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Abstract

Chemical and petrochemical plants typically integrate a number of geographically dis-

tributed operating units, which are physically linked through energy and material streams

or inherently coupled via plant-wide constraints. The main drawback of the current de-

centralized control system is that it fails to consider the interrelations between subsys-

tems, which could usually result in poor performance or even loss of closed-loop stability.

Such concerns have motivated various control strategies to tackle these problems. One

possibility is to replace the whole network with a centralized control structure. De-

spite the potential benefits, this renovation would require significant capital cost, in-

crease maintenance costs, and reduce fault tolerance. Another practical approach is a

distributed control that aims to improve the performance of a currently installed decen-

tralized network. Distributed model predictive control (DMPC) methods are divide into

two general categories: non-coordinated and coordinated schemes. Coordinated DMPC

(CDMPC) networks, which consist of distributed controllers and a coordinator, are able

to attain an overall optimal solution over a wide range of conditions. The focus of this

thesis is to develop on-line strategies for CDMPC systems and overcome existing issues

with global convergence and stability of closed-loop systems, under price-driven CDMPC

concept. In particular, the main contributions are developing two novel information flow

mechanisms for CDMPC of nonlinear systems and proposing a new solution method for

CDMPC of linear systems, via a bi-level optimization framework.
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Chapter 1

Introduction

Chemical and petrochemical plants integrate a number of operating units that are con-

nected via material and energy flows, and they are usually geographically separated.

These relations can be interpreted as information flow or dynamical constraints between

subsystems. Regulations, process safety and environmental responsibilities, together with

expectations for profitability, have given rise to more complexities in process design and

control. Such complexities may intensify the interactions between subsystems by adding

new process units, energy recovery operations or material recycle streams. Thus, optimal

plant-wide strategies should be deployed to achieve improved performance, while ensur-

ing safe and responsible plant operation. Three common strategies are decentralized,

centralized and distributed. Among these, distributed control has received consider-

able attention, since it takes advantage of decentralized control’s flexibility and has the

potential to attain centralized control performance. In the context of model predic-

tive control (MPC), the distributed strategy that pertains to this work is coordinated

distributed MPC (CDMPC). This powerful approach is capable of achieving maximum

plant-wide performance, by taking into account interrelations between subsystems with

a small modification applied to the current decentralized network that adds a coordi-

nation level to subsystems. To date, a number of research studies has been dedicated

to CDMPC [19, 66, 76, 57]; however, a detailed study on CDMPC of nonlinear systems
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with global convergence proofs and closed-loop stability properties had not been pro-

posed prior to this study. In addition, this research focuses on improving the currently

developed CDMPC schemes for linear systems and suggests a new solution strategy to

ensure global convergence and stability.

To clarify terms and definitions, centralized, decentralized and distributed networks

are briefly described; next, the discussion is narrowed down to CDMPC and the challenges

that define scope of this thesis.

Decentralized Control Network

MPC i MPC j

sub-system i sub-system j

Figure 1.1: Decentralized MPC network architecture

A decentralized structure is the most common approach for control of many large-

scale applications. A typical plant with two subsystems under decentralized control is

presented in Figure 1.1. As shown in Figure 1.1, a separate controller is assigned to each

subsystem, and decisions are made based on local information gathered. In this scheme,

each controller can be designed and tuned independently. Note that in decentralized

control, the effect of interactions between subsystems is ignored. As a results, a sub-

optimal solution to the plant-wide problem is usually obtained. This could result in
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losing closed-loop stability [100, 96, 93, 23]. In general, there are three solutions to these

problems: 1) switching to a centralized scheme; or 2) modifying the current network and

applying distributed approaches; and 3) redesigning of the decentralized system to ensure

stability, typically at a performance cost.

Centralized Control Network

Centralized MPC

sub-system i sub-system j

Figure 1.2: Centralized MPC network architecture

In a centralized control network, effects of interactions between subsystems are con-

sidered in the computation of control actions. An illustration of this scheme is shown in

Figure 1.2, where a monolithic MPC controls a plant composed of two subsystems. In

theory, the optimal solution obtained by this schemes reflects the maximum achievable

plant-wide performance. Implementation of centralized structure requires that the cur-

rently installed decentralized controllers be decommissioned and a centralized controller

is implemented, complete with appropriate information flows from the operating units

to the control center. Despite the potential benefits, switching to centralized scheme

requires substantial investment of time and money. Any benefits may be neglected by

increased maintenance costs, loss of fault tolerance and diminished resilience. Consider



4

that centralized controllers must solve a large-scale problem, which demands sophisti-

cated optimization algorithms and high computational power. Thus, the capital cost of a

centralized control system can be substantial. Furthermore, any small change in a local

unit, due to repairs, or during emergency shutdown incidents, would result in recasting

of the monolithic controller.

Distributed Control Network

The technical issues mentioned in decentralized and centralized schemes can be over-

come, to a great extent, by distributed control techniques. The basic idea is to take

advantage of flexibility in the decentralized design and attain a performance improve-

ment that approaches the centralized counterpart. Two different schools of thought exist

in distributed control design , which can be differentiated in terms of information ex-

change between controllers and the approach that is taken to reaching a consensus on

the control actions to be taken. These predictive control strategies can be divided into

two categories: non-coordinated and coordinated distributed MPC.

Non-coordinated Distributed Control Structure

In the context of non-coordinated distributed MPC, local controllers include interaction

models and exchange information to achieve an improved performance. A typical rep-

resentation of a non-coordinated DMPC is depicted in Figure 1.3. Within this scope, a

classification can be made based on communication design of network: fully-connected

networks where all controllers exchange information, and partially-connected networks

where only a limited number of controllers send and receive information. Further, if

this transmission is limited to one time per sampling time the algorithm is called non-

iterative [15, 31]; and, when it is transmitted more than once per sampling time the
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MPC i MPC j

sub-system i sub-system j

Figure 1.3: Non-coordinated distributed MPC network architecture

algorithm is called iterative [58, 69].

Among iterative approaches, cooperative distributed MPC schemes have enjoyed more

interest by researches. Unlike non-cooperative iterative approaches that tend to find a

Nash equilibrium [15, 58], cooperative schemes tend to reach a Pareto optimal [101, 102].

The very first versions of cooperative MPC was proposed by [100], mainly for networked

linear MPCs with convex subproblems. In [100], and later in [93], convergence and

closed-loop stability for premature algorithm termination were studied for the proposed

methods. These ideas were extended to non-convex problems with classes of nonlinearity

within the prediction models [95]; however, global convergence to centralized optimal

solution was not guaranteed.

Application of Lyapunov MPC in cooperative DMPC of nonlinear systems was inves-

tigated by [60]. One immediate property of such networks is that local controllers are

responsible for ensuring the closed-loop stability; nevertheless, achieving the global opti-

mal solution of the centralized performance was still an issue due to the non-convexity of

subproblems. Another cooperative DMPC scheme was proposed by [90], based on sen-

sitivity information exchange, as an attempt to achieve centralized performance of non-



6

linear systems using successive linear approximations of the subproblems. Nonetheless,

feasibility of the derived solutions and stability of the closed-loop network has remained

an open question. An enthusiastic reader is referred to [88, 23] , and references therein,

for a comprehensive review of research developed in this area.

Coordinated Distributed Control Structure

Coordinator

MPC i MPC j

sub-system i sub-system j

Figure 1.4: Coordinated distributed MPC network architecture

An alternative approach, as shown in Figure 1.4 to the schemes outlined in previous

section is coordinated distributed control. In fact, such schemes belong to a general

class of two-level (hierarchical) control systems, in which the upper level coordinates

decisions making process of local controllers at the lower-level. The general idea, behind
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two-level MPC control, is that each local controller, in the network, solves a suitable

optimization problem and constantly communicates with the coordinator to satisfy plant-

wide constraints. This iterative procedure continues until the error of prediction stays

within a predefined limit [88]. An extensive study on mathematical theory of hierarchical

systems may be found in [71].

Specifically, in CDMPC, the main concept is to achieve the centralized MPC perfor-

mance and guarantee closed-loop stability properties of any intermediate solution pro-

duced by the algorithm. The first feasibility study of applying Dantzig-Wolfe decom-

position on coordination of MPC networks was proposed by [20, 19]. Accordingly, [21]

developed an efficient price-adjustment algorithm for steady-state target calculation of

distributed MPC systems based on Newton’s method. In this iterative procedure, sensi-

tivity analysis and active-set identification techniques were used as a means of commu-

nication between local controllers and the coordination level to achieve the centralized

performance. This method was extended by [67, 66] to plant-wide coordination of single-

rate and dual-rate linear MPC systems. Also, a state feedback scheme for prediction

driven coordination of linear-quadratic control systems, based on interaction prediction

principle [71], was proposed by [66].

Convergence of iterative price-driven and prediction-driven CDMPC algorithms for

time invariant linear systems was studied by [76]. Based on work of [81], a pseudo-model

coordination scheme was proposed by [76] for linearly constrained decentralized MPC

systems. In addition, application of price-driven, prediction driven and pseudo-model

CDMPC schemes to chance-constrained systems for dealing with uncertain plant-wide

disturbances in prediction models was studied by [76].

The first attempt at coordination of nonlinear dynamical systems using the pseudo-

model CDMPC was developed by [76] . The performance was an identical match to the

centralized MPC derived by linearizing the nonlinear model around a nominal operating
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point. In a parallel research, computational and convergence properties of iterative price-

driven CDMPC and prediction-driven CDMPC algorithms for linear systems were studied

by [57]. This analysis was made for dynamical systems subject to equality constraints

dictated by interaction models and predictions models. The study of such properties for

systems subject to inequality constraints remained as an open area of research.

1.1 Research Scope

To date, the existing body of research on various CDMPC algorithms [20, 19, 21, 67, 66,

76, 57] has been generally devoted to linearly constrained dynamical systems. Although

a pseudo-model coordination scheme [76] was proposed for handling non-linear systems,

the performance was compared to a centralized MPC based on linear time invariant

appropriate model around the desired operating condition. Thus, in order to capture

the maximum plant-wide performance, nonlinearity of plant model has to be considered

within the structure of CDMPC. For price-driven CDMPC of linear systems, Newton-

based nested approach has been taken to solve the optimization problem, which could

result in poor convergence properties [76].

This work contributes to developing a systematic method of coordination for nonlin-

ear interconnected systems. In particular, two novel coordination structures are proposed

to improve performance of an existing decentralized predictive control system for nonlin-

ear systems. Moreover, two new solution strategies are proposed to design the CDMPC

structure for linear dynamical systems, to compensate for performance loss in Newton-

based algorithms. This thesis uses a bi-level optimization approach to CDMPC network,

based on the concept of price-driven coordination. Mathematically, the coordination

strategies in this research, are based on dual decomposition of the plant-wide predictive

control problem into a proper separable structure. Starting from a current decentralized
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network, the necessary modification to local controllers are applied. Then, the coor-

dination level and the information flow in the network is implemented. The required

modification can be summarized as an appropriate relaxation of interaction equations

into the objective function of local controllers. Also, the coordinator is synthesized to es-

tablish a proper plant-wide decision making process to compensate for interaction model

violations inside local prediction models.

In this study, it is assumed that local MPCs are single-rate synchronous controllers,

and all required measurements are available at the selected rate. The performance of

proposed CDMPC approaches are evaluated against the corresponding centralized MPC

benchmark and the existing decentralized MPC network. For the purpose of this work, all

prediction models are derived via proper discretization methods. The computed receding

horizon actions are applied to the continuous-time plant. Essential conditions to ensure

global convergence of the proposed algorithms as well as closed-loop stability of the

system under the CDMPC schemes are investigated. This thesis is a collection of three

candidate journal submissions, where the first two are dedicated to nonlinear systems

and the last paper is devoted to linear dynamical systems.

Chapter 2 proposed a nested bilevel optimization strategy to design a price-driven

CDMPC scheme for a nonlinear plant, which is operated by a decentralized control sys-

tem. The prediction model is derived through successive linearization of continuous-time

plant model around the current operating condition, at each sampling time. This paper

proposes an interior-point approach that develops a CDMPC structure that stabilizes

open-loop stable nonlinear systems. In fact, this extension to [20, 19, 21, 67, 66, 76, 57]

eliminates the need to identify the correct set of active constraints at the end of each co-

ordination cycle. In the proposed CDMPC scheme, the coordinator receives information

from the distributed subsystem MPCs and sends prices to the distributed controllers to

coordinate their actions in an iterative fashion to achieve the performance and stability
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of the corresponding centralized MPC benchmark. Another highlight of this chapter

is the investigation of sufficient conditions to ensure convergence and stability of the

proposed algorithm. In particular, the scenario when the algorithm is stopped prior to

convergence to the desired optimal solution is studied, and the closed-loop stability is

guaranteed under certain conditions.

In Chapter 3, the problem of designing a CDMPC for an existing network of decen-

tralized nonlinear model predictive controllers (NMPC) is addressed, which extends the

ideas introduced in [89]. The nonlinear plant is assumed to be governed by dynamic

algebraic equations (DAEs) with separable interconnections in the form of equality con-

straints. Despite linear systems, a limited body of research is dedicated to coordinated

distributed NMPC (CDNMPC); and, the existing solution strategies are not suitable for

on-line purposes. To date, the solution methods [89] have either been based on steepest

ascent approaches or off-line dynamic optimization procedures, which could lead to poor

convergence or demand high computational resources. Another approach to coordina-

tion of nonlinear MPC systems was proposed by [68], based on the difference between the

total shared resources available and demanded by the local NMPC controllers. In this

design, the coordination process is handled by manipulating the prices of every common

resource by a controller with the aim of satisfying the plant-wide constraints in the shared

resources. The main shortcomings of this approach is that global convergence to an over-

all optimal solution and stability of closed-loop system is not ensured, plus the scope is

limited to binding constraints pertaining to shared resources. To overcome these issues,

a novel structure of information flow between the coordinator and distributed NMPCs

is proposed, via bi-level nonlinear optimization. This multi-level structure consists of

the coordinator lying in the upper level and the distributed NMPC controllers lying in

the lower level. Under certain preconditions, the bi-level optimization problem is trans-

formed into a relaxed single level problem, and the resulting optimization is solved via
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a trust-region technique. Previous designs of coordinated MPC or NMPC [89, 76] were

based on finding a fixed value for the prediction horizon of the local predictive controllers,

which were prone to unstable closed-loop behavior. This chapter illustrates a method to

stabilize plant dynamics with open-loop unstable behavior by using an adaptive posteri-

ori approach to determine the minimum required prediction horizon for local controllers.

In addition, the proposed CDNMPC is guaranteed to be globally convergent to a unique

optimal plant-wide trajectory, when a set of conditions are satisfied.

Two novel algorithms to coordinate distributed model predictive control (MPC) sys-

tems are developed in Chapter 4. Similar to Chapter 3, bi-level optimization techniques

are deployed to solve the price-driven CDMPC problem. The mechanisms are imple-

mented for two distinctive scenarios based on the presence of inequality constraint in the

local MPCs. The first scheme is an analytic approach to find the closed-form solution

of plant-wide problem, when all the constraints inside the structure of local controllers

remain active all the time. The second algorithm is an iterative approach to find a local

optimal solution to the general CDMPC problem via method of feasible directions. Un-

like nested price-driven CDMPC approaches [20, 19, 21, 67, 66, 76, 57] , the proposed

CDMPC schemes in this Chapter are globally convergent and are capable of stabiliz-

ing unstable open-loop dynamics, when a set predefined conditions hold in the network.

Similar to Chapter 3, an on-line approach is used to ensure stability of overall system.

This dynamic optimization approach enables the controlled network to stabilize unstable

open-loop dynamical systems without any modifications applied to the native CDMPC

formulation.

Finally, Chapter 5 summarizes and concludes the material covered in thesis. In addi-

tion, some research challenges in the design and development of coordinated distributed

control systems are suggested.
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1.2 Terms and Definitions

This section is intended to provide clarification and proper definitions for some of the

common terms used throughout this thesis.

Lipschitz Function: [79] A continuous function f : Rq → R
r is said to be Lipschitz

on some set N ⊂ R
q, if there exists a strictly positive constant L such that:

∣∣∣∣f(x1)− f(x2)
∣∣∣∣ ≤ L||x1 − x2|| (1.1)

Exact Discretization: Discretization is a procedure of obtaining a discrete-time

model from a continuous-time system, under a suitable sample and hold scheme. Ex-

act discretization obtains models that are exact and match the analytical solution of

the continuous-time system. Consider a continuous-time LTI system, governed by the

following differential equation:

dy(t)

dt
+

1

τ
=

K

τ
u(t) (1.2)

where: τ is the time constant of the first-order system; y denotes the output variable;

K denotes the gain; and u denotes the input variable of the system. Here, it is assumed

that u is held constant within the time period: T := [kΔt, (k + 1)Δt], for k ≥ 0.

Performing the Laplace transformation on (1.2) within the time period: 0 ≤ t ≤ Δt,

the following is derived:

sY (s)− Y (0) = −1

τ
Y (s) +

K

τs
u(0) (1.3a)



1.2: Terms and Definitions 13

using the inverse Laplace transform, the analytic form of solution is obtained as:

y(t) = exp(− t

τ
)y(0) +K

(
1− exp(− t

τ
)
)
u(0) (1.3b)

in other words:

y(Δt) = exp(−Δt

τ
)y(0) +K

(
1− exp(−Δt

τ
)
)
u(0) (1.3c)

y(2Δt) = exp(−Δt

τ
)y(Δt) +K

(
1− exp(−Δt

τ
)
)
u(Δt) (1.3d)

... (1.3e)

y(nΔt) = exp(−Δt

τ
)y((n− 1)Δt) +K

(
1− exp(−Δt

τ
)
)
u((n− 1)Δt) (1.3f)

Note that, this discretization is exact and the corresponding closed-form can be written

as:

yk = exp(−Δt

τ
)yk−1 +K

(
1− exp(−Δt

τ
)
)
uk−1 (1.4)

Global Convergence: Consider an optimization algorithm A on set Z, which is

initialized from an arbitrary point z0, generates an infinite sequence {zs}∞s=0. If a solution

set S and a real-valued function D(z) exists for the algorithm such that:

(a) all zs are contained in a compact subset of Z

(b)

⎧⎪⎨
⎪⎩
i)if zs /∈ S, then D(zs+1) < D(zs)

ii)if zs ∈ S, then D(zs+1) ≤ D(zs)

(c) the mapping of A is closed at all points outside S

then the limit of any convergent subsequence of {zs}∞s=0 is a solution point [7]. Further-
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more, if A is uniformly compact, closed and strictly monotone on Z, any subsequence

generated by A is convergent [73]. In other words, global convergence refers to a property

of an optimization algorithm that ensures converging to a unique optimal solution of a

problem from arbitrary starting points.

Plant-wide Optimal Solution: The term plant-wide control refers to controlling

the plant by a network of controllers or a monolithic centralized controller. Similarly,

optimal plant-wide solution refers to optimal performance of a centralized controller.

MPC stands for Model Predictive Control/Controller. The term CD(N)MPC stands for

coordinated distributed (nonlinear) MPC. Throughout this thesis, the optimal solution

to the centralized problem (or the CD(N)MPC problem) is used interchangeably with

the local optimum solution to the plant-wide (N)MPC problem, which satisfies a set of

predefined criteria and feasibility conditions.



Chapter 2

Distributed Model Predictive
Control of Nonlinear Systems Based
on Price-Driven Coordination

Here a nonlinear plant is considered, which is operated by a decentralized control sys-

tem. This existing control system ignores the interactions between sub-systems which

often results in uncaptured plant-wide performance. The focus of this chapter is on the

design of a distributed model predictive control (DMPC) network to stabilize plants gov-

erned by nonlinear dynamics, using successively linearized internal models. In such a

design, interactions between the sub-systems should be considered in order to exceed the

performance of the current decentralized DMPC scheme. In particular, a coordinated

DMPC (CDMPC) schemes is proposed in which a coordination layer is added to the

existing network, while minor modifications are applied to the local MPC controllers. In

this chapter, a novel interior-point approach to design price-driven CDMPC structures

is presented for stabilization of open-loop stable nonlinear systems. In the proposed

CDMPC scheme, the coordinator receives information from the distributed subsystem

MPCs and sends prices to the distributed controllers to coordinate their actions in an

iterative fashion to achieve the performance and stability of a hypothetical centralized

MPC for the entire plant. Sufficient conditions ensuring convergence and stability of the

15
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proposed CDMPC are derived and the situation when the algorithm is stopped before

convergence is investigated. The performance of the proposed approach is illustrated

with a chemical process example.

2.1 Introduction

Large-scale processes are common occurrences in modern chemical and petrochemical

industries for increased process efficiency. Typically, a large-scale process is composed of

tightly integrated processes that interact via material and energy flows. Traditionally,

centralized and decentralized control are the two primary frameworks for the control of

large-scale systems. While the decentralized control is easy to implement, it may lead

to degradation of plant-wide performance or even loss of closed-loop stability since in

decentralized control the interactions between subsystems are in general neglected (see,

for example, [86, 8, 96] and references therein). On the other hand, the centralized control

is expected to give the best performance; however, it may become too complicated to

implement as the size of the control problem grows. Moreover, a centralized control for a

large-scale process may require substantial maintenance effort and is not favorable from

a fault tolerance point of view [63, 77].

Motivated by the above observations, in recent years, significant efforts have been de-

voted to the development of distributed model predictive control (DMPC) for the control

of large-scale systems. In a DMPC scheme, distributed local model predictive controllers

(MPC) communicate and exchange information with each other or a coordinator to co-

ordinate their actions; please see [15, 84, 88, 23, 22] for reviews of results in this area. As

a strategy between decentralized and centralized control frameworks, DMPC is able to

achieve improved plant-wide performance while preserving the flexibility of decentralized

control such as low maintenance costs, unique fault tolerance properties and resilience
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in design and operation. One classification divides DMPC schemes into two categories:

non-coordinated DMPC and coordinated DMPC.

In the context of non-coordinated distributed MPC, local controllers include interac-

tion models and exchange information to achieve an improved performance. Within this

scope, a classification can be made based on communication design of network: fully-

connected networks where all controllers exchange information, and partially-connected

networks where only a limited number of controllers send and receive information. Some

important recent work in this area includes cooperative DMPC of linear systems [84, 94],

Lyapunov-based sequential and iterative DMPC of nonlinear systems [61, 60], robust

DMPC of linear systems [3], DMPC of linear systems coupled through the inputs [64]

and dissipativity-based DMPC of linear systems [98].

In contrast, inside a Coordinated DMPC (CDMPC) scheme, distributed MPCs com-

municate with a coordinator to achieve improved performance. Different methods have

been developed for CDMPC including the price-driven approach (i.e., [20, 21, 67, 76,

57, 68]), the primal decomposition approach [35, 25], the prediction-driven approach

(i.e., [66, 76]), and the pseudo-Model Coodination approach [76]. The main differences

between these coordination methods appear in the ways that the interactions between

subsystems are addressed [76]. Pertaining to nonlinear systems, there exists a limited

amount of research dedicated to design of coordinated distributed control for nonlinear

systems. In [76], a pseudo-model coordination method was proposed, which uses exact

linearization of interconnected ODE systems. Coordination of non-linear networks gov-

erned by open-loop stable DAE systems are also investigated by [89] and [68]; however,

closed-loop stability of coordinated control networks has not been addressed. Another

challenge is the situation when the coordination scheme terminates prior to convergence.

This could occur when there is insufficient time to complete the required calculations to

converge to a solution.
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In this work, design of CDMPC for nonlinear systems based on the price-driven co-

ordination approach is considered. In the price-driven coordination, the coordinator

calculates “prices” for local MPCs, based on information received from them, in order to

coordinate their actions. It has been proven that the price-driven CDMPC can converge

to the corresponding centralized control system, when the coordinator and distributed

controllers are allowed to iterate a sufficient number of times at each sampling time for

linear systems [66, 20, 21, 67, 76]. In this chapter, an interior-point based CDMPC

(CDMPC) scheme is proposed, based on the results of [66] and [76], which focuses on a

class of interacting nonlinear systems. In the proposed approach, an interior-point based

model predictive controller (MPC) is designed for each subsystem and a price-driven

scheme coordinates the actions of the distributed subsystem controllers to achieve cen-

tralized optimal performance and stability of the entire system. The proposed scheme

is developed based on the assumption that a hypothetical centralized MPC, which uses

successive linearization of the nonlinear system at every sampling time, can be designed

to stabilize the closed-loop nonlinear system. A key idea behind this scheme is relat-

ing the hierarchical dual decomposition of the hypothetical centralized controller with

a minor modification applied to the existing network of decentralized controllers. The

modification to the decentralized MPC controllers is equivalent to relaxing interaction

equations into the objective function of local controllers by assigning a price vector as

a penalization coefficient. In this bilevel optimization problem the coordinator, which

constructs the upper-level problem, receives information from the distributed subsystem

MPCs, which belong to the lower-level problem. During coordination cycles between

the coordinator and the plan-wide control system, the price value is sent to the dis-

tributed controllers to coordinate their actions in an iterative fashion and achieve the

performance and stability of the centralized MPC. Sufficient conditions for ensuring the

stability of the proposed CDMPC are derived. Note that convergence of the algorithm
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and closed-loop stability are considered when the system is stopped prematurely prior to

convergence. The performance of the proposed CDMPC is illustrated using a benzene

alkylation process.

2.1.1 System Description

In this chapter, a class of nonlinear systems composed of m interconnected open-loop

stable subsystems is considered. Each of the subsystems can be described by the following

state-space model:

ẋi(t) = fi(x, u) (2.1)

where i = 1, . . . ,m, xi(t) ∈ R
nxi denotes the vector of state variables of subsystem

i, x = [xT
1 · · · xT

i · · · xT
m]

T∈ R
nx denotes the state of the entire nonlinear system, and

u = [uT
1 · · · uT

i · · · uT
m]

T∈ R
nu is the vector of control inputs with ui denoting the vector

of control inputs associated with subsystem i. It is assumed that ui ∈ Ci ⊂ R
nui with Ci

being a nonempty convex set defined as follows:

Ci � {ui ∈ R
nu,i | Aineq

i ui ≤ bineqi } (2.2)

where i = 1, . . . ,m. Note that in the remainder of this chapter, without the loss of

generality, consider Ci to include only simple bound on control actions:

Ci � {ui ∈ R
nu,i | lbu,i ≤ ui ≤ ubu,i} (2.3)

with lbu,i being the lower bound and ubu,i being the upper bound over the control ac-

tions of subsystem ‘i’. Note that, no bounds are considered over state variables of the
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subsystems. This is mainly due to the methodology used in this chapter, which is based

on successive linearization of the nonlinear system. This would limit the study, specially,

when the CDMPC algorithm is stopped prematurely prior to convergence, so that the

feasibility of nonlinear system may not be guaranteed. Here, it is assumed that the

subsystems are interconnected through states and manipulated variables, i.e. the ma-

nipulated input variable of one sub-system might affect other sub-systems as an internal

variable in the models. The dynamics of the entire system can be described as follows:

ẋ(t) = f(x, u) (2.4)

where f = [fT
1 · · · fT

i · · · fT
m]

T . It is assumed that f is a twice differentiable Lipschitz

vector function. The states of the m subsystems, xi (i = 1, . . . ,m), are assumed to be

sampled synchronously at time instants tk = kΔt with k = 0, 1, . . . . Note that in the

remainder of this chapter, k is used to denote tk in the discrete-time model. Based on

the Lipschitz properties of f(x(t), u(t)), there is a unique exact discrete time nonlinear

model [91] for system (2.4) expressed as:

x(k + 1) = FE
h (x(k), u(k)) (2.5)

where: h is integration step for the discrete-time approximation. It is assumed that

the corresponding sampling period T is fixed and h can be chosen independent of T

arbitrarily. Although FE
h may exist, the usual approach is to use an approximate discrete

time system instead:

x(k + 1) = FA
h (x(k), u(k)) (2.6)

which can be derived using explicit Runge-Kutta methods [44]. Note that numerical

integration accuracy of the continuous-time model (2.4) depends upon the step-size ‘h’,
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as does the accuracy of discrete time model.

Assumption 1 [Model Consistency [78]] For a sampling period T , there exist an upper

bound on the integration step-size h ≤ h∗ and χ ∈ K∞ 1 such that FE
h ⊆ FA

h + χ(T ). In

other words, it is assumed that for a given sampling period T , the discretization method

of the continuous-time model (2.4) should ensure that as the integration step-size h → 0

the approximate model (2.6) converges to the exact model (2.5).

Using a first-order Taylor expansion of (2.6) around the current measured state (xk)

and input (uk) yields:

x̂(k + 1) = Ψ(k)x̂(k) + Γ(k)û(k) (2.7)

where x̃ and ũ are deviation variables. Additionally, the values of the matrices Ψ, Γ are

determined at each sampling time as:

Ψ(k) :=
∂FA

h

∂x
|x=xk,u=uk

(2.8a)

Γ(k) :=
∂FA

h

∂u
|x=xk,u=uk

(2.8b)

In this work, it is assumed that all elements of Jacobian matrices Ψ(k) and Γ(k) are

uniformly bounded for the integration step h ∈ (0, h∗). At each control interval, the

prediction model is constructed from Ψ(k) and Γ(k), as a linear time invariant state-

space model along the prediction horizon. Thus, control actions are calculated using

the successively linearized approximate model (2.8) and these actions are applied to the

continuous plant (2.4).

1A continuous function χ : [0,∞) �−→ [0,∞) is said to belong to class K∞, if it is strictly increasing;
χ(0) = 0 and χ(r) → ∞ as r → ∞ [53].
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2.1.2 Structure of the Centralized MPC

In this section, a monolithic (centralized) MPC is designed based on the successively

linearized model (2.7) that satisfies the input constraints, for all x inside a compact

set S containing the origin. The stable steady-state operating point of the system is

transformed to the origin in order to have a unified definition of S. Note that, in the

successive linearization approach, predicted trajectories inside controllers are constructed

based on time-invariant linear models at the beginning of each sampling period. This

could limit the scope of this study to nonlinear systems with low to moderate degrees

of nonlinearity; so that, the dynamic behavior of the system can be captured, with

acceptable accuracy, within the chosen prediction horizon.

Remark 2 [91] A generic type finite-time MPC, based on the successively linearized

approximate model (2.8) at time instant k, can be formulated as:

min
X,U

J =
1

2

(
X(k)TQX(k) + U(k)TRU(k)

)
+

1

T
x̂(k +Hp|k)TPx̂(k +Hp|k) (2.9a)

s.t. x̂(k + l + 1|k) = Ψ(k)x̂(k + l|k) + Γ(k)û(k + l|k), (2.9b)

û(k + l|k) = û(k +Hu|k),

for Hu ≤ l ≤ Hp − 1 (2.9c)

û(k + l|k) ∈ C (2.9d)

for l = 0, · · · , Hp; where: Hp is the prediction horizon and Hu is the control horizon; and,

x̂ and û are states and manipulated input variables inside the controller, respectively;

and C =
⋃

i=1,··· ,m Ci. Additionally, X(k) = [x̂(k + 1|k)T , · · · , x̂(k + Hp|k)T ]T is the

vector of the predicted state trajectory; U(k) = [û(k|k)T , · · · , û(k + Hp − 1|k)T ]T is the

vector of the calculated manipulated variable moves; Q is a positive definite block-diagonal

weighting matrix for the states (i.e., Q = diag{Qii}); R is a positive definite block-
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diagonal weighting matrix for the manipulated variables of the overall system (i.e., R =

diag{Rii}); and P is a positive definite block-diagonal weighting matrix for the terminal

cost of the overall system (i.e., P = diag{Pii}). In other words, the optimization problem

(2.9) is meant to ensure [91]:

x̂(k +Hp|k) ∈ {x|xTPx ≤ δ} (2.10)

for some δ > 0; where: 0 ∈ {x|xTPx ≤ δ}.
Consider the approximate discrete-time model (2.6) and the generic MPC controller

(2.9). Denote ΔV (x(k)) = V (x(k)) − V (x(k − 1)), where: V (x(k)) = TJ(x̂∗(k), û∗(k))

and (x̂∗(k), û∗(k)) the optimum trajectory of (2.9). Then V (x(k)) > 0 is the Lyapunov

function of the closed-loop system, i.e. ΔV (x(k)) ≤ 0, if [91]:

FA
h (x̂

∗(k +Hp − 1|k), û∗(k +Hp − 1|k))T × P × FA
h (x̂

∗(k +Hp − 1|k), û∗(k +Hp − 1|k))

< x̂∗(k +Hp − 1|k)TPx̂∗(k +Hp − 1|k) (2.11)

In the remainder of this chapter, it is assumed that the continuous time system (2.4) is

open-loop stable. This implies that, the exact and the approximate discrete-time models,

(2.5) and (2.6), are also open-loop stable. Accordingly, the generic MPC formulation (2.9)

can be simplified to:

min
X,U

J =
1

2

(
X(k)TQX(k) + U(k)TRU(k)

)
(2.12a)

s.t. x̂(k + l + 1|k) = Ψ(k)x̂(k + l|k) + Γ(k)û(k + l|k), (2.12b)

û(k + l|k) = û(k +Hu|k),

for Hu ≤ l ≤ Hp − 1 (2.12c)

û(k + l|k) ∈ C (2.12d)
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if the prediction horizon Hp is chosen large enough to ensure closed-loop stability of (2.6).

Throughout this chapter, it is assumed that a MPC controller (2.12) can be designed,

such that: for a sufficient length of prediction horizon, the closed-loop system (2.6) is

locally practically stable [85], without the terminal cost term included into the objective

function.

Denote Vh(x) the Lyapunov function for the closed-loop system under the centralized

MPC scheme (2.12). Then, the following assumption is an immediate conclusion from

the converse Lyapunov theorem stated in [78, 91]:

Assumption 3 [Lyapunov stability certificates [78]] Given T , a family of continuous

Lyapunov functions Vh, (α1, α2) ∈ K∞, a positive-definite function α3, strictly positive

real numbers (σ1, σ2) with σ2 ≤ D and a positive real number c1, there exists h∗ > 0 such

that for 0 < h < h∗ and x ∈ BD
2:

α1(||x||) ≤ Vh(x) ≤ α2(||x||) (2.13a)

Vh(F
A
h (x, u))− Vh(x) ≤ −Tα3(||x||) (2.13b)

and for all xa, xb ∈ BD − Bσ2 with ||xa − xb|| ≤ c1:

∣∣∣∣∣∣Vh(xa)− Vh(xb)
∣∣∣∣∣∣ ≤ σ1 (2.13c)

then, (2.6) is (T,D) stable with a continuous Lyapunov function Vh.

In order to proceed, the centralized MPC (2.12) problem is reformulated with an interior-

point method. In the remainder, consider a level set of Vh(x) = ρ; then, an estimate for

the region of attraction of the closed-loop system under the control of the centralized

MPC (2.12) can be defined as: 
ρ = {x ∈ S|Vh(x) < ρ}.
2Here, set Bσ is defined as Bσ = {x ∈ Rn|0 ≤ ||x|| ≤ σ}
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In this chapter, an interior-point approach is used to design the centralized MPC

controller. Using the interior-point method, unlike the active-set approach [66], it is not

required to identify the correct set of active constraints. The finite-time centralized MPC

formulation based on the successively linearized approximate model (2.8), at time instant

k, is:

min
X,U

JC =
1

2

(
X(k)TQX(k) + U(k)TRU(k)

)
+ μΩU(U(k)) (2.14a)

s.t. x̂(k + l + 1|k) = Ψ(k)x̂(k + l|k) + Γ(k)û(k + l|k), (2.14b)

û(k + l|k) = û(k +Hu|k),

for Hu ≤ l ≤ Hp − 1 (2.14c)

for l = 0, · · · , Hp. In (2.14), μ is the barrier weighting parameter and ΩU is the logarith-

mic barrier function, which is defined as follows:

ΩU(U(k)) =
nu∑
j=1

−
(

Hu∑
l=1

ln
(
ubu,j − uj(k + l|k))+ nu×Hu∑

j=1

ln
(
uj(k + l|k)− lbu,j

))

(2.14d)

In the remainder of this chapter, denote the optimal trajectory of the successively lin-

earized centralized (SLC) problem (2.14), at time instant ‘k’, OTSLC(k). In order to

achieve local practical stability of the exact system (2.5) via the SLC-MPC controller

(2.14), model consistency, existence of Lyapunov stability certificates based on the ap-

proximate model (2.6) and a bounded set of control actions must hold true. This can be

stated in the following Lemma:

Lemma 4 [91] Suppose model consistency, Assumption 1, and Lyapunov stability cer-

tificates, Assumption 3, hold true for a bounded set of control actions derived from the
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centralized MPC (2.14) based on successive linearization of the approximate model (2.6).

Then, there exists β ∈ KL 3 and D1 ∈ (0,Δ]; and for any σ > 0 there exists h∗ > 0 such

that: for all x0 ∈ {x ∈ Rn|0 ≤ ||x|| ≤ D1} and h ∈ (0, h∗), the transient solution to the

exact discrete-time closed-loop system ΦE
k (x0, k) satisfies:

||ΦE
k (x0, k)|| ≤ β(||x0||, kT ) + σ (2.15)

which implies that the closed-loop system of exact discrete-time system (or equivalently,

the continuous-time system) is locally practically stable around the origin.

In the following sections, the idea of price-driven CDMPC approach for linear systems

is extended to the control of nonlinear systems based on successive linearization of (2.6)

at each sampling time. The centralized MPC will provide performance benchmarks for

evaluation of the CDMPC for nonlinear systems.

2.2 The Proposed Coordination Algorithm

In this section, a price-driven CDMPC algorithm is proposed for nonlinear systems, based

on successive linearization. The main idea is to form a multilevel network consisting of

a coordination level interacting with an existing network of MPC controllers, in order

to achieve a higher performance compared to the fully decentralized scheme. In this

method, distributed controllers are modified to account for interactions inside their ob-

jective functions using a price vector. The information flow between the coordinator and

the local controllers provides each MPC with the optimal price vector and as a result

the optimum plant-wide trajectory. This structure is depicted in Figure 2.1, in which: p

3A continuous function � : [0, a) × [0,∞) �−→ [0,∞) is said to belong to class KL, if it belongs to
class K in its first argument and decreasing in its second argument such that: �(., s) → 0 as s → ∞ [53].
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denotes the price vector; Θi denotes the local interaction matrix of sub-system i; and Zi

is the optimal trajectory of local MPCs with respect to (w.r.t.) the current price value.

CDMPC Coordinator

MPC 1 MPC i MPC m

sub-system 1 sub-system i sub-system m

p
1

1Z iZ mZp
i

p
m

Figure 2.1: Architecture and information flow of the proposed CDMPC.

For each subsystem, the MPC is formulated based on successively linearized subsys-

tem model. Specifically, for subsystem i, i = 1, . . . ,m, the prediction model used in the

design of the subsystem MPC at time instant k takes the following form:

x̂i(k + l + 1|k) =Ψiix̂i(k + l|k) + Γiiûi(k + l|k) +
∑
j �=i

(1− β)Ψijx̂j(k|k) + v̂i(k + l|k)

(2.16a)

x̂i(k|k) =xi(k) (2.16b)

with:

β =

⎧⎪⎪⎨
⎪⎪⎩
0 l = 0

1 l = 1, · · · , Hp − 1

(2.16c)

where: Ψii and Γii denote coefficient matrices for linearized system description of sub-

system i, namely the ith block diagonal elements of the plant-wide matrices Ψ and
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Γ given in (2.8); and v̂i is defined as the interacting or linking variable that contains

unknown interaction information between different subsystems. Note that the term v̂i

in (2.16) characterizes the interaction of subsystem ‘i’ with other subsystems. We define

the interaction error for subsystem ‘i’ as:

ei(k + l|k) � v̂i(k + l|k)−
m∑
j �=i

(
βΨijx̂j(k + l|k) + Γijûj(k + l|k))) (2.17)

for l = 0, · · · , Hp − 1. The coordinator finds a price for subsystem i, such that the

interaction term v̂i determined by the price, ensures that ei(k+ l|k) = 0 and the CDMPC

approaches the performance of the centralized MPC trajectory, e.g. OTSLC(k) . The

overall interaction error over the prediction horizon can be described as follows:

E(k|k) �

⎡
⎢⎢⎢⎢⎣
E1(k|k)

...

Em(k|k)

⎤
⎥⎥⎥⎥⎦ (2.18a)

where:

Ei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ei(k|k)
ei(k + 1|k)

...

ei(k +Hp − 1|k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.18b)
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According to (2.17), Ei(k|k) can be written as:

Ei(k|k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Γ1iûi(k|k)
−
[
Ψ1ix̂i(k + 1|k) + Γ1iûi(k + 1|k)

]
...

−
[
Ψ1ix̂i(k +Hp − 1|k) + Γ1iûi(k +Hu − 1|k)

]
...

v̂i(k|k)
v̂i(k + 1|k)

...

v̂i(k +Hp − 1|k)
...

−Γmiûi(k|k)
−
[
Ψmix̂i(k + 1|k) + Γmiûi(k + 1|k)

]
...

−
[
Ψmix̂i(k +Hp − 1|k) + Γmiûi(k +Hu − 1|k)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.19a)

= Θi(k)

⎡
⎢⎢⎢⎢⎣
Xi(k)

Ui(k)

Vi(k)

⎤
⎥⎥⎥⎥⎦ (2.19b)

where: Xi(k) � [x̂i(k + 1|k)T , · · · , x̂i(k + Hp|k)T ]T is the vector containing predictions

for state variables; Ui(k) � [ûi(k + 1|k)T , · · · , ûi(k + Hp|k)T ]T is the vector containing

predictions for manipulated input variables; Vi(k) � [v̂i(k+1|k)T , · · · , v̂i(k+Hp|k)T ]T is

the vector containing predictions for linking variables; and Θi(k) is the coefficient matrix
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for the linking constraints defined as:

Θi(k) =

[
θT1,i, · · · , θTi,i, · · · , θTm,i

]T
(2.20a)

where:

θj,i =

⎧⎪⎪⎨
⎪⎪⎩
[
0Hpnxi×Hpnxi

, 0Hpnxi×Hunui
, I
]

for j = i

[
θΨj,i

, θΓj,i
, 0Hpnxj×Hpnxi

]
for j �= i

(2.20b)

with ‘0’ being zero matrices of appropriate dimensions, I being an identity matrix of size

Hpnxi
×Hpnxi

, as well as θΨj,i
and θΓj,i

being Hpnxj
×Hpnxi

and Hpnxj
×Hunui

matrices,

respectively, and defined as:

θΨj,i
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

−Ψji 0 · · · 0

0
. . . . . .

...

0 0 −Ψji 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, θΓj,i

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Γji 0 · · · 0

0 −Γji
. . .

...

...
. . . . . . 0

0 · · · 0 −Γji

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.20c)

Equivalently, matrix Θi can be written in terms of an augmented matrix of coefficients

for Xi, Ui, and Vi as follows:

Θi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θΨ1,i
θΓ1,i

0

...
...

...

0Hpnxi×Hpnxi
0Hpnxi×Hpnui

−IHpnxi×Hpnxi

...
...

...

θΨm,i
θΓm,i

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.21a)

=[ΘXi
,ΘUi

,ΘVi
] (2.21b)
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and the overall interaction error E, defined in (2.18), can be written as:

E(k) =
m∑
i=1

Θi(k)

⎡
⎢⎢⎢⎢⎣
Xi(k)

Ui(k)

Vi(k)

⎤
⎥⎥⎥⎥⎦ (2.22)

Based on the above, the optimization problem (2.14) can be re-written as follows:

min
X,U,V

JP =
m∑
i=1

JPi
(2.23a)

s.t. x̂i(k + l + 1|k) = Ψiix̂i(k + l|k) + Γiiûi(k + l|k) +
∑
j �=i

(1− β)Ψijx̂j(k|k) + v̂i(k + l|k)

for l = 0, . . . , Hp − 1 (2.23b)

m∑
i=1

Θi

⎡
⎢⎢⎢⎢⎣
Xi(k)

Ui(k)

Vi(k)

⎤
⎥⎥⎥⎥⎦ = 0 (2.23c)

ûi(k + l|k) = ûi(k +Hu|k)

for Hu ≤ l ≤ Hp − 1 (2.23d)

where:

JPi
=

1

2

(
(Xi(k))

TQii(Xi(k)) + Ui(k)
TRiiUi(k)

)
+ μΩUi

(Ui(k)) (2.23e)

ΩUi
(Ui(k)) =

nui∑
j=1

−
(

Hu∑
l=1

ln
(
ubui

(j)− uj
i (k + l|k))+ Hu∑

j=1

ln
(
uj
i (k + l|k)− ubui

(j)
))

(2.23f)

Optimization problem (2.23) is the main core for the design of the CDMPC system.

Note that the cost function and constraints are separable by subsystem. Relaxing con-
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straint (2.23c), so that it is also separable in terms of subsystems yields:

min
X,U,V

JD =
m∑
i=1

JDi
(2.24a)

s.t. x̂i(k + l + 1|k) = Ψiix̂i(k + l|k) + Γiiûi(k + l|k) +
∑
j �=i

(1− β)Ψijx̂j(k|k) + v̂i(k + l|k)

for l = 0, . . . , Hp − 1 (2.24b)

ûi(k + l|k) = ûi(Hu|k)

for Hu ≤ l ≤ Hp − 1 (2.24c)

where:

JDi
=

1

2

(
(Xi(k))

TQii(Xi(k)) + Ui(k)
TRiiUi(k)

)
+ μΩUi

(U(k)) + pTΘi

⎡
⎢⎢⎢⎢⎣
Xi(k)

Ui(k)

Vi(k)

⎤
⎥⎥⎥⎥⎦
(2.24d)

In (2.24), “p” is a price vector provided by the coordinator and is used to drive the

distributed system to the plant-wide optimal operation, see Section 2.2.1 for more details.

Optimization problem (2.24) is separable and in the proposed CDMPC, the formulation

of local MPC i, i = 1, . . . ,m, is as follows:
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min
Xi,Ui,Vi

JDi
=

1

2

(
(Xi(k))

TQii(Xi(k)) + Ui(k)
TRiiUi(k)

)
+ ΩUi

(U(k)) + pTΘi

⎡
⎢⎢⎢⎢⎣
Xi(k)

Ui(k)

Vi(k)

⎤
⎥⎥⎥⎥⎦

(2.25a)

s.t. x̂i(k + l + 1|k) = Ψiix̂i(k + l|k) + Γiiûi(k + l|k) +
∑
j �=i

(1− β)Ψijx̂j(k|k) + v̂i(k + l|k)

for l = 0, . . . , Hp − 1 (2.25b)

ûi(k + l|k) = ûi(Hu|k)

for Hu ≤ l ≤ Hp − 1 (2.25c)

2.2.1 Price-Driven Coordinator Formulation

In order to simplify the description of the coordinator design, the overall CDMPC for-

mulation (2.24) is re-written in a more compact form:

min
Z

JD =
m∑
i=1

J̄Di
(2.26a)

s.t. Geq
i Zi(k) = geqi (2.26b)

Gineq
i Zi(k) ≤ gineqi (2.26c)

with JDi
rewritten as:

J̄Di
=
(1
2

(
(Zi(k))

TΥi(Zi(k)) + ΦT
i Zi(k) + pTΘiZi(k)

)
(2.26d)
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and Geq
i defined as:

Geq
i =[Geq

i,Xi
, Geq

i,Ui
, Geq

i,Vi
] (2.26e)

Geq
i,Xi

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Inxi
0 · · · 0

−Ψii Inxi
· · · 0

0
. . . . . .

...

0 0 −Ψii Inxi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.26f)

Geq
i,Ui

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Γii 0 · · · 0

0 −Γii
. . .

...

...
. . . . . . 0

0 · · · 0 −Γii

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.26g)

Geq
i,Vi

=IHpnxi×Hpnxi
(2.26h)

geqi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑
j �=i(1− β)Ψijx̂j(k)

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.26i)

In (2.26), Zi(k) represents the vector of decision variables, namely:

Zi(k) = [Xi(k)
T , Ui(k)

T , Vi(k)
T ]T (2.27)

The inequalities within the MPC problem (2.26) can be relaxed, using barrier functions,

to:

min
Z

JD =
m∑
i=1

J̄Di
(2.28a)

s.t. Geq
i Zi(k) = geqi (2.28b)
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where:

J̄Di
=
(1
2

(
(Zi(k))

TΥi(Zi(k)) + μiΩZ,i(Zi(k)) + pTΘiZi(k)
)

(2.28c)

In (2.28), ΩZ is the corresponding logarithmic barrier function for subsystem i:

ΩZ,i =

⎧⎪⎪⎨
⎪⎪⎩
0 Xi(k), Vi(k)

ΩUi
(Ui(k)) Ui(k)

(2.29a)

with:

ΩUi
(Ui(k)) = −

nui×Hu∑
j=1

ln
(
gineqi,U (j)−Gineq

i,U (j, :)× Ui

)
(2.29b)

In (2.28), the price vector p can be interpreted as the Lagrange multipliers associated

with interaction equality constraints. This vector is determined by the coordinator at

each coordination cycle, based on the information provided by the local MPC controllers.

In order to find a plant-wide solution to the distributed system (2.25), the primal-dual

optimization problem (2.30) is solved:

max
p

JD (2.30a)

min
Z

JD =
m∑
i=1

J̄Di
(2.30b)

s.t. Geq
i Zi(k) = geqi (2.30c)
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where: Z = [XT , UT , V T ]T . Denote L the overall Lagrangian of the local sub-problems

(2.28); and let Li defined as:

Li(Zi, ϑi, μi, p) =
1

2
Zi(k)

TΥiZi(k) + pTΘiZi(k) + ϑT
i

(
Geq

i Zi(k)− geqi ) + μiΩZ,i(Zi(k))

(2.31)

with ϑi being the Lagrange multiplier of the equality constraints for sub-system “i”. In

Barrier methods, it is common to express the first-order optimality conditions via the

modified KKT conditions and solve the resulting set of equations with a Newton’s method

variant [12]. Correspondingly, the modified KKT conditions of the primal problem are:

∇Zi
Li(Zi, ϑi, λi, p) = ΥiZi(k) + ΘT

i p+GeqT

i ϑi +

mui×Hu∑
j=1

λi(j)
(
Gineq

i (j, :)
)T

= 0 (2.32a)

R1,i(Zi, p) = Geq
i Zi(k)− geqi = 0 (2.32b)

R2,i(Zi, p) = diag(λi(j))ζi − μiρ = 0 (2.32c)

where:

ζi(j) = Gineq
i (j, :)Zi(k)− gineqi (j) (2.32d)

ρ = [1, · · · , 1]T (2.32e)

and λi(j) can be interpreted as the Lagrange multiplier associated with the ‘j’th inequal-

ity constraint of sub-system ‘i’. The use of λi(j) simplifies the notation and can always

be eliminated with the relation defined in (2.32c). It is ensured that the parameter μi is

monotonically decreasing to zero at each iteration, e.g. by a factor of 10 to 20 [12]. As

μi → 0 the KKT conditions (2.32) converge to that of the original problem (2.26).

On the other hand, the dual problem is an unconstrained optimization problem w.r.t
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the price vector “p”. Denote the optimal value of Z at the current value of p as Z∗(k),

then according to (2.30), the Lagrangian of the unconstrained problem can be written

as:

L̄(p, Z∗(k)) = −JD(p, Z
∗(k)) (2.33a)

based on the convex nature of the lower level problem, at Z∗
i the equality constraint

(2.32b) is always satisfied, i.e. Geq
i Z∗

i (k)− geqi = 0 and μi = 0. Therefore, penalizing the

equality constraint with ϑi and adding −μiΩZ,i(Z
∗
i (k)) to the right-hand-side of (2.33a)

would result in:

L̄(p, Z∗(k)) =− JD(p, Z
∗(p))− ϑT

i

(
Geq

i Z∗
i (k)− geqi )− μiΩZ,i(Z

∗
i (k)) (2.33b)

in other words, at Z∗(k):

L̄(p, Z∗) = −L(p, Z∗) (2.33c)

The first-order optimality condition for the dual problem can be written as:

∇pL̄(p, Z∗) =−
(
ΥZ∗(k) + ΘTp+GeqTϑ+

mu×Hu∑
j=1

λ(j)
(
Gineq(j)

)T)dZ
dp

−ΘZ∗ = 0

(2.34a)

but ΥZ∗(k) + ΘTp + GeqTϑ +
∑mu×Hu

j=1 λ(j)
(
Gineq(j)

)T
= 0, since ∇ZL = 0. This is

equivalent to say:

∇pL̄(p, Z∗) = −ΘZ∗ = 0 (2.34b)
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in other words, the KKT condition of the dual problem is:

ΘZ∗ = 0. (2.34c)

Hence, an efficient price-updating method, such as Newton’s method 4, can be used to

achieve the plant-wide performance for the coordination problem defined in (2.28):

p(k + 1) = p(k)− αH−1(k)J (k), (2.35)

where J (k) is the Jacobian and H(k) is the Hessian matrix of L, and α is the step

size in Newton’s method that is determined using line search method given in [19]. The

Jacobian is calculated by:

J (k) = ΘZ∗ =
m∑
i

ΘiZ
∗
i (k) (2.36)

Then the Jacobian is equal to the overall interaction error vector ‘E(k)’, defined in

(2.19a). Accordingly, the Hessian matrix H(k) can be calculated as:

H(k) =
dJ (k)

dp(k)
=

dE(k)

dp(k)
=

m∑
i

Θi(k)∇pZ
∗
i (k) (2.37)

Thus, the coordinator calculates Θi(k) at each sampling time and is provided with the

sensitivity matrix of the decision variables Zi(k) with respect to changes in the price

4Gradient-based methods and Quasi-Newton methods can also be deployed [76].
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vector information. The problem of determining the sensitivities can be written as:

Γi

⎡
⎢⎢⎢⎢⎣
∇pZi(k)

∇pϑi(k)

∇pλi

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−ΘT

i

0

0

⎤
⎥⎥⎥⎥⎦ (2.38a)

where:

Γi =

⎡
⎢⎢⎢⎢⎣

Υi GeqT

i GineqT

i

Geq
i 0 0

diag(λi(j))G
ineq
i 0 diag

(
ζi(j))

⎤
⎥⎥⎥⎥⎦ . (2.38b)

The system of equations (2.38) is derived from second-order optimality conditions of

the primal CDMPC problem. The second-order optimality conditions are:

∇2
Zi(k),Zi(k)

LidZi(k) +∇2
Zi(k),ps

Lidp
s +∇Zi(k)RT

1,idϑi +GineqT

i dλi = 0 (2.39a)

∇Zi(k)R1,idZi(k) +∇psR1,idp
s = 0 (2.39b)

∇Zi(k)R2,idZi(k) +∇psR2,idp
s +∇λi

R2,idp
s = 0 (2.39c)

where ‘s’ denotes the iteration number of the coordination algorithm. The implementa-

tion of the CDMPC algorithm at sampling time k can be summarized as illustrated in

Algorithm 1:
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Algorithm 1: the proposed successive linearization CDMPC algorithm

Input: coordination cycle counter s = 0, price vector p = 0, stopping criterion
ε > 0, Z0

i (k) ;
Local MPCs: Calculate Ψ(k) and Γ(k) using (2.8);
Coordinator: Send the value of ps to the local MPCs;
Coordinator: Calculate the overall interaction error E(k) using (2.22);
while ||E(k)|| > ε do

Local MPCs: Solve problem (2.24) using the interior-point method and
update Z̄s

i (k);
Local MPCs: Calculate sensitivity matrices J (k) and H(k) using (2.36) and
(2.37);
Local MPCs: Send J (k) and H(k) to the coordinator;
Coordinator: Calculate the price vector ps using (2.35);
Coordinator: Send ps to the local MPCs;
Coordinator: Calculate the overall interaction error E(k) using (2.22)
s = s+ 1;

Local MPCs: Apply the receding horizon action to the plant;
Output: Z̄s

i (k), and ps;

Proposition 5 At time instant ‘k’, the proposed CDMPC scheme (2.30) will converge

to a local optimal solution of problem (2.23) using the price update scheme (2.35).

Proof. Define the merit function M for the CDMPC problem (2.30) as:

M = L∗ − L(p) (2.40)

where L∗ is the optimum value of the dual problem objective function L. In fact, M ≥ 0

and is zero iff p = p∗. Consider the changes of M w.r.t. the CDMPC cycle ‘s’:

∇sM =
(dM

dp

)T dp
ds

(2.41)

=
(
− dL(p)

dp

)T dp
ds

(2.42)
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which reduces to:

∇sM = −J T dp

ds
(2.43)

Furthermore, the rate of change of ‘p’ w.r.t. the iteration number ‘s’ is directly propor-

tional to the gradient ascent direction J in price update scheme (2.35). Thus, the rate

of change of the merit function M w.r.t. the iteration number ‘s’ is:

∇sM = −δJ TJ , δ ≥ 0 (2.44)

which means ∇sM ≤ 0. Therefore, the proposed CDMPC scheme (2.30) converges to

the corresponding (local) optimal plant-wide solution (2.23) at time instant ‘k’ with the

price update scheme (2.35).

2.3 Stability Analysis

In this section, the nominal stability of the CDMPC algorithm is discussed. The analysis

is based on the premise that the coordination algorithm has not converged to OTSLC(k)

, i.e. 0 < ||E(k)|| ≤ ε.

Proposition 6 Consider the successively linearized process system (2.7) controlled by the

CDMPC algorithm (2.28) is stopped prematurely at time instant ‘k’ with ||ΔEs(k)|| ≤ ε.

Let μi be monotonically decreasing to zero, i.e. μi −→ 0, and {Ui(k)
s} remains strictly

feasible [40]. Then the norm of difference between the calculated control action UD(k)

and the control action UC(k), corresponding to OTSLC(k), remains bounded, namely

||UC(k)− UD(k)|| ≤ dUC,D
(ε).
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Proof. Consider the first-order optimality condition for the subproblem ‘i ’ given in

(2.32) where coefficient matrices Θi, G
eq
i and Gineq

i are:

Θi = [Θi,Xi
,Θi,Ui

, Ii,Vi
] (2.45a)

Geq
i = [Geq

i,Xi
, Geq

i,Ui
,−Ii,Vi

] (2.45b)

Gineq
i = [0i,Xi

, Gineq
i,Ui

, 0i,Vi
] (2.45c)

where I denotes a square identity matrix and 0 denotes a square zero matrix. This results

in the set of equations:

QiiX
s
i +ΘT

i,Xi
ps +GeqT

i,Xi
ϑs
i = 0 (2.46a)

RiiU
s
i +ΘT

i p
s +GeqT

i,Ui
ϑs
i +

mui×Hu∑
j=1

λi(j)
(
Gineq

i,Ui
(j, :)
)T

= 0 (2.46b)

psi − ϑs
i = 0 (2.46c)

V s
i −GeqT

i,Xi
Xs

i −GeqT

i,Ui
U s
i + geqi = 0 (2.46d)

where psi = Ii,Vi
× ps. Consequently, the overall lower-level problem can be written as:

QXs +ΘT
Xp

s +GeqT

X ϑs = 0 (2.47a)

RU s +ΘTps +GeqT

U ϑs +
mu×Hu∑

j=1

λ(j)
(
Gineq

U (j)
)T

= 0 (2.47b)

ps − ϑs = 0 (2.47c)

V s −GeqT

X Xs −GeqT

U U s + geq = 0 (2.47d)

Hence, the price vector “p” and the Lagrange multiplier associated with the equality

constraints ”ϑ” are equal, according to 2.47. Therefore Xs
i , U

s
i and V s

i can be directly
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calculated at the optimum value of the local MPC controllers as:

Xs
i = −Q−1

ii (Θ
T
i,Xi

+GeqT

i,XΘT
i,Ii

)ps (2.48a)

U s
i = −R−1

ii

(
(ΘT

i,Ui
+GeqT

i,Ui
ΘT

i,Ii
)ps +

mui×Hu∑
j=1

λi(j)
(
Gineq

i,Ui
(j, :)
)T)

(2.48b)

V s
i = GeqT

i,Xi
Xs

i +GeqT

i,Ui
U s
i − geqi . (2.48c)

Note that λi(j) is bounded since μi −→ 0 and U s
i is strictly feasible. Moreover, as the

local MPC problem converges to the optimal value, μi becomes zero while all of the

inequality constraints remain inactive. Thereby, according to (2.32) all the Lagrange

multipliers will become zero when local MPCs converge, i.e. λi → 0, hence:

Xs
i = −Q−1

ii (Θ
T
i,Xi

+GeqT

i,XΘT
i,Ii

)ps (2.49a)

U s
i = −R−1

ii

(
ΘT

i,Ui
+GeqT

i,Ui
ΘT

i,Ii

)
ps (2.49b)

V s
i = GeqT

i,Xi
Xs

i +GeqT

i,Ui
U s
i − geqi . (2.49c)

Now consider the CDMPC algorithm is stopped premature, namely, the stopping criterion

||ΔEs(k)|| =
∣∣∣∣∣∣∑m

i=1 Θi(k)Z
s
i (k)
∣∣∣∣∣∣ ≤ ε, then based on (2.48) it can be shown that:

||ΔEs(k)|| =
∣∣∣∣∣∣ m∑

i=1

Θi(k)[X
s
i (k), U

s
i (k), V

s
i (k)]

T
∣∣∣∣∣∣ ≤ ε

=
∣∣∣∣Π× ps + Ξ

∣∣∣∣ ≤ ε (2.50a)

where:



2.3: Stability Analysis 44

Π =
m∑
i=1

[
Θi,Xi

(−Q−1
ii (Θ

T
i,Xi

+GeqT

i,XΘT
i,Ii

)
)
,Θi,Ui

(−R−1
ii (ΘT

i,Ui
+GeqT

i,Ui
ΘT

i,Ii
)
)
,

GeqT

i,Xi

(−Q−1
ii (Θ

T
i,Xi

+GeqT

i,XΘT
i,Ii

)
)
+GeqT

i,Ui

(−R−1
ii (ΘT

i,Ui
+GeqT

i,Ui
ΘT

i,Ii
)
)]

(2.50b)

Ξ =
m∑
i=1

[
0, 0,−geqi

]T
. (2.50c)

Using the triangular inequality ||a|| − ||b|| ≤ ||a+ b||, (2.50a) yields:

||Π|| × ||ps|| − ||Ξ|| ≤ ||Π× ps + Ξ|| ≤ ε (2.51a)

or:

||ps|| ≤ dps =
ε+ ||Ξ||
||Π|| . (2.51b)

Therefore:

||Xs
i || ≤ dXs

i
= ||Q−1

ii (Θ
T
i,Xi

+GeqT

i,XΘT
i,Ii

)|| × dps (2.52a)

||U s
i || ≤ dUs

i
= ||R−1

ii (ΘT
i,Ui

+GeqT

i,Ui
ΘT

i,Ii
)|| × dps (2.52b)

||V s
i || ≤ dV s

i
= ||Gi,Xi

|| × ||Xs
i ||+ ||Gi,Ui

|| × ||U s
i ||+ ||geqi || (2.52c)

or, Zs
i (k) = [XsT

i (k), U sT

i (k), V sT

i (k)]T is bounded. This bound is given by:

∣∣∣∣Zs
i (k)
∣∣∣∣ ≤ dZs

i
=
√

d2Xs
i
+ d2Us

i
+ d2V s

i
(2.53)

In other words, the upper bound of the nested vector of control actions UD = [U sT

1 , · · ·
, U sT

m ] derived from CDMPC can be stated as function of ε based on (2.51b) and (2.52b),
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namely:

||UD(k)|| ≤ dUD
(ε) =

√√√√ m∑
i=1

d2UD,i
(ε) (2.54a)

where:

dUD,i
(ε) = ||R−1

ii (ΘT
i,Ui

+GeqT

i,Ui
ΘT

i,Ii
)|| × ε+ ||Ξ||

||Π|| . (2.54b)

Note that, setting ε = 0 in (2.51b) is equivalent to an upper bound on the control

action at time instant ‘k’, corresponding to OTSLC(k), using (2.52b), if {Zs
i (k)} is a

convergent subsequence to OTSLC(k):

||UC(k)|| ≤ dUC
=

√√√√ m∑
i=1

d2UD,i
(0) (2.55a)

or:

||UC(k)|| ≤ dUC
= dUD

(0) (2.55b)

Finally, if the CDMPC algorithm stops prematurely, namely at some ε ≥ 0, the upper

bound on the norm of difference between the nested vector of control actions derived

from this algorithm, UD(k), and the optimal UC(k) corresponding to OTSLC(k), will be

bounded by:

||UC(k)− UD(k)|| ≤ ||UC(k)||+ ||UD(k)|| ≤ dUC,D
(ε) (2.56a)
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where:

dUC,D
(ε) = dUD

(ε) + dUD
(0) (2.56b)

The following assumption is required to find a bound on the deviation of the exact

state trajectory w.r.t. the difference between OTSLC(k) and the sub-optimal CDMPC

solution, derived from the approximate state trajectory.

Assumption 7 Both FE
h and FA

h are Lipschitz functions.

Based on Assumption 7, the absolute deviation between the two approximate trajectories

of centralized and CDMPC can be derived as in Proposition 8.

Proposition 8 Denote xC the trajectory of the system under the control of the central-

ized MPC, and denote xD the trajectory of the system under the control of the proposed

CDMPC. Consider the following state trajectories:

xC(k + 1) = FA
h (xC(k), uC(k)) (2.57a)

xD(k + 1) = FA
h (xD(k), uD(k)) (2.57b)

with states
(
xC(k) = xD(k), xC(k + 1), xD(k + 1)

)
∈ 
ρ, and there exists some non-zero

γ such that: limh→0 γ = 0. Then eE(k + 1) = FE
h (xC(k), uC(k)) − FE

h (xD(k), uD(k)) is

bounded:

||eE(k + 1)|| ≤ dAXC,D
(k + 1) (2.58)

Proof. Define the error vector at time k as e(k) = xC(k) − xD(k). According to

Assumption 1:
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FE
h (xC , uC) ⊆ FA

h (xC , uC) + χ(T ) (2.59a)

FE
h (xD, uD) ⊆ FA

h (xD, uD) + χ(T ) (2.59b)

differentiating (2.59b) from (2.59a) results the following rule for the sets eE and eA:

eE ⊆ eA (2.59c)

which implies that there is an upper bound on the difference between eE and eA at any

specific time, i.e. k + 1:

||eE(k + 1)− eA(k + 1)|| ≤ γ (2.59d)

Using the triangular inequality ||a|| − ||b|| ≤ ||a+ b|| yields:

||eE(k + 1)|| − ||eA(k + 1)|| ≤ ||eE(k + 1)− eA(k + 1)|| ≤ γ (2.59e)

or

||eE(k + 1)|| ≤ ||eA(k + 1)||+ γ (2.59f)
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Since FA
h is a Lipschitz function, i.e.

∣∣∣∣FA
h

(
x′(k), u′(k)

)−FA
h

(
x(k), u(k)

)∣∣∣∣ ≤ LA
X ||x′(k)−

x(k)||+ LA
U ||u′(k)− u(k)||, an upper bound on eA(k + 1) 5 can be derived as:

||eA(k + 1)|| ≤ LA
X ||eA(k)||+ LA

UdUC,D
(k) (2.61)

Hence, with ||eA(k)|| being zero:

||eE(k + 1)|| ≤ dAXC,D
(k + 1) (2.62a)

where:

dAXC,D
(k + 1) = LA

UdUC,D
(k) + γ. (2.62b)

Theorem 9 Consider the successively linearized process model (2.7) is controlled by the

CDMPC algorithm (2.28). Assume that the following conditions are satisfied:

C1: all of the sub-systems are open-loop stable;

C2: matrices Qii and Rii are constant positive definite and fixed;

C3: Assumptions 1 and 3 hold;

C4: Propositions 6 and 8 apply;

C5: Consider
(
xC(k) = xD(k), xC(k + 1), xD(k + 1)

)
∈ 
ρ;

Then, the entire closed-loop system is locally practically stable.

5The error vector of the approximate discrete-time system can be defined as:

eA(k + 1) = xC(k + 1)− xD(k + 1) (2.60a)

= FA
h (xC(k), uC(k))− FA

h (xD(k), uD(k)) (2.60b)
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Proof. Consider the Lyapunov function of the closed-loop system under the centralized

controller (2.5) Vh(x) along the trajectory of the successively linearized process system

(2.7) under the CDMPC controller (2.28) at two consecutive sampling periods ‘k’ and

‘k+1’, namely Vh(xD(k)) and Vh(xD(k+1)). In order to show that this Lyapunov function

is decreasing along the CDMPC algorithm, it is required to verify that Vh(xD(k + 1))−
Vh(xD(k)) ≤ 0. Adding and subtracting

[
Vh(xC(k + 1)) − Vh(xC(k))

]
to the left hand

side would result in:

Vh(xD(k + 1))− Vh(xD(k)) = Vh(xD(k + 1))− Vh(xD(k)) +
[
Vh(xC(k + 1))− Vh(xC(k))

]
−
[
Vh(xC(k + 1))− Vh(xC(k))

]
(2.63)

with xC(k) being equal to xD(k),
(
Vh(xC(k)− Vh(xD(k)

)
vanishes and (2.63) becomes:

Vh(xD(k + 1))− Vh(xD(k)) =
[
Vh(xC(k + 1))

− Vh(xC(k))
]
−
[
Vh(xC(k + 1))− Vh(xD(k + 1))

]
(2.64)

According to Assumption 3: property (2.13b), equation (2.64) can be written as follows:

Vh(xD(k + 1))− Vh(xD(k)) ≤− Tα3(||x||)−
[
Vh(xC(k + 1))− Vh(xD(k + 1))

]
(2.65)

From Proposition 8, ||xC(k+1)−xD(k+1)|| is bounded, namely ||xC(k+1)−xD(k+1)|| ≤
dAxC,D(k+ 1). Thus, based on property (2.13c) of Assumption 3, there exists h∗ > 0 such

that: for h ∈ (0, h∗) and xC(k + 1), xD(k + 1) ∈ BD − Bσ2 , the following holds:

∣∣∣∣∣∣Vh(xC(k + 1))− Vh(xD(k + 1))
∣∣∣∣∣∣ ≤ σ1 (2.66)
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which implies:

Vh(xD(k + 1))− Vh(xD(k)) ≤ −Tα3(||xD(k)||) + σ1. (2.67)

Let α3(||x||) = c||xD(k)||2, for strictly positive real numbers (c, T ∗) and T ∈ (0, T ∗), such

that:

T
c

2
||xD(k)||2 ≥ σ1; (2.68)

Therefore, the following holds:

Vh(xD(k + 1))− Vh(xD(k)) ≤ −T
c

2
||xD(k)||2 (2.69)

which guarantees that Vh(xD(k+ 1)) ≤ Vh(xD(k)). Due to the fact that Vh is decreasing

along xD, the Lyapunov function of the centralized closed-loop system can be considered

as the Lyapunov function of the CDMPC closed-loop system (2.6); thus, according to

Lemma 4, the entire closed-loop system (2.5) is locally practically stable around the

origin.

2.4 Alkylation Process Case Study

The proposed CDMPC is applied to a benzene alkylation example [22]. The process

consists of four continuous stirred tank reactors (CSTRs) and a flash tank separator, as

shown in Figure 2.2. Pure benzene is fed via stream F1 and pure ethylene is fed via

streams F2, F4 and F6. Two catalytic reactions take place in CSTR-1, CSTR-2 and

CSTR-3. In reaction 1, benzene (A) reacts with ethylene (B) and produces the desired

product ethylbenzene (C); in reaction 2, ethylbenzene reacts with ethylene to form a
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byproduct, 1, 3-diethylbenzene (D). In the flash tank separator, most of benzene is

separated, flows overhead and recycled back to the plant. A portion of the recycle stream

Fr1 is fed to CSTR-4 and the other portion Fr2 is fed back to CSTR-1 together with an

additional feed stream F10, which contains 1, 3-diethylbenzene. Moreover, reaction 2 and

reaction 3, in which 1, 3-diethylbenzene reacts with benzene to produce ethylbenzene,

take place in CSTR-4. Finally, it is assumed that throughout the process, all the materials

are in liquid phase and their molar volumes are constant [22]. The nonlinear state-space

model of the process is described in equations (2.70)-(2.74).

CSTR-1 CSTR-2 CSTR-3

CSTR-4
Separator

F8

F7

Fr1

F3 F4

Fr2

FP

F9
F10,D

Q5 Q4

Q3Q2Q1

F1,A

F2,B F4,B F6,B

Fr

Figure 2.2: Process flow diagram of alkylation of benzene

CSTR-1:

dCA1

dt
=
F1CA0 + Fr2CAr − F3CA1

V1

− r1(T1, CA1, CB1) (2.70a)

dCB1

dt
=
F2CB0 + Fr2CBr − F3CB1

V1

− r1(T1, CA1, CB1)− r2(T1, CA1, CB1) (2.70b)

dCC1

dt
=
Fr2CCr − F3CC1

V1

+ r1(T1, CA1, CB1)− r2(T1, CB1, CC1) (2.70c)

dCD1

dt
=
Fr2CDr − F3CD1

V1

+ r2(T1, CB1, CC1) (2.70d)
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dT1

dt
=
Q1 + F1CA0HA(TA0) + F2CB0HB(TB0)

ΣD
i=ACi1CpiV1

+
ΣD

i=A

(
Fr2CirHi(T4)− F3Ci1Hi(T1)

)
ΣD

i=ACi1CpiV1

− ΔHr1r1(T1, CA1, CB1)

ΣD
i=ACi1Cpi

− ΔHr2r2(T1, CB1, CC1)

ΣD
i=ACi1Cpi

(2.70e)

CSTR-2:

dCA2

dt
=
F3CA1 + F5CA2

V2

− r1(T2, CA2, CB2) (2.71a)

dCB2

dt
=
F3CB1 + F4CB0 − F5CB2

V2

− r1(T2, CA2, CB2)− r2(T2, CB2, CC2) (2.71b)

dCC2

dt
=
F3CC1 − F5CC2

V2

+ r1(T2, CA2, CB2)− r2(T2, CB2, CC2) (2.71c)

dCD2

dt
=
F3CD1 − F5CCR2

V2

+ r2(T2, CB2, CC2) (2.71d)

dT2

dt
=
Q2 + F4CB0HB(TB0)

ΣD
i=ACi2CpiV2

+
ΣD

i=A

(
F3Ci1Hi(T1)− F5Ci2Hi(T2)

)
ΣD

i=ACi2CpiV2

− ΔHr1r1(T2, CA2, CB2)

ΣD
i=ACi2Cpi

− ΔHr2r2(T2, CA2, CB2)

ΣD
i=ACi2Cpi

(2.71e)

CSTR-3:

dCA3

dt
=
F5CA2 + F7CA3

V3

− r1(T3, CA3, CB3) (2.72a)

dCB3

dt
=
F5CB2 + F6CB0 − F7CB3

V3

− r1(T3, CA3, CB3)− r2(T3, CB3, CC3) (2.72b)

dCC3

dt
=
F5CC2 − F7CC3

V3

+ r1(T3, CA3, CB3)− r2(T3, CB3, CC3) (2.72c)

dCD3

dt
=
F5CD2 − F7CD3

V3

+ r2(T3, CB3, CC3) (2.72d)

dT3

dt
=
Q3 + F6CB0HB(TB0)

ΣD
i=ACi3CpiV3

+
ΣD

i=A

(
F5Ci2Hi(T2)− F7Ci3Hi(T3)

)
ΣD

i=ACi3CpiV3

− ΔHr1r1(T3, CA3, CB3)

ΣD
i=ACi3Cpi

− ΔHr2r2(T3, CB3, CC3)

ΣD
i=ACi3Cpi

(2.72e)
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Separator:

dCA4

dt
=
F7CA3 + F9CA5 − FrCAr − F8CA4

V4

(2.73a)

dCB4

dt
=
F7CB3 + F9CB5 − FrCBr − F8CB4

V4

(2.73b)

dCC4

dt
=
F7CC3 − F9CC5 − FrCCr − F8CC4

V4

(2.73c)

dCD4

dt
=
F7CD3 − F9CD5 − FrCDr − F8CD4

V4

(2.73d)

dT4

dt
=
Q4 + ΣD

i=A

(
F7Ci3Hi(T3) + F9Ci5Hi(T5)

)
ΣD

i=ACi4CpiV4

+
ΣD

i=A

(−MiHi(T4)− F8Ci4Hi(T4)−MiHvap

)
ΣD

i=ACi4CpiV4

(2.73e)

CSTR-4:

dCA5

dt
=
Fr1CAr + F9CA5

V5

− r3(T5, CA5, CD5) (2.74a)

dCB5

dt
=
Fr1CBr + F9CB5

V5

− r2(T3, CB5, CC5) (2.74b)

dCC5

dt
=
Fr1CCr − F9CC5

V5

− r2(T5, CB5, CC5 + 2r3(T5, CA5, CD5) (2.74c)

dCD5

dt
=
Fr1CDr − F10CD0 − F9CD5

V5

+ r2(T5, CB5, CC5)− r3(T5, CA5, CD5) (2.74d)

dT5

dt
=
Q5 + F10CD0HD(TD0)

ΣD
i=ACi5CpiV5

+
ΣD

i=A

(
Fr1CirHi(T4)− F9Ci5Hi(T5)

)
ΣD

i=ACi5CpiV5

− ΔHr2r2(T5, CB5, CC5)

ΣD
i=ACi5Cpi

− ΔHr3r3(T5, CA5, CD5)

ΣD
i=ACi5Cpi

(2.74e)

where r1, r2 and r3 are reaction rates defined as:

r1(T,CA, CB) =0.084e
−9502
RT C0.32

A C1.5
B (2.75a)

r2(T,CB, CC) =
0.085e

−20643
RT C2.5

B C0.5
C

1 +KEB2CD

(2.75b)



2.4: Alkylation Process Case Study 54

r3(T,CA, CD) =
66.1e

−61280
RT C1.0218

A CD

1 +KEB3CA

(2.75c)

where KEB2 = 0.152e
−3933
RT and KEB3 = 0.490e

−50870
RT . The heat capacities Cpi=A,B,C,D are

assumed to be constant and the molar enthalpies have are linearly related to temperature:

Hi = Hiref + Cpi(T − Tref ). (2.76)

Furthermore, the relative volatity of each species inside the flash tank separator is as-

sumed to be a linear function of vessel temperature in the operating range of the flash

tank:

αA = 0.0449T4 + 10 (2.77a)

αB = 0.0260T4 + 10 (2.77b)

αC = 0.0065T4 + 10 (2.77c)

αD = 0.0058T4 + 10. (2.77d)

The molar flow rates of the overhead reactants, Mi=A,B,C,D, can be defined as in equation

(2.78):

Mi = k
α(F7Ci5)Σj=A,B,C,D(F7Cj3 + F9Cj5)

Σj=A,B,C,Dαj(F7Cj3 + F9Cj5)
(2.78)

where k is the fraction of condensed overhead flow recycled to the reactors. Based on

Mi, the concentration of the reactants in the recycle stream can be calculated:

Cir =
Mi

Σj=A,B,C,DMi/ρj0
(2.79)
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where ρj0=A,B,C,D are the molar densities of pure reactants. The vapor is condensed in

the overhead, and a portion of the condensed liquid is redirected back to separator to

maintain the flow rate of the recycled stream at a fixed value. Also, the temperature

of the condensed liquid is assumed to be the same as the temperature of the vessel.

Furthermore, the definition and values of process parameters used in the process model

are given in Tables 2.1 and 2.2 [22].

Table 2.1: Alkylation process parameters

Process Parameter Description
CA1,CB1,CC1,CD1 Concentration of species in CSTR-1
CA2,CB2,CC2,CD2 Concentration of species in CSTR-2
CA3,CB3,CC3,CD3 Concentration of species in CSTR-3
CA4,CB4,CC4,CD4 Concentration of species in Separator
CA5,CB5,CC5,CD5 Concentration of species in CSTR-4
CAr,CBr,CCr,CDr Concentration of species in Fr, Fr1, Fr2

T1,T2,T3,T4,T5 Temperature in each vessel
Tref Reference Temperature
F3,F5,F7,F8,F9 Effluent flow rates from each vessel
F1,F2,F4,F6,F10 Feed flow rates to each vessel
Fr, Fr1, Fr2 Recycle flow rates
HvapA,HvapB,HvapC ,HvapD Enthalpies of vaporization
HAref ,HBref ,HCref ,HDref Enthalpies of vaporization
ΔHr1,ΔHr2,ΔHr3 Heat of reactions
V1,V2,V3,V4,V5 Volume of each vessel
Q1,Q2,Q3,Q4,Q5 External heat/coolant input to each vessel
CpA,CpA,CpA,CpA Heat capacity at liquid phase
αA,αB,αC ,αD Relative volatilities
ρA0,ρB0,ρC0,ρD0 Molar densities of pure species
TA0,TB0,TD0 Feed temperature of pure species
k Fraction of overhead flow recycled to the reactors

The steady-state values of manipulated input variables and state variables are shown

in Tables 2.3 and 2.5 [22]. Moreover, the acceptable operating range of the manipulated

variable moves are shown in Table 2.4 [22].

In the design of the proposed CDMPC, the process is divided into two subsystems.

The first subsystem includes CSTR-1 and CSTR-2. The second subsystem includes

CSTR-3, the separator and CSTR-4. Consequently, the following subsystem decomposi-
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Table 2.2: Alkylation process parameter values

Parameter Value Parameter Value
F1 7.1× 10−3[m3/s] Fr 0.012[m3/s]
F2 8.697× 10−4[m3/s] Fr1 0.006[m3/s]
Fr21 0.006[m3/s] V1 1[m3]
F10 2.31× 10−3[m3/s] V2 1[m3]
HvapA 3.073× 104[J/mole] V3 1[m3]
HvapB 1.35× 104[J/mole] V4 3[m3]
HvapC 4.226× 104[J/mole] V5 1[m3]
HvapD 4.55× 104[J/mole] CpA 184.6[J/moleK]
HAref 7.44× 104[J/mole] HBref 5.91× 104[J/mole]
HCref 2.02× 104[J/mole] HDref −2.89× 104[J/mole]
ΔHr1 −1.536× 105[J/mole] CpB 59.1[J/moleK]
ΔHr2 −1.118× 105[J/mole] CpC 247[J/moleK]
ΔHr3 4.141× 105[J/mole] CpD 301.3[J/moleK]
CA0 1.126× 104[mole/m3] Tref 450[K]
CB0 2.028× 104[mole/m3] TA0 473[K]
CC0 8174[mole/m3] TB0 473[K]
CD0 6485[mole/m3] TD0 473[K]
k 0.8

Table 2.3: Alkylation process steady-state values manipulated input variables

Input Value Input Value
Q1,s −4.4× 106[J/s] Q2,s −4.6× 106[J/s]
Q3,s −4.7× 106[J/s] Q4,s −9.2× 106[J/s]
Q5,s 5.9× 106[J/s] F4,s 8.697× 10−4[m3/s]
F4,s 8.697× 10−4[m3/s]

Table 2.4: The operating range of the manipulated variables

Input Operating Range Input Operating Range
Q1 (±7.5× 105 +Q1,s)[J/s] Q2 (±5× 105 +Q2,s)[J/s]
Q3 (±5× 105 +Q3,s)[J/s] Q4 (±6× 105 +Q4,s)[J/s]
Q5 (±5× 105 +Q5,s)[J/s] F4 (±4.93× 10−5 + F4,s)[m

3/s]
F6 (±4.93× 10−5 + F6,s)[m

3/s]

tion of state and input variables is defined as:

⎧⎪⎪⎨
⎪⎪⎩
X1 = [CA1, CB1, CC1, CD1, T1, CA2, CB2, CC2, CD2, T2]

U1 = [Q1, Q2, F4]

(2.80a)
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Table 2.5: Alkylation process steady-state values of the state variables

State Value State Value
CA1 9.101× 103[mole/m3] CA2 7.548× 103[mole/m3]
CB1 22.15[mole/m3] CB2 23.46[mole/m3]
CC1 1.120× 103[mole/m3] CC2 1.908× 103[mole/m3]
CD1 2.120× 102[mole/m3] CD2 3.731× 102[mole/m3]
T1 4.772× 102[K] T2 4.77× 103[K]
CA3 6.163× 103[mole/m3] CA4 1.723× 103[mole/m3]
CB3 24.84[mole/m3] CB4 13.67[mole/m3]
CC3 2.616× 103[mole/m3] CC4 5.473× 103[mole/m3]
CD3 5.058× 102[mole/m3] CD4 7.044× 102[mole/m3]
T3 4.735× 102[K] T4 4.706× 102[K]
CA5 5.747× 103[mole/m3] CD5 1.537× 102[mole/m3]
CB1 3.995[mole/m3] T5 4.783× 102[K]
CC5 3.830× 103[mole/m3]

and:

⎧⎪⎪⎨
⎪⎪⎩
X2 = [CA3, CB3, CC3, CD3, T3, CA4, CB4, CC4, CD4, T4, CA5, CB5, CC5, CD5, T5]

U2 = [Q3, Q4, Q5, F6]

(2.80b)

In order to have a high performance the closed-loop system, without the loss of generality,

the prediction horizon Hp and the control horizon Hu are taken to be 15 times the

sampling period. The integration time is h = 0.3[sec] and the sampling period is T =

30[sec]. In order to improve solver performance, the decision variables of optimization

are scaled to be between 0.1 and 1. The weighting matrices Q and R are 102 × I25 and

10−4× I7, respectively
6. The initial conditions of this system are shown in Table 2.6 [22].

Similar to the CDMPC and the centralized schemes, the decentralized control actions

are also applied to the continuous time plant. This scheme ignores the interactions

between subsystems, and the overall objective function of the decentralized controlled

6Here, ‘I’ represents an identity matrix of appropriate dimension
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Table 2.6: Alkylation process Initial values of the state variables

State Value State Value
CA1 9.112× 103[mole/m3] CA2 7.557× 103[mole/m3]
CB1 25.09[mole/m3] CB2 27.16[mole/m3]
CC1 1.113× 103[mole/m3] CC2 1.905× 103[mole/m3]
CD1 2.186× 102[mole/m3] CD2 3.695× 102[mole/m3]
T1 4.430× 102[K] T2 4.371× 103[K]
CA3 6.170× 103[mole/m3] CA4 1.800× 103[mole/m3]
CB3 29.45[mole/m3] CB4 16.35[mole/m3]
CC3 2.617× 103[mole/m3] CC4 5.321× 103[mole/m3]
CD3 5.001× 102[mole/m3] CD4 7.790× 102[mole/m3]
T3 4.284× 102[K] T4 4.331× 102[K]
CA5 5.889× 103[mole/m3] CD5 2.790× 102[mole/m3]
CB1 5.733[mole/m3] T5 4.576× 102[K]
CC5 3.566× 103[mole/m3]

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

time [s]

O
ve

ra
l O

bj
ec

ti
ve

 F
un

ct
io

n

 

 

 J
C

 (Centralized)

 J
D

 (CDMPC) 

 J
DC

 (Decentralized)

Figure 2.3: Comparison of the overall objective function for the centralized, coordinated
and decentralized control schemes, based on scaled decision variables
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network JDC is defined as:

min
X,U

JDC =
m∑
i=1

JDCi
(2.81a)

s.t. x̂i(k + l + 1|k) = Ψiix̂i(k + l|k) + Γiiûi(k + l|k)

for l = 0, . . . , Hp − 1 (2.81b)

ûi(k + l|k) = ûi(Hu|k)

for Hu ≤ l ≤ Hp − 1 (2.81c)

where:

JDCi
=

1

2

(
(Xi(k))

TQii(Xi(k)) + Ui(k)
TRiiUi(k)

)
+ ΩUi

(U(k)) (2.81d)

The simulation studies in this section were performed on a 2.3 GHz Intel R© Core-i7

3610QM processor with 8 GB of RAM. For the numerical calculations, MATLAB R©

2012a environment is used. In Figure 2.3, the trends of the overall objective functions7 of

the CDMPC design JD and decentralized JDC are compared to the centralized objective

function JC . Note that these results are obtained via applying the sampled-data control

actions to the actual continuous plant. As can be seen, CDMPC can efficiently track

OTSLC(k). The result obtained by decentralized MPC shows that the decentralized

MPC is not able to achieve the performance of OTSLC(k), i.e. the mean square error

between the decentralized MPC and the centralized MPC scaled objective functions is at

least two orders of magnitude less than that of between the CDMPC and the centralized

MPC, over the whole simulation time.

In addition, temperature profiles of CSTR-1, CSTR-2, CSTR-3, and CSTR-4 in Fig-

ure 2.4 show that the state trajectories obtained form the CDMPC algorithm track the

7This plot is based on the scaled decision variables.
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Figure 2.4: Temperature profiles in CSTR-1, CSTR-2, CSTR-3, and CSTR-4; solid lines
(—): centralized scheme, circles (◦): CDMPC scheme, dotted lines (· · · ): steady-state
values

OTSLC(k) perfectly. Control action inputs of sub-systems 1 and 2 are also shown in

Figures 2.5 and 2.6, respectively. These also demonstrate that the CDMPC is capable

of achieving the optimum centralized input trajectories, corresponding to OTSLC(k),

entirely.
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Figure 2.5: Control action inputs of sub-system 1: CSTR-1 and CSTR-2; solid lines (—
): centralized scheme, circles (◦): CDMPC scheme, dotted lines (· · · ): upper and lower
bounds

2.5 Conclusion

In this chapter, a nested bilevel optimization approach for price-driven coordination of

distributed MPC networks is proposed for nonlinear systems. Sufficient conditions for

the stability of CDMPC are derived for premature convergence of the algorithm. In the

proposed scheme, an interior-point approach is presented to coordinate the actions of the

distributed controllers based on the price-driven coordination algorithm. Assuming that

a centralized MPC based on successive linearization can be designed to stabilize the en-

tire system, sufficient conditions were derived which ensures that the proposed CDMPC

guarantees the closed-loop stability, even when the algorithm is stopped prematurely, i.e.

prior to convergence.
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Figure 2.6: Control action inputs of sub-system 2: CSTR-3, the separator and CSTR-4;
solid lines: centralized scheme, circles: CDMPC scheme, dotted lines: upper and lower
bounds

From the simulation studies, it is demonstrated that the proposed CDMPC is able to

track the performance of OTSLC(k), nevertheless premature termination may introduce

noticeably small deviations from the optimal trajectory. This scheme is limited to non-

linear systems that are open-loop stable and limitations of the successive linearization

method. In the next chapter, the idea is extended to stabilize open-loop unstable dynam-

ics. A novel bilevel formulation is proposed to coordinate distributed nonlinear model

predictive control systems, without the limitations imposed by successive linearization.



Chapter 3

A Trust-Region Approach to
Price-Driven Coordination of
Networked Nonlinear Model
Predictive Control Systems

In this chapter, an on-line solution strategy is presented to improve the plant-wide per-

formance of an existing network of decentralized nonlinear model predictive controllers

(NMPC). The nonlinear plant is assumed to be governed by differential-algebraic equa-

tions (DAEs) with separable interconnections in the form of equality constraints. For

this reason, the problem of designing a price-driven coordination level for the network, to

account for interactions between the distributed subsystems, is addressed. Nevertheless,

the coordination scheme introduces minor modifications to the distributed controllers.

In this work, a novel coordinated distributed NMPC (CDNMPC) algorithm is proposed.

Note that, the price-driven CDNMPC scheme can be thought of as a bi-level nonlin-

ear programming (BLNP) problem in which the coordinator is represented in the upper

level and the subsystem NMPC network belongs to the lower level. In this technique,

the coordinator exchanges information with the distributed control network to solve a

transformed version of the bi-level optimization problem, namely a relaxed single level

problem. The optimal plant-wide trajectory is found using a trust-region method. Ac-

63
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cordingly, global convergence of the this algorithm, to a unique optimal solution of the

BLNP problem, is ensured. Additionally, an adaptive prediction horizon module is imple-

mented to find the minimum required horizon length to ensure stability of the finite-time

dynamic optimization problem. The proposed method can be applied to nonlinear plants

with open-loop unstable behavior. The effectiveness of the proposed CDNMPC algorithm

is illustrated via the application to a two-CSTR process.

3.1 Preliminaries

Industrial chemical and petrochemical plants are typically complex, highly integrated

nonlinear systems composed of geographically distributed processing units that share

material and energy streams. It is a commonplace that optimal control methods such

as model predictive controllers (MPCs) are widely used to ensure efficient operation.

In general, performance and reliability are two key factors that determine the control

strategy in the network. Traditionally, decentralized control systems are used to operate

the plant, mainly due to the ease of implementation; however, such controlled networks

ignore interactions between the subsystems and can result in degradation of plant-wide

performance [86, 8, 96]. Alternatively, monolithic centralized controllers can take into

account all of the interactions to obtain the highest performance for the entire plant.

The main drawbacks for centralized control are capital cost due to replacement of the

whole network with one controller, increased maintenance requirements, and poor fault

tolerance [63, 77]. As a result, a considerable body of research is developed for distributed

MPC (DMPC) strategies such as cooperative and coordinated methods, as an alternative

to centralized MPC.

Cooperative distributed schemes achieve an improved plant-wide performance while

preserving the flexibility of decentralized control. Specifically, in cooperative DMPC
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schemes, local controllers communicate over the network to achieve a higher performance

[15, 84, 88, 23, 22]. Most important cooperative schemes in the literature are robust

implementation of DMPC for linear systems [3], DMPC of linear systems coupled through

the inputs [64] and dissipativity-based DMPC of linear systems [98]. On the other hand,

coordinated distributed control belongs to class of hierarchical multilevel systems [71,

72, 36], and are composed of two levels: local controllers and a coordinator. There

is no communication between the local controllers, instead they communicate with the

coordinator to achieve the improved plant-wide performance. Based on the way that

interactions are addressed, different algorithms have been proposed for coordination of

linear systems, including the price-driven approach (e.g., [20, 21, 67, 76, 57, 68]), primal

decomposition DMPC [35, 25], and prediction-driven DMPC (e.g., [66, 76]).

In this chapter, the problem of designing CDNMPC scheme for nonlinear systems is

addressed. To date, only a limited amount of research is dedicated to design CDNMPC

systems. In [76], a pseudo-model coordination method is proposed via exact lineariza-

tion of interconnected ODE systems. Coordination of nonlinear networks governed by

open-loop stable DAE systems was investigated by [89] and [68]. In [89], price driven

coordination based on iterative steepest ascent was shown exhibit poor convergence to

the optimal plant-wide trajectory. They also proposed an off-line dynamic optimization

method, where a sensitivity based interaction driven coordination is obtained by colloca-

tion methods. Moreover, another coordination approach was proposed for systems that

share a common resource [68]. In this scheme, the coordinator acts as a single input

single output (SISO) controller and is fed the error between the summation of resource

demands by the local NMPCs and the total available shared resource in the network. In

other words, the set point is the maximum availability of the shared resource and the

output is the price vector.

The main scope of this study is to design a price-driven CDNMPC for on-line coor-
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dination of nonlinear systems governed by DAEs, which may exhibit open-loop unstable

dynamics. In addition, it is assumed the interconnections between the subsystems are

separable and in the form of equality constraints. The method proposed by [76] is lim-

ited to exact linearization of ODEs and may fail to stabilize an unstable system for small

prediction horizons. The interaction driven method proposed by [89] is an off-line dy-

namic optimization and is mainly developed for open-loop stable DAE systems. The

scheme proposed by [68] is only applicable to open-loop stable DAE systems with shared

resources.

In this work, a bi-level optimization approach to design a novel CDNMPC algorithm

is proposed. It is shown that the proposed price-driven coordination is the hierarchical

dual decomposition of a hypothetical centralized control problem. The structure can be

thought of as a non-linear bi-level programming (NBLP) problem, in which the coor-

dinator is the upper level decision maker and the local controllers belong to the lower

level problem. In this design, a minor modification is applied to the existing decentral-

ized NMPC controllers. The modification required in the subsystems is equivalent to

relaxing local versions of the overall interaction constraint, and assigning a price vector

to penalize the local violations of predicted interaction errors into the objective func-

tion of NMPCs. Methods for solving any NBLP may belong to one of four categories:

enumeration (branch-and-bound), descent, evolutionary based, and penalty methods.

In the branch-and-bound approach, the lower-level problem is replaced by the equiv-

alent Karush Kuhn-Tucker (KKT) system. This is the idea underlying the approaches

of Edmunds and Bard [32], Al-Khayyal et al. [4] and more recently, Thoai et al. [97].

In [43], NBLP problems are addressed that involve twice differentiable nonlinear func-

tions and the linear independence constraint qualification condition holds for their inner

problem constraints. This approach gives a global solution based on the relaxation of the

feasible region by convex underestimation. Global optimization of nonlinear BLP with
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non-convex lower and upper problems and related dynamic optimization topics have

been addressed by Mitsos et al [75, 74]. In evolutionary methods, the bi-level problem is

transformed into a single level non-convex problem and then several evolutionary heuris-

tic methods such as genetic algorithms [9] or particle swarm optimization are applied to

find a global optimum.

Approaches based on descent method attempt to find local optimum of the NBLP

problems. In this method, an implicit relation between the lower-level variable as a

function of the upper-level variable is defined. The major issue is to find a decreasing

feasible direction based on the gradient of the upper-level objective function. Several

approximations of the gradient information are proposed by Kolstad and Lasdon [54]

and Savard and Gauvin [87]. In this category, Falk and Liu [34] presented a bundle

method where the decrease of the upper-level objective is adapted according to sub-

gradient information of the lower-level problem.

The penalty method category also attempts to compute stationary point and local

optimal solutions to NBLP problems [1, 2, 92, 24]. In [51] a double penalty method is

deployed in both objective functions of upper and lower level problems, and the BLP

problem is transformed into a single level optimization by replacing the lower-level prob-

lem with its corresponding stationary conditions. Case [16] transformed the nonlinear

BLP into a single level optimization problem via replacing the lower-level optimization

with the corresponding KKT conditions. The resulting problem is then solved with ex-

act l1-norm penalty methods and quadratic approximate models subject to trust-region

constraints. More recently, Lin et al. [59] proposed a smoothing projected gradient algo-

rithm to a BLP problem in which the lower level program is a non-convex minimization

problem with a convex set constraint and the upper level program has a convex set con-

straint. Jiang et al. [52] proposed an augmented Lagrangian method to nonlinear BLP

problems that are transformed to single level optimization problem via KKT conditions
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and their complementarity constraints have been smoothed via Chen Harker Kanzow

Smale (CHKS) smoothing function [33].

In this chapter, an exact penalty method is used to solve the CDNMPC problem.

This BLNP problem is relaxed into a single level problem and solved using a trust-region

approach to obtain the local optimal plant-wide trajectory, in an iterative procedure be-

tween the coordinator and subsystem controllers. Global convergence of the algorithm to

unique local optimal solution is investigated under certain assumptions. In addition, the

coordinator and local NMPCs perform an outer iteration to adaptively adjust the predic-

tion horizon length required to ensure stability for a predefined sub-optimality criteria.

Finally, the performance of the proposed CDNMPC is illustrated via an application to

an unstable two-CSTR process and comparison to decentralized and centralized control

schemes. This case study exhibits unstable behavior around one of its steady-state op-

erating points and the control objective is to stabilize the system around this operating

condition.

3.1.1 System Description

In this work, a class of nonlinear systems composed of m interconnected open-loop sub-

systems is considered. Each of the subsystems can be described by the following DAE

model:

ẋi = fi(xi, xai, ui, vi) (3.1a)

0 = gi(xi, xai, ui) (3.1b)

xi(0) = xi,0 (3.1c)
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where i = 1, . . . ,m, xi(t) ∈ R
nxi denotes the vector of state variables, xai(t) ∈ R

nxai

denotes the vector of auxiliary state variables1, ui ∈ R
nui is the vector of control inputs,

and vi ∈ R
nvi denotes the vector of interaction variables associated with subsystem i. In

this formulation, the interaction variable of sub-system ‘i’ is defined as:

vi =
∑
j �=i

hi,j

[
xT
j , x

T
aj, u

T
j

]T
(3.2a)

where hi,j is a coefficient matrix that defines the relation between interaction variables

of sub-system i with other sub-systems j = 1, · · · , i − 1, i + 1, · · · ,m. In other words,

it is assumed that the nonlinear interactions can be replaced by defining new auxiliary

variables within the local models, so that the relation between v and (x, xa, u) remains

affine (3.2) as dictated by (3.2). Additionally, the states and the manipulated input

variables are feasible if they respect the following set of bounds:

lbi ≤

⎡
⎢⎢⎢⎢⎣
xi

xai

ui

⎤
⎥⎥⎥⎥⎦ ≤ ubi (3.3a)

where i = 1, . . . ,m, lbi = [lbTxi
, lbTxai

, lbTui
]T , and ubi = [ubTxi

, ubTxai
, ubTui

]T . The states of

the m subsystems, xi (i = 1, . . . ,m), are assumed to be sampled synchronously at time

instants tk. The dynamics of the entire nonlinear system can be described as:

ẋ = f(x, xa, u, v) (3.4a)

0 = g(x, xa, u) (3.4b)

x(0) = x0 (3.4c)

1In this definition, auxiliary state variables depend implicitly on time; whereas, the time derivatives
of the state variables appear explicitly in the ODE defining system dynamics
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where: x = [xT
1 · · · xT

i · · · xT
m]

T ∈ R
nx denotes the state variables vector, xa = [xT

a1 · · · xT
ai

· · · xT
am]

T ∈ R
nxa denotes the auxiliary state variables vector, u = [uT

1 · · · uT
i · · · uT

m]
T are

the manipulated input variables vector, and v = [v1, . . . , vi, . . . , vm]
T is the vector of

interaction variables for the entire nonlinear system. In addition, f = [fT
1 · · · fT

i · · · fT
m]

T ,

g = [gT1 · · · gTi · · · gTm]T , and x0 = [xT
01
· · · xT

0i
· · · xT

0m ]
T . Here, it is assumed that f and g

are smooth Lipschitz functions. In addition, the differential-algebraic equation (DAE)

system formulation defined in (3.1) is assumed to be index-1, which means that g is

solvable for xa. In other words, g(x, xa, u) can be written as xa = ḡ(x, u) from (3.4b).

In this chapter, implicit Runge-Kutta (IRK) methods, such as Radau IIA formulation,

are used due to their reliability in handling stiff problems [44]. Assuming that at tk, the

solution to (3.4b) exists, the nonlinear model of sub-system ‘i’ (3.1) can be discretized,

at tk ≤ t = tk + clτ ≤ tk+1, by solving the following system of equations:

Gi =

⎡
⎢⎣Kl

x,i − fi

(
xi,tk + τ

∑�
j=1 a

l
jKj

x,i, x
l
ai,tk

+ τ
∑�

j=1 a
l
jKj

xA,i, u
l
i, v

l
i

)
gi

(
xi,tk + τ

∑�
j=1 a

l
jKj

x,i, x
l
ai,tk

+ τ
∑�

j=1 a
l
jKj

xA,i, u
l
i

)
⎤
⎥⎦ = 0 (3.5a)

where: ‘�’ denotes the number of stages in the IRK method, ‘τ ’ denotes the integration

step-size, and ‘l = 1, . . . , �’; and, the state variables can be explicitly updated [82] for the

next sampling period using:

xi,tk+1
= φi(xi,tk , xai,tk , ui,tk , vi,tk) = xi,tk + τ

�∑
l=1

blKl
x,i, (3.6a)

xai,tk+1
= ḡi

(
xi,tk+1

, ui,tk

)
(3.6b)

where: alj, b
l and cl are internal IRK coefficients [44].
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3.1.2 Centralized NMPC

In this section, the centralized NMPC is defined to serve as the benchmark control

approach in the development of the CDNMPC for nonlinear systems. The finite-time

centralized NMPC formulation based on the discretized DAE model (3.6) at time instant

tk can be formulated as:

min
X,Xa,U

JC =
m∑
i=1

JCi
(3.7a)

s.t. x̂i(tk+l+1|tk) = φi

(
x̂i(tk+l|tk), x̂ai(tk+l|tk), ûi(tk+l|tk), v̂i(tk+l|tk)

)
(3.7b)

x̂ai(tk+l+1|tk) = ḡi

(
x̂i(tk+l+1|tk), ûi(tk+l|tk)

)
(3.7c)

v̂i(tk+l|tk) =
∑
j �=i

hi,j[x̂j(tk+l|tk), x̂aj(tk+l|tk), ûj(tk+l|tk)]T (3.7d)

lbi ≤

⎡
⎢⎢⎢⎢⎣
xi

xai

ui

⎤
⎥⎥⎥⎥⎦ ≤ ubi (3.7e)

where:
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JCi
=
(
Xi(tk)−Xi,sp(tk)

)T
Qii

(
Xi(tk)−Xi,sp(tk)

)
+
(
Ui(tk)− Ui,sp(tk)

)T
Rii

(
Ui(tk)− Ui,sp(tk)

)
(3.7f)

here: x̂, x̂a, û, and v̂ are states, auxiliary states, manipulated input variables, and

interaction variables inside the controller for l = 0, · · · , N , respectively; and N is the

prediction horizon2. Additionally: X(tk) = [x̂(tk+1|tk)T , · · · , x̂(tk+N |tk)T ]T is the vector

of the predicted dynamic state trajectory; Xa(tk) = [x̂a(tk+1|tk)T , · · · , x̂(tk+N |tk)T ]T is the

vector of the predicted auxiliary state trajectory; U(k) = [û(tk|tk)T , · · · , û(tk+N−1|tk)T ]T

is the vector of the calculated manipulated variable moves; Q is a positive definite block-

diagonal weighting matrix for the dynamic states (i.e., Q = diag{Qi}); and R is a

positive definite block-diagonal weighting matrix for the manipulated variables of the

overall system (i.e., R = diag{Ri}). Note that, in optimization problem (3.7), the vector

of interaction variables is known over the whole prediction horizon, i.e. the centralized

NMPC accounts for all the interactions between the sub-systems, as a part of the given

model in the network.

3.1.3 Stability Analysis of Centralized NMPC

In this subsection, the idea stated in [80, 41, 42] is followed to develop a stability cri-

teria for the centralized NMPC. Conventionally, a terminal region and/or terminal cost

function is defined to ensure stability of centralized NMPC systems [17]. In this work,

an adaptive horizon scheme is implemented to find the minimum prediction horizon re-

quired to stabilize the network. The main advantage of the adaptive horizon method is

2Here, for the sake of simplicity, it is assumed the control horizon and the prediction horizon of the
system are the same. Although it might lead to a higher computation load, longer control horizons can
improve the performance and compensate for package dropouts in networked control systems [80]
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that the optimization problem inside NMPC is not altered and it can be extended to the

CDNMPC problem in a straightforward manner. This criteria is applicable to NMPC

schemes with admissible sets consisting of bound constraints and/or mixed states and

input constraints [80].

Denote the optimum predicted state trajectory of the centralized NMPC optimization

problem (3.7), for a prediction horizon N , as the open-loop control solution. Accordingly,

the receding horizon control (RHC) action uRHC(N, x(n)) is calculated from solving prob-

lem (3.7) with prediction horizon N and the initial value x(n).

Define a dynamic programming value function [80] based on the RHC trajectory of

the centralized NMPC as a function of a predefined stage cost lC :

V C
N

(
x(n)
)
=

N−1∑
n=0

lC
(
x(n), uRHC(N − n, x(n))

)
(3.8a)

where the stage cost of the centralized trajectory is defined as:

lC
(
x(n), uRHC(N − n, x(n))

)
=

m∑
i=1

((
xi(n)− xi,sp(tk)

)T
Qii(n)

(
xi(n)− xi,sp(tk)

)
+

(
ui,RHC(N − n, xi(n))− ui,sp(tk)

)T
Rii(n)

(
ui,RHC(N − n, xi(n))− ui,sp(tk)

))
(3.8b)

with Qii and Rii defined over the prediction horizon as:

Qii =

⎡
⎢⎢⎢⎢⎣
Qii(1)

. . .

Qii(N)

⎤
⎥⎥⎥⎥⎦ , Rii =

⎡
⎢⎢⎢⎢⎣
Rii(1)

. . .

Rii(N)

⎤
⎥⎥⎥⎥⎦ (3.8c)

Remark 10 In order to obtain the value function V C
N , the difference between open-loop

control and receding horizon control (RHC) trajectories for a dynamic programming MPC
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Figure 3.1: Receding horizon control (RHC) vs open-loop control trajectories for sub-
system i with a typical prediction horizon length of N = 5.

problem, at sampling time tk, has to be determined. Consider a sample problem, described

in Figure 3.1, for a typical MPC problem with a prediction horizon N = 5. Firstly, an

open-loop trajectory is calculated for N = 5 and the RHC action, applied to the process

model, is used to solve the next open-loop problem for N = 4. This procedure continues

until five RHC points are obtained and the value function V C
N is calculated.

Therefore, in order to calculate V C
N at the current sampling time tk, namely V C

N

(
x(tk)
)
,

one has to perform a multi-step calculation forward in time. The procedure to calculate

(3.8) is listed in Algorithm 2:
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Algorithm 2: The algorithm to calculate the finite-time value function (3.8)

Initialization: n = 0, prediction horizon N , number of sub-systems m, initial

state x(n) = x(tk), Qii, Rii, V
C
N = 0;

for n := 0 to N − 1 do

Perform the plant-wide optimization problem (3.7) with prediction horizon

N − n and initial value xi(0) = xi(n) ;

Update the RHC control action move uRHC(N − n, x(n));

Calculate the centralized NMPC stage cost lC
(
x(n), uRHC(N − n, x(n))

)
;

V C
N = V C

N + lC
(
x(n), uRHC(N − n, x(n))

)
;

Apply uRHC(N − n, x(n)) to the model and update xi(n+ 1);

Output: the value function V C
N (x(n)) ← V D

C ;

Lemma 11 Consider the optimization problem (3.7) at sampling time tk. Provided that

the stage cost lC is a positive definite function, and if there exists α ∈ [0, 1] such that:

V C
N (x(tk))− V C

N (x(tk+1)) ≥ αlC
(
x(tk), uRHC(N, x(tk))

)
(3.9)

then V C
N is a Lyapunov function for the finite-time centralized NMPC system (3.7) and

α is an estimate of the closed-loop sub-optimality degree of the system w.r.t. the corre-

sponding infinite horizon NMPC problem, i.e. α → 1 as N → ∞ [80].

Based on Lemma 11, an a posteriori algorithm to calculate α and determine the

required prediction horizon ‘N ’ can be presented to ensure closed-loop stability of the

centralized NMPC problem (3.7). This procedure is:

Remark 12 There has to be a trade-off between the values of the minimum required

value of αmin and the desired level of sub-optimality comparing to the infinite horizon
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Algorithm 3: A posteriori adaptive horizon algorithm for the NMPC problem (3.7)

Initialization: prediction horizon N , number of sub-systems m, initial state
x(n), Qii, Rii;

Calculate V C
N (x(n)) using Algorithm 2 with

(
N,m, x(n), Qii, Rii

)
;

Calculate lC
(
x(n), uRHC(N, x(n))

)
using (3.8);

Apply uRHC(N, x(n)) to the model and update x(n+ 1);

Calculate V C
N (x(n+ 1)) using Algorithm 2 with

(
N,m, x(n+ 1), Qii, Rii

)
;

if V C
N (x(n)) ≤ V C

N (x(n+ 1)) then
Prompt: Solution may be unstable;

else

Calculate α =
V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) ;
if

V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) ≥ αmin then

Perform Horizon Shortening (Algorithm 4);
else

Perform Horizon Prolongation (Algorithm 5);
end

end
Output: Apply the RHC action to the plant based on the accepted value of N ;

trajectory. For values of αmin close to zero, fewer computations may be required but the

closed-loop control performance may be sacrificed; on the other hand, as αmin → 1, the

computational cost will rise and the performance of the closed-loop systems will tend to

that of the infinite horizon control.

According to Algorithm 3, when the calculated αN ≥ αmin, the prediction horizon is

decreased as the algorithm converges the minimum amount of prediction horizon that

satisfies (3.9). This procedure is called the horizon shortening strategy that is explained

in Algorithm 4:
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Algorithm 4: Horizon Shortening Algorithm for the NMPC problem (3.7)

Initialization: prediction horizon N , number of sub-systems m, initial state
x(k), Qii, Rii;
while N ≥ 2 do

Save the current trajectory of the open-loop system;
N = N − 1;

Calculate
V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) with (N,m, x(k), Qii, Rii

)
;

Save the shortened horizon trajectory of the open-loop system;

if α =
V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) < αmin then

N = N + 1;
Restore the current stored trajectory of the open-loop system;
STOP;

else
Save the shortened horizon trajectory as the current trajectory;

Output: Current trajectory of the system, and N .

When αN < αmin, the prediction horizon is increased to find the minimum N that

satisfies αN ≥ αmin. This procedure is listed in Algorithm 5:

Algorithm 5: Horizon Prolongation Algorithm for the NMPC problem (3.7)

Initialization: prediction horizon N , number of sub-systems m, initial state

x(k), Qii, Rii;

while
V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) < 1 do

N = N + 1;

Calculate
V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) with (N,m, x(k), Qii, Rii

)
;

Save the prolonged horizon trajectory as the current trajectory of the

open-loop system;

Output: Current trajectory of the system, and N.
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3.2 Proposed Coordination Algorithm

In this section, the proposed price-driven CDNMPC for the nonlinear DAE system (3.1)

is presented. The algorithm is developed for the discretized model described in (3.6) and

the receding horizon action is applied to continuous-time model (3.1). The main idea is

to design a coordinator for an existing network of decentralized NMPCs, which will han-

dle interactions between the sub-systems. This work extends the idea of [89] and [68] to

design a new price-driven coordination scheme for constrained nonlinear DAE systems,

with open-loop stable or unstable behavior. The proposed price-driven coordination is

the hierarchical dual decomposition of the hypothetical centralized control problem de-

fined in (3.7). In this approach the interaction constraints are relaxed by penalizing the

local violations within the objective function of local NMPC controllers by a price vector.

The dual decomposition formulation can be considered a bi-level nonlinear programming

problem. Therefore, the coordinator converts the bi-level problem into a relaxed single

level optimization problem. In addition, an on-line adaptive horizon selection is per-

formed inside the coordinator to ensure stability of the closed-loop system; and, the local

NMPC controllers update their internal prediction horizon length, accordingly.

Define the interaction error for subsystem ‘i’ based on (3.2) as:

ei(tk+l|tk) � v̂i(tk+l|tk)−
∑
j �=i

hi,j[x̂j(tk+l|tk), x̂aj(tk+l|tk), ûj(tk+l|tk)]T (3.10)

for l = 0, · · · , N − 1. A specific objective of the coordinator is to find a price for

subsystem i such that the interaction term v̂i, which is subsequently calculated using

the price, drives ei(tk+l|tk) = 0. Define the overall interaction error over the prediction
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horizon as:

E(tk|tk) �

⎡
⎢⎢⎢⎢⎣
E1(tk|tk)

...

Em(tk|tk)

⎤
⎥⎥⎥⎥⎦ (3.11a)

where:

Ei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ei(tk|tk)
ei(tk+1|tk)

...

ei(tk+N−1|tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.11b)

Therefore, according to (3.10), E(tk|tk) can be written as:

E(tk|tk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v̂1(tk|tk)−
∑

j �=1 h1,j[x̂j(tk|tk), x̂aj(tk|tk), ûj(tk|tk)]T

v̂1(tk+1|tk)−
∑

j �=1 h1,j[x̂j(tk+1|tk), x̂aj(tk+1|tk), ûj(tk+1|tk)]T
...

v̂1(tk+N−1|tk)−
∑

j �=1 h1,j[x̂j(tk+N−1|tk), x̂aj(tk+N−1|tk), ûj(tk+N−1|tk)]T
...

v̂i(tk|tk)−
∑

j �=i hi,j[x̂j(tk|tk), x̂aj(tk|tk), ûj(tk|tk)]T

v̂i(tk+1|tk)−
∑

j �=i hi,j[x̂j(tk+1|tk), x̂aj(tk+1|tk), ûj(tk+1|tk)]T
...

v̂i(tk+N−1|tk)−
∑

j �=i hi,j[x̂j(tk+N−1|tk), x̂aj(tk+N−1|tk), ûj(tk+N−1|tk)]T
...

v̂m(tk|tk)−
∑

j �=m hm,j[x̂j(tk|tk), x̂aj(tk|tk), ûj(tk|tk)]T

v̂m(tk+1|tk)−
∑

j �=m hm,j[x̂j(tk+1|tk), x̂aj(tk+1|tk), ûj(tk+1|tk)]T
...

v̂m(tk+N−1|tk)−
∑

j �=m hm,j[x̂j(tk+N−1|tk), x̂aj(tk+N−1|tk), ûj(tk+N−1|tk)]T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.12)
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which can be rearranged into the following separable form:

E(tk|tk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v̂1(tk|tk)
v̂1(tk+1|tk)

...

v̂1(tk+N−1|tk)
...

hi,1[x̂1(tk|tk), x̂a1(tk|tk), û1(tk|tk)]T

hi,1[x̂1(tk+1|tk), x̂a1(tk+1|tk), û1(tk+1|tk)]T
...

hi,1[x̂1(tk+N−1|tk), x̂a1(tk+N−1|tk), û1(tk+N−1|tk)]T
...

hm,1[x̂1(tk|tk), x̂a1(tk|tk), û1(tk|tk)]T

hm,1[x̂1(tk+1|tk), x̂a1(tk+1|tk), û1(tk+1|tk)]T
...

hm,1[x̂1(k +N − 1|k), x̂a1(k +N − 1|k), û1(tk+N−1|tk)]T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ · · ·+
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1,m[x̂m(tk|tk), x̂am(tk|tk), ûm(tk|tk)]T

h1,m[x̂m(tk+1|tk), x̂am(tk+1|tk), ûm(tk+1|tk)]T
...

h1,m[x̂m(tk+N−1|tk), x̂am(tk+N−1|tk), ûm(tk+N−1|tk)]T
...

hi,m[x̂m(tk|tk), x̂am(tk|tk), ûm(tk|tk)]T

hi,m[x̂m(tk+1|tk), x̂am(tk+1|tk), ûm(tk+1|tk)]T
...

hi,m[x̂m(tk+N−1|tk), x̂am(tk+N−1|tk), ûm(tk+N−1|tk)]T
...

v̂m(tk|tk)
v̂m(tk+1|tk)

...

v̂m(tk+N−1|tk))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.13a)

= Θ1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1(tk)

Xa1(tk)

U1(tk)

V1(tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+ · · ·+Θm

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Xm(tk)

Xam(tk)

Um(tk)

Vm(tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.13b)

=
m∑
i=1

Θi

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Xi(tk)

Xai(tk)

Ui(tk)

Vi(tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.13c)

where: Vi(tk) � [v̂i(tk+1|tk)T , · · · , v̂i(tk+N |tk)T ]T is the vector of predicted interaction
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variables, and Θi is the interaction coefficient matrix of sub-system i. Therefore, the

plant-wide optimization problem can be written based on the fact that the overall inter-

action error (3.13) is zero:

min
X,Xa,U

JP =
m∑
i=1

JPi
(3.14a)

s.t. x̂i(tk+l+1|tk) = φi

(
x̂i(tk+l|tk), x̂ai(tk+l|tk), ûi(tk+l|tk), v̂i(tk+l|tk)

)
(3.14b)

x̂ai(tk+l+1|tk) = ḡi

(
x̂i(tk+l+1|tk), ûi(tk+l|tk)

)
(3.14c)

E(tk|tk) =
m∑
i=1

Θi

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Xi(tk)

Xai(tk)

Ui(tk)

Vi(tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (3.14d)

lbi ≤

⎡
⎢⎢⎢⎢⎣
Xi

Xai

Ui

⎤
⎥⎥⎥⎥⎦ ≤ ubi (3.14e)

where:

JPi
=
(
Xi(tk)−Xi,sp(tk)

)T
Qii

(
Xi(tk)−Xi,sp(tk)

)
+
(
Ui(tk)

− Ui,sp(tk)
)T

Rii

(
Ui(tk)− Ui,sp(tk)

)
(3.14f)

This reformulation provides the basis for the CDNMPC design. Note that the cost

function and constraints are separable by subsystem. Based on the separability of over-

all interaction error, the interaction constraint (3.14d) is relaxed by penalizing local

interactions error within the modified NMPC objective functions with a price vector p:
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min
X,Xa,U,V

JD =
m∑
i=1

JDi
(3.15a)

s.t. x̂i(tk+1|tk) = φi

(
x̂i(tk|tk), x̂Ai

(tk|tk), ûi(tk|tk), v̂i(tk|tk)
)

(3.15b)

x̂ai(tk+l+1|tk) = ḡi

(
x̂i(tk+l+1|tk), ûi(tk+l|tk)

)
(3.15c)

lbi ≤

⎡
⎢⎢⎢⎢⎣
Xi

Xai

Ui

⎤
⎥⎥⎥⎥⎦ ≤ ubi (3.15d)

where:

JDi
=
(
Xi(tk)−Xi,sp(tk)

)T
Qii

(
Xi(tk)−Xi,sp(tk)

)
+(

Ui(tk)− Ui,sp(tk)
)T

Rii

(
Ui(tk)− Ui,sp(tk)

)
+ pTΘi[Xi(tk), XAi

(tk), Ui(tk), Vi(tk)]
T

(3.15e)

The coordination level provides the optimum price vector for the local NMPC controllers

by solving the following maximization problem over the distributed objective function:

max
p

JD(X,Xa, U, V, p) (3.15f)

Remark 13 Define the decentralized NMPC as a control performance benchmark of the

CDNMPC trajectory (3.15) vs the centralized trajectory (3.7):
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min
X,Xa,U

JDC =
m∑
i=1

JDCi
(3.16a)

s.t. x̂i(tk+l+1|tk) = φi

(
x̂i(tk+l|tk), x̂ai(tk+l|tk), ûi(tk+l|tk), v̂i,ss

)
(3.16b)

x̂ai(tk+l+1|tk) = ḡi

(
x̂i(tk+l+1|tk), ûi(tk+l|tk)

)
(3.16c)

vi,ss = hi[xi,ss, xai,ss , ui,ss]
T (3.16d)

lbi ≤

⎡
⎢⎢⎢⎢⎣
Xi

Xai

Ui

⎤
⎥⎥⎥⎥⎦ ≤ ubi (3.16e)

where:

JDCi
=
(
Xi(tk)−Xi,sp(tk)

)T
Qii

(
Xi(tk)−Xi,sp(tk)

)
+(

Ui(tk)− Ui,sp(tk)
)T

Rii

(
Ui(tk)− Ui,sp(tk)

)
(3.16f)

and subscript ‘ss’ denotes the steady state value. The main feature of this formulation

is that the interaction information between sub-systems, namely vi,ss, is calculated at the

desired steady-state condition. Unlike the decentralized NMPC, in centralized NMPC, the

interaction information over the whole prediction horizon is available; but, in the CDN-

MPC formulation the interaction information is an optimization variable over the whole

prediction horizon. This would result in degradation of performance in the decentralized

NMPC vs the centralized NMPC. In this paper, it is supposed that this control scheme

exists in the plant and the CDNMPC strives to improve the performance of this controller

network. Note that, the CDNMPC system is supposed to perform, at least, better than

the decentralized NMPC and as close as possible to the centralized NMPC.
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The CDNMPC formulation (3.15) can be summarized as the following bi-level optimiza-

tion problem:

max
p

JD(Z, p) (3.17a)

min
Z

JD =
m∑
i=1

JDi
(Zi, p) (3.17b)

s.t. Geq
i (Zi) = 0 (3.17c)

Gi(Zi)
ineq ≤ 0 (3.17d)

where JDi
is reformulated as:

JDi
=

1

2
Zi(tk)

TΥiZi(tk) + ΨiZi(tk) + pTΘiZi(tk) (3.17e)

and Zi is defined as:

Zi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Xi

Xai

Ui

Vi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.17f)

Introducing non-negative slack vectors si for the inequality constraints of all subprob-

lems ‘i = 1, . . . ,m’, the associated Lagrangian functions Li can be formulated as:

Li = JDi
+ λeqT

i

(
Geq

i (Zi(tk))
)
+ λineqT

i

(
Gineq

i (Zi(tk)) + si
)

(3.18)
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The overall Lagrangian of the lower level problem can be written as:

L =
m∑
i=1

Li(Zi, p, λ
eq
i , λineq

i , si) (3.19)

Bi-level programming (BLP) problems with convex objective functions and con-

straints have been extensively discussed in [9, 29, 27]. There are several algorithms

for Nonlinear or non-convex BLP problems, under various assumptions [27]. Herskovits

et al. [46] proposed an algorithm for BLP problems with strictly convex lower level prob-

lems. In [5] the lower problem is allowed to have a nonlinear constraint, but it has to be

convex for fixed values of the upper-level variable; also, the upper-level problem and the

objective function of the lower-level problem are assumed to be convex. Colson et al. [26]

proposed a trust-region solution method for nonlinear BLPs by linear approximations of

the upper-level objective function and all constraints, as well as a quadratic approxima-

tion of the lower-level objective function. Clark et al. [24] proposed an active-set strategy

for nonlinear BLP problems.

In this work, an exact penalty method is deployed to solve the CDNMPC problem.

The lower-level problem is constructed by the distributed NMPCs and the upper-level

problem tries to minimize the overall interaction error (3.13). Here two assumptions on

the overall problem (3.17) are made:

Assumption 14 To guarantee that there is at least one solution to the Nonlinear BLP

problem (3.17), it is assumed that the feasible solution set of the lower-level problem based

on the price vector Ω(p) is nonempty, uniformly compact.

Assumption 15 For every local optimum of the lower-level problem in (3.17), there

exist a unique optimal price vector associated with the distributed NMPC network.

Additionally, consider the following set of assumptions on the lower-level problem for a
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fixed value of p to ensure the regularity of constraints holds at Z ∈ (Ω(p)) [11]:

Assumption 16 The strict complementarity slackness (SCS) property [11] holds at Z ∈
(Ω(p)) w.r.t. (λeq, λineq)3.

Assumption 17 The Mangasarian Fromowitz constraint qualification (MFCQ) [79] holds

at Z ∈ (Ω(p)) w.r.t. (λeq, λineq)4.

The BLP (3.17) is reduced into a single level optimization problem using the KKT

conditions of the lower-level problem, as constraints of the upper-level problem. From

Assumption 17, for a fixed value of p, every Z ∈ (Ω(p)) must satisfy the KKT conditions

of the lower-level problem:

∇Zi
Li = ΥiZi(tk) + ΨT

i +ΘT
i p+∇Geq

i (Zi(tk))λ
eq
i +Gineq

i (Zi(tk))λ
ineq
i = 0, (3.21a)

Geq
i (Zi) = 0, (3.21b)

Gineq
i (Zi) + si = 0, (3.21c)

sTi λ
ineq
i = 0, (3.21d)

si ≥ 0, λineq
i ≥ 0 (3.21e)

where si is a non-negative slack variable used to reformulate the inequalities into equal-

ity constraints as well as making the complementarity constraints linear. Furthermore,

according to Assumption 17 the Lagrange multipliers are bounded [11].

The resulting formulation of (3.17) can also be regarded as a mathematical program

3SCS means: for all λineq
i > 0, Gineq

i (Zi(tk))=0 must hold.
4MFCQ holds if there exists a feasible direction d such that:{

dT∇ZG
ineq
i (Zi(tk)) < 0, when Gineq

i (Zi(tk)) is active

dT∇ZG
eq
i (Zi(tk)) = 0

(3.20)

and elements of ∇ZG
eq
i (Zi(tk)) are linearly independent.
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with equilibrium constraints (MPEC):

min
p,Zi,si,λ

eq
i ,λineq

i

−JD(Z, p) (3.22a)

s.t. ∇Zi
Li(Zi, si) = 0, (3.22b)

Geq
i (Zi) = 0, (3.22c)

Gineq
i (Zi) + si = 0, (3.22d)

sTi λ
ineq
i = 0, (3.22e)

si ≥ 0, λineq
i ≥ 0 (3.22f)

This reformulation of the non-convex problem (3.17) is neither differentiable or regular

[18], instead the following perturbation of (3.17), for a given vector η = [ηi], is solved:

min
p,Zi,si,λ

eq
i ,λineq

i

−JD(Z, p) (3.23a)

s.t. ∇Zi
Li(Zi, si) = 0, (3.23b)

Geq
i (Zi) = 0, (3.23c)

Gineq
i (Zi) + si = 0, (3.23d)

sTi λ
ineq
i = η2i , (3.23e)

si ≥ 0, λineq
i ≥ 0 (3.23f)

Starting from a positive value for η, this produces a set of smooth trajectories toward η →
0 to find an approximate solution to (3.22), as stated in [52]. In this work, the nonlinear

program with complementary constraints (3.21) is smoothed using CHKS smoothing
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function [33] 5 Π defined as:

Π(a, b, η) = a+ b−
√
(a− b)2 + 4η2 (3.25)

Remark 18 For a given value of η ≥ 0, Π(si, λ
ineq
i , η) = 0 is equivalent to the following

condition:

siλ
ineq
i = η2i (3.26)

as long as si ≥ 0, λineq
i ≥ 0 hold.

Therefore, problem (3.23) is reformulated using the smoothing function (3.26) with

Π(si, λ
ineq
i , η) = 0 into the following single level optimization problem:

min
p,Zi,si,λ

eq
i ,λineq

i

−JD(Z, p) (3.27a)

s.t. ∇Zi
Li(Zi, si) = 0, (3.27b)

Geq
i (Zi) = 0, (3.27c)

Gineq
i (Zi) + si = 0, (3.27d)

Π(si, λ
ineq
i , η) = 0, (3.27e)

si ≥ 0, λineq
i ≥ 0 (3.27f)

Remark 19 For a fixed value of η, while SCS (Assumption 16) and MFCQ (Assumption

5As an alternative, a perturbed version of Fischer-Burmeister [37] can also be used :

Π(a, b, η) = a+ b−
√

a2 + b2 + 2η (3.24)



3.2: Proposed Coordination Algorithm 90

17) hold, problem (3.27) can overcome the difficulties in (3.22) due to smoothness and

regularity issues [11, 52], and paves the way to solve (3.22) using exact penalty methods.

In this study, a local optimal solution to the nonlinear problem (3.27) is found, such

that it is able to reduce the norm of the overall interaction error
∣∣∣∣E(tk)

∣∣∣∣, defined in

(3.13), within a sufficiently small predefined tolerance ε0. Such a constraint to is then

imposed into problem (3.27):

min
p,Zi,si,λ

eq
i ,λineq

i

−JD(Z, p) (3.28a)

s.t. ∇Zi
Li(Zi, si) = 0, (3.28b)

Geq
i (Zi) = 0, (3.28c)

Gineq
i (Zi) + si = 0, (3.28d)

Π(si, λ
ineq
i , η) = 0, (3.28e)

− si ≤ 0,−λineq
i ≤ 0 (3.28f)∣∣∣∣E(tk)

∣∣∣∣2 − ε20 ≤ 0 (3.28g)

Note that, the feasible region of the transformed single-layer problem (3.27) might be ex-

panded (compared to the original BLP problem) with stationary local optimum points of

the lower-level problem, due to the KKT transformation. By adding
∣∣∣∣E(tk)

∣∣∣∣2 − ε20 ≤ 0,

the local search domain is more restricted and the corresponding optimal solution per-

forms more efficient compared to the decentralized NMPC trajectory, since any feasible

solution satisfies a predefined upper bound on the norm of overall interaction error. More-

over, the added constraint, is convex 6 and smooth; thus, it does not affect uniqueness of

the solution.

6This constraint is convex since ∇Z

(∣∣∣∣E(tk)
∣∣∣∣2) = 2ΘT

(
ΘZ
)
and ∇2

Z,Z

(∣∣∣∣E(tk)
∣∣∣∣2) = 2ΘTΘ � 0 for

any Θ, which is the second-order condition qualification of convex functions [12].
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Theorem 20 For any value of η, consider that the solution to (3.28) belongs to the set

Sη. Then for every η̂ there exists a compact set C(η̂) such that Sη ⊆ C(η̂) holds for every
η ∈ (0, η̂].

Proof. According to Assumption 15, for every solution that belongs to Sη and η > 0,

there exist a unique bounded optimal price vector. Also, by the properties of the function

Π in (3.25), if a feasible solution is found w.r.t the lower-level constraints and the added

convex constraint
∣∣∣∣E(tk)

∣∣∣∣2 − ε20 ≤ 0, then it would belong to a compact set according

to Assumption 14.

As a result, since for the slack vector si = −Gineq
i (Zi) holds, si also belongs to a compact

set. Additionally, since MFCQ (Assumption 17) holds, the Lagrange multipliers λeq
i and

λineq
i would be bounded and belong to a compact set. This follows the conclusion that

Sη ⊆ C(η̂) holds for every η ∈ (0, η̂].

The conclusion of this section can be stated in Remark 21 on properties of the solution

set Sη at the current sampling time ‘tk’ for a given decreasing sequence of η starting from

η = 1.

Remark 21 According to Theorem 20 and Remark 19, the solution set Sη(tk) is a non-

empty and compact set for all values of 0 ≤ η ≤ 1 [33]. This produces a continuous

central path [33, 52] towards the solution of problem (3.22), as a function of the decreasing

sequence η starting from a value between (0, 1).

In this section, a trust-region exact penalty method is used to solve the smoothed series

of transformed CDNMPC problems (3.28), for a predefined decreasing sequence of η.

The method is called exact in the sense that, for a sufficiently large penalty parameter,

local solutions of the corresponding nonlinear programming problem converge to local

minimizers of a defined exact penalty function [38].
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In order to simplify the notation in (3.28), define the concatenated vectors of system

variables and Lagrange multipliers as: Z = [ZT
1 , . . . , Z

T
m]

T , S = [sT1 , . . . , s
T
m]

T , Λeq =

[λeqT

1 , . . . , λeqT

m ]T , Λineq = [λineqT

1 , . . . , λineqT

m ]T , and Y = [pT , ZT , ST ,ΛeqT ,ΛineqT ]T . Now,

the optimization problem (3.28) is presented in a simpler notation:

min
Y

F (Y, η) (3.29a)

s.t. Ceq(Y, η) = 0 (3.29b)

C ineq(Y, η) ≤ 0 (3.29c)

where:

F (Y, η) = − JD(Z, p) (3.29d)

Ceq
i (Y, η) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∇Zi
Li(Zi, si)

Geq
i (Zi)

Gineq
i (Zi) + si

Π(si, λ
ineq
i , η)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (3.29e)

Ceq(Y, η) = [CeqT

1 (Y ), . . . , CeqT

m (Y )]T , (3.29f)

and:

Cineq
i (Y, η) =

⎡
⎢⎣ −si

−λineq
i

⎤
⎥⎦ , (3.29g)

C ineq(Y, η) =
[
C ineqT

1 (Y ), . . . , CineqT

m (Y ),
∣∣∣∣E(tk)

∣∣∣∣2 − ε20

]T
(3.29h)

Lemma 22 Suppose Y ∗ is a KKT point of the NLP defined in (3.29), then there exists

μ∗ equal to the maximum Lagrange multiplier of (3.29) such that Y ∗ is a local minimizer
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of the exact penalty function Φ(Y, μ, η) [79], defined as:

Φ(Y, μ, η) = F (Y, η) + μ
(∣∣Ceq(Y, η)

∣∣
1
+max{0, Cineq(Y, η)}

)
(3.30)

or:

Y ∗ = argmin
Y

{
Φ(Y, μ, η)

}
, ∀μ ≥ μ∗ (3.31)

Define a model Φ̃(Y, μ, η) of Φ(Y, μ, η) that is constructed by quadratic approximation

of the objective function F , and affine approximations of constraints Ceq and C ineq:

Φ̃(dY , μ, η) = Fk +∇Y F
T
k dY +

1

2
dTYWkdY+

μ
(∣∣Ceq

k +∇YC
eqdY
∣∣
1
+max{0, Cineq

k +∇YC
ineq
k dY }

)
(3.32a)

where:

Fk = F (Yk, η) (3.32b)

∇Y Fk = ∇Y F (Yk, η) (3.32c)

Ceq
k = Ceq(YK , η) (3.32d)

∇YC
eq
k = ∇YC

eq(YK , η) (3.32e)

Cineq
k = C ineq(YK , η) (3.32f)

∇YC
ineq
k = ∇YC

ineq(YK , η) (3.32g)

dY = Y − Yk (3.32h)

Inside the model defined in (3.32), Wk is usually taken as a symmetric matrix that

contains the second derivative information of the objective function F and constraints
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Ceq and C ineq [79].

Remark 23 For the purpose of implementation, the idea of sequential convex program-

ming (SCP) [49, 30, 83] is followed. A convex quadratic approximation of F is then

used for the purpose of constructing the model Φ̃. Thus, Wk in (3.32) is the positive-

semidefinite part of ∇2
Y Y F

7 at iteration ‘tk’:

Wk = (∇2
Y Y F (Yk, η))+ (3.33)

Although the terminal quadratic convergence properties of SQP methods could be lost,

this convexification method is straightforward to implement and convex optimization tech-

niques can be applied to solve the iterative sub-problems [49]. If (∇2
Y Y F (Yk, η))+ = 0 the

approximation falls into the SLQP category discussed in [79].

The approximate formulation of the NLP defined in (3.31) can now be written as an

optimization problem using the penalty model (3.32) with a trust-region constraint on

Y :

min
dY

Φ̃(dY , μ, η), ∀μ ≥ μ∗ (3.34a)

s.t.
∣∣∣∣dY ∣∣∣∣∞ ≤ Δk (3.34b)

The constraint violations of optimization problem (3.34) can be written as:

E(dY , η) =
∣∣Ceq

k +∇YC
eqdY
∣∣
1
+max{0, Cineq

k +∇YC
ineq
k dY } (3.35)

7For the real symmetric matrix ∇2
Y Y F there exists an eigenvalue decomposition ∇2

Y Y F = ADAT .
ChangingD toD+ by replacing each negative eigenvalue with 0, the corresponding “positive-semidefinite
part” can be calculated by (∇2

Y Y F )+ = AD+A
T .
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Furthermore, the corresponding feasibility problem is formulated based on (3.35) as:

min
dY

E(dY , η) (3.36a)

s.t.
∣∣∣∣dY ∣∣∣∣∞ ≤ Δk (3.36b)

The objective function in (3.34) is still not smooth and linearization might lead to in-

feasibility. To overcome these problems and ensure the trust region constraint is always

satisfied, slack variables w1, w2 and w3 are introduced to solve an equivalent elastic-mode

problem [79]:

[dY,μ, w1,μ, w2,μ, w3,μ] = arg min
dY ,w1,w2,w3

{
Fk +∇Y F

T
k dY +

1

2
dTYWkdY

+ μ
(
1 · (w1 + w2) + 1 · w3

)}
(3.37a)

s.t. Ceq
k +∇YC

eqdY = w1 − w2 (3.37b)

C ineq
k +∇YC

ineq
k dY ≤ w3 (3.37c)

w1, w2, w3 ≥ 0 (3.37d)∣∣∣∣dY ∣∣∣∣∞ ≤ Δk (3.37e)

where: 1 represents a row vector defined as 1 = [1, · · · , 1]. Correspondingly, define the

elastic version of the feasibility problem (3.36) using slack variables w1, w2 and w3:

[dY,f , w1,f , w2,f , w3,f ] = arg min
dY ,w1,w2,w3

{
1 · (w1 + w2) + 1 · w3

}
(3.38a)

s.t. Ceq
k +∇YC

eqdY = w1 − w2 (3.38b)

C ineq
k +∇YC

ineq
k dY ≤ w3 (3.38c)

w1, w2, w3 ≥ 0 (3.38d)∣∣∣∣dY ∣∣∣∣∞ ≤ Δk (3.38e)
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It is crucial to update the penalty parameter ‘μ’ at each iteration of the algorithm since

‘μ∗’ is not known. The procedure to update ‘μ’, listed in Algorithm 6, is adapted from

with the termination tolerance criteria ‘ε > 0’. The importance of choosing a proper value

for μ is to avoid an unnecessary imbalance in the merit function and at the same time

being large enough to make sufficient progress in linearized feasibility at each iteration

[79].

Algorithm 6: Update procedure for penalty parameter μ

Input: Yk; penalty parameter μk−1; trust-region radius Δk; ε1, ε2 ∈ (0, 1);

Local NMPCs: Send Ceq
i , ∇YC

eq
i , C ineq

i , ∇YC
ineq
i to the coordinator;

Coordinator: Build Ceq, ∇YC
eq, C ineq, and ∇YC

ineq;

Coordinator - Local NMPCs: Compute dY,μ using (3.37) with μ = μk−1;

Coordinator: Compute E(dY,μ, η) using (3.32);

if E(dY,μ, η) = 0 then

μ = μk−1;

else

Coordinator - Local NMPCs: Compute dY,f using (3.38);

Coordinator: Compute E(dY,f , η) using (3.32);

if E(dY,f , η) = 0 then

Coordinator - Local NMPCs: Find μ > μk−1 such that: E(dY,μ, η) = 0;

else

Coordinator - Local NMPCs: Find μ ≥ μk−1 such that:

E(0, η)− E(dY,μ, η) ≥ ε1[E(0, η)− E(dY,f , η)];
Coordinator - Local NMPCs: Increase μ such that:

Φ̃(0, μ, η)− Φ̃(dY,μ, μ, η) ≥ ε2[E(0, η)− E(dY,μ, η)];
Output: μk = μ, Y = Yk + dY,μ;

Algorithms based on merit functions may fail to converge rapidly because they reject
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steps that make good progress toward a solution, known as the Maratos effect [65]. This

undesirable phenomenon, can also be avoided by occasionally accepting steps that a

decrease in the merit function is not observed. Second order correction [79] is one way to

overcome such a problem, in which a quadratic approximations is added to the equality

and inequality constraints in problems (3.37) and (3.38):

Ĉeq(Yk, η) = Ceq(Yk, η) +∇YC
eq(Yk, η)dY +

1

2
dTY∇2

Y YC
eq(Yk, η)dY (3.39a)

Ĉ ineq(Yk, η) = Cineq(Yk, η) +∇YC
ineq(Yk, η)dY +

1

2
dTY∇2

Y YC
ineq(Yk, η)dY (3.39b)

which yields:

[dY,μ, w1,μ, w2,μ, w3,μ] = arg min
dY ,w1,w2,w3

{
Fk +∇Y F

T
k dY +

1

2
dTYWkdY

+ μ
(
1 · (w1 + w2) + 1 · w3

)}
(3.40a)

s.t. Ĉeq(Yk, η) = w1 − w2 (3.40b)

Ĉ ineq(Yk, η) ≤ w3 (3.40c)

w1, w2, w3 ≥ 0 (3.40d)∣∣∣∣dY ∣∣∣∣∞ ≤ Δk (3.40e)

Note that this correction is applied when the increase in the merit function ‘Φ̃(dY , μ, η)’

is accompanied by an increase in the norm of the constraint violation criteria ‘h(dY , η)’.
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Algorithm 7: The trust-region algorithm for solving problem (3.29)

Input: Y0;μ0; Δ0; Δmin; iteration number k = 0; kmax; ε0, ε1, ε2 ∈ (0, 1);

βmin ∈ (0, 1); γsuccess ≥ 1; γfailure ∈ (0, 1);

while (Δk ≥ Δmin) and (k ≤ kmax) do

Local NMPCs: Send Ceq
i , ∇YC

eq
i , C ineq

i , ∇YC
ineq
i to the coordinator;

Coordinator: Build Ceq, ∇YC
eq, C ineq, and ∇YC

ineq;

Coordinator - Local NMPCs: Compute dY,μ using (3.37) with μk−1;

if (Φ̃(0, μ, η)− Φ̃(dY,μ, μ, η) ≥ 0) and (h(0, η)− h(dY,μ, η) ≥ 0) then

Local NMPCs: Send Ĉeq
i (Yk, η), ∇Y Ĉ

eq
i (Yk, η), Ĉ

ineq
i (Yk, η),

∇Y Ĉ
ineq
i (Yk, η) to the coordinator;

Coordinator: Build Ĉeq(Yk, η), ∇Y Ĉ
eq(Yk, η), Ĉ

ineq(Yk, η),

∇Y Ĉ
ineq(Yk, η);

Coordinator - Local NMPCs: Perform second-order correction:

compute dY,μ using (3.40) with μk−1;

Coordinator - Local NMPCs: Perform Algorithm 6 with

(Yk, μk−1,Δk, ε1, ε2): update μk, Yk ← Y ;

Coordinator: Calculate βk =
aredk
predk

=
Φ(0,μ,η)−Φ(dY,μ,μ,η)

Φ̃(0,μ,η)−Φ̃(dY,μ,μ,η)
;

if (βk > βmin) then

Coordinator - Local NMPCs: Yk+1 = Yk + dY,μ;

Coordinator: Δk+1 = γsuccessΔk;

else

Coordinator - Local NMPCs: Yk+1 = Yk;

Coordinator: Δk+1 = γfailureΔk;

Coordinator: k = k + 1;

Output: the optimum value of problem (3.29): Y ∗;

A trust-region method to solve the NLP (3.29) for a fixed value of η is given in Algorithm
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7 8. This procedure must be performed for any decreasing sequence of η
l
, namely from

a selected initial value of 0 ≤ η0 ≤ 1 until η
l
≤ ε (the termination tolerance), in order

to converge to the solution of the bi-level problem (3.17). The optimum value of this

procedure, illustrated in Algorithm 8, is denoted by Yopt = [pTopt, Z
T
opt, S

T
opt,Λ

eqT

opt ,Λ
ineqT

opt ]T .

Algorithm 8: The overall algorithm for single-level problem (3.22)

Initialization: η0 ∈ (0, 1), β ∈ (0, 1), Y0, Δ0, ε0 ∈ (0, 1), ε1 ∈ (0, 1), ε2 ∈ (0, 1),

βmin ∈ (0, 1), γsuccess ≥ 1, and γfailure ∈ (0, 1), initial penalty μ0, the minimum

trust region radius Δmin, iteration number k = 0, maximum iteration number

kmax, coordination cycle counter c = 0;

while (η0 ≥ ε) do

Coordinator - Local NMPCs: Perform Algorithm 7 with

(Y0, μ0,Δ0,Δmin, k, kmax, ε1, ε2, �, γ): update Y0 ← Y ∗;

ηc+1 = βηc;

c = c+ 1;

Output: the optimum value of problem (3.17): Yopt = Y0;

3.2.1 Convergence Analysis

For a fixed value of 0 < η < 1, trust-region Algorithm 7 can be regarded as a variant

of Sl1QP methods [38]. Global convergence of Sl1QP methods with the penalty update

procedure listed in Algorithm 6 have been studied in [13, 14]. Here, the following Lemma

is stated to describe the global convergence property of Sl1QP methods with finite number

of penalty updates, and a bounded value of penalty parameter μ:

Lemma 24 [13] Suppose for a fixed 0 < η < 1, Algorithm 7 is applied to (3.29) gen-

erates a bounded sequence of iterates. If penalty parameter μ is bounded, then there is a

8An active-set recognition phase via linear programming (LP) may also be added to this algorithm
as suggested by [14].
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solution point in the sequence of iterations which is either a KKT point of the nonlinear

program (3.29) or a critical point of the constraints violation h(dY , η) defined in (3.35).

Therefore, if Algorithm 7 produces a feasible solution, i.e., h(dY , η) = 0 or Yk + dY ∈ Sη,

then it follows from Lemma 24 that it converges to a KKT point of the nonlinear program

(3.29). Now, the global convergence of Algorithm 8 to a unique local optimal solution of

(3.17) is stated.

Theorem 25 Suppose SCS (Assumption 16) and MFCQ (Assumption 17) hold for the

lower-level CDNMPC problem (3.17). Consider the smoothed nonlinear approximation

of (3.17) defined in (3.29). Then:

(i) For 0 < η < 1, the penalty model optimization problem (3.32) or its equivalent

elastic-mode problem (3.37) has a unique solution.

(ii) For the sequence η → 0, Algorithm 8 is globally convergent to a unique local

optimal solution of (3.17).

Proof. (i) Suppose Assumptions 16 and 17 hold for the lower-level CDNMPC prob-

lem (3.17), and consider Lemma 24 and Theorem 20. Then, for a fixed 0 < η < 1 and

every feasible solution of (3.29), this problem is locally regular [33] and thus has a unique

local solution. Moreover, problem (3.37) can be reduced to an equivalent convex problem

(or it is convex by Remark 23). Therefore, problem (3.37) has a unique optimal solution,

because dY = 0 trivially satisfies
∣∣∣∣dY ∣∣∣∣∞ ≤ Δk, Yk + dY ∈ Sη and only a unique price

vector is associated with each local optimum (Assumption 15).

(ii) Consider Theorem 20 and the central path defined by Remark 21, then for any

value of the decreasing sequence η → 0, a bounded solution Yk + dY ∈ Sη can be found

such that forms a compact set and converges to a local optimal solution of problem

(3.22) [33] (or equivalently (3.17)). According to Lemma 24, the Sl1QP algorithm variant

(Algorithm 7) is globally convergent. This concludes global convergence of Algorithm 8
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to a unique local optimal solution of (3.17) with a unique value for the price vector

(Assumption 15) is guaranteed, under conditions stated in Theorem 25.

3.2.2 Stability Analysis

In this section, a stability criterion is stated without terminal costs or constraints for the

proposed CDNMPC scheme based on adaptive horizon techniques [80, 41, 42]. Here an

a posteriori algorithm [80], similar to section 3.1.3, is adapted to construct a dynamic

programming Lyapunov function for our CDNMPC problem.

Denote Zopt as the open-loop control solution of the CDNMPC problem, and the

receding horizon control (RHC) move as uopti,RHC
(N, xopti(n)). This move is calculated

by solving the problem (3.17) with prediction horizon length N and initial value xi(n).

Assuming that ε0 is chosen sufficiently small, define a dynamic programming value

function [80] for the CDNMPC scheme based on a predefined stage cost lD:

V D
N

(
x(n)
)
=

N−1∑
n=0

lD
(
xopt(n), uoptRHC

(N − n, x(n))
)

(3.41a)

where the stage cost of the centralized trajectory is defined as:

lD
(
xopt(n), uoptRHC

(N − n, x(n))
)
=
∑m

i=1

(
xopti(n)− xi,sp(tk)

)T
Qii(n)

(
xopti(n)− xi,sp(tk)

)

+
(
uopti,RHC

(N − n, xi(n))− ui,sp(tk)
)T

Rii(n)
(
uopti,RHC

(N − n, xi(n))− ui,sp(tk)
)

(3.41b)

Therefore, in order to calculate V D
N at the current sampling time tk, V

D
N

(
x(tk)
)
, a multi-

step calculation has to be performed forward in time. The procedure to calculate (3.41)

is listed in Algorithm 9:
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Algorithm 9: The algorithm to calculate the finite-time value function (3.41)

Initialization: prediction horizon N ; number of sub-systems m; initial state

xopt(n); Qii; Rii; V
D
N = 0;

for n := 0 to N − 1 do

Coordinator - Local NMPCs: Perform Algorithm 8 with N − n and initial

value xi(0) = xi,opt(n) ;

Coordinator - Local NMPCs: Update the RHC control action move

uoptRHC
(N − n, xopt(n));

Coordinator: Calculate lD
(
xopt(n), uoptRHC(N − n, x(n))

)
, and

V D
N = V D

N + lD
(
xopt(n), uoptRHC

(N − n, x(n))
)
using (3.41);

Local NMPCs: Apply uoptRHC
(N − n, x(n)) to the internal model;

Local NMPCs: Calculate xopt(n+ 1);

Output: the value function V D
N (x(n)) ← V D

N ;

Remark 26 Similar to Lemma 11, consider the individual distributed NMPC controllers

in the optimization problem (3.17) at sampling time tk, provided that the stage cost lD is

a positive definite function and ε0 is sufficiently small, if there exists a trajectory-based

α ∈ [0, 1] such that:

V D
N (x(tk))− V D

N (x(tk+1)) ≥ αlD
(
xopt(tk), uoptRHC

(N, x(tk))
)

(3.42)

then V D
N is a finite-time Lyapunov function for the CDNMPC system (3.17) and α is

a rough estimate of closed-loop sub-optimality degree w.r.t. the corresponding infinite

horizon plant-wide problem (3.17). Note that all NMPC controllers in (3.17) are assumed

to have the same number of prediction horizons as is dictated by the minimum required

horizon length to satisfy (3.42), namely α ≥ αmin ≥ 0.

Based on Remark 26, an a posteriori algorithm is presented to calculate the required
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horizon length of N that ensures closed-loop stability of the CDNMPC problem (3.17).

This procedure is explained in Algorithm 10:

Algorithm 10: A posteriori adaptive horizon algorithm for the CDNMPC scheme

Initialization: prediction horizon N ; number of sub-systems m; initial state

xopt(n); Qii; Rii;

Coordinator - Local NMPCs: Calculate V D
N (x(n)) using Algorithm 9 with(

N,m, xopt(n), Qii, Rii

)
;

Local NMPCs: Apply uoptRHC
(N, x(n)) to the internal model;

Local NMPCs: Calculate xopt(n+ 1);

Coordinator - Local NMPCs: Calculate V D
N (x(n+ 1)) using Algorithm 9 with(

N,m, xopt(n+ 1), Qii, Rii

)
;

if V D
N (x(n)) ≤ V D

N (x(n+ 1)) then

Local NMPCs: Prompt: Solution may be unstable;

else

Coordinator: Calculate α =
V D
N (x(n))−V D

N (x(n+1))

lD
(
xopt(n),uoptRHC

(N,x(n))
) ;

if α ≥ αmin then

Coordinator - Local NMPCs: Perform Algorithm 11;

else

Coordinator - Local NMPCs: Perform Algorithm 12;

Output: Yopt based on the accepted value of N ;

Similar to Section 3.1.3, if the calculated αN ≥ αmin the prediction horizon length

is decreased so that the minimum amount of prediction horizon, which satisfies this

condition, is found. This is usually denoted as the horizon shortening strategy, described

in Algorithm 11:
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Algorithm 11: Horizon Shortening Algorithm for the CDNMPC problem (3.17)

Initialization: αmin; prediction horizon N ; number of sub-systems m; initial

state xopt(n); Qii; Rii;

while N ≥ 2 do

Local NMPCs: Save the current trajectory of the open-loop system;

Local NMPCs: N = N − 1;

Coordinator - Local NMPCs: Calculate α =
V D
N (x(n))−V D

N (x(n+1))

lD
(
xopt(n),uRHC(N,x(n))

) with
(
N,m, xopt(n), Qii, Rii

)
;

Local NMPCs: Save the shortened horizon trajectory of the open-loop

system;

if α < αmin then

Local NMPCs: N = N + 1;

Local NMPCs: Restore the current stored trajectory of the open-loop

system;

STOP;

else

Local NMPCs: Save the shortened horizon trajectory as the current

trajectory;

Output: Current trajectory of the system, and N .

Conversely, if αN < αmin is increased the prediction horizon to find the minimum N

that satisfies αN ≥ αmin, described in algorithm 12:
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Algorithm 12: Horizon Prolongation Algorithm for the CDNMPC problem (3.17)

Initialization: αmin; prediction horizon N ; number of sub-systems m; initial

state xopt(n); Qii; Rii;

while α < αmin do

Local NMPCs: N = N + 1;

Coordinator - Local NMPCs: Calculate α =
V D
N (x(n))−V D

N (x(n+1))

lD
(
xopt(n),uRHC(N,x(n))

) with
(
N,m, xopt(n), Qii, Rii

)
;

Local NMPCs: Save the prolonged size trajectory as the current trajectory

of the open-loop system;

Output: Current trajectory of the system, and N.

3.2.3 The overall CDNMPC Algorithm

In this section, an overall summary of the CDNMPC algorithm, applied to the problem

(3.15), is presented. Based on this approach, the hierarchical dual decomposition of the

hypothetical centralized controller defined in (3.7) is related with the modification applied

to the corresponding existing network of local decentralized NMPC controllers. The

modification applied to the existing local NMPC controllers is equivalent to penalizing

the local versions of the overall interaction error vector using the price vector. The local

NMPC controllers formulate their own nonlinear programming problems and exchange

the local sensitivity information, as required, with the coordinator. A wrapper procedure,

Algorithm 10, is responsible to ensures stability of the closed-loop system by finding the

minimum required length of prediction horizon. Local NMPCs, then apply the receding

horizon control actions to the plant with the optimal variables. The overall algorithm of

the proposed CDNMPC scheme is given in Algorithm 13:
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Algorithm 13: The overall algorithm to solve the CDNMPC problem (3.15)

Initialization: number of sub-systems m, initial state x(tk), positive definite

matrix Q, positive definite matrix R, αmin ∈ (0, 1), initial prediction horizon N0,

initial penalty μ0, initial trust-region radius Δ0, the minimum trust region radius

Δmin, maximum iteration number kmax, ε0 ∈ (0, 1), β ∈ (0, 1), βmin ∈ (0, 1),

γsuccess ≥ 1, and γfailure ∈ (0, 1);

Coordinator-Local NMPCs: Perform Algorithm 8 with

(x(tk), η0 , μ0,Δ0,Δmin, kmax, ε0, β, βmin, γsuccess, γfailure) to calculate Yopt;

Coordinator-Local NMPCs: Perform Algorithm 10 with

(αmin, N0,m, x(tk), Q,R) to calculate N and update Yopt;

Local NMPCs: Calculate x(tk+1) by applying the RHC action to the plant;

Local NMPCs: Update N0 = N ;

Output: x(tk+1), and N;

3.3 Two-CSTR Process Case Study

In this section, the centralized NMPC scheme (3.7) and the CDNMPC scheme (3.17) are

implemented on a two continuous stirred tank reactor (CSTR) benchmark problem, which

was taken from [96]. The system is comprised of two non-isothermal reactive CSTRs with

interconnections and a recycle stream as depicted in Figure 3.2. The following set of

exothermic reactions take place in these reactors with substances A and B: (i) A
k1−→ B,

(ii) A
k2−→ UP , and (iii) A

k3−→ DP ; where UP and DP stand for the undesired product

and the desired product, respectively. As in Figure 3.2, CSTR I has two feed streams

(one has fresh stream of substance ‘A’ with molar concentration CA0, flow-rate F0 and

temperature T0, and the other streams is from the output of CSTR II containing the

recycle stream of unreacted substance A at flow-rate Fr, molar concentration CA2 and
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temperature T2 ) and CSTR II is fed from the output of CSTR I as well as another fresh

stream of substance A at flow-rate F3, molar concentration CA03, and temperature T03.

The two CSTRs are equipped with jackets to remove/provide heat, due to non-isothermal

nature of reactions. In [96], the following set of ODEs are developed for transient material

and energy balances:

dT1

dt
=

F0

V1

(
T0 − T1

)
+

Fr

V1

(
T2 − T1

)
+

3∑
i=1

Gi(T1)CA1 +
Q1

ρcpV1

(3.43a)

dCA1

dt
=

F0

V1

(
CA0 − CA1

)
+

Fr

V1

(
CA2 − CA1

)
+

3∑
i=1

Ri(T1)CA1 (3.43b)

dT2

dt
=

F1

V2

(
T1 − T2

)
+

F3

V2

(
T03 − T2

)
+

3∑
i=1

Gi(T2)CA2 +
Q2

ρcpV2

(3.43c)

dCA2

dt
=

F1

V2

(
CA1 − CA2

)
+

F3

V2

(
CA03 − CA2

)
+

3∑
i=1

Ri(T2)CA2 (3.43d)

where: Ri(Tj) = ki0e
− E

RTi and Gi(Tj) = −ΔHi

ρcp
Rj(Tj), Tj denote the temperature of

the reactor, CAj denotes the concentration of ‘A’, Qj denotes the rate of heat input to

the reactor, and Vj denotes the reactor volume, for j = 1, 2. In addition: Hi denotes

the enthalpies, ki denotes exponential coefficients and Ei denotes the activation energies

of the three reactions, for i = 1, 2, 3; cp is the heat capacity and ρ is the density of

fluid in the reactor. The values of model parameters are listed in Table 3.1 [96].

The open-loop system has three steady-states. Two of them are locally asymptotically

stable but one is unstable. The unstable steady state occurs at (T s
1 , C

s
A1, T

s
2 , C

s
A2)=

(457.9[K], 1.77[kmol/m3], 415.5[K], 1.75[kmol/m3]), for the plant with Q1 = Q2 = 0,

CA0 = Cs
A0, CA03 = Cs

A03 and a recycle ratio of r = 0.5. The control objective is to

stabilize the system around the open-loop unstable steady-state operating point. This

avoids high temperatures, while simultaneously achieving reasonable conversion. The

manipulated variables of the system are the heat input rates Q1 and Q2, and the inlet
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Parameter Value
F0 4.998 [m3/h]
F1 39.996 [m3/h]
F3 30.0 [m3/h]
Fr 34.998 [m3/h]
V1 1.0 [m3]
V2 3.0 [m3]
R 8.314 [kJ/kmolK]
T0 300 [K]
T03 300 [K]
Cs

A0 4.0 [kmol/m3]
Cs

A03 2.0 [kmol/m3]
ΔH1 −5.0× 104 [kJ/kmol]
ΔH2 −5.2× 104 [kJ/kmol]
ΔH3 −5.4× 104 [kJ/kmol]
k10 3.0× 106 [h−1]
k20 3.0× 105 [h−1]
k30 3.0× 105 [h−1]
E1 5.0× 104 [kJ/kmol]
E2 7.53× 104 [kJ/kmol]
E3 7.53× 104 [kJ/kmol]
ρ 1000.0 [kg/m3]
cp 0.231 [kJ/kgK]
T s
1 457.9 [K]

Cs
A1 1.77 [kmol/m3]

T s
2 415.5 [K]

Cs
A2 1.75 [kmol/m3]

Table 3.1: The Two-CSTR process parameters
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CSTR I

Coolant
out
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in

MPC I

F0, T0, CA0
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out
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Composition
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Temperature
sensor

F3, T03, CA03 F2, T2, CA2

Fr, T2, CA2

Coordinator

Figure 3.2: Schematic of the Two CSTR Case Study

concentrations CA0 and CA03.

The ODE system (3.43a) can be decomposed into two subsystems by defining in-

teraction variables v1 and v2 for sub-system I (containing CSTR I) and subsystem II

(containing CSTR II) as:

Sub-system I:

⎧⎪⎪⎨
⎪⎪⎩

dT1

dt
= F0

V1

(
T0 − T1

)
+ Fr

V1

(
v1,1 − T1

)
+
∑3

i=1 Gi(T1)CA1 +
Q1

ρcpV1

dCA1

dt
= F0

V1

(
CA0 − CA1

)
+ Fr

V1

(
v1,2 − CA1

)
+
∑3

i=1Ri(T1)CA1

(3.44a)

Sub-system II:

⎧⎪⎪⎨
⎪⎪⎩

dT2

dt
= F1

V2

(
v2,1 − T2

)
+ F3

V2

(
T03 − T2

)
+
∑3

i=1 Gi(T2)CA2 +
Q2

ρcpV2

dCA2

dt
= F1

V2

(
v2,2 − CA2

)
+ F3

V2

(
CA03 − CA2

)
+
∑3

i=1 Ri(T2)CA2

(3.44b)

where v1 and v2 replace informations of sub-systems II and sub-system I, respectively.
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To obtain the discretized model, the fifth order Radau IIA method is used, which allows

the internal coefficients of the IRK method be expressed in a Butcher’s tableau [44]:

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass

b1 · · · bs

(3.45a)

or:

4−√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225

4+
√
6

10
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225

1 16−√
6

36
16+

√
6

36
1
9

16−√
6

36
16+

√
6

36
1
9

(3.45b)

Note that, in this paper, the real-time solutions are obtained using ACADO toolkit [48].

The interaction error over a single prediction horizon, e(tk+l|tk), can be formulated

as:

e(tk+l|tk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1,1(tk+l|tk)− T2(tk+l|tk)
v1,2(tk+l|tk)− CA2(tk+l|tk)
v2,1(tk+l|tk)− T1(tk+l|tk)
v2,2(tk+l|tk)− CA1(tk+l|tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.46a)

= e1(tk+l|tk) + e2(tk+l|tk) (3.46b)
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1,1(tk+l|tk)
v1,2(tk+l|tk)
−T1(tk+l|tk)
−CA1(tk+l|tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−T2(tk+l|tk)
−CA2(tk+l|tk)
v2,1(tk+l|tk)
v2,2(tk+l|tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.46c)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1(tk+l|tk)
CA1(tk+l|tk)
Q1(tk+l|tk)
CA0(tk+l|tk)
v1,1(tk+l|tk)
v1,2(tk+l|tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T̄2(tk+l|tk)
C̄A2(tk+l|tk)
Q̄2(tk+l|tk)
C̄A03(tk+l|tk)
V2,1(tk+l|tk)
V2,2(tk+l|tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.46d)

According to (3.13), the overall interaction error (over the whole prediction horizon) can

be expressed, using (3.46), as:

E(tk) =
2∑

i=1

Ei(tk) (3.47a)
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= Θ1 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T̄1(tk)

C̄A1(tk)

Q̄1(tk)

C̄A0(tk)

V1,1(tk)

V1,2(tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+Θ2 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T̄2(tk)

C̄A2(tk)

Q̄2(tk)

C̄A03(tk)

V2,1(tk)

V2,2(tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.47b)

where, for example, T̄1 = [T̂ (tk+1|tk)T , · · · , T̂ (tk+N |tk)T ]T denotes the stacked vector of

predicted temperature profile T̂ in CSTR I, over the whole prediction horizon at sampling

time tk, i.e. T. Based on variable bounds and operating conditions of the system, the

open-loop model is scaled between 0.1 and 1 to simplify the procedure. The controller

parameters and the variable bounds of the these two sub-systems are listed in Table

3.2. Additionally, the CDNMPC algorithm is executed with η0 = 10−3; β = 0.5; penalty

parameter μ = 1; Δ0 = 10−2 the minimum trust region radius Δmin = 10−4; maximum

iteration number kmax = 20; termination tolerance ε = 10−12; βmin = 0.1; γsuccess = 1.1;

and γfailure = 0.5.

NMPC I NMPC II
Initial Conditions: x1(0) =

[
462.9[K], 0.27[kmol/m3]

]
x2(0) =

[
410.5[K], 3.45[kmol/m3]

]
Weighting Matrices: Q1 = 100I, R1 = I Q2 = 100I, R2 = I
Upper bounds: lbu1 =

[
5[kJ/hr], 8[kmol/m3]

]
lbu2 =

[
5[kJ/hr], 4[kmol/m3]

]
Lower Bounds: ubu1 =

[− 5[kJ/hr], 0[kmol/m3]
]

ubu2 =
[− 5[kJ/hr], 0[kmol/m3]

]
Sampling Period 0.003[s] 0.003[s]

Table 3.2: The Two-CSTR process variable bounds and controller parameters

The continuous-time open-loop system is discretized between two consecutive sam-

pling times via the Radau IIA IRK method. The MATLAB interface to ACADO

toolkit [48] is used to perform the discretization with 100 number of integration steps.

The optimization problems for the centralized NMPC (3.7) and CDNMPC (3.17) are
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implemented in MATLAB using YALMIP optimization interface [62]. IPOPT [6] is de-

ployed as the main optimization solver for our quadratic programming and nonlinear

programming sub-problems. The Intel(R) Math Kernel Library (MKL) is used for online

differentiation purposes. Simulations are performed on an intel core-i7 processor with 8

GB of memory under Microsoft Windows 7 operating system.

The adaptive horizon scheme for ensuring the stability of closed-loop systems defined

in this paper is tested for three values of αmin = 0.2, 0.4, and 0.7. The comparison

of the required number of predictions horizons (N) between the decentralized NMPC,

the centralized NMPC and the CDNMPC trajectories is depicted in Figure 3.3. This

comparison shows that, after a certain amount of simulation time, the three schemes

require roughly the same number of prediction horizons to ensure the stability; however

the decentralized NMPC schemes demands the highest number of prediction horizons,

specially during the first half of the simulation time. As expected from the CDNMPC

algorithm, this networked control system is acting similarly to an equivalent monolithic

centralized NMPC in terms of their stability criteria.

Based on the three sets of values for the parameter αmin, observe that a higher number

of prediction horizons is required as this parameter is increased. As discussed before,

there has to be a compromise between the expected performance of controllers and the

computational cost of using this adaptive scheme. Based on the simulation results,

αmin = 0.4 is a good choice between the three suggested values because the settling time

of the closed-loop systems is satisfactory and, at the same time, the profile of required ‘N ’

is smoother than αmin = 0.2 while not being as computationally expensive as αmin = 0.7.

The state and manipulated input trajectories of the three control scheme, for αmin =

0.4, are shown in Figures 3.4 and 3.5, respectively. In addition, the scaled overall objec-

tive functions of the three distributed control schemes JDC defined in (3.16), JC defined

in (3.7), and JD defined in (3.15) are compared in Figure 3.6. The mean square error
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(a) αmin = 0.2
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Figure 3.3: Comparison of number predictions horizons needed (N) between the Decen-
tralized NMPC, the Centralized NMPC and the CDNMPC trajectories
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(c) αmin = 0.7
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Figure 3.3: [continued] Comparison of number predictions horizons needed (N) between
the Decentralized NMPC, the Centralized NMPC and the CDNMPC trajectories

0 0.05 0.1 0.15 0.2 0.25 0.3
440

445

450

455

460

465

470

time [s]

T
1 [K

]

Decentralized NMPC

Centralized NMPC

CDNMPC

0 0.05 0.1 0.15 0.2 0.25 0.3
1.5

2

2.5

time [s]

C
A

1 [k
m

ol
e/

m
3 ]

Decentralized NMPC

Centralized NMPC

CDNMPC

0 0.05 0.1 0.15 0.2 0.25 0.3
410

415

420

time [s]

T
2 [K

]

Decentralized NMPC

Centralized NMPC

CDNMPC

0 0.05 0.1 0.15 0.2 0.25 0.3
1.2

1.6

2

2.2

time [s]

C
A

2 [k
m

ol
e/

m
3 ]

Decentralized NMPC

Centralized NMPC

CDNMPC

Figure 3.4: Comparison of state variables trajectories between the Decentralized NMPC,
the Centralized NMPC and the CDNMPC schemes
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Figure 3.5: Comparison of manipulated input variables trajectories between the Decen-
tralized NMPC, the Centralized NMPC and the CDNMPC schemes

between the objective function of the CDNMPC and the objective function of the cen-

tralized NMPC is at least four orders of magnitude smaller than that of the decentralized

NMPC. These show that the CDNMPC is capable of achieving performance equivalent

to a centralized NMPC. In the proposed approach, it improves the decentralized NMPC

scheme by reducing the number of required prediction horizons too ensure stability and

the overall performance of the system by converging to a trajectory equivalent to the

centralized NMPC trajectory for the plant.
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Figure 3.6: Comparison of the overall objective functions between the Decentralized
NMPC, the Centralized NMPC and the CDNMPC schemes

3.4 Conclusion

In this chapter, a price-driven coordination distributed NMPC scheme is proposed for

continuous-time nonlinear DAE systems. In such a scheme, the coordination level is de-

signed as an upper level optimization module and the local NMPC controllers construct

the lower level structure. The bi-level CDNMPC problem is relaxed into a series of

quadratic programming problems subject to a predefined trust-region radius. Sufficient

conditions for global convergence of the algorithm to a unique local solution are derived.

In addition, an adaptive prediction horizon selection algorithm is implemented at the

coordination level to ensure the finite-time closed-loop stability of entire plant w.r.t. the

infinite horizon optimality, when the overall interaction error is sufficiently small. Nev-

ertheless, the minimum required horizon length is a compromise between the associated

computational cost and achieving the performance of infinite horizon NMPC controllers

over the whole plant.



Chapter 4

A Bi-level Optimization Approach
To Price-driven Coordination of
Distributed Model Predictive
Control Systems

In this chapter, two algorithms are proposed to coordinate distributed model predictive

control (DMPC) systems. The main idea behind the coordinated distributed model pre-

dictive (CDMPC) is to improve the performance of an existing decentralized MPC system

with a minor modification applied to the network. The CDMPC problem can be inter-

preted as a bilevel optimization problem, which consists of modified local controllers and

a coordination level that ensures optimal centralized behavior of the plant. Modification

of the decentralized MPC controllers would be equivalent to relaxing local versions of the

overall interaction constraint using a price vector to penalize violations. The proposed

algorithms solve the CDMPC problem using the price-driven approach. The first algo-

rithm is an analytic approach that derives the solution to plant-wide problem in absence

of inequality constraints in local controllers. On the other hand, the second algorithm

is an iterative approach that determines a local optimal solution to the general CDMPC

problem via finding feasible directions for local variables and the price vector, in each iter-

ation. Unlike nested price-driven CDMPC approaches, the proposed CDMPC algorithms

118
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are globally convergent and are capable of stabilizing open-loop unstable dynamics. The

effectiveness of proposed algorithms is illustrated using two chemical process examples.

4.1 Introduction

Traditionally, centralized and decentralized control are the two primary frameworks for

the control of large-scale systems. While the decentralized control is easy to implement,

it may lead to degradation of plant-wide performance or even loss of closed-loop sta-

bility since in decentralized control the interactions between subsystems are in general

neglected. On the other hand, centralized control is expected to give the best perfor-

mance; however, it may become too complicated to implement as the size of the control

problem grows. These considerations motivate the significant efforts in the control of

large-scale systems. One important class of DMPC systems is called cooperative DMPC;

some of the important recent work in this category includes [84, 94], and Lyapunov-based

sequential DMPC (e.g., [61, 60]). Another important type of DMPC, pertaining to the

present work, is coordinated DMPC (CDMPC), which strives to reach the optimal plan-

wide performance by adding a coordination level to a currently installed decentralized

network.

In a CDMPC scheme, distributed MPCs communicate with a coordinator to achieve

improved performance. This problem can be interpreted as a bi-level programming (BLP)

problem, which consists of modified local controllers and a coordinator to ensure opti-

mal centralized plant behavior is achieved. Different algorithms have been developed for

CDMPC including price-driven approach (e.g., [20, 21, 76, 57]), primal decomposition

approach (e.g., [35, 25]), prediction-driven approach (e.g., [66, 76]), chanced-constrained

coordination method [76], and pseudo-model coordination approach [76]. The main dif-

ferences between these coordination methods are the ways that the interactions between
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the subsystems are addressed [76].

Usually, CDMPC schemes are solved using nested approaches, in which MPC con-

trollers solve their local problems for a fixed value of price and communications between

the local controllers and the coordinator are repeated until an optimal price is determined,

which coincides with the solution to the centralized problem. However, nested approaches

may exhibit convergence problems [76]. In this work, the price-driven CDMPC problem

is solved with a BLP approach to overcome such convergence problems. The two levels

of this BLP problem consist of the local MPC controllers as the lower-level problem and

the coordinator as the upper-level problem. In this scope, the lower-level problems are

convex for fixed values of the price vector. Several solution algorithms for BLP problems

with lower-level convex formulation have been proposed in [9, 29, 27]. These solution

methods can be categorized as: enumeration (branch-and-bound), evolutionary-based,

penalty-based, and descent feasible direction methods.

In the branch-and-bound approach, the lower-level problem is replaced by the equiv-

alent Karush Kuhn-Tucker (KKT) system. This is the idea used in the approaches of

Edmunds and Bard [32], Al-Khayyal et al. [4] and more recently Thoai et al. [97]. Sim-

ilarly, in evolutionary methods, the bi-level problem is transformed into a single level

non-convex problem and then, several evolutionary heuristic methods such as genetic

algorithm [9] are applied to find a global optimum. The penalty method category also

attempts to compute stationary point and local optimal solutions to nonlinear BLP prob-

lems [1, 2, 92, 24].

Descent approaches, on the other hand, attempt to find local optima of the BLP

problems by defining an implicit relation between the lower-level variable(s) as a function

of upper-level variable(s). In this method, it is assumed that the there is a unique upper-

level variable for the optimal solution of the lower-level problem. The major issue is to

find a decreasing feasible direction, based on the gradient of the upper-level objective
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function. Several approximations of the gradient information are proposed by Kolstad

and Lasdon [54] and Savard and Gauvin [87]. In this category, Falk and Liu [34] presented

a bundle method where the decrease of the upper-level objective is adapted according to

sub-gradient information of the lower-level problem.

In this chapter, two different scenarios of CDMPC problem are considered. In the

first scenario, where all of the constraints are active at all times, an analytic method is

presented. Accordingly, a closed-form solution is derived for the price vector and local

variables which exactly leads to the corresponding optimal centralized solution. In the

second scenario, an iterative approach is suggested based on finding a descent feasible

direction to solve the general CDMPC problem with inequality constraints in the local

controllers. For both of the scenarios, it is assumed that an implicit relation exists

between the variables of local MPCs and variables belonging to the coordinator, namely

the price vector. In addition, global convergence and closed-loop stability of the proposed

schemes are proved. Performance of the proposed CDMPC algorithms is illustrated via

the applications to a forced-circulation evaporation process and a two-CSTR process.

4.2 Preliminaries

In this work, the entire plant is considered to be composed of m interconnected subsys-

tems with the following state-space representation:

ẋ(t) = Ψcx(t) + Γcu(t) (4.1)

where x = [xT
1 · · · xT

i · · · xT
m]

T ∈ Rnx denotes the vector of state variables, and u =

[uT
1 · · · uT

i · · · uT
m]

T ∈ Rnu is the vector of manipulated input variables. Then, Ψc and Γc
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are state and input coefficient matrices, defined as:

Ψc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψc11 · · · Ψc1j · · · Ψc1m

...
. . .

...

Ψci1 · · · Ψcii · · · Ψcim

...
. . .

...

Ψcm1 · · · Ψcmi
· · · Ψcmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Γc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γc11 · · · Γc1j · · · Γc1m

...
. . .

...

Γci1 · · · Γcii · · · Γcim

...
. . .

...

Γcm1 · · · Γcmi
· · · Γcmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

In this model, the subsystems are interconnected through states and manipulated input

variables, (i.e., the manipulated variable of one sub-system might affect other sub-systems

as an internal variable within the models). In addition, it is assumed that xi and ui belong

to a local set of convex constraints Ci defined as follows:

Ci � {(xi, ui) ∈ R
nxi × R

nui |gi(xi, ui) ≤ 0} (4.3)

for i = 1, . . . ,m and gi is the vector of convex functions that contains mixed constraints,

and bounds over local states and manipulated input variables of sub-systems. For the

purpose of control, the continuous-time system (4.1) is exactly discretized, with sampling

time T , to form the following discrete-time model:

x(k + 1) = Ψx(k) + Γu(k) (4.4a)
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where:

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ11 · · · Ψ1j · · · Ψ1m

...
. . .

...

Ψi1 · · · Ψii · · · Ψim

...
. . .

...

Ψm1 · · · Ψmi · · · Ψmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 · · · Γ1j · · · Γ1m

...
. . .

...

Γi1 · · · Γii · · · Γim

...
. . .

...

Γm1 · · · Γmi · · · Γmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.4b)

In the rest of this section, two common optimal control strategies to design a monolithic

controller based on the discretized model (4.4a) are compared.

4.2.1 Optimal Control via Linear Quadratic Regulator

In practice, linear quadratic regulator (LQR) is used to obtain the optimal control tra-

jectory of linear state-space systems when only active inequality constraint are present,

e.g. the optimal control problem is only subject to the state-space constraints. Consider

the discrete-time system (4.4a), the LQR cost function can be defined as:

JLQR =
1

2

NLQR−1∑
k=0

(
x(k)TQLQRx(k) + u(k)TRLQRu(k)

)
+

1

2
x(NLQR)

T P̄LQRx(NLQR)

(4.5)

where: NLQR denotes the final time; QLQR is a positive-semi-definite weighting matrix

for the states; P̄LQR is a positive-semi-definite weighting matrix for the final states; and

RLQR is a positive-definite weighting matrix for the manipulated input variables.
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Note that, this optimal control problem is convex 1, and the closed-form solution can

be derived analytically. With the state-space equation (4.4a) and the cost function (4.5),

the Hamiltonian can be defined as:

HLQR

(
x(k), u(k), λ(k+1)

)
=

1

2

(
x(k)TQLQRx(k)+u(k)TRLQRu(k)

)
+λ(k+1)T

(
Ψx(k)+Γu(k)

)
(4.7)

where: λ is the vector of Lagrange multipliers. The stationary solution of the LQR

problem gives:

∂HLQR

(
x(k), u(k), λ(k + 1)

)
∂u(k)

= RLQRu(k) + ΓTλ(k + 1) = 0 (4.8)

Based on (4.8), the control action is given by:

u(k) = −R−1
LQRΓ

Tλ(k + 1) (4.9)

Therefore, the closed-loop system can be derived as:

x(k + 1) = Ψx(k)− ΓR−1
LQRΓ

Tλ(k + 1) (4.10)

In addition, the co-state relation [45] gives the current value of λ(k) as a function of

1A convex optimization problem is of the form [12]:

min
x

f0(x) (4.6a)

s.t. fi(x) ≤ 0 (4.6b)

axi = bi (4.6c)

where: fi={0,··· ,m} are convex functions, i.e. for ∀x1, x2 ∈ dom(fi), ∀θ ∈ (0, 1) : θfi(x1)+(1−θ)fi(x2) ≥
fi(θx1 + (1− θ)x2).
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λ(k + 1):

λ(k) =
∂HLQR

(
x(k), u(k), λ(k + 1)

)
∂x(k)

= QLQRx(k) + ΨTλ(k + 1) (4.11)

In this formulation, it is assumed that there exists a vector PLQR such that λ(k) =

PLQR(k)x(k). This can be used to rewrite equations (4.10) and (4.11) as:

x(k + 1) = Ψx(k)− ΓR−1
LQRΓ

TPLQR(k + 1)x(k + 1) (4.12a)

PLQR(k)x(k) = QLQRx(k) + ΨTPLQR(k + 1)x(k + 1) (4.12b)

Solving (4.12a) for x(k + 1), and replacing x(k + 1) in (4.12b), the following is obtained

for PLQR:

PLQR(k)x(k) = QLQRx(k) + ΨTPLQR(k + 1)
(
I + ΓR−1

LQRΓ
TPLQR(k + 1)

)−1

Ψx(k)

(4.13)

If relation (4.13) holds for all values of x(k), the discrete-time Ricatti equation relates

two consecutive values of PLQR as:

PLQR(k) = QLQR +ΨTPLQR(k + 1)
(
I + ΓR−1

LQRΓ
TPLQR(k + 1)

)−1

Ψ (4.14)

or in a more compact form as:

PLQR(k) = QLQR +ΨTPLQR(k + 1)Ψ−

ΨTPLQR(k + 1)Γ[RLQR + ΓTPLQR(k + 1)Γ]−1ΓTPLQR(k + 1)Ψ (4.15)

Then, the quadratic Ricatti equation (4.15) is solved for PLQR, backwards in time from
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sampling time NLQR [45]. In addition, the boundary conditions of the LQR problem at

final time NLQR are:

λ(NLQR) = P̄LQRx(NLQR) (4.16a)

PLQR(NLQR) = P̄LQR (4.16b)

Control action can be written as:

u(k) = −R−1
LQRΓ

TPLQR(k + 1)x(k + 1)

= −R−1
LQRΓ

TPLQR(k + 1)
(
Ψx(k) + Γu(k)

)
(4.17)

Solving for u(k), the control action can be written in a state feedback format:

u(k) = −
(
I +R−1

LQRΓ
TPLQR(k + 1)Γ

)−1

R−1
LQRΓ

TPLQR(k + 1)Ψx(k)

= −
(
RLQR + ΓTPLQR(k + 1)Γ

)−1

ΓTPLQR(k + 1)Ψx(k)

= −KLQR(k)x(k) (4.18)

where KLQR(k) is the LQR gain at time k.

In order to show the discrete-time LQR is stable, consider the cadidate Lyapunov

function VLQR(x) = x(k)TP (k)x(k) > 0. Then, the difference form is given by:

ΔVLQR(x) = x(k + 1)TP (k + 1)x(k + 1)− x(k)TP (k)x(k) (4.19a)

Substituting the relation obtained for KLQR(k) from (4.18) into the Ricatti equation
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(4.15), the following holds true [28]:

P (k) = ΨTP (k + 1)Ψ−ΨTP (k + 1)ΓKLQR(k) +QLQR (4.19b)

P (k) = [Ψ− ΓKLQR]
TP (k + 1)[Ψ− ΓKLQR] +KT

LQRRLQRKLQR +QLQR (4.19c)

Furthermore, substituting x(k + 1) = Ψx(k) − ΓKLQR(k)x(k) and (4.19b) into (4.19a)

gives [28]:

ΔVLQR(x) = −x(k)T [KLQR(k)
TRLQRKLQR(k) +QLQR]x(k) (4.19d)

Since RLQR is positive definite and QLQR is positive semi-definite ΔVLQR(x) ≤ 0; thus,

VLQR(x) is the Lyapunov function of the LQR problem and the closed-loop system is

stable.

4.2.2 Optimal Control via Model Predictive Control

Unlike the LQR methodology, MPC can be used to obtain the optimal control trajectory

of linear state-space systems subject to active and inactive inequality constraint. The

finite-time centralized MPC formulation, at time instant tk, can be defined as:

min
X,U

JC =
1

2

(
(X(k)−Xset)

TQ(X(k)−Xset) + U(k)TRU(k)
)

(4.20a)

s.t. x̂(k + l + 1|k) = Ψx̂(k + l|k) + Γû(k + l|k), (4.20b)

(x̂i, ûi) ∈ Ci (4.20c)
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for l = 0, · · · , N − 1 with N being the prediction horizon 2, and x̂ and û are states and

manipulated input variables inside the controller, respectively. Additionally: X(k) =

[x̂(k + 1|k)T , · · · , x̂(k + N |k)T ]T is the vector of the predicted state trajectory; U(k) =

[û(k|k)T , · · · , û(k + N − 1|k)T ]T is the vector of the calculated manipulated variable

moves; Q is a positive-definite block-diagonal weighting matrix for the states (i.e., Q =

diag{Qii}); and R is a positive-definite block-diagonal weighting matrix for the ma-

nipulated variables of the overall system (i.e., R = diag{Rii}). The states of the m

subsystems, xi (i = 1, . . . ,m), are assumed to be sampled synchronously at time instants

tk = kΔt (with k = 0, 1, . . .). Note that in the remainder of this chapter, k is used to

denote tk in the discrete-time model. Then, in the current sampled-data system, control

actions are calculated using the discrete-time model (4.4a) and these actions are applied

to the continuous plant (4.1).

Throughout this chapter, MPC is used to provide a unified approach to obtain the

optimal trajectory benchmark for the CDMPC scheme. This method uses conventional

optimization approaches, such as interior-point method, to solve large-scale optimal con-

trol problems; so that, it does not require to solve a Ricatti equation backward in time.

In addition, this approach is capable of solving optimal control problems subject to ac-

tive/inactive inequality constraints efficiently. In this work, closed-loop stability of the

MPC scheme is ensured via an adaptive horizon scheme, described in Section 4.5. This

can also be extended to the CDMPC problem without reformulation of the plant-wide

problem, i.e. it does not require addition of terminal costs or terminal constraints to the

original MPC problem (4.20).

2In this chapter, for the sake of simplicity, it is assumed the control horizon and the prediction horizon
of the system are the same. Although it might lead to a higher computation load, longer control horizons
can improve the performance and compensate for package dropouts in networked control systems [80]
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4.2.3 Distributed MPC Formulation

Local MPCs are formulated based on local discretized model of the plant and the calcu-

lated control actions are applied to the continuous subsystems. Specifically, for subsystem

i, i = 1, . . . ,m, the prediction model used in the formulation of the subsystem MPC at

time instant k takes the following form:

x̂i(k + l + 1|k) = Ψiix̂i(k + l|k) + Γiiûi(k + l|k) +
∑
j �=i

(1− β)Ψijx̂j(k|k) + v̂i(k + l|k)

(4.21a)

x̂i(k|k) = xi(k) (4.21b)

with:

β =

⎧⎪⎪⎨
⎪⎪⎩
0 l = 0

1 l = 1, · · · , N − 1

(4.21c)

for l = 0, · · · , N −1. In addition, Ψii and Γii are matrices corresponding to sub-system i,

and v̂i is defined as the interacting or linking variable that contains unknown interaction

information between different subsystems. Note that v̂i characterizes the interaction of

subsystem i with other subsystems. To proceed, define ei as follows:

ei(k + l|k) � v̂i(k + l|k)−
m∑
j �=i

(
βΨijx̂j(k + l|k) + Γijûj(k + l|k)) (4.22)

The vector ei(k+ l|k) denotes the difference between the interaction of subsystem i with

the other subsystems as captured by the plant-wide model and the interaction charac-

terized by v̂i. A specific objective of the coordinator is to find a price for subsystem i

such that the interaction term v̂i determined by the price renders ei(k + l|k) = 0. This
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will ensure that the CDMPC approaches the performance of the corresponding central-

ized MPC. The overall interaction error over the prediction horizon can be described as

follows:

E(k|k) �

⎡
⎢⎢⎢⎢⎣
E1(k|k)

...

Em(k|k)

⎤
⎥⎥⎥⎥⎦ (4.23a)

where:

Ei(k|k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ei(k|k)
ei(k + 1|k)

...

ei(k +N − 1|k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.23b)

Based on (4.22), E(k|k) can be written as a separable additive form:

E(k|k) =
m∑
i=1

Θi(k)

⎡
⎢⎢⎢⎢⎣
Xi(k)

Ui(k)

Vi(k)

⎤
⎥⎥⎥⎥⎦ (4.24)

where: Xi(k) = [x̂i(k + 1|k)T , · · · , x̂i(k + N |k)T ]T is the vector of the predicted state

trajectory; Ui(k) = [ûi(k|k)T , · · · , ûi(k + N − 1|k)T ]T is the vector of the calculated

manipulated variable moves; and Vi(k) = [v̂i(k|k)T , · · · , v̂i(k +N − 1|k)T ]T is the vector

of predicted linking variables for subsystem i. In (4.24), Θi(k) is the coefficient matrix

for the linking constraints that is defined as:

Θi(k) =

[
θT1,i, · · · , θTi,i, · · · , θTm,i

]T
(4.25a)
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where:

θj,i =

⎧⎪⎪⎨
⎪⎪⎩
[
0Nnxi×Nnxi

, 0Nnxi×Nnui
,−I
]

for j = i

[
θΨj,i

, θΓj,i
, 0Nnxj×Nnxi

]
for j �= i

(4.25b)

with 0 denoting zero matrices of appropriate dimensions, I being an identity matrix of

size Nnxi
×Nnxi

, as well as θΨj,i
and θΓj,i

being Nnxj
×Nnxi

and Nnxj
×Nnui

matrices,

respectively:

θΨj,i
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

Ψji 0 · · · 0

0
. . . . . .

...

0 0 Ψji 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4.25c)

θΓj,i
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Γji 0 · · · 0

0 Γji
. . .

...

...
. . . . . . 0

0 · · · 0 Γji

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.25d)

Matrix Θi can be written in terms of an augmented matrix of coefficients for Xi, Ui, and

Vi as follows:

Θi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θΨ1,i
θΓ1,i

0

...
...

...

0Nnxi×Nnxi
0Nnxi×Nnui

−INnxi×Nnxi

...
...

...

θΨm,i
GΓm,i

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.26a)

or:

Θi = [ΘXi
,ΘUi

,ΘVi
] (4.26b)
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Therefore, the centralized MPC problem (4.20) can be reformulated as the following

overall plant-wide MPC formulation:

min
X,U,V

JP =
m∑
i=1

JPi
(4.27a)

s.t. x̂i(k + l + 1|k) =Ψiix̂i(k + l|k) + Γiiûi(k + l|k) +
∑
j �=i

(1− β)Ψijx̂j(k|k) + v̂i(k + l|k)

(4.27b)

gi(x̂i(k + l|k), ûi(k + l|k)) ≤ 0 (4.27c)

m∑
i=1

Θi

⎡
⎢⎢⎢⎢⎣
Xi(k)

Ui(k)

Vi(k)

⎤
⎥⎥⎥⎥⎦ = 0 (4.27d)

where:

JPi
=

1

2

(
(Xi(k)−Xi,set)

TQii(Xi(k)−Xi,set) + Ui(k)
TRiiUi(k)

)
(4.27e)

for l = 0, . . . , N−1. Optimization problem (4.27) provides the basics for the formulation

of the subsystem MPCs and the coordinator. Note that the cost function and constraints

are separable with respect to the subsystems.

Remark 27 The decentralized scheme in general ignores the interactions between sub-

systems, and the overall decentralized MPC problem is defined as:

min
X,U,V

JDC =
m∑
i=1

JDCi
(4.28a)

s.t. x̂i(k + l + 1|k) =Ψiix̂i(k + l|k) + Γiiûi(k + l|k) (4.28b)

gi(x̂i(k + l|k), ûi(k + l|k)) ≤ 0 (4.28c)
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where:

JDCi
=

1

2

(
(Xi(k)−Xi,set)

TQii(Xi(k)−Xi,set) + Ui(k)
TRiiUi(k)

)
(4.28d)

for l = 0, . . . , N − 1, with JDC being the overall objective function of the decentralized

MPC problem.

4.3 Coordination Algorithm I: Equality Constraints

In this section, an analytic CDMPC algorithm is presented for linear systems. A schematic

of the proposed CDMPC is shown in Fig. 4.1. In the proposed formulation, a local MPC

is formulated for each subsystem and a coordinator coordinates the actions of the sub-

system MPCs. The coordinator calculates the optimal price vector analytically for the

subsystem MPCs to coordinate their actions for improved performance. Each subsystem

MPC calculates control inputs minimizing a local cost function based on subsystem state

measurements and the price received from the coordinator.

CDMPC Coordinator

MPC 1 MPC 2 MPC m

Subsystem 1 Subsystem i Subsystem m

p )(1 pZ p )(pZi p )(pZm

Figure 4.1: Architecture and information flow of the proposed CDMPC.

The idea is to relax constraint (4.27d), which characterizes the interactions, via a

price vector so that it is also separable in terms of subsystems. Specifically, the equivalent
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overall problem is formulated as follows:

min
X,U,V

JD =
m∑
i=1

JDi
(4.29a)

s.t. x̂i(k + l + 1|k) =Ψiix̂i(k + l|k) + Γiiûi(k + l|k) +
∑
j �=i

(1− β)Ψijx̂j(k|k) + v̂i(k + l|k)

(4.29b)

where:

JDi
=
1

2

(
(Xi(k)−Xi,set)

TQii(Xi(k)−Xi,set) + Ui(k)
TRiiUi(k)

)
+ pTΘi

⎡
⎢⎢⎢⎢⎣
Xi(k)

Ui(k)

Vi(k)

⎤
⎥⎥⎥⎥⎦

(4.29c)

for l = 0, . . . , N − 1. In the separable optimization problem (4.29), p is a price vec-

tor calculated by the coordinator to provide the plant-wide solution for the distributed

system. In (4.29), the price vector p can be considered to be the Lagrange multiplier

associated with interaction equality constraints. In order to find a plant-wide solution to

the distributed system, the bilevel optimization problem (4.30) is defined as:

min
p

− JD(p, Z̄
∗) (4.30a)

Z̄∗ = argmin{JD =
m∑
i=1

J̄Di
} (4.30b)

s.t. AiZ̄i(k) = bi (4.30c)
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where:

Z̄i =

⎡
⎢⎢⎢⎢⎣
Xi(k)

Ui(k)

Vi(k)

⎤
⎥⎥⎥⎥⎦ , (4.30d)

Ai = [AXi
, AUi

, AVi
], (4.30e)

AXi
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Inxi
0 · · · 0

−Ψii Inxi
· · · 0

0
. . . . . .

...

0 0 −Ψii Inxi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4.30f)

AUi
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Γii 0 · · · 0

0 −Γii
. . .

...

...
. . . . . . 0

0 · · · 0 −Γii

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4.30g)

AVi
= INnxi×Nnxi

(4.30h)

bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑
j �=i(1− β)Ψijx̂j(k)

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.30i)

In the bi-level optimization problem (4.30), the lower-level problem represents the

distributed network of MPC controllers and the upper-level unconstrained optimization

problem is handled by the coordinator. The Lagrange function of the lower-level problem
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can be written as follows:

L =
1

2

⎡
⎢⎣X
U

⎤
⎥⎦

T ⎡
⎢⎣Q 0

0 R

⎤
⎥⎦
⎡
⎢⎣X
U

⎤
⎥⎦− [XT

spQ, 0]

⎡
⎢⎣X
U

⎤
⎥⎦+ pT [ΘX ,ΘU ]

⎡
⎢⎣X
U

⎤
⎥⎦

+ pTΘV V + νT [AX , AU ]

⎡
⎢⎣X
U

⎤
⎥⎦+ νTAV V − νT b (4.31)

The KKT conditions of the lower problem can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QX −QXsp +ΘT
Xp+ AT

Xν = 0

RU +ΘT
Up+ AT

Uν = 0

−p+ ν = 0

AXX + AUU + V − b = 0

(4.32)

which includes the following relations for ν and V :

ν = p (4.33a)

V = b− (AXX + AUU) (4.33b)

Then, the Lagrange function of the lower-level problem can be stated as:

L(Z̄) = L(Z) = LZ + pTLp (4.34a)

where:

LZ =
1

2
ZTΥZ − [XT

spQ, 0]Z (4.34b)

Lp =[ΘX + AX ,ΘU + AU ]Z − b (4.34c)
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Υ =

⎡
⎢⎣Q 0

0 R

⎤
⎥⎦ (4.34d)

Z =

⎡
⎢⎣X
U

⎤
⎥⎦ (4.34e)

The KKT conditions of the lower problem can be written as:

∇ZL =
dLZ

dZ
+ pT

dLp

dZ
= 0 (4.35a)

[AX , AU ]Z + V − b = 0 (4.35b)

Then, the bi-level problem (4.30) can be written as a single layer optimization problem

as:

min
p,Z

− JD(p, Z) (4.36a)

∇ZL =
dLZ

dZ
+ pT

dLp

dZ
= 0 (4.36b)

[AX , AU ]Z + V − b = 0 (4.36c)

Solving for Z and V , the closed-loop solution of the lower problem w.r.t. the current

value of the price vector, provided by the coordinator is:

Z∗(k; p) =Υ−1
(⎡⎢⎣QXsp

0

⎤
⎥⎦− [ΘX + AX ,ΘU + AU ]

Tp
)

=

⎡
⎢⎣Xsp

0

⎤
⎥⎦−

⎡
⎢⎣−Q−1

(
ΘX + AX

)T
−R−1

(
ΘU + AU

)T
⎤
⎥⎦ p (4.37a)

V ∗(k; p) =b− [AX , AU ]Z
∗(k; p) (4.37b)
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The following theorem, expresses the nature of the closed form solution (4.37a) as a

predictor-corrector term.

Theorem 28 The closed-loop solution Z∗(p) can be written in predictor-corrector form

around the non-coordinated trajectory, namely “p = 0”:

Z∗(k; p) =Zpredictor + Zcorrectorp = Z(k; 0) +
dZ

dpT
|p=0p (4.38)

Proof. The non-coordinated trajectory is derived directly from KKT conditions (4.35)

by taking “p = 0”:

∇ZL(0) = LZ

dZ
= 0 (4.39a)

Then it can be shown that:

ΥZ(k; 0)− [XT
spQ, 0]T = 0 (4.39b)

which implies:

Z(0) =Υ−1
(⎡⎢⎣QXsp

0

⎤
⎥⎦) (4.39c)

=

⎡
⎢⎣Xsp

0

⎤
⎥⎦ (4.39d)

In order to find dZ
dpT

, ∇Z,pL is calculated:
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∇Z,pL =
d

dp

(dLZ

dZ
+

dLT
p

dZ
p
)

=
dZT

dp

( d2LZ

dZTdZ
+ pT

d2Lp

dZTdZ

)
+

dLp

dZT

=0 (4.40a)

Thus, dZ
dpT

can be written as:

( dZ
dpT

)T
=− dLp

dZT

( d2LZ

dZTdZ
+ pT

d2Lp

dZTdZ

)−1

(4.40b)

and:

dZ

dpT
|p=0 = −

⎡
⎢⎣−Q−1

(
ΘX + AX

)T
−R−1

(
ΘU + AU

)T
⎤
⎥⎦ (4.40c)

Parametrizing Z∗ as a function of the price vector p and V ∗ as a function of Z∗,

using (4.37a) and (4.37b), the single layer optimization (4.36) can be converted into an

unconstrained optimization problem with respect to the price vector as:

min
p

− JD(p, Z
∗(k; p)) (4.41)

Similar to (4.38), the Lagrangian of the overall problem can be stated as a quadratic

function of the price vector around the non-coordinated trajectory.

Theorem 29 The Lagrange function of the single layer problem (4.41) can be written
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as a quadratic function of “p” around the non-coordinated trajectory, namely “p = 0”:

L̄(p, Z∗(k; p)) = L̄(p) =1

2
pT∇2

p,pL̄(p)|p=0p+∇pL̄(p)|p=0p+ L̄(0) (4.42)

Proof. According to (4.41), the Lagrangian of the unconstrained problem is derived as:

L̄(p, Z∗(k; p)) = −JD(p, Z
∗(k; p)) (4.43a)

Based on the convex nature of the lower-level problem, the equality constraint (4.36c)

is always satisfied, i.e. [AX , AU ]Z
∗ + V ∗ − b = 0. Therefore, penalizing this constraint

using ν at Z∗(p) and adding it to the right-hand-side (RHS) of (4.43a) would result in:

L̄(p, Z∗(k; p)) =− JD(p, Z
∗(k; p))− νT

(
[AX , AU ]Z

∗ + V ∗ − b
)

(4.43b)

or at Z∗(p):

L̄(p, Z∗(k; p)) = −L(p, Z∗(k; p)) (4.43c)

Substituting (4.37a) into L̄(p, Z∗(k; p)) yields:



4.3: Coordination Algorithm I: Equality Constraints 141

L̄(p) =− 1

2

(
Υ−1
(− [θX , θU ]

Tp+

⎡
⎢⎣QXsp

0

⎤
⎥⎦))TΥ(Υ−1

(− [θX , θU ]
Tp+

⎡
⎢⎣QXsp

0

⎤
⎥⎦))

+ [XspQ, 0]Υ−1
(− [θX , θU ]

Tp+

⎡
⎢⎣QXsp

0

⎤
⎥⎦)+ pT b

− pT [θX , θU ]Υ
−1
(− [θX , θU ]

Tp+

⎡
⎢⎣QXsp

0

⎤
⎥⎦) (4.44a)

=
1

2
pT [θX , θU ]Υ

−1[θX , θU ]
Tp− ([XT

spQ, 0]Υ−1[θX , θU ]
T − bT

)
p

+
1

2
[XT

spQ, 0]Υ−1

⎡
⎢⎣QXsp

0

⎤
⎥⎦ (4.44b)

where:

θX = ΘX + AX (4.44c)

θU = ΘU + AU (4.44d)

but:

∇2
p,pL̄(p)|p=0 =

dL̄p

dZT

dZT

dp
|p=0 = [θX , θU ]Υ

−1[θX , θU ] (4.44e)

∇pL̄(p)|p=0 = L̄p(0) = −[XT
spQ, 0]Υ−1[θX , θU ]

T + bT (4.44f)

L̄(0) = L̄Z(0) =
1

2
[XT

spQ, 0]Υ−1

⎡
⎢⎣QXsp

0

⎤
⎥⎦ (4.44g)
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As a result of (4.41) and (4.43c), the corresponding KKT condition would be:

dL̄(Z∗, p)
dp

=− dL(Z∗, p)
dp

(4.45a)

=−
(dLZ(Z

∗)
dZ∗T + pT

dLp(Z
∗(k; p))

dZ∗T

)dZ∗

dp
− LT

p (Z
∗) (4.45b)

but:

dLZ(Z
∗)

dZ∗T + pT
dLp(Z

∗(p))
dZ∗T = 0 (4.45c)

which according to (4.35), this is equivalent to:

dL̄(Z∗, p)
dp

=− LT
p (Z

∗(k; p)) = 0 (4.45d)

To solve the CDMPC problem using conventional methods [66], (4.45d) together with

(4.36c) are calculated numerically. Given sensitivity information of the local controllers

(4.40b), the coordinator uses an iterative gradient-based procedure such as Newton’s

method to update the price vector. Thus in order to converge to the optimal plant-wide

solution, the coordinator and local controllers communicate, in coordination cycles, until

the interaction constraint (4.27d) is satisfied [20, 21, 66, 76, 57].

In the proposed approach, the KKT condition (4.45d) is solved analytically to obtain

the optimal price vector, based on the parametrized values of Z∗ and V ∗, explained in

(4.37a)-(4.37b). Using (4.34c) and (4.37a), the price vector can be derived as the solution

to (4.45d):

[θX , θU ]
Tp

⎡
⎢⎣−Q−1

(
θX
)T

p+Xsp

−R−1
(
θU
)T

p

⎤
⎥⎦− b = 0 (4.46a)
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From (4.46a), it can be found that:

p =
(
[θX , θU ]Υ

−1[θX , θU ]
T
)−1((

θX
)
Xsp − b

)
(4.46b)

The next two lemmas are required to prove (4.46b) is not singular.

Lemma 30 [47] A real symmetric matrix M is positive definite if and only if a real

non-singular matrix Y exists such that:

M = Y Y T (4.47)

Lemma 31 [47] Summation preserves the positive definiteness property of matrices.

Next, a theorem is provided to show why (4.46b) always exists.

Theorem 32 The analytic solution to the price vector (4.46b) is not singular.

Proof. Expand the quadratic coefficient in equation (4.46b) as:

[θX , θU ]Υ
−1[θX , θU ]

T = θXQ
−1θTX + θUR

−1θTU (4.48a)

Since the weighing matrices Q and R are positive definite, their inverse matrices Q−1 and

R−1 are also positive definite. According to Lemma 30, Q−1 and R−1 can be written in

terms of non-singular matrices YQ and YR as follows:

Q−1 = YQY
T
Q (4.48b)

R−1 = YRY
T
R (4.48c)
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Hence, the RHS of (4.48a) can be written as:

θXQ
−1θTX + θUR

−1θTU = θXYQY
T
Q θTX + θUYRY

T
R θTU (4.48d)

= (θXYQ)(θXYQ)
T + (θUYR)(θUYR)

T (4.48e)

Since θX and θU are also non-singular matrices [57], (θXYQ)(θXYQ)
T and (θUYR)(θUYR)

T

are positive definite matrices. Therefore, according to Lemma 31, left-hand-side (LHS)

of (4.48a) is positive definite, and (4.46b) is not singular.

Finally, the closed-loop solution to the CDMPC problem can be derived as a result

of (4.37a), (4.37b) and (4.46b):

Z∗(k; p) =

⎡
⎢⎣Xsp

0

⎤
⎥⎦+

⎡
⎢⎣−Q−1

(
ΘX + AX

)T
−R−1

(
ΘU + AU

)T
⎤
⎥⎦([θX , θU ]Υ−1[θX , θU ]

T
)−1((

θX
)
Xsp − b

)

(4.49a)

and

V ∗(k; p) = b− [AX , AU ]

(⎡⎢⎣Xsp

0

⎤
⎥⎦+

⎡
⎢⎣−Q−1

(
ΘX + AX

)T
−R−1

(
ΘU + AU

)T
⎤
⎥⎦×
(
[θX , θU ]Υ

−1[θX , θU ]
T
)−1((

θX
)
Xsp − b

))

(4.49b)

The analytic CDMPC method is summarized in Algorithm 14:
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Algorithm 14: The analytic CDMPC algorithm

Initialization: Number of sub-systems m, initial state x(k), positive definite

matrix Q, positive definite matrix R, initial prediction horizon N ;

Local MPCs: Given x(k) and N , formulate local KKT conditions from (4.30);

Local MPCs: Calculate θXi
and θUi

;

Local MPCs: Send θXi
, θUi

, Υi, Xspi , bi to Coordinator;

Coordinator: Calculate the optimal price vector from (4.46b);

Coordinator: Send the optimal price vector and N to the local controllers;

Local MPCs: Calculate Z∗
i (k) and V ∗

i (k) using (4.37);

Local MPCs: Apply the RHC action to the plant;

Output: Z∗, V ∗, and p;

4.4 Coordination Algorithm II: Inequality Constraints

In this section, a feasible descent direction approach is presented to coordinate distributed

MPCs subject to equality and convex set of inequality. In the proposed formulation,

subsystem MPCs and the coordinator communicate and exchange information iteratively

every sampling time to find the optimal price and state trajectories. Each subsystem

MPC calculates control inputs minimizing a local cost function based on subsystem state

measurements and the price received from the coordinator.

Feasible direction methods improve the solution at each iteration, such that if the

initial stage is feasible all subsequent iterations do not leave the feasibility region. This

can lead to an acceptable solution in early steps of the optimization [56]. Such methods

often require first-order derivate information of the optimization problem, which defines

the main content of communication between the coordinator and local controllers. The

theory behind feasible direction methods was originally developed by Zoutendijk in 1960,

then several variations were proposed (i.e., [99, 10, 55, 56]) to improve the algorithm and
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assure convergence.

Descent like feasible direction methods were applied to bi-level problems and some

important examples are [87] and [70]. In this work, a modified version of [87] is im-

plemented for the general case of CDMPC problem. This hybrid solution algorithm is

initiated with a relaxed version of KKT conditions of the lower-level problem and sub-

sequently solves a single level optimization. Once the initial active set of constraints is

identified, a feasible direction for the price vector is iteratively calculated through coordi-

nation cycles between local MPCs and the coordinator. Once the optimal price is found,

it is sent to local MPCs and a plant-wide optimal receding horizon action is applied to

sub-systems.

4.4.1 Algorithm Description

In this section, the network of MPC controllers subject to local inequality constraints

gi, defined in (4.3), is analyzed. The overall formulation of problem takes the following

form:

min
X,U,V

JD =
m∑
i=1

JDi
(4.50a)

s.t. x̂i(k + l + 1|k) =Ψiix̂i(k + l|k) + Γiiûi(k + l|k) +
∑
j �=i

(1− β)Ψijx̂j(k|k) + v̂i(k + l|k)

(4.50b)

gi(x̂i(k + l|k), ûi(k + l|k)) ≤ 0 (4.50c)
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where:

JDi
=
1

2

(
(Xi(k)−Xi,set)

TQii(Xi(k)−Xi,set) + Ui(k)
TRiiUi(k)

)
+ pTΘi

⎡
⎢⎢⎢⎢⎣
Xi(k)

Ui(k)

Vi(k)

⎤
⎥⎥⎥⎥⎦

(4.50d)

for l = 0, . . . , N − 1. In order to find a plant-wide solution to the distributed system

(4.50), the following bi-level optimization problem is defined:

min
p

F (p, Z̄∗) (4.51a)

Z̄∗ = argmin f(p, Z̄) (4.51b)

s.t. Hi,j(p, Z̄i) = 0, j ∈ JHi
(4.51c)

Gi,j(p, Z̄i) ≤ 0, j ∈ JGi
(4.51d)

where:

Z̄i =

⎡
⎢⎢⎢⎢⎣
Xi(k)

Ui(k)

Vi(k)

⎤
⎥⎥⎥⎥⎦ , (4.51e)

F (p, Z̄∗) = − JD(p, Z̄
∗), (4.51f)

f(p, Z̄i) = JD(p, Z̄) =
m∑
i=1

JDi
(p, Z̄i), (4.51g)

Hi,j(p, Z̄i) = AiZ̄i − bi, (4.51h)

Ai = [AXi
, AUi

, AVi
], (4.51i)
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AXi
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Inxi
0 · · · 0

−Ψii Inxi
· · · 0

0
. . . . . .

...

0 0 −Ψii Inxi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4.51j)

AUi
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Γii 0 · · · 0

0 −Γii
. . .

...

...
. . . . . . 0

0 · · · 0 −Γii

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4.51k)

AVi
= INnxi×Nnxi

, (4.51l)

bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑
j �=i(1− β)Ψijx̂j(k)

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4.51m)

Gi,j(p, Z̄i) =

⎡
⎢⎢⎢⎢⎣

gi(x̂i(k|k), ûi(k|k))
...

gi(x̂i(k +N − 1|k), ûi(k +N − 1|k))

⎤
⎥⎥⎥⎥⎦ (4.51n)

and JHi
, JGi

are finite set of indexes corresponding to equality and inequality constraints

in subsystem ‘i ’. In the BLP problem (4.51), the constrained lower-level optimization

problem represents the distributed network of MPC controllers and the upper-level un-

constrained optimization problem is handled by the coordinator.

Denote Si(p) = {(Z̄i) ∈ R
2×nxi+nui |Hi,j(p, Z̄i) = 0, Gi,j(p, Z̄i) ≤ 0, j ∈ JHi

∪ JGi
} set

of feasible solutions, and JGi,act
(p) = {j ∈ JGi

|Gi,j(p, Z̄i) = 0} set of indexes of active

constraints of subsystem ‘i ’, corresponding to the current value of the price vector.

Assumption 33 The BLP problem (4.51) is well-posed, i.e. for any fixed value of the
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price vector ‘p’, the lower-level problem is convex 3 and there exists a unique optimal

solution ‘Z̄∗(p)’.

Assumption 34 To guarantee that there is at least one solution to the BLP problem

(4.51), it is assumed that the feasible solution set of the lower-level problem based on the

price vector (Si(p)) is nonempty and uniformly compact.

Assumption 35 For every local optimum of the lower-level problem in (4.51), there

exists an unique optimal price vector associated with the distributed MPC network.

For any fixed value of ‘p’, the Lagrange function of the lower-level problem can be stated

as:

L(p, Z̄, ν, λ) =
m∑
i=1

Li(p, Z̄i, νi, λi) (4.52a)

where:

Li(p, Z̄i, νi, λi) = fi(p, Z̄i) +
∑
j∈JHi

νi,jHi,j(p, Z̄i) +
∑

j∈JGi,act

λi,jGi,j(p, Z̄i) (4.52b)

and ν, λ are the Lagrange multiplier associated with equality and inequality constraints,

respectively. Additionally, consider the following set of assumptions on the lower-level

problem for a fixed value of p to make sure that regularity of constraints holds at Z̄∗
i ∈

(Si(p)):

Assumption 36 The vectors ∇Z̄i
Hi,j(p, Z̄

∗
i ) and ∇Z̄i

Gi,j(p, Z̄
∗
i ), for j ∈ JHi

∪ JGi,act
,

are linearly independent.

3For a fixed value of the price vector, the lower-level problem is convex i.e. f(p, Z̄i) and Gi,j(p, Z̄i)
are convex functions and Hi,j(p, Z̄i) is affine [12].
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Assumption 37 The strict complementarity slackness (SCS) property holds at Z̄∗
i ∈

(Si(p)) w.r.t. (νi, λi)
4.

Assumption 38 Second order sufficient condition (SOSC) [11] holds at Z̄∗
i ∈ (Si(p))

5.

Lemma 39 Assumptions 36 and 37 together with Assumption 38 ensure that Z̄i is a

Lipschitz function of the price vector [9].

The KKT conditions of the lower-level problem, for a fixed value of ‘p’, can be written

as:

∇Z̄i
fi(p, Z̄i) +

(∇Z̄i
Hi(p, Z̄i)

)T
νi +
(∇Z̄i

Gi,act(p, Z̄i)
)T

λi,act = 0, (4.54a)

Hi,j∈JHi
(p, Z̄i) = 0, (4.54b)

Gi,j∈JGi
(p, Z̄i) ≤ 0, (4.54c)

λi,j∈JGi
Gi,j∈JGi

(p, Z̄i) = 0, (4.54d)

λi,j∈JGi
≥ 0 (4.54e)

where:

Gi,act(p, Z̄i) =

[
Gi,j(p, Z̄i)

]
j∈JGi,act

, λi,act =

[
λi,j

]
j∈JGi,act

(4.54f)

Based on Assumptions 33, 34, 35, 36, and 37, the corresponding Lagrange multipliers νi

and λi are bounded and can be uniquely determined.

4SCS requires that for all λi > 0: Gi(p, Z̄
∗
i )=0.

5SOSC holds if for all non-zero feasible directions d that wT
i ∇2

ZLi(p, Z̄i)wi ≥ 0, it results:{
wT

i ∇Z̄i
Gi,j(p, Z̄

∗
i ) = 0, for j ∈ JGi,act

wT
i ∇Z̄i

Hi,j(p, Z̄
∗
i ) = 0

(4.53)

.
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In order to determine the initial set of active constraints JGi,act
(p) for the BLP problem

(4.51), consider the following optimization:

min
p,Z̄i,νi,λi

F (p, Z̄) (4.55a)

s.t. ∇Z̄i
fi(p, Z̄i) +

(∇Z̄i
Hi(p, Z̄i)

)T
νi +
(∇Z̄i

Gi,act(p, Z̄i)
)T

λi,act = 0, (4.55b)

Hi,j∈JHi
(p, Z̄i) = 0, (4.55c)

Gi,j∈JGi
(p, Z̄i) ≤ 0, (4.55d)

λi,j∈JGi
Gi,j∈JGi

(p, Z̄i) = 0, (4.55e)

λi,j∈JGi
≥ 0 (4.55f)

where the lower-level problem is replaced by the corresponding KKT conditions, de-

fined in (4.54). The resulting problem can also be regarded as a mathematical program

with equilibrium constraints (MPEC). Note that, this reformulation of (4.51) is neither

differentiable nor regular [18]. Instead, a perturbed problem, for a given vector η, is

considered, in which the corresponding complementarity constraints were refined along

a central path:

min
p,Z̄i,νi,λi

F (p, Z̄) (4.56a)

s.t. ∇Z̄i
fi(p, Z̄i) +

(∇Z̄i
Hi(p, Z̄i)

)T
νi +
(∇Z̄i

Gi,act(p, Z̄i)
)T

λi,act = 0, (4.56b)

Hi,j∈JHi
(p, Z̄i) = 0, (4.56c)

Gi,j∈JGi
(p, Z̄i) ≤ 0, (4.56d)

λi,j∈JGi
Gi,j∈JGi

(p, Z̄i) = η2, (4.56e)

λi,j∈JGi
≥ 0 (4.56f)

Thus, the central path starts from η > 0 and approaches to zero to find an approxi-
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mate solution to (4.51). In this work, the nonlinear program (4.56) with complementary

constraints is smoothed using a CHKS smoothing function [33] 6 Π defined as:

Π(a, b, η) = a+ b−
√
(a− b)2 + 4η2 (4.58)

Remark 40 For a given value of η ≥ 0, Π(−Gi,j∈JGi
(p, Z̄i), λi,j∈JGi

, ηi) = 0, is equivalent

to the following condition:

λi,j∈JGi
Gi,j∈JGi

(p, Z̄i) = η2i (4.59)

provided −Gi,j∈JGi
(p, Z̄i) ≥ 0, and λi,j∈JGi

≥ 0 hold.

Then, reformulate (4.56) via the smoothing function (4.59) to form the following opti-

mization problem:

min
p,Z̄i,νi,λi

F (p, Z̄) (4.60a)

s.t. ∇Z̄i
fi(p, Z̄i) +

(∇Z̄i
Hi(p, Z̄i)

)T
νi +
(∇Z̄i

Gi,act(p, Z̄i)
)T

λi,act = 0, (4.60b)

Hi,j∈JHi
(p, Z̄i) = 0, (4.60c)

Gi,j∈JGi
(p, Z̄i) ≤ 0, (4.60d)

Π(−Gi,j∈JGi
(p, Z̄i), λi,j∈JGi

, η) = 0, (4.60e)

λi,j∈JGi
≥ 0 (4.60f)

This problem can be solved using efficient NLP methods such as interior-point method [6].

6A perturbed version of Fischer-Burmeister function [37] can also be used for this application, which
is defined as :

Π(a, b, η) = a+ b−
√

a2 + b2 + 2η (4.57)
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The initial set of active constraints JGi,act
(p) for the original BLP problem (4.51), at

sampling time ‘k’, is determined via solving NLP problem (4.60) for a decreasing sequence

of values for η until it reaches certain tolerance.

Remark 41 Consider the scenario where the inequality constraints Gi(p, Z̄i) ≤ 0 are

affine functions of local optimization variables Z̄i, defined as follows:

Gi(p, Z̄i) = Aineq
i Z̄i − bineqi ≤ 0 (4.61a)

where:

Aineq
i = [Aineq

Xi
, Aineq

Ui
, Aineq

Vi
] (4.61b)

Then, the NLP problem (4.60) can be simplified into:

min
p,Z̄i,νi,λi

− JD(p, Z̄) (4.62a)

s.t.

⎡
⎢⎢⎢⎢⎣
Qii

Rii

0

⎤
⎥⎥⎥⎥⎦ Z̄i −

⎡
⎢⎢⎢⎢⎣
XT

i,setQii

0

0

⎤
⎥⎥⎥⎥⎦+ΘT

i p+ AT
i νi + AineqT

i,act λi,act = 0, (4.62b)

AiZ̄i − bi = 0, (4.62c)

Aineq
i Z̄i − bineqi ≤ 0, (4.62d)

Π(−Aineq
i,j∈JGi

(p, Z̄i), λi,j∈JGi
, η) = 0, (4.62e)

λi,j∈JGi
≥ 0 (4.62f)

This stage of the CDMPC algorithm, which identifies an initial guess for JGi,act
in the

lower-level problem of the BLP (4.51), is listed in Algorithm 15:
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Algorithm 15: Initial guess for JGi,act
of the BLP problem (4.51)

Input: 0 < ηmin < η0 ≤ 1, l = 0, β ∈ (0, 1), Z0
i (k), p

0 = 0;
while (ηl ≥ ηmin) do

Coordinator - Local MPCs: Solve the NLP problem (4.60), i.e. using the
interior-point method [6];
ηl+1 = βηl;
l = l + 1;
Coordinator - Local MPCs: update Z̄ l

i(k) and pl;

for j ∈ JGi
do

if Gi,j(p
l, Z̄i) = 0 then

Coordinator: J 0
Gi,act

= {j ∪ J0
Gi,act

};
Output: J 0

Gi,act
, Z̄ l

i(k), and pl;

Once the initial stage is finished, an approximate local solution to the original BLP

(4.51) has been determined. In the next stage, this solution is improved using a para-

metric optimization approach, until the change in the overall objective function becomes

insignificant. In this approach, the lower-level problem can be thought of as a parametric

optimization problem, where the main optimization variable is ‘Z̄i’ and the price vector

‘p’ is a parameter. Then, for a perturbation in ‘p’ along direction ‘d’, the impact on the

lower-level problem can be measured. Consider the following linear programming (LP):

min
w

∇pf(p, Z̄)d+∇Z̄f(p, Z̄)w (4.63a)

s.t. ∇pHi(p, Z̄)d+∇Z̄i
Hi(p, Z̄i)wi = 0 (4.63b)

∇pGi,act(p, Z̄)d+∇Z̄i
Gi,act(p, Z̄i)wi ≤ 0 (4.63c)

and w = [wT
1 , . . . , w

T
i , . . . , w

T
m]

T denotes the feasible direction of Z̄. The Lagrangian
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associated with problem (4.63) can be stated as:

LLP (w, νLP , λLP ) =
m∑
i=1

LLP,i(wi, νLP,i, λLP,i) (4.64a)

where:

LLP,i(wi, νLP,i, λLP,i) =
(∇pfi(p, Z̄)d+∇Z̄fi(p, Z̄)wi

)
+ νT

LP,i

(∇pHi(p, Z̄)d+

∇Z̄i
Hi(p, Z̄i)wi

)
+ λT

LP,i

(∇pGi,act(p, Z̄)d+∇Z̄i
Gi,act(p, Z̄i)wi

)
(4.64b)

and νLP,i and λLP,i are Lagrange multipliers associated with equality and inequality

constraints of subsystem ‘i’ in problem (4.63). Then, define the Lagrange dual of problem

(4.63) as:

FLP (νLP , λLP ) = inf
w

LLP (w, νLP , λLP ) (4.65a)

where:

inf
w

LLP (w, νLP , λLP ) =
m∑
i=1

inf
wi

LLP,i(wi, νLP,i, λLP,i) (4.65b)

=
m∑
i=1

(∇pfi(p, Z̄) + νT
LP,i∇pHi(p, Z̄) + λT

LP,i∇pGi,act(p, Z̄)
)
d+

m∑
i=1

inf
wi

(∇Z̄fi(p, Z̄) + νT
LP,i∇Z̄i

Hi(p, Z̄i) + λT
LP,i∇Z̄i

Gi,act(p, Z̄i)
)
wi

(4.65c)

The dual function FLP (νLP,i, λLP,i) can easily be determined analytically, since LLP,i

is a linear function of wi and a linear function is bounded below only when its slope

is zero. Thus, FLP (νLP,i, λLP,i) is finite only when
(∇Z̄fi(p, Z̄) + νT

LP,i∇Z̄i
Hi(p, Z̄i) +
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λT
LP,i∇Z̄i

Gi(p, Z̄i)
)
= 0 holds for all i = 1, . . . ,m. Considering (4.52), this can be sum-

marized as:

FLP (νLP , λLP ) =

⎧⎪⎪⎨
⎪⎪⎩
∑m

i=1∇pLi(p, Z̄i, νLP,i, λLP,i)d,
∑m

i=1 ∇Z̄i
Li(p, Z̄i, νLP,i, λLP,i) = 0

−∞, otherwise

(4.66a)

Thus, the dual problem of the LP defined in (4.63) can be formulated as:

max
νLP,i,λLP,i

FLP (νLP , λLP ) =
m∑
i=1

∇pLi(p, Z̄i, νLP,i, λLP,i)d (4.67a)

s.t.
m∑
i=1

∇Z̄i
Li(p, Z̄i, νLP,i, λLP,i) = 0 (4.67b)

λLP,i � 0 (4.67c)

Remark 42 The optimal value of the dual problem defined in (4.67), FLP (ν
∗
LP,i, λ

∗
LP,i),

is the optimum value of the LP problem defined in (4.63), since the equality and inequality

constraints of problem (4.63) are all affine. This can also be interpreted as a refinement

of Slater’s constraint qualification [12]. As a result, the following relation holds:

∇pf(p, Z̄)d+∇Z̄f(p, Z̄)w
∗ =

m∑
i=1

∇pLi(p, Z̄i, ν
∗
LP,i, λ

∗
LP,i)d (4.68)

Considering Remark 42, and Assumptions 36, 37, and 38, the lower-level problem (4.51)

can be written in the following quadratic programming (QP) form, w.r.t. a perturbation

in ‘p’ along direction ‘d’:
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min
w

[
dT , wT

]
∇2

p,Z̄L(p, Z̄, νLP , λLP )

⎡
⎢⎣d
w

⎤
⎥⎦ (4.69a)

s.t. ∇pHi(p, Z̄)d+∇Z̄i
Hi(p, Z̄i)wi = 0 (4.69b)

∇pGi,act(p, Z̄)d+∇Z̄i
Gi,act(p, Z̄i)wi ≤ 0 (4.69c)

∇pf(p, Z̄)d+∇Z̄f(p, Z̄)w =
m∑
i=1

∇pLi(p, Z̄i, ν
∗
LP,i, λ

∗
LP,i)d (4.69d)

where:

∇2
p,Z̄L(p, Z̄, νLP , λLP ) =

⎡
⎢⎣ 0 Θ

ΘT ∇2
Z̄
L(p, Z̄, νLP , λLP )

⎤
⎥⎦ (4.69e)

The set of optimal solutions of this QP is equal to the set of optimal solutions of the LP

defined in (4.63), according to [39]. This would lead to the following lemma.

Lemma 43 Let Assumptions 36, 37, and 38 hold for any direction ‘d’, then the QP

defined in (4.69) has a unique optimal solution [39, 87].

Following the work of [87], the CDMPC problem, defined in (4.51), can be formulated as

a separable optimization problem to find the steepest descent direction:
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min
d

∇pF (p, Z̄(k; p))d+∇Z̄F (p, Z̄(k; p))w (4.70a)

s.t. ||d||∞ ≤ 1 (4.70b)

min
w

[
dT , wT

]
∇2

p,Z̄(k;p)L(p, Z̄(k; p), νLP , λLP )

⎡
⎢⎣d
w

⎤
⎥⎦ (4.70c)

s.t. ∇pHi(p, Z̄(k; p))d+∇Z̄i
Hi(p, Z̄i(k; p))wi = 0 (4.70d)

∇pGi,act(p, Z̄(k; p))d+∇Z̄i
Gi,act(p, Z̄i(k; p))wi ≤ 0 (4.70e)

∇pf(p, Z̄(k; p))d+∇Z̄f(p, Z̄(k; p))w =
m∑
i=1

∇pLi(p, Z̄i(k; p), ν
∗
LP,i, λ

∗
LP,i)d (4.70f)

where the coordinator finds the optimal direction of the price vector ‘d’ and the local

controllers optimize over their corresponding feasible direction ‘wi’ to minimize the plant-

wide objective function F (p, Z̄). The main idea behind the quadratic BLP (QBLP) prob-

lem (4.70) is to find a feasible set of directions ‘d’ and ‘wi’ that results in decreasing the

upper-level objective function of the original BLP problem (4.51), i.e. ∇pF (p, Z̄(k; p))d+

∇Z̄F (p, Z̄(k; p))w < 0.

Remark 44 For the scenario described in Remark 41, the QBLP problem (4.70) would

be simplified to:
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min
d

∇p(−ΘZ̄)d+

(
−

⎡
⎢⎢⎢⎢⎣
Q

R

0

⎤
⎥⎥⎥⎥⎦ Z̄ +

⎡
⎢⎢⎢⎢⎣
XT

spQ

0

0

⎤
⎥⎥⎥⎥⎦−ΘTp

)T

w (4.71a)

s.t. ||d||∞ ≤ 1 (4.71b)

min
w

[
dT , wT

]
∇2

p,Z̄(p)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 Θ

ΘT

⎡
⎢⎢⎢⎢⎣
Q

R

0

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣d
w

⎤
⎥⎦ (4.71c)

s.t. Aiwi = 0 (4.71d)

Ai,actwi ≤ 0 (4.71e)

(
⎡
⎢⎢⎢⎢⎣
Q

R

0

⎤
⎥⎥⎥⎥⎦ Z̄ −

⎡
⎢⎢⎢⎢⎣
XT

spQ

0

0

⎤
⎥⎥⎥⎥⎦+ΘTp

)T

w = 0 (4.71f)

According to Lemma 43, the lower-level problem of the QBLP (4.70) can be replaced by

its KKT conditions to form the single level optimization:
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min
d,w,νQP ,λQP

∇pF (p, Z̄(k; p))d+∇Z̄F (p, Z̄)w (4.72a)

s.t. ||d||∞ ≤ 1 (4.72b)

2(∇2
Z̄L(p, Z̄, νLP , λLP )w +ΘTd) +

⎡
⎢⎣∇Z̄H(p, Z̄(k; p))

∇Z̄f(p, Z̄(k; p))

⎤
⎥⎦
T

νQP +Gact(p, Z̄(k; p))
TλQP = 0

(4.72c)

∇pHi(p, Z̄(k; p))d+∇Z̄i
Hi(p, Z̄i(k; p))wi = 0 (4.72d)

∇pf(p, Z̄(k; p))d+∇Z̄f(p, Z̄(k; p))w −
m∑
i=1

∇pLi(p, Z̄i(k; p), ν
∗
LP,i, λ

∗
LP,i)d = 0 (4.72e)

∇pGi,act(p, Z̄(k; p))d+∇Z̄i
Gi,act(p, Z̄i(k; p))wi ≤ 0 (4.72f)

λT
QP,i

(∇pGi,act(p, Z̄(k; p))d+∇Z̄i
Gi,act(p, Z̄i(k; p))wi

)
= 0 (4.72g)

λQP,i ≥ 0 (4.72h)

where νQP = [νT
QP,1, . . . , ν

T
QP,m]

T and λQP = [λT
QP,1, . . . , λ

T
QP,m]

T are Lagrange multipliers

associated with equality and inequality constraints of the QP problem (4.69), respectively.

Using a similar approach as in Remark (40), a smoothed version of (4.72) is formulated

as:
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min
d,w,νQP ,λQP

∇pF (p, Z̄(k; p))d+∇Z̄F (p, Z̄(k; p))w (4.73a)

s.t. ||d||∞ ≤ 1 (4.73b)

2(∇2
Z̄L(p, Z̄, νLP , λLP )w +ΘTd)+⎡

⎢⎣∇Z̄H(p, Z̄(k; p))

∇Z̄f(p, Z̄(k; p))

⎤
⎥⎦
T

νQP +Gact(p, Z̄(k; p))
TλQP = 0 (4.73c)

∇pHi(p, Z̄(k; p))d+∇Z̄i
Hi(p, Z̄i(k; p))wi = 0 (4.73d)

∇pf(p, Z̄(k; p))d+∇Z̄f(p, Z̄(k; p))w −
m∑
i=1

∇pLi(p, Z̄i(k; p), ν
∗
LP,i, λ

∗
LP,i)d = 0 (4.73e)

∇pGi,act(p, Z̄(k; p))d+∇Z̄i
Gi,act(p, Z̄i(k; p))wi ≤ 0 (4.73f)

Π
(−∇pGi,act(p, Z̄(k; p))d−∇Z̄i

Gi,act(p, Z̄i(k; p))wi, λQP,i, η
)
= 0 (4.73g)

λQP,i ≥ 0 (4.73h)

and solve this problem with a similar approach used in Algorithm 15, i.e. using an

interior-point method. Once the optimal solution to the QBLP (4.70) is found, the

price vector ‘p’ and local optimization variables ‘Z̄i’ need to be updated along optimal

directions ‘ds’ and ‘ws
i ’ for the next iteration. Consider ‘s’ the current iteration number,

the following feasibility problem finds the minimum positive step size ‘α’ such that F (p+

αd, Z̄(k; p+ αd)) < F (p, Z̄(k; p)) and the solution ‘Z̄s+1
i ’ remains feasible:

min
α

α (4.74a)

s.t. α > 0 (4.74b)

F (ps + αds, Z̄(k; ps + αds)) < F (ps, Z̄(k; ps)) (4.74c)

Z̄i(k; p
s + αds) ∈ Si(p

s + αd∗) (4.74d)
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In other words, the main intention to perform the line search (4.74) is to find a proper step

size along direction d, such that: the solution to the lower-level problem stays feasible.

Finally, the price vector and local optimization variables are updated according to

the optimal value of step size αs:

ps+1 = ps + αsds (4.75)

Z̄s+1
i = Z̄(k; ps + αsds) (4.76)

The algorithm to find a feasible descent direction to the BLP (4.51) is listed in Algorithm

16:
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Algorithm 16: Feasible descent direction algorithm to solve the BLP (4.51)

Input: 0 < ηmin < η0 ≤ 1, l = 0, s = 0, β ∈ (0, 1), Z̄ l
i(k), p

l, J 0
Gi,act

;

while (∇pF (p, Z̄(p))d+∇Z̄F (p, Z̄)w < 0) do

while (ηl ≥ ηmin) do

Coordinator - Local MPCs: Solve the NLP problem (4.73), i.e. using

the interior-point method [6] ;

ηl+1 = βηl;

l = l + 1;

Coordinator - Local MPCs: update dl and wl;

s = s+ 1;

Set ds = dl and ws = wl;

Coordinator - Local MPCs: Solve problem (4.74);

Coordinator: Update ps+1 = ps + αsds;

Local MPCs: Update Z̄s+1
i = Z̄(k; ps + αsds) ;

for j ∈ JGi
do

if Gi,j(p
s, Z̄s

i ) = 0 then

Coordinator: J s
Gi,act

= {j ∪ J s
Gi,act

};
Set l = 0;

Output: p∗, Z̄∗
i (k);

4.4.2 Convergence Analysis

In this section, convergence property of the proposed CDMPC algorithm to a local opti-

mal solution of BLP problem (4.51) is studied. First, the initialization stage is studied,

in which the initial set of active constraints JGi,act
(p) are determined based on a series

of NLP problems (4.56), for a decreasing sequence of ηi.
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Theorem 45 For any value of η, when the solution to (4.60) belongs to the set S̄(p, η),
then for every η̂ there exists a compact set C̄(η̂) such that S̄(p, η) ⊆ C̄(η̂) holds for all

η ∈ (0, η̂].

Proof. According to Assumption 35, for every solution that belongs to Sη and η > 0,

there exist a unique bounded optimal price vector. Also, based on the properties of the

function Π in (4.58), if a feasible solution is found w.r.t. the lower-level constraints, it

would belong to a compact set according to Assumption 34. Additionally, since regularity

(Assumption 36) holds in the lower-level problem, the Lagrange multipliers νi and λi

would be bounded and belong to a compact set. This follows the conclusion that S̄(p, η) ⊆
C̄(η̂) holds for every η ∈ (0, η̂].

Remark 46 Based on Theorem 45, the solution set S̄(p, η(k)) is a non-empty and com-

pact set for all values of 0 ≤ η ≤ 1 [33]. This produces a continuous central path [33, 52]

towards the solution of problem (4.55), as a function of the decreasing sequence η starting

from a value between (0, 1) towards 0.

Once the initial set of active constraints is identified, the QBLP problem (4.70) along

with step size calculation (4.74) are solved iteratively to find a unique local solution to the

original BLP (4.51). In the following theorem, it is proved that the CDMPC algorithm is

globally convergent to a unique local optimal solution of the plant wide problem (4.51).

Theorem 47 Let assumptions 33, 34, 35, 36, 37, and 38 hold; then:

(i) For the sequence η → 0, the initialization stage, i.e. Algorithm (15), finds a

unique guess of the set of active constraints for the BLP problem (4.51).

(ii) Denote (p∗, Z̄∗) to be an optimal solution to the BLP problem (4.51). Then, the

following holds:

∇pF (p∗, Z̄(k, p∗))d+∇Z̄F (p∗, Z̄(k, p∗))w(p∗, d) ≥ 0 (4.77)
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where ‘d’ and ‘w’ are the optimal solutions of the QBLP problem (4.70).

(iii) The proposed CDMPC algorithm is globally convergent to a unique optimal so-

lution of (4.51).

Proof. (i) Let the stated assumptions hold, in addition consider Theorem 45 and the

central path defined by Remark 46. Then for any value of the decreasing sequence

η → 0, there exists a bounded solution that forms a compact set and converges to a

local optimal solution of problem (4.60) [33]. The interior-point method is a globally

convergent Algorithm [6] and based on Assumption 35 a unique local solution exists for

the price vector of the single level optimization problem. Thus a unique set of active

constraints for problem (4.51) can be determined during the initialization stage of the

CDMPC algorithm.

(ii) Let (p∗, Z̄∗) be an optimal solutions to the BLP problem (4.51), then the following

holds:

F (p∗, Z̄(k, p∗)) ≤ F (p∗ + αd, Z̄(k, p∗ + αd)), 0 < α ≤ α̂ (4.78)

Furthermore, based on the given assumptions, there always exists an α̂ > 0 such that

the solution set of the lower-level problem for 0 < α ≤ α̂ is not empty [39]. Rearranging

(4.78), and dividing by α the following relation can be derived for the upper-level objective

function:

lim
α→0

(F (p∗ + αd, Z̄(k; p∗ + αd))− F (p∗, Z̄(k; p∗)))
α

≥ 0 (4.79)

which is equivalent to the directional derivative of the upper-level objective function:

∇pF (p∗, Z̄(k; p∗))
dp

dα
+∇Z̄F (p∗, Z̄(k; p∗))

dZ̄

dα
≥ 0 (4.80)
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but the QBLP problem (4.70) has a unique solution [87] that refines (4.80) into:

∇pF (p∗, Z̄(k; p∗))d+∇Z̄F (p∗, Z̄(k; p∗))w(p∗, d) ≥ 0 (4.81)

(iii) Based on part (ii) of this proof, the stopping criteria for the proposed CDMPC

algorithm satisfies (4.81) when no further descent direction can be found. Additionally,

since there is a unique optimal price for the well-posed BLP problem (4.51), according to

assumptions 35 and 33, a unique local optimal solution is obtained in the initialization

stage (according to part(i) of this proof) to solve the NLP problem (4.60). Also, a unique

optimal solution can be found in the iterative stage (according to part(ii) of this proof)

including the QLBP problem (4.70) and step size calculation (4.74). Thus, the whole

CDMPC algorithm is globally convergent to unique local optimal solution of the BLP

problem (4.51).

4.5 Stability Analysis

In this work, the idea of [80, 41, 42] was followed to implement stability criteria for

the centralized MPC and the proposed CDMPC schemes. The main idea is to provide

the criteria without defining any terminal constraints or any terminal cost functions for

the MPC optimization problem. This criteria is applicable to MPC schemes subject to

admissible sets of bound and/or mixed states and input constraints [80].

Denote the optimum values of state and input variables of the centralized MPC op-

timization problem (4.27) as the open-loop optimal solution, and the first move of the

system as the receding horizon control (RHC) action. Then, uRHC(N, x(n)) is the RHC

action calculated by solving (4.27) with prediction horizon N and the initial state x(n).

Define a dynamic programming value function [80] based on the RHC trajectory of
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the centralized MPC as:

V C
N

(
x(n)
)
=

N−1∑
n=0

lC
(
x(n), uRHC(N − n, x(n))

)
(4.82a)

where lC is a predefined stage cost based on the centralized trajectory, defined as:

lC
(
x(n), uRHC(N − n, x(n))

)
=

m∑
i=1

((
xi(n)− xi,sp(k)

)T
Qii(n)

(
xi(n)− xi,sp(k)

)
+

(
ui,RHC(N − n, xi(n))

)T
Rii(n)

(
ui,RHC(N − n, xi(n))

))
(4.82b)

with Qii and Rii defined over the prediction horizon as:

Qii =

⎡
⎢⎢⎢⎢⎣
Qii(1)

. . .

Qii(N)

⎤
⎥⎥⎥⎥⎦ , Rii =

⎡
⎢⎢⎢⎢⎣
Rii(1)

. . .

Rii(N)

⎤
⎥⎥⎥⎥⎦ (4.82c)

Based on (4.82), in order to calculate V C
N at the current sampling time k, namely

V C
N

(
x(k)
)
, a multi-step calculation is performed and move forward in prediction hori-

zon. The procedure to calculate (4.82) is listed in Algorithm 17:
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Algorithm 17: The algorithm to calculate the finite-time value function (4.82)

Initialization: prediction horizon N , number of sub-systems m, initial state

x(n), Qii, Rii, V
C
N = 0;

for n := 0 to N − 1 do

Perform the plant-wide optimization problem (4.27) with prediction horizon

N − n and initial value xi(0) = xi(n) ;

Update the RHC control action move uRHC(N − n,X(n));

Calculate the centralized MPC stage cost lC
(
x(n), uRHC(N − n, xi(n))

)
;

V C
N = V C

N + lC
(
x(n), uRHC(N − n, x(n))

)
;

Apply uRHC(N − n, x(n)) to the model and update xi(n+ 1);

Output: V C
N (x(n)) ← V C

N ;

Remark 48 The difference between the open-loop control and receding horizon control

(RHC) trajectories for a dynamic programming problem at sampling time tk is depicted

in Figure 4.2. In this example, at the sampling time tk the control system performs N = 5

open-loop optimization problems. Once the open-loop trajectory for N = 5 is found, the

first control action is applied to the model (and not to the plant itself). The next open-

loop optimization is performed with N = 4 from the initial move previously computed.

This process continues until five RHC points are obtained and the value function V C
N is

calculated.

Lemma 49 Consider the optimization problem (4.27) at sampling time tk, provided that

the stage cost lC is a positive definite function, if there exists a trajectory-based function

V C
N such that

V C
N (x(k))− V C

N (x(k + 1)) ≥ lC
(
x(k), uRHC(N, x(k))

)
(4.83)

then V C
N is a Lyapunov function for the plant-wide MPC system (4.27), such that the per-
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formance of the finite-time receding horizon closed-loop system tends to the performance

of infinite-time receding horizon control [80].

0ix

1ix

Receding Horizon Control

Open-loop Control

0,, iRHC xN

1,1, iRHCi xNu

2,2, iRHCi xNu

3,3, iRHCi xNu

4,4, iRHCi xNu

5N

2ix

3ix

4ix

5ix

Figure 4.2: Receding horizon control (RHC) vs open-loop control trajectories for sub-
system i with a typical prediction horizon length of N = 5.

Based on Lemma 49, an a posteriori algorithm can be presented to adjust the minimum

required prediction horizon length N adaptively, at the current sampling time tk. This

procedure is listed in Algorithm 18:
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Algorithm 18: A posteriori adaptive horizon algorithm [80] for the MPC (4.27)

Initialization: prediction horizon N , number of sub-systems m, initial state

x(n), Qii, Rii;

Calculate V C
N (x(n)) using Algorithm 17 with

(
N,m, x(n), Qii, Rii

)
;

Calculate lC
(
x(n), uRHC(N, x(n))

)
using (4.82);

Apply uRHC(N, x(n)) to the model and update x(n+ 1);

Calculate V C
N (x(n+ 1)) using Algorithm 17 with

(
N,m, x(n+ 1), Qii, Rii

)
;

if V C
N (x(n)) ≤ V C

N (x(n+ 1)) then

Prompt: Solution may be unstable;

else if
V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) ≥ 1 then

Perform Horizon Shortening (Algorithm 19);

else

Perform Horizon Prolongation (Algorithm 20);

end

Output: Apply the RHC action to the plant based on the accepted value of N ;

According to Algorithm 18, as long as the condition
V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) ≥ 1 is sat-

isfied, the length of prediction horizon is decreased so that the minimum amount of

prediction horizon required is found. This procedure is called the horizon shortening

strategy, which is explained in Algorithm 19:
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Algorithm 19: Horizon Shortening Algorithm for the MPC problem (4.27)

Initialization: prediction horizon N , number of sub-systems m, initial state

x(k), Qii, Rii;

while N ≥ 2 do

Save the current trajectory of the open-loop system;

N = N − 1;

Calculate
V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) with (N,m, x(k), Qii, Rii

)
;

Save the shortened horizon trajectory of the open-loop system;

if
V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) < 1 then

N = N + 1;

Restore the current stored trajectory of the open-loop system;

STOP;

else

Save the shortened horizon trajectory as the current trajectory;

Output: Current trajectory of the system, and N .

On the other hand, if
V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) < 1 the length of prediction horizon is

increased in order to find the minimum N that satisfies
V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) ≥ 1. This

procedure is listed in Algorithm 20:
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Algorithm 20: Horizon Prolongation Algorithm for the MPC problem (4.27)

Initialization: prediction horizon N , number of sub-systems m, initial state

x(k), Qii, Rii;

while
V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) < 1 do

N = N + 1;

Calculate
V C
N (x(n))−V C

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) with (N,m, x(k), Qii, Rii

)
;

Save the prolonged horizon trajectory as the current trajectory of the

open-loop system;

Output: Current trajectory of the system, and N.

4.5.1 Stability of the CDMPC scheme

Similar to stability analysis of the centralized trajectory, a stability criterion can be

stated without terminal costs or constraints for the proposed CDMPC schemes based on

adaptive horizon techniques [80, 41, 42].

Denote Zopt(k) = [Xopt(k)
T , Uopt(k)

T , Vopt(k)
T ]T as the open-loop control solution

of the CDMPC problem. Then, define the receding horizon control (RHC) move as:

uopti,RHC
-(N, xopti(n)), which is calculated by solving either problem (4.30) or (4.51) with

prediction horizon length of N and the initial value xi(n).

Similar to (4.82), a dynamic programming value function is defined for the CDMPC

problem:

V D
N

(
x(n)
)
=

N−1∑
n=0

lD
(
xopti(n), uRHC(N − n, x(n))

)
(4.84a)

where the stage cost lD is defined as:

lD
(
xopt(n), uRHC(N − n, x(n)))

)
=

m∑
i=1

(
xopti(n)− xi,sp(k)

)T
Qii(n)

(
xopti(n)− xi,sp(k)

)
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+
(
ui,RHC(N − n, xi(n))

)T
Rii(n)

(
ui,RHC(N − n, xi(n))

)
(4.84b)

Therefore, in order to calculate V D
N at the current sampling time k, namely V D

N

(
x(k)
)
, a

multi-step calculation has to be performed forward in time. The procedure to calculate

(4.84) is listed in Algorithm 21:

Algorithm 21: The algorithm to calculate the finite-time value function (4.84)

Initialization: n = 0, prediction horizon N , number of sub-systems m, initial

state x(n) = x(k), Qii, Rii, V
D
N = 0;

for n := 0 to N − 1 do

if inequality constraints present in local MPC problems then

Coordinator - Local MPCs: Perform the CDMPC optimization

problem (4.51) with N − n and initial value xi(0) = xi(n) ;

else

Coordinator - Local MPCs: Perform the CDMPC optimization

problem (4.30) with N − n and initial value xi(0) = xi(n) ;

Coordinator - Local MPCs: Update the RHC control action move

uoptRHC
(N − n, xopt(n));

Coordinator: Calculate lD
(
xopt(n), uoptRHC(N − n, xopt(n))

)
, and

V D
N = V D

N + lD
(
xopt(n), uoptRHC

(N − n, xopt(n))
)
;

Local MPCs: Apply uoptRHC
(N − n, x(n)) to the internal model;

Local MPCs: Calculate xopt(n+ 1);

Output: V D
N (x(n)) ← V D

N ;

Remark 50 Similar to Lemma 49, consider the individual distributed MPC controllers

in the optimization problems (4.30) or (4.51) at sampling time tk, provided that the stage
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cost lD is a positive definite function, if the following is satisfied:

V D
N (x(k))− V D

N (x(k + 1)) ≥ lD
(
x(k), uoptRHC

(N, x(k))
)

(4.85)

then V D
N is a finite-time Lyapunov function for the proposed CDMPC schemes that tends

to performance of an equivalent infinite horizon problem. Note that, all local MPC con-

trollers are assumed to have the same length of prediction horizons, which are dictated

by the minimum required horizon length to satisfy (4.85).

Based on Remark 50, an a posteriori algorithm can be presented to satisfy (4.85), at

the sampling time tk with minimum required prediction horizon length, i.e. N . This

procedure is explained in Algorithm 22:
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Algorithm 22: A posteriori adaptive horizon algorithm for the CDMPC schemes

Initialization: n = 0, prediction horizon N , number of sub-systems m, initial

state x(n) = x(k), Qii, Rii;

Coordinator - Local MPCs: Calculate V D
N (x(n)) using Algorithm 21 with(

N,m, xopt(n), Qii, Rii

)
;

Local MPCs: Apply uoptRHC
(N, x(n)) to the internal model;

Local MPCs: Calculate xopt(n+ 1);

Coordinator - Local MPCs: Calculate V D
N (x(n+ 1)) using Algorithm 21 with(

N,m, xopt(n+ 1), Qii, Rii

)
;

if V D
N (x(n)) ≤ V D

N (x(n+ 1)) then

Local MPCs: Prompt: Solution may be unstable;

else

if
V D
N (x(n))−V D

N (x(n+1))

lD
(
xopt(n),uoptRHC

(N,x(n))
) ≥ 1 then

Coordinator - Local MPCs: Perform Algorithm 23;

else

Coordinator - Local MPCs: Perform Algorithm 24;

Output: Xopt based on the accepted value of N ;

According to Algorithm 22, as long as the condition
V D
N (x(n))−V D

N (x(n+1))

lD
(
x(n),uRHC(N,x(n))

) ≥ 1 is satis-

fied, the prediction horizon length is decreased so that the minimum required prediction

horizon is found. This procedure is called the horizon shortening strategy, which is

explained in Algorithm 23:
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Algorithm 23: Horizon Shortening Algorithm for the CDMPC schemes

Initialization: n = 0, prediction horizon N , number of sub-systems m, initial

state x(n) = x(k), Qii, Rii;

while N ≥ 2 do

Local MPCs: Save the current trajectory of the open-loop system;

Local MPCs: N = N − 1;

Coordinator - Local MPCs: Calculate
V D
N (x(n))−V D

N (x(n+1))

lD
(
xopt(n),uRHC(N,x(n))

) with
(
N,m, xopt(n), Qii, Rii

)
;

Local MPCs: Save the shortened horizon trajectory of the open-loop system;

if
V D
N (x(n))−V D

N (x(n+1))

lD
(
xopt(n),uRHC(N,x(n))

) < 1 then

Local MPCs: N = N + 1;

Local MPCs: Restore the current stored trajectory of the open-loop

system;

STOP;

else

Local MPCs: Save the shortened horizon trajectory as the current

trajectory;

Output: Current trajectory of the system, and N .

On the other hand, if
V D
N (x(n))−V D

N (x(n+1))

lD
(
x(n),uRHC(N,x(n))

) < 1 the prediction horizon length is in-

creased to find the minimum N that satisfies
V D
N (x(n))−V D

N (x(n+1))

lC
(
x(n),uRHC(N,x(n))

) ≥ 1. This procedure is

listed in Algorithm 24:
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Algorithm 24: Horizon Prolongation Algorithm for the CDMPC schemes

Initialization: n = 0, prediction horizon N , number of sub-systems m, initial

state x(n) = x(k), Qii, Rii;

while
V D
N (x(n))−V D

N (x(n+1))

lD
(
xopt(n),uRHC(N,x(n))

) < 1 do

Local MPCs: N = N + 1;

Coordinator - Local MPCs: Calculate
V D
N (x(n))−V D

N (x(n+1))

lD
(
xopt(n),uRHC(N,x(n))

) with
(
N,m, xopt(n), Qii, Rii

)
;

Local MPCs: Save the prolonged size trajectory as the current trajectory of

the open-loop system;

Output: Current trajectory of the system, and N.

4.5.2 The overall CDMPC Algorithm

In this section, a summary of the CDMPC algorithm applied to the plant-wide problem is

provided. The hierarchical dual decomposition of the hypothetical centralized controller

defined in (4.27) is related with the modification applied to the corresponding existing

network of local decentralized MPC controllers. The modification can be interpreted

as penalizing local violations of the overall interaction equality constraints via the price

vector. The local MPC controllers formulate their own optimization problems and send

the required local information conditions to the coordination level. The coordinator

receives decides whether to apply the analytic CDMPC or feasible descent direction

CDMPC based on existence of inequality constraints in subproblem formulations. Then,

the coordinator, based on the chosen CDMPC method, finds the minimum required

prediction horizon to ensure stability of the closed-loop system. Once the plant-wide

optimum solution, i.e. Z(k), is found, the receding horizon control action is applied to

the plant. The overall algorithm is presented in Algorithm 25:
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Algorithm 25: The overall CDMPC algorithm

Initialization: Number of sub-systems m, initial state x(k), positive definite

matrix Q, positive definite matrix R, initial prediction horizon N0,

0 < ηmin < η0 ≤ 1, and β ∈ (0, 1);

if inequality constraints present in local MPC problems then

Local MPCs: Given x(k) and N0, formulate local KKT conditions of problem

(4.51);

else

Local MPCs: Given x(k) and N0, formulate local KKT conditions of problem

(4.30);

Coordinator - Local MPCs: Perform Algorithm 22 with
(
x(k), Q, R, N0,

ηmin, η
0, β
)
;

Coordinator: Send the optimal price vector and N to the local controllers;

Local MPCs: Calculate the optimum local vector of variables Z∗
i (tk) using p∗(tk)

and N ;

Local MPCs: Apply the RHC action to the plant;

Local MPCs: Update N0 = N ;

4.6 Simulation Case Studies

In this section, two benchmarks were studied to illustrate the CDMPC algorithms dis-

cussed in this chapter. The first case study is a forced-circulation evaporator process [50],

which demonstrates an open-loop stable system without any inequality constraints. The

second case study is a process composed of two interconnected CSTRs [96], which rep-

resents an open-loop unstable system subject to bounds on the control actions. The

optimization problems were formulated inside MATLAB using the YALMIP optimiza-

tion interface [62], in which IPOPT [6] is employed as the main optimization solver.
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Simulations are performed on an Intel Core-i7 processor with 8 GB of memory under

Microsoft Windows 7 operating system.

4.6.1 Evaporator Process

The forced-circulation evaporator system [50] is used as a benchmark to show the effi-

ciency of the CDMPC strategy described in section 4.3, where no inequality constraints

are present in local MPCs. This system is illustrated in Fig. 4.3. The dynamics of the

Condenser

Evaporator

Separator

P100
T100

Steam
F100

Condensate

F3

Feed
F1, X1, T1

Product
F2, X2, T2

Vapor
F4, T3

Condensate
F5

Cooling water
F200, T200

T201L2, P2

Figure 4.3: The Forced-Circulation Evaporator Process

forced-circulation evaporator consists of three measured states (L2: separator level [m],

X2: product composition [%], and P2: operating pressure [kPa]), three input variables

(F2: product flow rate [kg/min], P100: steam pressure [kPa], and F200: cooling water flow

rate [kg/min]). In Fig. 4.3, T2 is product temperature [◦C], T100 is steam temperature

[◦C], Q100 is heater duty [kW ], F100 is steam flow rate [kg/min], T3 is vapor temperature,

F4 is vapour temperature [◦C], Q200 is condenser duty [kW ], T201 is cooling water outlet

temperature [◦C], and F5 is condensate flow rate [kg/min]. The continuous-time plant
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model of this process can be written as the following state-space formulation:

ẋ =

⎡
⎢⎢⎢⎢⎣
1 0.10445 0.37935

0 −0.1 0

0 −0.01034 −0.054738

⎤
⎥⎥⎥⎥⎦ x+

⎡
⎢⎢⎢⎢⎣
−0.1 0.37266 0

−0.1 0 0

0 0.036914 −0.0075272

⎤
⎥⎥⎥⎥⎦u (4.86)

Accordingly, two sub-systems are defined in the overall process model:

xT = ([x1,1, x1,2]|x2,1)
T = ([L2, X2]|P2)

T (4.87)

uT = ([u1,1, u1,2]|u2,1)
T = ([F2, P100]|F200)

T (4.88)

and the corresponding discretized-time model, for a sampling time of Ts = 1 [min], can

be derived as:

x̂(k + 1) =

⎡
⎢⎢⎢⎢⎣
1 0.0975 0

0 0.9048 0

0 −0.0096 −0.9467

⎤
⎥⎥⎥⎥⎦ x̂(k) +

⎡
⎢⎢⎢⎢⎣
−0.1050 0.3795 −0.0014

−0.0952 0 0

0.0005 0.0359 −0.0073

⎤
⎥⎥⎥⎥⎦ û(k)

(4.89)

According to the analytic derivations in section 4.3, the CDMPC algorithm is capa-

ble of perfectly tracking the centralized trajectory. Then, in the following results, the

centralized MPC and CDMPC represent a single trajectory that is compared to the

corresponding decentralized MPC. The comparison between the required length of the

predictions horizons (N) between the decentralized MPC, the centralized MPC and the

CDMPC trajectories is depicted in Figure 4.4. This shows after a certain amount of sim-

ulation time the centralized MPC and CDMPC schemes roughly require N = 18 while

the minimum prediction horizon required by decentralized is N = 15.



4.6: Simulation Case Studies 181

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

time [min]

P
re
d
ic
ti
on

H
or
iz
on

(N
)

 

 

Decentralized MPC
CDMPC/Centralized MPC

Figure 4.4: Comparison of number predictions horizons needed (N) between the Decen-
tralized MPC, the Centralized MPC and the CDMPC trajectories vs simulation time

In addition, state trajectories and manipulated input variables of the evaporation

process are depicted in Figure 4.5. As shown, the CDMPC and the centralized MPC

schemes settle to the set-points with a higher load of performance compared to the

decentralized trajectory.

Correspondingly, the overall objective functions of the three distributed control schemes

JDC , JC , and JD are compared in Figure 4.6. Within this window, the overall objective

function obtaind by the centralized MPC/CDMPC is lower than the one obtained from

decentralized scheme. These show that the CDMPC improves the decentralized MPC

network with minor modifications applied to the local controllers.
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Figure 4.5: Comparison of state variables trajectories and manipulated variables trajecto-
ries between the Decentralized MPC, the Centralized MPC and the CDMPC trajectories
vs simulation time
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4.6.2 Two-CSTR Process

In this section, the feasible direction scheme is implemented on a two reactive continuous

stirred tank reactor (CSTR) benchmark, taken from [96]. The system is comprised of two

non-isothermal reactive CSTRs with interconnections and a recycle stream as depicted

in Figure 4.7. The following set of exothermic reactions take place in these reactors

with substances A and B: (i) A
k1−→ B, (ii) A

k2−→ UP , and (iii) A
k3−→ DP ; where UP

and DP stand for the undesired product and the desired product, respectively. As in

Figure 4.7, CSTR I has two feed streams (one has fresh stream of substance ‘A’ with

molar concentration CA0, flow-rate F0 and temperature T0, and the other streams is from

the output of CSRT II containing the recycle stream of unreacted substance A at flow-

rate Fr, molar concentration CA2 and temperature T2 ) and CSTR II is fed from the

output of CSTR I as well as another fresh stream of substance A at flow-rate F3, molar

concentration CA03, and temperature T03. The two CSTRs are equipped with jackets to

remove/provide heat, due to non-isothermal nature of reactions.

The main focus of this simulation is on stabilize the system around the open-loop

unstable steady-state operating point, to avoid high temperatures, while simultaneously

achieving reasonable conversion. The manipulated variables of the system are the heat

input rates Q1 and Q2, and the inlet concentrations CA0 and CA03.

The continuous-time plant model of this process can be derived based on linearizion

around its unstable steady-state operating condition, i.e.

(T s
1 , C

s
A1, T

s
2 , C

s
A2) = (457.9[K], 1.77[kmol/m3], 415.5[K], 1.75[kmol/m3]) (4.90a)

(Qs
1, C

s
A0, Q

s
2, C

s
A03) = (0[kJ/hr], 4[kmol/m3], 0[kJ/hr], 2[kmol/m3]) (4.90b)



4.6: Simulation Case Studies 184

as the following:

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

25.2 1284.3 35 0

−0.3 −45.9 0 35

13.3 0 −2.8 336.2

0 13.3 −0.1 −24.9

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
x+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.0043 0 0 0

0 4.998 0 0

0 0 0.0014 0

0 0 0 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
u (4.91)

The ODE system (4.91) can now be decomposed into two subsystems: sub-system I

(containing CSTR I) and subsystem II (containing CSTR II), this is depicted in Figure

4.7 . The two sub-systems are defined in the overall process model as:

xT = ([x1,1, x1,2]|[x2,1, x2,2])
T = ([T1, CA1]|[T2, CA2])

T (4.92)

uT = ([u1,1, u1,2]|[u2,1, u2,2])
T = ([Q1, CA0]|[Q2, CA03])

T (4.93)

and the corresponding discretized-time model, for a sampling time of Ts = 0.005 [s], can

be derived as:

x̂(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.1357 6.1467 0.1852 0.6696

0.0014 0.7954 0.0002 0.1466

0.0704 0.2556 0.9917 1.5870

0.0001 0.0557 0.0005 0.8875

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
x̂(k)+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.0778 0.0000 0.0113

0.0000 0.0223 0.0000 0.0039

0.0000 0.0022 0.0000 0.0404

0.0000 0.0007 0.0000 0.0471

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
û(k) (4.94)

The CDMPC trajectory is calculated according to the approach discussed in Section
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Figure 4.7: Schematic of the Two CSTR Case Study

MPC I MPC II
Initial Conditions: x1(0) =

[
462.9[K], 0.27[kmol/m3]

]
x2(0) =

[
410.5[K], 3.45[kmol/m3]

]
Weighting Matrices: Q1 = 5I, R1 = 15I Q2 = 5I, R2 = 15I
Upper bounds: lbu1 =

[
5[kJ/hr], 8[kmol/m3]

]
lbu2 =

[
5[kJ/hr], 4[kmol/m3]

]
Lower Bounds: ubu1 =

[− 5[kJ/hr], 0[kmol/m3]
]

ubu2 =
[− 5[kJ/hr], 0[kmol/m3]

]
Sampling Period 0.005[s] 0.005[s]

Table 4.1: The Two-CSTR variable bounds and controller parameters

4.3, based on the adaptive horizon scheme explained in Section 4.5.1. The summary of

controller parameters and the variable bounds of the these two sub-systems are listed in

Table 4.1.

The comparison between the required length of predictions horizons (N) between

the decentralized MPC, the centralized MPC and the CDMPC trajectories is depicted

in Figure 4.8. This comparison shows that, after a certain amount of simulation, time

the centralized MPC and CDMPC schemes roughly require N = 6, while the minimum

prediction horizon required by Decentralized scheme oscillates between N = 2 and N =

12. As expected from the CDMPC algorithm, this networked control system is acting very
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Figure 4.8: Comparison of number predictions horizons needed (N) between the Decen-
tralized MPC, the Centralized MPC and the CDMPC trajectories vs simulation time

similar to an equivalent monolithic centralized MPC in terms of their stability criteria.

The state trajectories and manipulated input variables of the Two CSTR system

are depicted in Figures 4.9 and 4.10, respectively. As shown, the CDMPC trajectory

follows the centralized MPC trend perfectly while the decentralized MPC shows a lower

performance in terms of the time required to settle on the unstable operating condition.

Therefore, issues due to convergence of iterative approach reported by [76] for the open-

loop unstable case study is resolved using Algorithm 25.

In addition, the overall objective functions of the three distributed control schemes

JDC , JC , and JD are compared in Figure 4.11. The mean square error between the

objective function of the CDMPC and the objective function of the centralized MPC is

at least twelve orders of magnitude smaller than that of the decentralized NMPC. These

results show that, although the decentralized MPC scheme requires longer prediction
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Figure 4.9: Comparison of state variables trajectories and manipulated variables trajecto-
ries between the Decentralized MPC, the Centralized MPC and the CDMPC trajectories
vs simulation time

horizon in majority of sampling times, the CDMPC scheme achieves the centralized

MPC performance with the lowest possible overall objective function. In other words,

it improves the decentralized MPC overall performance by applying minor modifications

to the currently installed decentralized MPC network.
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Figure 4.10: Comparison of manipulated variables trajectories between the Decentralized
MPC, the Centralized MPC and the CDMPC trajectories vs simulation time
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4.7 Conclusions

Two novel solution algorithms to coordinate distributed MPC controllers, using price-

driven strategy, were proposed. The analytic CDMPC scheme presented in this chapter

is capable of coordinating MPC networks subject to equality constraints and reduces

the coordination cycles of conventional methods to one. The feasible descent direction

approach CDMPC proposed in this chapter is guaranteed to be globally convergent to a

unique local optimal plan-wide solution for the general case when inequality constraints

are also present in the network. This scheme together with the adaptive horizon scheme

is capable of stabilizing open-loop unstable systems under certain conditions, thereby

resolves the convergence problems reported by conventional Newton-based approaches

[76]. Results are promising and the coordinated system can perfectly track the centralized

optimum trajectory, thus the performance of the decentralized system is improved with

minor modifications applied to the network.



Chapter 5

Conclusions and Future work

This thesis is focused on the development and implementation of price-driven CDMPC

algorithms using bilevel optimization methods. The primary goal was to design a system-

atic approach to coordinate decentralized networks of linear and nonlinear MPC systems

for improving the performance of the existing decentralized installation. In essence, the

coordinator is synthesized to establish a plant-wide decision making process to compen-

sate for interaction model violations inside local prediction models.

To date, various CDMPC algorithms [20, 19, 21, 67, 66, 76, 57] have been devoted to

linearly constrained dynamical systems. Such methods employ iterative Newton methods

and can exhibit poor convergence properties. In addition, the existing body of CDNMPC

research [89, 76, 68] has not properly addressed global convergence and closed-loop stabil-

ity guarantees for the coordinated network. This work focuses on overcoming convergence

issues with CDMPC structures and ensuring stability of the coordinated network. Also,

two on-line strategies were proposed to coordinate nonlinear decentralized MPC systems.

This thesis provided an approach for comparison of the performance of price-driven co-

ordinated schemes with respect to decentralized control systems.

In chapter 2, a price-driven coordinated distributed MPC scheme was proposed for

nonlinear systems. This interior-point approach extended ideas discussed in [20, 19, 21,

67, 66, 76, 57] and eliminates the need to identify the correct set of active constraints

190
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at the end of each coordination cycle. Assuming that a centralized MPC based on the

successive linearization can be designed to stabilize the entire system, sufficient conditions

were derived for the CDMPC network to ensures the closed-loop stability. Another

highlight of this chapter was the investigation of sufficient conditions to ensure stability

of the system when the algorithm is stopped prior to convergence to the desired optimal

solution. This scheme was limited to nonlinear systems that are open-loop stable, and is

further limited by the successive linearization method.

In chapter 3, an on-line price-driven coordination distributed NMPC scheme was pro-

posed for continuous-time nonlinear DAE systems, which extended the ideas introduced

in [89, 68, 76]. A novel structure was proposed via bi-level nonlinear optimization. In

this structure the coordinator constructs the upper level problem and the distributed

NMPC controllers belong to the lower level problem. Under certain preconditions, the

CDNMPC problem was relaxed into a series of quadratic programming problems subject

to a predefined trust-region radius. Sufficient conditions for global convergence of the

algorithm and stability guarantees were derived. The scheme can be applied both to

open-loop stable and unstable dynamics. The algorithm ensures that the overall interac-

tion error remains sufficiently small and minimum required length of prediction horizon

is selected

In chapter 4, two novel solution algorithms to coordinate distributed MPC controllers

were proposed, based on the price-driven concept. Similar to Chapter 3, bi-level opti-

mization techniques were deployed to solve the price-driven CDMPC problem. The first

scheme was an analytic approach to find closed-form solutions of plant-wide problems,

where all the constraints inside the structure of local controllers remain active at all

times. The proposed analytic CDMPC was able to reduce the computational load on the

coordination systems and derive the optimal plant-wide solution with the minimum num-

ber of coordination cycles. The second algorithm was an iterative approach to finding a
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local optimal solution to the general CDMPC problem via method of feasible directions.

This algorithm offered a globally convergent method for the general case when inequal-

ity constraints were present in the network. These schemes, together with an adaptive

horizon algorithms to ensure stability of the network, attempt to render the centralized

optimal solution. The scheme can be applied both to open-loop stable and unstable dy-

namics. Similar to Chapter 3, the dynamic optimization approach enabled the controlled

network to stabilize unstable open-loop dynamical systems without any modifications to

the native CDMPC formulation.

5.1 Recommendations for future research

This thesis provided a fundamental insight into the design and implementation of hi-

erarchical control architectures to coordinate network of distributed MPC and NMPC

systems. This section explores open research possibilities in the area of coordinated

distributed model predictive control.

In this study, the interactions between subsystems were defined in the form of equal-

ity constraints. A more detailed study can be carried out to include inequality-based

interrelations. Such inequality constraints may be interpreted as shared resources and/or

internal dependencies between neighboring subsystems. The procedure can be performed

by assigning an additional price vector for local violations of equality inequality binding

constraints. The resulting bi-level optimization problem would impose restrictions on the

price vector assigned to inequality interactions into the upper-level optimization prob-

lem. In other words, the coordination level must fulfill characteristics such as obtaining

non-negative values for the price vector assigned to the inequalities.

One approach is to develop an on-line hybrid coordination scheme based on the meth-

ods proposed in this thesis and the work of [68] to satisfy both types of aforementioned
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interaction models. Nonetheless, depending on the type of plant-wide inequality de-

pendencies, global convergence and closed-loop stability of proposed methods should be

considered. One may also consider developing a globally convergent bi-level optimiza-

tion method to satisfy both the upper-level and lower-level constraints in order to seek

a unique plant-wide optimal solution.

The control architectures introduced in this thesis were designed based on a particular

sampling rate. A broader scope may consider processes with different time scales and

controllers with multi-rate structures. In this regard, one may choose to extend the idea

introduced [66] to design a multi-rate coordination scheme for nonlinear systems. In

addition, throughout this work, the local information from subsystems was assumed to

be available at any rate as required by the coordinator. A more realistic approach would

be to design proper soft-sensing systems inside the coordinated structure to estimate the

required information. Nevertheless, incorporation of single-rate/multi-rate estimation

systems into the coordinated network would introduce new challenges such as maintaining

the closed-loop stability of the overall system. Accordingly, proper observability analysis

should be considered to ensure reliability and stability of the closed-loop system. Multi-

rate Kalman filtering procedures can be embedded into coordination systems to estimate

the unknown information based on available measurements.

Throughout this work, a number of CDMPC and CDNMPC algorithms were pro-

posed. A thorough study can be carried out to investigate computational properties of

these methods. For the CDMPC scheme introduced in Chapter 4, random abstractive

networks of distributed MPCs can be generated that differ in size and interaction com-

plexity. Thus, the ideas proposed by [19] and [57] can be extended to distributed MPC

systems with internal inequality constraints. Finally, it is beneficial to implement such

coordination algorithms for pilot sized industrial processing units. Proper communication

routines and protocols need to be designed under the distributed control system, prior
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to investigating advantages and disadvantages of CDMPC schemes in industrial appli-

cations. Four tank systems and the Two CSTR problem can be regarded as candidate

case studies to embark on such investigations. It is worth mentioning that, simulation

environments such as DeltaV Simulate� or Aspen PLUS Dynamics� are good starting

points to perform such analyses before any hardware related testing.
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