In the 2D case, we can imagine th a t a tu rtle is on a blank

sheet, and when the turtle moves, it will leave moving trails on the sheet. Four

symbols, “F ” , “f” , “+ ” , and are used to record the trails of the turtle. “F ”

means the turtle moves one unit distance in the current heading direction;

The meaning of “f” is the same as “F ” , except th a t the tu rtle lifts its tail

and doesn’t leave a trail on the sheet. Symbols “+ ” and denote th a t the

turtle rotates to the left or to the right by a specific angle. By this simple

interpretation, a two dimensional geometrical structure is drawn on the sheet.

As an example, we can interpret the string ’’F + F -F -F + F ” as a simple

2D geometrical structure using the turtle interpretation rules just provided.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The resultant structure is shown in Fig. 2.6. A tu rtle is oriented to the right

direction before it starts, and it moves forwards for one unit distance (“F”).

It then turns left for 90 degrees (“+ ”), and its heading direction is upwards .

“+ ” is short for “+ (90)” when the default degree is 90. After turning, it keeps

moving along in its heading direction for another unit distance (“F”). These

two movements create the first two line segments in Fig. 2.6. Upon the ending

of the full string, the whole structure will be generated as shown in Fig. 2.6.

F+F-F-F+F

Figure 2.6: An L-System string and its resultant structure after the turtle
interpretation.

In the 3D case, the turtle states are defined by its position and three

m utually perpendicular orientation vectors i t , and i f which indicate the

tu rtle ’s heading direction, the direction to the right, the direction to the left,

and up direction, respectively [38] (see Fig.2.7).

u

► H

Figure 2.7: Illustration of the three directions: heading, left, and up directions
of a Turtle in 3D space.

The interpretations of some basic symbols in 3D are given below (see the

Appendix for a full list of symbols):

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• “F” : Move forward a step of unit length and connect the new position

to the last position by a line segment. (The new position is computed

by a formula.)

• “+ ” : R otate left by a unit angle (counterclockwise) around the up axis.

• : R otate right by a unit angle (clockwise) around the up axis.

• : pitch down by a unit angle around the left vector.

• “A” : pitch up by a unit angle around the left vector.

• roll left by a unit angle (counterclockwise) around the forward

vector.

• roll right by a unit angle (clockwise) around the forward vector

Using these 3D interpretation symbols, we extend tu rtle interpretation

from 2D (sheet) space to 3D space and 3D geometrical structures can be

recorded.

In order to specify the data structure for presenting axial trees, the concept

of “strings with brackets” was introduced by Lindenmeyer [23]. W ith brackets,

the current state of the turtle can be pushed onto a stack. One or more sub­

structures can be drawn before the saved state is popped up and then we

can keep drawing the main structure. In this way, with brackets, multi-layer

structures or tree structures can be represented. In L-Systems, symbols “[”

and “]” are used as brackets.

• “[” : Push the current state of the turtle onto a stack.

• Pop a state from the stack and make it the current state of the

turtle.

In Fig. 2.8, a simple axial structure is shown where the main axis consists

of three segments, from bottom up, “A” , “C” , and “E” . It includes two sub­

axes, which are drawn inside of two dashed circles, “B” , and “D” . The whole

structure is represented as “A[B]C[D]E” , which can be viewed as three parallel

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

growth processes existing at the same time: the process of the main axis and

the two sub-axes.

A[B]C[D]E

Figure 2.8: An axial structure represented using L-System with bracket struc­
ture.

As a plant modeling language, the L-System has the following benefits [32].

• Comparing to a general programming language, the programming effort

needed to develop L-System models of plants is significantly reduced.

• P lant models can be easily modified in practice.

• The L-Systems make plant models documenting compact and precise.

Prusinkiewicz [34] has surveyed the applications of L-Systems to the mod­

eling of plants and those L-Systems fall into three types: Deterministic, Para­

metric, and Stochastic L-Systems. The la tter is of interest in our work.

2.3.1 D eterm inistic L-Systems

A deterministic L-System is the simplest type of L-System. An example of

using deterministic L-Systems to generate a simple geometrical structure is

given in Table 2.1 and the resultant object is shown in Fig. 2.9. It is obvious

th a t the patterns of the object parts are the same as the patterns of the whole

object, and this property is also called self-similarity, which is an im portant

property of fractal objects.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Axiom :
F
Rules:
F — » F[+F]F[-F]F
Resulting strings:
Step 1: F[+F]F[-F]F
Step 2: F[+F]F[-F]F[+F[+F]F[-F]F]F[+F]F[-F]F[-F[+F]F[-F]F]F[+F]F[-F]F

Table 2.1: A typical deterministic L-System including an axiom, production
rules for generating fractal objects.

/
\

\

/

/

Figure 2.9: The object generated by (after scaled) the L-System defined in
Table 2.1 with recursive depths 1, 2, 3, 4, and 5, respectively.

2.3.2 Parametric L-Systems

To include continuous variations in detail, Lindenmeyer proposed th a t numer­

ical parameters, functions and rules can be associated with L-System symbols.

Parametric L-Systems operate on param etric words, which are strings of mod­

ules consisting of their symbolic names with associated param eters.

Correspondingly, there are three parts in a production rule, which are

predecessor, conditions, and successor. Symbols and are used to

separate these three parts:

predecessor: conditions —» successor

A predecessor is rewritten only when the production condition is met. For

example, the param etric production given below works only when x < 64,

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where A(x) is replaced by A (x + 1). For A(100), since x — 100 > 64, this

production does not work.

• A(x)\ (x < 64) —> A (x + 1)

An example used in Prusinkiewicz et a l [34] illustrates param etric L-

Systems with different param eters to create different structures.

w : A(100, w0)

p i : A(s, w) : s > = m in — >l(w)F(s)[+(ai)/('ipi)A(s * r 1; w * q A e)]

[+(a2) / { ^ 2)A(s * r2,w * (1 — q) /\ e)]

Fig. 2.10 shows the param eter setting of each variable of the above Para­

metric L-System. The corresponding resultant structures are shown in Fig. 2.11.

Figure rj r i « i «2 <Pi wo 9 € min «
a ,75 .77 35 -35 0 0 30 .50 .40 0.0 to
b .65 .71 27 -68 0 0 20 .53 .50 1.7 12
c .50 .85 25 -15 180 0 20 ,4:5 .50 0.5 9
d .60 .85 25 -15 180 180 20 .45 .50 0.0 10
e .58 .83 30 15 0 180 20 .40 .50 1.0 11
f .92 .37 0 60 180 0 2 .50 .00 0.5 15
g JO .80 30 -30 137 137 m ,50 ,50 0,0 10
h .95 .75 5 -30 -90 90 40 .60 ,45 25.0 '12
t .55 .95 -5 30 137 137 5 .40 .00 5.0 12

Figure 2.10: 9 groups of param eter settings of the Param etric L-System defined
in the text. This example is from Prusinkiewicz et al. [34], pages 17-18.

2.3.3 Stochastic L-Systems

All plants generated by a deterministic L-System are identical; W ith different

input param eters sets, a param etric L-System can create different objects.

However, the appearances of these objects might look different but they have

the same development patterns, e.g., in Fig. 2.10, every apex develops into

one internode with a pair of apices. In reality, we all know th a t there are

no two plants in the world growing in the exact same way. Therefore, it is

impossible to reuse deterministic or param etric L-Systems to create multiple

trees. Consequently, stochastic L-Systems have been proposed to overcome

this problem by introducing probabilistic transitions between symbols. The

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Axiom :
F
Rules:
R l: F — y (0.33) F[+F]F[-F]F
R2: F — * (0.33) F[+F]F
R3: F — y (0.34) F[-F]____

Table 2.2: A common stochastic L-System rule description for generating vari­
ant objects.

simulating process by using probability is a simple approach of simulating tree

structure regardless the underlying natural rules.

For example, a stochastic L-System in Table 2.2, its production rules are

three rewriting rules for the letter “F ” . In one derivation step, either R l ,

R2, or R3 is applied to each occurrence of an “F” according to the given

probabilities: 0.33, 0.33, and 0.34. This concept of probability-based selection

of turtle operators and numerical ranges for the operators to be formulated in

terms of a stochastic rewriting form of L-Systems.

The first rule, “R l: F — y F[+F]F[-F]F” , replaces “F ” by “F[+F]F[-F]F”

with probability 0.33. To interpret it graphically, consider “F ” as a straight

line with unit length. Rule 1 will replace a unit line by a pattern shown in

Fig. 2.12.

The resultant structures in Fig. 2.13 are dissimilar, where each rewriting

process follows probabilistically selected production.

2.4 The Process View of Plant Developm ent

Plant development can be viewed as a process where some activities occur at

discretized times. Usually, buds activities are emphasized since they are the

most active plant parts, de Reffye et al. [13] state th a t the activity of buds

can be one of the following:

• becoming a flower and die;

• going into sleep (doing nothing during th a t time period);

• becoming an internode which includes axial buds and apical buds;

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• dying and disappear.

Once one of these activities is activated, more buds may be developed and they,

in turn, create more activities. The activity is initiated with some probability

th a t can be acquired from experimental statistic data.

We consider the bud development and all the possible activities as states,

and consider the states activating processes as state transition processes. Then

we can describe this plant activity progression by a state transition graph or

a Markov chain. The states, state transitions, and probabilities among state

transitions make it natural to use Markov chains as models [32]. In [32], it has

been proved th a t a stochastic L-System model can be converted to a Markov

chain model. A stochastic L-System can also be represented by Markov chains

and stochastic L-System rules jointly.

2.5 Markov Processes

Compared with deterministic processes stochastic processes are much more

common in reality. Markov processes are one of the most used stochastic

processes. In the following section, we introduce Discrete Markov Processes,

Hidden Markov Models, and Hierarchical Hidden Markov Models.

2.5.1 D iscrete Markov Processes

Given a system with a finite set of states {5i, 52, , S n } a t discrete times t =

1, 2, . . . , the states of the system will change according to a set of probabilities.

We denote the state a t time t as qt and the probability of the current state

being chosen (at time t) is conditional on all predecessor states. For a first

order Markov chain, the probability only depends on the preceding state:

P{qt = Sj\qt- i = Si,q t - 2 = S k, ...?i = S m) = P(qt = Sj\qt- i = Si).

We consider th a t the process is stationary in time and is defined by a set

of state transition probabilities a^,

a%j = P(qt = Sj\qt- i = Si), 1 < i, j < N ,

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where a -̂ obeys the following standard stochastic constraints:

O i j > 0 , Vi, j ; E f =1Oij = l, Vi.

An example of a Markov chain with three states is shown in Fig. 2.14,

where the state transition probabilities can be w ritten in m atrix form as

'0.3 0.2 0.5

IIii 0.3 0.4 0.3
0.2 0.7 0.1

The observations are a set of states which are chosen at each tim e step

and the states correspond to physical (observable) events. For this reason, the

above stochastic process is called an observable Markov model [39].

2.5.2 Hidden Markov M odels

Observable Markov models have many restrictions for real life applications as

they do not dissociate states from observations or param etric values. For this

reason, a more general model, an Hidden Markov Model (HMM), is typically

used. The observations of states in HMMs are unobservable, but they can

be predicted through another set of stochastic processes which generate a

sequence of observations[39].

The elements of an HMM are:

• the number of states: N ;

• the number of distinct observation symbols per state: M;

• the prior probability state vector: 7r;

• the state transition matrix: A;

• the state-dependent observation m atrix for each state: B.

We use the compact standard notation A = (A,B,7r) for an HMM. There

are three questions to answer:

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Compute the probability of this sequence generated by the coin model.

2. Determine which coins most likely produce “head” or “ta il” observations

over time.

3. How do we update the coin tossing model given this observation se­

quence?

The interested readers may see Rabina et al. [39] for detailed discussion of

these three problems.

In this application, we do not come up with solutions to these three prob­

lems. Rather, HMMs are used here to predict observation sequences. As we

will see, a variant of the Expectation Maximization (EM) algorithm for solving

the third problem can be used to update the model parameters.

2.5.3 Hierarchical Hidden Markov M odels

Hierarchical Hidden Markov Models (HHMMs) are generalized HMMs and

are structured multi-level discrete stochastic processes introduced by Fine et

al [15]. They are originally designed for the study of some pattern recognition

areas, such as language, handwriting, speech, since their natural sequences

have complex multi-scale structures.

Each HHMM state is also an HHMM, i.e. each state is a similar stochastic

model and a sequences. Note th a t in HMMs, most observations are single

symbols. A sequence is produced by recursively activating the sub-HHMMs of

a state. These recursive processes will end when they reach a special type of

states called production states, which are considered leaf nodes of the HHMM.

Only these production states can emit output symbols or observations. These

symbol em itting processes are done in the same way th a t HMMs emit obser­

vations. Thus, HHMMs observations are chosen according to some probability

matrices as well. O ther states th a t can’t emit observable symbols are called

internal states.

An HHMM can be viewed as a tree structure and it has two types of

state transitions: vertical and horizontal. Vertical transitions are the state

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transitions th a t occur when a state activates its sub-HHMM and the sub-

HHMMs are denoted at a lower level. So vertical transitions are the transitions

between two different levels. Horizontal transitions only occur in the same

level. In HMMs only horizontal transitions exist because of their single level

structures. A production state has horizontal transitions only and an internal

state has both types of transitions. In addition, there is a final state at each

level, denoted by qfnd, except the root level. When a final state is activated,

the control will return to the parent level and jum p out of the current level.

So i t’s also a special vertical transition but it is different from the vertical

transitions which activate sub-states. As we can see, for these final states, the

control is returned to the parent level determinately.

More formally, let E be a finite alphabet and E* be the set of all possi­

ble sequences over E. An observation sequence O = 01O2O3 . . . 0 ? is a finite

sequence in E*. The level index of the root state is 1 and th a t of the produc­

tion states is D. A state of an HHMM is denoted by qf, where d is the level

index and i is the state index at this level. The numbers of internal states at

different levels are not necessary to be the same and the number of sub-states

of an internal state qf is denoted as \qf\. Similar to HMMs, HHMMs also

have state transition matrices and observation matrices. An HHMM has two

types of state transition matrices for its vertical and horizontal transitions, re­

spectively. The horizontal transition m atrix is denoted by A qd = (a?-), where

afj = P{qf+1\qf+l) is the probability of making a transition from qf+1 to qd+1,

i.e. a horizontal transition from the Ah state to the j th state at level d + 1,

which are children of state qd. Similarly, Uqd = (7rd(q?+ l)) = P(q?+1\qd) is the

initial d istribution vector or a vertical transition vector and includes the proba­

bility th a t the Ah state at level d + 1 is initially activated by state qd and The

production states are associated with observation vectors: B q° = (bqD(k)),

where bq° (k) — P(ai0\qD) is the probability th a t the symbol <7*, G E is em itted

by the production state qD. Thus an HHMM has the param eters set [15]:

a = {xqd}de{1,..!D} = {{Ag,d}(ie{l!..)£,_1}, {n 9<i}de{lr.;jD_1}, {B qD}}.

A string (observation) is generated in the following way. The root state

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has the control initially and activates one of its sub-states a t level 2 with

probability II91. Every internal state qd activated by its parent state, will

in turn choose one of its own sub-states with probability f l^ . In Fig. 2.15,

the dash lines with arrows illustrate such processes. The recursive process

will keep on until a production state qD is activated, where a single symbol is

em itted with probability B q° . In Fig. 2.15, the small black circles are attached

on production states and these circles denote the observations. Subsequently,

the control returns to the internal state which activated qD. This internal

state will pass the control to another state in the same level according to

this level’s state transition m atrix (A gd). In Fig. 2.15, the solid horizontal

lines with arrows illustrate horizontal transitions. The newly chosen state will

begin another string generation process. When a final state qdnd, shown in grey

circles, is reached, the control returns to the parent state of the whole hierarchy.

In Fig. 2.15, the double dash lines with arrows illustrate such processes. The

process will repeat till the root state is reached again and an observation

sequence is thus created [15].

Fine et al. used HHMMs in handwriting recognition applications and intro­

duced how to estim ate all the parameters in an HHMM. For more information,

please refer to [15].

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.11: 9 structures generated by a param etric L-system with different
initial param eters given in Fig. 2.10. This example is from Prusinkiewicz et
al. [34], pages 17-18.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F[+F]F[-F]F F[+F]F

Figure 2.12: The rewriting option rules defined in Table 2.2 with their associ­
ated probabilities.

Figure 2.13: The objects generated from the stochastic L-System rules defined
in Table 2.2.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aii=0.3 822=0.4

0.2

.0.3
.0.3,,-0.5

.0.2

Figure 2.14: A 3-state Markov chain {S i, S2, S's}, with state transition proba­
bilities corresponding to directed edges on the finite state graph.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9

0.5 0.2

0.8

0.5. 0.10.4

0.90.4

0.6

0.50.2

0.6

0.4

Figure 2.15: The topological structure of an hierarchical hidden Markov model
(HHMM), where single dash lines illustrate vertical transitions, solid lines illus­
tra te horizontal transitions, and numbers attached on transition lines denote
the transition probabilities. The black circles are observations of production
states.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Hierarchical Hidden Markov
M odel L-System s

In this chapter we introduce a new type of stochastic L-Systems: Hierarchical

Hidden Markov Model L-Systems or HHMM L-Systems for short.

3.1 HHMM L-Systems

W hat differentiates trees within a given species is the pattern of their branching

process. To present all these different patterns as well as all possible stochastic

rules, a standard stochastic L-System has to define numerous rules and these

rules appear independent to each other. Moreover, a stochastic L-System lacks

a clear structure, which causes a designer more managing all its param eters

and rules.

It has been proved th a t stochastic L-Systems can be re-represented jointly

by L-System rules and Markov chains [32], There exists a multi-layer Markov

model, the HHMM, and we integrate the stochastic L-System and an HHMM

into an HHMM L-System. The HHMM L-System is a new type of stochastic

L-System and it is highly structured.

Accordingly, different types of object features, at different scales, can be

created by changes a t a given level of the rewriting procedures. See Fig.3.1

for the development process of a bud, where the numbers indicate the possi­

bilities of the transitions and they don’t reflect the natural bud development

probabilities. The layers in the structure can be simply viewed as the increas-

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing process tim e step and the top layer is the starting. The bud a t the top

layer has some probabilities to be developed into branches or branches with

buds, and the bud at the second layer can be developed into fruits by some

probabilities, etc. These transitions can be modeled by HHMMs’ vertical and

horizontal transitions. Also tree parts can have different attributes, e.g, leaves

can vary from sizes, colors, orientations etc. These attributes can be modeled

by HHMMs’ hidden observation functions.

-state

0.8 0.1

0.9

0..1 0.5 0.5

■observation

leaf

furit

End

flower

leaf branch
node

internode

node
internode

disappear

bud

bud

disappear

Figure 3.1: An illustration of the development trend of a bud

As with HHMMs, an HHMM L-System also includes two types of states:

internal and production. The observations of internal states are sub-HHMMs.

Only production states can emit observation symbols with probabilities. Each

observation is an L-System symbol associated with a param eter and this pa­

ram eter is randomly generated according to some distribution, which is usu­

ally Gaussian distribution and distribution vectors. For example, the observed

symbol is “F ” and its associated param eter is generated from a Gaussian dis­

tribution (1, 0.5) i.e. the mean fi = 1 and the standard deviation a — 0.5.

Its observation, denoted as “F (x)” , has the fixed symbol “F ” and numerical

variable x, which is randomly sampled from the Gaussian distribution at each

process. For example, “F(0.8)” , “F(1.2)” , and “F (l . l) ” are three possible

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

observations. In tu rtle graphs, these different observations are three line seg­

ments with different lengths. Recall tha t, as we introduced in C hapter 2, plant

characters can be classified into two categories: quantitative and qualitative,

where quantitative data of plants include internode lengths, angles within la t­

eral shoots, thickness of trunks, etc. and they vary from difference specimens.

To simulate different quantitative data, we use the distribution param eters for

some L-System symbols to enable the function of creating stochastic lengths,

angles, and thickness etc.

Accordingly, There are two types of state transitions in an HHMM L-

System: vertical and horizontal. A vertical transition occurs when a state qf

activates its child state qf+1 1. This type of transitions can also be regarded

as a predecessor which activates the rewriting process, and the predecessor is

going to be replaced by its successors. Here the state qf is the predecessor and

the successors will be the observation sequence generated when the control is

given back to the state qf. A horizontal transition is the transition within

the states a t the same level. So when the same child state is activated, its

observations are not determ inate and unpredictable. W ith the functions of

both vertical and horizontal transitions, a predecessor can be replaced by dif­

ferent successors. Terminal states, or end states, are used to indicate the end

of a horizontal transition at a certain layer. When a term inal state is reached,

the generation procedure will return from the current level back to its upper

level. We observed th a t the structure is defined by a hierarchy and so it is

appropriate to call it a type of Hierarchical Hidden Markov Model (HHMM)
2

In an HHMM L-System, a state can appear at different levels and these

states th a t appear later are usually omitted. The L-System symbols th a t have

their default tu rtle interpretations can also be redefined as HHMM states.

Thus they can be considered as either production states or internal states de­

pending on the recursive depth, i.e, when the recursive depth is reached, these

1The denotations are used for HHMM states [15] and have been introduced in Chapter
2 .

2There are many different formulations of hierarchical hidden Markov models and this is
the most similar to the one discussed in Singer et al. [15].

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

symbols are considered as L-System symbols with meaningful tu rtle interpre­

tation, otherwise they are replaced by user defined sub-HHMMs.

An L-String is generated from an HHMM L-System in the following way.

The root or the first level of the hierarchy, which is considered as the axiom of

the L-System, has the control initially. Each symbol in the axiom will activate

a sub-state at the second level by Monte Carlo sampling of the underlying

probability densities. Every internal state activated by its parent state, will

in turn activate one of its own sub-states with probability. If a production

state is activate, it will emit an observation with probabilities. The “down­

wards” recursive process will keep on until a production state is activate or

the specified iteration depth is reached and the control will be returned back

to the parent state which was latest activated. This parent state, which is an

internal state, will pass the control to another state in the same level. The

whole process will repeat until the last root state is reached again and an

observation sequence is thus created. This process is running in the same way

with HHMMs except th a t a recursive depth is used to control the recursive

depth.

Alternatively, we can describe this recursive process as L-Systems rules

rewriting process. At step one, each symbol in the axiom will be replaced

by the strings created from its sub-HHMM. The strings consist of both the

symbol of internal states name and observations em itted by production states

and are regarded as the observed L-Strings after step one. At step two, each

internal states in the L-String will be replaced by the sub-HHMM from the next

level. T hat is, elements in the L-String will be further replaced by observations

inferred from the HHMMs. This rewriting procedure iterates until the specified

iteration depth is reached.

We consider some examples to help understand HHMM L-Systems and

their relationships to stochastic L-Systems. In a standard stochastic L-System,

with rules given in Table 2.2(Chapter 2), its first production rule R l replaces

“F ” , which is a unit length straight line interpreted as a tree structure th a t in­

cludes a line segment of three unit lengths and two sub-branches (see Fig. 2.12).

The second rule R2 replaces “F ” with a simpler tree structure which includes

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a main axis of two unit lengths and a left branch. The third rule R3 replaces

“F ” with a branch structure with one unit length axis and a right branch

from the axis (see Fig. 2.12). These three rules R l , R2, and R3 are chosen

during the rewriting processes using the probability vector [0.33,0.33,0.34].

The resulting structures are different combinations of the above three rules

(see Fig. 2.13). This rewriting process can be regarded as a Markov chain.

We developed an HHMM L-System th a t can produce similar stochastic

structures to the above standard stochastic L-System. See Fig. 3.2 for its

topological structure and the observation m atrix of the state “D” is

value 1 2
probability 0.34 0.68

Also, to reduce the number of states and the m atrix size, brackets “[” and “]”

are om itted from the symbol set. States inside a pair of brackets are predefined,

in this example “B” will be replaced as “[B]” .

0.2

0.8

0.5 0.5

Figure 3.2: The topological structure of the HHMM L-System model generat­
ing objects in Fig. 3.3.

As shown in Fig. 3.2, the states of an HMM are L-System symbols (such

as “F” , “+ ” , and “-”) and HMMs symbols (such as “F ” , “D” , “E” , and “B”).

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

jr

Figure 3.3: The objects generated by the HHMM L-System defined in Fig. 3.2
to be compared with the Stochastic L-System objects shown in Fig. 2.13.

Observations of an HMM are variable combinations of these symbols with

numerical param eter values, for example, “FD(2)” , and these param eter values

are drawn from given distributions. The root of the HHMM L-System is the

state “F ” , which is also a predefined L-System symbol. “F ” has the successor

“FD(a:)” . The observation m atrix for “D” shows th a t two discrete values 1

and 2 have 66% and 34% probabilities to be chosen, respectively. Thus, the

results are w ritten as “D (l)” or “D(2)” , respectively. The state “D” is defined

as a special type of state and it involves a self repeat function. The number of

the self-repeat times is decided by its associated parameters. T hat is, “D (l)”

will repeat “D” once; “D(2)” will repeat “D” twice, i.e., “D(2) = DD” ; and

“D (n)” will repeat “D” n times. This type of self-repeat state is term ed as

“superstate” . For example, during the growth procedure of a tree, from a node

of a branch, the number of child branches is not fixed. Also, in a growth unit,

the number of internodes varies. All child branches from the same node can

be modeled using the same production rules and the internode in the same

growth unit can also follow same production rules. T hat is, we can reuse some

production rules but we need to control the number of these rules for each case

and the superstate is used for this task. We can use botanical knowledge to

define superstate properties to control the number of repeat processes and we

control the times by the possible values in an observation m atrix B. In this

example we set these values as 1 and 2 with the associated probabilities.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For another example, the HMM used to generate

axiom = NNSNNSNNSNNSNNSNNSNNSNNS

has the state set {N, S, e}. Using this basic HMM, it is difficult to control

the number of “NNS” in the observations by adjusting the transition m atrix

parameters. However, using superstates, the number of “NNS” can be easily

controlled by creating a sub-HHM “M” which can model “NNS” and treating

“M” as a super-state, and adjusting its self-repeat time, i.e. its observation

param eters . The sub-states of “M” can either be a simple L-System rule such

as “M = NNS” or a sub-HHM “M ” with states “{N, S” .

To balance the growth speeds of all states, we define a growth speed vector

to control the number of rewriting times in each rewriting step. For example,

we design three-layer HMMs to simulate a group of tree parts including stems

and lateral branches with buds, and two-layer HMMs to simulate a single

branch with buds, and a single HMM to simulate a single bud. And these three

groups of tree components are possible candidate states of a same parent state

and one of the three components will be developed in the next growth time

unit. Whichever HMM states is activated, we expect th a t all their states can

be traversed in the next rewriting step. Therefore, it is necessary to specify the

growth speed of each production rule of an HHMM L-System such th a t tree

parts which are designed by multi-layer HMMs can be completely developed in

a single time unit. Growth speeds allow variant number of layers of HMMs for

constructing different tree parts. As we can see from Fig. 3.2, “F ” is replaced

by “FD(a;)” , x e {1,2}, so a line segment is replaced by a unit line segment

(“F ”) and branch structures (“D”). “D” is replaced by either “B F” or “B” .

T hat is, “D” is replaced by a sub-branch with an unit line segm ent(“B F”)

or without an unit line segment (“B”). “B” is not a L-system symbol and

doesn’t have any structure meanings, so we let “B” to be replaced by either

“+ F ” or “-F” , which are two sub-branches in turtle graphics. T hat is, “D”

needs to be replaced twice to generate branch structures. Thus, the growth

speeds for states “F” ,“D” ,“B” ,“E” in Fig. 3.2 are set as 1,2,1,1 respectively.

Therefore, stochastic structures can be generated using this HHMM L-System

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Axiom:
NNSNNSNNSNNSNNSNNSNNSNNSNNB
Rules:
1. S='(.9)!(.9)
2. N=tF[k '{0 .8) \LBL\zL} > {187)[zk'{.7)\LBL\zL} > (137)
3. B = ^ [—/(.8)!(.9)$iC'Z,|^X]/(.9)!(.9)Cf
4. C=tF[+ (.8)\(.9)$LBL\zL]'(.9)\(.9)B
5. L=[{+ (30)/(10) - (30)/(10) - (30)/(10) - (120)/(10) - (30)/(10)
-(30)/(10)}]
Rule 1 is used to reduce the lengths and diameters of the stems generated
later.
Rule 2 is used to generate trunk stems and two lateral branches.
Rule 3 and 4 are used to generate branches.
Rule 5 is used to generate a single leaf.
The axiom consists of a number of ”NNS” , where “N” is a basic unit of the
trunk and “S” can reduce diameters and lengths of upper stems.

Table 3.1: A deterministic L-System for creating simple conifer type trees.

to approximate the stochastic L-System in Table 2.2.

For more examples, to generate a more complex object, such as a natural

tree, an HHMM L-System model is created from a series of existing determ in­

istic L-System rules. A deterministic L-System rule is given in Table3.1 and a

3D tree generated using this L-System is shown in Fig. 3.4.

These two models share the same transition matrices at each hierarchy, and

the same structure(see Fig. 3.5). Fig. 3.6 shows their resulting trees created

by Monte Carlo sampling of the model parameters.

These two models are different in few observation distributions. All obser­

vation distributions are given in Table 3.2, where the Gaussian distribution

function for state “s” is briefly denoted as “s” ~ (/ ,̂ cr):

In addition to Table 3.2, the state “C” a t layer 3 has its distribution vector

as follows:
value 0 1 2 3

probability 0.05 0.1 0.75 0.1

To generate the second row of trees in Fig. 3.6, we set the axiom as “N(12)” ,

the recursive depth as 5, and the growth speed vector for states [N, a, M, C,

B, D] as [1, 1, 4, 3, 2,1],

The HHMM L-System model used to generate the first row of trees has

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.4: The conifer generated by the deterministic L-System defined in
Table 3.1.

Layer 2: ’ - (0.95,0.05) ! ~ (0.95,0.05)
Layer 3: F - (1.0,0.1) A ~ (137,10)
Layer 4 & ~ (40,10)

! - (0.7,0.01)
’ ~ (0.7,0.01)

Layer 5 ’ - (0.9,0.02) ! ~ (0.9,0.02)
Layer 6 + ~ (35,10)

’ ~ (0.9,0.02)
- ~ (35,10)
! ~ (0.9,0.02)

Table 3.2: The state distribution functions of the HHMM L-System with struc­
ture in Fig.3.5.

the same setting except th a t this Gaussian distribution function for

a t layer 4 is (40,0) instead of (40,10). Since the variance of the Gaussian is 0,

from tu rtle interpretation, the turtle pitches down around left vector for the

fixed 40 degrees.

In summary, there are four basic elements in an HHMM L-System:

1. An Axiom.

An axiom of an HHMM L-System consists of a sequence of symbols with

their associated parameters. It is same with an axiom of a standard

L-System.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Production rules, which can be defined jointly by classical deterministic

L-System rules and HHMM rules.

Like an HHMM, an HHMM rule has a hierarchical structure, . It includes

states, transition matrices, observation matrices, and prior probabilities.

There are two other types of states in an HHMM L-System besides pro­

duction and internal states.

• term inal states. These states indicate the end of the HMM sam­

pling processes. When a term inal state is reached, the generation

procedure will return from the current level back to its upper level.

• superstates. Every superstate is followed by an integer n which

indicates th a t this superstate will be repeatedly replaced by its

successor n times.

Usually, horizontal transition matrices are of left-right model. Moreover,

self-loops are reduced by using super-states. In the other words, hor­

izontal transition matrices are restricted left-right model. Observation

matrices can vary according to the different levels of an HHMM.

3. A recursive depth vector.

If an HHMM L-System axiom consists of a series of parallel HHMM

rules, we can use a vector to specify recursive depths, i.e., each HHMM

rule can have a different recursive depth. Intuitively, branches closer to

roots are better developed than these on top.

4. A growth speed vector.

It can be used to control the repeating process. W hen no growth speed

vector is specified, all rules are rewritten once a t each rewriting step.

3.1.1 The Relation between HHM M L-System s and
Stochastic L-Systems

An HHMM L-System has more constraints on production rule selection and

observation symbols and thus it has the following advantages:

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• A clear structure which is more intuitive for tree generation.

• Observation matrices generate variable observations which allows to gen­

erate stochastic quantitative data of tree components.

• Superstates reduce the complexity of horizontal transition matrices and

eliminate loops on horizontal transition and thus allow users to apply

numerical botanic parameters, such as the number lateral branches, into

the L-System rules directly.

• Growth speed vectors can control the repeating speed of each HMM and

enable the flexibility of designing the HHMM rules.

3.2 Parameter Estim ation for HHMM L-Systems

Hierarchical stochastic methods do play increasingly im portant roles in many

application domains, as recently surveyed in [29], including image, video and

audio processing, robot mapping, etc.. The specific advantage of these hier­

archical methods lies in their capacity to model long-term interactions among

different portions of the targeting signal sequence. L-Systems, and their vari­

ants, are special cases of the general modeling m ethod th a t caters for the task

of 3D plant modeling.

Fortunately, param eter estimation of HHMM L-Systems can be further

constrained by only re-estimating the observation matrices (B) while preserv­

ing the transition matrices (A) and priori (n). To solve this simplified problem,

we develop a simple extension of the stochastic EM m ethod as follows.

Prior to the detailed descriptions of the algorithms, it is im portant to note

th a t our task is to construct 3D CAD models based on the following:

1. A series of images, Y , th a t have the target object (tree) in the scene.

2. A 3D object D, th a t is, a 3D object encoding feature of real trees, e.g.

a visual hull [21] constructed from Y.

In theory, the standard Baum-Welsh (EM) algorithm for HMMs can be

utilized here for param eter estimation [40]. However, in our situation, the ob-

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

servation sequence (the L-String) is not directly observable, and, even worse,

it is very hard to derive the L-String representation from a given 3D botan­

ical object since several different L-Substrings may have the same 3D result.

Instead, a sampling approach is a natural choice to overcome such difficul­

ties. Also, because expert knowledge is encoded in the transition matrices and

needs to be preserved, we propose to estim ate only the observation matrices

via our proposed stochastic EM algorithm as follows.

Define the hidden variables as x\, rr2, • • •, and they are matched with

observation data D = {di, d2, . . . , di,} and the associated normal param eters

for the observation m atrix are 9i € (ffi, 02) • • ■, $l)> where 9t — (pi, 07), /q is the

mean and cq is the variance of variable. Notice th a t all the related variables are

assumed independent. For variable 17, it is difficult to compute the likelihood

p(di\9i) from di alone, so we augment di with the hidden variable 27 to:

d t = [d t , x i \ (3.1)

and

(3.2)

and similarly,

X = { [X U X 2 , • • - , X L] , X i ~ N { p h (7 i) } .

We then formulate the Maximum Likelihood (ML) problem as:

(3.3)

6 * = a rg m ax p (0 |l^)

oc argm axp(L$,9)

= a rg m a x p (lt|0) • p(9)B

Assume df as iid, and 9i as having uniform priors. Then

L -y
9* = arg max

6 ,

oc a rg n ia x]r io g p (d (\9{).

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The stochastic EM method is employed to solve this ML problem. Define

Let Q(9) = Jx q(x\D) \ogp(x, D\9)dx and H = - f x q(x\D) \ogq(x\D)dx. Q(9)

is the expected complete log-likelihood function and H is the entropy and it

does not depend on 9.

EM algorithm:

E-Step : qt+1 — argm ax9 L(q,9t)

M-Step: 9t+1 = argmaxfl Q(9)

We can draw S samples for x according to p(x\9), and let:

L = \ogp(D\9)

where q(x) is a distribution function.

Using Jensen’s inequality, we have:

q(x\D) \ogp(x, D\9)dx — / q(x\D) \ogq(x\D)dx

hi,s = p{di\xh 9i).

Given

H = < x >

cr2 (x) = < [x — p) 2 >

= < x 2 > —u2,

it follows tha t

pi = < x t >

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E?=i h i .

Furthermore, considering the hierarchical characteristics of the HHMM L-

System, we can derive the following equations:

Hi = < x i >

£ f= 1 hl,s ■ Is ■ Xl,s

Z) « = l hi ,8 ' Is
(at) 2 = < x 2 > - u 2

E s = 1 h l,s • 7 s ■ x j s 2

E f = iK s - i s ’

where qs = P^(o)-Pn(i)' ' 'Pn(pa(i)) are Pr°duct of the sampled vertical/horizontal

transition probabilities along the path to the current node I.
Finally, the complete stochastic EM algorithm is defined as the follows:

1. Initialization: set the initial 9 values 90 = {0° : ;

2. Sampling step:

At tim e step t (t= 1, 2, 3, . . .) , draw S samples of x by drawing in batch

mode from each distribution 9t_l = {9\~l : h \ ~ 1 t ^ _1}-

3. E step:

Calculate

r w = £ r w = E X % - 7 , , (3.4)
1 = 1 1 = 1 8 = 1

where h\ s ■ j s is the weights of drawn samples;

4. M step:

Compute the parameters

A
£?=i M,» ■ 7. ■ x,,

r w

(s «)2 = S . =i ^ 7 ,
p i(9i)

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Iterate through step 2 to step 4 until 9 converges.

3.2.1 Experim ents

In our experiments, we initially designed an HHMM L-System according to

the basic botanic knowledge of the tree species to be estimated. A 3D shape

was provided to help estim ate the HHMM L-System parameters. We set the

recursive depth of the HHMM L-System according to the height, width, area of

the 3D shape, etc. We chose k image planes and projected the 3D shape onto

these k image planes to obtain k 2D images, each containing a 2D silhouette of

the 3D object. These 2D silhouettes were used to compare with each sample,

and denoted as ipj, (j = 1, 2, . . . , k).

We then initiated a recursive process and at each loop to generate n sam­

ples from the HHMM L-System model. During the generation process, all

param eters were recorded in stacks and were used for updating the HHMM

L-System model at the end of each loop.

From each HHMM L-System generated tree sample we obtained its 3D

geometrical structure and projected the 3D object onto these same k image

planes and obtained k 2D silhouettes. This resulted in k new silhouettes for

each sample, denoted by

^ i , 2) • • •) A , A;}A 1) 2 , ■ ■ • , n ,

where i is the index of the generated sample in a loop.

We compared each silhouette Ajj of this sample with the corresponding

2D silhouettes tpj of the 3D shape. T hat is, we compared ipj with \ itj and we

calculated a similarity score of the ith sample by

_ ^i,j)
U f o . A y) ’

for “H” corresponding to the intersection area of the j th silhouette of rendered

samples and the input j th 2D silhouette. To simplify com putation, we used

the number of overlapped pixels of two silhouettes as the “D” area. Similarly,

“U” corresponding to the union area of the j th silhouette of rendered samples

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the input j th 2D silhouette. We use the number of union pixels of two

silhouettes as the “U” area.

We reduced the similarity score when parts of the 3D sample were outside

of the input 3D shape by adding a penalty. For example,

w _ Xj j) ' cpj_____

where C is a constant used to adjust the penalty. The larger C is, the smaller

the similarity score will be.

After getting all similarity scores for k silhouettes, we can compute the

overall similarity score of the current sample level by taking Wi to be the

average of the ioy for j = 1, 2, . . . , k, i.e.

1 k
Wi = l H Wid

K 3 = 1

After computing n samples, we have a weight vector:

{wj} : {w i ,w 2, • ■ .,«>„}

The similarity score at each loop was computed by:

Similarity score = XXu wi

We found the samples which have low weights, say lower 25and set their

weights as 0 and then normalized the samples weights.

{w[} : {w[, w ’2, . . . , w'n) and E L i K = 1

The normalized weight vector is used to update the param eters of the

HHMM L-System. The samples with low weights d idn’t count on the updating

processes.

Different probability distributions need different updating method. Gaus­

sian distribution and distribution vectors were used in our work. For Gaussian

distribution (/i, cr),Pi was the value drawn from the Gaussian distribution at Ah

sample, and a t the end of one loop we obtained new param eter values(/ / , S 4)

by setting

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n

= Y , Wi'Pi>
1 = 1

(s *)2 =
i=1

where pij was the drawn value from 9i : pi, E* for the ith sample and w\ was

the normalized weight of the ith. sample.

For a discrete distribution vector, we simply computed the percentage of

each value and used the new percentage to replace the old param eter. After

updating all applicable parameters, we obtained a new HHMM L-System and

repeated the above process for t times, or until param eters converged.

In one experiment, 100 independent samples were generated from the

HHMM L-System at each loop, and 12 loops were repeated to update the

param eters of the HHMM L-System. At each loop, 75 samples were counted

for updating parameters. The scaling factor C was set as 5. One sample from

each loop was randomly chosen and shown in Fig. 3.8 and a silhouette is shown

in Fig. 3.7, and in this experiment, 4 identical silhouettes were used for weight

estimation. The similarity score curve of estim ating an HHMM L-System is

shown in Fig 3.9. This curve contains 12 increasing similarity scores for 12

loops.

We noticed th a t the similarity scores are relatively small since the input

silhouettes are usually much larger than the areas of samples and even the

weight of an ideal sample could not reach 1 since the silhouettes used are the

overall shape of trees and they don’t contain holes. However, the projections

of the sampled trees have much spaces among branches.

Moreover, when a sample goes outside of the silhouette, a penalty will

rapidly decrease the similarity score.

In the experiments we obtained reasonable branch length and angle pa­

rameters, which makes the generated trees have close live crown ratios 3 with

the silhouettes.

The lim itation of the estimation is due to insufficient information used for

3Live crown ratio is the percentage of the length of the stem which has live branches.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

weight estimation. In our case, only silhouettes are used to do the comparison

and the similarity scores only reflect partial weight of the samples, w ith a

global comparison strategy some param eters are re-estimated more sufficiently

than others. In this cases the lower order of axes such as trunks and large

branches are better estimated.

To this stage we have developed an HHMM L-System for the generation

of 3D objects where all rewriting rules are replaced by sets of matrices th a t

define state transitions and expected values of transformations. It would be

ideal if we could fit such models with sensed image data. To th a t goal, then,

we need to explore how to integrate such a model into the visual hull of an

object constructed from multiple images, the topic of the following chapters.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The index
of layers

0.5 0.5

L$|zL]

0.8

0.90.5

0.5 0.1

_ . . . I I Multiple states in
superstate Q End state | tF | fixed order

Figure 3.5: The structure of the HHMM L-System to generate trees in Fig.3.6.
Probabilities of 1.0 are om itted in the graph. States “C” , “B” , “D” are defined
as included in brackets and thus “C” will be converted to “[C]” . The
HHMM L-System observation functions are given in the text.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.6: Two groups of trees generated from the two HHMM L-System
Models. To show the branch structures more clearly, the trunk diameters are
reduced.

Figure 3.7: A silhouette is used for the stochastic EM algorithm in our exper­
iment.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.8: Samples chosen from the 12 loops, one sample from each loop,
shown from left to right. Samples from the first to the sixth are on the first
row and seventh to twelfth on the second row.

7.5

£o0
0561E
05

5.5

Times (t)

Figure 3.9: The similarity score for updating a HHMM L-System model in
first 12 loops.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Visual Hull Construction

In this chapter, we first introduce the concept of the visual hull and its prop­

erties and then compare four approaches to constructing visual hulls.

4.1 Introduction

A central problem in computer vision is to identify and reconstruct the 3D

content of a scene. Many approaches are based on using 2D images as sources

and they are classified as “shape from X ” , where “X ” is the information used,

such as textures, shadows. [21]. A 2D silhouette, the projection of a 3D object

onto an image plane, is effective for shape understanding [1] and is relatively

simple to compute. When the silhouettes of a 3D object are used, the approach

is named shape from silhouettes (SFS) and the resultant 3D object is called the

visual hull of the 3D object and the concept of visual hulls was first introduced

by Laurentini [21].

Visual hulls created by using SFS methods are the maximal silhouette-

equivalent to the original object. In other words, a visual hull has the same

silhouettes as the original object. Compared to the corresponding convex hull,

a visual hull is a more accurate approximation. A visual hull depends on

both the shape of the object and the visible region from the viewpoints [21].

Only the parts of the surface of the original object th a t also lie on the surface

of the visual hull can be reconstructed. Unfortunately, a visual hull is not

guaranteed to be identical to the original object due to the lack of complete

information from the silhouettes including specific concave sub-surfaces which

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cannot be viewed and in practice only a small number of views are used to

construct the visual hull. Like all contour-based approaches, it has limited use

for understanding non-convex shapes [21]. Laurentini [21, 22] discussed how

far a 3D object can be understood by its 2D silhouettes.

4.2 Visual Hull Construction

The implementation of SFS methods is relatively straightforward and can be

described as follows [10].

Suppose an object O is surrounded by k pinhole cameras. Each reference

view r has a silhouette S r where all pixels inside the silhouette belong to the

object. From each view r, we define a cone-like volume Vr , whose peak is at

the current projection point, i.e., the camera center, and it passes through all

interior points of the silhouette on the image plane (see Fig. 4.1). The object

then lies inside the volume outlined by all silhouettes V H = DrekVr . When

the number of views increases, V H converges to the visual hull of the original

object.

Figure 4.1: An illustration of the bounding cone intersection modeling (from
M atusik [26]) for visual hulls.

Many algorithms have been proposed in the literature to compute visual

hulls, and can be roughly classified into four approaches:

• Voxel-based approaches

• Surface-based approaches

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Hybrid approaches

• Image-based approaches

4.2.1 Voxel-based approaches

Voxel-based approaches, also named volumetric approaches, use a technique

called “voxel carving” to compute visual hulls. The underlying idea is to divide

the space of interest into discrete voxels and to classify them into two classes:

inside and outside. Each voxel to be classified is projected onto each image

plane. If all projections on k image planes are completely inside the silhouettes,

then this voxel is classified as inside; otherwise it is outside. Outside voxels are

removed from the voxel space [10] and remained inside voxels are considered

as belonging to the visual hull.

Voxel-based visual hull construction is a robust m ethod and is able to

handle objects with complex geometries. It can be easily implemented giving

reasonable results regardless of the format of the silhouettes [10]. Obviously,

the more voxels used, the smaller each voxel is, and the more precise the visual

hull will be. However, a large amount of memory is required for computing

a precise visual hull. For a volume of N x N x N voxels, N 3k memory units

are required for generation and testing, which makes the algorithm slow and

expensive.

Octree-hierarchies [9] are often used to accelerate the speed of the com­

puting procedures for voxel-based visual hull construction. Some effective ap­

proaches [10] make it possible for real time visual hull construction. Sullivan

et al [46] introduced a m ethod to improve visual hull shapes by using splines.

Seitz et al. [43] made use of color consistency information for carving voxels.

4.2.2 Surface-based Approaches

Surface-based approaches construct the surfaces of a visual hull and provide

an explicit 3D model. The most direct way to construct the visual hull of

an object from a set of silhouette images is by intersecting bounding cones:

bounding cone intersection. A bounding cone is formed from the edges of

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the silhouette and the camera center, as shown in Fig. 4.1. Objects inside

a bounding cone can be seen from the corresponding camera, and the faces

of such cones define the bounds of object areas and none-object areas. The

original object must lie inside all the bounding cones and the faces of bounding

cones are also on the object surface. Thus, a visual hull can be computed by

intersecting all bounding cones and the resulting visual hull consists of a set

of surface facets, which are on the surfaces of the bounding cones. In this way

the visual hull gives a polyhedral approximation to the object.

Surface-based approaches can be very precise and they give explicit 3D

models which make them easy to be used in applications such as texture m ap­

ping and rendering. However, it is not easy to express the visual hull facets

effectively by simple geometrical attributes. The com putational complexity

and the numerical instability of intersecting surfaces with lines and planes in

3D make them impractical for computing visual hulls of complex objects [10].

An early contribution on surface-based approaches was made by Baum-

gart [4], who used polygonal approximations of the occluding contours. Other

researchers [20, 14, 11] also used local second order surface approximations

to reconstruct individual points [8]. Some effective algorithms [8] have been

introduced by compute surface patches [46] or surface strips [25].

4.2.3 Hybrid Approaches

Recently, Boyer et al. [8] introduced a new approach which takes advantage

of both the robustness of voxel-based approaches and the precision of surface-

based approaches. It uses voxels but only the voxels on the surface of the visual

hull are computed. It then extracts the visual hull surface from a Delaunay

triangulation by taking the surface delimiting the polyhedra th a t project inside

the silhouettes. This hybrid approach has equivalent efficiency to voxel-based

approaches and gives more precise visual hulls together w ith lower tim e and

space complexities [8]. For detailed description, please refer to [8].

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.4 Image-Based Approaches

Traditional visual hull construction algorithms are geometry based since they

all compute 3D geometrical representations. Nonetheless, if the purpose of an

SFS application is to render new images from different views of an object, then

an explicit 3D geometry representation is not necessary. M atusik et al. [26]

proposed an image-based, visual hull (IBVH) algorithm which is a practical

alternative to the traditional m odeling/rendering framework.

In this method, views of a visual hull can be directly rendered from its

silhouette images w ithout constructing a volumetric or polyhedral model by

using view interpolation. This is accomplished by merging the cone intersec­

tion calculation with the rendering process. It is efficient for applications th a t

do not require an explicit geometric or volumetric representation.

4.3 Experiments: Visual Hull Construction Us­
ing Bounding Cone Intersections

In our study, we are required to infer 3D tree models from images so we use

one of the geometric modeling methods: the surface-based approach and we

have applied the following steps to construct polyhedral visual hulls.

Image A cquisition and S ilhouette Extraction. In this study, images

came from two sources: rendered synthetic 3D digital objects images and real

photos. For the first source, we first render a virtual 3D tree by assigning

different camera setting parameters to collect a set of images. In this way,

all param eters including camera position, orientation, etc., were accurately

set. We could also eliminate all complex background and get a object w ithout

any background noise. Moreover after we obtained the visual hulls, we could

compare them with the original 3D objects at all view points, so it is an

effective source for testing and estim ating a visual hull construction algorithm.

The second source was a set of photos of real trees taken by digital cam­

eras. and required more efforts. Experimental errors from facilities, human

operations, and background noise, cannot be easily eliminated. Once images

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

were obtained, the objects of interest were segmented from its background

manually and the silhouettes were extracted by encoding the object boundary

in a polygon format, with a silhouette being denoted by Si.

Com pute visual hulls Suppose there are k reference views and associated

images taken from a calibrated pinhole camera. For each reference view a local

coordinate system was built which included the cam era’s position as point of

origin, the optical axis as the z axis, the horizontal direction of the camera as

the x axis, and the vertical direction as the y axis. Notice th a t the camera

coordinate system was left-handed.

For each such local camera coordinate system an image plane Pi was per­

pendicular to the z axis passing through the camera point of focus. The image

plane could also be represented by z = / , where / was the focal length of the

camera. Therefore, each scene view was projected to their own image planes.

For each such silhouette, a bounding cone was then computed relative to its

specific camera model and it consisted of a bundle of lines which all origi­

nated from the camera center and passed through all the silhouette edges on

the image plane. Since a silhouette was in polygon format, its bounding cone

V r was then represented by a set of triangular faces which converged at the

camera center. The visual hulls could be computed by finding the intersection

of all the bounding cones, V H = n r<znVr. Moreover, all the polygons in the

resulting visual hulls were on the bounding cone triangular planes.

To compute the visual hull, every intersection point between the faces

of the bounding cones must be computed. To overcome the complexity of

this operation in 3D, M atusik et al. [25] proposed, instead of computing the

intersection of faces in 3D, to project bounding cones Vi to the images plane

Pj and to find the intersection part of the projected bounding cone Vi w ith the

S j silhouette, for all views i , j .

Upon the completion of the intersection process, a series of polygons were

obtained. These polygons composed the surfaces of the visual hull. The

pseudo-code for the above algorithm is given in the following Table 4.1, af­

ter we define some notations.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Or\ the r th camera center;

• k: the number of reference views;

• r: the index of reference views;

• S r: the r th silhouette;

• E f a vertex on S r ;

• Eiti+i: an edge on S r ;

• S r = E 1E 2E 3 . . . ;

• Ti = EiOrE i + 1 is an open triangular plane consisting of two lines which

meet a t the r th camera center.

• vr = {Ti} = TiT2T3 . . a bounding cone consists of a number of trian­

gular planes, which share a common peak point Or ;

• Pi. the projection of Tj on a image plane.

f o r r = 1, 2, . . . , k

f o r i = 1, 2, . . . , k and i ^ r
f o r each edge -Ejj+i of s i lh o u e t te S r

T = E jO rE j+x
compute P by p r o je c t in g T onto th e i th image p lane
compute p by in te r s e c t in g Si and P
compute p r by p ro je c t in g p back onto p lan e T
update V H by m erging p r in to V H

end
end

end

Table 4.1: The pseudo-code for the visual hull construction algorithm.

Fig. 4.2 shows an example visual hull on the second row created from the

four input images on the first row. Objects on the same column are viewed at

the same view points.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.2: Four different views of a visual hull created from the four different
views of an aspen correspondingly.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Extracting Skeletons from
Visual Hulls

Visual hulls do not provide an “object-centered” model and so for more accu­

rate and robust 3D models we need to integrate full 3D model structures with

a given visual hull. To generate a 3D tree model, we need to find its skeleton

from its visual hull. In such a case, tree skeletons refer to the trunks and the

main large branches of a tree th a t we assume determine the predom inant view

of the tree shape. In our study, we assume th a t the Medial Axis of a visual

hull approximates the tree skeleton.

5.1 Medial Axis Transform

The medial axis of an object is the locus of centers of a sequence of circles, or

spheres in 3D space, and these circles and spheres have maximal radii within

the object. The Medial Axis Transform (MAT) is the medial axis together

with the associated radius [44]. The MAT encodes im portant visual cues such

as local diameters and symmetries. The concept of MAT was first introduced

by Blum et al. [5] and further developed by Blum et al. to apply to biological

shapes [6, 7]. A 2D example illustrates a rectangle and its MAT in Fig. 5.1

In general, there are two approaches to compute the MAT of an object.

The first approach is to use a type of morphological thinning th a t successively

erodes away pixels from the boundary and preserves the end points of line seg­

ments at the same time until no more thinning is possible. After the thinning

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.1: The medial axis of a rectangle is shown as solid lines inside the
rectangle. The maximal circles in dash lines, and the circle centers are also
shown.

process, the remaining pixels approximate the medial axis. The alternative

approach is to first calculate the distance transform of the image. The skele­

ton then lies along the singularities, i.e., creases or curvature discontinuities

in the distance transform [44].

5.1.1 Voronoi Diagram and Delaunay Diagram

Before we go through the detailed MAT algorithm, we introduce two terms:

Voronoi diagram and Delaunay diagram.

The definition of a 2D Voronoi diagram is given as follows:

• Let P be a set of n distinct points on a plane. These points are called

sites.

• The Voronoi diagram of P is the subdivision of the plane into n cells or

subdivisions and each cell includes one and only one site.

• Any point q lies in the cell corresponding to a site Pi E P if and only if

for each pj E P (j 7̂ i) the Euclidean distance between q and pi is less

than the Euclidean distance between q and pj.

Some example illustrations of 2D Voronoi diagrams are shown in Fig.5.2. The

Voronoi diagram for one site is the plane itself (see Fig.5.2(a)). The Voronoi

diagram for two sites is a line th a t extends infinitely in both directions and

the two half planes on the sides. This line is the perpendicular bisector of the

two sites (see Fig.5.2(b)). The Voronoi diagram for n sites th a t are collinear is

a series of parallel lines th a t extends infinitely in both directions. Each line is

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the perpendicular bisector of each two neighboring sites (see Fig.5.2(c)). The

Voronoi diagram for n sites th a t are non-collinear is half lines th a t meet at

vertices. Each line is the perpendicular bisector of two sites and the Voronoi

vertices are the centers of empty circles with three or more sites on their

boundaries. Em pty circles mean th a t no more sites are inside of them (see

Fig.5.2(d)).

n n n

I F I F H

d

Figure 5.2: Voronoi diagrams for different set of sites on a plane, a. the Voronoi
diagram of a single site is the plane itself b. The Voronoi diagram for two sites
is the bisector of these two sites, c. The Voronoi diagram for collinear n sites
is a series of bisectors of each two neighboring sites, d. The Voronoi diagram
for non-collinear n sites is a series of bisectors of sites on the edges of empty
circles. The circle centers are called Voronoi vertices.

A Delaunay Diagram is the dual structure of the Voronoi diagram, see

Fig 5.3. Each site is a Delaunay vertex and two vertices are connected if their

associated cells in the Voronoi diagram share a common boundary edge.

a b

Figure 5.3: The Voronoi diagram (a) and Delaunay diagram (b) of a same set
of points.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Computing the MAT

In this study, we use the algorithm proposed by Hubbard [31], which approxi­

mates the medial axis of a polyhedron. To compute a better approxim ation of

the medial axis, we require dense mesh vertices. The density of mesh vertices

is closely related to the precision of the resultant medial axis and the compu­

tation time. In our application, we set a distance threshold and then measure

the distance among vertices in each polygon. If the measured distances of a

polygon are larger than the threshold, more points will be added to the interior

of the polygon. The distance between any pair of points including vertices of

the polygon must be less than the threshold. Based on these 3D points, we first

compute the Delaunay diagram consisting of a number of tetrahedra. Then

for each tetrahedron, we compute its circumsphere. Both the centers and the

radii of the circumspheres are kept for further use. As mentioned before, De­

launay triangulation is the dual structure of Voronoi diagram and the centers

of circumspheres are the Voronoi vertices. In addition, for every tetrahedron

we can find the neighboring tetrahedra th a t share one face with the current

one. Once we determine th a t two tetrahedra are neighbors, an edge is added

to link their Voronoi vertices. Upon completion we have a Voronoi diagram

consisting of Voronoi vertices and Voronoi edges.

We examine all the edges in the 3D Voronoi diagram. If an edge completely

lies inside of the polyhedron, which is the visual hull in our application, it is

remained. Otherwise, this edge will be removed from the Voronoi diagram.

Teichmann et al. [28] introduced a skeleton simplification m ethod which

allows the use to specified Voronoi vertices th a t are the closest to the “ends” of

each branch. These vertices will be kept when simplifying the Voronoi diagram.

The Voronoi diagram also includes bi-connected components 1. Our task is to

create a tree structure so no such bi-connected components are allowed. To

remove bi-connected components, a skeleton simplification m ethod is used as

follows:

1A bi-connected component is one that when one edge of the component is removed, the
component is still connected.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Compute the bi-connected components and remove the vertex which is

the closet to the mesh surface. The distances from the vertex to the

surfaces of the polyhedron can be set to the radii of the circumsphere

approximately.

2. All the articulation points 2 and the user specified vertices are not allowed

to be removed.

3. Repeat the above 2 steps, until the graph is a tree or no more points are

removed.

Shlyakhter et al. [45] extended the above algorithm by developing a m ethod

to autom atically find a set of Voronoi vertices which match the tips of m ajor

branches. These vertices are obtained by finding “interesting” vertices in 2D

silhouettes by the following steps.

1. “Interesting” vertices are selected from the convex hull and the even-

order convex hulls of silhouettes. Such vertices are chosen by some

heuristic, for example, vertices where the convex hull makes a shape

angle or vertices adjacent to a long edge.

2. Once these interesting 2D points are located, their corresponding 3D

points can be obtained by finding the Voronoi vertices which are the

closest to these 3D points and are marked as “un-removable” for the

skeleton simplification algorithm.

Using this simple algorithm, no user interaction is required and the in­

teresting points for capturing the significant features of the objects can be

found.

5.3 Post-processing

The obtained medial axes can be represented in graph form: G = {V ,E } ,

where V are a set of 3D points, and E are the edges connecting points. The

2 An articulation point is one which will cause the diagram fall into two parts when it
and its incident edges are removed.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

medial axes were computed simply using a m athem atical m ethod and didn’t

have any botanic meanings. To convert the graphs into tree structures, we

used a simple heuristic m ethod to classify all points into different axis orders,

where the order of axis has been introduced in Chapter 2 (on page 8). After

this classification all order one points belong to the trunk of the target tree,

and order i axes consist of all the order i points. A point belonging to order

i — 1 connects to the order i axis.

The classification was done as follows. We first found the root point by

its coordinate since the root point is on the ground or the lowest point. Then

starting from the root point, we searched for a longest path. For monopodial

trunks w ithout ramifications, these paths are very close to the expected trunks.

A dichotomous trunk ramifies into several order two axes and so the found

longest path consists of the trunk and a order two axis. In this case, we

keep the partial points of the path which locate at the lower part of the path

and their projections on the ground are close enough to the root point. By

this method, order one axes, or the trunks, were extracted. We then started

from each growth point on the trunk and found the longest path starting from

it. During the new search procedure all classified points were removed from

consideration. We regarded the points on the new longest paths as order two

axes. By recursively repeating these steps all higher order axes were found.

As a lim itation of the MAT method, a shape’s boundary noise can induce

several small branches or spurs on its MAT, even though the noise is minor

and does not significantly contribute to the overall structure (see Fig. 5.4).

Moreover, the MAT is maximally axial to the shape, i.e., it provides the

local axis of symmetry of the shape everywhere. Nonetheless, in general the

growth of a natural tree is fairly symmetric along its trunk a t all direction

yet its symmetry is not strict. In reality, an individual tree is never perfectly

symmetric in all directions at all heights. So the tree skeletons extracted using

this MAT algorithm are different from the botanical trunks as we expected.

Indeed, sometimes the extracted skeletons have too many undesirable artifacts

which make them unnatural tree axes. Therefore, it is necessary to use some

post-process to eliminate these artifacts.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ilii

I
iI

:__________ il V__________ i

a b

Figure 5.4: Skeletons constructed from 2 objects: a) the medial axis of a sym­
metric object; b) the medial axis of a non-symmetric object and the asymmetry
is caused by minor noise.

In our experiments, we used the B-Spline curve fitting m ethod to smooth

all the axes since B-Spline curves have an advantage over Bzier curves in

tha t they are smoother and easier to control. Furthermore, we assumed th a t

the trunk of some species trees are straight, We then derived the best fitting

straight trunks from their curve shape trunks.

As we can see in Fig.5.5, the first medial axis includes zigzag axes. After

spline fitting all the axes appear more smooth and look more natural.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

initial skeleton skeleton after spline fitting skeleton after main trunk
modification

Figure 5.5: Skeletons constructed from the visual hull shown in Fig. 4.2. The
left skeleton, initial skeleton, is created from Medial Axis extraction method.
The middle skeleton is created by applying B-Spline fitting on the initial skele­
ton The right skeleton is created by replacing the middle skeleton’s trunk with
a straight vertical trunk.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Fitting Branches inside V isual
Hulls

The skeletons created from visual hulls include trunks and main branches. To

create more realistic trees, we also need to create small branches and leaves.

The HHMM L-System models created for the same tree type can be used to

fulfill the task.

Basically, the process starts from the root of the skeleton and traverses

all branches. During the process, new branches are added if the distance

between two growth points, i.e. the distance between two neighboring points,

is greater than a specified threshold branches will be added. All branches are

fitted within the visual hull.

6.1 Previous work

Previous researchers proposed some methods for generating branches inside

of visual hulls. Sakaguchi et al. [42] simulated branch structure by applying

simple branching rules with some restrictions. They first generated a number

of tem porary branches inside of volume data of input tree images, where the

volume da ta are very similar to visual hulls. These branches were generated

at different orientations, and the tem porary branches, th a t occupied the most

space, and met the predefined restrictions, were kept. Using this method, a

large number of tem porary branches were created during the fitting process

and the generated branches used were in simple form and not specialized to

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

make a botanical tree, thus the process is slow and the resulting trees are not

natural enough.

Shlyakhter et al. [45] extracted the tree skeleton from visual hulls and wrote

the tree skeleton as an axiom to an L-System. Buds were appended on the last

two levels of branches. They then applied open L-System models of the tree

type for tree growth process. They manually decided the recursive depth of

each open L-System to make the generated branches fit the tree shape the best.

Using this method, interaction between human and computer is required.

In our work, we proposed a fully autom atic process to do the task. The

fitting process is described on the following sections.

6.2 Converting MAT Skeletons into L-Strings

Branches created by HHMM L-System models are represented in the L-String

format. The skeletons are represented in a common graph form at G = {V, E }

with order information. We first unify them by converting the MAT skeletons

into the L-Strings format. L-System symbols “A” , “F” , “[” ,

“]” , . . . , will be used in this conversion.

A skeleton consists of a set of axes and each axis consists of numerous

connected line segments. For example, an order i axis consists of a set of

connected line segments: {p t p t ■ ■ where p i = (xPi, yPi, zPi), and each

point is connected to its neighbors, i.e. point p t is connected to point p t,

which in tu rn is connected to point p t, and in general, point p t is connected

to point p^i+1.

We initialized a standard coordinate system with three unit orthogonal

axes i t , F^, and which correspond to the “left” , “up” , and “forward”

directions, respectively. We regarded this coordinate system as the standard

coordinate with the original point placed on the root position of the skeleton.

We assumed th a t there is a “tu rtle” coordinate system which is initially the

same as the world system.

To represent a sequence of joint line segments in the L-Strings form, we first

rotate the turtle coordinate to align its “forward” and the first line segment

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

directions Then move the turtle coordinate forward the length of the first line

segment. After tha t, rotate the turtle coordinate to align its “forward” and

the second line segment direction, and then move forward the length of the

second line segment. This process is repeated for all line segments.

To ro tate the coordinate and align its “forward” axis, or Z axis,and the line

direction Pi+ip). we first transformed the original turtle coordinate (j£ ,

to the target coordinate system (Jt', Y ,̂ In the target system, only ^ is

known to be , where |pi+Ii^| is the norm (or the length) of

We assumed th a t no rotation around the i f axis was required. Based on

this assumption, we first rotated the coordinate system around its Ŷ axis for

a degrees to align j t and i t '. Using L-System symbols, we can denote this

rotation process as &c(a) when a > 0 and A (|ck|) when a < 0, where function

\X \ returns the absolute value of X . After this is done, we rotated the new

coordinate system around i t axis for j3 degree, and aligned Ŷ and Y ,̂ i t and

respectively. Using L-System symbols, it could be denoted as “+ (/?)“ if

fd > 0 or “— (|/? |)“ if < 0. After these two rotation steps, we translated

the turtle coordinate system to the end point of the current line segment and

measure the distance of the translation d. This movement using L-System

symbols is denoted as “F (d)".

We repeated these processes to present the whole sequence of line segments

in the L-String format. W hen a point which connects more than one points

was encountered, we first processed children axes one by one. To do so, the

current states were first saved in a stack and then used the same m ethod to

process a child axis. W hen the axis was done, the saved states were popped up

and were used to process the next axis. When all children axes were processed,

we popped the states from the stack and then continued to process the rest

part.

We used brackets “[” and “]” to push and pop the states into and out of

stacks:

L i [L i + i [L i + 2] L i + i \ [L i + ± [L i + 2 ■ ■ - \ L i + i \ L i

where Li is a substring of an order i axis L-String. Taper functions were

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

used to modify the thickness of trunks at different height.

An example of a resultant trunk L-System string is given as below (only a

small part of the string is shown):

F(12) [&(145) —(52)F(17) A (23)-(7)F(1) [&(82)+(15)F(10) A (18)-(12)F(3)

A (4)-(3)F (9)A (4)-(5)F (2) A (11)-(7)F(3) A(4)F(4) &(10)+(10)F(15)]]F(2)

6.3 Adding Branches and Leaves

During the above converting procedure, we examined the length of each line

segment of the medial axis. If the length was greater than a threshold, it was

divided into several short line segments and each is shorter than the threshold.

The distance threshold was varying at different positions of the skeleton. The

threshold decreased when either the height or the order of axes increased to

make the internode at the bottom of a tree longer than the top of the tree.

At each line segment joint point we inserted an axiom to create a stochastic

sub-branch with a selected probability. We used the extracted medial axis as

the main skeleton of the tree, so we don’t used axioms to generate trunks. At

a growth point on the first order axis of the skeleton, we added an axiom with

recursive depth n which can generate second order branches. At a growth

point on the zth order axis of the skeleton, we added an axiom with recursive

depth n — i + 1 which can generate i + 1 order branches. The zth order axes

and (z + l) th order axes might share the same HHMM L-System axiom, and

recursive depths are the only difference. At each growth point, an axiom can

generated more than one branches, and the number of branches is decided by

the tree species and is designed in the axiom.

For example, if we use the HHMM L-System model defined in Fig. 3.5

(Chapter 3) as the tree model, then “M” can be appended on the first order

axis to generate its sub-branches, which are lateral branches on the trunk.

And “B” can be appended on the second or higher order axes to generate

their sub-branches.

Once an axiom was inserted, the HHMM L-System commenced rewriting

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to expand the axiom to an L-String for a branch. We used the tu rtle interpre­

tation to convert the L-String into a 3D geometrical structure. We compared

the 3D branch structure with the visual hull to test if the branch is inside the

visual hull.

We noted th a t the 3D structure was represented in the tu rtle coordinate

system. Therefore, before comparison, we needed to transform the 3D struc­

ture into the standard coordinate system. For example, an axiom was inserted

a t = [Xp, Yp, Zp\ on the line segment and the tu rtle interpretation started

at p. In the resulting 3D geometry, would have its new coordinate in the

turtle coordinate system as — [0,0,0], which was inconsistent.

We computed a transform m atrix to transform the turtle coordinate system

back into the standard coordinate system. Using the transform ation matrix,

we transformed the 3D branch structure back into the standard coordinate

system and compared the whole branch with the visual hull.

On the standard coordinate system, to test if a point was inside a visual

hull or not, we projected it onto k 2D image planes each of which contains a

silhouette, and compare the projected 2D points with all 2D silhouettes. If all

projected points were inside its respective silhouettes, then we concluded tha t

the point was inside the visual hull. This method avoids complex 3D compu­

tations since an im portant property of a visual hull is th a t it is equivalent to

the silhouettes of the object [21].

To meet the optimum criterion th a t the branch was completely inside the

visual hull and at the same time, occupied as much space as possible, we

started a recursive process, at each step of which we measured all points on

the branch. If all the points were inside the visual hull, a scalar was increased to

enlarge the branch; otherwise the scalar was decreased. This recursive process

continued until the scalar difference between two adjacent steps reached a

minimum threshold. Once a branch associated with its scalar was accepted,

its L-String included in two brackets replaced the axiom.

After traversed all the axes on the skeleton, we stopped the process.

Four sets of experimental results are reported on the next chapter.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Experim ental R esults

We have performed experiments on both synthesized and natural trees. Some

results are shown below.

7.1 A Synthesized Tree 1

Four input images a synthesized tree are shown in the first row in Fig 7.1.

The generated visual hull and 3D tree viewed a t the four corresponding view

angles are shown on the second and th ird row respectively in Fig 7.1.

7.2 A Synthesized Tree 2

Four input images which contain a synthesized tree are shown in the first

row in Fig 7.2. The generated visual hull and 3D tree viewed at the four

corresponding view angles are shown on the second and th ird row respectively

in Fig 7.2.

7.3 A Natural Aspen

Four input images which contain an aspen are shown in the first row in Fig

7.3. The generated visual hull and 3D tree viewed at the four corresponding

view angles are shown on the second and third row respectively in Fig 7.3.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.1: Four different views of a tree which has a dichotomous trunk are
on the first row,. The visual hull and reconstructed 3D tree are shown on the
second and third row.

7.4 A Natural Spruce

Four input images which contain an spruce are shown in the first row in Fig

7.4. The generated visual hull and 3D tree viewed at the four corresponding

view angles are shown on the second and third row respectively in Fig 7.4.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.2: Four different views of a tree which has a monopodial trunk are
on the first row. The visual hull and reconstructed 3D tree are on the second
and third row.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.3: Four different views of a real aspen are shown on the first row.
The visual hull and reconstructed 3D tree are shown on the second and third
row.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.4: Four different views of a real spruce are shown on the first row.
The visual hull and reconstructed 3D tree are shown on the second and third
row.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusions

This is an example of how computer vision, and machine learning, can be

integrated with stochastic process to create new types of com puter graphics

models.

A new type of stochastic L-System, HHMM L-Systems, were developed for

creating trees with stochastic appearances. This HHMM L-System inherits

the properties of standard stochastic L-Systems, but has a better hierarchical

structure, and provides more parameters to adm it stochastic behavior of tree

growth. The stochastic EM algorithm is used to train the partial param eters

of the HHMM L-Systems.

We created a framework to generate 3D trees from 2D images. In our sys­

tem model, immediately after the tree images are manually segmented, the

intermediate stages such as visual hull generation, medial axes creation, and

branches fitting process are all autom atically done. The new fitting algorithm

was designed to autom atically add adequate branches and leaves within the

visual hull. Our work distinguishes from existing work through a number of

autom ated processes. The autom ation is potentially valuable to those appli­

cations th a t required autom ated reconstruction of trees th a t fit within visual

hulls.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] J. Aloimonos. Visual shape computation. IEEE proc., 76(8):899-916,
1988.

[2] M. Aono and T. L. Kunji. Botanical tree image generateion. IE E E Com-
putter Graphics and Applications, 4(5): 10-34, 1984.

[3] M. Barnsley and S. Demko. Iterated function systems and global con­
struction of fractals. R Soc London Ser, A399:243-275, 1985.

[4] B.G.Baumgart. A polyhedron reprsentation for computer vison. A F IP S
National Computer Conference, 1975.

[5] H. Blum. A transform ation for extracting new descriptors of shape. In
W athen-Dunn W, editor, Models for the Perception of Speech and Visual
Form, pages 362-381. MIT Press, 1967.

[6] H. Blum. Biological shape and visual science (part I). Journal o f Theo­
retical Biology, 38:205-287, 1973.

[7] H. Blum and R.N. Nagel. Shape description using weighted symmetric
axis features. Pattern Recognition, 10(3) :167—180, 1978.

[8] E. Boyer and J-S Franco. A hybrid approach for computing visual hulls
of complex objects. In Computer Vision and Pattern Recognition, pages
695-701, June 2003. Madison, Wisconsin, USA.

[9] C.H.Chien and J.K.Aggarwal. Volume/surface octress for the reprsenta­
tion of three-dimensional objects. CVGIP, 36(1): 100—113, 1992.

[10] G. Cheung, S. Baker, and T. Kanade. Shape-from-silhouette of articulated
objects and its use for human body kinematics estim ation and motion
capture. CVPR03, 1:77-84, 2003.

[11] R. Cipolla and A. Blake. Surface shape from the deformation of apparent
contours. IJCV, 9:83-112, 1992.

[12] D. Cohen. Computer simulation of biological pattern generation pro­
cesses. Nature, 216:246-248, 1967.

[13] P. de Reffye, C. Edelin, J. Francon, M. Jaeger, and C. Puech. P lant models
faithful to botanical structure and development. Computer Graphics,
SigGraph, 22(4):151—158, August 1988.

[14] E.Boyer and M.-O.Berger. 3d surface reconstruction using occluding con­
tours. IJCV, 22(3) :219—233, 1997.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[15] S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden markov model:
Analysis and applications. Machine Learning, 32(l):41-62, 1998.

[16] C. Godin and Y. Caraglio. A multiscale model of plant topological struc­
tures. Journal of Theoretical Biology, 191:1-46, 1998.

[17] Halle, Oldeman, and Tomlinson. Tropical Trees and Forest: an Architec­
tural Analysis. Springer-Verlag, 1978.

[18] H. Honda. Description of the form of trees by the param eters of the
tree-like body: Effects of the branching angle and the branch length of
the shape of the tree-like body. Journal o f Theoretical Biology, pages
331-338, 1971.

[19] B. Hu, X. Zhao, H. Yan, Ph. de Reffye, F. Blaise, F. Xiong, and Y. Wang.
P lant growth modeling and visualization - review and perspective. AC TA
Automatica Sinica, 27(6), November 2001.

[20] J.J. Koenderink. W hat does the occluding contour tell us about solid
shape? Perception, 13:321-330, 1984.

[21] A. Laurentini. The visual hull concept for silhouette-based image under­
standing. IE E E Trans.Pattern Anal. Machine Intell., 16, February 1994.

[22] A. Laurentini. How far 3d shapes can be understood from 2d silhouettes.
IE EE Trans.Pattern Anal. Machine Intell., 17:188-195, February 1995.

[23] A. Lindenmayer. M athematical models for cellular interactions in devel­
opment: parts I and II. Journal of Theoretical Biology, 18, 1968.

[24] A. Lindenmayer. Developmental order: Its origin and regulation, chap­
ter Developmental algorithms: Lineage versus interactive control mecha­
nisms, pages 219-245. In S. Subtelny and P. B. Green, 1982. editor.

[25] W. Matusik, C. Buehler, and L. McMillan. Polyhedral visual hulls for
real-time rendering. Procedings of Eurographics Workshop on rendering,
2001 .

[26] W. Matusik, C. Buehler, R. Raskar, L. McMillan, and Steven J. Gortler.
Image-based visual hull. SIGGRAPH, 2000.

[27] R. Mech and P. Prusinkiewicz. Visual models of plants interacting with
their environment. SIGGRAPH, pages 397-410, 1996.

[28] M.Teichmann and S.Teller. Assisted articulation of closed polygonal mod­
els,. Proc.9th Eurographics W orkshop on Anim ation and Simulation,
pages 254-268., 1998.

[29] K. Murphy. Representing and learning hierarchical structure in sequential
data. http://ww w -anw .cs.um ass.edu/ cs691t/SS02/readings/m urphy-
hhm m -tr.ps, Novermber 2001.

[30] P E Oppendheimer. Real time design and animation of fractal plants and
trees. Computer Graphics, 5:3-31, 1986.

[31] P.M.Hubbard. Approximating polyhedra with spheres for time-critical
collision detection. AC M Transactions on Graphics, 15(3):179— 210, 2001.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-anw.cs.umass.edu/

[32] P. Prusinkiewicz. Modeling of spatial structure and development of plants:
a review. Scientia Horticulturae, 74:113-149, 1998.

[33] P. Prusinkiewicz and M. Hammel. Language-restricted iterated function
systems, 1994. Koch constructions and L-systems. In New Directions
for Fractal Modeling in Computer Graphics. ACM Press, 1994. SIG-
G RAPH’94 Course Notes.

[34] P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Mech. Handbook of
Formal Languages, chapter Visual models of plant development. Springer-
Verlag, 1996.

[35] P. Prusinkiewicz, M. S. Hammel, and E. Mjolsness. Anim ation of plant
development. Computer Graphics, 27(Annual Conference Series) :351—360,
1993.

[36] P. Prusinkiewicz, M. James, and R. Mech. Synthetic topiary. Computer
Graphics, 28(Annual Conference Series):351-358, 1994.

[37] P. Prusinkiewicz and A. Lindemayer. The Algorithmic Beauty of Plants.
Springer Verlag, New York, 2 edition, 1996.

[38] P. Prusinkiewicz, L. Muendermann, R. Karwowski, and B. Lane. The
use of positional information in the modeling of plants. Proceedings of
SIG G RAPH , pages 289 - 300, August 2001.

[39] L. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings o f the IEEE, 77(2):257-286, February
1989.

[40] L. Rabiner and B. Juang. Theory and Implementation of Hidden Markov
Models. In Fundamentals of Speech Recognition. Prentice Hall, 1993.

[41] W. Reeves and R. Blau. Approximation and probabilistic algorithms for
shading and rendering structured particle systems. Computer Graphics,
19(3):313-322, 1985.

[42] T. Sakaguchi and J. Ohya. Modeling and animation of botanical trees for
interactive virtual environments. Proceedings o f the A C M V R ST sympo­
sium, pages 139-146, 1999.

[43] S. Seitz and C. Dyer. Photorealistic scene reconstruction by voxel coloring.
CVPR97, pages 1067-1073, 1997.

[44] E. C. Sherbrooke, N. M. Patrikalakis, and E. Brisson. An algorithm for
the medial axis transfrom of 3d polyhedral solids. IE E E transaction on
Visualization and Computer Graphics, 2(1):44—61, 1996.

[45] I. Shlyakhter, M. Rozenoer, J. Dorsey, and S. Teller. Reconstructing 3d
tree models from instrum ented photographs. IE EE CGA, 21 (3):53—61,
June 2001.

[46] S. Sullivan and J. Ponce. Autom atic model construction, pose estima­
tion, and object recognition from photographs using triangular splines.
ICCV98, pages 510-516, 1998.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[47] J.H.M Thornley and I.R Johnson. Plant and crop modeling: a m athemat­
ical approach to plant and crop physiology. Oxford Univ. Press, 1990.

[48] S. Ulam. On some m athem atical properties connected with patterns of
growth of figures. In Proceedings of Symposia on Applied Mathematics,
14:215-224, August 1962. American M athematical Society.

[49] X. Zhao, P. de Reffye, F. Xiong, B. Hu, and Z. Zhan. Dual-scale autom a­
ton model for virtual plant development. Chinese J. Computers, 24(6),
June 2001.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

A ppendix

A .l Turtle Orientation commands
+ tu rn left around up vector
+ (x) tu rn x left around up vector
— tu rn right around up vector
— (x) tu rn x right around up vector
& pitch down around left vector
&(x) pitch x down around left vector
A pitch up around left vector
A(x) pitch x up around left vector
< roll left (counter clockwise) around forward vector
<(x) roll x left around forward vector
> roll right (clockwise) around forward vector
>(x) roll x right around forward vector

A .2 Special Orientation commands
| tu rn 180 degrees around up vector
% roll 180 degrees around forward vector
$ roll until horizontal
~ tu rn /p itch /ro ll in a random direction
~(x) in a random direction with a maximum of x degrees
t correction for gravity with 0.2
t(x) correction for gravity with x

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A .3 M ovement commands

F move forward and draw full length
when {} active
record vertex

F(x) move x forward and draw record vertex
Z move forward and draw half length record vertex
Z(x) move x forward and draw record vertex
f move forward with full length record vertex
f(x) move x forward record vertex
z move forward with half length record vertex
z(x) move x forward record vertex
g move forward with full length don’t record vertex

g(x) move x forward don’t record vertex
don’t move record vertex

A .4 Structure commands
[push current state
] pop current state
{ start polygon shape
} end polygon shape

A .5 Increase/Decrease commands
” increment length with 1.1
’ decrement length with 0.9
” (x) multiply length with x also ’ (x)
; increment angle with 1.1
: decrement angle with 0.9
:(x) multiply angle with x also ;(x)
? increment thickness with 1.4
! decrement thickness with 0.7
?(x) multiply thickness with x also !(x)

A .6 Additional commands
c increment color index
c(x) set color index to x
@ end of object

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

