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Abstract

Owing to random load changes and transmission time delays in interconnected power
systems with renewable energy, the load frequency control scheme has become one of
the main methods to keep stability and security of power systems. To relieve commu-
nication burden and increase network utilisation, an adaptive event-triggered scheme is
explored. Then, a new fractional-order global sliding mode control scheme comprising the
fractional-order term in the sliding surface is adopted to improve robustness of load fre-
quency control. The fractional-order term generates a new degree of freedom and more
adjustable parameters to improve control performance. Furthermore, the Markov theory
is applied in the modelling process to better describe the uncertainty of parameters and
external disturbances. The stability and stabilisation criteria for multi-area power systems
load frequency control are put forward by employing the improved Lyapunov function and
integral inequalities with auxiliary functions. Finally, two simulation examples containing a
two-area power system and modified IEEE 39-bus New England test power system with
three wind farms are presented to investigate the effectiveness of the proposed method.

1 INTRODUCTION

Load frequency control (LFC) is one of the significant mea-
sures to maintain safety and stability of power systems [1]. When
power systems suffer from disturbances, LFC can be applied to
keeping frequency deviations to zero, and maintaining exchange
power of interconnected power systems to reference values [2,
3]. With the enhancement of environmental standards, the share
of renewable energy and energy storage units has increased
dramatically, which reduces energy consumption and improves
energy utilisation efficiency [4, 5]. The application of turbine
technologies makes it possible for wind farms to participate in
the power system with a consolidated performance. However,
owing to power resource instability of the wind power genera-
tion, the demands for operating reserve have increased [6]. To
tackle this, the energy storage units are proposed in power sys-
tem to balance instantaneous mismatch between generation and
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demand. Inevitably, the introduction of wind power generation
and energy storage units greatly increase difficulty and complex-
ity of power systems LFC [7, 8].

Meanwhile, the open communication infrastructure is widely
used in power systems to implement signal transmission and
information communication where the control areas are inter-
linked through tie-lines, which has received increasing research
attentions with their advantages of low cost and flexibil-
ity [9-11]. However, the severe competition of many loads and
generation units for the limited network utilisation will appear if
abundant data accesses to the network simultaneously [12,13].
Accordingly, event-triggered scheme is performed on the
networked power system for reducing energy consumption
and the transmission frequency of redundant information [14,
15]. More specifically, only when predetermined trigger con-
dition is fulfilled, sampled information can be transmitted to
controller [16]. Although the threshold cannot be adaptively
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adjusted based on the dynamics of the networked power system,
superfluous sampled information is transmitted over the net-
works. Therefore, it is highly necessary and meaningful to adopt
the adaptive event-triggered (AEt) scheme with adaptively
adjusted threshold into networked power system LFC.

Considering the grid performance standards, massive con-
trol strategies, for example, optimal fuzzy-based PID droop
control, active disturbance rejection control and generalised
active disturbance rejection control, are developed in power
system LFC [2, 17, 18]. The sliding mode control (SMC) is
widely employed in power system LFC due to its robustness in
parameters variation and external disturbances [19–21]. Some
improved SMC schemes, for example, full order SMC [22],
SMC with adaptive learning strategy [23], and the passivity-
design of SMC [24] are utilised in power system LFC to
improve the control performance. However, better robustness
is still expected when power systems encounter heavily oscilla-
tions. Very recently, the fractional calculus has been proposed
extending integer differentiation and integration into fractional
orders [25, 26]. It is widely employed in modelling and con-
trol applications which can accurately characterise dynamics and
behaviours of real systems [27–29]. Thus, the effectiveness of
the fractional-order term adopted in improved SMC scheme
need to be investigated in detail.

Motivated by the challenges of renewable energy and load
disturbances, open communication infrastructures, and param-
eter uncertainties in networked power systems, the robust LFC
based on AEt scheme and fractional-order global sliding mode
control (FOGSMC) is proposed in this paper. The wind power
and energy storage systems are considered in this networked
power system. Meanwhile, the proposed AEt scheme signifi-
cantly reduces transmission of the redundant information while
preserving the control scheme’s performance. Owing to trans-
mission time delay, external disturbances and uncertain renew-
able energies in power system, the robust LFC for networked
power system with renewable energy is studied in this paper.
The novel FOGSMC which has outstanding robust perfor-
mance is first employed in the networked power system LFC
scheme to resist load disturbances and system parameter uncer-
tainties. The proposed control scheme is placed on the sec-
ond layer, and robustness can be enforced on tertiary level as
well [30-33]. Additionally, Markov theory is employed to build
the multi-area LFC model dealing with unknown modelling
errors in the modelling process. By utilising improved Lyapunov
stability theory and integral inequality with auxiliary function,
the stability and stabilisation criteria are provided. Therefore,
the following improvements are proposed:

i. Considering the rapid load changes and model parame-
ter uncertainties, the FOGSMC is proposed in this paper for
improving robustness of the power system LFC. On the one
hand, the GSMC has robust stability during the entire con-
trol process while keeping the basic performance of traditional
SMC. On the other hand, the fractional term is adopted in the
FOGSMC to provide new degrees of freedom. Compared with
integer order control, the FOGSMC with fractional term gen-
erates more adjustable parameters and improves control perfor-
mance.

FIGURE 1 Transfer function model of multi-area time-delay hybrid power
system

ii. An AEt scheme is presented to mitigate transmission bur-
den in multi-area power systems while maintaining FOGSMC
performance and system dynamic properties. In the proposed
AEt scheme, the threshold can be adaptively adjusted by present
and last moment signals, which can sharply reduce the number
of transmitted data and greatly enhance network communica-
tion utilisation [34, 35].

iii. In the Lyapunov stability theory, constructing the
improved Lyapunov function and estimating its derivatives are
key elements to reduce the conservation [10], in which triple
integrals are adopted in the improved Lyapunov function to
reduce the conservation of the derived linear matrix inequal-
ity (LMI), and integral inequalities with auxiliary functions are
introduced in estimating derivatives of the Lyapunov function
to produce tighter bounds of transmission time delay than [32,
33].

The remainder of this paper is organised as follows. In Sec-
tion 2, the Markov theory is introduced to build the delay-
dependent multi-area power system LFC model comprising
FOGSMC and AEt scheme. Section 3 analyses the stability and
stabilisation of the multi-area power system based on LMI. Sim-
ulation results and comparative analysis are shown in Section 4.
Section 5 presents the conclusion of this work.

2 PROBLEM STATEMENT

Even though the real power system is a complex non-linear
dynamic system, the linearised model can be used to describe
the system as the load deviation is very small when the system
operates at the nominal point. The block diagram of the stud-
ied multi-area LFC considering wind power and energy storage
is presented in Figure 1, where the AEt scheme and FOGSMC
are applied. The parameters of the ith control area are listed in
Table 1.

2.1 LFC model with transmission time
delays

Dynamic model of the studied multi-area power system can be
described as follows:{ .

x (t ) = Ax(t ) + Bu(t ) + F 𝜔(t )
y(t ) = Cx(t ),

(1)
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TABLE 1 Notations

Symbol Quantity

ΔPdi Load deviation

ΔPmi Generator mechanical output deviation

ΔPvi Valve position deviation

ΔPtie-i Tie-line active power deviation

ΔPwindi Output power fluctuation of the wind turbine generator

ΔPBi Output power fluctuation of the battery

Δ fi Frequency deviation

ΔΦwindi Wind power deviation

Mi Moment of inertia

Di Generator damping coefficient

Tgi Time constant of the governor

Tchi Time constant of the turbine

Twi Time constant of the wind turbine

TESi Time constant of the battery

Ri Speed drop

𝛽i Frequency bias factor

Ti j Tie-line synchronising coefficient

AC Ei Area control error

where

xi (t ) =
[
Δ fi ΔPmi ΔPvi ΔPwindi ΔPBi ∫ AC Ei ΔPtie−i

]T

x(t ) = [ x1
T (t ) x2

T (t ) x3
T (t ) … xn

T (t ) ]
T

u(t ) = [ u1
T (t ) u2

T (t ) u3
T (t ) … un

T (t ) ]
T

𝜔i (t ) = [ ΔPdi ΔΦwindi ]
T

, Ai j = [(7, 1) = −2𝜋Ti j ]

yi (t ) = [ AC Ei ∫ AC Ei ]
T

, B = diag{B1, … , Bn}

𝜔(t ) = [ 𝜔1
T (t ) 𝜔2

T (t ) 𝜔3
T (t ) … 𝜔n

T (t ) ]
T

y(t ) = [ y1
T (t ) y2

T (t ) y3
T (t ) … yn

T (t ) ]
T

Aii =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1) =
−D

Mi
, (1, 2) =

1
Mi

, (1, 4) =
1

Mi
,

(1, 5) =
1

Mi
, (1, 7) =

−1
Mi

, (2, 2) =
−1
Tchi

,

(2, 3) =
1

Tchi
, (3, 1) =

−1
RTgi

, (3, 3) =
−1
Tgi

,

(4, 4) =
−1
Twi

, (5, 1) =
1

TESi
,

(5, 5) = −
1

TESi
, (6, 1) = 𝛽i ,

(6, 6) = 1, (7, 1) = 2𝜋
n∑

j=1, j≠i

Ti j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡⎢⎢⎢⎣
A11 … A1n

⋮ ⋱ ⋮

An1 … Ann

⎤⎥⎥⎥⎦
Bi =

[
0 0

(
1

Tgi

)T

0 0 0 0

]T

Ci =

[
𝛽i 0 0 0 0 0 1

0 0 0 0 0 1 0

]

Fi =

⎡⎢⎢⎢⎣
−1

Mi
T

0 0 0 0 0 0

0 0 0
1

Twi
0 0 0

⎤⎥⎥⎥⎦
T

C = diag{C1, … ,Cn}, F = diag{F1, … , Fn}

The ACE signal for each control area can be expressed as

AC Ei = 𝛽iΔ fi + ΔPtie−i . (2)

2.2 Fractional-order global sliding mode
control scheme

Fractional calculus is a generalisation of the basic process
of integral and differential into fractional order. To stabilise
the power system with randomness and uncertainty, the new
FOGSMC scheme incorporating a fractional-order term in the
sliding surface is proposed in the following.

The fractional-order operator, shown as (3), contains the
fractional derivative and the fractional integral in a single expres-
sion.

aD
𝛼1
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d 𝛼1

dt 𝛼1
𝛼1 > 0

1 𝛼1 = 0

∫
t

a

(ds)−𝛼1 𝛼1 < 0

(3)

where a and t are limits of the operator. For analytical simplifi-
cation, aD

𝛼1
t can be denoted as D𝛼1 .

The fractional-order global sliding surface is defined as

s(t ) = Gx(t ) −

t

∫
0

G (A − BKC )x(𝜏)d𝜏

− f (t )+𝜇D𝛼1−1x(t ), (4)

where f (t ) is a function designed specially to achieve global slid-
ing mode, K means the controller gain to be designed, and 𝜇
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denotes the coefficient of fractional-order term. According to
the definition of f (t ) in [36], it can be designed as following:

f (t )= f (0)e−lt , (5)

where l > 0.
The ideal sliding surface should satisfy: s(t )=0 and ṡ(t ) = 0.

Thus, the equivalent sliding mode control law is expressed as
following:

ueq (t ) = − KCx(t ) − (GB)−1GF 𝜔(t ) + (GB)−1 ḟ (t )

− 𝜇(GB)−1D𝛼1 x(t ). (6)

Then the studied power system model can be revised as

.
x(t ) = Ax(t ) − BKCx(t ) + F̃ 𝜔̃(t ), (7)

where

𝜔̃(t ) =
[
𝜔T (t ) ḟ T (t ) (D𝛼1 x(t ))T

]T

,

F̃ = [ F − B(GB)−1
GF 1 𝜇 ]

Remark 1. In the designed sliding surface, the fractional-order
term D𝛼1 and global function f (t ) are all considered. The
fractional-order term generates a new degree of freedom to
enhance control performance better than [20, 21, 36]. Besides,
GSMC has fast response and robust performance, which can be
applied to improve transient performance of the system. There-
fore, the proposed FOGSMC scheme has satisfactory perfor-
mance to stabilise the studied power system.

2.3 Adaptive event-triggered scheme

Owing to transmission time delays in networked environment,
the sampled data AC Ei (t ) is probably not be utilised at the cer-
tain time t . Then the controller input is described as

y(t ) = Cx(tkh), t ∈
[

tkh + d (tk ) tk+1h + d (tk+1)
)
, (8)

where tkh means the transmitted instant of x(tkh) and h

denotes the constant sampling period. Transmission delays
caused by the network are considered as d (tk ) ∈ [ d1 d2 ), where
d1= min(d (tk )), d2= max(d (tk )), d12=d2 − d1, ḋ = ḋ (tk ) =

lim
Δtk→0

d (tk+Δtk )−d (tk )

Δtk
.

In the event-triggered scheme, the sampled signal packets
will be transmitted if the defined triggering condition is sat-
isfied [34, 36]. However, the triggering threshold is predeter-
mined in this scheme. There will still be a large of superflu-
ous information transmitted to controller. In order to reduce

the transmission frequency of irrelevant information and save
more network resources, the AEt scheme is employed to make
triggering threshold adaptively adjustable. The AEt criterion is
designed as

[x(tkh + jh) − x(tkh)]T Φr [x(tkh + jh) − x(tkh)]

>𝜆(tkh)x(tkh)T Φr x(tkh), (9)

where Φr is an unknown positive matrix.
Comparing with the preset triggering threshold 𝜆 in [15], the

𝜆(tkh) in (9) will be adaptively adjusted according to past and
current transmitted packets:

𝜆(tkh) = max(𝜆m, 𝜂𝜆(tk−1h)), (10)

where 𝜆m > 0 and

𝜂 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if‖x(tkh)‖ ≥ ‖x(tk−1h)‖
1 −

2𝛼2

𝜋
arctan(‖x(tkh)‖ − ‖x(tk−1h)‖‖x(tkh)‖

)
otherwise

2.4 Markov model considering time delay

By considering transmission time delays, the studied multi-area
LFC based on AEt and FOGSMC can be derived as

.
x(t ) = Ax(t ) − BKCe(t ) − BKCx(t − d (t )) + F̃ 𝜔̃(t ), (11)

where

e(t ) =

⎧⎪⎪⎨⎪⎪⎩
0,

x(tkh) − x(tkh + mh),

x(tkh) − x(tkh + jh),

k ∈ Ω0

k ∈ Ωm

k ∈ Ω j

and j = sup{m ∈ N |tkh + mh < tk+1h, m = 1, 2, …}.
In the modelling procedure, there are many uncertain influ-

ences of transmission time delays and external disturbances. In
real networks, the current transmission time delays are related
with previous delays. Thus, the Markov chain is introduced into
this paper to model the random transmission time delays [35].
The finite-state Markov process is described as

P
[
rs (t + Δt ) = j |rs (t ) = i

]
= pi j , (12)

0 ≤ i, j ≤ L, 0 ≤ 𝜋i j ≤ 1,

L∑
j=0

𝜋i j = 1. (13)
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Thus, the multi-area LFC model can be expressed as the fol-
lowing Markov jump linear system model:

.
x(t ) = Ax(t ) − BKrCe(t ) − BKrCx(t − d (t )) + F̃ 𝜔̃(t ). (14)

For analytical convenience, K (r (t )) is denoted as Kr .
Before presenting the main results, the following lemmas are

introduced in advance.
Lemma 1 [36]: Let Z1 = Z T

1 , 0 < Z2 = Z T
2 and Z3 be real

matrices of appropriate dimensions, then Z1 + Z T
3 Z−1

2 Z3 < 0,

if and only if

[
Z1 Z T

3
Z3 −Z2

]
< 0 or

[
−Z2 Z3
Z T

3 Z1

]
< 0.

Lemma 2 [37]: For a positive definite matrix R > 0, and a dif-
ferentiable function {x(u)|u ∈ [a, b]}, the following inequalities
hold:

∫
b

a
∫

b

𝛽

̇xT (𝛼) ẋ (𝛼) d𝛼d𝛽 > 2ΩT
1 RΩ1 + 4ΩT

2 RΩ2

∫
b

a
∫

𝛼

a

̇xT (𝛼) ẋ (𝛼) d𝛼d𝛽 > 2ΩT
3 RΩ3 + 4ΩT

4 RΩ4

where

Ω1 = x(b) −
1

b − a ∫
b

a

x(𝛼)d𝛼,

Ω2 = x(b) +
2

b − a ∫
b

a

x(𝛼)d𝛼 −
6

(b − a)2 ∫
b

a
∫

b

𝛽

x(𝛼)d𝛼d𝛽,

Ω3 = x(a) −
1

b − a ∫
b

a

x(𝛼)d𝛼,

Ω4 = x(a) −
4

b − a ∫
b

a

x(𝛼)d𝛼 +
6

(b − a)2 ∫
b

a
∫

b

𝛽

x(𝛼)d𝛼d𝛽.

3 STABILITY AND STABILISATION
ANALYSIS OF MULTI-AREA LFC

In this section, improved Lyapunov function and integral
inequality with auxiliary function are employed to build the
stability and stabilisation criteria for the studied multi-area
LFC model.

3.1 Stability analysis with improved
Lyapunov function and integral inequalities

Theorem 1. For given constant 𝜆m, d1, d2, ḋ , if there exist positive def-

inite matrices Pr , Q1r , Q2r , Q3r , R1r , R2r , R3r , Φr , appropriate dimen-

sions S1, S2, S3, S4, and the following LMIs hold for all r =0, … , L, the

studied LFC model (14) with 𝜔̃(k) = 0 is asymptotically stable.

Φ̃1r (d1) = Φ1r + H (d1) < 0, (15)

Φ̃1r (d2) = Φ1r + H (d2) < 0, (16)

Θ1r =

L∑
j=1

𝜋r j (Q1 j + Q3 j ) − R3 < 0, (17)

Θ2r =

L∑
j=1

𝜋r j (Q2 j + Q3 j ) − R3 < 0, (18)

Θ3r =

L∑
j=1

𝜋r j Q2 j − R3 < 0, (19)

R̄3 =

[
R̄1 − S̄3 X̄ T

X̄ R̄2 − S̄4

]
> 0, (20)

where

�1r = �1r + �2r , �1r = e1
T 𝜈1r e1 + eT

3 𝜈3r e3

− H1
T

R̂1H1 − H2
T 𝜑1H2 − H3

T 𝜑2H3 − H4
T 𝜑3H4

− H T
5 𝜑4H5 − H8

T
R̄3H8 − eT

4 Q2r e4 −
(
1 − ḋ

)
eT
5 Q2r

e5 + 𝜆eT
5 �r e5 − eT

2 �r e2, �2r = 𝜒1
T 𝜈2r𝜒1,

H (d1) = 2H9
T

Pr H10 + H10
T

L∑
j=1

𝜋rjPj H10

H (d2) = 2H9
T

Pr H11 + H11
T

L∑
j=1

𝜋rjPj H11

𝜒1 = Ae1 − BKrCe2 − BKrCe5,

𝜈1r = Q1r + Q3r + d12R3r

𝜈2r = d 2
1 R1r + d 2

12R2r +
d 2

1

2
S1 +

d 2
1

2
S2 +

d 2
12

2
S3 +

d 2
12

2
S4

𝜈3r = Q2r − Q1r , 𝜈4r = S1 − d1

L∑
j=1

𝜋rjR1 j

𝜈5r = S3 − d12

L∑
j=1

𝜋rjR2 j , R̂1 = diag (R1r , 3R1r , 5R1r )

𝜑1 = diag (2𝜈4r , 4𝜈4r ) , 𝜑2 = diag (2𝜈5r , 4𝜈5r , 2𝜈5r , 4𝜈5r )

𝜑3 = diag (2S2, 4S2) , 𝜑4 = diag (2S4, 4S4, 2S4, 4S4)

R̄1 = diag (R2r + S3, 3 (R2r + S3) , 5 (R2r + S3))

R̄2 = diag (R2r + S4, 3 (R2r + S4) , 5 (R2r + S4))

S̄3 = diag (S3, 3S3, 5S3) , S̄4 = diag (S4, 3S4, 5S4)

H1 =
[
e1 − e3 e1 + e3 − 2e6 e1 − e3 + 6e6 − 6e9

]
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H2 =
[
e1 − e6 e1 + 2e6 − 3e9

]
H3 =

[
e3 − e7 e3 + 2e7 − 3e10e5 − e8 e5 + 2e8 − 3e11

]
H4 =

[
e6 − e3 e3 − 4e6 + 3e9

]
H5 =

[
e7 − e5 e5 − 4e7 + 3e10e8 − e4 e4 − 4e8 + 3e11

]
H6 =

[
e3 − e5 e3 + e5 − 2e7 e3 − e5 + 6e7 − 6e10

]
H7 =

[
e5 − e4 e5 + e4 − 2e8 e5 − e4 + 6e8 − 6e11

]
H8 =

[
H6 H7

]T
, H9 = [𝜒1 e1 − e3 e3 − e4 2 (e1 − e6)]

H10 = [e1 d1e6 d12e8 d1e9] , H11 = [e1 d1e6 d12e7 d1e9] ,

e j =
⎡⎢⎢⎣0 … 0
⏟⏟⏟

j−1

, 1, 0 … 0
⏟⏟⏟
11− j

⎤⎥⎥⎦ , ( j = 1, … , 11) .

Proof: Construct the Lyapunov function as the following:

V (t ) = 𝜂T (t )Pr𝜂(t ) + ∫
t

t−d1

xT (s)Q1r x(s)ds

+∫
t−d1

t−d2

xT (s)Q2r
x(s)ds + ∫

t

t−d (t )
xT (s)Q3r

x(s)ds

+ d1 ∫
0

−d1
∫

t

t+𝛼

ẋT (s)R1r ẋ(s)dsd𝛼

+ d12 ∫
−d1

−d2
∫

t

t+𝛼

ẋT (s)R2r ẋ(s)dsd𝛼

+∫
0

−d1
∫

0

𝛽
∫

t

t+𝛼

ẋT (s)S1ẋ(s)dsd𝛼d𝛽

+∫
0

−d1
∫

𝛽

−d1
∫

t

t+𝛼

ẋT (s)S2ẋ(s)dsd𝛼d𝛽

+∫
−d1

−d2
∫

−d1

𝛽
∫

t

t+𝛼

ẋT (s)S3ẋ(s)dsd𝛼d𝛽

+∫
−d1

−d2
∫

𝛽

−d2
∫

t

t+𝛼

ẋT (s)S4ẋ(s)dsd𝛼d𝛽, (21)

where

𝜂(t ) =
⎡⎢⎢⎣x(t )

0

∫
−d1

x(t + 𝛼)d𝛼

−d1

∫
−d2

x(t + 𝛼)d𝛼

2
d1

0

∫
−d1

0

∫
𝛽

x(t + 𝛼)d𝛼

⎤⎥⎥⎥⎦
T

.

Calculating the derivative of V (t ) along the trajectory of (14)
with 𝜔̃(k) = 0 yields

V̇ (t ) = 𝜂T (t )
L∑

j=1

𝜋rjPj𝜂 (t ) + xT (t ) 𝜈1r x (t ) + 2𝜂T (t ) Pr 𝜂̇ (t )

−
(
1 − ḋ (t )

)
xT (t − d (t )) Q2r x (t − d (t ))

− xT (t − d2) Q2r x (t − d2) + xT (t − d1) 𝜈3r x (t − d1)

+ ẋT (t ) 𝜈2r ẋ (t ) − d1 ∫
t

t−d1

ẋT (s)
L∑

j=1

𝜋rjR1 j ẋ (s) ds

−∫
0

−d1
∫

t

t+𝛼

ẋT (s) 𝜈4r ẋ (s) dsd𝛼

−∫
−d1

−d (t ) ∫
t−d1

t+𝛼

ẋT (s) 𝜈5r ẋ (s) dsd𝛼

−∫
−d (t )

−d2
∫

t−d (t )

t+𝛼

ẋT (s) 𝜈5r ẋ (s) dsd𝛼

−∫
0

−d1
∫

t+𝛼

t−d1

ẋT (s) S2ẋ (s) dsd𝛼

−∫
−d1

−d (t ) ∫
t+𝛼

t−d (t )
ẋT (s) S4ẋ (s) dsd𝛼

−∫
−d (t )

−d2
∫

t+𝛼

t−d2

ẋT (s) S4ẋ (s) dsd𝛼

+∫
t

t−d1

xT (s) �1l x (s) ds + ∫
t−d1

t−d (t )
xT (s) �2l x (s) ds

+∫
t−d (t )

t−d2

xT (s) �3l x (s) ds + Ṽ (t ) , (22)

where

Ṽ (t ) = −d12 ∫
t−d1

t−d12

ẋT (s)
L∑

j=1

𝜋r j R2 j ẋ(s)ds

− (d2 − d (t ))∫
t−d1

t−d (t )
ẋT (s)S3ẋ(s)ds

− (d (t ) − d1)∫
t−d (t )

t−d2

ẋT (s)S4ẋ(s)ds.

Define the augmented vector as follows:

𝜉(t ) =

[
x(t ) e(t ) x(t − d1) x(t − d2)
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x(t − d (t ))
1
d1 ∫

0

−d1

x(t + 𝛼)d𝛼

1
d (t ) − d1 ∫

−d1

−d (t )
x(t + 𝛼)d𝛼

1
d2 − d (t ) ∫

−d (t )

−d2

x(t + 𝛼)d𝛼

2

d 2
1

0

∫
−d1

∫
t

t+𝛽

x(𝛼)d𝛼d𝛽
2

(d (t ) − d1)2

−d1

∫
−d (t )

∫
t−d1

t+𝛽

x(𝛼)d𝛼d𝛽

2

(d2 − d (t ))2

−d (t )

∫
−d2

∫
t−d (t )

t+𝛽

x(𝛼)d𝛼d𝛽

]

By applying Lemma 1, Lemma 2, and reciprocal convex com-

bination approach in [38] with 𝛼 =
d (t )−d1

d12
and 𝛽 =

d2−d (t )

d12
, if

R̄3 > 0 is stabilised, the following inequality can be obtained.

Ṽ (t ) ≤ 𝜉T (t ){−H T
8 R̄3H8}𝜉(t ). (23)

Taking AEt scheme into consideration, it yields

ΔV (t ) + 𝜆(tkh)xT (t − d (t ))Φr x(t − d (t ))

−eT (t )Φr e(t ) < 0. (24)

Employing double integral inequalities, (17)–(19), and recall-
ing the augmented vector 𝜉(t ), the next inequality can be satis-
fied.

𝜉T (t )Φ̃1r𝜉(t ) < 0. (25)

Thus, the condition (15) and (16) can be derived. With
a condition that 𝜔̃(k) = 0, if (15)–(20) are satisfied, there
exists a sufficiently small scalar c ∈ (0, 1], such that ΔV (k) <
−c‖𝜉1(t )‖2 < 0 can be obtained. Therefore, we can confirm
that the system (14) with 𝜔̃(k) = 0 is asymptotically stable.

Remark 2. The improved Lyapunov function is applied in
this section. Then, the utilisation of double integral inequal-
ities in V (t ) can estimate the upper bounds of transmis-
sion time delays. Besides, the integral inequalities with auxil-

iary functions are applied in Ṽ (t ) with 𝛼 =
d (t )−d1

d12
and 𝛽 =

d2−d (t )

d12
. In this way, tighter upper bounds can be given than

those obtained by [20, 36]. On the other hand, the double
integral term is employed in 𝜂(t ) to analyse the stability of
the multi-area LFC model giving less conservative conditions.
Moreover, non-quadratic Lyapunov function can add another
degree of freedom which can be applied to improve the perfor-
mance further [39, 40]. This will be investigated in our future
work.

Next, the criterion of H∞ stability about the multi-area LFC
model (14) will be designed.

Theorem 2. For given constant 𝜆m, d1, d2, ḋ , if there exists positive def-

inite matrices Pr , Q1r , Q2r , Q3r , R1r , R2r , R3r , Φr , appropriate dimen-

sions S1, S2, S3, S4, and the following LMIs hold for all r =0, … , L, the

multi-area LFC model (14) is asymptotically stable with an H∞ norm

bound 𝛾.

Φ̃′
1r

(d1) = Φ′
1r

+ H ′(d1) − 𝛾2eT
12e12 + eT

1 C T C e1 < 0 (26)

Φ̃′
1r

(d2) = Φ′
1r

+ H ′(d2) − 𝛾2eT
12e12 + eT

1 C T C e1 < 0 (27)

Θ1r < 0, Θ2r < 0, Θ3r < 0, R̄3 > 0

where

�′
1r

= �1r + �′
2r

, �′
2r

= 𝜒′
1

T
𝜈2r𝜒

′
1

H ′ (d1) = 2H ′
9

T
Pr H10 + H10

T
L∑

j=1

𝜋rjPj H10

H ′ (d2) = 2H ′
9

T
Pr H11 + H11

T
L∑

j=1

𝜋rjPj H11

𝜒′
1 = Ae1 − BKrCe2 − BKrCe5 + Fe12

H ′
9 =

[
𝜒′

1 e1 − e3 e3 − e4 2 (e1 − e6)
]

e j = [0 … 0
⏟⏟⏟

j−1

, 1, 0 … 0
⏟⏟⏟
12− j

], ( j = 1, … , 12)

For prescribed attenuation level 𝛾 > 0, considering the dis-
turbance 𝜔̃(t ), the cost function J is considered:

J = ∫
∞

0
yT (t )y(t ) − 𝛾2𝜔̃T (t )𝜔̃(t )dt (28)

Define the augmented vector as

𝜉′(t ) =
[
𝜉(t ) 𝜔̃(t )

]
Recalling the condition (25), and applying the same method

in Theorem 1, the condition (26) and (27) can be derived. There-
fore, the model (14) is asymptotically stable with an H∞ norm
bound 𝛾.

Remark 3. Theorem 1 and Theorem 2 provide sufficient condi-
tions for the stability of the multi-area LFC model. However, the
upper bounds of time delays cannot be obtained from the two
theorems directly. For the given ḋ and the minimum value of the
time delay d1, the delay margin is increased step by step until the
LMIs in Theorem 2 cannot be satisfied. Then, the upper bound
of time delay d2 can be obtained.

3.2 Stabilisation analysis

In this section, stabilisation criterion of the system (14) will
be derived. Then, the fractional-order global sliding mode
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controller gain will be designed. Besides, to keep better stabil-
isation performance, the minimum H∞ performance index 𝛾
are considered.

Theorem 3. For given constant 𝜆m, d1, d2, ḋ , if there exists positive def-

inite matrices Pr , Q1r , Q2r , Q3r , R1r , R2r , R3r , Φr , appropriate dimen-

sions S1, S2, S3, S4, and the following LMIs hold for all r =0, … , L, the

power system (14) is asymptotically stable with an H∞ norm bound 𝛾, and

the feedback controller gain can be obtained as K̃r .

min 𝛿

s.t .

{
�̃′′

1r
(d1) < 0, �̃′′

1r
(d2) < 0,

�1r < 0, �2r < 0, �3r < 0, R̄3 > 0,
(29)

where

𝛿 = 𝛾2, �̃′′
1r

(d1) =

[
�′′

1r
(d1) ∗

�′
21r

�′
22r

]
�̃′′

1r
(d2) =

[
�′′

1r
(d2) ∗

�′
21r

�′
22r

]
�′′ (d1) = �1r + H ′ (d1) − 𝛾2eT

12e12 + eT
1 C T Ce1

�′′ (d2) = �1r + H ′ (d2) − 𝛾2eT
12e12 + eT

1 C T Ce1

𝜒′′
1 = Pr Ae1 − K̃rCe2 − K̃rCe5 − Pr Fe12

�′
21r

=
[
d1𝜒

′′T

1 d12𝜒
′′T

1

(
d1

√
2
)

𝜒′′T

1(
d12

√
2
)

𝜒′′T

1

(
d1

√
2
)

𝜒′′T

1

(
d12

√
2
)

𝜒′′T

1

]T

Φ′
22r

= diag(R1r − 2Pr , R2r

− 2Pr , S1 − 2Pr , S2 − 2Pr , S3 − 2Pr , S4 − 2Pr ).

Recalling (26), (27) and employing Lemma 1, it yields

⎡⎢⎢⎣
Φ′′

1r
(d (t )) ∗

Φ21r Φ22r

⎤⎥⎥⎦ < 0, (30)

where

�21r =
[
d1𝜒

′T

1 d12𝜒
′T

1

(
d1

√
2
)

𝜒′T

1

(
d12

√
2
)

𝜒′T

1(
d1

√
2
)

𝜒′T

1

(
d12

√
2
)

𝜒′T

1

]T

�22r = diag
(
−R−1

1r
, −R−1

2r
, −S−1

1 , −S−1
2 , −S−1

3 , −S−1
4

)
.

Pre-multiplying and post-multiplying both sides of (30) with
diag{I, …

⏟⏟⏟
12

, I, Pr , Pr , Pr , Pr , Pr , Pr }, and utilising the fact that

Z < 0,Y T = Y , then Y T ZY ≤ −2Y − Z−1 can be obtained,
and Φ̃′′

1r
(d1) < 0 and Φ̃′′

1r
(d2) < 0 can be further converted.

TABLE 2 Parameters of the two-area LFC scheme

Area R M D Tg Tch T12

1 0.05 10.0 1.0 0.1 0.3 0.1986

2 0.05 12.0 1.5 0.17 0.4 0.1986

Therefore, the theorem is proved and the controller gain is
K̃r = Pr Kr .

Remark 4. In this theorem, the H∞ stabilisation for the multi-
area power system LFC is investigated. Then, the controller of
the multi-area power system LFC can be designed in this remark
under the minimum 𝛾 condition. By utilising the mincx function
in the Matlab LMI toolbox, the less conservative results of the
controller gain is obtained.

Theorem 4. A decentralised switching control law can be designed as

following to guarantee the reaching condition s(t )ṡ(t ) < 0.

u(t ) = − KrCx(t ) + (GB)−1 ḟ (t ) − 𝜇(GB)−1D𝛼1 x(t )

+ k(sgn(s(t )) + s(t )) (31)

The proof of this theorem is the same as [36]. In this theorem,
the fractional-order global sliding mode controller is designed.
It forces the state trajectories to move towards the sliding sur-
face within a finite time. Therefore, it can greatly improve the
system transient performance.

4 CASE STUDY AND DISCUSSION

The effectiveness and superiority of the proposed AEt and
FOGSMC scheme are discussed in this section. In Case 1, the
two-area power system model is built with Matlab/Simulink,
and the LMI toolbox in Matlab is applied to compute the stabil-
ity margin of transmission time delays with different controller
gains. The parameters are tabulated as shown in Table 2. Addi-
tionally, in Case 2, IEEE 39-bus system is implemented to val-
idate the performance of the proposed FOGSMC scheme in a
realistic power system condition.

4.1 Case 1: Two-area power system LFC

In this case, two-area LFC model with two wind farms and two
energy storage units are built as shown in Figure 2. The detail
parameters are in [36]. As shown in Figure 3(a), the transition
probability matrix will be selected as following:

P =

[
0.5088 0.4912

0.4286 0.5714

]
.

By solving Theorem 2, the stability margin of transmission
time delays for different controller gains can be derived. Table 3
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FIGURE 2 Transfer function model of two-area power system with wind
farm and energy storage unit

TABLE 3 Transmission time delay upper bound comparison

d = 0.0 d = 0.5

KI Kp This paper [41] [42] This paper [41] [42]

0.0 0.1 14.55 13.77 13.77 14.01 11.72 12.88

0.0 0.2 7.46 6.69 6.69 6.94 5.55 6.14

0.0 0.4 2.72 3.12 3.12 2.44 2.36 2.68

0.1 0.2 7.80 6.88 6.94 3.48 5.83 6.34

0.1 0.4 3.98 3.29 3.17 3.24 2.55 2.83

0.1 0.6 2.72 1.86 3.12 2.44 1.31 1.57

compares the obtained results with those in [41] and [42] under
ḋ = 0.0, ḋ = 0.5 condition. It can be concluded that the upper
bounds of the transmission time delays obtained by the pro-
posed method are larger than those in [41] and [42]. Therefore,
the proposed method — improved Lyapunov function and the
integral inequalities with auxiliary functions — has a better per-
formance in calculating the upper bounds of time delays under
stable condition.

In light of Theorem 3 with 𝜆m = 0.1, 𝛾 = 2.8422 can be
obtained and fractional order global sliding mode controller can
be designed as the following:

u(t ) = − Ki jCx(t ) + 4.0 ḟ (t ) − 0.001(s(t ) + sgn(s(t )))

− 0.08D0.92x(t )

where Area 1: K11 = [0.0986, 0.0097], K12 = [0.0989, 0.0097]
Area 2: K21 = [0.0810, 0.0119], K22 = [0.0815, 0.0121]
In the built two-area power system, the wind turbine induc-

tion generator with 9 m/s wind speed and 0.2 trip coeffi-
cient is applied. The power deviations of wind turbine gover-
nor and generators are curved in Figure 3(c) and (d). For AEt
scheme with 𝜆m = 0.1, the release time instants and intervals are
depicted in Figure 3(b). It can be observed that the proposed
AEt scheme can reduce the unnecessary information exchange
and relieve transmission burden.

Figure 4(a) describes the sliding surfaces which converge to
zero in a short time. It demonstrates that the designed system
reaches the sliding surfaces asymptotically and remains on the
sliding surfaces. The proposed FOGSMC scheme is compared
with three representative AEt-based scheme, that is, SMC [20],
PI control, and fractional order PID (FOPID) control [2] under
step load disturbances, as shown in Figure 4(b)–(d). It can be
observed that the proposed FOGSMC scheme exhibits lower
overshoot, faster response and greater damping in the frequency
deviations and ACEs than other mentioned methods. Detailed
parameters of other controllers are listed in the Appendix.

Parameter uncertainty is a major issue for power systems.
To investigate robustness of the proposed method, frequency
deviations of FOGSMC and other three methods under ±50%
parameter uncertainty are compared in Figure 5. It can be
observed that the designed FOGSMC scheme manifests distin-
guished robustness compared to the existing SMC, PI control,
and FOPID control scheme.

To scrutinise the utility of the proposed FOGSMC with the
presence of non-linearities, the governor dead band (GDB) and
generation rate constraint (GRC) are considered in the two-
area LFC study case. With the GDB width D = 0.05% and
0.1 p.u./min GRC, the frequency deviation and ACE are illus-
trated in Figure 6(a) and (b), respectively. It can be observed that
the frequency deviation and ACE response can converge to zero
in a short time and exhibit good disturbance rejection capability.

4.2 Case 2: Modified IEEE 39-bus New
England test system

To validate the effectiveness of the designed FOGSMC scheme
in a more realistic power system model, a modified IEEE 39-
bus power system with three wind farms is built as shown in
Figure 7. The detail parameters can be obtained in [43]. There
are 10 generators, 19 loads, 34 transmission lines, and 12 trans-
formers in the IEEE 39-bus test system, and three wind farms
with the capacities of 380 MW, 445 MW, and 500 MW are inte-
grated to bus 1, 9, and 19, respectively. This test system is split
into three control areas, shown as Figure 7, where G3 in Area
1, G7 in Area 2, and G9 in Area 3 are responsible for the LFC
performance in each control area, respectively. The FOGSMC
scheme is elucidated as the following:

u(t ) = −0.9x(t ) + 0.7 ∫ t

0
x(s)ds + 0.1 ḟ (t ) + 21s(t )

− 0.01sgn(s(t )) − 14D0.92x(t ),
where

s(t ) = x(t ) + 4
t∫

0
x(s)ds + 0.1653 f (t )+14D−0.08x(t ).

In this case, the step load disturbances 0.038 p.u. MW on Bus
8 at t = 30 s in Area 1, 0.064 p.u. MW on Bus 16 at t = 60 s
in Area 2, and 0.038 p.u. MW on Bus 3 at t = 90 s in Area 3
are considered. It can be observed in Figure 8(a) and (b) that
the proposed FOGSMC scheme can maintain stability of this
system, and the frequency deviation and tie-line power devia-
tion of three control areas can converge to zero in a short time
with inconspicuous overshoots and satisfactory transient per-
formance.
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FIGURE 3 Results of two-area LFC: (a)
Random transmission delays, (b) Release instant
and release intervals for Area 1, (c) Wind turbine
governor output power deviation, (d) Generator
output power deviation for Area 1 and Area 2

FIGURE 4 Results with step load disturbances: (a) Sliding surfaces, (b)
ACE for Area 2, (c) Frequency deviations for Area 1, (d) Frequency deviations
for Area 2

FIGURE 5 Frequency deviations with uncertainty parameter: (a) +50%
uncertainty parameter in Area 1, (b) +50% uncertainty parameter in Area 2,
(c) −50% uncertainty parameter in Area 1, (d) −50% uncertainty parameter in
Area 2

FIGURE 6 Frequency deviations and ACE for GRC and GDB condition

FIGURE 7 Modified IEEE 39 bus test system
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FIGURE 8 Frequency deviations and tie line power deviations of modified
IEEE 39-bus test system

5 CONCLUSION

The stability and stabilisation of the LFC scheme for power sys-
tems with renewable energy have been studied in this paper.
The Markov jump linear theory is applied to describe the delay
dependent multi-area LFC model. By utilising the improved
Lyapunov function and integral inequalities, the stability and
stabilisation criteria with less conservativeness are derived.
The AEt scheme with an adjustable triggering threshold can
effectively economise the network resources. The proposed
FOGSMC scheme exploiting advantages of fractional term and
GSMC is first applied in this LFC system. Compared with exist-
ing AEt-based control schemes, the FOGSMC based on AEt
scheme exhibits outstanding disturbance rejection performance
and demonstrates better robustness under ±50% parameter
uncertainty. In addition, it presents satisfactory performance
under non-linearity of GDB and GRC conditions. Finally, the
effectiveness of the proposed FOGSMC scheme in the realistic
power system is verified by the IEEE 39-bus test system with
three wind farms.
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APPENDIX A

In Section 4, the SMC has the same controller gain as
FOGSMC, except that there is no fractional-order term
D0.98x(t ) and f (t ). The FOPID controller can be designed as

u(s) = Kp + KI
1

s𝜄
+ KDs𝜈 .

Area 1:
K11(Kp, KI , KD, 𝜄, 𝜈) = [0.0986, 0.0097, −0.1, 0.92, 0.92],
K12(Kp, KI , KD, 𝜄, 𝜈) = [0.0989, 0.0097, −0.1, 0.92, 0.92].
Area 2:
K21(Kp, KI , KD, 𝜄, 𝜈) = [0.0810, 0.0119, −0.1, 0.92, 0.92],
K22(Kp, KI , KD, 𝜄, 𝜈) = [0.0815, 0.0121, −0.1, 0.92, 0.92].
The PI controller gains are
Area 1: K11 = [0.0986, 0.0097], K12 = [0.0989, 0.0097],
Area 2: K21 = [0.0810, 0.0119], K22 = [0.0815, 0.0121].
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