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Abstract 
 

 

Based on the underlying structure of fabric materials, a three-scale model is 

constructed to describe the mechanical behavior of fabric materials. The current 

model assumes that fabric materials take on an overall behavior of anisotropic 

membranes, so membrane scale is taken as the macroscopic or continuum scale of 

the model. Following the membrane scale, yarn scale is introduced, in which 

yarns and their weaving structure are accounted for explicitly and the yarns are 

modeled as extensible elasticae. A unit cell consisting of two overlapping yarns is 

used to formulate the weaving patterns of yarns, which governs the constitutive 

nonlinear behavior of fabric materials.  The third scale, named fibril scale, zooms 

to the fibrils inside a yarn and incorporates its material properties. Via a coupling 

process between these three scales, the overall behavior and performance of the 

complex fabric products become predictable by knowing the material properties 

of a single fibril and the weaving structure of the fabrics. In addition, potential 

damage during deformation is also captured in the current model through tracking 

the deformation of yarns in fibril scale. 

 

Based on the multi-scale model, both static and dynamic simulations were 

implemented. Comparison between the static simulations and experiment 

demonstrates the model abilities as desired. Through the dynamic simulations, 



 

parameter research was conducted and indicates the ballistic performance and 

mechanical behavior of the fabric materials are determined by a combination of 

various factors and conditions rather than the material properties alone. Factors 

such as boundary conditions, material orientation and projectile shapes etc. affect 

the damage patterns and energy absorption of the fabric. 
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Nomenclature 
 
 

F Membrane deformation gradient 

li Base vectors of deformed configuration 

Li Base vectors of referential configuration 

i = 1, 2 Subscription indicating warp and fill yarns (or yarn 
directions) 

λi Membrane stretch in li directions 

E Membrane Lagrangian strain tensor 

Ei Membrane Lagrangian strain in Li directions 

P Piola-Kirchhoff stress tensor 

Pi Piola-Kirchhoff stress (force/length) in Li directions 

A Stretch stiffness of the yarn 

A0 Stretch stiffness of undamaged yarn 

B Bending stiffness of the yarn 

B0 Bending stiffness of undamaged yarn 

δ Local elastica extension 

γ Bending strain of the elastica 

S, s Parameter of the length or location along the elastica (yarn) 
in the referential and deformed configurations 

M Bending moment 

N Yarn internal axial tensile force 

Q Yarn internal shearing force 

μ Local stretch of the elastica (yarn) 

μh.max History maximum local stretch of the elastica (yan) 



 

Fi Applied external force on the yarn 

V Inter-yarn contact force 

εi Lagrangian strain of the yarn 

d0 Transverse dimension of the yarn 

dj Misalignment of individual fibril 

Uj Stretch of individual fibril 

EI
* Effective modulus of the yarn 

EI Elastic modulus of a fibril 

Ucrit Critical stretch of the fibril 

αi Damage parameters defining the yarn damage 

β Parameter reflecting the degree of fibril misalignment 

ui Tangential displacement of the yarns at contact point 

wi Half length of the unit cell 

C Yarn cross-section area 

Φ, φ  Yarn weaving angles in referential and deformed 
configurations 

Y0 Two-edge fixed in Y direction and material orientated at 0° 

XY45 Four-edge fixed and material orientated at 45° 

XY0 Four-edge fixed and material orientated at 0° 

SDV1 Damage status parameter, evaluated as 0 only if the fabric is 
completely damaged in both warp and fill yarn directions, 
otherwise evaluated as 1. 

SDV2 SDV2 = α1, the damage status parameter in warp yarns 

SDV3 SDV3 = α2, the damage status parameter in fill yarns 
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Chapter 1 

Introduction 

1.1 Objective and work outline 

With technology developing, greatly improved high strength fabric materials are 

becoming more and more attractive because of their high strength-to-weight ratio, 

like Zylon and Kevlar. The high strength fabric materials are extensively applied 

in modern industries such as bullet-proof vest, aviation craft protective layers 

against high-speed projectiles. They can also be frequently found in various fields 

where high strength and light-weighted flexible materials are desired like sport 

equipment and boat sails. 

 

In order to have an effective and safe application of these fibrous materials, a 

demand of an accurate and practical model arises to predict the fabric behavior 

and for design optimization. The purpose of this work is to develop a multi-scale 

fabric material model which is able to: 

 

(1) track possible damage in the fabric; 

(2) reflect the yarn weaving structures; 

(3) capture the yarn-to-yarn interaction. 
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The multi-scale approach is chosen to model the fabric materials, because the 

modeling work is split into parts (scales). In each scale, proper theories or 

techniques can be employed to describe one or more types of particular nature of 

the fabric materials. The current fabric material model introduces three scales 

based on the structural hierarch of the fabric materials. 

 

Following the material modeling work, dynamic and static numerical simulations 

are implemented with the three-scale material model.  

 

The simulated results are demonstrated and compared with experimental work to 

inspect the model abilities and accuracy. Further study on fabric ballistic 

performance and parameter research was also conducted via the dynamic 

simulations. The findings obtained from the dynamic research can be referred to 

improve the ballistic performance of the fabric. 

 

Static simulations are uniquely valuable as some constitutive nature or behavior of 

the material can hardly be observed or noticed in dynamic simulations. At static 

status, the material behavior is completely determined by its constitutive nature 

and distractions from dynamic factors are removed. The static simulations are 

implemented under various loading conditions to investigate the fabric response. 

The simulations are compared with experiments from other studies for 

verification and the results demonstrate the model abilities as desired. 
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1.2 Literature review 

In the past decades, various research and modeling work has been done with 

different experimental techniques or mathematic formulations or in a combined 

approach to study and predict the behavior of the fabric materials.  

 

Early work on fabric materials used continuum models or the traditional empirical 

approach. Continuum models consider the fabric materials as continuum materials 

and formulate them by utilizing continuum mechanics tools. Material property 

parameters are defined to derive governing equations. Examples of this approach 

include work by Vinson and Zukas [1], Phoenix and Porwal [2], Gu [3] and Billon 

and Robinson[4]. Since the continuum models ignore the sub-structure or micro 

structure of the fabric materials, it may not provide satisfactory prediction for 

some physical phenomena due to the weaving structure of the fabric materials. 

However, this research approach built a solid base for further development in 

mathematical modeling research of fabric materials. Empirical techniques are also 

utilized in the modeling research of fabric materials. The material behaviors are 

analyzed through experimental data and build up the constitutive law, for example 

[5, 6, 7, 8]. Sophisticated mathematic tools such as curve fitting and statistical 

analysis are often used to process experimental data. The results mainly remain 

valid and accurate for a particular type or class of materials. 
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For the fabric materials, their behaviors are greatly affected by the yarn weaving 

structures as opposite to the continuum membrane. Thus, continuum models 

should not be sufficient due to the ignorance of the underlying micro-structure. 

Researchers realized the importance and then introduced various techniques to 

capture the sub-structure features of fabric materials. One of the techniques is the 

network model which simplifies the yarn weaving structure as a network of pin-

jointed bar members. Shim et al. [9] modeled the network as spring and dashpot 

structure using a three-element viscoelastic model. Zohdi et al [10] idealized the 

woven-yarns as a pin-pointed truss and the network is composed of flexible bar 

segments. However, the network models lose the ability of describing inter-yarn 

movement because the interaction of woven yarn is simplified to pin-jointed nodal 

points to form a network system. The network models ignore the weaving 

geometry, inter-yarn sliding, friction and coupling effects. Therefore it is not able 

to model yarn decrimping. Whereas, at the early stage of fabric material 

deformation, yarn decrimping is the dominate characteristic of fabric materials 

and accounts for the major part of fabric deformation. Ivanov and Tabiei [11] 

considered the weaving structures. In [11], the yarns are simplified as pin-jointed 

straight viscoelastic bars connected with a rigid link at the crossover (interaction) 

points between warp and fill yarns. Fabric shearing resistance is considered 

through yarn rotational friction. More advanced models [12, 13] model the yarns 

as piecewise rigid rods connected with springs. The yarns are represented as a 

network of trusses connected by pin-joints at their crossover points. The rigid bars 
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are connected with bending springs. The yarns in contact at the crossover points 

are connected with torsion springs. 

 

Multi-scale approach is a more advanced modeling technique, which views the 

fabric materials in different scales corresponding to their natural structure 

hierarchy. When observed in macro- or micro-scopic scales, the fabric materials 

take on completely different architectures and properties. For each scales, proper 

theories and assumptions are applied. Therefore, the multi-scale approach 

provides a flexible way to adopt advantages of other approaches. More advanced 

and accurate material models are expected from this approach since it considers 

both the overall characteristic of the materials and any sub-scopic nature of the 

materials. Nadler et al. [14] introduced two scales to the model the fabric 

materials, namely  membrane scale and  yarn scale. The membrane scale accounts 

for the overall membrane-like nature of the fabric materials. The yarn scale 

capture the weaving structure, yarn geometry and yarn interaction so that the 

substructure-induced properties can be reflected. Zohdi and Powell [10] employed 

a truss structure to describe the fabric materials and considered fibril 

misalignment in the yarns. a damage criterion is developed by monitoring the yarn 

stretch through statistical computation.  

 

Modeling of inter-yarn friction and movement is a challenging work. A few 

researchers [15, 16] developed computational models taking into account the 

inter-yarn frictional sliding and the yarn crimp and weaving structure. In [15], it is 



 

 6 

found that the ballistic response of woven fabric is very sensitive to yarn friction 

when the friction coefficient is within a certain range and greatly affect absorption 

of impact energy. The numerical model in [16] simulates the transverse yarn 

interaction and the results indicate that crimping, decrimping, and yarn-yarn 

interaction have a significant effect on ballistic response models. 

 

In recent years, numerical modeling becomes more and more popular because of 

advances in computation technology. The numerical modeling work utilizes the 

finite element software packages ABAQUS, LSDYNA and ANSYS. In addition 

to the commercial packages, there are also open source versions developed 

specially for academic purposes. Commercial packages usually are more powerful 

in handling contact, loading conditions, complex geometries and assembly. Some 

researchers are in favor of academic packages of finite element software since 

they are completely open source. With the finite element analysis tools, the yarn 

structures are modeled explicitly in elements. Johnson et al. [17] modeled the 

fabric as a combination of bar members and thin membrane. The bar elements 

represent the yarns and the membrane elements renders shear resistance and the 

overall structural properties of the fabric. Lim et al. [15] modeled the fabric 

material with membrane elements in DYNA3D and defined viscoelasticity of the 

fabric. Damage criterion is also defined through the strain level of the fabric and 

the critical strain is a function of strain rate. At high strain rate, the critical strain 

level is significantly reduced. However, since the model considers the fabric 

material as continuum membrane, the yarn-to-yarn interaction was neglected. 
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Zeng et al. [18] considered the inter-yarn friction, yarn crimp, viscoelasticity and 

inter-yarn sliding. In [18], friction was studied to investigate its influence on 

energy absorption and on the ballistic performance of the fabric. The results show 

that the ballistic response is sensitive to the friction within a low level range and 

high level friction leads to premature damage and thus reduces energy absorption. 

Duan et al. [19, 20, 21] investigated the influences of friction level and boundary 

conditions on energy absorption. In their modeling work, the inter-yarn friction 

and projectile-fabric friction range from 0 to 0.5 and the modeling results show 

the friction delays fabric failure and increases energy absorption. Investigation on 

boundary conditions shows the two edge clamped situation absorbs more energy 

than four edge clamped condition. Shockey et al [22, 23,, 24, 25, 26] implemented 

a series of experimental tests and simulated the behaviors of single yarns and 

fabric corresponding to their experimental work. As one advantage, numerical 

models provides an easy way to fulfill realistic constraint conditions in the 

simulations such as inter-yarn sliding and inter-yarn friction, while it may cause 

great difficulties in mathematical modeling work. However, numerical models can 

be computationally costly because it involves a large number of freedom and 

inter-yarn contact sites.  

 

1.3 Introduction of current work 

In the following work, a multi-scale model of fabric materials is first developed, 

with which static and dynamic numerical simulations are implemented.  
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In the current work, the fabric materials under consideration are composed of a 

simple weaving structure of yarns. A yarn is composed of a large number of thin 

fibrils. The mechanical properties of the fibrils govern the mechanical property of 

the yarns in the micro-scale which in turn constitutes the mechanical property of 

the fabric in the macro-scale. So the fabric materials are studied on three different 

scales, membrane scale, yarn scale and fibril scale. For each scale, different 

governing equations describe the material nature of the corresponding scale. The 

material property and failure of the fabrics is described in the fibril scale through 

defining the fibril property.  

 

Static simulations are implemented with MATLAB under various loading 

conditions. The results demonstrate the model can properly predict yarn 

decrimping, yarn interaction and gradual damage. Dynamic simulations are 

implemented with ABAQUS. Through the dynamic simulations, results from 

parameter research demonstrate the ballistic performance of the fabric is 

determined by a combination of a system of factors. Basically, these influence 

factors include the fabric boundary conditions, material orientation and projectile 

shapes. 

 

Because the current simulation work is based on the multi-scale material model 

which considers the weaving structure and yarn interaction, the fabric is simply 

modeled as a piece of membrane when finite element analysis is implemented. 
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This significantly reduces the computational cost in contrast to numerical 

modeling work that usually involves a large number of solid elements and contact 

sites between yarns. In addition, based on the multi-scale material model, 

investigation on fabric of different structures and materials can be achieved by 

adjusting only the relevant parameters inside the code of the multi-scale material 

model.  

 

The current simulation work considered influence factors extensively, including 

the boundary conditions, impact velocities, projectile shapes and friction between 

the projectile and the fabric. In the simulations, the finite element analysis model 

configuration follows exactly the same as experimental work. The material 

properties and structure information of the fabric were defined according to 

published data. The results agree with experimental work and the same 

conclusions were obtained as from numerical modeling work. Meanwhile, since 

more comprehensive investigation was conducted in the current work, more 

generalized conclusions were obtained. 
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Chapter 2 

Basic theories and three-scale modeling1

 

 

 

In the current work, a three-scale model is considered and constructed based on 

the underlying structure of a fabric, as demonstrated in the following microscopic 

photos (Figure 2-1). The fabrics considered here are simply woven fabrics 

consisting of warp and fill yarns which are interlaced together. The names “warp” 

and “fill” indicate the distinction between the two types of yarns (or yarn 

directions) due to the manufacturing process. Warp yarns are usually crimped in a 

higher degree than the fill yarns and are less stiff. The degree of crimp is a 

measure of the elongation of a yarn when it is extracted and straightened. The 

degree of crimp has significant influences on the mechanical performance of the 

yarn. The anisotropy response of a fabric depends on the different stiffness and 

crimp of the yarns. 

 

                                                 
1 A version of this chapter has been accepted for publication. International Journal of Engineering 
Science. 
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(a) membrane scale 

 

(b) yarn scale 

 

(c) fibril scale 

 

Figure 2-1  Microscopic photos of PBO Zylon  

showing the fabric structure in three scales 
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2.1 Membrane scale 

Observed from distance, a fabric is a configuration of a continuum and smooth 

surface (Figure 2-1 (a)) with negligible bending stiffness. Therefore, as the first 

scale level, the fabric is modeled as a membrane. Two unit-vector fields il  and iL  

are introduced (Figure 2-2), which span the tangent plane of the membrane and 

are chosen to be aligned with the projection of corresponding yarns on the tangent 

plane.  

 

 

 

 

 

 

 

(a) Reference configuration                      (b) Deformed configuration 
 

Figure 2-2  Description of yarn projection onto the tangent plane 
 

The warp and fill yarns are chosen to be initially orthogonal in the reference 

configuration [14], i.e. 021 =• LL , such that the deformation gradient of the 

membrane is expressed as 

 

L2 

L1 

l2 

l1 
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221111 LlLlF ⊗+⊗= λλ ,                                                         (2-1) 

 

where F is the deformation gradient, il  and iL  ( 1, 2i = ) are the two sets of unit 

vector fields in the deformed and referential configurations of the membrane, and 

iλ  are the associated stretches in il directions. il  are chosen to be aligned with the 

projection of the yarns on the tangent plane in the deformed configuration. The 

subscripts 2 ,1=i  denotes the directions of warp and fill yarns respectively and 

this convention applies throughout this work. Based on the definition of 

deformation gradient (Eqn. (2-1)), the Lagrangian strain tensor (membrane strain) 

is defined as 

 

( ) ( ) ( )( )2 2
1 2 1 2

1 1 1
2

λ λ λ λ = − ⊗ + − ⊗ + ⋅ ⊗ + ⊗ 1 1 2 2 1 2 1 2 2 1E L L L L l l L L L L . (2-2) 

 
where 21 ll ⋅  is a measure of the in-plane shear between the yarns. Also, define the 

two Lagrangian strains in, respectively, the L1 and L2 directions 

 

( )1
2
1 2

11 −= λE ,         ( )1
2
1 2

22 −= λE ,                                    (2-3) 

 

where E1 = L1·EL1 and E2 = L2·EL2 are the Lagrangian strains in the referential 

configuration. The referential balance of linear momentum is 

 

.vfP
0

Div ρ=+ J ,                                                 (2-4) 
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where f  is the body force and lateral traction per deformed area, 
0

ρ  is the density 

in referential configuration, P  is the first Piola-Kirchhoff stress tensor  

 

222111 LlLlP ⊗+⊗= PP                                                      (2-5) 

 

and J  is the areal dilation defined by  

 

( ) 1 2
det TJ  =  F F .                                                               (2-6) 

 

It is intuitive that the magnitudes of the Piola-Kirchhoff stresses 1P  and 2P  in Eqn. 

(2-5) are related to the forces in the warp and fill yarns, respectively. Moreover, 

in-plane shear deformation is permitted, whereas the stresses are assumed to be 

independent of the shear deformation and are neglected. A constitutive law for the 

stress tensor P  is derived by explicit consideration of the microstructure of the 

fabric. 

 

2.2  Yarn scale 

As shown in Figure 2-1 (b), the fabric is composed of interlacing yarns instead of 

a continuum membrane. Therefore the weaving yarns are considered to form the 
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second scale level. In this scale, fabric structure characters are reflected and the 

yarn is considered as an elastica so that Bernoulli beam theory applies. 

 

2.2.1 Governing equation of elastica 

 
 

Figure 2-3  Description of the extensible elastica 

 

As shown in Figure 2-3, a single yarn is modeled as an extensible elastica [27,  

28]. When subjected to stretching and in-plane bending, the elastica deforms 

elastically. It is further assumed that the strain energy stored in the deformed 

configuration is 

 

22

2
1

2
1 δγ ABW +=                                                 (2-7) 

 

M Q 

N 

S 

Q + dQ 

N + dN 

M + dM 
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where constitutive parameters B and A are the bending stiffness and the stretch 

stiffness of the elastica, respectively, and δ is the local elastica extension defined 

as 

 

1−=
dS
dsδ .                                                           (2-8) 

 

γ is defined to reflect the bending strain of the elastica,  

 

( ) ( ) ( )( )SS
dS
dS Φ−−= φγ ,                                           (2-9) 

 

S and s are the length (location) parameter of the elastica in the reference and 

current configurations. The functions Φ  and φ  denote the yarn angles in the 

reference and deformed configurations (Figure 2-5), respectively. Thus, the 

bending moment M and internal axial tensile force N can be obtained, 

 

( ) ( ) ( )SB
S

WSM γ
γ

=
∂
∂

=    and     ( ) ( ) ( )SA
S

WSN δ
δ

=
∂
∂

= .                 (2-10) 

 

Also, the bending moment M and the internal shearing force Q is related as 

 

( ) ( ) ( )
ds
dS

dS
SdM

ds
SdMSQ == .                                               (2-11) 
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Substitute Eqn.(2-10) into Eqn.(2-11), it becomes 

 

( ) ( )SQ
ds
dSSB

dS
d

=)(γ  .                                                 (2-12) 

 

Since the bending stiffness B is not a function of the parameters S or s, Eqn.(2-12) 

can be rewritten as  

 

( ) Q
ds
dSS

dS
dB =γ  .                                                      (2-13) 

 

By using Eqn. (2-9) and Eqn. (2-8), Eqn. (2-13) becomes 

 

( ) ( ) Q
dS
d

dS
dB −=+



 Φ− −11 δφ .                                        (2-14) 

 

The internal tensile force ( )SN , elastica extension δ(S) and stretch are related as 

 

( ) ( )
A
SNS =δ       and    ( ) ( )SS δµ += 1 ,                                   (2-15) 

 

where μ is the local stretch of the elastica. Replacing the extension δ in Eqn.(2-14) 

with Eqn. (2-15), the governing equilibrium equation of the elastica is derived in 

terms of the bending stiffness B and stretching stiffness A as 
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( ) ( ) Q
A
SN

dS
d

dS
dB −=






 +



 Φ−

−1

1φ  ,                                        (2-16) 

which is a second order ordinary differential equation parameterized by the 

referential elastica length S . 

 

2.2.2 Unit cell model of yarn weaving structure 

As shown in Figure 2-1 (b), the fabric consists of two woven yarns. The single 

yarn is modeled as an extensible elastica subjected to stretching and in-plane 

bending. The index, i = 1, 2, is added to the equilibrium Eqn. (2-16) to indicate 

the two types of yarns, 

 

( ) ( )[ ] ( ) ( )SQ
A

SNSS
dS
d

dS
dB i

i

i
iii −=








+







 Φ−

−1

1φ  (no sum over i).      (2-17) 

 

It is assumed that prior to the occurrence of damage, the stretching and bending 

stiffness are constants. But once damage is initiated the stiffness decreases with 

the degree of damage in the yarn. With presence of damage in a yarn, its stiffness 

is also assumed to be independent of the location S. Detailed constitutive relations 

between the stiffness and deformation of the yarn are formulated by an explicit 

consideration of the fibril scale and are discussed in following sections. 

 

To mathematically model the behavior and coupling of the woven yarns, a unit 

cell model was introduced [14]. The unit cell contains two overlapping segments 
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of the fill and warp yarns, each of them is of one-half of the yarn weaving period 

as shown in Figure 2-4 (description for one of the two yarns).  

 

Figure 2-4  Description of the unit cell model 

 

① Span of a unit cell, projected length is 2wi;   

② Representative portion of the yarn used for the boundary value  

     problem (described in Figure 2-5), projected length is wi;   

③ Span of a complete yarn weaving period;   

④ Pseudo membrane surface (or projection surface). 

 

The warp and fill yarns are assumed to deform symmetrically with respect to the 

midpoint (BC1) of the unit cell which is also the contact point of the yarns. Since 

the unit cell is assumed to deform symmetrically with respect to it midpoint, 

portion ② in Figure 2-4 is typical and sufficient to represent the boundary value 

problem.  

 

② 
④ 

① 

③ 

BC1 

BC2 
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Figure 2-5  Boundary conditions of the unit cell model 

Length of the this portion of yarn is Li 
 

The boundary and loading conditions on one half of each yarn segment is depicted 

in Figure 2-5, where iF  is the applied external force on the yarn by the 

neighbouring unit cell and V  arises from the coupling between the overlapping 

yarns in the unit cell. The boundary conditions are 

 

BC1:   

 

φ(0) = 0 ,         BC2:    0)]()([ =Φ− SS
dS
d φ  ,                   (2-18) 

 

where BC1 is a statement of symmetry about the yarn’s midpoint and BC2 is a 

moment free point since it is the intersection of the yarn with the membrane 

surface. The boundary conditions BC1 and BC2 constitute a mixed Neumann-

Dirichlet boundary conditions problem. Next, the internal tension and shear forces 

are related to the external forces by 

 

BC1 

BC2 

( )Siφ  

V 

iF  
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( ) ( ) ( )SVSFSN iiii φφ sincos += ,                                      (2-19) 

 

( ) ( ) ( )SFSVSQ iiii φφ sincos −= ,                                          (2-20) 

 

The Lagrangian strain of the yarn is  

 

( ) ( )[ ]1
2
1 2 −= SS ii µε .                                                   (2-21) 

 

The contact between the two overlapping yarns in the unit cell couples their 

deformation. This contact condition gives rise to a contact force V  when the two 

yarns are in contact. The yarns are allowed to separate under certain loading 

conditions and in this case the contact force vanishes. 

 

2.3  Fibril scale 

A close-up observation indicates that the single yarn is composed of a large 

number of fibrils (Figure 2-1(c)), which may be misaligned with respect to the 

direction of the yarn. Because the fibril misalignment leads to non-simultaneous 

rupture of individual fibrils, the misalignment significantly affects the stiffness 

and failure pattern of the yarn in contrast to a yarn of perfectly-aligned fibrils. 

Even if a fibril deforms linearly up to sudden break [29], the yarn features a 

gradual and nonlinear process of rupture as qualitatively depicted in Figure 2-6. 
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The critical value in stretch marks the initial damage in the yarn, i.e. the first fibril 

breaks. This behavior is related to the damage in the yarn due to rupture of fibrils 

and is a constitutive property of the yarn.  

 

critical strech Stretch
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n 
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e

 

 

Figure 2-6  Qualitative description of the mechanical  

characters of a yarn 

 

The importance of the fibril scale is that it tracks possible damage in the yarn 

through the rupture in individual fibrils, which is the realistic mechanism of the 

gradual damage in yarns.  

 

Mathematical modeling of the deformation of the fibrils adopts the approach 

developed in [30] and [10], where the mechanical characteristics of yarns are 

described as the overall behavior of all the fibrils in a yarn through statistical 

computation. In the computation, the fibrils are randomly deployed within the 
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width of a yarn ( 0d  in Figure 2-7) and within a characteristic length of the yarn 

segment (h0 in Figure 2-7).  

 
Figure 2-7  Description of fibrils 

(a) fibril misalignment in a yarn segment;  

(b) Deformation of one misaligned fibril 

 

In Figure 2-7, d0 is the transverse dimension of a yarn, h0 is determined by the 

spacing between the weaving yarns, N is the stretching force in the yarn, ∆h is the 

extension along yarn direction and fj  is the tensile force in the jth fibril. Each 

misaligned fibril is calculated for its particular stretch and tensile force. The 

stretching force N is equal to the summation of the projection of fj in the yarn 

direction. As shown in Figure 2-7 (b), the stretch Uj of the jth fibril is calculated by 

the geometrical relationship  

 

 

d0 

h0 

jd  

h∆  

0h  

(a)  (b)  

N 

N 

jf  

jf  
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=  ,                                   (2-22) 

 

where 0drd jj =  is a measure of misalignment of this fibril, and 10 ≤≤ jr  is 

generated randomly. As the overall response of n  fibrils in a yarn, the effective 

modulus *
IE  of the yarn is  
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j j
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dhn
hEE
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2322
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1    

0    
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U U
U U

ρ
<=  ≥

               (2-23) 

 

where IE  is the elastic modulus of a fibril, and jρ  tracks the rupture of a fibril 

and critU  is the critical stretch of the fibril. 

 

In order to measure and track the damage in the yarn, a damage parameter 

[ ]1,0∈α  is defined as the fraction of non-ruptured fibrils. The damage parameter 

is determined by the largest yarn stretch experienced through the deformation 

history. The damage parameter is a monotonically non-increasing function of the 

stretch and it depends on the current and history stretch ),( histµµα . Furthermore, 

it is assumed that the dependence on the history is only through the maximum 

stretch max.hµ  experienced by the yarn. Thus the damage takes the form 

 

),( max.hµµα .                                                     (2-24) 
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In [10], the damage parameter α  is derived based on the characteristic length (h0 

in Figure 2-7) of a yarn. It is assumed that the particular choice of the yarn’s 

length does not affect the results. By employing the statistical approach presented 

above, the deformation behavior of a certain number fibrils is simulated. The 

number n of the fibrils is determined with reference to the fibril number of a 

physical yarn. The mechanical properties of a single fibril are published by 

Toyobo [29].  

 

Based on the statistical approach, computation produces the stretching curve of 

the fibrils as their overall response. Through curve fitting, Eqn. (2-25) is obtained 

and is used to formulate the damage as a function of yarn stretch. 

 


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max crit

hist ,                            (2-25) 

 

where β  reflects the degree of fibril misalignment and is determined to be 124 

through least square analysis [10], histα  records yarn damages caused during their 

deformation history. The definition of the damage parameter makes it possible to 

track possible damages inside the yarn through monitoring the yarn stretch. Since 

the damage parameter is the fraction of non-ruptured fibril in the yarn, the 

stiffness of damaged yarn is assumed to be 



 

 26 

 

  0AA α=           and          0BB α= ,                                  (2-26) 

 

where 0A  and 0B  are the initial (undamaged) stretching and bending stiffness of 

the yarn, respectively.  

 

As one essential contribution of the fibril scale, the damage parameter is defined 

based on the statistical approach, which captures potential damage in the yarn and 

reflects the gradual damage process of the yarn. Determination of the stretching 

stiffness of the yarn, 0A , can be based either on experimental data or on the 

statistical approach. If the statistical approach is used, then the Young’s modulus 

of the yarn ( *
IE ) is computed as the effective Young’s modulus of all the fibrils 

(Eqn.(2-23)). The stretching stiffness of the yarn can be obtained by combining 

the geometrical cross-section area and the second moment of the area of the 

undamaged yarn with the associated undamaged effective Young’s modulus. 

Determination of the bending stiffness of the yarn, 0B , is complicated because it 

is affected by the friction between fibrils and therefore varies with changes in 

loadings. Details of bending stiffness determination are discussed in section 3.2. 

Once damage is initiated in the yarn, Eqn. (2-26) is used to update the stiffness of 

the yarn. 
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2.4  Coupling of the three scales 

This section discusses coupling between the three scales to render a unified model 

of fabric materials.  

 

First, the coupling between the fibril and yarn scale is established. Based on the 

statistical approach, the damage parameter, iα , is defined to monitor the gradual 

damage in the yarn. The local properties 0
iA , 0

iB  of the yarns are obtained by a 

statistical or experimental study. The damage parameter is updated with the 

current stretch and stretch history and is used to evaluate the current stiffness of 

the yarn. Since the unit cell model consists of two overlapping yarns which may 

have different properties, the subscript 2 ,1=i  is used to distinguish the warp and 

fill yarns. It should be noted that the two damage parameters iα  are functions of 

the deformation of the relevant yarn only. Thus, subscripts are added to Eqn.(2-24) 

which becomes 

 

( )max.max , h
iii µµα                                                        (2-27) 

 

The current stiffness of the two yarns are   

 

0
iii AA α=   and   0

iii BB α=  .                                         (2-28) 
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The membrane scale and yarn scale are coupled by relating the extension in the 

membrane scale to the displacement in the yarn scale. The forces, Fi, in the yarn 

scale are then used to calculate the associate stresses in the membrane scale. For 

each yarn in the yarn scale, the projection on the tangent plane of the 

displacement of the end point BC1 relative to BC2 (Figure 2-4) is evaluated by 

 

[ ]∫ Φ−=
iL

iiii dSu
0

coscosφµ ,                                           (2-29) 

 

where iL  is the length of the yarn portion ② (Figure 2-4). The same displacement 

measured in the membrane scale is  

 

( ) iii wEu 121 −+= ,                                                  (2-30) 

 

where iE  is the membrane Lagrangian strain defined by Eqn. (2-3) and iw  is the 

half-length of the unit cell (Figure 2-4). Combining Eqns. (2-29) and (2-30) gives 

the kinematic coupling between the yarn and membrane scales. The membrane 

first Piola stresses, iP , are related to the yarn external forces iF  by 

 

1
2

1 2
1 F
w

P = ,      and    2
1

2 2
1 F
w

P =                              (2-31)  
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where 
iw2

1  is the transverse yarn density in the reference configuration of the 

membrane. In other words, since the fabric is considered as continuum membrane 

in the continuum scale, the discontinuous external loads, Fi, that physically act on 

individual yarns are converted to distributed loads through Eqn. (2-31). 
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Chapter 3 

Static Simulations2

 

 

3.1 Algorithm 

Numerical solutions were obtained using one-dimension finite element method in 

conjunction with the Newton-Raphson method.  

 

Starting with Eqn. (2-17), the yarn equilibrium equations were approximated 

through a Galerkin-based finite element method and were satisfied weakly using 

an element-wise integration. Coupling of the membrane scale and yarn scale was 

subjected to the geometric relations defined by Eqn. (2-29) and Eqn. (2-30). 

Integration of Eqn. (2-29) was approximated by Gauss quadrature. This procedure 

yields a system of nonlinear equations, including the constraint of non-negative 

yarn contact force V ( 0=V  for separation and 0>V  for contact of yarns). The 

nonlinear system was solved through standard Newton-Raphson method with 

outputs of external forces iF , maximum local stretches iµ , angle iφ  of the yarns, 

and the contact force V . The forces iF  were then transmitted to the membrane 

                                                 
2 A version of this chapter has been submitted for publication. 
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scale to find the first Piola stresses iP  in the membrane scale by Eqn. (2-31). The 

maximum local stretches iµ  are used to monitor the damage in the yarns through 

a secant-method procedure. Details of the numerical computation are referred to 

the Appendix. 

 

3.2 Determination of the fabric properties 

PBO Zylon AS fabric was chosen in the following static and dynamic simulations 

for the purpose of comparison with existing experimental data. Mechanical 

properties of the yarns at room temperature are listed in Table 1. Detailed 

mechanical properties and geometrical structure information of the Zylon fabric 

are available in the FAA test reports by Boeing Company [31] and by Arizona 

State University [32]. Basic properties of PBO Zylon material are referred to the 

technical document published by Toyobo Company [29]. Note that, as listed in 

Table 1, the current work distinguishes the warp and fill yarns in terms of the 

critical stretches, stiffness and degree of crimp. 

 

For the current simulations, the stretch stiffness of yarns is obtained in the 

published documents [31]. Note that the stretch stiffness of the yarns may also be 

obtained through calculation based on Eqn. (3-1). The yarn stretch stiffness is the 

product of the effective Young’s modulus and the cross-section area of the yarn 

(i.e. the summation of the cross-section areas of individual fibrils), 
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A0 = EI
*C ,                                                    (3-1) 

 

where C is the cross-section area of the yarn and EI
* is the yarn Young’s modulus. 

 

Table 1: Properties of 500 denier PBO Zylon yarn 

 

There are difficulties in calculating the bending stiffness of the yarns even if the 

material has not been damaged. Theoretically, the bending stiffness of the yarn 

can be calculated as 

 

B0 = EI
*I ,                                                        (3-2) 

 

Yarn type Virgin yarn Warp yarns Fill yarns 

Degree of crimp 0 % 3.1 % 0.6 % 

Yarn length (Li)  0.3741 mm 0.3650 mm 

Фi(Li)  0.3481 0.1546 

Yarn count (No./in.)  35 × 35 35 × 35 

Stretch stiffness (N) 5114 4338 4724 

Critical stretch 1.03 1.025 1.0297 

Bending stiffness 

(N·mm2) 

0.3095 Max 

0.0619 Min 

0.2657 Max 

0.0531 Min 

0.2935 Max 

0.0587 Min 

Cross-Section area 3.61×10-8   (m2) 

Volume density 1560 kg/m3 
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where I is the second moment of the cross-section area of the yarn. However, 

computation of the moment inertia incurs certain difficulties since the second 

moment of the cross-section area is not constant and keeps changing with loading 

conditions and the distribution of the fibrils within the yarn cross-section. 

Therefore, instead of using Eqn. (3-2), the bending stiffness is approximated by 

adopting Warren’s method [33].  

 

In addition to the linear density (deniers), yarn bending stiffness is primarily 

affected by the interaction between fibrils of the yarn. When loading is applied to 

the yarn, its fibrils are packed more tightly along each other, leading to stronger 

internal interaction and subsequently stronger bending resistance. Hence, the 

lower bound of the bending stiffness of the yarn is evaluated by assuming that the 

fibrils are loosely gathered and bend individually without interaction (friction). 

Thus the lower bound of the bending stiffness is the summation of the bending 

stiffness of all individual fibrils. If each fibril has a circular cross-section, then the 

yarn bending stiffness under zero or small loading conditions is 

 

Bf = N π EI r4 / 4,                                                          (3-3) 

 

where r  is the radius of a single fibril, N is the numbers of fibrils in the yarn and 

EI is the Young’s modulus of a fibril. 
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As for the upper bound, a simplified method is to treat the yarn as a solid rod of 

circular cross-section, then the bending stiffness is 

 

         Bs = π EI R4 / 4,                                                            (3-4) 

 

where R  is the radius of the yarn’s cross-section. However, a yarn is easily 

flattened under bending and significant reduction in its bending stiffness is 

expected. According to Warren [33], depending on the number of fibrils, the yarn 

bending stiffness is usually several times different between zero loading and 

sufficient loading situations. In the current work, the maximum bending stiffness 

is approximated to be five times the minimum. 

 

As shown in Table 1, both the critical stretch and stiffness of the warp and fill 

yarns are reduced compared with the virgin yarn. This is because of the yarns are 

degraded during manufacturing process. The reduced critical stretch is not directly 

available in the published data, additional calculation is necessary to get the 

critical values based on the published data [31]. By applying the ultimate strength 

and corresponding stretch stiffness of the warp and fill yarns to Eqn. (2-15), the 

critical stretches of the warp and fill yarns were found to be 025.11 =critµ  and 

0297.12 =critµ , respectively. Eqn. (2-15) relates the yarn stretch with the tension 

strength. The ultimate strength and the stretching stiffness of the fill and warp 

yarns are published in [31]. 
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The referential shapes of the woven yarns [14] is approximated by the following 

function 

( ) ( ) ( )iiii LSLS 2sin πΦ=Φ ,                                               (3-5) 

 

where Li are the half length of the yarn segments in the unit cell and ( )ii LΦ  are 

the yarn angles in the reference configurations at the boundaries BC2 (see Figure 

2-4). Given the yarn crimp and ( )ii LΦ , the shapes of the woven yarns are 

uniquely determined by Eqn. (3-5). 

 

3.3 Static Simulations 

In this section, the static numerical simulations are implemented with various 

loading and boundary conditions. Throughout the following discussion, 1E  and 

2E  are, respectively, the Lagrangian membrane strain along the warp and fill yarn 

directions. 

 

3.3.1 Loading scenario No.1: uniaxial strain loading with 02 =E  

Since the membrane strain is prescribed only in the warp direction, damage occurs 

merely in the warp yarns. The peak of the 1P  curve marks the initiation of damage 

in the warp yarns. In Figure 3-1 the damage in the warp yarns is indicated by the 

curve of the damage parameter 1α . Corresponding to the stress curve of 1P , the 
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damage parameter 1α  is constantly equal to one prior to the peak, and decreases 

gradually untill zero after the initiation of damage. In comparison, the fill yarn 

also shows a similar rupture-like behavior with a similar loading peak. However, 

no damage is caused in the fill yarns as indicated by the damage parameter 2α  

curve, which stays constant throughout the loading process. This behavior is due 

to the coupling of the fill and warp yarns in the yarn scale. Because of the damage 

in the warp yarns, their stiffness decreases gradually and, as a result, the contact 

force V  decreases and leads to reduced force in the fill yarns.  
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Figure 3-1.  Loads 1P , 2P  vs. membrane strain  1E  with 02 =E , 

E1 is monotonically increased up to complete damage in warp direction. 

 

Moreover, in contrast to the critical strain ( 0253.01 =critε ) of the warp yarn, the 

fabric’s critical strain is approximately at 049.01 =critE  and the yarn’s failure is 

complete at approximately 066.01 =E . This large difference is explained by the 
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crimp of yarns in the weaving structure, which increases the sustainable 

deformation capability of the fabric compared to the underlying yarn. 

 

3.3.2 Loading scenario No.2: loading, unloading and reloading process 

In order to further visualize the damage evolution in the yarns, the current 

deforming scenario incorporated an unloading-and-reloading process during a 

stage of partial failure in the yarns. Similarly, as in loading scenario No.1, the 

strain 1E  was controlled while keeping 02 =E . Shown in Figure 3-2, the thick-

line paths denote the initial loading process, and thin-line paths denote the 

unloading and reloading process.  
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Figure 3-2.  Loads 1P , 2P  vs. 1E  with 02 =E , 

1E  is loaded, unloaded at partial damage stage  

and reloaded till complete failure. 
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Naturally, the unloading-reloading paths deviate from the initial loading paths in 

that the damage has already been caused during the initial loading process. Once 

the reloading reaches the same strain level as in the initial loading process, the 

reloading paths continue exactly with the original courses. In this case no residual 

strains are present when the load is removed. This is a direct result of the weaving 

property that the coupling force V  vanishes whenever the forces 1F  and 2F  

vanish. 

 

3.3.3 Loading scenario No.3: equal-bilateral stretching 

Under equi-biaxial stretching ( 21 EE = ), the fabric shows another interesting 

behavior. As shown in Figure 3-3, the stress curve 1P  features two peaks in the 

process, while stress curve 2P  features only one. With reference to the damage 

parameter curves 1α  and 2α , it is found that the damage in the warp yarns is 

initiated at the second peak. The first peak in the 1P  curve is actually caused by 

the initiation of damage in the fill yarns. This explains the simultaneous 

occurrence of the first peaks of 1P  and the only peak of 2P . Under the current 

loading condition, due to lower degree of crimp in fill yarns, the damage in the fill 

yarns is initiated, approximately at 029.01 =E , much earlier than in the warp 

yarns and grows to complete failure rapidly at 0325.01 =E . Compared with 

loading scenario No.1, damage in warp yarn is delayed and the strain at complete 

failure reaches 091.01 =E , well above the value in loading scenario NO.1. 
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Figure 3-3.  Equally biaxial loading 21 EE =  

till complete failure of both yarns. 

 

The explanations for this behavior can be found in the weaving structure of the 

fabric. Due to the lower degree of crimp in fill yarns, under the circumstance of 

equi-biaxial stretching conditions, the fill yarns were straightened up much faster 

than the warp yarns. In contrast to loading scenario No.1, once the fill yarns 

completely failed the contact force vanishes. Without constraint from the 

interaction of fill yarns, the warp yarns can be completely straightened up and, 

macroscopically, show increased deformation capacity. 
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3.3.4 Loading scenario No. 4: uniaxial stretching with 02 =P  

The loading in this case is uniaxial tension along the warp yarns while keeping the 

fill yarns unconstrained ( 02 =P ). Comparison with experimental data is presented 

in Figure 3-4. Note that the Lagrangian strain is used in Figure 3-4 instead of the 

engineering strain used in the experiment [31], in which a uniaxial tensile test was 

applied on a strip of Zylon fabric along the warp yarns (yarn count 3535 × , 1.5 

inches wide and 4 inches gage length). The current simulation shows excellent 

agreement with the experimental results as shown in Figure 3-4. 
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Figure 3-4  Uniaxial tension in warp direction with 02 =P  

 

Additional demonstration of the weaving structure is shown in Figure 3-5, where 

the dependence of 2E  on 1E  under uniaxial loading is shown. 
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Figure 3-5  1E  vs. 2E  with 02 =P   

 

This dependence is a Poisson-like effect induced by the weaving structure and 

yarn interaction. Since the fabric is free of constraint in the fill direction ( 2E ), it 

shrinks transversely while stretched in the warp direction. Once damage is 

initiated in the warp yarns, the coupling between the two yarns diminishes 

gradually and the fill yarns stop shrinking and start expanding back to their initial 

shape.  

 

3.3.5 Effect of bending stiffness 

As discussed in section 3.2, the yarn bending stiffness is not constant even before 

damage because it is affected by the loading conditions of yarn. To investigate the 
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influence of the bending stiffness, the uniaxial loading simulation is repeated with 

the upper and lower limits of the bending stiffness in the fill yarns (B2) as shown 

in Figure 3-6. 
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Figure 3-6  Uniaxial tension in warp direction with 02 =P   

for the demonstration of bending stiffness 

 

Comparison with experimental results demonstrates that during the early stage of 

loading the bending stiffness dominates the load-deflection behavior of the fabric. 

Since the fill yarn is unloaded ( 02 =P ), the simulation with lower bound of 2B  

indicates a better agreement with the experiment. With load increasing, effect of 

bending stiffness on the fabric behavior becomes negligible. 
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3.3.6 Summary  

The static simulations verify the expected abilities of the current material model. 

It reflects the interaction between yarns as demonstrated through various 

phenomena under different loading and boundary conditions. The gradual damage 

of fabric is nicely captured. At the early stage of the fabric deformation, the fabric 

behavior is mainly determined by the yarn bending stiffness and the degree of 

yarn crimp. 



 

 44 

 

Chapter 4 

Dynamic Simulations3

 

 

In this chapter, dynamic simulations are implemented for PBO Zylon AS fabric to 

study the ballistic behavior of the fabric. The same material properties are used as 

in static simulations (Table 1). The finite element simulation package ABAQUS 

6.9 was used for the dynamic simulations. 

 

4.1 FEA Model Setup 

In order to verify the material model, the FEA simulation model in ABAQUS 

(Figure 4-1) is created with reference to the experimental work of the ballistic 

impact on fabric by Verzemnieks in Boeing Company [31]. In the experiment, the 

projectile is a flat-ended cylindrical steel projectile of 37.1g, the fabric is a square-

shaped PBO Zylon (10.75”×10.75”). The fabric is gripped at its two edges and is 

impacted at its center by the projectile with various initial velocities. The 

simulation model follows the same settings as in the experimental work, including 

the boundary conditions, shape, size and mass of the projectile and the fabric.  

                                                 
3 A version of this chapter has been submitted for publication. 
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(a) Cylindrical projectile (mass = 37.1g)                (b) Fabric (thickness = 0.05 mm) 

 

(c) Model assembly 

Figure 4-1  FEA model illustration 

 

With reference to Rebouillat’s investigation [34], the friction between the steel 

projectile and the Zylon fabric is approximated as 0.5 for the current simulations. 

As indicated in [34], the kinetic friction properties on Kevlar fabric are dependent 
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on the interfacing material and the relative sliding speed. The friction is 0.27 

between Kevlar fibers and 0.55 between fibers and metals. A friction coefficient 

of 0.5 was chosen for the current simulations based on the assumption that Kevlar 

fabric and Zylon fabric have the similar frictional properties. 

 

The thickness of the fabric is not involved in the current material model, but it is 

required in ABAQUS when the fabric is modeled in membrane elements. The 

thickness of the membrane is calculated by equating the volume or the mass of the 

realistic fabric material and the membrane model. The thickness is maintained 

constant during simulations and the Poisson ratio is thus set to zero. Since the 

damage in the fabric is controlled by yarn stretch and both the yarn stretch and the 

resistance on the projectile are related to the in-plane resistance forces in the 

fabric, so the thickness of the membrane is not crucial as long as the user-defined 

nominal stress matches the thickness. But the membrane thickness can not be a 

very large value and should be comparable with the realistic dimension in order to 

avoid contact issues in ABAQUS. 

 

In this work, the user-defined material is coded in Fortran and is implemented 

with ABAQUS Explicit subroutine VFABRIC. The subroutine provides the 

nominal strain in the fabric and asks for nominal stress from the user. Detailed 

instructions can be referred to ABAQUS User Subroutine Reference Manual 

section 1.2.3. The projectile is modeled as an analytical rigid body and kinematic 
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formulation is chosen for the contact algorithm between the projectile and the 

fabric. 

 

Due to the anisotropy nature of the fabric, definition of material orientation is 

necessary. Definition of the material orientation involves two steps. The first step 

is to define the local coordinate system attached to the fabric. The second step is 

to define the yarn directions in the referential configuration. The yarn directions 

are not necessarily orthogonal in undeformed fabric. If the yarn directions are not 

explicitly defined, ABAQUS assumes that the yarns are initially aligned with the 

local coordinate system. ABAQUS tracks the local deformation and automatically 

updates the local coordinate systems. The local coordination system is maintained 

as an orthogonal system, but the yarns may be rotated. The yarn directions in the 

deformed configuration are determined through the shear strain in the membrane. 

More detailed information is referred to ABAQUS Analysis User’s Manual 

section 19.4.1. 

 

Since the fabric is modeled with membrane elements, all tensor output variables 

are stored with reference to the local coordinate system (ABAQUS Analysis 

User’s Manual section 4.2.1). The local coordinate system rotates with the 

average rigid body spin of the fabric material. The storage of these tensor output 

variables at each material calculation point is updated corresponding to the 

rotation of the local coordinate system (ABAQUS Theory Manual section 1.5.4). 
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In the subroutine, the damage status in the fabric is stored in three variables, 

SDV1, SDV2 and SDV3. Two variables are evaluated with the damage 

parameters, SDV2 = α1, SDV3 = α2. DV1 is evaluated as 1 or 0 and is used as a 

damage flag for the purpose of element deletion. DV1 = 0 only if both α1 and α2 

are equal to zero, which indicates complete failure in both warp and fill yarns. 

Table 2 describes these legend symbols. 

 

Table 2: Explanation of damage state symbols 

Legend 

symbol 
Description 

SDV1 SDV1 = 0 when both SDV3 = 0 and SDV2 = 0, otherwise SDV1 = 1. 

SDV2 
SDV2 = α1, the state variable monitoring the damage status of the fabric 

in warp yarns. 

SDV3 
SDV3 = α2, the state variable monitoring the damage status of the fabric 

in fill yarns. 

 

In the simulations, a well defined FEA model requires the definition of both the 

material orientation and the boundary condition. To simplify the description of 

boundary conditions and material orientation directions, the following notation 

conventions are created. The part assembly and fabric boundary conditions are 

referred to the global X-Y-Z coordination system, and the material orientation is 

referred to the local x-y-z coordinate system. For the current simulations, the x 

direction always indicates the warp yarns and y direction for the fill yarns. Z and z 

directions are always the same in the referential configuration but not in the 
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deformed configuration. With the help of Figure 4-2 and Table 3, the naming 

convention for yarn orientation and fabric boundary conditions is introduced.  

 

 

 

Figure 4-2  Notation definition for  

fabric orientation and boundary conditions 

 

 

Table 3: Naming convention for material orientation and boundary conditions 

Notation 

names 
Description 

X-Y-Z 
the global coordinate system, referred by 

(1) FEA model assembly (2) fabric boundary conditions 

x-y-z 
the local coordinate system of the fabric, defining the material 

orientation 

Y0 two-edge fixed in Y direction and material orientated at 0° 

XY45 four-edge fixed and material rotated by 45° 

Y90 two-edge fixed in Y direction and material rotated by 90° 
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As shown in Figure 4-2, (a) Y0 means the two normal-to-Y edges are fixed and 

the material orientation coordinate system is aligned with the global system, i.e. 

the fill yarns (y direction) are fixed and warp yarns (x direction) are free of 

constraints at the fabric boundaries. (b) XY45 means the fabric are fixed at all its 

four edges and the material orientation is rotated 45°, i.e. the warp and fill yarns 

form a 45° angle relative to the edges (c) Y90 means the material is rotated 90°, 

i.e. the warp yarn is fixed at fabric boundaries while the fill yarns free of 

constraints. 

 

4.2 Comparison with experimental results 

For the purpose to compare with the experimental work, in this section the fabric 

is applied Y90 conditions. The fabric is two-edge-fixed in the warp yarn direction. 

 

Figure 4-3 and Figure 4-4 show the velocity curves of the projectile, and the 

projectile either is rebounded or penetrates the fabric. In the figures, the projectile 

velocity changes much slower at the early stage of impact. This is accounted by 

the crimp of yarns and the initial deformation is dominated by yarn decrimping 

that results in very little resistance force on the projectile. Once the yarns are 

straightened, the resistance increases sharply until the projectile is rebounded 

(Figure 4-3) or penetrates the fabric (Figure 4-4). 
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FEA projectile impact on fabric (10.75" × 10.75")
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Figure 4-3  Projectile is bounced back with V0 = 34.5m/s (Y90) 

 

FEA projectile impact
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Figure 4-4  fabric perforated with V0 = 57.3m/s (Y90) 
 

Figure 4-5 shows the stress change in time of an element at the center of the fabric. 

Because of the crimp of yarns, the stress initially changes slowly and then 

Damage 
initiated 

Complete 
penetration 
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increases sharply during later stage of the impact up to complete damage in the 

fabric. Slight vibration in the stress curve is noticed, this is caused by the 

longitude stress wave and the transverse swaying of the fabric during the impact. 

 

 

Figure 4-5  Stress (N/m2) change in time at the center of the fabric  

V0 = 57.3m/s (Y90) 

 

The stress curve in Figure 4-5 takes on a quite similar appearance in comparison 

with Figure 3-4. In fact, since the current model does not incorporate dynamic 

material properties, the stress curves should look similar under the same boundary 

condition. However, unlike Figure 3-2 and Figure 3-4, the fabric appears to break 

in a sudden manner as shown in Figure 4-5. This because the simulation data was 

sampled using a long time interval such that more detailed information during the 

rupturing process was not recorded. 
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In Table 4, the simulation results are compared with experimental data [31]. 

According to the experiment, the projectile is bounced back when the initial 

impact velocity is 34.5m/s. With other higher impact velocities listed in the table, 

the fabric is penetrated and thus the critical velocity should be a value between 

34.5 m/s and 39.78 m/s. 

 

Table 4: Comparison between simulations and experimental data 

Initial impact velocity 

(m/s) 
34.5 39.78 57.3 83.06 123.69 

Residual 

velocity 

(m/s) 

Simulations 
Bounced 

back 
10 32.6 66.83 110 

Experiment 
Bounced 

back 
5.67 29.99 61.54 97.99 

Projectile 

energy loss 

(%) 

Simulations 100% 93.7% 67.6% 35.3% 20.9% 

Experiment 100% 97.97% 72.6% 45.1% 37.23% 

Absorbed 

energy 

(J) 

Simulations 21.69 27.5 41.18 45.13 59.3 

Experiment 21.69 28.75 44.22 57.88 105.66 

Max normal deflection 

(mm) 
50.91 51.85 51.75 51.13 51.25 

 

According to the comparison listed in the table above, the simulation results show 

agreement with the experimental data. In the simulations, the projectile is 

rebounded when V0 = 34.5 m/s and the fabric is penetrated with higher impact 

velocities. It is noted that the residual velocities from simulations are always 
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greater than the experimental data. It is pointed out in the experiment report [31] 

that the fixed edges of the fabric slipped a short distance during the impact, which 

accounts for a portion of the energy absorption in the experiment. However, this 

portion of energy is not accounted by the simulations. Also, inter-yarn friction and 

the air impedance on fabric deflection are not considered in the simulations. 

 

One weakness of the current model is the inability of modeling inter-yarn friction. 

As far as the fabric static behavior is concerned, the importance of the yarn-to-

yarn friction is negligible. This is supported by the comparison between the static 

numerical simulations and experimental results. As shown in the static numerical 

simulations (Section 3.3), the results agree considerably well with the 

experimental work. However, during dynamic impact, the inter-yarn friction 

involves more material resistance and leads to higher energy absorption. It is 

believed that the interactional friction between woven yarns play an important 

role in accounting for the dynamic behavior of the fabric. Therefore, the ignorance 

of inter-yarn friction is attributed to underestimation of absorbed energy in the 

dynamic simulations. 

 

4.3 Damage mechanism 

Various damage manners can be observed in the simulation with changes in 

impact conditions. In this section, damage modes are introduced along with 

demonstration of more simulation results.  



 

 55 

 

4.3.1 Local damage  

Local damage means the material failure occurs at the direct impact area and/or 

immediate neighbourhood.  

 

Figure 4-6 shows the local damage pattern obtained from the FEA simulations 

with two-edge fixed boundary condition (Y90) and an initial projectile velocity of 

57.3m/s. As shown, local damage occurs in both warp and fill yarns at the direct 

impact area. Some elements are completely damaged and some are partially 

damaged. By comparing Figure 4-6(a), (b) and (c), the elements that are damaged 

in both directions or in only one direction can be identified. The completely 

damaged elements form a similar-looking hole as observed in the experiment [31]. 

The highly localized damage in the experiment [31] is believed to occur because 

of the sharp edge of the flat-end cylindrical projectile by Zohdi et al. [10]. 

 

As annotated in Figure 4-6 (c), the partial damage for this particular simulation is 

due to damage in warp yarns only. This type of partial damage is also observed in 

experiment [31] except that the partial damage in experiment results from yarn 

pull-out mechanism. In the simulation, the yarn relative slip is not allowed, so the 

simulated partial damage is due to complete damage in merely one direction. 
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(a) SDV1 

 

 

(b) SDV2 

 

Local 
damage 

Remote 
damage 
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(c)  SDV3 

 

Figure 4-6  Local damage pattern (Y90) 

friction coefficient = 0.5 and V0 = 57.3 m/s  

 

Slight difference in the damage patterns is also noticed between the simulations 

and the experiment. As highlighted in Figure 4-6(b), in addition to similar 

penetration damage at the impact neighbourhood, minor remote damage is noted 

away from the direct impact area. 

 

4.3.2 Remote damage 

Remote damage occurs at sites away from the direct impact area, as shown in 

Figure 4-6 (b). It could happen anywhere between the directly impacted site and 

the fixed boundaries. The following simulation (Figure 4-7) shows more apparent 

Partial 
damage 
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and severe remote damage. Experiment observation of this type of damage can be 

found in [24], where both local damage and severe remote damage are observed. 

Moreover, another failure mode, namely yarn pull-out failure, is also observed in 

[24].  

 

 

 

(a) SDV1 
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(b) SDV2 

 

Figure 4-7  Remote damage pattern (Y90) 

friction coefficient = 0.1 and V0 = 57.3 m/s  

 

This dynamic simulation is compared with the quasi-static push test experiment in 

[24]. There are two arguments for this comparison. First, the dynamic properties 

are not involved in the current material model. Second, a low level of friction is 

applied in this simulation. Therefore, similarity in material behavior can be 

expected between the simulation and the quasi-static push test.  

 

4.3.3 Yarn pull-out failure 

Yarn pull-out failure is observed in experiment [24]. This type of failure is due to 

the relative sliding between inter-woven yarns. Whereas the current material 

model is not able to simulate such phenomenon. This is because the constraining 
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boundary condition (as defined in Figure 2-5) is imposed on the current material 

model and relative sliding between yarns is not allowed.  

 

4.4 Influence factors on damage mechanism and energy absorption 

The ability to absorb impact energy is the essential criterion for assessment of the 

fabric ballistic performance. Investigation reveals there are a number of factors 

that can affect the damage patterns and/or energy absorption. These factors are 

discussed in the following sections and they may not be a complete list of all 

possible influence factors. 

 

4.4.1 Projectile-fabric friction 

The influence of the friction between the projectile and the fabric depends on the 

friction coefficients. Based on the simulations, if the friction lies in a certain range, 

the simulation results of damage modes and energy absorption are not sensitive to 

changes in the friction coefficients. As an example, comparing Figure 4-6 (friction 

= 0.5) with Figure 4-8 (friction = 2.0), similar results are obtained.  

 

However, the projectile-fabric friction helps maintain the contact between them 

and prevent relative slipping, such that the projectile-fabric friction holds the 

yarns to move along with the projectile. To investigate the influence of the 

friction, the simulation results are compared between Figure 4-7 (friction = 0.1) 
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and Figure 4-8 (friction = 2.0), where the only difference lies in the friction 

coefficients. It is noticed that friction level does significantly affect the manner of 

damage. At low friction level, remote damage tends to occur. On the contrary, 

high friction level tends to cause more localized damage. It is because high level 

friction induces stress concentrations around the contact area and thus tends to 

cause local damage. 

  

 

(a) SDV1 
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(b) SDV2 

 

(c) SDV3 

 

Figure 4-8  Influence of projectile-fabric friction (Y90) 

Friction coefficient = 2.0 and V0 = 57.3 m/s  
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4.4.2 Boundary conditions 

Boundary conditions significantly affect the impact response of the fabric. To 

demonstrate and compare the effect of different boundary conditions, two kinds of 

boundary conditions, Y90 and XY0, were applied to the fabric.  

 

The simulations show that, when the fabric is four-edge fixed, the damage is 

usually highly localized at the direct impact contact. If the two-edge fixed 

boundary condition is applied, remote yarn failure can be observed. The 

simulations shown in Figure 4-6 and Figure 4-9 are different in the boundary 

conditions. When two edges are fixed, remote damage occurs (Figure 4-6(a)). In 

contrast, Figure 4-9 shows highly localized damage, where the fabric is fixed at 

all four edges. The same phenomenon is also observed by Shockey et al. [24] 

when they studied the ballistic performance of one-ply Zylon. 
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 (a) SDV2 

 

 
(b) SDV3 

 

Figure 4-9  Damage pattern of four-edge fixed (XY0) 

friction coefficient = 0.5 and V0 = 57.3 m/s 
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The influence of boundary conditions is investigated through study in the 

resistance forces against the projectile (Figure 4-10). When impacted under the 

four-edge fixed boundary condition, the fabric is stretched in all directions and 

once rupture occurs at the impact site, the stretch tension in the fabric enlarges the 

rupture opening and makes the projectile easily push through the fabric. As shown 

in Figure 4-10, the fabric is penetrated by the projectile much earlier and faster. 

However, under two-edge fixed boundary, the projectile is subjected to 

continuous resistance from the fabric. Therefore, as the underlying reason under 

four-edge fixed boundary condition, fewer yarns are involved during the impact 

up to complete damage and less energy is absorbed. 

 

FEA bullet impact on fabric (10.75" X 10.75")
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Figure 4-10 Impact force V.S. deflection (V0 = 57.3) 
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Under two-edge fixed boundary condition, the fabric can move more freely in 

both the normal-to-plane direction and the in-plane direction. As indicated by the 

maximum normal deflection of the fabric under the two kinds of boundary 

conditions. The maximum fabric deflection is measured at the center of the fabric 

and at the instant that damage is initiated. As shown in Table 5, the maximum 

deflection is around 51mm and 26mm for boundary conditions Y90 and XY0, 

respectively. So, when two edges are fixed, the fabric can acquire higher kinetic 

energy. The fabric is less constrained to move “following” the projectile and the 

projectile can not easily push through the fabric. Thus more yarns are involved 

and damaged. As the result, more energy is absorbed. 

 

Table 5: Effect of boundary conditions on energy absorption (Y90 V.S. XY0) 

Initial impact velocity 

(m/s) 
34.5 39.78 57.3 83.06 123.69 

Residual 

velocity 

(m/s) 

Y90 
Bounced 

back 
10 32.6 66.83 110 

XY0 13.89 21.82 43.1 71.18 114.9 

Projectile 

energy loss 

(%) 

Y90 100% 93.7% 67.63% 35.3% 20.9% 

XY0 83.8% 69.91% 43.42% 26.93% 13.7% 

Absorbed 

energy 

(J) 

Y90 21.69 27.5 41.19 45.13 59.35 

XY0 18.5 20.52 26.45 33.99 38.9 

Max 

normal 

deflection 

(mm) 

Y90 50.91 51.85 51.75 51.13 51.25 

XY0 26.5 26.86 27.66 28.26 25.28 
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Difference in energy absorption is tabulated in Table 5. It is evident that, under 

the two-edge fixed boundary condition, the fabric absorbs more energy and 

demonstrates higher projectile-proof performance. The simulation results in Table 

5 shows the difference in energy absorption is less than 50%. Similarly, as 

reported in the ballistic experiment [24], the absorbed energy under two-edge 

fixed boundary condition is approximately 25% to 60% more for Zylon and 

almost double for Spectra.  

 

4.4.3 Projectile shapes 

Based on the simulations, it is found that the damage manners are also related to 

the projectile shapes. To show the influence of the projectile shapes, the projectile 

is filleted. Comparison is made between three simulations as shown in Figure 4-6 

(not filleted), Figure 4-11 (0.8mm fillet) and Figure 4-12 (2mm fillet). These three 

simulations are different because of the sizes of the fillets, which change the 

sharpness of the projectiles. By comparison, the sharpness of the projectile affects 

the damage manner significantly and the 0.8mm-filleted projectile (Figure 4-11) 

causes the most severe and more sites of remote damage. 
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(a) SDV1 

 

(b) SDV2 

 

Figure 4-11 Damage caused by the filleted projectile 

 Friction coefficient = 0.5, V0 = 57.3 m/s (Y90), fillet = 0.8mm 
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(a) SDV1 

 

(b) SDV2 

Figure 4-12 Damage caused by the filleted projectile 

 Friction coefficient = 0.5, V0 = 57.3 m/s (Y90), fillet = 2mm 
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To relate the sharpness to the damage manners, the sharpness of the projectile is 

defined based on the energy loss. The projectile is said to be sharper if it causes 

less energy absorption. The kinetic energy loss of the projectiles is shown in 

Figure 4-13. According to the comparison, the projectile with 2mm fillet has the 

highest residual velocity while the one with 0.8mm fillet has the lowest residual 

velocity. Therefore, the 2mm filleted projectile is the sharpest and the 0.8mm 

filleted is the bluntest. Based on the determination of the sharpness of the 

projectiles, it is concluded that the blunt projectile tends to cause remote damage 

(Figure 4-11). 
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Figure 4-13 Velocity evolution comparison  

between sharp-edged and filleted projectiles 

 

The underlying reasons can be revealed by referring to Figure 4-14 and by 

comparing the difference in damage because of the projectile shapes. On one hand, 
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the fillet helps to reduce stress concentration at the direct impact site and this 

makes the impact loading can be distributed more evenly along the yarns. 

Consequently, remote damage tends to be caused. On the other hand, the fillet 

makes it easier for the yarns to slip off the contact end of the projectile and local 

damage tends to be caused. Which side becomes dominate is determined by the 

size of the fillet. 
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Figure 4-14 Impact force V.S. projectile displacement V0 = 57.3 (Y90) 

Comparison between sharp-edge and filleted projectile 

 

For the 2mm-filleted projectile, the yarns can more easily slip off the head of the 

projectile and the projectile pushes through the fabric quickly (Figure 4-14). As a 
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result, less fabric material is involved and damaged (Figure 4-12). Damage is 

mainly caused in warp yarns and complete damage is minor. Consequently the 

absorbed energy is greatly reduced. The difference is nearly as much as 50% in 

terms of energy absorption compared with the sharp-edged projectile. For the 

0.8mm-filleted projectile, the smaller fillet does not let the projectile push through 

the fabric as easily as the 2mm fillet. Meanwhile, the smaller fillet greatly reduces 

the stress concentration. Therefore, the projectile is subjected to continuous 

resistance. As the result, severe remote damage is caused and more energy is 

absorbed. 

 

Comparing the 2mm filleted projectile with the sharp-edged projectile, the fillet 

reduces the stress concentration and thus causes more sites of remote damage 

(Figure 4-12) than the sharp-edged projectile (Figure 4-6). Because of the sharp 

edge, stress concentration is incurred and local damage tends to be caused. At the 

same time, because of the sharp edge, the projectile can not easily pushes through 

the fabric and, therefore, more material is damaged and more energy is absorbed. 

This explains the severe remote damage but less energy absorption in Figure 4-12 

and, in contrast, the minor remote damage but more energy absorption in Figure 

4-6.  

 

Based on the proceeding investigation, it is concluded that blunt projectile tends 

to cause remote damage and more energy absorption.  
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4.4.4 Effect of material orientation 

Considering the anisotropy property of the fabric materials, the ballistic response 

is expected to change if the material orientation varies with reference to the fabric 

fixed edges. To investigate the effect of the material orientation, the fabric is 

rotated 45° so that both the warp and fill yarns form a 45° angle relative to the 

edges of the square-shaped fabric. In this section, simulations were implemented 

with XY45 conditions. The results are compared with the simulations in section 

4.4.2, where the fabric is four-edge fixed too, but the material is orientated at 0° 

(XY0). The only difference in these simulations is material orientation and Table 

6 shows the comparison. 

 

Table 6: Effect of material orientation (XY0 V.S. XY45) 

Initial impact velocity 

(m/s) 
34.5 39.78 57.3 83.06 123.69 

Residual 

velocity 

(m/s) 

XY45 11.13 19.27 38.5 69.97 113.9 

XY0 13.89 21.82 43.1 71.18 114.9 

Projectile 

energy loss 

(%) 

XY45 89.59% 76.53% 54.85% 29.04% 15.2% 

XY0 83.8% 69.91% 43.42% 26.93% 13.7% 

Absorbed 

energy 

(J) 

XY45 19.78 22.5 33.4 37.16 43.15 

XY0 18.5 20.52 26.45 33.99 38.9 

Max 

normal 

deflection 

(mm) 

XY45 28.5 28.69 31.63 29.9 26.27 

XY0 26.5 26.86 27.66 28.26 25.28 
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As shown in Table 6, the residual velocities for XY45 conditions are always 

lower than XY0 conditions and among the current simulations the difference can 

be up to 29% in terms of the absorbed energy. This phenomenon indicates that the 

material orientation affected the ability to arrest the projectile. Hence, the rotated 

orientation improves the ballistic performance of the fabric. To understand the 

influence of the material orientation, the following observation is obtained by 

referring to Figure 4-15 and Figure 4-16, where the stress and strain distribution is 

shown across the fabric at the instant immediately before the damage initiation. 

According to the figures, the maximum principal stress and strain are always 

directed along the warp and fill yarns and their directions rotate following the 

material orientation. This indicates, with 45° material orientation, the fabric 

material in diagonal is engaged in resistance against the projectile. Therefore, the 

rotation of orientation is partially equivalent with increasing the fabric size. For 

the 45° orientation, the length of the yarns directly engaged in the impact is 

actually 2  times long as the 0° orientation. For this reason, under XY45 

conditions, the fabric experiences greater maximum deflection at the center 

(shown in Table 6) and is able to absorb more energy than 0° orientation. 

These simulations alternatively prove that the increased fabric size helps absorb 

more energy.  
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(a) XY0 

 

(b) XY45 

Figure 4-15 Material orientation effect (V0 = 57.3 m/s): 

Maximum in-plane principal stress  
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(a) XY0 

 

 
(b) XY45 

 

Figure 4-16 Material orientation effect (V0 = 57.3 m/s):  

Maximum in-plane principal of logarithmic stain 
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4.4.5 Summary 

(1) Summary on damage mechanism 

Based on the observation, factors that can reduce stress concentration usually 

induce remote damage. Conclusions on the influence factors are summarized as 

follows: 

 

Local failure tends to occur under the following test conditions: 

 High level projectile-fabric friction 

 Sharper projectiles 

 Four-edge gripped fabric 

 

Alternatively, remote failure tends to occur under the conditions: 

 Blunt-ended projectile 

 Low level friction 

 Two-edge gripped fabric 

 

In addition, it is claimed in [24] and [35] that higher impact velocity tends to 

cause local damage. This is because the viscoelastic property of the material and 

that high impact velocity breaks the fabric through shearing mechanism instead of 

stretching. In the current material model, the damage criterion is based on the 

maximum local stretch of the yarns and is time independent.  
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(2) Summary on energy absorption 

Conditions that allow the fabric to move freely or involve more material help the 

fabric to store more kinetic and strain energy and absorb more energy. Based on 

the simulations, the following factors help energy absorption: 

 

 Two-edge fixed boundary condition rather than 4-edge fixed; 

 Rotated material orientation; 

 Blunt projectile. 

 

Note that inter-yarn friction is another important factor. The friction drags remote 

material to involve resistance against impact and inter-yarn slipping also 

dissipates impact energy. The inter-yarn friction is not incorporated in the current 

material model. 

 

4.5 Directional effect of the yarn weaving structure 

The fabric displays anisotropic properties as the result of the weaving structure. 

Thus directional stress evolution phenomenon occurs. Figure 4-17 shows the 

directional effect in stress evolution under the two-edge fixed boundary condition 

(Y90). Although the fabric boundaries are free of constrain in the fill yarn 

direction, the tension stress is higher in the fill yarns (Figure 4-17(a)) at the early 

stage of the impact. This is because of higher degree of crimp in warp yarns. 

Higher degree of crimp makes the warp yarns can be easily straightened up with 
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less resistance than the fill yarns. For the same reason, the stress wave travels 

faster in the fill yarns at the early stage. As the result, when the stress wave in fill 

yarns reaches the boundary and has been reflected, the stress wave front in warp 

yarns has not reached the boundary yet (Figure 4-17 (b)). With impacting 

continued, stretch resistance from warp yarns increases rapidly due to the fixed 

boundaries in the warp direction. At the moment shown in Figure 4-17 (c), tension 

stress in warp yarns becomes greater than that in fill yarns. At the moment shown 

in Figure 4-17 (d), tension stress is dominantly localized in the warp direction.  

 

 

(a)  time(s):  1.6058E-05 
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(b) time(s):  3.21117E-05 

 

 

(c)  time(s):  8.5353E-05 
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(d) time(s):  8.9067E-04 

 

Figure 4-17 Yarn weaving directional effect study (Y90): 

stress wave evolution during ballistic impact 

 

Similarly, the study of stress evolution is repeated for the four-edge-fixed 

boundary condition (XY0). As shown in Figure 4-18, because of the anisotropy of 

the fabric material, the stress distribution is not axially symmetric with respect to 

the impact direction. By comparison with the Y90 boundary condition, the same 

stress distribution is observed between them at the early stage. In both cases 

(Figure 4-18(a) and Figure 4-17(a)), the tension stress is higher in the fill direction 

and the stress wave travels faster in the fill direction due to the lower degree of 

crimp in fill yarns. Therefore, at the early stage, the fabric response is mainly 

determined by yarn crimp instead of the boundary conditions. When the impact 

process continues, the difference appears because of the different boundary 
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conditions. Under Y90 boundary condition (Figure 4-17), the stress in fill yarns 

gradually diminishes while the stress in warp yarns increases continuously. Under 

XY0 boundary condition (Figure 4-18), the stress keeps increasing in both 

directions and higher stress level in fill yarns before damage. 

 

 

(a)  time(s):  1.5121E-05 

 

(b) time(s):  2.0029E-05 
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(c)  time(s):  4.0156E-05 

 
(d) time(s):  5.0511E-04 

 

Figure 4-18 Yarn weaving directional effect study (XY0): 

stress wave evolution during ballistic impact 
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Chapter 5 

Conclusions 

The current work proposed a multi-scale model for plain woven fabric materials. 

This material model considers both the membrane-like properties and the 

underlying sub-structures of the fabric materials. On the top scale, the fabric is 

assumed as a membrane with no out-of-plane bending and shearing stiffness. 

Following are the yarn scale and fibril scale, which reflect the yarn weaving 

structure and material composition details. 

 

Static and dynamic numerical simulations were performed with this multi-scale 

material model. The results demonstrated that the material model is able to reflect 

complicated characteristics of the fabric materials. Various physical phenomena 

can be observed in the simulations with variation of impact conditions. The 

simulation results also show good agreement experimental data.  

 

It is found that the ballistic performance and mechanical response of the fabric 

materials are determined by a combination of a variety of factors and conditions 

rather than the material properties alone. The material properties are the 

underlying base reflecting strength of the fabric. However the fabric is a structural 
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assembly of the fibrous materials and the fabric weaving structure. Boundary 

conditions and material orientation also play important roles and significantly 

influence the ballistic performance. 

 

5.1 Abilities of the model 

 Weaving structure and interaction between yarns 

Weaving structure includes the yarn crimping, number of yarns per length and 

weaving geometry. This is the inherent origin of various unique features of the 

fabric material rather than continuum membrane. 

  

 Material anisotropy 

Anisotropy is an important feature of the fabric and is attributed to a number of 

unique phenomena of the fabric materials such as channelling stress distribution, 

directional effect of stress wave propagation, pyramid-shape deformation. 

 

 Gradual damage in the fabric 

By tracking the current and history maximum local stretch of the yarns, the 

damage status of the fabric is monitored and updated. The model considers the 

misalignment of fibrils in the yarn, thus the gradual damage in the material is 

reflected. 
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5.2 Deficiencies of the model  

 Damage criterion 

The damage criterion of the current model is based on yarn stretch and is time 

independent. In fact, yarns are viscoelastic and the critical stretch should be 

reduced with increasing impact velocities. In addition, high level impact velocity 

can damage the fabric by a shearing mechanism. It is observed in experiment that 

the energy absorption decreases when the impact velocity is beyond a certain 

value. 

 

 Inter-yarn relative slipping 

The current model allows inter-yarn rotation but not for inter-yarn slipping. Thus 

phenomena like yarn pull-out failure and inter-yarn friction can not be simulated.  

 

5.3 Findings and observations 

Based on the simulations, there are the following findings and conclusions, which 

agree with published experimental data. 

 

 Energy absorption 

Energy absorption is increased with the two-edge fixed boundary condition in 

contrast to the four-edge fixed boundary condition. More energy is absorbed when 

the material orientation is rotated with reference to the fixed edges. The rotation 

actually increases the length of material engaged during the impact. This is 
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partially equivalent to increasing the fabric size. Blunt projectile involves more 

materials and tends to cause more severe and extensive damage, which leads to 

more energy absorption.  

 

 Damage modes 

Local and remote damage is observed as the two damage mode in the simulations. 

Yarn pull-out failure due to inter-yarn slipping is another damage mode that can 

be observed in experiment but not in the current simulations.  Based on these 

simulations, it is found that four-edge fixed boundary condition, sharp projectile 

and high level projectile-fabric friction tend to cause local damage.  
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Appendix: 

Numerical algorithm and procedure 
 

 

A.1 Algorithm flowchart  

 

The following flow chart describes the procedure used to solve the governing 

equations of the fabric material model. As shown in the following flow chart, 0
1A , 

0
2A , 0

1B , 0
2B  are the initial stiffness of the yarns before damage; 0

1α , 0
2α  are the 

guess values used at the beginning of the numerical procedure. The input values 

are the current stiffness A1, A2, B1, B2 and the membrane Lagrangian strains E1, E2. 

By employing the tools of weak formulation and one dimensional finite element 

method, the solutions of unknowns are the external forces, F1, F2, the inter-yarn 

contact force, V, the current yarn angle, φ , and the yarn maximum local stretch μ1, 

μ2.  

 

Since the yarn damage is controlled by the maximum local stretch, α1, α2 have to 

match corresponding μ1, μ2 to be an acceptable set of solutions. Secant method is 

used for iterating α1, α2. 
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A1, A2, B1, B2 

Yarn governing Eqn.(A. 1) 

Non-penetration condition Eqn.(A. 3) 

Coupling Eqn.(A. 5) 

Weak form 1D FE 

A system of nonlinear equations 
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A.2 Numerical procedure 

 

The differential equation to be solved for Fi and V: 

 

( ) ( )[ ] ( ) )(1
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dB
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i
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)(sin)(cos)( SVSFSN iiii φφ +=                                 (2) 
 

)(sin)(cos)( SFSVSQ iiii φφ −=                                 (3)         (A. 1) 
 

Note that in Eqn. (A. 1) and the following formulations i = 1, 2, which indicate 

the warp and fill yarns, respectively. These equations are not summed over i.  

 

Boundary conditions associated with Eqn. (A. 1): 

   

                            BC1:    0)0( =iφ  

BC2:    0)]()([ =Φ− SS
dS
d

iiφ                                             (A. 2) 

 

Non-penetration constrain condition: 
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


>
=
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contact in   yarn,0

D
D

                               (A. 3) 
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where the D1 and D2 are the displacements of the two points on the warp and fill 

yarns, where BC1 is located by referring to Figure 2-4 and,  

 

( ) ( ) ( )∫ 







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






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iL
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i

i
i dSSS

A
SND

0
sinsin1 φ .                 (A. 4) 

 

D is the summation of D1 and D2. 0>D  denotes that the warp and fill yarns are 

separate from each other. The contact constraint condition is thus deactivated and 

the contact force vanishes (i.e 0=V ). Otherwise, 0=D  indicates the two yarns 

are in contact and the constraint condition 0=D  applies. D < 0 is not allowed 

since the negative value means the two yarns penetrate each other. 

 

Coupling condition: 

 

( ) ( ) ( )∫ ∫ 

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
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


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i
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SNdSSE

0 0
cos1cos21 φ             (A. 5) 

 

Eqn. (A. 5) couples the membrane scale and the yarn scales. The left-hand side of 

Eqn. (A. 5) computes the length of the membrane segment in the deformed 

configuration. The right-hand side computes the yarn dimension projected to the 

membrane tangent plane.  So, Eqn. (A. 5) sets up the connection and unifies the 

two separate scales through the deformation kinematics. 
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Based on the 1-D finite element method, the yarn governing equilibrium equation 

(Eqn. A. 1) can be rewritten as 
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where T is introduced as the test function,  
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+
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and the yarn angles ( )Siφ  is approximated as 
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Based on the weak formulation, the left-hand side of Eqn. (A.6) becomes 
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In the left hand side shown above, the first integration always vanishes because of 

the boundary condition BC2 in Eqn. (A. 12) and that the test function (Eqn. A. 7) 

is chosen such that it vanishes at boundary BC1. The right-hand side of Eqn. (A. 6) 

becomes 
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So Eqn. (A. 6) becomes 
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Since ak are arbitrary and Eqn. (A. 9) is always valid it must be always true that  
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Eqn. (A. 10) is a system of k equations, and for each specific value of the integer k, 

it constitutes one equation. So, based on the weak formulation and the 1-D finite 

element method, the yarn governing equation (Eqn. A.1) is converted into a 

system of k equations. The number of equations is determined by the number of 

elements (n=k-1) used to approximate the yarn angles (Eqn. A. 10). Also, there is 

one constraint equation (Eqn. A. 3) and the two coupling equations (Eqn. A. 5). 

The current model is converted to a problem of solving a system of (3 + 2k) 

equations with the unkowns F1, F2, V, 1
jb  and 2

jb . It is chosen that k = j. The 

system of equations is solved through Newton-Raphson method.  

 

The damage in the fabric is monitored via the maximum local stretch of the yarns. 

The yarn local stretch is computed by  
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The damage in the fabric is measured via Eqn. (A. 12) according to the maximum 

stretch. 
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The damage parameter is determined by the maximum local stretch of the yarns. 

The maximum stretch means either the current maximum stretch or the history 

maximum stretch, whichever the larger one. 
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