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Abstract

This thesis investigates various issues arising from crossover designs, which

received great attention for their efficiency. Crossover designs gain advantage

over parallel designs for efficient estimation of treatment effects and smaller

required sample size as the within-subject variability is in general smaller than

between-subject variability. We investigate optimal crossover designs under

various assumptions and objectives.

The within-subject comparisons allow subjects to serve as their own con-

trols. Such within-subject comparisons remove nuisance subject effects. The

direct treatment effects and carryover effects, which are portion of the di-

rect treatment effects being carried from one period to the next, are defined

through various assumptions. Often, washout periods between treatments are

applied between periods to minimize the carryover effects. However, it is of-

ten difficult to precisely determine or practically implement the sufficiently

long washout period. For this reason, optimal designs were constructed with

carryover effects.

First, we investigate the effect of unequal treatment variances. Tradition-

ally, the optimal designs were constructed with an assumption that all treat-

ments being tested have equal variances. However, this assumption may be too

naive to describe designs and experiments that are increasingly becoming more

complex. Therefore, we investigate how the unequal treatment variability af-

fects the efficiency of the existing optimal designs and construct appropriate

optimal designs with unequal treatment variability.
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Second, we investigate the assumption that the carryover effects are pro-

portional to the direct treatment effects. When a constant washout period

is applied and failed to remove the carryover effects completely, the existing

carryover effects may be described as a proportion of the direct treatment ef-

fect with an assumption that the proportion may be similar for all treatments

being compared. Under this model, we investigate the benefits of adding base-

line measurements where a portion of the direct treatment effects remain and

can be described by another proportion.

Lastly, we investigate response adaptive crossover designs with two different

objective functions. Adaptive designs were designed to allow clinical trials

to respond to the information acquired during the trials to achieve specific

objectives, which could include but not limited to allocating more subjects

to superior treatments, improving statistical efficiency, reducing the sample

size for cost consideration, increasing the sample size to maintain pre-specified

statistical power, or including covariates. In this chapter, we apply a multiple

objective function to find balance between treatment effects and statistical

efficiency and propose a new allocation method that achieves balance between

the two objectives.
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Chapter 1

Introduction

1.1 Background

This thesis investigates three interesting issues arising from crossover designs,

which is a special case of repeated measure designs. Crossover designs allo-

cate subjects to sequences of treatments in two or more periods. In crossover

trials, subjects serve as its own control, thereby effectively remove subject

specific nuisance effects. With a general notion that within-subject variability

is smaller than between subject variability, crossover designs have advantage

over parallel designs with respect to statistical efficiency. As with the nature

of repeated measure designs, within-subject measurements are most often cor-

related. In addition, crossover designs must deal with compound treatment

effects and may use washout periods to prevent the effects of treatments in

a period from affecting the subsequent periods. Such lasting effects beyond

the period of administration are called carryover effects and washout periods

are hoped to minimize them. However, it is difficult to determine and im-

plement an adequate length of washout periods. For this reason, studies on

optimal crossover designs proposed various assumptions on the carryover ef-

fects. Moreover, optimality of crossover designs is model dependent on the

model, the assumptions, the parameters included in the model, and the type

of responses, which could be either continuous or binary.

Grizzle (1965) showed that cross-over designs for two treatments and two

periods can be constructed so that direct treatment effects and carryover ef-

fects can be estimated separately. The carryover effects were mostly assumed
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to last one period and depend on the treatment administered in the prior

period. Many investigators conducted crossover designs and the analysis un-

der this model and thus we call this model as the traditional model(Carriere

(1994), Carriere and Reinsel (1992), Carriere and Reinsel (1993), Cheng and

Wu (1980), Freeman (1989) , Hedayat and Afsarinejad (1975), Hedayat and

Afsarinejad (1978), Kershner and Federer (1981), Kifer (1973), Kiefer (1975),

Kunert (1983), Kunert (1985)). Bishop and Jones (1984), Bose and Mukherjee

(2000), and Divecha and Gondaliya (2015) considered higher order carryover

effects where the carryover effects were assumed to last more than one period.

Moreover, Hedayat and Afsarinejad (2002) and Kunert and Stufken (2002,

2008) considered a self and mixed carryover effects where the carryover ef-

fects depend on a pair of treatments administered on the current and previous

periods.

Kiefer (1975) proposed a strategy of constructing A/D/E/T optimal de-

signs by using the properties of the Information matrix and the covariance

matrix of parameters. A design d is said to be universally optimal, i.e. A/D/E

optimal, if the Information matrix I is completely symmetric and its trace is

maximized (T optimal). The result is a T optimal design. Completely sym-

metric matrices can be written in the form of aIp + b1p1
′
p and have zero row

sums. This has been the basis for many researches investigating optimal de-

signs with various other model assumptions, which include Kunert (1983) and

Kushner (1997).

Baseline measurements were introduced to improve the statistical efficiency

of crossover designs and have been utilized in various ways. A natural approach

for the use of the baseline measurements was to take a difference from baseline

measurements as the responses (Wallenstein (1979), Kershner and Federer

(1981), Laska, Meisner, and Kushner (1983)) whereas other researchers pointed

out that it may not be appropriate as this approach often results in bias

(Hills and Armitage (1979), Willan and Pater (1986), Wallensteins and Fisher

(1977)). Another approach was developed under an assumption that baseline

measurements are positively correlated with treatment responses (Wallensteins

and Fleiss (1988), Kenward and Roger (2009), Jemielita (2017)). This method
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treats baseline measurements or combinations of baseline measurements as

covariates, eliminating the problem of biased estimation but optimal designs

can not be constructed under this method.

Most optimal designs are fixed in the planning stage of experiments in

a sense that a predetermined sample of subjects are recruited as planned.

Adaptive designs are gaining popularity as they utilize the information gath-

ered during the course of experiments. When one treatment happens to be

superior to another, ethical issues may arise as some subjects receive more of

better treatments and vice versa. This led to the development of numerous

adaptive allocation schemes based on the treatment effects (Zelen (2003), Wei

and Durham 1978, Bandyopadhyay, Biswas, and Mukherjee (2009a), Bandy-

opadhyay, Biswas, and Mukherjee (2009b)). Furthermore, acquired responses

were used to verify the determined sample size, which was estimated in the

planning stage of the experiments. In these adaptive designs, the sample size

and power may be updated (Armitage (1975), Wang (2014)).

1.2 Thesis Overview

In Chapter 2, we deal with the first of the three issues and construct optimal

designs when the treatment variances are unequal. The notion of unequal

treatment variance has been widely studied and discussed in the case of par-

allel designs. Levene (1960) developed Levene’s test to measure the difference

in the variances of treatments and Welch (1947) developed Welch’s t-test as

an alternative to parametric and non-parametric t tests for treatments with

unequal variances (Gosset (1908), Wilcoxon (1945)). However, it did not re-

ceive much attention in the construction of optimal crossover designs. For this

reason, we discuss the effects of unequal treatment variances on the construc-

tion of optimal two or three-period and two-treatment crossover designs. The

optimal designs are constructed using the orthogonality method proposed by

Kunert (1983).

In Chapter 3, we discuss the second issue, namely the use of baseline

measurements, and construct optimal designs when the carryover effects are

3



proportional to the direct treatment effects. The use of baseline measure-

ments were discussed and debated over the years. The baselines were first

considered as a reference to the treatment responses and the difference from

baselines were used as responses. Wallensteins and Fleiss (1988) showed that

this method is appropriate only when the correlation matrix is determined by

a correlation parameter and a length of washout period. Subsequent stud-

ies considered baselines or functions of baselines as covariates (Kenward and

Roger (2009),Jemielita (2017)). Liang and Carriere (2010) applied a model-

ing approach to baseline measurements and investigated the effect of including

baseline measurements in the design efficiency. The modeling approach indeed

utilizes the most information we can obtain from the baseline measurements

and thus is preferred over the use of changes from baselines and covariate

modelling approaches. In this chapter, the carryover effects in the treatment

responses and baselines are assumed to be the traditional carryover effects

and are proportional to the direct treatment effects. We update the universal

optimality theorem of Kushner (1997) for baseline models and link the uni-

versal optimal designs under the traditional model to the E optimal designs

under the proportional model. Then, we construct optimal designs for various

proportionality parameters.

Lastly, chapter 4 addresses the third issue, which is the thical issue arising

from clinical trials in the use of optimal designs. Response adaptive designs

were developed to allow the utilization of the information gathered in the

course of experiments to fulfill various objectives. Such adaptive designs are

constructed from a single objective and often shown to be not practical. Liang

and Carriere (2009) proposed a multiple objective response adaptive design

where multiple objectives are compromised using weight parameters. Also,

Yi and Wang (2009) and Li and Wang (2012) proposed a variance penalized

criterion where a scalar multiple of the variance of the total number successes

is subtracted from the mean total number of successes to maintain balance be-

tween two goals: to allocate more subjects to better treatments and to reduce

the variance. In this chapter we construct response adaptive designs based on

the two criteria above using the Generalized Estimating Equations approach
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and compare them to find the better of the two methods with respect to the

treatment effects and efficiencies. Then, we compare the method to other re-

sponse adaptive designs suggested by Li (2017) and Bandyopadhyay, Biswas,

and Mukherjee (2007) with respect to the allocations, treatment effects, and

efficiencies.
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Chapter 2

Optimal Crossover Design
Under Unequal Treatment
Variance Assumption
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Abstract

Crossover designs allow within-subject differences to estimate the effect of

treatments being studied. These designs gain advantages over parallel designs

in terms of estimation efficiency and reduced sample size as the within-subject

variability is in general smaller than between-subject variability in repeated

measures data. Optimal crossover designs have been generally constructed

based on an equal variance and covariance assumptions. Although it has

served its purpose well, such an assumption may be too naive to describe de-

signs and experiments that are increasingly becoming more complex. As these

designs often involve small samples, and some can actually be inappropriate

or inferior in practice, we construct optimal crossover designs under realistic

considerations of variance assumptions. We also develop and extend a test

for variance equality to repeated measures data in the presence of treatment

effects. We find that the efficiency of existing optimal designs can be as bad

as less than 60% of the constrained T optimal designs under the unequal vari-

ance assumptions and this is even more so with the popular two-treatment

two-period designs.
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2.1 Introduction

A crossover design is a special case of repeated measurement designs where

experimental units receive multiple treatments and one measurement is taken

from each treatment measurements are taken from each. In crossover designs,

within-subject measurements are compared for the efficacy of the test treat-

ment. Such within-subject comparisons remove nuisance subject effects and

are shown to have less variability compared to between-subject comparisons.

This property alone makes crossover designs popular with increased efficiency,

requiring fewer samples than parallel designs. In every subsequent period of

crossover designs, some effects are carried over from previous periods.

Optimal crossover designs for continuous responses have been constructed,

based on the Fisher’s Information, obtainable from considering a plausible

model. However, they are highly model dependent, which means changing

the model assumptions can have critical impact on the optimality of the con-

structed designs. Several carryover effect assumptions are available. Tradi-

tionally the carryover effects were assumed to last only one period and remain

constant for any combination of treatments that are administered in the cur-

rent and previous periods. It is also assumed that carryover effects are not

present in the first period. Saha (1983), Laska, Meisner, and Kushner (1983),

Jones, Kunert, and Wynn (1992) and Carriere and Reinsel (1992) consid-

ered the traditional model with random subject effects, where the repeated

responses of subjects were considered to have an equicorrelated correlation

structure. Bose and Mukherjee (2000) and Carriere (1994) considered higher

order carryover effects. Kunert and Stufken (2002) proposed a self and mixed

carryover effects model where carryover effects exist for one period and de-

pend on the pair of treatments. Cheng and Wu (1980) assumed that subject

effects are fixed whereas Carriere and Reinsel (1993) assumed that subject

effects are random. Hence, the literature on optimal crossover designs have

heavily focused mostly on how we assume these carryover effects and the gen-

eral strategy has been to assume non-ignorable carryover effects. This chapter

also considers finding optimal crossover designs with unequal carryover effects,
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while focusing on another practical issue inherent with these designs.

When involving multiple groups, it is natural to observe that populations

have varying degrees of magnitude in variances. In response to this issue,

Welch (1947) proposed a generalization of the Student’s t-test for populations

with unequal variances. The Welch’s t-test was proven to be robust against

unequal variances and almost as efficient as the Student’s t test and Mann-

Whitney U test even when the population variances are equal and sample sizes

are balanced (Derrick and White (2016)). Bartlett (1937) proposed a test of

equality of variances based on the normality assumption and Levene (1960)

proposed a robust test against the normality assumption, emphasizing its im-

portance in ensuring tests. However, the studies on optimal crossover designs

have not given considerations on the effect of unequal treatment variances.

Therefore, it is unclear whether the previously studied optimal designs can

still remain optimal or robust when treatment variances are unequal.

A number of crossover trials reported results, indicating that variances

of responses for multiple treatments are markedly different. For example,

Kovalchuk et al. (2018) reported that TEd90-100 group and the control group

had a variance ratio of 5.22. Romano et al. (2019) found that heart rates

for the fentanyl group had a variance of 289 beats per minutes whereas the

saline group had a variance of 16 beats per min, exhibiting a variance ratio

of 18 times over the saline group. Clearly, these exhibit a variance inequality

problem. Therefore, there is a need to ensure that the design being adopted

in practice is defensible, optimal or robust against unequal variances. Further,

a test of unequal treatment variances for repeated measure data is needed

to readily detect the problem, if existed, along with the effect of unequal

treatment variances on the efficiency of existing popular crossover designs.

Crossover designs with p = 2 and t = 2 are of particular importance as

these designs are widely popular in practice. Carriere and Reinsel (1993)

proved that design that equally allocates on all four sequences (AA/BB/

AB/BA) is universally optimal in the presence of carryover effects. How-

ever, the crossover design allocating equally only on sequences AB and BA

is naturally popular in practice. Grizzle (1965), Freeman (1989), and other

9



researchers discussed the limitations of the design with sequences AB and BA

in the presence of carryover effects and proposed to use baselines, more treat-

ment sequences, or more periods as possible solutions. As a result, optimal

three-period crossover designs gained some popularity. However, all assumes

the typical equal variance assumption in measurement errors.

This chapter aims to construct optimal crossover designs under the as-

sumption of unequal treatment variances, unequal carryover effects and ran-

dom subject effects. We consider efficiencies of the new optimal designs over

the existing designs and discuss some practical alternatives. Section 2 will first

review crossover design models and optimality criteria. Section 3 constructs

new optimal designs and explores the comparative efficiencies. Finally, Section

4 will develop tests for equal treatment variances. followed by the conclusion.

2.2 Model

2.2.1 Crossover Design Models

Denote the class of crossover designs with t treatments, p periods, and n

subjects by Ωt,p,n. Let Yij denote the continuous response variable in the

period i from subject j, and we consider the following model:

yij = µ+ πi + τd(i,j) + γd(i−1,j) + ξj + εij (2.1)

where µ, πi, τd(i,j), γd(i−1,j), ξj and εij refer to the overall mean effect, periodic

effects, direct treatment effects, carryover effects, random subject, and mea-

surement errors for i = 1, 2, · · · , p, j = 1, 2, · · · , n, and k = 1, 2, · · · , K. The

ξj and εij are identically and independently distributed with a mean of 0 and

variances of σ2
s and σε, respectively. Then, cor(Yij, Yi′j) = ρ = σ2

s/(σ
2
s + σ2

ε ).

A general form of correlation structure can be written as
1 ρ · · · ρ1+(p−2)Q

ρ 1 · · · ρ1+(p−3)Q

...
. . .

...
ρ(1+(p−2)Q) ρ(1+(p−3)Q) · · · 1

 .
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If ρ = 0, then responses from a subject are uncorrelated. If ρ 6= 0 and Q = 1,

then responses have an auto-regressive covariance structure. If ρ 6= 0 and Q =

0 then responses have an equicorrelated covariance structure. Often responses

from the same subject are assumed to have an equicorrelated structure. For

example, the covariance matrix for Ω(t, 2, n) can be written as(
σ2
s + σ2

ε σ2
s

σ2
s σ2

s + σ2
ε

)
=

(
σ2 ρσ2

ρσ2 σ2

)
Furthermore, the covariance matrices of errors vary for treatment sequences

when the treatment variances are unequal. We define ξ′ij = εij + ξj and ξ′j =

(ξ′1j, · · · , ξ′pj). Then for any subject j in treatment sequence k, the covariance

matrix of ξ′j for Ω(2, 2, n) denoted by COV (ξ′j) = Vk is defined as,

Vk =

(
σ̃2
d1k

ρσ̃d1k σ̃d2k
ρσ̃d1k σ̃d2k σ̃2

d2k

)
, (2.2)

where ε′ijAs and ε′ijBs are mutually independent.

For Ω(2, 3, n), the covariance structure under the unequal treatment vari-

ance assumption can be defined as

Vk =

 σ̃2
d1k

ρσ̃d1k σ̃d2k ρσ̃d1k σ̃d3k
ρσ̃d1k σ̃d2k σ̃2

d2k
ρσ̃d2k σ̃d3k

ρσ̃d1k σ̃d3k ρσ̃d2k σ̃d3k σ̃2
d3k

 .

2.2.2 Optimality Criteria

The Fisher information matrix measures the amount of information of the pa-

rameters that the observed random variable Y contains. Given any vector of

parameters θ and a probability density function f(y;θ), the Fisher Informa-

tion matrix can be written as

I(θ) = E

[
(
δ

δθ
logf(y;θ)2|θ

]
(2.3)

= E

[
− δ2

δθ2 logf(y;θ)|θ
]
. (2.4)

Linear models, including the traditional crossover design model, can be

written in the following general form.

11



y = 1npµ+ Pπ + Tdτ + Fdγ + ε = Xθ + ε (2.5)

where y denotes the np×1 vector of responses and X denotes the np×(1+p+2t)

design matrix for the (1 +p+ 2t)×1 vector of parameters θ =
(
µ π τ γ

)′
,

and ε denotes the np× 1 vector of errors with mean 0 and covariance matrix

of σ2Σ. When treatments have unequal variances, the covariance matrix Σ

takes a specific form, which we will describe next. The Kronecker product

noted by ∗ is used to define the covariance matrix. The covariance matrix

is defined as Σ = In ∗ V where V is a n × n block diagonal matrix with

the lth diagonal block element for the covariance matrix, Vl, corresponds to

the treatment sequence that patient l receives, for l = 1, 2,· · · , n. We can

partition the design matrix X from (2.5) into 3 blocks in the following way.

X1d = (1np|P ), X2d = (Fd), and X3d = Td with a corresponding scalar or

vector of parameters θ1 =
(
µ π′

)
, θ2 = (γ)′ and θ3 =

(
τ
)′

. The covariance

matrix Σ is positive definite so that Σ−1/2 exists. Multiplying Σ−1/2 on the

left of all terms in the above model gives

Σ−1/2y = Σ−1/2Xθ + Σ−1/2ε. (2.6)

The mean and variance of the new error term are E(Σ−1/2ε) = 0 and

V ar(Σ−1/2ε) = σ2Inp. Now the responses, (Σ−1/2y), are independent and

identically distributed with mean 0 and variance of σ2. Define W = Σ−1/2y

and Z = Σ−1/2X then

I(θ) = E

[
− d2

dθ2 (−1

2
log(2πσ2)− 1

2σ2
(W − Zθ)T (W − Zθ)|θ

]
(2.7)

= E

[
− d2

dθ2 (− 1

2σ2
(W TW − θTZTW −WZθT + θTZTZθ))|θ

]
(2.8)

= E

[
− d2

dθ2 (− 1

2σ2
θTZTZθ)|θ

]
(2.9)

=
1

σ2
ZTZ =

1

σ2
XTΣ−1X. (2.10)

The Information Matrix can be obtained as follows

12



Id =

X ′1dΣ−1X1d X ′1dΣ
−1X2d X ′1dΣ

−1X3d

X ′2dΣ
−1X1d X ′2dΣ

−1X2d X ′2dΣ
−1X3d

X ′3dΣ
−1X1d X ′3dΣ

−1X2d X ′3dΣ
−1X3d

 (2.11)

and the Information Matrix for estimating the direct treatment effects is

Id(θ3) = X ′∗3dpr
⊥(X∗1d|X∗2d)X∗3d (2.12)

The inverse of the Fisher information is a lower bound of the variance of any

unbiased estimators of a parameter and the asymptotic variance of maximum

likelihood estimators. For this reason, the approaches to find optimal designs

have utilized the Information matrix. Define T -optimality criterion as a way

to measure the trace of the Information Matrix, I(θ)d, of competing designs

to find the design with a maximum trace.

Kiefer (1975) showed that the universally optimal design, which is D(determinant),

A(average), and E(Minimum Eigenvalue) optimal, maximizes Φ(Id) for any Φ

satisfying the following conditions.

1. Φ is concave.

2. Φ(S ′IS) = Φ(I) for any permutation matrix S.

3. Φ(bI) is non-decreasing in the scalar b > 0.

Proposition 1. Kiefer (1975). Any design, d∗, satisfying the following con-
ditions is universally optimal.

1. Ad∗ is completely symmetric that Ad∗ = aIt + b1t1t
′ for some constant a

and b.

2. tr(Ad∗) ≥ tr(Ad) for all d ∈ D, that is d∗ is T optimal.

Define the following notations X∗sd = Σ−1/2Xsd, a projection matrix pr(Xsd)

= Xsd(X
′
sdXsd)

−1X ′sd, and pr⊥(Xsd) = I − pr(Xsd) for s =1, 2, 3. Then

the matrix X information matrix of crossover design d for the estimation of

treatment effects θ3 is given as follows

Md(θ3) = X∗
′

3dpr
⊥(X∗1d|X∗2d)X∗3d. (2.13)

Define a simpler model using the partitioned design matrices as yd = X1dθ1 +

X3dθ3 + ε.

13



Proposition 2. Kunert (1983). The trace of the information matrix for es-
timating the treatment effects θ3, tr(Md(θ3), has an upper bound of tr(X ′3d
pr⊥(X1d)X3d) and this upper bound is achieved if any of the following condi-
tions are satisfied.

1. X∗
′

3dpr
⊥(X∗1d)X

∗
2d = 0t×p

2. X∗
′

3dpr
⊥(X∗1d)X

∗
2d(X

∗′
2dpr

⊥(X∗1d)X
∗
2d)
− = 0t×p

Proof. Using the properties of a block matrix we obtain,

pr(X∗1d|X∗2d) = pr(X∗1d) + pr{pr⊥(X∗1d)X
∗
2d}

⇒ pr⊥{(X∗1d|X∗2d)}
= pr⊥(X∗1d)− pr⊥(X∗1d)X

∗
2d(X

∗′
2dpr

⊥(X∗1d)X
∗
2d)
−X∗

′

2dpr
⊥(X∗1d)

Then multiply X∗
′

3d and X∗3d on the left and right side of the terms to get the
Information matrix. Using the property of traces of sums of matrices that
tr(A + B) = tr(A) + tr(B) and the property of projection matrices that all
eigenvalues are 1 or 0, the upper bound of the trace of the information matrix
is attained if any of the above three conditions are satisfied.

2.2.3 Strategies for Finding Optimal Designs

Kunert (1983) proposed the following strategies to construct the universally

optimal design. Let ∆ be a class of crossover designs and define ∆∗ to be the

set of all d ∈ ∆ such that X ′3dpr
⊥(X1d)X3d is completely symmetric and has

maximum trace in the class ∆, then all designs in ∆∗ are universally optimal

in estimating treatment effects under the simpler model.

Proposition 3. Suppose that there is a design d∗ ∈ ∆∗ such that
X∗3d∗pr

⊥(X∗1d∗)X2d∗∗ = 0. Then d∗ is the universally optimal design for es-
timation of treatment effects under the simpler model by proposition 1 and 2.
Also, the set of all D optimal designs and A optimal designs for the estimation
of treatment effects is equal to the subset of ∆∗, which fulfills the orthogonality
condition.

Proof. The proof for this proposition is straightforward from Proposition 1
and 2.

This proposition provides a simple tool to find universally optimal designs

but it is possible that no design d ∈ ∆∗ satisfies the orthogonality condition.

Then another strategy can be applied.

14



Proposition 4. First find d∗ ∈ ∆∗ such that Id∗ is completely symmetric and
has maximum trace over ∆∗ and tr(Id∗) ≥ tr(X3dpr

⊥(X∗1d)X3d) for all d in ∆̃,
which is a subset of ∆. Then d∗ is universally optimal for estimating treatment
effects over ∆∗ ∪ ∆̃.

2.3 Optimal Designs

In this chapter, we investigate crossover designs with t = 2. For any treat-

ment sequence k, there is a dual sequence k′, which is obtainable by replacing

treatment A with B and vice versa. For example, AA is a dual sequence of

BB.

2.3.1 Uncorrelated Responses σ2
A 6= σ2

B

First, we consider the case where responses from the same subject are indepen-

dent. From this point, we denote treatment A and B by 1 and 2 respectively

and allocations of treatment sequence k is also denoted with numbers.

Lemma 1. For any design d ∈ Ωp,2,n, the upper bound of the Information ma-
trix for estimating treatment effects, X ′∗3dpr

⊥(X∗1d)X
∗
3d, is completely symmetric

where X∗1d = 1np.

Proof. The upper bound of the Information matrix for estimating treatment
effects is defined as

X∗
′

3dpr
⊥(X∗1d)X

∗
3d

= X ′3dΣ
−1X3d −X ′3dΣ−1X1d(X

′
1dΣ

−1X1d)
−X ′1dΣ

−1X3d

=
(
qd1
σ2
1

qd2
σ2
2

)
I2 −

1

qd1/σ
2
1 + qd2/σ

2
2

( qd1
σ2
1

qd2
σ2
2

)(
qd1
σ2
1

qd2
σ2
2

)
= 2

qd1qd2

qd1σ
2
2 + qd2σ

2
1

I2 −
qd1qd2

qd1σ
2
2 + qd2σ

2
1

121′2

where qd1 = n(2p11 + p12 + p21) and qd2 = n(2p22 + p12 + p21).

Lemma 2. For any design d ∈ Ωp,2,n, the class of designs ∆∗ that maximizes
the trace of the upper bound of the Information matrix for estimating direct
treatment effects is defined as q1d = np/(1 + r).

Proof. The trace of the upper bound is defined as

T (qd1) = trace(X ′3dpr
⊥(X1d)X3d)

=
2qd1qd2

qd1σ2
2 + qd2σ2

1

=
2qd1(pn− qd1)

qd1r2σ2
1 + (pn− qd1)σ2

1
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where qd1 + qd2 = pn and r = σB/σA.
Then, we solve for design d∗, which satisfies the optimizing conditions

below.

∂

∂qd1

T (qd∗1) = −2q2
d∗1(r2 − 1) + 4npqd∗1 − 2n2p2

σ2
1(np+ (r2 − 1)qd∗1)

= 0, (2.14)

∂2

∂q2
d1

T (qd∗1) = − 4n2p2r2

σ2
1(np+ (r2 − 1)qd∗1)3

< 0. (2.15)

The second derivative condition is satisfied as r, σ2
1, n, p, qd1 > 0 for any

design d. The first condition is satisfied for any design d∗ that satisfies qd∗1 =
np/(1 + r).

Kunert (1983) proposed that universally optimal designs can be obtained

using the universal optimality criteria of Kiefer (1975) and block matrix de-

composition of the Information matrix. Therefore, design d∗ is universally

optimal in estimating the direct treatment effects if and only if d∗ maximizes

the trace of the Information matrix, has completely symmetric Information

matrix under the simpler model, and satisfies one of the orthogonality condi-

tions in Proposition 2.

In the case of p = 2, the first orthogonality conditions, (1) of Proposition

2, are defined as

X ′3dΣ
−1P2 −X ′3dΣ−11np1

′
npΣ

−1P2/1
′
npΣ

−11np =

(
0
0

)
(2.16)

X ′3dΣ
−1Fd −X ′3dΣ−11np1

′
npΣ

−1Fd/1
′
npΣ

−11np =

(
0 0
0 0

)
(2.17)

where P2 =

(
0
1

)
⊗ 1n

Lemma 3. For crossover designs in Ω2,2,n, the designs that satisfy the equation
(2.16) are balanced on dual (AB/BA).

Proof.

X ′3dΣ
−1P2 −X ′3dΣ−11np1

′
npΣ

−1P2/1
′
npΣ

−11np

=

(
ld12/σ

2
1

ld22/σ
2
2

)
− ld12/σ

2
1 + ld22/σ

2
2

qd1/σ2
1 + qd2/σ2

2

(
qd1/σ

2
1

qd2/σ
2
2

)
.

The above equation reduces to qd1 = ld12qd2/ld22. With ld12 = n(p11 + p21),
ld22 = n(p22 + p12), qd1 = n(2p11 + p12 + p21), qd2 = n(2p22 + p12 + p21), and
p11 + p22 + p12 + p21 = 1, the equality holds iff p12 = p21.
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Lemma 4. Among the set of crossover designs in Ω2,2,n with p12 = p21, sat-
isfying the equation in (2.16), designs with p11 = p2

12/p22 satisfy the second
condition in (2.16).

Proof.

X ′3dΣ
−1Fd −X ′3dΣ−11np1

′
npΣ

−1Fd/1
′
npΣ

−11np

=

(
p11/σ

2
A p21/σ

2
A

p12/σ
2
B p22/σ

2
B

)
− 1

qd1/σ2
A + qd2/σ2

B

(
qd1/σ

2
A

qd2/σ
2
B

)(
p11
σ2
A

+ p12p21
σ2
Bσ

2
A

+ p22
σ2
B

)
=

1

qd1/σ2
A + qd2/σ2

B

(
p11p22 − p2

12 −(p11p22 − p2
12)

−(p11p22 − p2
12) p11p22 − p2

12

)
.

Theorem 1. For crossover designs in Ω2,2,n, the universally optimal design
for estimating the direct treatment effects is given by p11 = 1/(1 + r)2, p22 =
r2/(1 + r)2, and p12 = p21 = r/(1 + r)2

Proof. The proof for Theorem 5 is straightforward by using Proposition 1
(Kiefer (1975)), Proposition 2 (Kunert (1983)), lemma 1-4, and some arith-
metic.

Naturally, the condition of unequal variance in treatment effects alters

the optimal designs that we have become used to. Allocation to sequences

AA/BB/AB/BA is no longer equal and requires more subjects to treatments

with higher variances. For p = 2, the pattern is rather simple.

Three-Period Two-Treatment Designs

In Ω2,3,n there are 23 treatment sequences namely (AAA, AAB, ABB, ABA,

BBB, BBA, BAA, BAB). As the Propositions 1 and 2 still hold for p periods,

the orthogonality conditions are defined as

Table 2.1: Universally optimal two-period designs with optimal allocations for
p = 2 and t = 2 with σ2

A 6= σ2
B.

r = σB/σA pAA pBB pAB pBA.
0.1 0.83 0.01 0.08 0.08
0.25 0.64 0.04 0.16 0.16
0.5 0.44 0.12 0.22 0.22
1 0.25 0.25 0.25 0.25
2 0.12 0.44 0.22 0.22
4 0.04 0.64 0.16 0.16
10 0.01 0.83 0.08 0.08
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X ′3dΣ
−1P3 −X ′3dΣ−11np1

′
npΣ

−1P3/1
′
npΣ

−11np =

(
0 0
0 0

)
, (2.18)

X ′3dΣ
−1Fd −X ′3dΣ−11np1

′
npΣ

−1Fd/1
′
npΣ

−11np =

(
0 0
0 0

)
, (2.19)

where P3 =

00
10
01

⊗ 1n.

Lemma 5. For crossover designs in Ω2,3,n, the designs that satisfy equation
(2.18) are the ones that satisfy the following equations,

ld12 =
qd1ld22

qd2

, (2.20)

ld13 =
qd1ld23

qd2

, (2.21)

where ld12 = p111 + p112 + p211 + p212 and ld13 = p111 + p121 + p211 + p221.

Lemma 6. For crossover designs in Ω2,3,n, the designs that satisfy equation
(2.19) are the ones that satisfy the following equations,

md11 =
md12rd1

qd2

(2.22)

md22 =
md21qd2

qd1

(2.23)

where md11 = 2p111 + p112 + p211, md22 = 2p222 + p221 + p122, md12 = p211 +
p212 + p221 + p121, and md21 = p121 + p122 + p112 + p212.

Proof. The proofs for lemma 5 and 6 are analogous to that of lemma 3 and
4.

Using Equations (20)-(23), we come up with a sufficiency condition for

orthogonality criteria.

qd1 =
ld13qd2

ld23

=
ld12qd2

ld22

=
md11qd2

md12

=
md21qd2

md22

. (2.24)

Using the identity qd1 + qd2 = 2np, we get

qd1 =
npld13

ld23 + ld13

=
npld12

ld22 + ld12

=
npmd11

md12 +md11

=
npmd21

md22 +md21

. (2.25)
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Theorem 2. Among the crossover designs in Ω2,3,n, if design d satisfies

qd1 =
npld13

ld23 + ld13

=
npld12

ld22 + ld12

=
npmd11

md12 +md11

=
npmd21

md22 +md21

=
np

1 + r
, (2.26)

then d is the universally optimal design for estimating the treatment effects.

Proof. The proof is straightforward from Proposition 1, Proposition 2, Lemma
1, Lemma 2, and equation (2.25).

The set of designs that satisfy (2.26) can be classified into 4 designs, namely

Design I, II, III, IV with 4, 8, 6, and 6 treatment sequences. Design I with

4 treatment sequences is a direct extension from t = 2 and p = 2. Whereas

Design II consists of all 8 treatment sequences. From Design II, we can derive

Design III(IV ) by allocating pABB(pAAB) = p∗ as shown in Table 2.3 and

some examples of these designs are shown in Table 2.4. Table 2.4 only shows

the case of r > 1 as the case of r < 1 is analogous to r > 1 and can be obtained

by interchanging the allocations of dual sequences.

In Designs II − IV , we can observe the dual balanced property on the se-

quencesABA/BAB, ABB/BAA andAAB/BBA while the sequences AAA/BBB

depends on the ratio of treatment variances. It can be noted that optimal de-

signs depend on the ratio r and need to allocate more subjects to AAA/BBB

as r increases/decreases from 1. Design I is a strictly extended version of the

existing optimal two-period design and Design II-IV are slight variations of

it. Design III and IV use the same allocation on dual treatment sequences

AAB/BBA and ABB/BAA. It can be shown that under the equal treatment

variability assumption of r = 1, Design III reduces to the universally opti-

mal design suggested by Laska, Meisner, and Kushner (1983) and Design IV

reduces to the nearly optimal design suggested by Carriere (1994).
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Table 2.2: Proposed universally optimal designs under unequal treatment vari-
ances for p = 3 and t = 2.

Design K Treatment Allocations Conditions
Sequences

I 4

ABA
BAB
AAA
BBB

r
(1+r)2
r

(1+r)2
1

(1+r)2

r2

(1+r)2

any r > 0

II 8

AAB
BBA
ABB
BAA
ABA
BAB
AAA
BBB

pAAB
pAAB
pABB
pABB

(2r − p∗(1 + r)2)/2(1 + r)2

(2r − p∗(1 + r)2)/2(1 + r)2

(2− p∗(1 + r)2)/2(1 + r)2

(2r2 − p∗(1 + r)2)/2(1 + r)2

pAAB + pABB = p∗

p∗ ≤ 2
(1+r)2

for r > 1

p∗ ≤ 2r2

(1+r)2

for 0 < r < 1

Table 2.3: Special cases of Design II from Table 2.2.

Design K Treatment Allocations Conditions
Sequences

III 6

AAB
BBA
ABA
BAB
AAA
BBB

p∗

p∗

(2r − p∗(1 + r)2)/2(1 + r)2

(2r − p∗(1 + r)2)/2(1 + r)2

(2− p∗(1 + r)2)/2(1 + r)2

(2r2 − p∗(1 + r)2)/2(1 + r)2

p∗ ≤ 2
(1+r)2

for r > 1

p∗,≤ 2r2

(1+r)2

for 0 < r < 1

IV 6

ABB
BAA
ABA
BAB
AAA
BBB

p∗

p∗

(2r − p∗(1 + r)2)/2(1 + r)2

(2r − p∗(1 + r)2)/2(1 + r)2

(2− p∗(1 + r)2)/2(1 + r)2

(2r2 − p∗(1 + r)2)/2(1 + r)2

p∗ ≤ 2
(1+r)2

for r > 1

p∗,≤ 2r2

(1+r)2

for 0 < r < 1
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Table 2.4: Proposed universally optimal designs under unequal treatment vari-
ances with 6 sequences.

r
Allocations

ABB(AAB) BAA(BBA) ABA BAB AAA BBB
r > 1 2

(r+1)2
2

(r+1)2
r−1

(r+1)2
r−1

(r+1)2
0 r−1

r+1

1.5 0.32 0.32 0.08 0.08 0 0.2
2 0.22 0.22 0.11 0.11 0 0.34
3 0.125 0.125 0.125 0.125 0 0.5
4 0.08 0.08 0.12 0.12 0 0.60

From the table 2.3, we can choose the design with the largest value for

p = pABB = pBAA. Then, the proportion of subjects assigned to AA/BB in

their first two periods, pAAA + pAAB + pBBB + pBBA, is minimized and one of

the two sequences AAA/BBB is removed from the design depending on the

value of r. As a result, 2r/(1+r) or 2/(1+r) of all subjects would be assigned

to the sequences AB/BA in the first two periods, while only (1− r)/(1 + r) or

(r− 1)/(1 + r) would be assigned to AAA/BBB depending on the value of r.

For example, 1/3 of subjects would be allocated to the sequences AAA/BBB

for p = 3 designs when r = 0.5 whereas 5/9 of subjects would be allocated to

the sequences AA/BB for p = 2 designs. This means that more subjects are

assigned to the treatment sequences with treatments crossing over.

2.3.2 Correlated Responses

Responses from the same subjects are more likely correlated. We now consider

correlated responses. As a first step to accommodating unequal variances, we

assume a constant correlation of ρ. We have three choices for simpler models

to acquire the upper bound for the trace of the Information matrix. That is to

choose one of the followings as X∗1 : overall mean effect, period effects, or car-

ryover effects. The orthogonality conditions for the upper bounds constructed

from the first two effects cannot be satisfied. However, the orthogonality con-

ditions for the upper bounds created from having carryover effects as X∗1 are

satisfied for any designs in the Ω2,2,n. That is, the Information matrix for

estimating the direct treatment effects after accounting for the other effects
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can simply be written as T ′∗d pr
⊥(F ′∗d )T ∗d .

Lemma 7. For any crossover design d ∈ Ω2,2,n, the Fisher’s Information
matrix for estimating direct treatment effects accounting for other effects can
be reduced to Id = T ′∗d pr

⊥(F ′∗d )T ∗d . Thus, any design that satisfies the optimality
criteria on the Information matrix is optimal.

Proof. Refer to Appendix.

It can be shown that there is no universally optimal design, a design that

has a completely symmetric Information matrix and is T optimal. Therefore,

we examine designs that are optimal in some subset of Ω2,2,n. Two subsets

are being investigated in this chapter: 1) the set of designs that are uniform

on the first period, with the same number of subjects assigned. 2) the set of

designs that follow the ratio adjustment for independent case. The first set of

designs are the ones that satisfy the constraints p11 +p12 = p22 +p21 = 0.5 and

the second set of designs are the ones that satisfy the constraints p11 + p12 =

1/(1 + r) and p22 + p21 = r/(1 + r). These sets include the universally optimal

designs constructed under the independent assumption of the responses.

Theorem 3. The following designs are T optimal in the subset of Ω2,2,n with
allocations to AA/BB/AB/BA.

1. d1 : 1
2(1+r)

, r
2(1+r)

, r
2(1+r)

, 1
2(1+r)

for p11 + p12 = p22 + p21.

2. d2 : 1
(1+r)2

, r2

(1+r)2
, r

(1+r)2
, r

(1+r)2
for p11+p12 = 1

(1+r)
and p22+p21 = r

(1+r)
.

Proof. Refer to the Appendix

In the case of p = 3, the Fisher’s information matrix for estimating direct

treatment effects after accounting for other effects has no explicit form. There-

fore, numerical ”Nelder-Mead” method was used to compute the T -optimal

designs.

2.3.3 Efficiency

The efficiencies of T -optimal designs under the unequal variance with con-

straints are compared to the existing universally optimal design

(AA/BB/AB/BA with equal allocation) and also to the design (AB/BA with
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equal allocation) and shown in Table the 2.5. The efficiencies are computed

as the ratio of the variances of estimated treatment effects τ̂ .

Table 2.5: Entries are ratio of variances of estimated treatment effects for
designs T -optimal designs under the unequal variance assumption over the
designs AA/BB/AB/BA and AB/BA with an equal allocations. The con-
straints are d1, p11 + p12 = p21 + p22 = 0.5, for the first half and d2,
p11 + p12 = 1/(1 + r) and p22 + p21 = r/(1 + r), for the second half.

Constraints r \ ρ 0 0.1 0.3 0.5 0.7 0.9
d1 1/10 0.75 0.76 0.77 0.79 0.83 0.91

AA/BB/AB/BA 1/4 0.85 0.85 0.86 0.86 0.87 0.91
1/3 0.89 0.89 0.89 0.89 0.9 0.92
1/2 0.95 0.95 0.95 0.94 0.94 0.95

1 1 1 1 1 1 1
d1 1/10 0.37 0.39 0.42 0.43 0.43 0.42

AB/BA 1/4 0.42 0.43 0.44 0.43 0.4 0.32
1/3 0.44 0.45 0.45 0.43 0.38 0.28
1/2 0.47 0.48 0.47 0.43 0.36 0.22

1 0.5 0.5 0.48 0.43 0.34 0.16

d2 1/10 0.6 0.62 0.65 0.7 0.76 0.88
AA/BB/AB/BA 1/4 0.74 0.74 0.76 0.78 0.81 0.89

1/3 0.8 0.8 0.81 0.82 0.84 0.9
1/2 0.9 0.9 0.9 0.91 0.91 0.93

1 1 1 1 1 1 1
d2 1/10 0.3 0.32 0.35 0.38 0.4 0.4

AB/BA 1/4 0.37 0.38 0.39 0.39 0.37 0.31
1/3 0.4 0.41 0.41 0.4 0.36 0.27
1/2 0.45 0.45 0.44 0.41 0.35 0.22

1 0.5 0.5 0.48 0.43 0.34 0.16

The efficiency tables show that the T -optimal designs in the restricted class

of ω(2, 2, n) are more efficient than AB/BA or AA/BB/AB/BA with equal

allocations when treatment effects have unequal variances. The T optimal

designs under the constraint 2, d2, demonstrates better efficiency than d1.

However, under the constraint d2, the design allocates more subjects to the

treatment sequences AA/BB than d1. The larger variance inequality, the

fewer subjects available for within subject contrasts.

The Design d1 is balanced on the first period, which means that the pro-

portions of subjects allocated to treatment A and B in the first period are
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equal (50%). The sum of allocations to the sequences AA/BB is equal to that

of AB/BA. The universally optimal design under equal variance assumption

has the same property. That is to say, the new constrained T -optimal de-

sign can replace the equal allocation design without much changes as these

two designs assign the same proportion of subjects to the crossover sequences

AB/BA. This indicates that a researcher using the equal allocation design

AA/BB/AB/BA may test the equality of the treatment variances during the

experiment/trial and adjust the allocations based on the estimated ratio r in

the case of sequential designs.

Table 2.6: Ratio of variances of estimated treatment effects for T optimal
designs under the unequal variance assumption for p = 3 over the design
ABB/BAA with an equal allocation.

r \ ρ 0 0.1 0.3 0.5 0.7 0.9
1/10 0.599 0.651 0.740 0.819 0.893 0.965
1/4 0.735 0.774 0.837 0.889 0.933 0.977
1/3 0.800 0.834 0.884 0.921 0.952 0.982
1/2 0.900 0.925 0.951 0.959 0.967 0.984

1 1 1 1 1 1 1

The T optimal designs for ω2,3,n have allocations similar to that of Table

2.3 when ρ is small. As r increases, the proportion of allocation to the treat-

ment sequence BBB increases. As ρ increases with a fixed r, the proportion

of sequences ABB/BAA increases while the proportion to the treatment se-

quence BBB decreases with some allocation (20% ∼ 40% combined) to the

sequence BBA and BAB. For example, the T -optimal design is pABB = 0.3,

pBAA = 0.15, pBBA = 0.14, pBAB = 0.17, and pBBB = 0.24 for r = 3 and

ρ = 0.5. The overall relative efficiency of the existing universally optimal

design under the equal treatment variance, ABB/BAA, is consistently high

at 80% or higher compared to the T -optimal design under unequal variance

assumption when ρ ≥ 0.5 or r ≥ 1/3.
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2.4 Test of Equality of Treatment Variances

The results from the previous subsections are relevant if and only if the treat-

ment variances are unequal and we can estimate the difference. We review the

methods for testing equality of treatment variances and extend it to 2-period

2-treatment 4-sequence designs. Suppose that errors ηjk’s and εijk’s have the

same means and variances as in (2.1). Further, assume that these errors follow

the normal distribution. Then,

yjk = Xjkθ + εjk, for j = 1, · · · , nk (2.27)

where θ = (µ, π1, · · · , πp, τ1, · · · , τt, γ1, · · · , γt)T and εjk ∼ N(0,Σk).

Define the within sequence sample means µ̂k = Σnk
j=1(yjk)/nk for k = 1,

2, ..., K. Then, the covariance matrix for responses from the same subject

can be estimated by p × p matrix V̂k = Σnk
j=1(yjk − µ̂k)(yjk − µ̂k)′ for each

k. µ̂k’s and V̂k’s are unbiased estimates for µk’s and Vk’s respectively and

(nk − 1)V̂k ∼ Wp(nk, Vk).

Chinchilli et al. (2005) proposed a maximum likelihood and restricted maxi-

mum likelihood methods for parameter estimation, where variance components

are estimated in closed forms. Also, Chinchilli (1996) proposed a test of un-

equal variance in which the likelihood-based estimates of the variances of the

treatment sequences were used. Then, the ratio of the variances of treatment

sequences were tested using a F test statistic based on the two estimated

variances, which are chi square random variables. Shanga (2003) and Jung

(2009) presented a likelihood ratio test for equality of treatment variances for

some designs (AB/BA, ABC/BCA/CAB). For-two period two-treatment

two-sequence design, Jung (2009) showed that,

VAB =

(
0 1
1 0

)
VBA

(
0 1
1 0

)
,

V̂AB + V̂ ∗BA =

(
V̂11 V̂12

V̂12 V̂22

)
∼ W2(nAB + nBA, VAB),

with the idea that VAB can be transformed to VBA by V̂ ∗BA =

(
0 1
1 0

)
V̂BA

(
0 1
1 0

)
,
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to provide maximum likelihood estimators and the likelihood ratio test statis-

tics. However, this result is limited on the equal allocation on sequence

AB/BA.

We introduce two tests of unequal variances, one using AA/BB, which

complements the Jung’s test, and the other incorporating all four sequences

AA/BB/AB/BA. The test, t1, based on Design with sequences AA/BB

can be considered a test of equal variance from a repeated measures de-

sign with two distinct treatments. Test, t2, based on Design with sequences

AA/BB/AB/BA uses estimates from t1, which we give details below for test-

ing H0 : σ2
A = σ2

B.

First, we construct the first test, t1. Assume that

V̂AA = V̂1 =

(
v̂11,1 v̂12,1

v̂12,1 v̂22,1

)
∼ W2(nAA, VAA),

V̂BB = V̂2 =

(
v̂11,2 v̂12,2

v̂12,2 v̂22,2

)
∼ W2(nBB, VBB).

The likelihood function and the log-likelihood function can be derived as

L =Π2
k=1

ck
det(Vk)(nk−1)/2

exp(−tr(V̂kV −1
k )/2), (2.28)

logL =Σ2
k=1

(
c′k −

nk − 1

2
log(det(Vk))− tr(V̂kV −1

k )/2

)
. (2.29)

Under H0, the partial derivatives with respect to σ = σA = σB and ρ are

given as, with an assumption nAA = nBB = n,

∂logL

∂σ
=

4σ2(n− 1)(ρ2 − 1) + tr(V̂1) + tr(V̂2)− 2ρv̂12,1 − 2ρv̂12,2

σ3(1− ρ2)
, (2.30)

∂logL

∂ρ
=

1

σ2(1− ρ2)2
((1 + ρ2)(v̂12,1 + v̂12,2) (2.31)

−ρ(tr(V̂1) + tr(V̂2)) + 2σ2(n− 1)ρ(1− ρ2)). (2.32)
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The MLEs for σ and ρ are given as

σ̂ =

√
tr(V̂1) + tr(V̂2)

4(n− 1)
, (2.33)

ρ̂ =
2(v12,AA + v12,BB)

tr(V̂1) + tr(V̂2)
. (2.34)

Under Ha, the partial derivatives with respect to σA, σB, and ρ are given

as,

∂logL

∂σA
=

2σ2
A(n− 1)(ρ2 − 1) + tr(V̂1)

σ3
A(1− ρ2)

− 2ρv̂12,1

σ3
A(1− ρ2)

, (2.35)

∂logL

∂σB
=

2σ2
B(n− 1)(ρ2 − 1) + tr(V̂2)

σ3
B(1− ρ2)

− 2ρv̂12,2

σ3
B(1− ρ2)

, (2.36)

∂logL

∂ρ
=
v̂12,1(1 + ρ2)− ρtr(V̂1)

σ2
A(1− ρ)2(1 + ρ)2

+
v̂12,2(1 + ρ2)− ρtr(V̂2)

σ2
B(1− ρ)2(1 + ρ)2

+
2ρ(n− 1)

(1− ρ2)
.

(2.37)

The MLEs for σA, σB, and ρ are given as

σ̂A =

√√√√tr(V̂1)tr(V̂2)2 − 4tr(V̂1)v̂12,2 + tr(V̂2)
√
tr(V̂1)2 − 4v̂2

12,1

√
tr(V̂2)2 − 4v̂2

12,2

4(n− 1)(tr(V̂2)− 4v̂12,2)
,

(2.38)

σ̂B =

√√√√tr(V̂2)tr(V̂1)2 − 4tr(V̂2)v̂12,1 + tr(V̂1)
√
tr(V̂2)2 − 4v̂2

12,2

√
tr(V̂1)2 − 4v̂2

12,1

4(n− 1)(tr(V̂2)− 4v̂12,2)
,

(2.39)

ρ̂ =
tr(V̂1)tr(V̂2) + 4v̂12,1v̂12,2 −

√
tr(V̂1)2 − 4v̂2

12,1

√
tr(V̂2)2 − 4v̂2

12,2

2tr(V̂1)v̂12,2 + 2tr(V̂2)v̂12,1

. (2.40)

Then, the test statistic t1 becomes
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t1 = −2 log

L
(
θ̂|H0

)
L
(
θ̂|Ha

)


= −2Σ2
k=1

(
(nk − 1)

2
log

(
det(Vk|θ̂Ha)
det(Vk|θ̂H0

)

)
− 1

2
tr(V̂k(Vk|θ̂H0

− Vk|θ̂Ha))

)

= 2(n− 1) log

(
σ̂4(1− ρ̂2)

ˆ̂σ2
A

ˆ̂σ2
B(1− ˆ̂ρ2)

)
+
tr(V̂1) + tr(V̂2)− 2ρ̂(v̂12,1 + v̂12,2)

(1− ρ̂2)σ̂2

−
ˆ̂σ2
A(tr(V̂2)− 2ˆ̂ρv̂12,2) + ˆ̂σ2

B(tr(V̂1)− 2ˆ̂ρv̂12,1)

ˆ̂σ2
A

ˆ̂σ2
B(1− ˆ̂ρ2)

,

where we used a ˆ̂θL = Π4
k=1

ck
det(Vk)(nk−1)/2 exp(−tr(V̂kV −1

k )/2), logL = Σ4
k=1

(
c′k −

nk−1
2
log(det(Vk))− tr(V̂kV −1

k )/2
)
.

Under H0, the partial derivatives with respect to σ = σA = σB and ρ are

given as,

∂logL

∂σ
= −8(σ2(n− 1)(ρ2 − 1) + v̂A + v̂B − 2ρv̂12,1 − 2ρv̂12,2 − 2ρv̂12,3 + v̂12,4)

σ3(ρ2 − 1)
(2.41)

∂logL

∂ρ
=
−4(n− 1) (ρ2 − 1) ρσ2 − ρ(v̂A + v̂B) + (ρ2 + 1)(v̂12,1 + v̂12,2 + v̂12,3 + v̂12,4)

(ρ2 − 1)2 σ2
.

(2.42)

where v̂A = v̂11,1 + v̂22,1 + v̂11,3 + v̂22,4 and v̂B = v̂11,2 + v̂22,2 + v̂22,3 + v̂11,4.

The MLEs for σ and ρ are given as

σ̂ =

√
v̂A + v̂B
8(n− 1)

, (2.43)

ρ̂ =
2(v̂12,1 + v̂12,2 + v̂12,3 + v̂12,4)

v̂A + v̂B
. (2.44)

Under Ha, the partial derivatives with respect to σA, σB, and ρ are given

as,
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∂logL

∂σA
=
−4σ2

AσB(n− 1) (ρ2 − 1) + σAρ(v̂12,3 + v̂12,4)− σB(v̂A − 2ρv̂12,1)

σ3
AσB (ρ2 − 1)

= 0,

(2.45)

∂logL

∂σB
=
−4σ2

BσA(n− 1) (ρ2 − 1) + σBρ(v̂12,3 + v̂12,4)− σA(v̂B − 2ρv̂12,2)

σ3
BσA (ρ2 − 1)

= 0,

(2.46)

∂logL

∂ρ
=
−ρv̂A + (1 + ρ2)v̂12,1

σ2
A(ρ− 1)2(ρ+ 1)2

+
−ρv̂B + (1 + ρ2)v̂12,2

σ2
B(ρ− 1)2(ρ+ 1)2

+
(1 + ρ)2(v̂12,3 + v̂12,4)

σAσB(ρ− 1)2(ρ+ 1)2
− 4(n− 1)ρ

ρ2 − 1
= 0.

(2.47)

The above equations are satisfied for

σ̂B =
σ̂A
√
v̂B√

8σ̂2
A(n− 1)− v̂A

,

ρ̂ =
v̂B (v̂A − 4σ̂2

A(n− 1))

v̂12,2 (v̂A − 8σ̂2
A(n− 1)) + v̂B v̂12,1

.

The test statistic for LRT for the second test, t2, AA/BB/AB/BA is given

as follows

t2 = −2 log

L
(
θ̂|H0

)
L
(
θ̂|Ha

)


= −2Σ4
k=1

(
(nk − 1)

2
log

(
det(Vk|θ̂Ha)
det(Vk|θ̂H0

)

)
− 1

2
tr(V̂k(Vk|θ̂H0

− Vk|θ̂Ha))

)

= 4(n− 1) log

(
σ̂4(1− ρ̂2)

ˆ̂σ2
A

ˆ̂σ2
B(1− ˆ̂ρ2)

)
+
v̂A + v̂B − 2ρ̂(v̂12,1 + v̂12,2 + v̂12,3 + v̂12,4)

(1− ρ̂2)σ̂2

− (ˆ̂σ2
B(v̂A − 2ˆ̂ρv̂12,2) + (ˆ̂σ2

A(v̂B − 2ˆ̂ρv̂12,1)− 2ˆ̂σA ˆ̂σB(v̂12,3 + v̂12,4)

ˆ̂σ2
A

ˆ̂σ2
B(1− ˆ̂ρ2)

.

We used an optimization algorithm in the family of quasi-Newton meth-

ods that approximates the Broyden-Fletcher-Goldfarb-Shanno algorithm (L-

BFGS) method, which uses a limited amount of computer memory to obtain

numerical solutions. Then, the two LRTs, t1 and t2, are determined and as-

sumed to follow χ2
1, which will be confirmed via simulations.
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The following steps were used to conduct simulations. The covariance

matrix for sequence k, Vk, can be factored into LU decomposition with the

matrix U defined as

Uk =

(
σd(1,k) ρσd(2,k)

0 σd(2,k)
√

(1− ρ2)

)
.

Now suppose that x = [x1, x2]′ ∼ N

[(
0
0

)
,

(
1 0
0 1

)]
, then

y = U ′kx ∼ N

[(
0
0

)
, Vk

]
.

We generate x for each subject in all sequences for different values of pa-

rameters and allocate an equal number of subjects to each of the sequences

AA/BB/AB/BA and denote this sample size for each sequence as nk. For

this simulation, nk = {3, 6, 12, 18, 24} and ρ = {0, 0.1, 0.3, 0.5, 0.7, 0.9} were

considered with α = 0.05 and 5000 runs.

Table 7 summarizes the empirical sizes and powers for testing the variance

inequality. The rows for r = 1 exhibit the empirical type I errors of the two

tests obtained from 5000 simulations. These empirical type I errors converges

to the true α = 0.05 as nk increases. It seems that nk = 12 or 18 is suffi-

ciently large enough sample sizes for each sequence k in the respective designs

to approximate the likelihood ratio test statistic to χ2 random variables with

degrees of freedom of 1. The power for testing the equality of variances in-

creases as nk increases and r2 deviates from 1. The statistical powers for t1

appear to be independent of ρ, whereas the statistical powers for t2 appear to

be dependent on ρ similar to the case of Jung’s AB/BA test. For example, the

statistical power for t2 achieves over 80% when nk ≥ 6 or ρ = 0.9 for r2 = 4

whereas the power for t1 is higher than 80% for nk ≥ 12. The more r2 deviates

from 1, the more powerful the test t1 and t2 become. In summary, our new

test, t2, detects the unequal variances of two treatments successfully for various

values of σ2
A, σ2

B, ρ, and nk, for the design with sequences AA/BB/AB/BA.

We have used the MLEs for t1 as the starting values in obtaining numerical

solutions for t2, as t1 is based on sequences that are subsets for t2.

30



Table 2.7: Entries are powers for tests t1 (left panel) and t2 (right panel), for
testing H0 : σ2

A = σ2
B, when µA = 1, µB = 0, and γA = 0.5 and γB = 0.

r2 = σ2
B/σ

2
A ρ \nk 3 6 12 18 24 3 6 12 18 24

1 0 0.056 0.052 0.052 0.050 0.051 0.068 0.056 0.053 0.055 0.050
0.1 0.061 0.057 0.053 0.052 0.048 0.065 0.058 0.051 0.048 0.050
0.3 0.060 0.056 0.052 0.053 0.052 0.066 0.057 0.054 0.054 0.054
0.5 0.060 0.052 0.052 0.053 0.053 0.067 0.057 0.051 0.053 0.054
0.7 0.056 0.055 0.053 0.054 0.053 0.070 0.060 0.054 0.054 0.053
0.9 0.056 0.053 0.053 0.055 0.054 0.076 0.056 0.057 0.053 0.049

2 0 0.093 0.178 0.348 0.516 0.636 0.161 0.330 0.633 0.812 0.911
0.1 0.097 0.176 0.350 0.507 0.643 0.173 0.330 0.633 0.813 0.914
0.3 0.090 0.169 0.345 0.509 0.636 0.179 0.374 0.646 0.830 0.926
0.5 0.093 0.168 0.338 0.502 0.639 0.197 0.376 0.686 0.860 0.949
0.7 0.090 0.175 0.354 0.504 0.638 0.233 0.468 0.790 0.928 0.977
0.9 0.093 0.177 0.342 0.510 0.634 0.400 0.739 0.970 0.997 1.000

4 0 0.212 0.527 0.877 0.977 0.997 0.477 0.861 0.995 1.000 1
0.1 0.208 0.517 0.882 0.976 0.995 0.478 0.852 0.995 1.000 1
0.3 0.212 0.521 0.874 0.974 0.996 0.492 0.874 0.995 1.000 1
0.5 0.216 0.524 0.878 0.973 0.995 0.523 0.910 0.999 1.000 1
0.7 0.216 0.529 0.883 0.973 0.997 0.621 0.946 1.000 1.000 1
0.9 0.219 0.533 0.880 0.975 0.996 0.833 0.995 1.000 1.000 1

8 0 0.403 0.858 0.996 1 1 0.804 0.996 1 1 1
0.1 0.407 0.860 0.996 1 1 0.805 0.994 1 1 1
0.3 0.415 0.851 0.997 1 1 0.812 0.993 1 1 1
0.5 0.419 0.857 0.996 1 1 0.850 0.998 1 1 1
0.7 0.402 0.856 0.997 1 1 0.901 0.999 1 1 1
0.9 0.406 0.854 0.996 1 1 0.973 1.000 1 1 1

We also observed mean square errors and biases of the estimates of vari-

ances and correlations. Figures 1 and 2 are depicted for t2 to show similar

results as we observed in power calculations such that mean square errors and

bias approaches to zero as the sample sizes increases. The tests appear to be

valid and estimation of variances consistent.

2.5 Conclusion

In this chapter, we have investigated how the unequal treatment variances

affect the optimality of crossover designs. The ratio of treatment standard

deviations, r, correlation coefficient for within subject measurements, ρ, and

sample size for each sequence, nk, were assumed to be fixed and classes of

crossover designs Ω2,2,n and Ω3,2,n were investigated.

For p = 2, the T optimal designs for estimating direct treatment effects

under two constraints were independent of ρ > 0 and showed that optimal
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Figure 2.1: Plot of squared biases in estimates of σ2
A, σ2

B, and ρ as a function
of sample size nk for t2: r2 = 1 for σ2

A = σ2
B and r2 = 8 for σ2

B = 8× σ2
A
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Figure 2.2: Plot of mean squared errors in estimates of σ2
A, σ2

B, and ρ as a
function of sample size nk for t2: r2 = 1 for σ2

A = σ2
B and r2 = 8 for σ2

B = 8×σ2
A
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designs allocate subjects based on the ratio of the treatment standard devi-

ations, r. For p = 3, the T optimal designs for estimating direct treatment

effects depend on both r and ρ. As the ratio r deviates from 1, the T -optimal

designs require the use of sequences AAA/BBB. But a strong positive within-

subject correlation alleviates the problem and the existing universally optimal

design under the equal variance assumption, ABB/BAA, remains competitive

against inequality of treatment variances with high efficiency of over 80% when

ρ ≥ 0.5 and/or 1/3 ≤ r ≤ 3. We also introduced a test of unequal treatment

variances based on 4 treatment sequences among Ω2,2,n, which appear to work

well for moderate sample sizes, especially when the ratio of variances are large.

It is clear that unequal treatment variances affect the optimality of crossover

designs and must be accounted for in the designing stage through prior in-

formation or adaptively implemented during the trial, in which the test of

equal treatment variance may be used. For example, a researcher may begin

the experiment with 50/50 allocation on AB/BA sequences. Once sufficient

information about variability is acquired, the researcher may decide to add

AA/BB based on the obtained estimate of r or to extend the trial to p = 3,

ABB/BAA, if ρ is sufficiently large. In the presence of carryover effects, re-

searchers may choose to plan their trials with AA/BB/AB/BA. If unequal

variances are found in the course of the trials, researchers may adapt their

design to the T optimal design under the constraint (2) and benefit from the

enhanced efficiency of the new constrained T optimal design. Suppose that

we are conducting a two-period two-treatment four-sequence crossover trial

allocating N = 50 subjects. Suppose that we have allocated nk = 6 to each of

the sequences. Moreover, we observed that the ratio of variances r̂ is 2 and the

test of unequal variances reject the null hypothesis. Then, the design may be

updated to n = (6, 22, 11, 11). This kind of adaptation can reduce the effect

arising from existing carryover effects as well as unequal treatment variability

and emphasizes the importance and usefulness of the universal optimal designs

AA/BB/AB/BA and ABB/BAA built under the equal variance assumption.
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Chapter 3

Optimal Crossover Design with
Proportional Carryover Effects
and Baselines
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Abstract

A model where carryover effects are proportional to direct treatment effects are

considered to obtain efficient and practical designs. This chapter investigates

the effect of introducing baseline measurements where carryover effects are also

proportional to direct treatment effects. A/D/E/T optimal designs, which

are based on the average of inverse, products, minimum, and average of the

eigenvalues of the Information matrix, are constructed. In this chapter, we find

that designs assigning all distinct treatments or repeating last two periods

are optimal or highly efficient for t ≥ p − 1 for the negative and positive

proportional carryover effects. We then compare these designs with optimal

proportional designs without baseline measurements.
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3.1 Introduction

Define the class of all crossover designs with p periods, t treatments, and n

subjects as Ωp,t,n as in Chapter 2. In this crossover design, the response of each

subject j ∈ {1, 2, ·, n} in period i ∈ {1, 2, · · · , p} is modeled with fixed and

random effects. Traditionally we have considered response yij, from subject j

in period i, with the following model:

yij = µ+ αi + βj + τd(i,j) + γd(i−1,j) + εij (3.1)

where µ, α, β, τ , and γ refer to overall mean, period, subject, direct treatment,

and carryover effects and ε is random error term. Also d(i, j) refers to the treat-

ment being administered on ith period of jth subject. Optimal designs were

constructed from the above model, originally suggested by Hedayat and Af-

sarinejad (1975, 1978) for various p, t, and covariance structures of responses.

The sufficiency condition for the universally optimal design was proposed by

Kifer (1973) and Kushner (1997) proposed sufficiency and necessity equations

for the universally optimal design.

Baseline measurements were considered important and useful measures to

improve efficiencies. Some suggested the use of change from baseline measure-

ments to analyze repeated measure data (Wallenstein (1979), Kershner and

Federer (1981), Laska, Meisner, and Kushner (1983)), whereas others pointed

out that the change from baseline approach may not always be appropriate as

it may results in biased estimate of the treatment effects (Hills and Armitage

(1979) and Willan and Pater (1986)). Wallensteins and Fisher (1977) con-

sidered the use of baseline measurements under various covariance structures

and washout periods, where they assumed that the traditional carryover ef-

fects exist, and these carryover effects were assumed to be distinct from those

of treatment responses. Jemielita (2017) considered using a linear contrast

of baseline measurements as covariates with an multivariate normal assump-

tion and various covariance structures among and between the responses and

baseline measurements. Chen and Chinchilli (2010) expanded the general cor-

relation coefficient (Chinchilli et al. (2005)) to multivariate random variables,
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which can be applied to the case of treatment responses and baseline mea-

surements to precisely identify the type of correlation within responses and

baseline measurements as well as between responses and baseline measure-

ments. Liang and Carriere (2010) further considered various carryover effects

model for treatment responses and baseline measurements, and compared the

efficiencies of different designs in Ω(2,3,4),2,n. Baseline measurements xi,j’s for

jth subject and ith period with traditional carryover effects can be modeled

as the followings:

xij = µ+ α′i + βj + ηd(i−1,j) + εxij (3.2)

where α′i refers to the periodic effects in baseline measurements in ith baseline

period and this is distinct from αi in (3.1) and the η refers to the traditional

carryover effects in baseline measurements, which are assumed to be distinct

from the γ.

In crossover designs, carryover effects are inevitably related to direct treat-

ment effects given that sequential dependencies exist (Cross (1973), and Cross

and Decarlo (1990)). Cross (1973) and Schifferstein and Oudejans (1996) re-

ported that carryover effects may depend on the magnitude of the direct treat-

ment effects positively or negatively. Ferris (1999), in his PhD dissertation,

proposed proportional carryover effects. Kempton, Ferris, and David (2001)

investigated optimal crossover designs under proportional carryover effects,

and Zheng (2013) applied the optimal equations methods to the proportional

model.

This chapter extends the optimality equations of Kushner (1997) to incor-

porate baseline measurements, construct optimal designs under a proportional

traditional carryover effects model with baseline measurements, and compare

its efficiencies to the optimal proportional designs without baseline measure-

ments.

3.2 Information Matrix and Optimality Equa-

tions

We can write the models in (3.1) and (3.2) in a matrix form as,
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zi,j =

(
xi,j
yi,j

)
=

(
µ+ α′i + βj + ηd(i,j) + εxij

µ+ αi + βj + τd(i,j) + γd(i,j) + εyij

)
,

Zd =

z1,1
...
zn,p

 ,

and we can rearrange the Zd by separating baseline measurements and out-

come responses as below,

Z′
d =

(
Xd

Yd

)
=

(
1npµ+W1α

′ + U1β + Fdη + ε
1npµ+W1α+ U1β + Tdτ + Fdγ + ε

)
,

Z =

(
X
Y

)
= A1θ1 + A2θ2 + ε, (3.3)

=

(
1np 0np×p W1 U1

1np W1 0np×p U1

)
µ
α
α′

β

+

(
0np×t 0np×t Fd
Td Fd 0np×t

)τγ
η

+ ε.

(3.4)

Let Cov(Y ,X) = Σ = In ⊗ V , where V is 2p × 2p matrix with diagonal

elements of σ2
ε + σ2

s and off-diagonal element σ2
s . The covariance matrix V

may depend on various assumptions. For this chapter, we assume that it has

an equicorrelated structure. Then, the Fisher Information matrix for direct

treatment effects and two types of carryover effects can be derived as the

following.

Cd(τ ,γ,η) = A′2Σ−1A2 − A′2Σ−1A1(A′1Σ−1A1)−A′1Σ−1A2

= A′2(Σ−1 − Σ−1A1(A′1Σ−1A1)−A′1Σ−1)A2, (3.5)

where the vector 12np is in the column space of design matrices for period

effects and fixed subject effects.

We can simplify the above Information matrix by the following steps. We

start by defining the inverse of V , a 2p × 2p covariance matrix, as V −1 and
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another notation for a matrix Hw = Iw − 1w1′w/w for any integer w. Then,

the inner most term in the equation (3.5) can be seen as,

A′1Σ−1A1 =

[
nV −1 1′n ⊗ V −112p

1n ⊗ 1′2pV
−1 δIn

]
and

A′1Σ−1 = A′1Σ−1A1

(
(1′n ⊗ I2p)/(n)

(Hn ⊗ 1′2pV
−1)/δ

)
=

(
1′n ⊗ V −1

In ⊗ 1′2pV
−1

)
.

If V is completely symmetric, then

Σ−1A1(A′1Σ−1A1)−A′1Σ−1 =
(
1n ⊗ I2p/n Hn ⊗ V −112p/δ

)( 1′n ⊗ V −1

In ⊗ 1′2pV
−1

)
=

1

n
1n1′n ⊗ V −1 +

1

δ
Hn ⊗ V −112p1

′
2pV

−1.

Then it follows,

Σ−1 − Σ−1A1(A′1Σ−1A1)−A′1Σ−1 = Hn ⊗ V −1 − 1

δ
Hn ⊗ V −112p1

′
2pV

−1

= Hn ⊗ (V −1 − 1

δ
V −112p1

′
2pV

−1) = Hn ⊗ Ṽ

so that

Cd(τ ,γ,η) = A′2(Hn ⊗ Ṽ )A2 (3.6)

note that if covariance matrix is compound symmetric then Ṽ is compound

symmetric as well.

Now define T 1
d =

(
Td 0np×t

)′
, T 2

d =
(
Fd 0np×t

)′
, T 3

d =
(
0np×t Fd

)′
,

T 1
d,j =

(
Td,j 0p×t

)′
, T 2

d,j =
(
Fd,j 0p×t

)′
, T 3

d,j =
(
0p×t Fd,j

)′
.

With the above notations, define,

Mu = n−1Σn
j=1T

u
j .

The information matrix of direct treatment effects and carryover effects is

derived as,

Cd(τ, γ, η) =

Cd11 Cd12 Cd13

Cd21 Cd22 Cd23

Cd31 Cd32 Cd33

 , (3.7)
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where Cduv = (T u)′Hn ⊗ Ṽ (T u) for 1 ≤ u, v ≤ 3.

These sub-matrices can be defined as

Cduv = Σn
j=1(T uj −Mu)′Ṽ (T vj −M v) for 1 ≤ u, v ≤ 3. (3.8)

We denote pd as the proportion of allocation to the treatment sequence d.

Also define,

T =

(
Jpt/t Jpt/t 0pt
0pt 0pt Jpt/t

)
.

Then the information matrix becomes,

Cd(τ, γ, η) =nΣK
k=1pk(Tk −Md)

′Ṽ (Tk −Md) (3.9)

=nΣK
k=1pk(Tk − T )′Ṽ (Tk − T )−N(T −Md)

′Ṽ (T −Md) (3.10)

=nΣK
k=1pk(T̂

u
k )′Ṽ T̂ vk − nM̂ ′

dṼ M̂d (3.11)

=nL̂d − nM̂ ′
dṼ M̂d, (3.12)

where the second term in equation (3.11) is 0 for symmetric designs. Symmet-

ric designs refer to the design that allocates the same number of patients to the

elements of the set of treatment sequences, which can be obtained by relabeling

treatments in the sequence. For example, ABC/ACB/BCA/BAC/CAB/CBA

are in the symmetric set for Ω(3, 3, n) and we will refer this set as symmetric

block of < ABC >.

Now, define a quadratic function, qk(x, y), associated to a treatment se-

quence k as

qk(x, y) = tr
[
(T̂ 1

d + T̂ 2
d x+ T̂ 3

d y)′Ṽ (T̂ 1
d + T̂ 2

d x+ T̂ 3
d y)
]

= qk11 + 2qk12x+ 2qk13y + qk23xy + qk22x
2 + qk33y

2, for x, y ∈ (−∞,∞).
(3.13)

Note: The quadratic functions for treatment sequences in a symmetric block

are identical.

Define a symmetric group by St and a new permuted design Pσ ↔ dσ for

each σ ∈ St. Then, there is a t × t permutation matrix Hσ representing the

permutation σ. We have,
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T udσ ,j = T ud,jHσ, M
u
dσ ,j = Mu

d,jHσ, for σ ∈ St, 1 ≤ u, v ≤ 3 (3.14)

Cdσuv = H ′σCduvHσ (3.15)

Cdσ(τ, γ, η) = (I3 ⊗Hσ)′Cd(τ, γ, η)(I3 ⊗Hσ) (3.16)

T uσk = T ukHσ. (3.17)

Let P be the array of proportions representing a design d. For any P ↔ d

the quadratic equation of a design d is defined as,

Q(x, y, P ) =ΣK
k=1pkqk(x, y)

=q11(P ) + 2q12(P )x+ 2q13(P )y + 2q23(P )xy

+ q22(P )x2 + q33(P )y2. (3.18)

Any symmetric design P ↔ d satisfies the following.

Cd(τ, γ, η) = N

qd11(P ) qd12(P ) qd13(P )
qd21(P ) qd22(P ) qd23(P )
qd31(P ) qd32(P ) qd33(P )

⊗Ht/(t− 1), (3.19)

Cd(τ) =N(qd11 +
q2
d13qd22 − 2qd12qd13qd23 + q2

d12qd33

q2
d23 − qd22qd33

)⊗ (tIt − Jt)/(t(t− 1))

(3.20)

=N min
−∞<x,y<∞

Q(x, y, P )(tIt − Jt)/(t(t− 1)),

M̂u
d = 0 for 1 ≤ u ≤ 3. (3.21)

Proof. If d is symmetric, then Md = X ⊗ 1′t with X being p× 3 matrix. Then

Md − Td = 0, leading to equation (3.21). Further, we use the permutation

invariant properties of the block matrices of the Information matrix. Cduv

must be of form a∗I+ b∗1t1
′
t. Now using the property that row/column sums

are 0, we can prove equation (3.19). Equation (3.20) is straight forward from

Schur’s complement of equation (3.19).
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Theorem 4. Kushner (1997) Thm.4.3

Let

b = max
P

min
−∞<x,y<∞

Q(x, y, P ) (3.22)

.

Then

(i)

max
d

Φ(Cd(τ)) = max
dsymmetric

Φ(Cd(τ)) (3.23)

= NΦ(tIt − Jt) max
P

min
−∞<x,y<∞

Q(x, y, P )/(t(t− 1))

= NbΦ(tIt − Jt)/(t(t− 1)) (3.24)

for any Φ,

(ii) d is Φ-optimal for Φ strictly concave (resp. universally optimal) if and

only if its treatment effects information matrix is

Cd(τ) = Nb(tIt − Jt)/(t(t− 1)). (3.25)

For the set of quadratics {qk(x, y)}, define a1, a2, b, and q(x, y) as the

followings,

q(x, y) = max
k
{qk(x, y)}, (3.26)

b = min
−∞<x,y<∞

q(x, y), (3.27)

q(a1, a2) = min
−∞<x,y<∞

max
qk(x,y)

= b. (3.28)

Suppose R is 3t× 3t matrix with R11 a t× t matrix, R22 a 2t× 2t diagonal

sub-matrices, and R12 = Rt
21 a t×2t off diagonal sub-matrices. Let R+

uv denotes

Moor-Penrose inverse of Ruv for square matrix Ruv. For a non-zero scalar c,

c+ would mean reciprocal.

Lemma 8. If C≥ 0 is a 3t × 3t matrix, then

trCs ≤ tr(Cd11)−(tr(Cd13)2tr(Cd22)− 2tr(Cd12)tr(Cd13)tr(Cd23) + tr(Cd12)2tr(Cd33))

(tr(C2
d23 − tr(Cd22tr(Cd33))

(3.29)

43



Proof. The proof follows from Pukelsheim (2006) and Kushner (1997).

Let R be the 3t × 3t Information matrix in (3.7) and T = (It, Xt) where

Xt is a t× 2t matrices. Then,

T ′RT = R11 +X ′tR21 +R12Xt +X ′tR22Xt

= Rs +X ′tR22Xt +X ′tR21 +R12Xt +R12R
+
22R21

= Rs + (Xt +R+
22R21)′R22(Xt +R+

22R21). (3.30)

.

Moreover, C+ ≤ T ′CT = Cd11+2xCd12+2yCd13+2xyCd23+x2Cd22+y2Cd33,

which leads to

tr(Cs) ≤tr(Cd11 + 2xCd12 + 2yCd13 + 2xyCd23 + x2Cd22 + y2Cd33).

Now choose,

x = (trCd13trCd23 − trCd12trCd33)/(trCd22trCd33 − trC2
d23) = a1

y = (trCd13trCd22 − trCd12trCd23)/(trCd22trCd33 − trC2
d23) = a2

to get (3.29)

Theorem 5. A crossover design d with a1, a2, b, and F from (3.26), (3.27),

and (3.28) is a universally optimal design if the following equations are satis-

fied.

Σkpk((T̂
1
k )′Ṽ T̂ 1

k + a1(T̂ 1
k )′Ṽ T̂ 2

k + a2(T̂ 1
k )′Ṽ T̂ 3

k ) =
b(tIt − Jt)
t(t− 1)

, (3.31)

Σkpk

(
(T̂ 2

k )′Ṽ T̂ 1
k + a1((T̂ 2

k )′Ṽ T̂ 2
k + (T̂ 2

k )′Ṽ T̂ 3
k ),

(T̂ 3
k )′Ṽ T̂ 1

k + a2((T̂ 3
k )′Ṽ T̂ 2

k + (T̂ 3
k )′Ṽ T̂ 3

k )

)
= 02t×t, (3.32)

Ṽ (Σkpk(T̂
1
k + a1T̂

2
k + a2T̂

3
k ) = 0t×t, (3.33)

pk = 0, if k /∈ F . (3.34)

Proof. As in Kushner (1997), we prove this theorem in the following equivalent
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form.

L̂d11 + a1L̂d12 + a2L̂d13 =
b(tIt − Jt)
t(t− 1)

, (3.35)(
L̂d21 + a1(L̂d22 + L̂d23)

L̂d31 + a2(L̂d23 + L̂d33)

)
= 02t×t, (3.36)

Ṽ (M̂1
d + a1M̂

2
d + a2M̂

3
d ) = 0. (3.37)

Let d be an universally optimal design and f be a symmetric and universally

optimal design. Define g = d/2 + f/2. Let A = L̂f , B = L̂d, and D =

L̂g = A/2 +B/2. A and B are divided into block matrices where A11 and B11

are t × t diagonal block matrices and A22 and B22 are 2t × 2t diagonal block

matrices.

Then,

((Xt + A+
22A21)′A22(Xt + A+

22A21) + (Xt +B+
22B21)′B22(Xt +B+

22B21))/2

= (Xt +D+
22D21)′D22(Xt +D+

22D21).

If we choose Xt = −D+
22D21, then

(A+
22A21 −D+

22D21)′A22(A+
22A21 −D+

22D21)

+ (B+
22B21 −D+

22D21)′B22(B+
22B21 −D+

22D21)

= Y ′A22Y +W ′B22W = 0.

This means that Y ′A22Y = W ′B22W = 0 and A22Y = B22W = 0. As f is

symmetric design, A22 6= 0 and A+
22A12 =

(
a1 a2

)
⊗(It−Jt/t) with A21 = A′12.

This leads to,

Y = −D+
22D21 −

(
a1

a2

)
⊗ (It − Jt/t) = 02t×t

=⇒ W =

(
a1

a2

)
⊗ (It − Jt/t) + B+

22B21,

which proves (3.36). Now apply this result to (3.20). We now get,
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b(tIt − Jt)/(t(t− 1)) = n−1Cd(τ) = L̂d11 −Dd12D
+
d22Dd21

= L̂d11 +
(
a1 a2

)
⊗ (It)D̂d21

= L̂d11 + a1L̂d12 + a3L̂d13 = (3.19).

From equations (3.10), (3.23), and (3.29) we have

Nb =tr(Cd(τ)) ≤ tr(Cd11 + 2xCd12 + 2yCd13 + 2xyCd23 + x2Cd22 + y2Cd33)

= NQ(x, y, P )−N(tr(M̂1
d + xM̂2

d + yM̂3
d )′Ṽ (M̂1

d + xM̂2
d + yM̂3

d )).

Setting x = a1 and y = a2,

b ≤ b− tr((M̂1
d + a1M̂

2
d + a2M̂

3
d )′Ṽ (M̂1

d + a1M̂
2
d + a2M̂

3
d ))

=⇒ tr((M̂1
d + a1M̂

2
d + a2M̂

3
d )′Ṽ (M̂1

d + a1M̂
2
d + a2M̂

3
d )) = 0

=⇒ Ṽ (M̂1
d + a1M̂

2
d + a2M̂

3
d ) = 0.

3.3 Proportional Model

Consider the assumption that carryover effects in responses and baselines are

proportional to the direct treatment effects in the responses. That is, there

exist λ1o, λ2o ∈ (−1, 1) such that γo = λ1oτ o and ηo = λ2oτ o. These pro-

portionality parameters can be estimated based on previous experiences or

adaptively during the trials. Moreover, the proportional modeling approach

can improve the estimation of the direct treatment effects by reducing the

number of parameters to be estimated (Kempton, Ferris, and David (2001),

Bailey and Kunert (2006), Bose and Stufken (2007)).

Then, equation (3.3) becomes,

Zd =

(
Y
X

)
= A1θ1 + A2θ2 + ε (3.38)

=

(
1np W1 0np×p U1

1np 0np×p W1 U1

)µα
β

+

(
Td Fd 0np×t

0np×t 0np×t Fd

) τ
λ1τ
λ2τ

+ ε.

(3.39)

46



This proportional model depends on values of the parameters λ1, λ2, and τ .

The Fisher Information matrix for estimating direct treatment effects under

the proportional carryover effects with baseline measurements can be defined

as the following. First, we apply the Taylor’s expansion to (3.38) and obtain

the following linearized model.

Z̃d ≈ Wα+ Uβ + (Td + Fdλ1o + F̃dλ2o)τ + Fdτ oλ1 + F̃dτ oλ2 + ε. (3.40)

We use the projection on the design matrices of the fixed period effects and

subject effects to derive the information matrix for estimating direct treatment

effects with unknown true values of λ1o, λ2o, and τ o. Recall pr(B1|B2) =

pr(B1) + pr(pr⊥(B1)B2). Then,

Cd(τ) = (Td + Fdλ1o + F̃dλ2o)
′pr⊥(W |U |Fdτo|F̃dτo)(Td + Fdλ1o + F̃dλ2o)

= (Td + Fdλ1o + F̃dλ2o)
′(pr⊥(W |U)

− pr(pr⊥(W |U)(Fdτo|F̃dτo))(Td + Fdλ1o + F̃dλ2o),

and

Cd,τo,λ1o,λ2o(τ) = Cd11 + λ1o(Cd12 + Cd21) + λ2o(Cd13 + Cd31)

+ λ1oλ2o(Cd23 + Cd32) + λ2
1oCd22 + λ2

2oCd33

− A′τ o
(
τ ′oCd22τ o τ ′oCd23τ o
τ ′oCd32τ o τ ′oCd33τ o

)−1

τ ′oA,

(3.41)

where A′ =
(
Cd12 + λ1oCd22 + λ2oCd32 Cd13 + λ1oCd23 + λ2oCd33

)
. The above

Information matrix depends on λ1o, λ2o, and τ o. Bose and Stufken (2007) sug-

gested that the unknown proportionality parameter may be fixed(known) at

the stage of the experiment and showed that the information matrix no longer

depends on τ o. But this approach results in a biased estimation. Kempton,

Ferris, and David (2001) used a computer algorithm to find A optimal designs

for the proportional model without baselines. Bailey and Kunert (2006) used

the A optimality and proved that there exists totally balanced design, which

is A optimal over all Ωp,t,n for limited sets of p, t, and λ1o. Zheng (2013) de-

vised A/D/T/E optimality criteria. These criteria are based on the Fisher’s
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Information matrix. The A optimality criterion aims to maximize the geo-

metric mean of the eigenvalues, whereas the D optimality criterion aims to

maximize the determinant. Also, the E optimality criterion aims to maximize

the smallest eigenvalue and the T optimality criterion aims to maximize the

trace of the Information matrix. Zheng (2013) showed that universally opti-

mal designs for a non-proportional model is E optimal in proportional model

and that is near-optimal with respect to A/D/T optimality criteria for all λ1o

(Equivalence Theorem).

Define a probability measure assigning an equal allocation to all elements

{στo|σ ∈ P} as δτo , and define a Bayesian type of optimality criteria φ as

φ(g,λ1o,λ2o)(d) =

∫
Φ(Cd,τo,λ1o,λ2o(τ)g(τo)d(τo) (3.42)

= Eg(Φ(Cd,τo,λ1o,λ2o(τ)).

Theorem 6. (Kushner (1997), Zheng (2013)) In an approximate design the-

ory, there exists a symmetric design d∗ for any real values of λ1o, λ2o, and τ o

that satisfies the following,

φδτo ,λ1o,λ2o(d) ≤ φδτo ,λ1o,λ2o(d
∗) for all d (3.43)

Proof. The proof uses the properties of symmetric designs and is straightfor-

ward from the proof in Zheng (2013) Theorem 3.

Theorem 7. Regardless of the value of the treatment effects, τ o, the Fisher

Information matrix for estimating the direct treatment effects for a symmetric

design d under the proportional model with baselines, Cd,τo,λ1o,λ2o(τ), has the

following eigenvalues with multiplicities of 1, 1, and t− 2.

• κ1=0,

• κ2 = cd11 − (c2
d13cd22 − 2cd12cd13cd23 + c2

d12cd33)/(cd22cd33 − c2
d23),

• κ3 = cd11 + 2λ1ocd12 + 2λ2ocd13 + 2λ1oλ2ocd23 + λ2
1ocd22 + λ2

2ocd33.

Proof. Recall that for a symmetric design d, the block matrices of the Infor-

mation matrix Cuv have 0 row/column sums and take the form of Cduv =
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cduvHt/(t− 1) with cduv = tr(Cduv). Then (3.41) becomes,

(t− 1)Cd,τo,λ1o,λ2o(τ)

= (cd11 + 2λ1ocd12 + 2λ2ocd13 + 2λ1oλ2ocd23 + λ2
1ocd22 + λ2

2ocd33)Ht

− (cd12 + λ1ocd22 + λ2ocd32)2cd33 + (cd13 + λ1ocd23 + λ2ocd33)2cd22

cd22cd33 − c2
d23

τ oτ
′
o

τ ′oτ o

+
(cd12 + λ1ocd22 + λ2ocd32)(cd13 + λ1ocd23 + λ2ocd33)cd23

cd22cd33 − c2
d23

τ oτ
′
o

τ ′oτ o
,

(3.44)

where Ht1t = 0 and Htτ o = τ o. Suppose l1, · · · , lt−2 are orthonormal vectors

orthogonal to 1t and τ o forming the t eigenvectors. The 3 corresponding

eigenvalues have multiplicities of 1, 1, and t− 2.

Zheng (2013) proposed a new optimality criteria E(g,λ1o,λ2o)(d) where the

second smallest eigenvalue is used to evaluate the optimality criteria φ(g,λ1o,λ2o)(d).

Proposition 5. In the approximate design theory, regardless of λ1o, λ2o, and

the prior distribution g, as long as g is exchangeable, a design d is E(g,λ1o,λ2o)

optimal if and only if E(g,λ1o,λ2o)(d) = nb/(t− 1) with b defined in Theorem 4.

Proof. The proof takes same steps as in Proposition 1 in Zheng (2013). First,

it is easy to show κ1 < κ2 as κ1 is the minimum of quadratic function q(λ1o, λ2o)

for any design d. This proposition is proved by Theorem 4 (ii).

Theorem 8. A crossover design d with a1, a2, b, and F from (3.26), (3.27),

and (3.28) is E(g,λ1o,λ2o) optimal for any values of λ1o and λ2o and any ex-

changeable prior g if following equations are satisfied.

Σkpk((T̂
1
k )′Ṽ T̂ 1

k + a1(T̂k
1
)′Ṽ T̂ 2

k + a2(T̂ 1
k )′Ṽ T̂ 3

k ) =
b(tIt − Jt)
t(t− 1)

, (3.45)

Σkpk

(
(T̂ 2

k )′Ṽ T̂ 1
k + a1((T̂ 2

k )′Ṽ T̂ 2
k + (T̂k)

′Ṽ T̂ 3
k ),

(T̂ 3
k )′Ṽ T̂ 1

k + a2((T̂ 3
k )′Ṽ T̂ 2

k + (T̂ 3
k )′Ṽ T̂ 3

k )

)
= 02t×t, (3.46)

Ṽ (Σkpk(T̂
1
k + a1T̂

2
k + a2T̂

3
k ) = 0t×t, (3.47)

pk = 0, if k ∈ F . (3.48)
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Proof. By the properties of the Information matrix,

E(τo,λ1o,λ2o)(τ) = Eg

[
min

l′1t=0,l′l=1
l′C(τo,λ1o,λ2o)(τ)l

]
.

We know that Cd22 = Cd33, and off-diagonal submatrices Cd12, Cd13, and

Cd23 are symmetric. Applying (3.45) - (3.48) to (3.41) we have,

C(τo,λ1o,λ2o)(τ) =
b

t− 1
Ht + (a1 − λ1o)

2Cd22 + (a2 − λ2o)
2Cd22 (3.49)

+ (a2
1 + a2

2 − 2λ1oa1 − 2λ2oa2 + 2λ1oλ2o)Cd23

− A′τ o
(
τ ′oCd22τ o τ ′oCd23τ o
τ ′oCd32τ o τ ′oCd33τ o

)−1

τ ′oA,

whereA′ =
(
(λ1o − a1)Cd22 + (λ2o − a1)Cd23 (λ2o − a1)Cd23 + (λ2o − a2)Cd22

)
.

Now let {0, e1,1, · · · , e1,t−1} be eigenvalues of Cd22 with corresponding eigen-

vectors of {1t, l1,1, · · · , l1,t−1} and {0, e2,1, · · · , e2,t−1} be eigenvalues of Cd23

with corresponding eigenvectors of {1t, l2,1, · · · , l2,t−1}. This means that Cd22 =

Σt−1
i=1e1,il1,il

′
1,i and Cd23 = Σt−1

i=1e2,il2,il
′
2,i. By definition, τ ′o1t = 0, which im-

plies that there exist {w1,1, · · · , w1,t−1} and {w2,1, · · · , w2,t−1} such that τ o =

Σt−1
i=1w1,il1,i = Σt−1

i=1w2,il2,i. For any vector l such that l′1t = 0, we can write

l = Σt−1
i=1y1,il1,i = Σt−1

i=1y1,il2,i and l′Htl = 1. Then (3.49) becomes,

l′C(τo,λ1o,λ2o)(τ)l (3.50)

=
nb

t− 1
+ (a1 − λ1o)

2Σt−1
i=1e1,iy

2
1,i + (a2 − λ2o)

2Σt−1
i=1e1,iy

2
1,i (3.51)

+ (a2
1 + a2

2 − 2λ1oa1 − 2λ2oa2 + 2λ1oλ2o)Σ
t−1
i=1e2,iy

2
2,i

− l′A′τ o
(

Σt−1
i=1e1,iw

2
1,i Σt−1

i=1e1,iw
2
2,i

Σt−1
i=1e1,iw

2
2,i Σt−1

i=1e1,iw
2
1,i

)−1

τ ′oAl

≥ nb

t− 1
equality holds iff l =

τ o
‖τ o‖

, with (3.52)

τ ′oAl =

(
(λ1o − a1)Σt−1

i=1w1,iy1,ie1,i + (λ2o − a1)Σt−1
i=1w2,iy2,ie2,i.

(λ2o − a1)Σt−1
i=1w2,iy2,ie2,i + (λ2o − a2)Σt−1

i=1w1,iy1,ie1,i.

)
The equality in (3.52) holds as the equation (3.46) implies that a1 = a2 = 0

as cd12 = cd13 = 0.

This theorem implies that the universally optimal design for (3.3) is E

optimal for (3.38). Zheng (2013) proposed a new set of A/D/T/E optimality
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criteria for t× t Information matrices, C, with eigenvalues of {0 ≤ a1 ≤ · · · ≤

at−1}.

ΦA(C) = (t− 1)
(
Σt−1
i=1a

−1
i

)−1
,

ΦD(C) =
(
Πt−1
i=1ai

) 1
t−1 ,

ΦT (C) = (t− 1)−1Σt−1
i=1ai,

ΦE(C) = min
i>0

ai.

3.4 Optimal Designs Utilizing Baselines

From Theorem 5 and Theorem 6, we know that universally optimal designs

under model (3.3) is E optimal in (3.38). Also, Zheng (2013) investigated

the proportional model without baselines and showed that E optimal designs

are equivalent to A/D/T optimal designs. In this section, we will investigate

A/D/E/T optimal designs for {ρ, λ1o, λ2o} ∈ {−0.5, 0, 0.5}. After identify-

ing the optimal designs, we further investigate the efficiencies with respect

to A/D/E/T optimality criteria for various designs to give an idea on how

designs perform in practice. Then, the E optimal designs constructed from

Zheng’s E criteria and algorithm are compared to the new proposed D op-

timal designs. The D optimal designs were chosen as these demonstrate the

variation of efficiency most vividly. The four columns under A, D, E, and T

show the efficiencies based on A/D/E/T optimality criteria (the closer to 1 the

better the row design is), and the column Enobaseline shows the D optimality

efficiencies against the E optimal design without baseline measurements. The

efficiencies in this column with > 1 indicate that optimal designs with baselines

are better than ones without baselines, indicating efficiency improved by the

use of baselines. The Equivalence theorem provided by Zheng (2013) suggests

that the E optimal design is nearly optimal in other criteria. For this reason,
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we chose E optimal design and D-optimality criterion in our comparison.

The proportionality parameters λ1o and λ2o would naturally take the same

sign but not necessarily the same magnitude. For this reason, we performed a

preliminary investigation on how unequal magnitude of parameters affect the

optimal designs. It was found that the differences in these parameters did not

affect the optimal designs much, as long as they had same sign. Therefore,

λ1o = λ2o was assumed for the construction of optimal designs. The optimal

designs would consist of treatment sequences using distinct treatments for the

case where carryover effects are succesfully removed by the washout periods or

when t ≥ p. In this chapter, we investigate the cases where washout periods did

not remove carryover effects and that carryover effects are negatively or pos-

itively proportional as well as the case when carryover effects are successfully

removed, (λ1o = λ2o ∈ {−0.5, 0, 0.5}). In addition to this, we will investigate

how optimal designs change with a correlation coefficient ρ ∈ {−0.5, 0, 0.5}.

We first adopt the notations from Zheng (2013) and define d<di> and d<re>

as design of treatment sequences with p and (p− 1) distinct treatments where

the latter one repeats its (p−1)th treatment on the last period. Designs d<di>

and d<re> allocate an equal proportion of subjects to all treatment sequences,

pi = 1/|d|. Moreover, we will use a symmetric Design d<abc>, which is defined

as a set of treatment sequences that can be obtained by relabeling the given

treatment sequence abc for 1 ≤ a, b, c ≤ t. In the case of t = 2, these design

blocks are called dual designs. For example, d<di> = {AB,BA} and d<re> =

{AA,BB} for p = 2 and d<re> = {ABB,BAA} for p = 3. For t = 3,

d<di> = {ABC,ACB,BAC,BCA,CAB, CBA} and d<re> = {ABB, ACC,

BAA, BCC, CAA, CBB}. Some patterns appeared during the construction

of A/D/E/T optimal designs under the proportional carryover effects model

with baselines. The two designs, d<di> and d<re>, appear repeatedly as optimal

designs for many p and t combination settings. The Design d<di> is feasible

only for t ≥ p and the Design d<re> is feasible only for t + 1 ≥ p. When

t < p−1, several symmetric blocks of treatment sequences allocating the same

treatment on the last two periods play important role in the optimal designs.
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3.4.1 Two Period Designs

The A optimal designs of Bailey and Kunert (2006) did not include two period

designs as their optimality was restricted to 2 < p ≤ t. The case for p = 2 and

t = 2 pose no practical advantage as the proportional model approach requires

6 parameters fo, the overall mean effect, and the period effects, the direct treat-

ment effects, and the two proportionality parameters, whereas the traditional

model requires only 5 parameters with τ = (τA − τB)/2, γ = (γA − γB)/2,

and η = (ηA − ηB)/2. Therefore, we will look at p = 2 and t ≥ 3. Some

interesting results are found for two period designs. When t ≥ 3, the optimal

designs depend on t and (λ1o, λ2o) in the presence of carryover effects. As in

the traditional models, the optimal two period crossover designs are indepen-

dent of ρ. The optimal designs for the negative proportionality parameters

differ by criteria. However, these designs allocate a small portion of subjects

to d<re> and the rest on d<di>. for the positive proportionality parameters,

the A/D/E/T optimal designs resemble that of Carriere and Reinsel (1993),

where the universally optimal design for the traditional model with random

effects and a compound symmetric structure were shown to be pd<re> = 1/t

and pd<di> = (t−1)/t. The optimal designs and their efficiencies are shown in

Table 3.1. For the tables below, the numbers under A/D/E/T columns refer

to the efficiency of the design presented on that row against A/D/E/T opti-

mal designs in the corresponding criterion. In these columns, efficiencies are

≤ 1 indicating how efficient the proposed design is when compared with the

corresponding A/D/E/T optimal designs. Moreover, the last column presents

the efficiency against E optimal design without baselines computed from the

criteria and algorithm from Zheng (2013) with respect to D optimality. The

main reason for choosing E optimal designs from Zheng’s approach was based

on the equivalence theorem provided by Zheng where E optimal designs are

equivalent to A/D/T optimal designs for the proportional model without base-

lines. When the value on the last column is greater than 1, it indicates that the

use of baselines in the proportional model is beneficial. Table 3.1 shows that

all 3 suggested the designs are highly efficient when the proportional carryover
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effects assumption holds.

Table 3.1: Efficiencies of designs, dre and ddi, against A/D/E/T
optimal designs when carryover effects are proportional to the direct
treatment effects for p = 2 and t = 3.

Designs λ1o, λ2o A D E T Eno baseline

d[1] -0.5 1.0000 0.9877 0.9956 0.9478 3.2800
d[2] -0.5 0.9432 0.9813 0.8543 1.0000 3.2186
d[1] 0.5 0.9953 0.9966 0.9956 1.0000 4.6196
d[2] 0.5 0.9189 0.8551 0.8543 0.9442 3.9638
d[3] 0.5 1 1 1 1 4.6633

[1] Nearly A/D/E optimal design for the negative (λ1o, λ2o).
p<re> = 1/4 and p<di> = 3/4.
[2] T optimal design for the negative (λ1o, λ2o). p<di> = 1.
[3] E optimal design for the positive (λ1o, λ2o). p<re> = 1/t = 1/3
and p<di> = (t− 1)/t = 2/3
< re > = {AA, BB, CC} and < di > = {AB, AC, BA, BC, CA,
CB}.

3.4.2 Three Period Designs

For p > 2, the A/D/E/T optimal designs are constructed for two separate

cases, t ≥ p and t < p. When the number of treatments is less than the

number of periods, that is t < p, symmetric blocks of sequences that repeat

the last two periods often form A/D/E/T optimal designs for −1 ≤ ρ ≤ 1 and

(λ1o, λ2o) ∈ {−0.5, 0.5}. One particular example is when t = 2 and p = 3, the

optimal design is ABB/BAA with an equal allocation, which Laska, Meisner,

and Kushner (1983) proved to be the universally optimal design under the

traditional crossover model with random subject effects. Hence, we proved

the usefulness of this design with respect to the proportional carryover effects

assumption with baseline measurements as well.

For t ≥ p = 3, the A/D/E/T optimal designs change based on the values

of (λ1o, λ2o). When the carryover effects are adversely related with the direct

treatment effects, (λ1o = λ2o) ∈ (−1, 0], d<di> is A/D/E/T optimal for all ρ.

On the other hand, d<re> is A/D/T optimal for all ρ when (λ1o, λ2o) ∈ (0, 1)

and d<di> is E optimal.
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Table 3.2: Efficiencies of dre and ddi against A/D/E/T optimal
designs when carryover effects are negatively proportional to the
direct treatment effects for p = 3, t = 3.

Designs λ1o, λ2o A D E T Eno baseline

dre -0.5 0.8660 0.6862 0.9874 0.9250 0.7924

d
[1]
di -0.5 1 1 1 1 1.1172

d
[2]
re 0.5 1 1 0.9874 1 1.4009

d
[3]
di 0.5 0.9332 0.8544 1 0.9156 1.1968

[1] A/D/E/T optimal design for the negative (λ1o, λ2o).
[2] A/D/T optimal design for the positive (λ1o, λ2o).
[3] E optimal design for the positive (λ1o, λ2o).
< re > = {ABB, ACC, BAA, BCC, CAA, CBB} and < di > =
{ABC, ACB, BAC, BCA, CAB, CBA}.

3.4.3 Four Period Designs

For t = 2, the Design d<AABB> is A/D/E/T optimal for all (λ1o, λ2o) and

ρ. This symmetric block is also part of optimal design proposed by Laska,

Meisner, and Kushner (1983) (AABB, BBAA, ABAB, BABA). As discussed

earlier, we need to estimate more parameters under the proportional model

for t = 2. Moreover, the A/D/E/T optimal design under the proportional

model assumption uses less favorable treatment sequences compared to the

universally optimal design by Laska, Meisner, and Kushner (1983) under the

traditional model. Therefore use of the proportional model approach may not

be recommendable for this case.

For t = 3, the following optimal designs were found with negatively pro-

portional carryover effects. Symmetric blocks such as < ABCC > (which is

< re >), < ABCB >, < ABBC >, < ABCA >, and < AABC > form

various optimal designs. < ABCC > is E optimal, whereas < AAAA >,

< ABCC >, < ABCB >, and < ABCA > form A/D optimal designs.

< ABCB > and < ABCA > form a T optimal design. Exact proportions of

the optimal designs are given in the Table 3.3. We can see that A/D/E/T

optimal designs for the negatively proportional carryover effects are nearly

equivalent except that the T optimal design has slightly lower efficiency with

respect to the E optimality criterion. The Design d<re> performs well not only
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Table 3.3: Efficiencies of dre and ddi against A/D/E/T optimal
designs for p = 4 and t = 3.

Designs λ1o, λ2o A D E T Eno baseline

d
[1]
re -0.5 0.9973 0.9540 1 0.9250 1.2343

d
[2]
A -0.5 1 0.9645 0.9890 0.9328 1.2480

d
[3]
D -0.5 0.9983 1 0.9210 0.9687 1.2939

d
[4]
T -0.5 0.9516 0.9840 0.8065 1 1.2121

d
[1]
re 0.5 1 1 1 1 1.2343

[1] E optimal for the negative (λ1o, λ2o) and A/D/E/T optimal for
the positive (λ1o, λ2o).
[2] A optimal for the negative (λ1o, λ2o) with p<AAAA> = 0.02,
p<ABCC> = 0.86, p<ABCB> = 0.07, and p<ABCA> = 0.05.
[3] D optimal for the negative (λ1o, λ2o) with p<AAAA> = 0.04,
p<ABCC> = 0.37, p<ABCB> = 0.56, and p<ABCA> = 0.03.
[4] T optimal for the negative (λ1o, λ2o) with p<ABCB> = 0.5 and
p<ABCA> = 0.5

for the negatively proportional carryover effects but it is also A/D/E/T opti-

mal for the positively proportional carryover effects. Therefore, use of d<re>

is recommended for p = 4 and t = 3 crossover designs. The Design d<ABCC>

is A/D/E/T optimal when the carryover effects are positively proportional

to the direct treatment effects as well as when there are no carryover effects,

λ1o = λ2o = 0.

We further investigated t = 4 and found that the Design d<di> is A/D/E/T

optimal and the Design d<re> is highly efficient in the E optimality criterion

for the negative proportionality parameters. When there are no carryover

effects, the Design d<di> is A/D/E/T optimal as expected. The Design d<re>

is A/D/T optimal and nearly E optimal, with efficiency ≈ 0.99 whereas the

Design d<di> is E optimal for the positive proportionality parameters. In

addition to these two designs we compare a Design dmix, which consists of

p<re> = p<di> = 0.5.

3.4.4 Five Period Designs

For t = 2, design with equal allocations on < ABBAA > and < AABBA > is

the A/D/E/T optimal design for all λ1o = λ2o ∈ (−1, 1). However, the case for
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Table 3.4: Efficiencies of dre and ddi against A/D/E/T optimal
designs for p = 4 and t = 4.

Designs λ1o, λ2o A D E T Eno baseline

d
[1]
re -0.5 0.8760 0.6250 0.9991 0.8372 0.7884

d
[2]
di -0.5 1 1 1 1 1.2615

d
[3]
mix -0.5 0.9544 0.8278 1 0.9259 1.0443

d
[1]
re 0.5 1 1 0.9991 1 1.8756

d
[2]
di 0.5 0.9176 0.7535 1 0.9031 1.4136

d
[3]
mix 0.5 0.9721 0.9012 0.9996 0.9603 1.6901

[1] A/D/T optimal for the positive (λ1o, λ2o) where p<ABCC> = 1
[2] A/D/E/T optimal for the negative and E optimal for the pos-
itive (λ1o, λ2o) where p<ABCD> = 1
[3] p<ABCC> = p<ABCD>=0.5

t = 3 involves more symmetric blocks. < ACABB > and < AABCB > form

A/D/E optimal designs and < ABCBC >, < ABCAC >, < ABCAB >,

and < ACABC > form a T optimal designs for the negative proportional

carryover effects. On the other hand, < ABBCC > and < AABCC > form

A/D/T optimal designs whereas < ACABB > and < AABCB > form an

E optimal design when the carryover effects are positively proportional. <

ABACC > and < AABCB > form A/D/E/T optimal designs when there

are no carryover effects.

When t = 4 < p = 5, < ABCDC >, < ABCDB >, and < ABCDA >

form A/D/T optimal designs, and < ABCDD > is an E optimal design for the

negative proportional carryover effects. Also, d<ABCDD> is A/D/E/T optimal

design for no carryover effects or positively proportional carryover effects.

For t = 5, the Design d<di> is A/D/E/T optimal for the negatively pro-

portional carryover effects or no carryover effects. It is E optimal for the

positively proportional carryover effects and A/D/T optimal design as well

for weak positive proportional carryover effects (λ1o = λ2o ≤ 0.12). However,

the Design d<re>, is A/D optimal and < ABBCC > and < AABCC > form

a T optimal design for λ1o = λ2o > 0.12.
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Table 3.5: Efficiencies of dre and ddi against A/D/E/T optimal
designs for p = 5 and t = 4.

Designs λ1o, λ2o A D E T Eno baseline

d
[1]
re -0.5 0.9462 0.7725 1 0.8938 1.4450

d
[2]
ADT -0.5 1 1 0.9093 0.8372 1.8708

d
[1]
re 0.5 1 1 1 1 1.4450

d
[2]
ADT 0.5 0.8462 0.5919 0.9093 0.8337 0.8552

[1] E optimal for the negative and A/D/E/T optimal for the pos-
itive (λ1o, λ2o)
where p<ABCDD>=1
[2] A/D/T optimal for the negative (λ1o, λ2o) where p<ABCDC> =
p<ABCDB> = p<ABCDA> = 1/3

3.5 Conclusion

In the last section, we constructed optimal designs for the proportional model

with baselines and observed the following. The A/D/E/T optimal designs

take various forms depending on t and p as well as (λ1o, λ2o) ∈ (−1, 0] or

(0, 1). For two-period crossover designs, the universally optimal design un-

der the traditional model proposed by Carriere and Reinsel (1993) is still

A/D/E/T optimal for the positive proportionality parameters. In this case,

the use of baseline measurements significantly improved efficiency under the

proportional model. When 2 ≤ t < p and (λ1o, λ2o) ∈ (−1, 0], symmetric

blocks without identical treatments in two consecutive periods are optimal,

i.e. < ABCAB > for p = 5 and t = 3. On the other hand, designs that

assign p − 1 distinct treatments and then repeating on the last period is op-

timal for 2 < p ≤ t and (λ1o, λ2o) ∈ (0, 1). Especially when t = p − 1,

the optimal designs for the positive proportionality parameters is the Design

d<re>. For example, < ABCDD > is the optimal design for t = 4 and p = 5.

With t < p, the Design d<re> is often the A/D/E/T optimal design for the

positive proportionality parameters whereas the Design d<di> is A/D/E/T

optimal for the negative proportionality parameters. With t ≥ p, the Design

d<di> is A/D/E/T optimal or nearly A/D/E/T optimal for any proportion-

ality parameters ∈ (−1, 1). Even when these two designs are not necessarily
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Table 3.6: Efficiencies of existing optimal designs and other practi-
cal designs against A/D/E/T optimal designs and E optimal design
under no baseline measurements for p = 5 and t = 5.

Designs λ1o, λ2o A D E T Eno baseline

d
[1]
re -0.5 0.8921 0.5964 0.9998 0.8682 0.8771

d
[2]
di -0.5 1 1 0.9998 1 1.4709

d
[1]
re 0.5 1 1 0.9998 0.9944 2.4278

d
[2]
di 0.5 0.9204 0.6987 1 0.9038 1.6960

d
[3]
T 0.5 0.9783 0.9739 0.8715 1 2.3639

[1] A/D/E/T optimal for the positive (λ1o, λ2o) where
p<ABCDD>=1.
[2] A/D/E/T optimal for the negative and E optimal for the pos-
itive (λ1o, λ2o)
where p<ABCDE> = 1.
[3] T optimal for the positive (λ1o, λ2o) where p<ABBCC> =
p<AABCC> = 1/2.

A/D/E/T optimal designs, they maintain a high level of efficiencies compared

to the A/D/E/T optimal designs for various p, t, and (λ1o, λ2o).

Some interesting phenomena were observed when the new optimal designs

under the proportional models in the presence of baseline measurements are

compared to the optimal designs without baseline measurements. For any p,

the efficiency of the optimal designs with baselines against the optimal designs

without baselines increases as t increases. When t is fixed, the efficiencies de-

creases as p increases. When t = p = 3 and proportionality parameters are

positive, the A/D/T optimal Design d<ABB> is 1.4 times efficient than the E

optimal design without baseline measurements when compared with respect

to D optimality criterion. For t = p = 6, d<re> design with baselines is 3 times

more efficient than the optimal design without baselines when proportionality

parameters are positive. For t ≥ p and (λ1o, λ2o) ≥ 0, the Design d<di> is

nearly A/T optimal and often E optimal. The efficiency of the Design d<di>

against the optimal design without baselines is still relatively high. Given

that the Design d<di> is preferred to the Design d<re> or any other designs by

the experimenters, this result suggests that researchers may incorporate base-

line measurements when they have information that the carryover effects are
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proportional or negligible. The case for no carryover effects were included as

the information about carryover effects are, often, not known in the planning

stage of the trials thus it is worth to verify whether the Design < di > (the

optimal design for traditional model with no carryover effects) is still optimal

design under the proportional model with baseline measurements. This is a

new discovery from the earlier guidelines where d<di> was recommended only

when carryover effects are negligible. The information about the proportion-

ality of carryover effects may be known before the trials or in the course of

trials, which would allow some option for response adaptive scheme. Upon

successfully detecting the proportionality parameters, researchers may utilize

that information by allocating more subjects to a particular block of treatment

sequences that may be more efficient under the proportional model.
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Chapter 4

Multiple Objective Response
Adaptive Crossover Designs for
Binary Responses Using the
Generalized Estimating
Equations
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Abstract

In clinical trials, adaptive allocation schemes are considered to utilize the in-

formation acquired during the trials to fulfill various objectives. A multiple

objective response adaptive scheme for binary responses has been proposed

previously. We introduce new approaches incorporating multiple objectives,

while advocating a regression type estimation approach via the Generalized

Estimating Equations method. We then compare the new approaches to iden-

tify appropriate weight parameters and to propose a new adaptive allocation

scheme that maximizes the benefits from the superior treatments while main-

taining a sufficiently high level of design efficiency. We find that the multiple

objective criterion successfully constructs spectrum of designs ranging over

various efficiencies and success ratios. Moreover, the new adaptive allocation

scheme successfully construct designs that fall right in the recommended range

of the weight parameter.

4.1 Introduction

Crossover designs have advantages over parallel designs, such as completely

randomized design in terms of statistical efficiencies. Equal or balanced al-

locations play an important role in the construction of optimal designs un-

der various model assumptions. However, equal allocations may pose ethical

dilemma when researchers start to suspect that one treatment may be supe-

rior to the other. All trials start with the null hypothesis that the effects of
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the treatments being tested are the same. At some point in the trial, we may

find an evidence indicating that the effects of treatments are notably differ-

ent. Then, we may wonder whether to equally allocate remaining subjects to

the treatments as per the protocol or to adapt to the findings and alter the

allocation scheme to reflect the trial phenomena. Connor et al. (1994) studied

a mother to infant HIV transmission drug named AZT. Among 477 pregnant

mothers with HIV, 239 were assigned to a placebo and 238 were assigned to the

AZT. The trial resulted in 60 infants diagnosed with HIV from the placebo

group and 20 infants diagnosed with HIV from the AZT group. A decade

later, Tymofyeyev, Rosenberger, and Hu (2007) suggested that use of 50-50

allocation was ethically improper given the seriousness of the outcome of the

study and he recommended to use response-adaptive allocation. Tymofyeyev,

Rosenberger, and Hu (2007) utilized the Play the Winner Rule(PWR) alloca-

tion (Zelen (2003) and Wei and Durham (1978)) and showed that 360 and 117

pregnant mothers are adaptively allocated to the AZT and placebo, respec-

tively. The results of Hu’s simulation showed that 60 infants were expected to

be diagnosed with HIV in two groups combined, which revealed some of the

benefits of the adaptive allocations.

Response adaptive designs may have several other goals. Zelen (2003), Wei

and Durham (1978), Bandyopadhyay, Biswas, and Mukherjee (2009a, 2009b)

aimed at allocating more subjects to a better treatment. Armitage (1975)

aimed at reducing the sample size and Wang (2014) aimed at increasing the

sample size based on the pre-specified statistical power and the data acquired.

Furthermore, Bandyopadhyay and Biswas (2001) investigated the method of

introducing covariates in response adaptive designs. Sorkness et al. (2019)

proposed designs that were adaptive to the prevalence of events, in which

sample size re-calculation was done to remedy the loss of statistical power

arising from the imbalance in the prevalence. However, these studies utilized
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the acquired information for a single objective. Liang and Carriere (2009),

Liang et al. (2014), and Li (2017) proposed a multiple objective response

adaptive design where they defined an objective function with two components,

controlled by a weight parameter. On the other hand, Yi and Wang (2009)

and Li and Wang (2012) proposed a response adaptive randomization based

on a variance-penalized mean criterion, which takes account of both the mean

and variance of the total number of successes. This chapter incorporates these

two multiple objective functions for two-treatment designs with two or three

periods and binary responses.

The binary responses are modelled differently from continuous responses in

a way that the information matrix is a function of the responses, and the stan-

dard logistic regression assumes that the responses are independent. Therefore,

the Generalized Estimating Equations (GEE) method, which can incorporate a

desired covariance structure of responses, is used for the analysis of crossover

designs in this chapter. Liang and Zeger (1986) proposed the GEE, which

takes into account for the time dependencies of the data by allowing differ-

ent working correlation matrices. The GEE method estimates parameters by

solving the system of equations based on the Quasi-Likelihood function. The

advantage of Quasi-Likelihood method is that it does not need to provide

joint distribution of the data. It only requires the marginal distribution and

its mean and variance. GEE estimates are consistent under a mild regularity

conditions(Liang and Zeger (1986)). Valois (1997) utilized GEE in the analysis

of crossover designs.

This chapter aims to construct multiple objective response adaptive designs

for two treatments with binary outcomes using the GEE. Adaptive designs

are first constructed using simulations and some examples will be provided for

various weights of multiple objective functions. We first review the theoretical

grounds for crossover designs with binary outcome and the GEE method.
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Then, we compare the two suggested response adaptive allocations for the

construction of adaptive two-treatment two/three-period crossover designs.

The two adaptive allocation schemes will be compared in terms of the success

ratios and relative efficiencies. We also compare the GEE methods to the

previous approaches done by Li (2017). Lastly, we develop a new strategy

for maximizing the success ratio while maintaining certain level of statistical

efficiency, which does not involve selecting the weight parameter for the two

objectives.

4.2 Multiple objective response adaptive de-

signs with GEE

4.2.1 Model and Information Matrix

Agresti (2014) studied the Generalized Linear Model (GLM) for an exponential

family of distributions. Suppose Y follows a distribution in an exponential

family with parameters (β, φ). Then the pdf of Y can be written as,

f(y|β, φ) = exp((yβ − b(β))/a(φ) + c(y, φ)). (4.1)

Taking a log on the likelihood function we get,

l(β, φ|y) = logf(y; β, φ) =
yβ − b(β)

a(φ)
+ c(y, φ), (4.2)

E

(
∂l

∂β

)
= E

(
y − b′(β)

a(φ)

)
= 0,

E

(
∂2l

∂β2

)
− E

(
∂l

∂β

)2

=
b′′(β)

a(φ)
− V ar(Y )

a2(φ)
= 0,

⇒ E(Y ) = b′(β) and V ar(Y ) = b′′(β)a(φ).

Suppose that Yijk denotes the binary response of ith period of jth subject in

kth treatment sequence and Yijk ∼ Bernoulli(pijk). Now suppose X is a design

matrix for an overall mean effect, period effects, direct treatment effects, and
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carryover effects with the corresponding vector of parameters θ. With a logit

link function g(), we can define the following model,

ηijk = g(E(Yijk)) = g(P (Yijk = 1) = logit(P (Yijk = 1)) (4.3)

= log

(
P (Yijk = 1)

1− P (Yijk = 1)

)
= µ+ αi + τd(i,j,k) + γd(i−1,j,k) = X ′β. (4.4)

It is easy to see that the mean and variance of Yijk are defined as

E(Yijk) = µijk = b′(βijk) =
exp(X ′ijkθ)

1− exp(X ′ijkθ)
, (4.5)

V ar(Yijk) = b′′(βijk) =
exp(X ′ijkθ)

(1− exp(X ′ijkθ))2
. (4.6)

Now define ∂µj/∂βj = Bj and the quasi likelihood function as in McCullagh

and Nelder (1999) as the following,

Q(µj|yj) =

∫ µj

yj

yj − t
var(Yj)

∂t =

∫ µj

yj

yj − t
V (µj)

∂t. (4.7)

We can derive the Information matrix by taking the derivative of Q(µj, yj)

with respect to θ and θ′,

Ij = −E
(
∂2Q(µj|yj)
∂θ∂θ′

)
= −E

[
∂

∂θ′

((
∂µj
∂θ

)′
V −1(µj)(yj − µj)

)]
= −E

[
∂

∂θ′

((
∂µj
∂βj

∂βj
∂θ

)′
V −1(µj)(yj − µj)

)]
= −E

[
∂

∂θ′
(
X ′jBjV

−1(µj)(yj − µj)
)]

= X ′jBjV
−1(µj)BjXj.

Then, Bose and Dey (2009) showed that the covariance matrix for param-

eters θ is defined as follows

V ar(θ̂) = (Σk∈ΩnkIk)
−1 , (4.8)
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with the design matrices being identical for subjects in the same treatment se-

quence when a covariance matrix is correctly specified. Otherwise, a sandwich

variance estimator is suggested.

V ar(θ̂) = A
(
Σk∈ΩnkX

′
kBkV

−1(µk)Cov(Yk)V
−1(µk)BkXk

)
A, (4.9)

where A = (Σk∈ΩnkX
′
kBkV

−1(µk)BkXk)
−1

. This sandwich variance estimator

is known to be consistent(Liang and Zeger (1986)).

4.2.2 Multiple Objective Function

Liang and Carriere (2009) proposed the following multiple objective function

for the continuous responses,

Φj,k = λ
∆(Îkj+1(θ))

∆(Îk
′

j+1(θ))
+ (1− λ)

fj,k
fj,k′′

, (4.10)

where Îkj+1(θ) is the Fisher’s Information matrix for subject j + 1 allocated to

treatment sequence k with ∆ being an optimality criterion of choice and fj,k is

an evaluation function for treatment sequence k based on the first j subjects

in the trial. In this function, treatment sequence k′ refers to the sequence with

maximum Îkj+1(θ) and k′′ refers to the sequence with maximum fj,k, which may

not necessarily be identical. Among the two terms in the objective function,

the first term of the function investigates the efficiency of design with respect

to the Fisher’s Information matrix given that subject (j + 1) is allocated to

treatment sequence k. This is represented as a ratio over the sequence with

maximum information so that the component may take value in [0, 1]. The

second term of the function is called the evaluation function that evaluates the

total efficacy of treatment sequences based on the estimated treatment effects.

When λ = 0, the objective function considers only the efficiency of the design

and ignores any superiority/inferiority of the treatments being tested. On
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the other hand, the objective function with λ = 1 would construct adaptive

designs based solely on the positive effects of treatments being tested.

Liang et al. (2014) and Li (2017) extended their multiple objective func-

tion to binary responses and derived the Information Matrix for estimated

success probabilities for binary responses. The observed number of successes

for each treatment sequence was used for the evaluation function f . The

sandwich estimate of the covariance matrix is known to be robust, and con-

sistent for heteroscedasticity and mis-specification of covariance matrices for

within-subject responses. As the analysis of crossover design mainly focuses

on direct treatment effects, we choose the inverse of the variance of estimated

treatment effects, 1/var(τ̂), as the criterion for comparing the efficiency of

various treatment sequences. McCullagh (2005) showed that Quasi-likelihood

estimates are invariant under a linear transformation. That is, µ̂k maximizes

the quasi-likelihood function.

Throughout this chapter, we will refer to the equation (4.10) as the multiple

objective function and choose the first term ∆(Îkj+1(θ)) as the variance of the

estimated treatment effects, var(τ̂j+1,k). The data acquired from the first j

subjects are modelled using the GEE approach and predictions for subject

j + 1 are made for all of the K treatment sequences. Then, we include the

predicted responses of subject j + 1 into the model and obtain the variance of

an estimated treatment effects of each treatment sequence. Then, we evaluate

the efficacy of each treatment sequence by using Σp
i=1η̂i,j,k. The η′s take any

values in IR where large values correspond to a better treatment sequence. We

transform these values to positive numbers so that a larger value indicates a

better sequence and the ratios could be easily implemented. For this reason,

we choose fj,k = logit(Σp
i=1η̂i,j,k), which falls in (0, 1).

Yi and Wang (2009) proposed a variance-penalized mean criterion for re-

sponse adaptive designs for parallel design where the goal was to maximize the
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function E(Σn
j=1Yj) − ψV ar(Σn

j=1Yj) for ψ ≥ 0. When ψ = 0, this is equiv-

alent to (4.10) with λ = 0. We can see that increasing ψ moves the focus of

the maximization on reducing the variance. We adopt this idea of penalizing

treatment effects by its variance and define a new variance penalized criterion

Φ′ as follows,

Φ′(j, k) = Σp
i=1η̂i,j,k − ψV ar(Σ

p
i=1η̂i,j,k), (4.11)

where the total effect of each treatment sequence is penalized by its own vari-

ance with a weight parameter ψ ≥ 0.

4.3 Two Allocation Methods

We compare the performance of the two allocation functions, namely multiple

objective function in (4.10) and variance penalized mean function in (4.11).

For the comparison, we construct two-treatment two-period designs and two-

treatment three-period designs based on the parameter settings from Li (2017),

which are shown in Table 4.1 with a slight modification on the values to in-

corporate the GEE modeling approach. Initially, four subjects are assigned to

each treatment sequence. Afterwards, new subjects are introduced sequentially

and are assigned to the treatment sequence with the highest (4.10) or (4.11).

When all subjects are assigned, the variance of the estimated treatment effects,

var(τ̂N), is computed and compared to the variance obtained from the optimal

fixed designs suggested by Mukhopadhyay, Singh, and Dey (2015). Mukhopad-

hyay, Singh, and Dey (2015) conducted simulation study for the optimal fixed

crossover design with binary outcomes using the GEE method and showed

that AA/AB/BB/BA is optimal for p=2 and ABB/AAB/BAA/BBA is op-

timal for p=3 under the compound symmetric covariance structure with binary

outcomes.

69



Table 4.1: Parameter values for simulation in construction of multiple-
objective response adaptive crossover design with binary outcomes.

p Parameters Treatment Sequences Success Probabilities Expected Success
per Period

2 µ=-0.22 AA (0.60, 0.70) 0.65
α2=0.018 AB (0.60, 0.40) 0.50
τ=0.63 BA (0.30, 0.50) 0.40
γ=0.42 BB (0.30, 0.22) 0.26

3 µ=-0.22 AAA (0.60, 0.70, 0.65) 0.65
α2=0.018 AAB (0.60, 0.70, 0.35) 0.55
α3=-0.21 ABA (0.60, 0.40, 0.44) 0.48
τ=0.63 ABB (0.60, 0.40, 0.19) 0.40
γ=0.4 BAA (0.30, 0.50, 0.65) 0.48

BAB (0.30, 0.50, 0.35) 0.38
BBA (0.30, 0.22, 0.44) 0.32
BBB (0.30, 0.22, 0.19) 0.23

4.3.1 Two Period Design

There are 4 treatment sequences for two-treatment two-period crossover trials.

Carriere and Reinsel (1993) showed that an equal allocation on all sequences

AA/BB/AB/BA, denoted as dopt,p2, is universally optimal for a continuous

response and Mukhopadhyay, Singh, and Dey (2015) confirmed that the same

design is numerically optimal even when responses are binary. We assign

4 subjects to each of the four sequences and allocate the rest based on the

two objective functions in (4.10) and (4.11). The following tables show the

allocations of the adaptive designs, their efficiency compared with the optimal

design, and their success ratio for different values of λ and ψ and N .

When λ = 0 or ψ = 0, the resulting allocation focuses on the treatment

sequence AA with very few assigned to the rest of the sequences due to random-

ness during the initial stage of the trial. We can see that the allocation to the

sequence AA decreases as λ or ψ increases. However, the multiple objective re-

sponse adaptive designs behave differently from the penalized mean response

adaptive designs. For the multiple objective response adaptive designs, the
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allocations move toward a dual balanced design dopt,p2, which assigns equal

allocations to all 4 sequences. The relative efficiency of the proposed multiple

objective adaptive design against dopt,p2 is low for λ = 0 and approaches 1 as

λ increases to 1. The success ratio is close to the expected success shown in

Table 4.1 when λ = 0 and decreases as λ increases. Therefore, we must find

a reasonable compromise between efficiency and a success ratio. For N = 40,

λ ∈ (0.85, 0.9) would construct an efficient design (efficiency> 0.8) with a suf-

ficiently higher success ratio (5% ∼ 8% increased) than λ = 1. For N = 80,

λ ∈ (0.9, 0.95) would construct a similar design (efficiency > 0.8 and success

ratio improved by 5% ∼ 8%). For N = 100, something happens drastically

around λ ∈ (0.9, 0.95) that efficiency drops from 0.8957 to 0.7096 while the

success ratio increases from 0.5168 to 0.5638 showing that the choice of suitable

λ may vary significantly by the sample size N .

The adaptive designs in Tables 4.2 and 4.3 behave similarly when λ = 0

and ψ = 0, as expected. We can observe that the allocations to treatment se-

quences AB/BA increase, and the allocations to treatment sequence AA/BB

decrease as ψ increases. This indicates that the sequences with different treat-

ments, AB/BA, have a smaller variance of the estimated sum of η’s. As ψ

increases further, the allocation to the sequence AA decreases significantly and

most of the allocations are assigned to the two sequences AB/BA. However,

the efficiency of the resulting adaptive design does not improve, and the suc-

cess ratios drop significantly as ψ increases. These losses in success ratios did

not accompany any gains in efficiencies.

For p = 2 and t = 2, the expected value of the first term in the equation

(4.11) is defined as η1,AA(BB) + η2,AA(BB) = 2µ + α2 + 2τ(−2τ) + γ(−γ) for
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Table 4.2: Allocation, Efficiency, and Success Ratio for two-period designs
using the multiple objective criteria in (4.10).

N λ AA AB BA BB Efficiency Success Ratio
40 0 26.97 4.37 4.51 4.15 0.5679 0.5635

0.3 26.46 4.40 4.94 4.20 0.5696 0.5596
0.7 25.42 5.46 4.89 4.23 0.6378 0.5576
0.8 22.22 7.60 5.63 4.55 0.7615 0.5420
0.9 16.63 9.49 7.28 6.60 0.9152 0.5042
1 10.20 10.01 9.66 10.13 1.0141 0.4534

80 0 65.81 4.53 5.46 4.20 0.2998 0.6046
0.3 66.05 4.65 5.13 4.17 0.3012 0.6055
0.7 64.37 5.95 5.43 4.26 0.3554 0.6020
0.8 59.16 9.95 6.28 4.60 0.4844 0.5896
0.9 45.08 16.64 10.56 7.72 0.7582 0.5507
0.95 33.68 18.98 13.95 13.39 0.9368 0.5048

1 20.35 19.81 18.96 20.88 1.0076 0.4532
100 0 85.14 4.71 5.85 4.31 0.2859 0.6126

0.3 85.84 4.56 5.45 4.15 0.2773 0.6136
0.7 84.57 6.03 5.25 4.16 0.3184 0.6114
0.9 61.75 19.36 11.01 7.89 0.7096 0.5638
0.95 45.77 23.49 16.30 14.44 0.8957 0.5168

1 25.41 24.40 23.66 26.54 1.0258 0.4525

sequences AA(BB) and 2µ + α2 + γ(−γ) for treatment sequences AB(BA).

Consider the followings,

V1 = V ar(2µ̂+ α̂2 + 2τ̂ + γ̂) > V ar(2µ̂+ α̂2 + γ̂) = V3,

⇒ 4V ar(τ̂) + 4Cov(µ̂, τ̂) + 2Cov(α̂2, τ̂) + 2Cov(τ̂ , γ̂) > 0.

V2 = V ar(2µ̂+ α̂2 − 2τ̂ − γ̂) > V ar(2µ̂+ α̂2 − γ̂) = V4,

⇒ 4V ar(τ̂)− 4Cov(µ̂, τ̂)− 2Cov(α̂2, τ̂) + 2Cov(τ̂ , γ̂) > 0.

V1 = V ar(2µ̂+ α̂2 + 2τ̂ + γ̂) > V ar(2µ̂+ α̂2 − γ̂) = V4,

⇒ 4V ar(τ̂) + 4Cov(µ̂, τ̂) + 2Cov(α̂2, τ̂) + 2Cov(τ̂ , γ̂) + 4Cov(µ̂, γ̂)

+ 2Cov(α̂2, γ̂) > 0.

V2 = V ar(2µ̂+ α̂2 − 2τ̂ − γ̂) > V ar(2µ̂+ α̂2 + γ̂) = V3,

⇒ 4V ar(τ̂)− 4Cov(µ̂, τ̂)− 2Cov(α̂2, τ̂) + 2Cov(τ̂ , γ̂)− 4Cov(µ̂, γ̂)

− 2Cov(α̂2, γ̂) > 0.

The consistent estimates for the above terms can be obtained by replacing

the parameters with their GEE estimates. Also, the variance of the estimated
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Table 4.3: Allocation, Efficiency, and Success Ratio for two-period designs
using the penalized mean criteria in (4.11).

N ψ AA AB BA BB Efficiency Success Ratio
40 0 26.66 4.45 4.72 4.17 0.5587 0.5637

1 24.40 5.48 6.02 4.10 0.5719 0.5513
4 10.24 15.19 10.52 4.05 0.5431 0.4853

200 4.71 17.31 13.77 4.21 0.5355 0.4593
80 0 65.65 4.42 5.74 4.19 0.2999 0.6042

1 59.26 7.30 9.29 4.15 0.3002 0.5877
4 23.15 32.51 20.27 4.07 0.2961 0.5057

200 5.70 38.62 31.10 4.58 0.2893 0.4572
100 0 85.89 4.67 5.29 4.15 0.2790 0.6139

1 78.36 7.08 10.29 4.27 0.2908 0.5988
4 30.12 41.29 24.35 4.24 0.2962 0.5106

200 6.44 48.59 40.12 4.85 0.2658 0.4570

η’s can easily be computed using the sandwich covariance matrix from GEE.

The treatment sequences with a smaller variance do not necessarily improve

efficiency in this case and the efficiency depends on the covariance matrix of

the estimates of parameters. This covariance matrix, in turn, does not have a

closed form as in the continuous response case. The simulation results indicate

that the penalized mean criterion function behaves in a lot more complex

manner than the multiple objective function in (4.10). Thus, it seems that the

variance penalized criterion may not be suitable for crossover design.

4.3.2 Three Period Design

Three-period two-treatment crossover designs constructed from the multiple

objective response adaptive approach behave similarly as the two-period two-

treatment designs. When λ = 0, the majority of the subjects are allocated to

the treatment sequence AAA, which has the highest success ratio per period.

For small sample size, n = 40, the efficiencies remain high and the success

ratios are improved (−5% efficiency and 5% success ratio) for any values of

λ < 1. This is largely due to the conditions of the design, where 3×8=24

subjects out of 40 are assigned evenly to all 8 sequences and thus only 16 sub-

jects are allocated based on the multiple objective response adaptive schemes.
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Therefore, the relative efficiency, which is computed based on the optimal de-

sign suggested by Mukhopadhyay, Singh, and Dey (2015), remains high and

the success ratio is improved only to a degree. However, in the case of N = 80,

the success ratio increases from 0.4323 to 0.5647 and the efficiency decreases

from 1.0370 to 0.5793 as λ decreases from 1 to 0. It is notable that the rela-

tive efficiencies of multiple objective response adaptive designs for λ = 1 and

n = {40, 80, 100} are greater than 1, indicating that these designs are slightly

better than the optimal design suggested by Mukhopadhyay, Singh, and Dey

(2015) for the given set of parameters. For λ = 1 and N = 80, the expected

success per period is 0.4375, which is close to the observed success ratios of

0.4323. The design with λ = 0.95 is as efficient as the optimal design, relative

efficiency of 1.0055, and yet shows a higher success ratio, 0.4708 > 0.4323,

with an expected success ratio of 0.4696 > 0.4375. In the case of λ = 0.9,

the relative efficiency decreases to 0.9220 while the success ratio increases to

0.5050 from 0.4323. Looking at the design with λ = 0.85, we see that the rel-

ative efficiency decreases to 0.8133 while the success ratio increases to 0.5290.

These two designs with λ = 0.9 and λ = 0.85 indicate that we could improve

the success ratio of the design by 7% ∼ 10% at the cost of relative efficiency

between 0.1 and 0.2. When N = 100, the designs show a similar performance

to the case of N = 80 with respect to efficiency and the success ratio except

that efficiencies drop faster as λ decreases. We can observe a rapid decrease

in the efficiency for λ ∈ (0.85 ∼ 0.9).

In summary, the above tables show that adaptive schemes could benefit

more subjects without much loss of efficiency for the given set of parameters.

But it is important to find an appropriate λ to improve the success ratios

while maintaining a sufficient level of statistical efficiency. In this case, λ ∈

(0.85, 0.9) is recommended for both N = 80 and N = 100. However, we can see

that the decrease in efficiency is more rapid for N = 100 than that of N = 80,
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indicating that sample size N is another player determining the recommended

λ. The resulting designs would have success ratios increased by 9% ∼ 12%

when compared to the optimal fixed design(λ = 1). Taking a smaller value

of λ can benefit further but the gain in success ratio decreases marginally as

the λ decreases. This shows that the choice of λ depends not only on the

parameters but also on the sample size.

Table 4.4: Allocation, Efficiency, and Success Ratio for three-period design
using the multiple objective criteria in (4.10).

N λ AAA AAB ABA ABB BAA BAB BBA BBB Efficiency Success
Ratio

40 0 11.98 4.00 4.01 4.00 4.00 4.00 4.01 4.00 0.9603 0.4797
0.3 11.95 4.02 4.00 4.00 4.01 4.00 4.02 4.00 0.9631 0.4785
0.7 10.97 4.77 4.12 4.12 4.11 4.01 4.00 4.00 0.9891 0.4767
0.8 9.24 5.62 4.73 4.56 5.01 4.55 4.36 4.23 0.9931 0.4678
0.9 6.94 5.62 4.73 4.56 5.01 4.55 4.36 4.23 1.0075 0.4566
1 5.04 5.03 4.73 4.96 4.98 4.93 4.97 5.36 1.0302 0.4377

80 0 51.98 4.01 4.00 4.00 4.00 4.00 4.01 4.00 0.5793 0.5647
0.3 51.95 4.00 4.01 4.00 4.01 4.00 4.00 4.00 0.5848 0.5656
0.7 49.58 5.91 4.24 4.01 4.23 4.01 4.02 4.00 0.6043 0.5619
0.8 41.09 10.41 6.07 4.24 5.89 4.24 4.06 4.00 0.7223 0.5458
0.85 33.85 12.40 7.48 5.14 7.47 5.20 4.39 4.07 0.8133 0.5290
0.9 25.20 13.16 8.67 6.74 9.10 6.94 5.63 4.56 0.9220 0.5050
0.95 16.76 12.06 9.02 8.48 10.27 8.61 7.94 6.86 1.0055 0.4708

1 10.09 9.97 8.58 9.95 9.83 9.75 9.91 11.92 1.0370 0.4323
100 0 71.97 4.01 4.00 4.00 4.00 4.00 4.02 4.00 0.4972 0.5817

0.3 71.98 4.01 4.00 4.00 4.01 4.00 4.00 4.01 0.5081 0.5805
0.7 69.41 6.03 4.28 4.02 4.25 4.01 4.00 4.00 0.5379 0.5812
0.8 57.12 6.09 5.56 6.20 6.01 5.95 6.18 6.90 0.6345 0.5445
0.85 54.13 12.65 7.646 4.94 7.32 5.00 4.28 4.05 0.6951 0.5553
0.9 37.37 16.65 10.20 7.39 10.46 7.62 5.80 4.50 0.8696 0.5231
0.95 23.93 15.91 10.85 10.17 12.35 10.44 9.17 7.19 0.9858 0.4794

1 12.45 12.50 10.38 12.57 12.10 12.18 12.49 15.32 1.0435 0.4315

When ψ = 0, the penalized mean criterion allocates most of the subjects

to treatment sequence AAA. The variance component of the penalized mean

criterion favors treatment sequences ABA/ABB/BAB and their allocations

increase as ψ increases. For N = 40, the efficiency and success ratios move

in an unpredictable direction as ψ increases. The allocations change similarly

in the case of N = 80. However, it is hard to find a good value of ψ that
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finds a balance between the success ratio and efficiency, where the efficiencies

ranged from 0.5 to 0.6. For instance, the penalized mean adaptive design at

ψ = 1 and n = 80, with relative efficiency of 0.6327 and success ratio of 0.5120,

shows moderate efficiency and success ratio. While the penalization method

may have a value in scrutinizing varying variances in treatments, there seems

to be uncontrolled and unexplainable factors and we need to understand fully

before we can use it adaptively.

Table 4.5: Allocation, Efficiency, and Success Ratio for three-period design
using penalized mean criteria in (4.11).

N ψ AAA AAB ABA ABB BAA BAB BBA BBB Efficiency Success
Ratio

40 0 12.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 0.9523 0.4844
1 5.91 5.62 8.43 4.01 4.03 4.00 4.00 4.00 0.9751 0.4548
4 4.00 4.30 10.63 4.89 4.00 4.18 4.00 4.00 0.8427 0.4371

200 4.00 4.02 9.30 6.11 4.00 4.57 4.00 4.00 0.9143 0.4444
80 0 52.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 0.5890 0.5643

1 25.90 10.26 23.58 4.13 4.13 4.00 4.00 4.00 0.6327 0.5120
4 4.00 5.75 45.79 7.81 4.27 4.38 4.00 4.00 0.5427 0.4605

200 4.00 4.49 37.11 16.01 4.00 6.39 4.00 4.00 0.5655 0.4448

4.4 Comparison of Two Modeling Approaches

Bandyopadhyay, Biswas, and Mukherjee (2007) utilized an example of a three-

period crossover trial of two-treatments for hypertension. In this trial, 68 sub-

jects were equally assigned to the treatment sequences ABB/BAA/ABA/BAB.

Li (2017) used the last two periods of this trial to obtain a crossover design

with AA/BB/AB/BA. The response variable was continuous measurements

of systolic blood pressure. Thus two binary response variables were com-

puted by dichotomizing the blood pressures at ”135 or more” and ”140 or

more” and denoting the responses as failures. Two sets of success probabilities

were estimated from this data. (v̂A1, v̂A2, v̂B1, v̂B2) = (0.24, 0.24, 0.24, 0.35) and

(v̂A1, v̂A2, v̂B1, v̂B2)= (0.35, 0.5, 0.35, 0.53) where v is the probability of success
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with the letters denoting treatments and numbers denoting periods. These

estimated probabilities were considered as actual success probabilities, and

the multiple objective response adaptive technique was applied with λ = 1

and λ = 0.9. A comparison of allocations, efficiencies, and success ratios of

three methods are provided below. We introduce fixed group effects, βk, to

the model in (4.3) to incorporate those success probabilities. The parameters

and other settings are provided in the Table 4.6, and the results of simulations

are provided in 4.7.

ηijk = µ+ αi + βk + τd(i,j,k) + γd(i−1,j,k) (4.12)

Table 4.6: Parameter values and expected success probabilities based on the
crossover trial of Bandyopadhyay, Biswas, and Mukherjee (2007).

Probabilities Parameters Treatment Success Expected Success
Sequences Probabilities per Period

v̂A1 = 0.24 µ = −1.89, β1 = 1 AA (0.24, 0.24) 0.240
v̂A2 = 0.24 α2 = 0.27, β2 = 1 AB (0.24, 0.35) 0.295
v̂B1 = 0.24 τ = −0.27, β3 = 0.47 BA (0.24, 0.24) 0.240
v̂B2 = 0.35 γ = −0.27, β4 = 0.47 BB (0.24, 0.35) 0.295
v̂A1 = 0.35 µ = −1.56, β1 = 1 AA (0.35, 0.50) 0.425
v̂A2 = 0.5 α2 = 0.68, β2 = 1 AB (0.35, 0.53) 0.440
v̂B1 = 0.35 τ = −0.06, β3 = 0.88 BA (0.35, 0.50) 0.425
v̂B2 = 0.53 γ = −0.06, β4 = 0.88 BB (0.35, 0.53) 0.440

The efficiencies in Table 4.7 were computed against the equal allocation

design, the fixed optimal for two-period and two-treatment designs. First,

we compare multiple objective response adaptive designs with λ = 1. We

see that when the difference of the expected success probabilities between the

sequences are small (0.425 vs 0.44, second example in Table 6), Li’s strat-

egy allocates an extensive number of the subjects to the treatment sequences

AB/BB and results in a substantial loss of efficiency. Moreover, the gain in

the expected success over an equal allocation design is minimal (0.4352 vs
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Table 4.7: Allocation, Efficiency, and Success Ratio for two-period designs.

Parameters Design λ AA AB BA BB Efficiency Expected
Success

(v̂A1, v̂A2, v̂B1, v̂B2) dB1 15.75 16.92 17.01 18.32 0.9912 0.2685
(0.24, 0.24, 0.24, 0.35) dL2 1 13.13 21.03 13.03 20.80 0.9143 0.2738

dL3 0.1 14.69 19.06 13.64 20.62 0.9522 0.2729
dP4 1 12.81 20.85 12.49 21.85 0.8913 0.2745
dP5 0.1 15.22 19.58 14.19 19.01 0.9829 0.2713
dE6 17.00 17.00 17.00 17.00 1.0000 0.2675

(0.35, 0.50, 0.35, 0.53) dB7 13.00 16.42 16.46 22.12 0.9769 0.4335
dL8 1 7.32 16.35 14.88 29.46 0.8376 0.4352
dL9 0.1 12.38 16.71 15.80 23.11 0.9627 0.4338
dP10 1 16.22 17.89 15.40 18.49 0.9970 0.4330
dP11 0.1 16.76 17.53 16.80 16.91 0.9983 0.4326
dE6 17.00 17.00 17.00 17.00 1.0000 0.4325

[B] Bandyopadhyay, Biswas, and Mukherjee (2007)
[L] Li (2017)
[P ] The proposed multiple objective response adaptive design
[E] Equal allocation design

0.4325). The simulations confirm this observation, and d8 has relative effi-

ciency of 0.8376 without much gain as a result. On the other hand, d10 adapts

to the small differences in the sequences in a careful manner, and it assigns

about 3 more subjects to better treatment sequences AB/BB without losing

efficiency (0.9970). d10 allocates fewer subjects to AB/BB compared to d7,

d8, and d9.

It is noticeable that the pattern is not the same when there is a moder-

ate difference in the expected success probabilities between the treatment se-

quences (0.24 vs 0.295). Design d2 allocates 41.83 subjects to better sequences

AB/BB whereas d4 allocates 42.7 subjects. The designs allocate more sub-

jects to better treatment sequences than d1 while maintaining a high level of

efficiency.

The designs constructed using the multiple objective response adaptive

method with GEE are more responsive to the differences in treatments better

than Bandyopadhyay, Biswas, and Mukherjee (2007) and Li (2017), while

maintaining a high level of efficiency when there is a moderately large difference
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in the treatment effects. Our revised method assigns more subjects to the

better treatment sequence when the treatment differences are large. Moreover,

the resulting designs are close to the optimal design with an equal allocations

on all 4 sequences, when the treatment differences are negligible. This assures

that even if the treatment difference is not as large as expected, the multiple

objective response adaptive method is robust and creates an efficient design.

4.5 A Revised Adaptive Allocation Strategy

In Tables 4.2 and 4.4, we observed that the decrease in efficiency following

the decrease in λ is not consistent for differing sample sizes. That is, if we

wish to maintain some level of relative efficiency with respect to the known

fixed optimal design while applying the multiple objective adaptive allocation

scheme, we must fully understand the behaviors of this adaptive allocation

scheme and find the suitable λ, which is determined by the true parameters

as well as the sample size. The simulations on this scheme may help suggest

some λ’s but that is limited to the specific scenarios being studied. Therefore,

we propose a sensible new approach to the multiple objective based allocation

scheme without having to precisely know which λ to use.

Instead of defining the multiple-objective function as in (4.10), we define

two objective functions separately.

H1,j,k =
∆(Îkj+1(θ))

∆(Îk
′

j+1(θ))
, (4.13)

H2,j,k =
fj,k
fj,k′′

, (4.14)

which are the first and second terms of the equation (4.10).

The allocation takes the following steps.

1. Select an acceptable relative efficiency r∗.

2. Acquire the first j subjects.
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3. Construct a logistic regression model and obtain the quasi-likelihood

estimates of the parameters, µ, πi’s, τ , γ, etc.

4. Generate another set of data with the same number of total subjects

as the current dataset with allocations according to the optimal design

dopt,p2.

5. Obtain estimates of the parameters and sandwich covariance matrices of

the estimated parameters from the new data.

6. Compare the efficiencies of two designs, one being the adaptive design

and the other being the fixed optimal design (Mukhopadhyay, Singh,

and Dey (2015)). In this study, we compare the efficiencies of the

two designs by the variance of estimated treatment effects, i.e. r =

var(τ̂opt)/var(τ̂Adaptive).

7. If r < r∗ then use H1,j,k as the allocation function for subject j + 1,

otherwise use H2,j,k as the allocation function for subject j + 1.

8. Return to step 3 until all subjects are allocated.

Now we apply the above method to the parameters in Table 4.1 with the

aim of constructing a response adaptive design with a relative efficiency around

r∗ > 0.8. First, we construct 2-period 2-treatment response adaptive designs

with N = 40, 80 and 100. We present the results for 3-period 2-treatment

designs with N = 80 and 100. The case for N = 40 was excluded as all

adaptive designs constructed using (4.10) with any λ have relative efficiencies

> 0.9.

From Table 4.8, we can see that the designs constructed using our adaptive

allocation method, denoted as dAdaptive, have relative efficiencies close to 0.8 or
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Table 4.8: Comparison of new revised response adaptive two-period design
with the results from Table 4.2.

N Designs AA AB BA BB Efficiency Success
Ratio

40 d(0.8) 22.22 7.60 5.63 4.55 0.7615 0.5420
d(0.9) 16.63 9.49 7.28 6.60 0.9152 0.5042
d(1) 10.20 10.01 9.66 10.13 1.0141 0.4534

dAdaptive 21.75 6.11 6.21 5.94 0.8465 0.5319
80 d(0.9) 45.08 16.64 10.56 7.72 0.7582 0.5507

d(0.95) 33.68 18.98 13.95 13.39 0.9368 0.5048
d(1) 20.35 19.81 18.96 20.88 1.0076 0.4532

dAdaptive 43.58 12.35 12.24 11.83 0.8430 0.5309
100 d(0.9) 61.75 19.36 11.01 7.89 0.7096 0.5638

d(0.95) 45.77 23.49 16.30 14.44 0.8957 0.5168
d(1) 25.41 24.40 23.66 26.54 1.0258 0.4525

dAdaptive 57.09 14.42 14.12 14.37 0.7972 0.5391

slightly larger than that while the success ratios are increased by 9% compared

to the designs for λ = 1. For N = 40, our adaptive design follows the pattern

of changes in the allocations, efficiency, and success ratio so that we can find

one between d(0.8) and d(0.9). For example, the allocation to the treatment

sequence AA is 21.75(dAdaptive), which is between 16.63(d(0.8)) and 22.22(d(0.9)).

This pattern is also the case for all other columns in the table for N = 80 and

100. Our adaptive designs appear to be constructed in a similar manner as

the multiple objective response adaptive designs as if they were constructed

with the λ in the suggested range of (0.8, 0.9). Similarly, the dAdaptive designs

for N = 80 and N = 100 fall right in between d(0.9) and d(0.95).

From Table 4.9, the relative efficiencies of our adaptive designs are 0.7999

and 0.7854 for N = 80 and N = 100 respectively. These efficiencies are

very close to our target r∗ = 0.8 while the success ratios are improved by

approximately 9%. We can see that the allocation for treatment sequence

AAA, relative efficiency, and the success ratio for the new adaptive designs

dAdaptive follow the same pattern as the multiple objective response adaptive

designs. The allocations to the other sequences are relatively small and do
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Table 4.9: Comparison of our new revised response adaptive three-period de-
sign with the results from Table 4.4.

N Designs AAA AAB ABA ABB BAA BAB BBA BBB Efficiency Success
Ratio

80 d(0.8) 41.09 10.41 6.07 4.24 5.89 4.24 4.06 4.00 0.7223 0.5458
d(0.9) 25.20 13.16 8.67 6.74 9.10 6.94 5.63 4.56 0.9220 0.5050
d(0.95) 16.76 12.06 9.02 8.48 10.27 8.61 7.94 6.86 1.0055 0.4708
d(1) 10.09 9.97 8.58 9.95 9.83 9.75 9.91 11.92 1.0370 0.4323

dAdaptive 39.49 5.25 7.35 5.42 4.98 5.02 6.88 5.61 0.7999 0.5267
100 d(0.7) 69.41 6.03 4.28 4.02 4.25 4.01 4.00 4.00 0.5379 0.5812

d(0.8) 57.12 6.09 5.56 6.20 6.01 5.95 6.18 6.90 0.6345 0.5445
d(0.9) 37.37 16.65 10.20 7.39 10.46 7.62 5.80 4.50 0.8696 0.5231
d(0.95) 23.93 15.91 10.85 10.17 12.35 10.44 9.17 7.19 0.9858 0.4794
d(1) 12.45 12.50 10.38 12.57 12.10 12.18 12.49 15.32 1.0435 0.4315

dAdaptive 50.48 5.93 9.52 6.45 5.65 5.78 9.11 7.08 0.7854 0.5278

not seem to affect the efficiency that much as long as the allocation to AAA

is well controlled. The above strategy successfully leads us to obtain desired

success ratios and maintain efficiency to a pre-specified level without having

to determine what the necessary λ is.

4.6 Conclusion

Binary responses have distinct properties that are different from continuous

responses in that their means and variances are functions of the responses.

As a result, binary response designs are response dependent. Due to this

characteristic, the construction of optimal designs for binary responses requires

special attention. There are limited studies on response adaptive designs and

optimal designs in the literature. In this chapter, we compared two approaches

of constructing response adaptive designs. Also, we conducted a simulation

study based on an actual data example to investigate the performance of the

multiple objective response adaptive designs using the GEE over the other two

methods.

In section 4.3, we constructed response adaptive designs using the two

objective functions, namely the multiple objective function and the variance-

penalized mean function. The designs constructed using the multiple objective
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function were highly efficient, successful with respect to treatment outcomes,

and more importantly sensible by varying the values of weight parameter λ.

The penalized mean criterion and its functionality, on the other hand, depend

highly on the covariance structure of the estimated parameters. Compared

with predicting the variance of estimated treatment effects, var(τ̂), in the

multiple objective method, the required covariance structure is unknown before

any trial and even harder to predict in advance.

In Tables 4.2 and 4.4, we observe that the choice of λ for an efficient and

successful design would depend on the sample size and the true values of µ, π′is,

τ , and γ, which may not be known before the trial. However, the efficiencies

drop significantly when N increases or λ decreases. Those designs may have

significantly higher success ratios but may also have significantly low efficiency,

which is undesirable.

In section 4.4, we compared our approach to the multiple objective adaptive

designs using the GEE to the response adaptive design by Mukhopadhyay,

Singh, and Dey (2015) and multiple objective adaptive designs using binary

probability modeling approach by Li (2017) for 2 period 2 treatment crossover

designs. The proposed designs responded to the differences in the treatment

effects in a rather robust manner. When the treatment difference is very small,

the proposed designs were very close to the optimal design with an equal

allocation on 4 treatment sequences, AA/AB/BA/BB. On the other hand,

the other two methods assign too large a proportion of subjects to treatment

sequences BB and lose efficiencies for very small gain in success ratios. When

the treatment difference is moderately large, the proposed design with λ = 1

assigns more subjects to a better treatment sequences compared to the other

2 designs proposed by Bandyopadhyay, Biswas, and S. Mukherjee (2009a) and

Li (2017).

Previously in section 4.3 we observed that the choice of λ is very important
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in finding a balance between the relative efficiency and a success ratio. One

may suggest some appropriate range of λ but that is valid for only a certain set

of parameters and sample size, and the true parameters are usually unknown.

To overcome this challenge, we devised a multiple objective response adaptive

scheme, which utilizes all of the two components of (4.10), not simultaneously

but in a sequential manner. The simulation results show that this adaptive

scheme can construct designs with desired relative ratios without having to se-

lect the weight parameter λ. Our scheme allows researchers to run an adaptive

trials knowing that their design would find the balance of the two important

components of the trial, being efficient and being ethically defensible.

4.7 Discussion

Response adaptive designs have so much potential to complement the tradi-

tional experimental designs. The use of the data acquired during the trial may

benefit the trial in numerous ways such as improving the statistical power or

reducing the cost of the trial by re-calculating the required sample size, assign-

ing more subjects to a better treatment or treatment sequences, or utilizing

the information acquired from the covariates to improve efficiency. The multi-

ple objective criteria may incorporate more components or select various other

sets of components such as cost efficiency versus statistical efficiency and many

others.

The results in section 4.5 were limited to some sets of parameters, which

are common scenarios selected to show how the proposed designs and our

adaptive scheme work. Further studies may be needed to verify whether our

adaptive scheme is valid on larger sets of parameters and various model as-

sumptions such as the self and mixed carryover effects model (Hedayat and

Afsarinejad (2002), Kunert and Stufken (2002)), higher order carryover effects

model (Bishop and Jones (1984), Bose and Mukherjee (2000)), proportional
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carryover effects model (Bailey and Kunert (2006), Bose and Stufken (2007),

Kempton, Ferris, and David (2001), Zheng (2013)), and under other allocation

conditions such as group sequential allocations.

The two response adaptive allocation methods investigated in this chap-

ter are not pre-planned. Therefore, introducing penalty or significance level

adjustment for adaptive designs may further be investigated.
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Chapter 5

Conclusion

This thesis focused on some of many practical and ethical questions arising in

the crossover trials. We have deliberated various impractical model assump-

tions used in constructing optimal designs. We investigated the optimality of

crossover designs for the cases when treatment variances are unequal, how pro-

portional carryover effects affect the optimal designs. We also advocated the

use of the GEE in adaptively planning the multiple objective designs and de-

veloped a new allocation method to achieve the maximum success ratio while

maintaining a sufficiently high level of statistical efficiency.

5.1 Main Contribution

5.1.1 Optimal Crossover Design Under an Unequal Treat-
ment Variance Assumption

This chapter addressed the problem of unequal variances in the design of

crossover trials. Under the unequal variance assumption, treatment sequences

can have distinct and unequal covariance structures of the responses, although

the correlation coefficients may be assumed to be the same for all treatment

sequences. We proposed the universally optimal designs for independent re-

sponses and constrained T optimal designs for dependent responses when t = 2

and p = {2, 3}. For two-period two-treatment crossover designs, some may

favor the use of the design AB/BA as all subjects can be allocated to the

treatment sequences that allow within-subject comparisons, although the de-

sign AA/BB/AB/BA is optimal. We constructed new optimal designs and
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find that

1. The ratio of treatment standard deviations, r = σB/σA, plays an im-

portant role. Moreover, when ρ = 0, the optimal 2-period and 3-period

crossover designs can be derived analytically. For p = 2, the optimal de-

sign allocates (1/(1 + r)2, r2/(1 + r)2, r/(1 + r)2, r/(1 + r)2) to treatment

sequences AA/BB/AB/BA. For p = 3, there are sets of optimal designs

and one of them is an extension of two-period optimal design and others

are slight variations of it.

2. For ρ 6= 0 and p = 2, we applied two constraints and derived optimal

designs under each constraint. These optimal designs can be represented

as (1/(2(1 + r)), r/(2(1 + r)), r/(2(1 + r)), 1/(2(1 + r))) and (1/(1 +

r)2, r2/(1 + r)2, r/(1 + r)2, r/(1 + r)2). The more unequal treatment

variances get, the more efficient these designs become when compared

with the existing universally optimal design with an equal allocation on

four sequences. Also, the weaker within-subject correlation is, the more

efficient these designs are. We found the range of ρ and r where the

traditional optimal design may be robust against the unequal treatment

variances.

3. For example, when p = 3, the optimal design under the equal variance

assumption, ABB/BAA, is robust against unequal variances for ρ ≥ 1/4

or 1/3 ≥ r ≥ 3.

4. The above findings can be integrated with the test of unequal treatment

variances in a way that researchers conducting crossover trials with p = 2,

t = 2, and treatment sequences AB/BA or AA/BB/AB/BA may obtain

the MLE for variances and correlation and make decision on whether to

extend one period or adjust their allocations to adapt to the information

acquired.
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5.1.2 Optimal Crossover Design with Proportional Car-
ryover Effects and Baselines

We extended the scope of the universal optimality criteria of Kiefer (1975)

to the traditional carryover effects model with baseline measurements with

an equicorrelated covariance matrix. We further investigated the effect of

the proportional assumption of carryover effects to the traditional model with

baseline measurements. We find that

1. Optimal designs differ based on the values of proportionality parameters

λ1o and λ2o as well as the number of treatments t and number of periods

p.

2. The universally optimal design under the traditional model with base-

line is E optimal under the proportional model assumption and baseline

measurements.

3. The E optimal designs under the proportional carryover effects model

with baseline measurements perform relatively well with respect to other

optimality criteria (A/D/T ).

4. When p = 2 and t = 3, the universally optimal designs suggested

by Carriere and Reinsel (1993) with p<re> = 1/t = 1/3 and p<di> =

(t − 1)/t = 2/3 is A/D/E/T optimal even in the case of proportional

carryover effects model. This remains to be true for larger t. In this

case, the < re > consists of treatment sequences {AA, BB, CC} and

< di > consists of {AB, AC, BA, BC, CA, CB}. The design d =

d<di> ∗ (t− 1)/t+ d<re> ∗ 1/t is A/D/E/T optimal for t = 4, 5, and 6.

5. When p = 3, the optimal designs depend on t and {λ1o, λ2o}. For p = 3

and t = 2, the optimal design suggested by Laska, Meisner, and Kushner

(1983), ABB/BAA, is A/D/E/T optimal under the proportional carry-

over effects model with baseline measurements. For t ≥ 3 and p = 3, the

A/D/E/T optimal designs differ now for {λ1o, λ2o}. Design with < di >

is A/D/E/T optimal for negatively proportional carryover effects as well
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as no carryover effects and this design is E optimal for positively propor-

tional carryover effects. Also, < re > is A/D/T optimal for positively

proportional carryover effects.

6. For p = 4 and t = 3, the A/D/E/T optimal designs depend on nega-

tively proportional carryover effects. < re > is E optimal for negatively

proportional carryover effects and nearly optimal with respect to A/D/T

criteria as well. Also it is A/D/E/T optimal for positively proportional

carryover effects. Therefore, < re > is recommended for p = 4 and t = 3

crossover designs.

7. For p = 4 and t ≥ 4, < di > is A/D/E/T optimal for negatively

proportional carryover effects as well as no carryover effects and this

design is E optimal for positively proportional carryover effects. Also,

< re > is A/D/T optimal for positively proportional carryover effects.

8. For p = 5, numerous symmetric blocks of treatment sequences form

A/D/E/T optimal designs. However, < di > and < re > are shown to

be efficient again for t ≥ p− 1.

9. In general, we do see that the benefit of baselines reduces when p in-

creases while t is fixed. But the use of baseline measurements improves

the design efficiency when t ≥ p− 1. Also, the use of baseline improves

efficiency, if and only if, right designs are selected for the proportionality

parameters. For example, use of < re > design on negative proportional

carryover effects for trials with p = 5 and t = 5 would result in rela-

tive efficiency of 0.8771 with respect to the E optimal design without

baseline measurements. On the other hand, correctly specified designs

may improve the efficiencies significantly. However, the proportionality

between direct treatment effects and carryover effects is unknown. Such

information may be obtainable from previous studies or we may need to

apply an adaptive allocation scheme.
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5.1.3 Multiple Objective Response Adaptive Crossover
Designs for Binary Responses Using the General-
ized Estimating Equations

We extended the strategy of building crossover designs with binary outcomes

to utilize the generalized estimating equations method, as it is known to be

robust against mis-specification of covariance matrix of the responses. Then

we compared two types of response adaptive allocation methods that consider

treatment effects and efficiency (variance) of the treatment sequences, namely

the multiple objective response adaptive allocation and the penalized mean

response adaptive allocation. These two methods use weight parameters λ

and ψ that assigns weights to two objectives, treatment effect and efficiency

(variance). We also compared the design building approach using the GEE

against the probability modeling approach in terms of sensitivity, efficiency,

and success ratios. Lastly, we proposed a new allocation method that achieves

a higher success ratio while maintaining a sufficiently large level of statistical

efficiency. This method does not involve selecting appropriate λ, which can

vary for different parameters and sample size. In this chapter, we find that

1. The multiple objective response adaptive allocation function constructs

designs that are easier to predict and successfully fulfilling the multi-

ple objectives. The penalized mean objective function becomes highly

complex in repeated measurement designs.

2. The new revised multiple objective response adaptive allocation method

constructs designs that are equally responsive to large differences in

treatment effects and are robust against small difference in treatment

effects. The latter is important because researchers do not know the

true treatment difference prior to the trial. These findings can pro-

vide researchers with confidence in using the multiple objective response

adaptive design.

3. Our new adaptive allocation method successfully constructed designs

that maximize the success ratios while achieving the target efficiency,
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(relative efficiency in the range from 0.7854 to 0.8465 with the target

efficiency set to be 0.8). This method does not involve selecting an

appropriate λ before the allocations.

5.2 Future Research

This thesis addressed three practical issues, unequal treatment variances, pro-

portional carryover effects, and binary response designs. When treatment

variances are unequal or carryover effects are proportional to direct treatment

effects, the optimality of designs change as they are model dependent. These

new optimal designs can largely improve the efficiency when the assumptions

are met. However, information about the assumptions are not known at the

planning stage of trials. For this reason, correctly checking whether various

assumptions are met, and applying adaptive allocation schemes based on the

identified assumptions may further improve the design efficiency.

There are other issues to remain to be further explored.

1. The optimal designs under unequal variances must be extended to other

model assumptions such as the mixed and self carryover effects model

suggested by Hedayat and Afsarinejad (2002) and Kunert and Stufken

(2002).

2. As an natural extension, the optimal designs and response adaptive de-

signs with binary outcome and baseline measurements must be investi-

gated.

3. The optimal designs under the proportional carryover effects must be

extended to other model assumptions and efficient ways of estimating

the proportionality parameters must be developed. One possible issue is

to devise a way of grouping multiple carryover effects by their propor-

tionality and constructing optimal designs for proportional model with

multiple proportionality parameters.

4. The multiple objective response adaptive designs must be verified for a
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larger set of parameter values and the new adaptive allocation scheme

must be tested as well.

5. In this thesis, we proposed various ways to keep the design robust by

exploring when the traditional assumptions are violated. Future studies

may incorporate them into response adaptive allocation scheme.
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Appendix A

Some Proofs for Chapter 2

A.1 Proof for Lemma 7

The information matrix can be written as,

X ′3dpr
⊥(X∗1d)X2d

=

(
p4(r

2p4+p2−ρ(rp4+p2))
σ2
A

(ρ2−1)(r2p4+p2)
+

(rp1(ρ−1)+ρp3)((ρ−1)r2p1−p3+rρp3)
σ2
A
r(ρ2−1)(r2p1+p3)

+
ρ(p4+2rp1+p3)−r(p4+2p1+p3)

σ2
A
r(ρ2−1)

0

(r2p4+p2−ρ(rp4+p2))(ρ(rp4+p2)−p2)
σ2
B

(ρ2−1)(r2p4+p2)
+
p3(r

2p1(ρ−1)−p3(1−rρ))
σ2
B

(ρ2−1)(r2p1+p3)
+
p4(rρ−1)+2p2(ρ−1)+p3(rρ−1)

σ2
B

(ρ2−1)
0

)
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= −
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∗′
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∗
2d)
− = 02×2.

With these results, we can easily see that condition (2) from Proposition 2 is

satisfied.

A.2 Proof for Theorem 3

The trace of the Information matrix for estimating direct treatment effects

under the simpler model using carryover effects is given as below,
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f(p1, p2, p3, p4) = tr(X∗′3dpr
⊥(F ∗d)X

∗
3d)

=
2ρrp1
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.

The derivatives can be obtained as below

∂f

∂p1

=
r4p2

1(ρ2 − 1) + p2
3((2ρ− 3) + 2(ρ− 1)ρr − r2ρ2) + 2r2p1p3(ρ2 − 1)

σ2
A(ρ2 − 1)(r2p1 + p3)2

∂f
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p2

2(ρ2 − 1) + p2
4r
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2(2(ρ− 1)ρr − 1− r2(2− 2ρ+ ρ2) + r2p2
4(r2(ρ2 − 1)) + 2p2p4(ρ− 1)ρr

σ2
B(ρ2 − 1)(r2p1 + p3)2

.

Using the Lagrange optimization, we can find the solution that satisfies

∂f/∂p1 = ∂f/∂p2 is p3 = r ∗ p1 and the solution that satisfies ∂f/∂p2 =

∂f/∂p4 is p2 = r ∗ p4. However, ∂f/∂p1 = · · · = ∂f/∂p4 only if r = 1 or

r = −1− ρ+ 2ρ2 ±
√
ρ(2− 3ρ− 4ρ2 + 4ρ3.

The rest of the derivation is long but straight forward. Also, the Hessian

matrix of f(p1, p2, p3, p4)−h(p1, p2, p3, p4) can be shown to be negative semidef-

inite at the solutions. This means that for any non-zero vector z z′Hz ≤ 0

which satisfies the sufficiency condition in KKT optimization. So it is a local

maximum.
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