
DEEP LEARNING BASED MODELS FOR SOFTWARE EFFORT
ESTIMATION USING STORY POINTS IN AGILE ENVIRONMENTS

by

Rene Avalloni de Morais

A project report submitted in conformity with the requirements for the degree of
Master of Science in Information Technology

Department of Mathematical and Physical Sciences
Faculty of Graduate Studies

Concordia University of Edmonton

© Copyright 2022 by Rene Avalloni de Morais

MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING

BASED APPROACH FOR STORY POINTS ESTIMATION FOR

AGILE ENVIRONMENTS

Rene Avalloni de Morais

Approved:

Supervisor Date

Committee Member Date

Dean of Graduate Studies: Rossitza Marinova, Ph.D. Date

DEEP LEARNING BASED MODELS FOR SOFTWARE EFFORT ESTIMATION
USING STORY POINTS IN AGILE ENVIRONMENTS

Rene Avalloni de Morais
Master of Science in Information Technology

Department of Mathematical and Physical Sciences
Concordia University of Edmonton

2022

Abstract

In the era of agile software development methodologies, traditional planning and

software effort estimation methods are replaced to meet customer’s satisfaction in ag-

ile environments. However, software effort estimation remains a challenge. Although

teams have achieved better accuracy in estimating story points effort required to im-

plement user stories or issues, these estimations mostly rely on subjective assessments,

leading to inaccuracy and impacting software project delivery. Some researchers are

pointing good results by the adoption of deep learning to address this issue. Given the

foregoing, this study proposes deep learning-based models for story points estimation

in agile projects. Different algorithms are proposed and trained over a large dataset

for story points estimation made by 16 open-source projects. In addition, we take

advantage of natural language processing techniques to excavate better features from

the software requirements written as user stories.

i

This thesis is dedicated to the two people who most love and guide me during my

entire life:

Izilda Augusta da Silva Avalloni de Morais

Roberto Avalloni de Morais

Even though they are in another country, they still inspire and support me in all my

decisions.

ii

Acknowledgments

I would like to extend my gratitude to my supervisor, Dr. Baidya Saha, whose

guidance and support made this research possible. I am also very grateful to all my

professors who helped and taught me during my graduate program. In special I thank

Professor Dr. Rossitza Marinova, for all her support.

A good support system is important to surviving and staying sane in graduate

school. Thanks to my family, friends, and classmates for sticking with me through

this graduate program and throughout my endeavors.

I would like to express my deep appreciation to my wife, who’s helped and has

been a true and great supporter and has unconditionally loved me during my good

and bad times. She was the reason I came to Canada and why I decided to pur-

sue a master’s degree. I always admired her, academically and personally, and she

showed me that one step at a time was all it took to get me here, through my journey.

I also gratefully acknowledge the funding received through the Alberta Graduate

Excellence Scholarship (AGES) by Alberta’s Government.

Finally, I thank my God, my good Father, for letting me through all the difficulties

and made things happen in my life. I will keep on trusting you for my future. Thank

you, Lord.

iii

Contents

Abbreviations viii

1 Introduction 1

1.1 Software Effort Estimation and Agile 1

1.2 Background . 3

1.3 Problem Statement . 3

1.4 State of the art . 4

1.5 Contribution of this thesis . 6

1.6 Organization of this thesis . 7

2 Literature Review 8

2.1 Agile methodology . 8

2.1.1 Agile manifesto . 9

2.1.2 Scrum . 10

2.1.3 User Story . 12

2.2 Agile Software Effort Estimation . 13

2.2.1 Types of Agile Software Effort Estimation 15

2.2.2 Planning Poker . 16

2.2.3 Story points . 17

2.2.4 Machine Learning Approach for Story Points Estimation . . . 18

3 DL for Story Points 20

3.1 Text Preprocessing . 21

3.2 Text Feature Extraction . 21

3.2.1 N-gram . 21

3.2.2 Bag of Words (BoW) . 22

3.2.3 Word embeddings . 22

3.3 Text Feature Selection . 25

3.4 ML and Neural Networks . 25

iv

CONTENTS CONTENTS

3.4.1 Supervised Learning . 26

3.4.2 Semi-supervised learning . 26

3.4.3 Unsupervised Learning . 27

3.4.4 Linear regression models . 27

3.4.5 Random Forest model . 28

3.4.6 Deep Learning and Neural Networks 28

3.4.7 Recurrent Neural Networks (RNN) 29

3.4.8 Stacked LSTM . 32

3.4.9 Gated recurrent unit (GRU) 33

3.4.10 Bidirectional LSTM (BiLSTM) 34

3.4.11 Convolutional Neural Network (CNN) 34

3.5 Performance Metrics . 35

4 Data Collection and Preprocessing 37

4.1 Jira . 37

4.2 Dataset . 38

4.3 Text Preprocessing . 39

5 Results and Discussion 41

5.1 Text Feature Selection . 41

5.2 Word2vec Visualization . 42

5.3 Deep learning Architectures . 43

5.4 Eval. of Deep Learning Models . 44

6 Conclusion and Future Works 50

A DL Architectures 51

A.1 Summary and Model Architectures 51

Bibliography 58

v

List of Tables

2.1 Scrum roles and responsibility 11

3.1 Pre-trained word embedding . 22

4.1 Numbers of user stories, issues and project descriptions ex-

tracted from Jira issue tracking system [24] 38

5.1 Bamboo dataset . 45

5.2 Appceleratorstudio dataset . 45

5.3 Aptanastudio dataset . 45

5.4 Clover dataset . 45

5.5 Datamanagement dataset . 46

5.6 Duracloud dataset . 46

5.7 Jirasoftware dataset . 46

5.8 Mesos dataset . 46

5.9 Moodle dataset . 47

5.10 Mule dataset . 47

5.11 Mulestudio dataset . 47

5.12 SpringXD dataset . 47

5.13 TalendDataQuality dataset . 48

5.14 Talendesb dataset . 48

5.15 Titanium dataset . 48

5.16 Usergrid dataset . 48

vi

List of Figures

2.1 Traditional and adaptive planning phases - Source: Adapted from Bo-

ral (2016) [52] . 14

3.1 Architecture of methodology approach 20

3.2 Structure of 1-gram, 2-gram and 3-gram 21

3.3 Input and output of word embeddings generation - Source: Adapted

from Patihullah (2019) [73] . 23

3.4 Graphical representation of the CBOW model and Skip-gram model -

Source: Adapted from Mikolov (2013) [74] 24

3.5 Supervised learning - Source: Adapted from Zhang (2021)[78] 26

3.6 Random Forest architecture - Source: Adapted from [84] 28

3.7 RNN Cell - Source: Adapted from Zhang et al. (2021) [78] 29

3.8 Conventional Stacked RNN architecture - Source: Adapted from Lam-

bert (2014)[89] . 30

3.9 LSTM Cell - Source: Adapted from Weidman et al (2019)[78] 31

3.10 Stacked LSTM architecture - Source: Adapted from Dyer et al. (2005)

[93] . 32

3.11 GRU Cell - Source: Adapted from Zhang et al. (2021)[78] 33

3.12 Source: Adapted from Cornegruta et al. (2016) 34

3.13 Simplified schema of a 1D CNN - Source: Adapted from Lewinson

(2020) [98] . 35

4.1 Example of an User Story in Jira - Source: Atlassian [99] 37

4.2 WordCloud for User Stories present in Bamboo Dataset 39

5.1 Mutual Information Feature Selection on Bamboo dataset 42

5.2 The 1-gram and 2-gram model over Bamboo dataset 42

5.3 Word2Vec visualization of Bamboo dataset 43

5.4 Epoch x loss - sRNN model on Bamboo dataset 43

5.5 Evaluation loss x Iteration - All models over the Bamboo training set 44

vii

LIST OF FIGURES LIST OF FIGURES

A.1 Summary - LSTM model . 51

A.2 Architecture - LSTM model . 52

A.3 Summary - CNN model . 52

A.4 Architecture - CNN model . 53

A.5 Summary - GRU model . 53

A.6 Architecture - GRU model . 54

A.7 Summary - RNN model . 54

A.8 Architecture - RNN model . 55

A.9 Summary - RNN Stack model . 55

A.10 Architecture - RNN stack model . 56

A.11 Summary - BiLSTM model . 56

A.12 Architecture - BiLSTM model . 56

A.13 Summary - LSTM Stack model . 57

A.14 Architecture - LSTM Stack model . 57

viii

List Of Abbreviations

AI Intelligence Artificial

ANN Artificial Neural Network

ASD Agile Software Development

ASEE Agile Software Effort Estimation

BOW Bag-of-words

CBOW Common Bag of words

CNN Convolutional Neural Network

COCOMO Constructive Cost Model

DL Deep Learning

DNN Deep Neural Network

EEE Esemble Effort Estimation

FP Functional Points

LOC Lines of Code

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MIFS Mutual Information Feature Selection

ML Machine Learning

MSE Mean Square Error

MdAE Median Absolute Error

NLP Natural Language Processing

NN Neural Network

RF Random Forest

RHN Recurrent Highway Network

RMSE Root Mean Square Error

RNN Recurrent Neural Networks

SDEE Software Development Effort Estimation

SEE Software Effort Estimation

SLDC Software Development Life-Cycle

SVM Support Vector Machine

ix

LIST OF FIGURES LIST OF FIGURES

TF-IDF Term Frequency — Inverse Document Frequency

UCP Use Case Points

kNN K-Nearest Neighbor

x

xi

Chapter 1

Introduction

1.1 Software Effort Estimation and Agile

The software development process is a roadmap to create high-quality software or

systems within the time expected by customers. In traditional software development,

the entire process is well-documented during planning. However, this can cause many

interferences since not all events will occur as expected, generating rework and re-

plan. The traditional software environment is known as Waterfall or Waterfall-style,

or larges or traditional [1]. The Waterfall models are strictly sequential and follow an

extensive initial phase of requirements specification until the final phases of imple-

mentation, testing, and software maintenance. As a result, the work of a team may

be held up until another team completes its tasks. More importantly, changes can

increase delays and the effort required for software development exponentially.

Software effort estimation (SEE) or Software development effort estimation (SDEE)

refers to how much effort is required to develop a software program or system [2]. It

represents a decisive role for any kind of software projects [3]. SDEE is required to

kick-off project budgets, and schedules [4]. It serves as input for planning software

project development or maintenance. Thus, accuracy in estimating the effort required

for software development is a crucial task for software projects and represents funda-

mental implications for budget and software development process management [5]. In

addition, especially in waterfall models, “if management’s estimate is too low, then

the software development team will be under considerable pressure to finish the prod-

uct quickly, and hence the resulting software may not be fully functional or tested”

[6].

In 2016, Rao and collaborators did a systematic literature review showing plenty

of research done on effort estimation in traditional process models, and all considered

techniques have not given accurate predictions. To surmount this prediction issue,

1

1.1. SOFTWARE EFFORT ESTIMATION AND AGILE CHAPTER 1. INTRODUCTION

practitioners from the software industry have integrated Agile methodologies into

their processes [7]. In recent years, the software industry has been surrendering rel-

evant digital transformation to keep on track in an increasingly competitive market.

Thus, companies demand to react and adapt rapidly to changes and meet customer

needs. The Agile methodology emerged due to the barriers battled in the traditional

software process. Flexible scope and shorter phases for planning and execution allow

companies to have better performance [8] and connect to new market realities more

quickly. As Agile provide guidelines to work faster and more assertive by short iter-

ations, software effort estimation had to adapt to the Agile scope and occur in every

phase of the project. With this backdrop, Agile Software Development (ASD) and

Agile Software Effort Estimation (ASEE) methods have been largely implemented

across many organizations [9], having customer’s expectations as the primary goal

[10]. Agile teams commonly use Story Points to estimate the effort required to im-

plement or solve a given Story (User Story or issue). Story Point sizes are used to

prioritize User Stories, plan and schedule coming iterations and releases, measure a

team’s progress, and even cost and allocate resources. Customers (Users) are con-

stantly interacting in every stage of the Agile project. The feature requirements (User

Stories) are susceptible to change, and the scope is frequently adjusted accordingly

[11]. Hence, at the interaction level, the epics are broken down into User Stories, and

tasks and estimates are produced by the team. In contrast to the traditional methods,

Story Points estimate the effort to complete the User Story or feature instead of the

entire project. By iterative cycles (Sprints in Scrum), the team estimate and plan

deliveries of a set of User Stories (incremental deliveries).

Story Points estimation considers the effort needed to accomplish a task (User Story

or issues), considering the amount of work to do, risk, uncertainty, and complex-

ity. For Story Points estimation, Agile teams mostly relies on subjective assessments

such as, Planning Poker, analogy, and expert judgment, whereas Planning Poker is

the most common used technique [12], [13]. However, software effort estimation is

still a challenge, like any estimation, has an inherent risk of uncertainty [14], as it

is only possible to be sure of the effort required after the software project conclu-

sion. The lack of relevant information, subject metrics and complex interactions can

cause imprecision issues [15], [16]. Thus, having good historical information of pre-

vious projects is crucial to estimate accurately. Henceforward, a prediction model

from Story Points past estimations already made should support Agile teams when

estimating the size of new issues or features in Stories.

2

CHAPTER 1. INTRODUCTION 1.2. BACKGROUND

1.2 Background

Many software companies adopted Story Points estimation for Agile environments [3],

[13]. Most projects use tracking systems, such as Atlassian Jira [17], to register and

manage User Stories and issues. Story Points estimation is related to overall sizing

the workload needed by the team, which should remain the same size for everyone.

For instance, a User Story that contains one Story Point is less complex than the

one addressed three Story Points. While estimating Story Points, the whole team

participates and agrees on the amount of work required, as the definition of time can

be different for each developer. Scrum teams mostly employ the Planning Poker [13]

method to integrate and encourage interaction between team members, allowing ev-

eryone to express their opinions about the User Stories and reach a consensus of Story

Point size in the end. The practice of estimating software effort using Story Points in

agile software development environment mostly relies on subjective assessments (e.g.

planning poker, analogy, and expert judgment) and historical data of project for esti-

mation of cost, size, effort and duration [3]. Expert opinion based estimation methods

may lead to inaccuracy of effort estimation [14], [16]. However, with no historical data

and specialists, the prior methods like planning poker and analogy are pointless [18].

Although some improvements have been made, accuracy in estimating software ef-

fort in agile environments is still a challenge [3]. Literature reveals that data driven

estimation models can increase software effort estimation accuracy. Since the 1980s,

numerous estimation methods have been proposed, regression-based methods are pre-

dominant and, machine learning (ML) has been employed to solve this problem [2].

Several systematic reviews were done on software effort estimation. In 2016, Idri et

al. (2016) conducted a systematic review of ensemble effort estimation (EEE) from

works published between 2000 and 2016 and observed that machine learning single

models are the most common approach in EEE. Further, EEE techniques typically

generate satisfactory estimation accuracy, implying more accuracy than single models

[19]. Within this context, the research community and industry have been combining

machine learning and deep learning techniques with Agile methodologies and it has

been proving greater accuracy on agile software development effort estimation pre-

diction [3], [20]. The scope of this work is limited to develop machine learning and

deep learning based strategies for agile software effort estimation using story points.

1.3 Problem Statement

In the Agile software industry, accurate software estimation effort is crucial for suc-

cessful project development. Most software projects need to make important decisions

3

1.4. STATE OF THE ART CHAPTER 1. INTRODUCTION

from the beginning of the project based on initial estimation efforts. In some cases,

these estimates are necessary for evaluating contractor cost proposals even before

contracting for Agile Software Development projects [4]. However, when the project

starts, there are no much data available to estimate the project coherently. In this

scenario, it is recommended to use historical data of previous related projects across

or outside the organization. Although there are various techniques for performing

the estimates, each one faces different challenges. Estimates made by experts are

subjective, and besides they may have much experience, they are prone to error.

On the other hand, algorithm models can also be subjective since they depend on

other variables as programming knowledge and the project member’s experience with

teamwork. Several machine learning research studies are being discussed to address

this issue and support the team on estimating based on historical data from simi-

lar projects done previously. Recently, the use of deep learning techniques have been

proving great results, achieving success in prediction use cases by capturing the inher-

ent correlation in the training set, as well as tasks that require semantic and syntactic

context capturing [20].

Accurate estimation of Story Points from user stories can help to complete the project

within budget and schedule. Natural Language Processing (NLP) algorithms can ex-

cavate important features from the user story text data to map the corresponding

Story Points. As trained features, the word embeddings models can be contextual-

ized and capture word semantics. In addition, machine learning and deep learning

can successfully discover the hidden complex patterns from the NLP features and

estimate Story Points. This research work aims to explore the efficacy of machine

learning especially the deep learning algorithms for estimating agile based software

efforts using the Story Points data collected from similar previous projects.

1.4 State of the art

There is a prominent trend towards machine learning, and deep learning models for

story points estimation prediction based on the use of historical data of agile projects.

Although, the literature shows many works in story points effort estimation using

machine learning and deep learning approaches. Few studies have employed natural

language processing techniques to consider textual information related to software

specifications, such as by specific terms in the title or description of user stories or

the recurrence of words. Some of such important works are reported by [21]–[25].

Based on the intensive use of data, these studies have contrasted the performance

of different machine learning algorithms such as Support Vector Machine (SVM),

4

CHAPTER 1. INTRODUCTION 1.4. STATE OF THE ART

K-Nearest Neighbor (kNN), Logistic Model Tree, Naive Bayes, Decision Tree and

Random Forest, which are among the best known and most frequently used techniques

in data mining [26] and supervised machine learning [27]. Then, compared results

to deep learning models such as Neural Networks [28]. The use of word embedding

layers is highlighted in the studies by [24], [25], [29].

The most notable works on machine learning-based and NLP to story points esti-

mation are briefly outlined with the techniques used.

Ionescu (2017) [29] proposed a machine learning-based approach using text from

metrics and project management requirements as input, resulting in favourable out-

comes. The authors created a custom vocabulary and investigated the use of word

embeddings produced by a context-less method (Word2Vec). Afterward, aggregated

with design attributes and textual metrics (modified TF-IDF), and generated numer-

ical data to set a bag-of-words, using it as input to a linear regression algorithm.

Choetkiertikul et al. (2018) [24] proposed a deep learning-based prediction model

with two neural networks combined: Long Short Term Memory (LSTM) and Recur-

rent Highway Network (RHN). Raw data of Story points estimation made by previous

projects assists the model in learning how to perform story-point estimates for user

stories (or issues). This approach generates context-less word embeddings to feed the

LSTM layer. As input, the title and description were merged into a single instance,

where the description follows the title. The embeddings word vectors served as input

to the LSTM layer created a global document representation vector for the complete

sentence. The global vector is then fed into the recurrent highway network for mul-

tiple transformations, which generates the last vector for each sentence. Finally, a

simple regressor predicts predicting the effort estimation. The authors trained the

embedding layer for all datasets in a previous process before being fed into the LSTM

layer to avoid performance degradation. Their approach provided semantic features

with the actual meaning of the issue’s description, which showed the most outstanding

results.

Marapelli’s et al. (2020) [25] proposed a story point model estimation based on

the combination of Recurrent Neural Network and Convolutional Neural Network.

The user story text description is used as input to the model, then the story point

estimation is predicted for that story. The authors considered the contextual word

embedding of the user story to serve as input to the Bi-directional Long Short-Term

Memory (BiLSTM). Which preserves the sequence data and makes CNN produce

feature extraction accurately by multiple transformations [25]. The final vector rep-

resentation is given as output by the CNN, and then a Neural Net Regressor is fed

to predict the story point value for the input vector that represents the user story.

5

1.5. CONTRIBUTION OF THIS THESIS CHAPTER 1. INTRODUCTION

The work results demonstrated that the proposed RNN-CNN model outperforms

Choetkiertikul’s method on the Bamboo data set.

Apart from the methods described above, some other important and related works

are as follows.

Porru et al. (2016) [21] proposed a machine learning classifier for estimating

the story points required using the type and attributes of a given issue. Similar

to Ionescu’s [29] approach, the authors employ TF-IDF derived from summary and

description as features to represent the issue. They choose a subset of features by

univariate feature selection and had great results when estimating for new issues.

Scott et al. (2018) [23] built a prediction ML model using supervised learning, us-

ing as input the features derived from eight open-source projects from the same issue’s

dataset used by [21], [24], [25]. Besides textual descriptions from the issue reports,

the authors also investigated developer features such as reputation and workload. In

their experimental results, the models which employ developer features outperformed

the models with only the feature extracted from the issue description.

Gultekin et al. (2020) demonstrate regression-based machine learning algorithms

to estimate Story Points effort using the Scrum methodology. The authors calculate

effort estimation for each issue where the total effort is measured with aggregate

functions for iteration, phase and project. They perceived reasonable error rates by

employing the algorithms Gradient Boosting, Support Vector Regression, Random

Forest Regression and Multi-Layer Perceptron.

1.5 Contribution of this thesis

Given the foregoing, this thesis aims to contribute to the field of software effort

estimation in Agile environments through ML techniques to estimate story points.

Prediction models are trained from inputs containing historical story point estima-

tions made by teams. In addition to other methods yet employed, the models should

support agile teams when estimating the size of new issues or features in a user story.

In this sense, we expose different machine learning and deep learning models trained

to predict agile software estimation by raw data, from user stories text description,

used as input to infer and give the story points estimation. Additionally, this work

explores ways of taking advantage of natural language processing and the structure

present in the dataset through pre-trained word embedding models to construct bet-

ter features. Finally, we hope that this work helps future researchers and practitioners

involved in agile environments.

6

CHAPTER 1. INTRODUCTION 1.6. ORGANIZATION OF THIS THESIS

1.6 Organization of this thesis

This thesis is organized as follows:

� Chapter 2 presents an overview of agile methodology, agile software effort es-

timation and the most prevalent methods used for agile environments found in

the literature. Some related work on machine learning techniques approaches to

story points estimation.

� Chapter 3 depicts our formulation of machine learning, deep learning and natural

language processing approaches to predict story points estimations accurately.

� Chapter 4 introduces the story points dataset we employ and the necessary

preprocessing steps to handle all textual information.

� Chapter 5 addresses the regression problem of story points estimation regarding

the techniques as described in chapter 3.

� Chapter 6 summarizes our most significant findings and discusses the most

promising paths toward enhancing the proposed model’s prediction.

7

Chapter 2

Literature Review

Since machine learning and agile are fields relatively new and can involve different

approaches and techniques, it is mandatory to analyze its outcomes by searching

for different studies of implementation and literature reviews. Thus, in order to un-

derstand and elucidate the state of the art of, for this review, data between the

relationship of software effort estimation, agile, machine learning, deep learning and

natural language processing were identified by searches on the following databases:

IEEE Xplore, Google Scholar, ACM Digital library, Science Direct, Spring and refer-

ences from relevant articles using the search term: “Software effort estimation”, “Ag-

ile”, “Story point”, “User Story”, ”Machine learning”, ”Deep Learning”, “LSTM”,

“RNN”, ”NLP”. The keywords in each component were linked using “OR” as a

Boolean function, and the results of more than one section were combined by uti-

lizing the “AND” Boolean in the final search. This review was also performed by

e-books and websites from O’Reilly Media Inc., Scrum and Agile manifesto websites.

2.1 Agile methodology

Since agile methodology has emerged (2001), most software companies have been

shifted to agile environments due to the need to speed the software development life-

cycle (SLDC) and improve the quality of delivery for any size of project [30]. Then

new methods and processes were created attending to shorter development cycles

[31]. Schwaber and Beedle state that they emerged as alternatives to the traditional

or waterfall models as most executives were not satisfied with their organization’s

ability to deliver systems at a reasonable cost and timeframes [32]. Agile methods

”aim to remove or reduce much of the traditional project management formalism”

[8]. Their processes seek to eliminate effort with unnecessary documentation, focusing

on the interaction between people on the team and concentrating on activities that

8

CHAPTER 2. LITERATURE REVIEW 2.1. AGILE METHODOLOGY

effectively will generate value in the final product or part of the product delivered

(features) with the quality expected by customers [14], [31], [33]. This quality is

achieved through iterative development cycles with short scopes, making it possible

to adapt feature requirements in the development phase [32]. According to Cohn

(2005), features are the unit of customer value [14]. Every agile iteration includes all

the traditional software activities (planning, requirements analysis, design, coding,

testing and documentation), but with a different focus: to deliver the features instead

of complete tasks [4], [14]. The agile methods (especially Scrum) have shown a higher

degree of success in projects due to flexible scope, frequent deliveries, and their ability

to handle changing customer requirements [5], [8], [34].

The nature of the agile process causes concerns and challenges to manage agile

projects in companies and projects of different sizes [30]. In contrast, a survey made

by Jorgensen (2019) has shown that increased project size was associated with de-

creased project performance for both agile and non-agile environments. Moreover, the

projects using agile methods had better results [8]. Jorgensen (2018) found that agile

projects are only correlated with a higher proportion of successful projects if includ-

ing frequent deliveries to production [35]. Rosa and collaborators (2021) stated that

successful agile development projects in the United Department of Defense (DoD)

”involves continuous planning, continuous testing, continuous integration, continuous

feedback, and continuous evolution of the product” [4].

2.1.1 Agile manifesto

The agile methods follow the principles of the agile manifesto [10]. In 2001, experts

got together to discuss ways to improve the performance of their software projects.

After exchanging project experiences, they concluded that there was always a set

of common principles that, when respected, projects worked well. Henceforward,

the Agile Manifesto and its principles were established. The main principle of the

agile practice is to deliver customer value and satisfaction as the first and highest

priority, and by early and continuous software delivery of valuable software [10]. The

stakeholders (customers or users) are constantly involved in the software development

process to have requirements and priorities accordingly. Hence, it is prevalent having

changes of requirements even in later stages of software development [18], [36].

The most discussed methods for agile environments are Scrum, Extreme Program-

ming (XP), Feature-Driven Development, Dynamic System Development Method

(DSDM), Crystal Methods, Lean Development (LD), and Adaptive Software Devel-

opment [31], [37]. Although methodologies are several, Scrum is the most widespread

among practitioners, having variants and common associations with other agile meth-

9

2.1. AGILE METHODOLOGY CHAPTER 2. LITERATURE REVIEW

ods such as Kanban [13], [38], known as Scrumban [39].

2.1.2 Scrum

Scrum is an agile methodology created in 1993 by Jeff Sutherland and Ken Schwaberem

and later collaborations with Mike Beedle. In the literature, Scrum is often cited as

a framework in which various processes and techniques can be employed [40].They

based the framework on the article ”The new product development game” by Hiro-

taka Takeuchi and Ikujiro Nonaka published in 1986 in the Harvard Business Review,

where the authors compared product creation processes to sports [39]. Scrum name

is given by the concept of scrum from the rugby game, where the team moves forward

as a unit.

“The traditional sequential or “relay race” approach to product development [. . .] may conflict with the goals of

maximum speed and flexibility. Instead, a holistic or “rugby” approach — where a team tries to go the distance as a

unit, passing the ball back and forth — may better serve today’s competitive requirements.” Takeuchi and Nonaka

(1986) [41], “The New New Product Development Game”, Harvard Business Review

Scrum and its variants are present in many contexts, from small, medium and large

companies to government agencies [8], [30]. Such companies are often present in many

studies such as, ITTI [30], Department of Defense of USA [4], BMC [42], SAP [43]

and Facebook [44].

The Annual State of Agile (2020) [13] states Scrum as the most broadly practiced

Agile framework, with at least 76% practicing Scrum or its variants and hybrid ver-

sions. This survey provide annually a global report regarding Agile methodologies

across a range of different industries worldwide. Over 14 years, this report is the

longest-running and most widely cited Agile survey [30]. Schwaber and Sutherland

(2020) state that Scrum is founded on empiricism and lean thinking. Empiricism

states that knowledge comes from experience and from making decisions based on

what is known. At the same time, lean thinking reduces waste and focuses on what

is vital. Scrum form three empirical pillars:

(i) Transparency - Meaningful regards of the process must be noticeable to those

qualified for the deliverables; (ii) Inspection - Scrum team must frequently inspect

artifacts and progress toward detecting unwanted variations or issues. Inspection

facilitates adaptation. It provides events designed to promote change; (iii).Adaptation

- If any character of the process has deviated from acceptable limits or the deliverable

is unacceptable, the process must be adapted to achieve expectation. Whereas it must

be adjusted as soon as possible to minimize deviations.

10

CHAPTER 2. LITERATURE REVIEW 2.1. AGILE METHODOLOGY

Among the agile methods, Scrum best defines set of roles, artifacts, and events

[45], which are listed below.

1) Roles: Product Owner, Scrum Master, Developer. 2) Artifacts: Product Back-

log, Sprint Backlog, Increment. 3) Sprint Planning, Sprint, Daily Meeting or Scrum

Daily, Sprint Review, Sprint Retrospective.

The Scrum Team is a unit formed by one Scrum Master, one Product Owner, and

Developers. Typically, a small team of people, usually ten or fewer. Although they

have different roles, all members work together focused on the same product goal [40].

Table 2.1 better describes Scrum’s roles and responsibilities.

Role Responsibility

Scrum Master Ensure all events are productive and following the values and rules. Coach the

team to meet high-value increments. Remove all possible blockers to keep the

work team in progress within the timebox.

Product Owner Manage and prioritize the activities defined in the Product Backlog. It must

ensure all items are transparent, visible and understandable.

Developers Build any aspect of a functional product increment every sprint or interaction.

Table 2.1: Scrum roles and responsibility

Essentially, the goal of Scrum was to change the way software development was

managed and deliver more excellent business value in the shortest time, driven through

short intervals, called sprints. The Sprints have the length of one month or less and

are considered the core of Scrum, where all events are in place to enable the trans-

parency required. According to Schwaber and Beedle (2001), the Scrum practices for

Agile Software Development are: (i) Product Backlog, (ii) Scrum Teams (iii) Daily

Scrum Meetings, (iv) Sprint Planning Meeting, (v) Sprint and (vi) Sprint Review

[32]. In 2010, Schwaber and Sutherland developed the first version of the Scrum

Guide to help worldwide to understand and apply these framework practices. Since

then, various small and functional updates have been in place to increase quality, and

effectiveness [40]. In a nutshell, awareness and planning details are concentrated in

the current sprint. In the next sprints, planning is superficial and constantly changes

as the project goes and the team (including stakeholders) is acquiring more knowl-

edge about the project. Each feature has functionality description written from the

users’ point of view (user story), and it is considered as goal-driven value to achieve

customer satisfaction[18], [46]. Product Owner, Scrum Master, and Developers meet

to estimate the effort required for each item in the Product Backlog and validate that

the current user stories descriptions are adequate. The Product Backlog includes a

list of all recognized user stories, then prioritizes and split into releases. Normally, it

11

2.1. AGILE METHODOLOGY CHAPTER 2. LITERATURE REVIEW

breaks down the project into 30-day Sprint cycles, each containing a set of backlog

features (Sprint Backlog). That said, each Sprint is based on business priority and

intends to deliver first the most important feature of software [18]. The development

team executes the project based on short iterations (sprints), where all work is split

and scheduled [14], [34]. During the sprints, the team catch-up with daily 15-minute

meetings (Daily Scrum) to review the status and organize tasks accordingly [31].

When the Sprint ends, the results are discussed and presented to the Product

Owner at the Sprint Review Meeting. Afterward, the Scrum Master conducts the

Sprint Retrospective Meeting to identify the most notable changes to improve its

effectiveness for the next Sprint. Then, Sprint Retrospective closes the Sprint.

The steps described above repeats for every Sprint and accumulates until the

product release is ready.The dynamic nature of agile turns its application into a

challenging task. Moreover, difficult to be predicted in terms of budget and cost,

which consequently, makes accurate cost and effort estimation trivial resources [5].

To address this issue, user story, planning poker and story points are often related

[3].

2.1.3 User Story

Cohn (2004) defined a user story as simple, straightforward, and brief descriptions of

functionality valuable to real users. Also, Cohn stated that write software require-

ments in the form of user stories are the best way to satisfy user’s needs in agile

environments [47]. The literature shows that user stories are the most popular ac-

cepted method in agile software development [48] to specify requirements from the

user’s point of view [49].

Typically, the stories are written on story cards for easy viewing and handling.

For this reason, the structure should be simple, as stated by Cohn. The focus on

describing what the user says is because the end-user should receive what he needs and

not precisely what he wants. Based on short or broken stories, the agile development

meets the objectives in the best possible way as described by the user.

The size of the story must correspond with the team and the technologies involved.

Every user story should be estimable and small, but not too small. Very small or

large stories are difficult to estimate. Large ones should be broken into smaller parts

[47]. Cohn (2004) cites that developers must estimate or at least understand the size

of a story or the time it will take to turn it into code.

As in Scrum, after gathering user stories or story cards according to their priorities,

the agile team performs the effort estimation. At the end of the Sprint, acceptance

tests confirm whether each delivered user story met the requirements or not [14].

12

CHAPTER 2. LITERATURE REVIEW 2.2. AGILE SOFTWARE EFFORT ESTIMATION

The most significant advantage of using user stories is that it can be done by any

team member, without the need for profound knowledge in requirements gathering,

such as the Use Case [50]. However, it is generally used together within the team, as

agile teams are multidisciplinary [32].

2.2 Agile Software Effort Estimation

Agile Software Effort Estimation (ASEE) is the process of predicting the correct

effort required to build and deliver software earlier as expected by customers in agile

environments [14]. As the traditional software effort estimation, agile software effort

estimation is mainly related to time and budget constraints in a project and represents

a vital role directly impacting the quality of software delivery [3].

The literature shows that ASEE has been demonstrating higher accuracy when

compared to traditional or waterfall models [7], [12]. In the traditional model, the

limited scope and sequential form of processes cause the cost of a change to be expo-

nential, tending to grow as the development process goes. If the estimated cost and

effort are not accurate, it may result in project failure in budget and delivery time [5].

Cohn (2005) recorded estimates as the basis of the project management processes of

planning and risk analysis. Planning unfolds steps of a strategy to achieve business

goals, based on estimates [14].

“Estimating and planning are critical to the success of any software development project of any size or consequence”

Mike Cohn (2005) [14].

However, estimating and planning are complex and error-prone. In 1998, Steve

McConnell called a cone of uncertainty the first project schedule estimate designed by

Barry Boehm (1981). By this graphic Boehm’s showed initial ranges of uncertainty at

different points in a waterfall development process. The cone of uncertainty predicts

that initial estimates of a project can vary from 60% to 160%, i.e., the estimate

predicted to occur in 20 weeks may take anywhere from 12 or 32 weeks. We notice

that the estimates tend to vary a lot at the beginning of the project, but that over

time will stabilize when we stop estimating and become a certainty [14]. McConnell

(2006), mentions that uncertainty occurs due to bad decision-making [51].

As part of 12 principles of the agile manifesto, [10], for most robust architecture,

design and product requirements appear and mitigate uncertainty through cycles of

iterative developments and constant feedback [52].

The figure 2.1 contrast the planning iteration between agile and waterfall method-

ology. The agile effort is part of the planning phase (adaptive planning), and it is

welcoming to changes as the project goes. On the other hand, traditional planning

13

2.2. AGILE SOFTWARE EFFORT ESTIMATION CHAPTER 2. LITERATURE REVIEW

(waterfall-based), all stages of development: analysis, design, development, testing

and delivery are sequential [52], [53].

Figure 2.1: Traditional and adaptive planning phases - Source: Adapted from Boral (2016) [52]

In agile methodologies (i.e. Scrum), at the end of each Sprint (usually two weeks),

besides having part of the software or feature ready, the historical information will

fit the plan for the next Sprint, thus adjusting the other estimates throughout the

project [40]. Agile estimation aims to estimate the cost for all items in the backlog. In

addition to creating roadmaps, this cost can be used to measure the team’s velocity

and help in decision-making when prioritizing resources, for example.

According to Cohn (2008), the first step is to define the satisfaction conditions

and identify the success or failure criteria. Secondly, the team is responsible for

estimating the user stories in the chosen unit (i.e. story points) for two or three

releases. Afterward, the steps can follow any sequence: select an iteration length,

estimate velocity and prioritize user stories. Finally, the process outputs user stories

and the release date. Although, there are different measures and methods to estimate

in an agile environment. For Cohn (2008), the team needs to be in consensus about

the unit of measure and consequently the estimates of the Product Backlog items.

14

CHAPTER 2. LITERATURE REVIEW 2.2. AGILE SOFTWARE EFFORT ESTIMATION

According to Mike Cohn “estimates are best derived collaboratively by the team,

which includes those who will do the work” [14]. As estimating is a collaborative

task and team members with different experiences (and skills) should interpret the

complexity of a given user story [16], [18], the definition of time and effort can be

different for each developer.

Jorgensen (2020) examined the relations between low effort estimates, other com-

monly used skill indicators, and measured programming skills. The author found that

those with the lowest programming skill gave the lowest and most over-optimistic ef-

fort estimates for the larger tasks. For the smaller tasks, however, those with the

lowest programming skill had the highest and most over-pessimistic estimates [54].

Cohn (2008) and Grenning (2002) recommend using points in agile estimating to

mitigate this scenario.

2.2.1 Types of Agile Software Effort Estimation

There is no universally accepted classification for agile software estimation techniques.

The techniques can be classified differently depending on the characteristics. In 2017,

Usman et al. observed that methods and techniques had not yet been organized.

For that reason, the authors proposed another study regarding a taxonomy of ef-

fort estimation with a classification scheme to discriminate estimation activities in

agile environments. The authors classified the estimation techniques as algorithmic,

expert-based and artificial intelligence-based techniques and models [55]. Lately, some

researchers have suggested machine learning to be the third major category, as Vyas

et al. (2018) [56], Dantas et al. (2018) [57]. Vyas and collaborators classified agile

estimation techniques as non-algorithmic, algorithmic and machine learning.

Agile teams can also combine techniques to perform estimates methods. The

literature shows these techniques categorized as combination-based methods [3].

The latest SLR made by Fernandez-Diego et al. on effort estimation in agile

software development organized the agile estimation methods as follow.

� Expert-based: Planning Poker, Expert Judgment, Wideband Delphi

� Data-based: machine learning, neural network, functional size measurement, re-

gression, algorithmic methods, fuzzy logic, swarm intelligence, Bayesian network,

Monte Carlo, statistical combination, principal component analysis, COCOMO

II.

� Combination-based: Use Case Point, Change Effort Prediction, Ontology Model,

Experience Factory, Prioritization of Stories.

15

2.2. AGILE SOFTWARE EFFORT ESTIMATION CHAPTER 2. LITERATURE REVIEW

Overall, Usman et al. (2014) [12] found that the most applied estimation technique

in agile environments were expert-based subjective methods. In addition to expert

estimation, Bilgaiyan et al. (2017) [5] also found that neural networks are the most

popular of the current conventional estimation methods.

The systematic literature review carried out by Fernandez-Diego (2020) and collab-

orators, which updates the SLR published in 2014 by Usman et al. [12], investigated

works from 2014 to 2020 by analyzing the data extracted from 73 papers. The authors

concluded that the expert-based estimation methods are still the most relevant (Plan-

ning Poker 24.66%, Expert Judgment 10.96%, Wideband Delphi 5.48%). Moreover,

Planning Poker is very frequently related to story points and used in combination

with other methods such as machine learning, artificial neural networks (deep learn-

ing) based estimation.

2.2.2 Planning Poker

Planning Poker is a popular card game made for agile estimating effort. First in-

troduced by James Grenning in 2002 [58] and later popularized by Mike Cohn [14]

through his book named ”Agile Estimating and Planning”.

Usman et al. [12] remark that Planning Poker is a combination of elements of

Expert Opinion, Analogy and Disaggregation. The Planning Poker should have a

scale, and agile teams commonly use the Fibonacci sequence. Despite some teams also

use a similar version based on Fibonacci, Cohn (2005) remarks the Fibonacci sequence

as the best scale as ”they reflect the greater uncertainty associated with estimates

for larger units of work” [14]. In short, each development team member receives a

set of cards with the values of a specific sequence, which determines the estimate

for the phases of the Product Backlog during the Sprint planning meeting. Each

number in the sequence corresponds to a card. Then each team member estimates

each user story using the cards, which particularly represent story points. Meanwhile,

the Product Owner brings an overview of the user story, and the Scrum Master guides

the Planning Poker to ensure the process accordingly.

Many studies state that Planning Poker is the best agile method to estimate story

points [21], [22], [43].

”The best way I have found for agile teams to estimate is by playing planning poker” James Grenning (2002) [58]

Gandomani et al. (2014) compared the Planning Poker and the Wideband Delphi

technique and concluded that Planning Poker gave better estimation accuracy than

expert estimation and Delphi technique [56].

16

CHAPTER 2. LITERATURE REVIEW 2.2. AGILE SOFTWARE EFFORT ESTIMATION

2.2.3 Story points

The usage of Story Points to measure effort is not new in Agile teams and started

after the industry adopted expressing requirements as a User Story [15].

As cited above in Planning Poker, the main measures to represent story points are

numeric sizing, Fibonacci, or T-shirt sizes. However, the most scale sizing technique

used for estimating Story Points is the Fibonacci sequence because it reproduces a

more realistic estimation for complex tasks [14].

Typically, story points estimation happens during the backlog refinement sessions,

where the team evaluates the Product Backlog. The team is responsible for setting

the product backlog items to read customer value. In order to estimate user stories,

the team has to find one or two baseline stories as a reference, which needs to be

understandable by every member team. Once defined, the team estimates the other

user stories by comparing them to the reference user story. Thus, the team gives the

reference story and a number from the Fibonacci sequence, and then they will take

the other user story one by one and ask: does this user story requires more effort than

the reference story? If positive, they sort the user story after. If negative (less effort

than the reference story), then sort it before. Hence, the team can proceed and give

story points to the other user stories. For instance, if a given user story requires twice

as much effort as the reference user story, it receives double story points. If it is twice

less, then it is less following the sequence. During the estimating session, it is crucial

to involve everyone in the team: developers, designers and testers because each team

member has a different perspective from the product and the work required to deliver

a user story.

Story point is the straightforward size metric for agile environments, despite being

found in combination with other metrics [59]. There has been a decrease in general-

purpose size metrics and an increase in size metrics that take the particularities of

agile methods into account. Consequently, most studies rely on user stories to specify

requirements as related by Raharjana et al. (2021) [49] through a systematic literature

review made against 718 papers published between January 2009 to December 2020.

The literature shows that the estimation models using Story Points [59]–[63] are

the most employed metric when compared to that of the other metrics.

Story points are not unique in estimating points; agile teams also use (less preva-

lent) methods in which the output are points such as Functional Points (FP), Use

Case Points (UCP), Object Points, Lines of Code (LOC). Whereas, Story Points have

been proved more accurate results than the others [64].

As by Usman et al. (2014), Datas et al. (2018) [57], Malgonde et al. (2019)

[59], Story Points and UCP were the most frequently used size metrics, while con-

17

2.2. AGILE SOFTWARE EFFORT ESTIMATION CHAPTER 2. LITERATURE REVIEW

ventional metrics like FP or LOC were unusual in agile. Notwithstanding, Diego

and collaborators (2020) investigated works from 2014 to 2020 and states that Story

Points play a higher responsibility as the widespread estimation technique under agile

methods such as User Story and Planning Poker. This scenario is also highlighted by

Fernandez-Diego et al. (2020) [3], Story Points, Planning Poker and User Story are

frequently connected.

2.2.4 Machine Learning Approach for Story Points Estimation

The first machine learning techniques applied to solve the problem of software effort

estimation started in the 1990s [2]. In general, previous historical data of projects

estimations serve as a reference to predict a new software effort estimation [65].

Story points have become the main size metric for agile environments and express a

notable increase in the literature following the use of machine learning-based methods

to produce estimations.

A Systematic Literature Review (SLR) published in 2014 by Usman and collabo-

rators [12] reviewed works from 2001 to 2014, presenting a noteworthy state of the

art guide on agile effort estimates. Some years after, Dantas et al. (2018) [57], and

Diego et al. (2020) [3] updated this work and evidenced a strong tendency of agile

effort estimation models based on machine learning techniques.

Ungan et al.[66] provided a comparison of Story Points and Planning Poker esti-

mation with effort estimation models based on COSMIC Function Points (CFP). By

employing diverse sets of regression analyses (simple, multiple, polynomial, power, ex-

ponential and logarithmic regressions) and Artificial Neural Networks (ANN) to build

the models, the authors observed that Story Points-based estimation models worked

more favourably than based models in standard analysis techniques. In comparison,

ANN and multiple regression showed the best results, showing accuracy increases on

the regression models. Hamouda (2014) [67] proposed a process and methodology

which embraces the software size relatively using Story Points. This approach was

applied on different projects of level three Capability Maturity Model Integration

(CMMI).

Satapathy, Panda and Rath (2014) [68] propose optimal Story Points estimation

through various Support Vector Regression (SVR) kernel methods. The authors com-

pared results obtained from all methods, where the SVR Radial Basis Function Neural

Networks (RBF) model gives a lower error rate and higher prediction accuracy value.

Moharreri et al. (2016) [22] propose an automated estimation method for agile

story cards. Some models were built and contrasted with the manual Planning Poker

method. The authors proved that the estimation accuracy increases with the help of

18

CHAPTER 2. LITERATURE REVIEW 2.2. AGILE SOFTWARE EFFORT ESTIMATION

supervised learning models.

Rao et al. (2018) [64] evaluated time and cost of software estimation by taking as

input Story Points and project velocity. The author showed a performance comparison

of three machine learning techniques: Adaptive Neuro-Fuzzy Modeling, Generalized

Regression Neural Network, and Radial Basis Function Networks.

Malgonde et al. (2019) [59] developed an ensemble-based model to predict story

effort estimation and compared the results. The model outputs were compared to

other ensemble-based models and various predictive models such as Bayesian Net-

works, Ridge Regression, Neural Networks, SVM, Decision Trees and kNN. The au-

thors demonstrated better performance of their approach to optimize Sprint Planning

in Scrum.

Souza et al. (2019) [69] propose the use of a Fuzzy Neural Network which is

compared with models commonly used in the literature, such as kNN Regression,

Independent Component Regression, ANN with a Principal Component Step and

Multilayer Perceptrons.

19

Chapter 3

Deep Learning for Story Points

Estimation

Accurate estimation of Agile software development effort using machine learning or

deep learning depends on the methods employed, which can contribute favourably

or negatively. This thesis aims to distinguish these particular impacts. Figure 3.1

illustrated the overall architecture of the methodology approach, which depicts the

proposed methods. The main motivation of the approach for this thesis takes as

reference the other works mentioned in 1.4 within the estimation of effort in story

points from text requirements, making use of pre-trained embedding models. As

shown by the results obtained by the most notable works mentioned before, mainly

Ionescu2017, Choetkiertikul et al. (2018) and Marapelli (2020), the deep learning

architecture coupled with the use of word embedding models are promising and still

unexplored gap to best of our knowledge.

Figure 3.1: Architecture of methodology approach

20

CHAPTER 3. DL FOR STORY POINTS 3.1. TEXT PREPROCESSING

3.1 Text Preprocessing

Language modelling is one of the most fundamental tasks for ML projects. The text

preprocessing step aims to filter and transform raw data coming from the dataset to

make it suitable for ML and the problem scenario. In this sense and for this thesis, we

performed several steps for preprocessing, taking into account the agile software effort

estimation scenario using Story Points. For more details regarding the techniques,

refer to 4.3.

3.2 Text Feature Extraction

Natural Language Processing (NLP) is a branch of Artificial Intelligence (AI) that

aims to understand and produce information related to the language of humans.

While Deep Learning is suitable to extract features from audios (spectrograms) or

images (pixels), DL models are also helpful to identify patterns in text from its

elements (e.g. words and characters). NLP fuses modelling of human language with

statistical, machine learning, and deep learning models to extract features, process

and interpret the context of text or voice data. As machine learning models are

not compatible to understand text directly, the text features should translate the

information to numeric values (word vector representations). This section breaks

down the text features techniques.

3.2.1 N-gram

N-gram model is a popular feature identification and analysis in NLP tasks. It is a

sequence of words contained in a sentence. Through statistical inference, it tries to

predict the next word in a sentence from the previous words.

Figure 3.2: Structure of 1-gram, 2-gram and 3-gram

21

3.2. TEXT FEATURE EXTRACTION CHAPTER 3. DL FOR STORY POINTS

A sequence of words can occur in a recognized way but befall with an unfamiliar

word. By grouping sequences of size n that start with the same (n - 1) words into an

equivalence class assumes that the previous local context affects the next word and

builds the n-gram model, where the last word in the n-gram is the prediction. Figure

3.2 illustrate the common types of n-gram models. Particularly, n-gram models are

called 1-gram, 2-grams, 3-grams and 4-grams, where n = 2, 3 and 4, respectively.

The number of classes that divide the data grows as the value of n increases, then

better is the inference. The formulas for 1-gram, 2-gram and 3-gram are represented

by 3.1 respectively.

P (x1, x2, x3, x4) = P (x1)P (x2)P (x3)P (x4),

P (x1, x2, x3, x4) = P (x1)P (x2 | x1)P (x3 | x2)P (x4 | x3),

P (x1, x2, x3, x4) = P (x1)P (x2 | x1)P (x3 | x1, x2)P (x4 | x2, x3).

(3.1)

3.2.2 Bag of Words (BoW)

The Bag-of-words model is a text feature extraction technique that aggregates words

and calculates their term frequency to measure their relevance. It is an oversimpli-

fied numeric form (word vectors) of text representation and does not consider the

sentence’s order. The text classification is the most widespread use of bag-of-words.

3.2.3 Word embeddings

The word embeddings method is a definite trend to extract the semantics of words

in a specific context. They are neural networks-based methods that yield dense and

low dimensional word vector representation, assisting machine learning algorithms

with textual properties [49]. Against this backdrop, the word embedding methods

such as Word2Vec [70], GloVe [71], and BERT [72] have emerged to learn from large

corpus datasets as pre-trained models. These methods enable to solving vast kinds

of problems. Table 3.1 shows the pre-trained word embedding model used for this

thesis experiment.

Method Corpus Content

GloVe Wikipedia 2014 + Giga-

word 5

400,000 word vectors based on 6 billion

tokens

Table 3.1: Pre-trained word embedding

Figure 3.3 demonstrates the neural network architecture to generate word embed-

22

CHAPTER 3. DL FOR STORY POINTS 3.2. TEXT FEATURE EXTRACTION

Figure 3.3: Input and output of word embeddings generation - Source: Adapted from Patihullah
(2019) [73]

dings. Wherein WI matrix with VxN Connection, V is the vocabulary size, and N

is the dimension of word vectors. Next, the WO matrix with NxV Connection takes

the hidden layer WI matrix as input and generates the WO representing a word from

the given vocabulary.

Word2Vec

Word2Vec is an unsupervised learning algorithm widely used for word embeddings

that provides a way to locate vector representations of words and sentences. It holds

two contrasting training approaches and somehow oppositely (explained below): Skip-

Gram and Continuous Bag-of-Words (CBOW). In both cases, a separate weight ma-

trix forms the model aside from the word embeddings, achieving a speedy log-linear

training which can catch semantic information [70]. Typically trains word embed-

dings fast, and these trained models (pre-trained word embeddings) are employed to

initialize the embeddings of some further complex models like deep learning models.

Continuous Bag-of-Words (CBOW) and Skip-Gram

A Continuous Bag-of-Words (CBOW) model tries to predict center words given the

context around the target word (few words before and a few words after). Oppositely

of Skip-Gram, CBOW is not sequential. The Skip-gram model is a variant of bag-

of-words that gathers n-grams, but it permits word skipping. The model tries to

23

3.2. TEXT FEATURE EXTRACTION CHAPTER 3. DL FOR STORY POINTS

predict the context words from the central word [70]. Thus, by having a group of

words, they no longer require a continuous process, and we can skip words to generate

Skip-Grams.

Figure 3.4: Graphical representation of the CBOW model and Skip-gram model - Source: Adapted
from Mikolov (2013) [74]

As shown in Figure 3.4 CBOW learns the context, and then the model outputs

the most probable word is ”ldap”. On the other hand, Skip-gram recognizes the word

”ldap” and tries to predict the context as ”the”, ”problem”, ”only”, ”occurs” or some

additional related context. Mathematically, continuous bag-of-words model can be

represented by 3.2, while Skip-gram model is denoted by 3.3.

P (wc | Wo) =
exp

(
u>c v̄o

)∑
i∈V exp

(
u>i v̄o

) . (3.2)

qij =
exp(u>j vi)∑
k∈V exp(u>k vi)

, (3.3)

GLoVe

GLoVe is a contemporary word embedding method proposed by Pennington et al.

(2014) for obtaining vector representations of words. This method shows enhance-

ments based on matrix-factorization-based methods and the Skip-gram model. GloVe

trains the model by a global matrix of word-to-word co-occurrence counts, and local

context window [71] (also used in the Skip-Gram and CBOW model). Co-occurrence

is the instance of two words appearing in a particular position alongside and counts

all documents in the corpus. When training, GloVe reach the loss function 3.4 by

calculating the squared error of 3.5 with weights.

24

CHAPTER 3. DL FOR STORY POINTS 3.3. TEXT FEATURE SELECTION

∑
i∈V

∑
j∈V

h(xij)
(
u>j vi + bi + cj − log xij

)2
. (3.4)

u>j vi + bi + cj ≈ log xij. (3.5)

In the original paper [71] the authors showed that GloVe outperformed Word2Vec

on the task of word analogy.

3.3 Text Feature Selection

Usually, after the preprocessing step in machine learning projects, different feature

selection methods are applied. This thesis focuses on the execution of deep learning

models, which can already perform the functions of feature extraction and selection.

However, we decided to execute this step as it can help to decrease the overfitting of

the models, reduce training time, and improve model accuracy.

As long as this work is about a regression problem, the feature selection was

performed based on the Mutual Information Feature Selection (MIFS) technique.

The MIFS estimates mutual information for a continuous target variable and can

reduce the dimensionality of the dataset. The remarkable properties for this analysis

are as follow:

� MIFS is symmetric: I(X, Y) = I(Y,X)

� MIFS is non-negative: I(X, Y) ≥ 0

MIFS regards I(X, Y) = 0 if and only if X and Y are independent. Conversely, if

X is an invertible function of Y , then Y and X experience all information:

I(X, Y) = H(Y) = H(X) .

By extending the interpretations of these terms and connect them, MIFS employ

the following algebra:

I(X, Y) = ExEy

{
pX,Y (x, y) log

pX,Y (x,y)

pX(x)pY (y)

}
.

3.4 ML and Neural Networks

This section briefly describes the concepts of Machine Learning and Deep Neural

Networks models regarding regression problems, especially LSTM and its variants,

mostly explored in this thesis.

25

3.4. ML AND NEURAL NETWORKS CHAPTER 3. DL FOR STORY POINTS

3.4.1 Supervised Learning

Supervised learning is the most common form of machine learning with two classes

of possible algorithms: classification and regression [75]. If discrete class labels, then

classification, if continuous values, regression. Essentially, the term supervised learn-

ing originates from the perspective of an instructor providing examples of the target

and teaching the machine learning system the necessary steps to solve a problem [76].

Generally speaking, supervised learning aims to induce a mapping from x-vectors to

y-values to build a hypothesis that allows predicting y-values for unlabeled samples.

Thus, by a known dataset, data inputs x (features) and outputs y are presented to

the algorithm, formed by pre-labelled examples (correct answers), target data input

(training dataset) [77]. The model uses the training dataset to learn how to perform

the task (T) and predict the answer (y) from an unknown dataset or no-labelled data

(testing dataset). Accordingly, task T is to learn the mapping function f from input

variables x ∈ X to outputs y ∈ Y , which is also called prediction function y = f(x)

[75]. Figure 3.5 illustrates the supervised learning flowchart.

Figure 3.5: Supervised learning - Source: Adapted from Zhang (2021)[78]

3.4.2 Semi-supervised learning

In semi-supervised learning, the algorithm receives a small set of labelled examples

and a more extensive set of unlabeled examples. This case aims to observe both sets

of examples to find a hypothesis that can predict new observations among the existing

classes.

26

CHAPTER 3. DL FOR STORY POINTS 3.4. ML AND NEURAL NETWORKS

3.4.3 Unsupervised Learning

In unsupervised learning, there are no labelled training examples. The algorithm

receives a set of unlabeled training examples, which are analyzed and correlated to

built clusters. Unsupervised learning strives to discover similarities or deviations

in the set of attribute values of the examples that allow clustering. Thus, clustered

examples can be assigned to the same class, while scattered examples are more likely to

belong to different classes. This type of ML technique is the case of word embeddings

described in 3.2.

3.4.4 Linear regression models

Linear regression is a supervised learning algorithm where a continuous range is used

to make predictions. It can be divided into two main categories: simple regression and

multivariable regression. In simple regression, the linear relationship exists if the data

approximate a straight line. It has a slope-intercept form and can be represented in the

formula: y = mx+b, where m and b are the variables to be learned by the algorithm.

The input data is represented by x, while y represents the prediction. However,

when it is required to investigate extra parameters, multiple linear regression takes

place. With more complexity, a multivariable linear equation can be summarized

as f(x, y, z) = w1x + w2y + w3z. Whereas w represents the weights and x, y, z the

attributes for each observation. The model remains linear as its yields are a linear

combination of the input variables.

Cost Function

ML algorithms employ a loss or cost function to measure the distance (error) from

what the model encounters when predicting by current parameters (i.e. a set of

weights). The most common way to find the best set of weights in regression prob-

lems is by employing the mean squared error (MSE) 3.6, which calculates the average

squared difference between the observation’s actual and the values predicted by the

model. This is also the function we employ for all algorithms in the experiments.

MSE =
1

N

n∑
i=1

(yi − (mxi + b))2 (3.6)

27

3.4. ML AND NEURAL NETWORKS CHAPTER 3. DL FOR STORY POINTS

3.4.5 Random Forest model

The Random forest (RF) [79] is an algorithm proposed to solve performance issues

related to the decision tree algorithm [80]. RFs employ an ensemble of tree predictors,

where each tree depends on random values formed by two methods: bagging [81] and

random selection [79]. Both methods concurrently applied with a higher number of

trees improve the prediction of the model. In addition, it makes the model faster

and more resistant to overfitting. In regression, the average of prediction outcomes

acquired from single trees signifies the forest’s prediction accuracy [82]. Figure 3.6

represents a RF model architecture. Ensemble methods like RFs have proven more

accurate results for software effort estimation [19], [24], [83]. That said, we have

chosen the RF algorithm for comparison with Deep Neural Networks.

Figure 3.6: Random Forest architecture - Source: Adapted from [84]

3.4.6 Deep Learning and Neural Networks

Deep Learning (DL) is a subset of machine learning based on artificial neural networks

(ANN), also known as Deep Neural Networks (DNN) [85], but with two or more hidden

layers. Unlike classic ANNs, the DNN architecture can have many hidden layers

and non-linear activation functions to solve more complex problems. The additional

28

CHAPTER 3. DL FOR STORY POINTS 3.4. ML AND NEURAL NETWORKS

hidden layers assist in extensive calculations and weights and biases adjustments for

optimization. Each layer is typically an algorithm containing one type of activation

function. The first layer of the Deep Neural Network is the input layer, which passes

the information to multiple hidden layers. The last layer is the output, where the

result of the regression or classification is given. There are no connections between

neurons in the same layer.

3.4.7 Recurrent Neural Networks (RNN)

Unlike conventional neural networks, Recurrent Neural Networks preserve the se-

quence of the data inputs. In addition to the data received from the previous layer,

the hidden neurons also receive the current computation results (done by themselves).

Figure 3.7 illustrates the RNN cell with hidden states. The network can memorize

short-term sequence information. However, the gradients might disappear over time,

which leads to loss of temporal data relation that the network must learn to solve

sequential problems [86]. This problem is a common issue known as vanishing gra-

dient [87]. In natural language processing it refers to the loss of relevant context

information necessary to identify the textual semantics of given words or phrases.

Figure 3.7: RNN Cell - Source: Adapted from Zhang et al. (2021) [78]

Besides, there are various forms to build RNNs, the hidden state form represented

by the equation 3.7 is the most used. Where wxh ∈ Rd×h,whh ∈ Rh×h are the weight

parameters and the bias bh ∈ R1×h of the hidden layer. Followed by the weights

Whq ∈ Rh×q and the bias bq ∈ R1×q of the output layer [78].

Ht = φ(XtWxh + Ht−1Whh + bh). (3.7)

29

3.4. ML AND NEURAL NETWORKS CHAPTER 3. DL FOR STORY POINTS

Stacked RNN (sRNN)

The Stacked RNN (Figure 3.8) is a variation of RNN stretched deeper by stacking

multiple recurrent hidden layers on top of each other. Designed to boost recurrent

levels by operating at a distinct timescale and use shortcut connections to alleviate

learning issues made by increasing depths [88].

Figure 3.8: Conventional Stacked RNN architecture - Source: Adapted from Lambert (2014)[89]

h
(l)
t = f

(l)
h (h

(l−1)
t ,h

(l)
t−1) = φh(WT

l h
(l)
t−1 + UT

l h
(l−1)
t) (3.8)

The formula for Stacked RNN is defined by 3.8, ”where h
(l)
t is the hidden state of

the l-th level at time t. When l = 1, the state is computed using xt instead of h
(l−1)
t .

The hidden states of all the levels are recursively computed from the bottom level”

l = 1 [88], [89].

This approach was considered for this thesis due to some studies [88], [89] have

shown results that Stacked RNNs outperformed Vanilla RNNs, and either Vanilla

LSTM, achieving the state-of-the-art results on the tasks of word-level language mod-

elling and image captioning.

30

CHAPTER 3. DL FOR STORY POINTS 3.4. ML AND NEURAL NETWORKS

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM) is a type of RNN that efficiently solves several

problems related to sequential data [90]. Unlike traditional RNNs, LSTM networks

enable temporal relations through cells to store memories, input and output gates

and forget gates that control the flow of information. The vanilla LSTM architecture

(Figure 3.9) is similar to a regular cell, but its state is split into two vectors: short-

term and long-term. Whereas the most important is short-term: where vector stores

all information passed over time [91]. The network can learn if the data is necessary

to store in the long-term state, or to throw away, as well as, what to read from it [92].

Figure 3.9: LSTM Cell - Source: Adapted from Weidman et al (2019)[78]

As the long-term state or ct−1, walk through the network, it first passes by forget

gate, where it is decided if the information is thrown away. If not, then it stores new

memories by addition operation and memories filtered at the input gate. The result

ct is sent straight out. Thus, this flow is straightforward without any transformation

wherein each step and some memories are dropped or added. The long-term state is

copied and goes through the tanh function, and afterward, the result is filtered by the

output gate. This generates the short-term state or ht, which has the same content

of the cell’s output for this time step, yt [91], [92].

The equations for the three gates (input, output, and forget) in LSTM cells are

represented by 3.9. Where wxi,wxf ,wxo ∈ Rd×h and whi,whf ,who ∈ Rh×h are weight

values and bi,bf ,bo ∈ R1×h are bias values.

31

3.4. ML AND NEURAL NETWORKS CHAPTER 3. DL FOR STORY POINTS

it = σ(xtwxi + ht−1whi + bi),

ft = σ(xtwxf + ht−1whf + bf),

ot = σ(xtwxo + ht−1who + bo).

(3.9)

The equations for the candidate memory cell, memory cell state and the hidden

state are as follow in 3.10.

c̃t = tanh(xtwxc + ct−1whc + bc),

ct = ft � ct−1 + It � c̃t,

ht = ot � tanh(ct).

(3.10)

In 2017, Greff presented the most extensive study on LSTM networks, showing

that none of the LSTM variants significantly outperforms the vanilla LSTM on clas-

sification tasks. However, as this thesis focuses on solving a regression problem, the

LSTM and following LSTM variants are considered in the experiments of this thesis.

3.4.8 Stacked LSTM

This type of LSTM network differs from the vanilla LSTM left-to-right model. The

Stacked LSTM (as shown in Figure 3.10) extends the architecture with a stack-

pointer. As with LSTMs, the new inputs flow from the right-most position. But

during calculating new memory contents, the stack pointer defines which cell of the

network produces ct− 1 and ht− 1.

Figure 3.10: Stacked LSTM architecture - Source: Adapted from Dyer et al. (2005) [93]

On the top, the stack-pointer translocates to the previous component by a pop

update operation. After, push operation adds a new register at the end of the list

where back-pointer guides to the previous top [93].

32

CHAPTER 3. DL FOR STORY POINTS 3.4. ML AND NEURAL NETWORKS

3.4.9 Gated recurrent unit (GRU)

Gated recurrent units are a variation of vanilla LSTMs [94]. The principal dissimi-

larities between GRUs and LSTMs are the number of gates and maintenance of cell

states. An update gate replaces the input and output gates, which control how much

information to retain and update. The reset gate replaces the forget gate, which

works similarly but in a different location. GRUs are faster and easier to train than

LSTMs. However, they do not have high task performance.

Figure 3.11: GRU Cell - Source: Adapted from Zhang et al. (2021)[78]

In GRU (3.11), the model computes reset gate rt ∈ Rn×h and update gate zt ∈
Rn×h as follows:

rt = σ(xtwxr + ht−1whr + br),

zt = σ(xtwxz + ht−1whz + bz),
(3.11)

where wxr,wxz ∈ Rd×h and whr,whz ∈ Rh×h are weight values and br,bz ∈ R1×h

are biases.

After updating reset and update gates, the candidate hidden state h̃t ∈ Rn×h at

time step t is calculated as:

h̃t = tanh(Xtwxh + (rt � ht−1) whh + bh), (3.12)

where wxh ∈ Rd×h are weight values, the symbol � represents an elementwise

product operator and bh ∈ R1×h is the bias. Different than what happens with

RNNs, the previous states are minimized through � multiplication of rt and ht.

33

3.4. ML AND NEURAL NETWORKS CHAPTER 3. DL FOR STORY POINTS

3.4.10 Bidirectional LSTM (BiLSTM)

Two RNNs stacked on top of each other form the bidirectional LSTM architecture

(3.12). The first network learns the sequence in its standard series, while the other

reads in the opposite direction. Thus, at a given time step t, the network output

depends on the outputs at all previous time steps. BiLSTM has the advantage of

representing elements sequentially without losing their context. In this sense, such

output can also depend on future outputs, which significantly helps natural language

processing tasks, as the whole data iteration can represent a context given necessary

to predict words or phrases accordingly [95].

Figure 3.12: Source: Adapted from Cornegruta et al. (2016)

3.4.11 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN, ConvNet) is a deep learning algorithm inspired

by the visual structure of the human cortex, where isolated neurons respond to stimuli

at a specific location in the visual (receptive) field. The ConvNet layers contain many

filters, which by numeric matrices are responsible for reducing the input data’s size

and highlighting local patterns. From the results of these filters, the information is

summarized through a pooling operation. The purpose is to assign a semantic value

34

CHAPTER 3. DL FOR STORY POINTS 3.5. PERFORMANCE METRICS

to the original data and classify them through a feed-forward neural network. CNNs

have been widely applied and achieved state-of-the-art in different applications using

video and image recognition, recommender systems and natural language processing

[96]. Although CNNs mostly rely on classification problems, some researchers [97]

achieved state-of-the-art using CNNs for regression problems. Thus, we can also

employ CNN to 1-dimensional problem, such as predicting the next value or word in

a sentence.

Figure 3.13 illustate a simplified schema of a 1-dimensional CNN, such as the

model used in the experiments of this thesis.

Figure 3.13: Simplified schema of a 1D CNN - Source: Adapted from Lewinson (2020) [98]

Mathematically, the convolutional layer can be represented by the formula 3.13.

[H]i,j = u+
∆∑

a=−∆

∆∑
b=−∆

[V]a,b[X]i+a,j+b. (3.13)

3.5 Performance Metrics

The metrics for evaluating machine learning algorithm performance against datasets

are performed to identify how well the predictions arising from the model reproduce

the observed value for the expected response. Although there are several metrics in

the context of regression-based software effort prediction, the main ones are: Mean

Absolute Error (MAE), Median Absolute Error (MdAE), and Mean Square Error

35

3.5. PERFORMANCE METRICS CHAPTER 3. DL FOR STORY POINTS

(MSE).

The MAE is considered the most fundamental error in regression. It measures the

difference between two continuous variables, i.e. the average error that each variable

has relative to the regression line. Supposing X and Y are observations for effort

estimation prediction, we can consider X as the actual story points effort and Y as

the predicted story points effort. The MAE can be defined by the formula 3.14 below:

MAE =
1

N

n∑
i=1

|ActualSPi − EstimatedSPi| (3.14)

Where N is the number of user stories or issues referred to the test set, and Ac-

tualSP is the current story point measure, and EstimatedSP is the estimated story

point for a given user story [24].

In this thesis, MdAE was also used, suggested by Choetkiertikul et al. (2018), as a

more robust metric to large outliers. The MdAE is represented by the formula 3.15.

MdAE = median|ActualSPi − EstimatedSPi| (3.15)

The MSE 3.6 is the same mentioned previously, which is the error between pre-

dicted and actual values returned by the regression. Then, MSE value equal to zero

is ideal and indicates a better model performance.

36

Chapter 4

Data Collection and Preprocessing

This chapter briefly describes Jira, the dataset, and some preprocessing techniques

for handling the textual requirements present in the dataset chosen for this thesis.

4.1 Jira

Jira is a powerful work management tool for agile software development, initially

designed as a bug and issue tracker tool [17]. Nowadays, Jira is the most adopted

tracking system tool that supports agile teams to manage requirements [13] such as

User Stories.

Figure 4.1: Example of an User Story in Jira - Source: Atlassian [99]

The figure 4.1 shows an instance of a User Story registered as SSP2-3 in the project

named ”Sample Scrum Project 2” in Jira. This register contains various attributes,

in which the ones mainly related to effort estimation are: Title, Description and

Original Story Points. Typically, the title has some brief but valuable information

37

4.2. DATASET CHAPTER 4. DATA COLLECTION AND PREPROCESSING

about the functionality requirement. At the same time, the description contains

further specifications. Finally, the Original Story Points show the estimation value

made by the team.

4.2 Dataset

This thesis employs a dataset formed by textual software requirements and story

points effort estimation for user stories and issues extracted from Jira [17] project’s

repositories. A similar story point dataset with 5607 issues was made available by

Porru et al. (2016). Subsequently, Choetkiertikul et al. (2018) provided a comprehen-

sive story points-based dataset from most of the same public repositories, extracting

story points, titles and descriptions from 16 projects. Henceforward, Scott et al.

(2018), Marapelli et al. (2020) employed this dataset or somehow. Table 4.1 shows

the dataset attributes.

Project File Ab # issues

Mesos mesos.csv ME 1680

Usergrid usergrid.csv UG 482

Appcelerator studio appceleratorstudio.csv AS 2919

Aptana studio aptanastudio.csv AP 829

Titanium SDK/CLI titanium.csv TI 2251

Duracloud duracloud.csv DC 666

Bamboo bamboo.csv BB 521

Clover clover.csv CV 384

Jira Software jirasoftware.csv JI 352

Moodle moodle.csv MD 1166

Data management datamanagement.csv DM 4667

Mule mule.csv MU 889

Mule studio mulestudio.csv MS 732

Spring XD springxd.csv XD 3526

Talend Data Quality talenddataquality.csv TD 1381

Talend ESB talendesb.csv TE 868

Total 23,313

Table 4.1: Numbers of user stories, issues and project descriptions extracted from Jira

issue tracking system [24]

To the best our knowledge, the dataset produced by Choetkiertikul et al. (2018)

[24] is currently the most extensive Story Points dataset available. The dataset is

formed by 23,313 user stories and issues extracted from Jira issue tracking system, col-

38

CHAPTER 4. DATA COLLECTION AND PREPROCESSING 4.3. TEXT PREPROCESSING

lected from 16 large open-source projects issues estimated with story points: Apache

Mesos (ME), Apache Usergrid (UG), Appcelerator Studio (AS), Aptana Studio (AP),

Titanum SDK/CLI (TI), DuraCloud (DC), Bamboo (BB), Clover (CV), JIRA Soft-

ware (JI), Moodle (MD), Data Management (DM), Mule (MU), Mule Studio (MS),

Spring XD (XD), Talend Data Quality (TD), and Talend ESB (TE) [24]. The Figure

4.2 illustrates the most frequently words for User Stories and issues from Bamboo

dataset.

Figure 4.2: WordCloud for User Stories present in Bamboo Dataset

4.3 Text Preprocessing

Since machine learning and deep learning models do not understand plain text, we

must perform several texts preprocessing steps against the raw data (dataset). Incon-

sistencies in the dataset should be transformed or excluded to the most suitable form

before extracting features that will feed the models. For data modelling, we followed

the same approach taken by Choetkiertikul et al. (2018) [24]. That is, merging title

and description attributes of a given user story (or issue) into a single text column.

At first, after loading the dataset, we have created one new column by joining the

most critical columns (title and description). After this new structure,we performed

the steps described below against the new feature column ”titledesc”.

i Text data cleaning: converts all words to lowercase, remove line breaks, normalize

spaces, removes punctuation marks and spell-check.

39

4.3. TEXT PREPROCESSING CHAPTER 4. DATA COLLECTION AND PREPROCESSING

ii Tokenization: splits the document into a list of strings (tokens) by delimiters

like white space between terms, line breaks, tabs, and some special characters.

In order to prevent the process from ignoring out-of-vocabulary words, we set

the parameter oov token (Out Of Vocabulary) when instantiating the Tokenizer

object and thus represent unknown words with the value ”OOV”.

iii Stopwords: cleans each token split based on irrelevant terms that do not belong

to the class, such as numbers, articles, adverbs, prepositions and pronouns.

iv Lemmatization: reduces a word to a common base form, where words derived

from the same root count as a single term. Stemming is more straightforward and

faster as it simply chops off the ends of words and typically removes derivational

affixes. However, we decided to do Lemmatization, as it is based on vocabulary

and morphological analysis of words and intends to eliminate inflectional endings

only and reinstate the base form of a word (known as the lemma) [100].

v Padding: pads sequences of tokens smaller than a defined maximum length size

with zero. That is why sentences do not have the same length and could be longer

or shorter. This technique is necessary as neural networks require the same shape

and size.

40

Chapter 5

Results and Discussion

This chapter will present the results and evaluation of the effectiveness of machine

learning and deep learning to estimate story points as by the methodology described

in Chapter 3. Most of the current deep learning-based models for story points estima-

tion considered approaches with Convolution Networks, Recurrent Networks, LSTM,

BiLSTM. However, few papers have explored deep learning in combination with word

embeddings. To excavate semantic text features, we considered GloVe as our word

embedding methods. Later we compare our results with Ionescu et al. (2017) and

Choetkiertikul et al. (2018), which also considered semantic text features from user

stories, but with different word embeddings methods: Doc2Vec and Word2Vec.

Although most of the algorithms we employ in the experiments are from deep

learning architecture, we also implemented the traditional Random Forest ML algo-

rithm as it have been demonstrating a powerful model for software effort estimation.

That said, we carried out seven different deep learning regressor to evaluate the story

points based effort prediction accuracy of each algorithm and further comparison of

results.

5.1 Text Feature Selection

After a comprehensive selection of attributes, the MIFS algorithm considers the mu-

tual information related to both class and attributes previously selected. The al-

gorithm decides the following attribute from a set of attributes that increases the

information about the classes. Therefore, an attribute shows information about the

class without having predictability within the current set of attributes.

The Figure 5.1 illustrate MIFS results over the Bamboo dataset, in which the

most notable sentence was ”access done anonymous mode”. Given the variables,

MIFS derived an expression for the mutual information based on terms put into a

41

5.2. WORD2VEC VISUALIZATION CHAPTER 5. RESULTS AND DISCUSSION

wordlist before and then found the information shared between the random variables.

Figure 5.1: Mutual Information Feature Selection on Bamboo dataset

The figure 5.2 shows the 1-gram and 2-gram text features extracted from Bamboo

dataset.

Figure 5.2: The 1-gram and 2-gram model over Bamboo dataset

5.2 Word2vec Visualization

For the word embeddings analysis, we used T-SNE to visualize high-dimensional word

vectors cluster. T-SNE is used to project these vectors into two dimensions while pre-

serving local stucture. Figure 5.3 presents the Word2Vec visualization of the Bamboo

dataset.

42

CHAPTER 5. RESULTS AND DISCUSSION 5.3. DEEP LEARNING ARCHITECTURES

Figure 5.3: Word2Vec visualization of Bamboo dataset

5.3 Deep learning Architectures

We set different epochs for training the DL models: 20 and 50. The reason for some

having 20 epochs is that during training, the number of epochs greater than 20 no

longer improves model accuracy. Thus to avoid underfitting the model, we keep fewer

epochs for the models described. The figure 5.4 illustrates the overfitting of the sRNN

model during the experiments with Bamboo dataset.

Figure 5.4: Epoch x loss - sRNN model on Bamboo dataset

During training the models, we performed a parameter observation to better esti-

mate and learn the effect of specific parameters. While training, we changed gradu-

ally the following parameter configuration: hidden neuron, learning rate, number of

epochs, and dropout rate. For the LSTM model, the SGD optimizer was used with a

learning rate of 0.01, for the sLSTM and BiLSTM models, the Adam optimizer was

used. For models CNN, GRU, RNN, and sRNN, the optimizer Adam was also used

43

5.4. EVAL. OF DEEP LEARNING MODELS CHAPTER 5. RESULTS AND DISCUSSION

with a dropout rate of 0.3. For all models, the batch size parameter was 256. The

dropout layers in neural network learning help in stopping over-fitting of the network

by provisionally avoiding weights of neurons in the learning process. The learning

rate of 0.01 or greater caused the cost of training and validation to converge faster

with each iteration. As stated by Suayano et al. (2020), smaller values of learning

rate equal to 0.000001 or less can make the cost change slightly until the iteration

ends [101]

Figure 5.5: Evaluation loss x Iteration - All models over the Bamboo training set

Figure 5.5 demonstrates the evaluation loss at each epoch iteration of all mod-

els during the training set over the Bamboo dataset. After training the models, we

generated the summary and diagrams for each DL architecture, as shown in the ap-

pendixes (LSTM A.1, CNN A.3, GRU A.5, RNN A.7, sRNN A.9, BiLSTM A.11,

sLSTM A.13). The vectors representing the word embedding layers are loaded and

passed as parameters to the ”module wrapper()” layer of the deep learning architec-

ture.

5.4 Evaluation of the Deep Learning models

Next are presented the results of the experiments performed on the sixteen story

points datasets. The following tables (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10,

5.11, 5.12, 5.13, 5.14, 5.15, 5.16) demonstrate the performance of each model when es-

timating story points using the datasets (Bamboo, Appceleratorstudio, Aptanastudio,

Clover, Datamanagement, Duracloud, Jirasoftware, Mesos, Moodle, Mule, Mulestu-

dio, SpringXD, Talenddataquality, Talendesb, Titanium, Usergrid) respectively. The

values of MAE, MdAE and MSE, MdAE and RMSE are shown, which were obtained

after applying the 10-fold cross-validation. The best results are highlighted in bold.

For all the metrics used, the smaller the value, the better the result.

44

CHAPTER 5. RESULTS AND DISCUSSION 5.4. EVAL. OF DEEP LEARNING MODELS

Regressors MSE MAE MdAE RMSE
LSTM 5.82 1.36 1.20 2.41
CNN 6.23 1.42 0.94 2.50
GRU 5.88 1.41 1.50 2.41
RNN 5.86 1.32 1.28 2.42
RNN-Stack 5.82 1.38 1.23 2.41
Bi-LSTM 5.45 1.29 0.98 2.97
LSTM-Stack 5.82 1.35 1.33 3.34
Random Forest 5.26 1.47 1.02 2.29

Table 5.1: Bamboo dataset

Regressors MSE MAE MdAE RMSE
LSTM 7.58 2.06 2.46 2.75
CNN 9.21 2.29 1.81 3.03
GRU 7.32 2.00 2.16 2.71
RNN 7.60 2.09 2.37 2.76
RNN-Stack 14.02 2.89 2.24 3.74
Bi-LSTM 6.85 1.91 1.55 5.16
LSTM-Stack 7.59 2.09 2.37 6.09
Random Forest 7.39 2.02 1.70 2.72

Table 5.2: Appceleratorstudio dataset

Regressors MSE MAE MdAE RMSE
LSTM 40.65 4.41 4.62 6.38
CNN 11.78 2.55 2.01 3.43
GRU 7.50 2.10 2.32 2.74
RNN 41.95 4.38 4.68 6.48
RNN-Stack 41.98 4.43 4.85 6.48
Bi-LSTM 40.99 4.33 4.18 8.74
LSTM-Stack 42.00 4.44 4.87 9.88
Random Forest 41.01 4.45 3.93 6.40

Table 5.3: Aptanastudio dataset

Regressors MSE MAE MdAE RMSE
LSTM 39.48 3.72 2.14 6.28
CNN 23.62 3.18 2.28 4.86
GRU 51.81 4.01 1.59 7.20
RNN 39.84 3.65 2.17 6.31
RNN-Stack 42.58 3.68 1.82 6.53
Bi-LSTM 36.59 3.66 2.44 7.36
LSTM-Stack 38.70 3.63 2.06 7.89
Random Forest 37.41 4.07 2.99 6.12

Table 5.4: Clover dataset

45

5.4. EVAL. OF DEEP LEARNING MODELS CHAPTER 5. RESULTS AND DISCUSSION

Regressors MSE MAE MdAE RMSE
LSTM 284.19 9.59 7.48 16.86
CNN 221.22 8.05 3.58 14.87
GRU 250.83 8.48 4.53 15.84
RNN 286.16 9.20 6.66 16.92
RNN-Stack 243.55 7.77 3.50 15.61
Bi-LSTM 219.25 7.41 3.64 14.81
LSTM-Stack 284.05 9.63 7.54 16.85
Random Forest 254.33 10.19 6.83 15.95

Table 5.5: Datamanagement dataset

Regressors MSE MAE MdAE RMSE
LSTM 3.74 1.15 1.13 1.94
CNN 4.42 1.41 1.06 2.10
GRU 3.90 1.18 1.14 1.97
RNN 4.10 1.04 0.47 2.02
RNN-Stack 5.90 1.47 1.03 2.43
Bi-LSTM 3.67 1.17 0.90 1.92
LSTM-Stack 3.84 1.11 1.00 1.96
Random Forest 4.21 1.34 0.99 2.05

Table 5.6: Duracloud dataset

Regressors MSE MAE MdAE RMSE
LSTM 6.16 2.13 2.40 2.48
CNN 4.05 1.51 1.17 2.01
GRU 7.34 2.24 2.03 2.71
RNN 6.58 2.22 2.56 2.57
RNN-Stack 6.28 2.14 2.41 2.51
Bi-LSTM 6.26 2.14 2.28 2.50
LSTM-Stack 6.74 2.24 2.68 2.60
Random Forest 5.34 1.81 1.43 2.31

Table 5.7: Jirasoftware dataset

Regressors MSE MAE MdAE RMSE
LSTM 4.94 1.48 1.01 2.22
CNN 3.94 1.43 1.00 1.99
GRU 4.87 1.48 1.06 2.21
RNN 5.00 1.48 0.76 2.24
RNN-Stack 4.89 1.71 1.44 2.21
Bi-LSTM 4.00 1.37 0.88 2.00
LSTM-Stack 4.77 1.63 1.28 2.18
Random Forest 4.92 1.70 1.36 2.22

Table 5.8: Mesos dataset

46

CHAPTER 5. RESULTS AND DISCUSSION 5.4. EVAL. OF DEEP LEARNING MODELS

Regressors MSE MAE MdAE RMSE
LSTM 516.03 13.99 9.44 22.72
CNN 478.93 13.19 7.00 21.88
GRU 441.94 13.40 10.14 21.02
RNN 444.04 13.26 9.68 21.07
RNN-Stack 443.05 13.38 10.10 21.05
Bi-LSTM 441.29 13.34 10.03 21.01
LSTM-Stack 443.33 13.59 10.58 21.06
Random Forest 480.51 14.81 11.03 21.92

Table 5.9: Moodle dataset

Regressors MSE MAE MdAE RMSE
LSTM 11.85 2.59 2.90 3.44
CNN 11.93 2.64 2.16 3.45
GRU 12.03 2.62 2.71 3.47
RNN 11.96 2.59 2.79 3.46
RNN-Stack 11.87 2.56 2.98 3.45
Bi-LSTM 10.71 2.55 2.40 3.27
LSTM-Stack 11.85 2.58 2.93 3.44
Random Forest 13.66 2.97 2.58 3.70

Table 5.10: Mule dataset

Regressors MSE MAE MdAE RMSE
LSTM 30.67 3.96 3.40 5.54
CNN 31.71 4.03 2.79 5.63
GRU 31.94 3.63 2.47 5.65
RNN 30.78 3.89 3.17 5.55
RNN-Stack 30.67 3.98 3.44 5.54
Bi-LSTM 30.55 3.89 3.12 5.53
LSTM-Stack 30.74 3.91 3.23 5.54
Random Forest 34.66 4.29 3.11 5.89

Table 5.11: Mulestudio dataset

Regressors MSE MAE MdAE RMSE
LSTM 7.66 2.07 1.56 2.77
CNN 10.64 2.27 1.58 3.26
GRU 7.78 2.13 1.72 2.79
RNN 7.71 2.07 1.52 2.78
RNN-Stack 8.32 2.23 1.80 2.88
Bi-LSTM 6.87 1.90 1.51 2.62
LSTM-Stack 7.31 2.05 1.58 2.70
Random Forest 8.62 2.22 1.89 2.94

Table 5.12: SpringXD dataset

47

5.4. EVAL. OF DEEP LEARNING MODELS CHAPTER 5. RESULTS AND DISCUSSION

Regressors MSE MAE MdAE RMSE
LSTM 31.76 4.02 3.05 5.64
CNN 32.54 4.18 3.29 5.70
GRU 30.54 3.90 2.74 5.53
RNN 31.56 3.89 3.48 5.62
RNN-Stack 36.22 4.22 3.31 6.02
Bi-LSTM 29.34 3.78 2.81 5.42
LSTM-Stack 30.21 3.94 2.93 5.50
Random Forest 31.31 4.02 3.26 5.60

Table 5.13: TalendDataQuality dataset

Regressors MSE MAE MdAE RMSE
LSTM 1.81 0.96 0.96 1.34
CNN 1.89 0.97 0.76 1.38
GRU 1.94 0.96 0.95 1.39
RNN 2.07 1.00 0.98 1.44
RNN-Stack 2.10 1.03 1.07 1.45
Bi-LSTM 1.65 0.91 0.68 1.29
LSTM-Stack 1.76 0.95 0.86 2.51
Random Forest 2.15 1.11 1.00 1.47

Table 5.14: Talendesb dataset

Regressors MSE MAE MdAE RMSE
LSTM 34.23 3.68 2.06 5.85
CNN 35.92 3.89 2.60 5.99
GRU 34.27 3.70 2.15 5.85
RNN 35.05 3.59 2.30 5.92
RNN-Stack 34.29 3.68 2.44 5.86
Bi-LSTM 30.61 3.31 2.17 5.53
LSTM-Stack 33.91 3.67 2.09 8.76
Random Forest 28.24 3.36 2.27 5.31

Table 5.15: Titanium dataset

Regressors MSE MAE MdAE RMSE
LSTM 2.39 1.03 0.24 1.55
CNN 2.20 0.99 0.59 1.48
GRU 2.49 1.07 0.55 1.58
RNN 2.42 1.07 0.34 1.56
RNN-Stack 2.43 1.04 0.34 1.56
Bi-LSTM 2.19 0.99 0.59 1.47
LSTM-Stack 2.27 1.04 0.63 1.51
Random Forest 2.26 1.05 0.72 1.50

Table 5.16: Usergrid dataset

48

CHAPTER 5. RESULTS AND DISCUSSION 5.4. EVAL. OF DEEP LEARNING MODELS

Although the metrics MSE, MAE, MdAE and RMSE of the BiLSTM model predic-

tion outperformed our other models (as shown in Figure 5.5) and was even unanimous

for some datasets such as SpringXD and Talendesb (shown in tables 5.12, 5.14). Our

model did not outperform when compared to the most similar approaches to the

one presented in the work of this thesis (Choetkiertikul et al. 2018 and Marapelli

et al. 2020). We can note that our best MAE and MdAE results (1.29, 0.94) that

we obtained with the Bamboo dataset (as shown in Table 5.1) are lower when com-

pared to the MAE and MdAE results (0.74, 0.61) returned by the model presented

by Choetkiertikul et al., 2018. The same scenario occurs when comparing our same

MAE results (1.29) with the best MAE results (0.72) presented by Marapelli et al.,

2020. We believe that the author’s approach is better accurate because they com-

bined more than one deep learning algorithm such as RNN and CNN (Marapelli et al.

2020). We aim to implement this similar approach to future works with the backdrop

presented in the conclusion section.

49

Chapter 6

Conclusion and Future Works

Since accuracy in estimating software development efforts can represent considerable

costs, many studies on deep learning and natural language processing applied to agile

environments are in the interest of researchers worldwide [3]. However, most of the

studies bases on syntax or word-level approaches. Likewise, with NLP research in

general, the semantics and context approach remains a challenge [49]. Our experi-

ments state that the Deep Learning and pre-trained word embeddings techniques are

ambitious compared to traditional regressors for effort estimation like Random Forest.

However, these methods are susceptible to the data used for training. We can say

that the greater the volume and diversity of samples in the corpus used, the better the

performance of the models and story point estimates can be. From the experiments

presented, we can see the effectiveness of using deep learning models for some datasets

and others not. We believe that this variance is because user stories or issues usually

have short texts and short vocabulary, which may mean that many expressions are

familiar to software engineering and shared among agile environments. Against this

backdrop, it is essential to identify different semantic and contexts in a more advanced

way. Fine-tuning the word embedding method (GloVe or Word2Vec) used can be a

solution. Recently, word embedding methods considered contextualized like BERT

promise to solve polysemy and ambiguity problems by self-attention mechanism. In

future work, we would like to implement combined deep learning architecture and

word embeddings finetuning. We also aim to study auto-machine learning (AutoML)

to automatically feed DL models by taking the textual requirements of user stories

or issues generated in the initial development phases. Finally, we hope to build a

suitable model for deployment in agile environments.

50

Appendix A

Deep Learning Models

Architectures

A.1 Summary and Model Architectures

Figure A.1: Summary - LSTM model

51

A.1. SUMMARY AND MODEL ARCHITECTURES APPENDIX A. DL ARCHITECTURES

Figure A.2: Architecture - LSTM model

Figure A.3: Summary - CNN model

52

APPENDIX A. DL ARCHITECTURES A.1. SUMMARY AND MODEL ARCHITECTURES

Figure A.4: Architecture - CNN model

Figure A.5: Summary - GRU model

53

A.1. SUMMARY AND MODEL ARCHITECTURES APPENDIX A. DL ARCHITECTURES

Figure A.6: Architecture - GRU model

Figure A.7: Summary - RNN model

54

APPENDIX A. DL ARCHITECTURES A.1. SUMMARY AND MODEL ARCHITECTURES

Figure A.8: Architecture - RNN model

Figure A.9: Summary - RNN Stack model

55

A.1. SUMMARY AND MODEL ARCHITECTURES APPENDIX A. DL ARCHITECTURES

Figure A.10: Architecture - RNN stack model

Figure A.11: Summary - BiLSTM model

Figure A.12: Architecture - BiLSTM model

56

APPENDIX A. DL ARCHITECTURES A.1. SUMMARY AND MODEL ARCHITECTURES

Figure A.13: Summary - LSTM Stack model

Figure A.14: Architecture - LSTM Stack model

57

Bibliography

[1] N. Fenton, P. Hearty, M. Neil, and L. Radlinski, “Software Project and Quality Modelling

Using Bayesian Networks,” pp. 1–25, 2011. doi: 10.4018/978-1-60566-758-4.ch001.

[2] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature review of machine learning

based software development effort estimation models,” Information and Software Technology,

vol. 54, no. 1, pp. 41–59, 2012. doi: 10.1016/j.infsof.2011.09.002. [Online]. Available:

http://dx.doi.org/10.1016/j.infsof.2011.09.002.

[3] M. Fernandez-Diego, E. R. Mendez, F. Gonzalez-Ladron-De-Guevara, S. Abrahao, and E.

Insfran, “An Update on Effort Estimation in Agile Software Development: A Systematic

Literature Review,” IEEE Access, vol. 8, pp. 166 768–166 800, 2020. doi: 10.1109/access.

2020.3021664.

[4] W. Rosa, B. K. Clark, R. Madachy, and B. Boehm, “Empirical Effort and Schedule Estimation

Models for Agile Processes in the US DoD,” IEEE Transactions on Software Engineering,

vol. 5589, no. c, pp. 1–1, 2021. doi: 10.1109/tse.2021.3080666.

[5] S. Bilgaiyan, S. Sagnika, S. Mishra, and M. Das, “A systematic review on software cost

estimation in Agile Software Development,” Journal of Engineering Science and Technology

Review, vol. 10, no. 4, pp. 51–64, 2017. doi: 10.25103/jestr.104.08.

[6] K. Srinivasan and D. Fisher, “Estimating Software Development Effort,” vol. 21, no. 2, 1995.

[7] C. Prasada Rao, P. Siva Kumar, S. Rama Sree, and J. Devi, “Effort Estimation Based on

Story Points in Agile Approaches : a Systematic Literature,” International Journal of Latest

Trends in Engineering and Technology, pp. 007–011, 2016.

[8] M. Jorgensen, “Relationships between Project Size, Agile Practices, and Successful Software

Development: Results and Analysis,” IEEE Software, vol. 36, no. 2, pp. 39–43, 2019. doi:

10.1109/MS.2018.2884863.

[9] S. D. Vishnubhotla, E. Mendes, and L. Lundberg, “Understanding the perceived relevance

of capability measures: A survey of Agile Software Development practitioners,” Journal of

Systems and Software, vol. 180, 2021. doi: 10.1016/j.jss.2021.111013.

[10] K. Beck, Manifesto for Agile Software Development, Agil, 2021. [Online]. Available: http:

//www.agilemanifesto.org/.

[11] S. Wanjala Munialo and G. Muchiri Muketha, “A Review of Agile Software Effort Estimation

Methods,” International Journal of Computer Applications Technology and Research, vol. 5,

no. 9, pp. 612–618, 2016. [Online]. Available: www.ijcat.com.

58

https://doi.org/10.4018/978-1-60566-758-4.ch001
https://doi.org/10.1016/j.infsof.2011.09.002
http://dx.doi.org/10.1016/j.infsof.2011.09.002
https://doi.org/10.1109/access.2020.3021664
https://doi.org/10.1109/access.2020.3021664
https://doi.org/10.1109/tse.2021.3080666
https://doi.org/10.25103/jestr.104.08
https://doi.org/10.1109/MS.2018.2884863
https://doi.org/10.1016/j.jss.2021.111013
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
www.ijcat.com

BIBLIOGRAPHY BIBLIOGRAPHY

[12] M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort estimation in Agile Software Devel-

opment: A systematic literature review,” ACM International Conference Proceeding Series,

no. September, pp. 82–91, 2014. doi: 10.1145/2639490.2639503.

[13] StateOfAgile, “14th annual STATE OF AGILE REPORT,” Annual Report for the STATE

OF AGILE, vol. 14, no. 14, pp. 2–19, 2020. [Online]. Available: https://stateofagile.

com/%7B%5C#%7Dufh-i-615706098-14th-annual-state-of-agile-report/7027494.

[14] M. Cohn, Agile Estimating and Planning. USA: Prentice Hall PTR, 2005.

[15] S. Dragicevic, S. Celar, and M. Turic, “Bayesian network model for task effort estimation in

agile software development,” Journal of Systems and Software, vol. 127, pp. 109–119, 2017.

doi: 10.1016/j.jss.2017.01.027. [Online]. Available: http://dx.doi.org/10.1016/j.

jss.2017.01.027.

[16] N. K. Singh, Story Point vs Ideal Hour — It is a generation gap issue, 2021. [Online]. Avail-

able: https://www.scrum.org/resources/blog/story- point- vs- ideal- hour- it-

generation-gap-issue (visited on 03/20/2021).

[17] Atlassian, Jira — Issue & Project Tracking Software — Atlassian. [Online]. Available: https:

//www.atlassian.com/software/jira.

[18] R. Popli and N. Chauhan, “Cost and effort estimation in agile software development,”

ICROIT 2014 - Proceedings of the 2014 International Conference on Reliability, Optimiza-

tion and Information Technology, vol. 3, no. 7, pp. 57–61, 2014. doi: 10.1109/ICROIT.2014.

6798284.

[19] A. Idri, M. Hosni, and A. Abran, “Systematic literature review of ensemble effort estimation,”

Journal of Systems and Software, vol. 118, pp. 151–175, 2016. doi: 10.1016/j.jss.2016.

05.016. [Online]. Available: http://dx.doi.org/10.1016/j.jss.2016.05.016.

[20] R. Malhotra, S. Gupta, and T. Singh, “A Systematic Review on Application of Deep Learning

Techniques for Software Quality Predictive Modeling,” 2020 International Conference on

Computational Performance Evaluation, ComPE 2020, pp. 332–337, 2020. doi: 10.1109/

ComPE49325.2020.9200103.

[21] S. Porru, A. Murgia, S. Demeyer, M. Marchesi, and R. Tonelli, “Estimating story points

from issue reports,” ACM International Conference Proceeding Series, 2016. doi: 10.1145/

2972958.2972959.

[22] K. Moharreri, A. V. Sapre, J. Ramanathan, and R. Ramnath, “Cost-Effective Supervised

Learning Models for Software Effort Estimation in Agile Environments,” Proceedings - In-

ternational Computer Software and Applications Conference, vol. 2, pp. 135–140, 2016. doi:

10.1109/COMPSAC.2016.85.

[23] E. Scott and D. Pfahl, “Using developers’ features to estimate story points,” ACM Interna-

tional Conference Proceeding Series, pp. 106–110, 2018. doi: 10.1145/3202710.3203160.

[24] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and T. Menzies, “A Deep

Learning Model for Estimating Story Points,” IEEE Transactions on Software Engineering,

vol. 45, no. 7, pp. 637–656, 2018. doi: 10.1109/TSE.2018.2792473. arXiv: 1609.00489.

59

https://doi.org/10.1145/2639490.2639503
https://stateofagile.com/%7B%5C#%7Dufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://stateofagile.com/%7B%5C#%7Dufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://doi.org/10.1016/j.jss.2017.01.027
http://dx.doi.org/10.1016/j.jss.2017.01.027
http://dx.doi.org/10.1016/j.jss.2017.01.027
https://www.scrum.org/resources/blog/story-point-vs-ideal-hour-it-generation-gap-issue
https://www.scrum.org/resources/blog/story-point-vs-ideal-hour-it-generation-gap-issue
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://doi.org/10.1109/ICROIT.2014.6798284
https://doi.org/10.1109/ICROIT.2014.6798284
https://doi.org/10.1016/j.jss.2016.05.016
https://doi.org/10.1016/j.jss.2016.05.016
http://dx.doi.org/10.1016/j.jss.2016.05.016
https://doi.org/10.1109/ComPE49325.2020.9200103
https://doi.org/10.1109/ComPE49325.2020.9200103
https://doi.org/10.1145/2972958.2972959
https://doi.org/10.1145/2972958.2972959
https://doi.org/10.1109/COMPSAC.2016.85
https://doi.org/10.1145/3202710.3203160
https://doi.org/10.1109/TSE.2018.2792473
https://arxiv.org/abs/1609.00489

BIBLIOGRAPHY BIBLIOGRAPHY

[25] B. Marapelli, A. Carie, and S. M. Islam, “RNN-CNN MODEL: A bi-directional long short-

term memory deep learning network for story point estimation,” CITISIA 2020 - IEEE

Conference on Innovative Technologies in Intelligent Systems and Industrial Applications,

Proceedings, 2020. doi: 10.1109/CITISIA50690.2020.9371770.

[26] S. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,” Infor-

matica (Slovenia), vol. 31, pp. 249–268, 2007.

[27] L. S. Shigueoka et al., “Automated algorithms combining structure and function outperform

general ophthalmologists in diagnosing glaucoma,” eng, PloS one, vol. 13, no. 12, e0207784–

e0207784, Dec. 2018. doi: 10.1371/journal.pone.0207784. [Online]. Available: https:

//pubmed.ncbi.nlm.nih.gov/30517157%20https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC6281287/.

[28] A. Panda, S. M. Satapathy, and S. K. Rath, “Empirical Validation of Neural Network Models

for Agile Software Effort Estimation based on Story Points,” Procedia Computer Science,

vol. 57, pp. 772–781, 2015. doi: 10.1016/j.procs.2015.07.474. [Online]. Available:

http://dx.doi.org/10.1016/j.procs.2015.07.474.

[29] V. S. Ionescu, H. Demian, and I. G. Czibula, “Natural language processing and machine

learning methods for software development effort estimation,” Studies in Informatics and

Control, vol. 26, no. 2, pp. 219–228, 2017. doi: 10.24846/v26i2y201710.

[30] M. Choras et al., “Measuring and improving agile processes in a small-size software develop-

ment company,” IEEE Access, vol. 8, pp. 78 452–78 466, 2020. doi: 10.1109/ACCESS.2020.

2990117.

[31] J. A. T. A. .-. T. T. .-. Highsmith, Agile software development ecosystems LK - https://concordia.on.worldcat.org/oclc/52349654,

English, 2002. [Online]. Available: http://books.google.com/books?id=EaBQAAAAMAAJ%

20http://catalog.hathitrust.org/api/volumes/oclc/48906875.html%20http://

proquest.safaribooksonline.com/0201760436%20http://proquestcombo.safaribooksonline.

com/0201760436%20http://0-proquest.safaribooksonline.com.emu.l.

[32] K. Schwaber and M. Beedle, Agile Software Development with Scrum, 1st. USA: Prentice

Hall PTR, 2001.

[33] K. Beck, Extreme Programming Explained: Embrace Change. USA: Addison-Wesley Longman

Publishing Co., Inc., 1999.

[34] M. A. Ramessur and S. D. Nagowah, “Factors Affecting Sprint Effort Estimation,” Advances

in Intelligent Systems and Computing, vol. 1089, no. January, pp. 507–518, 2020. doi: 10.

1007/978-981-15-1483-8_43.

[35] M. Jørgensen, “Scope Creep or Embrace Change? A Survey of the Connections Between

Requirement Changes ,Use of Agile, and Software Project Success,” Forthcoming, 2018.

[36] E. Coelho and A. Basu, “Effort Estimation in Agile Software Development using Story

Points,” International Journal of Applied Information Systems, vol. 3, no. 7, pp. 7–10, 2012.

doi: 10.5120/ijais12-450574.

[37] L. Lindstrom and R. Jeffries, “Extreme programming and agile software development method-

ologies,” Information Systems Management, vol. 21, no. 3, pp. 41–52, 2004. doi: 10.1201/

1078/44432.21.3.20040601/82476.7.

60

https://doi.org/10.1109/CITISIA50690.2020.9371770
https://doi.org/10.1371/journal.pone.0207784
https://pubmed.ncbi.nlm.nih.gov/30517157%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281287/
https://pubmed.ncbi.nlm.nih.gov/30517157%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281287/
https://pubmed.ncbi.nlm.nih.gov/30517157%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281287/
https://doi.org/10.1016/j.procs.2015.07.474
http://dx.doi.org/10.1016/j.procs.2015.07.474
https://doi.org/10.24846/v26i2y201710
https://doi.org/10.1109/ACCESS.2020.2990117
https://doi.org/10.1109/ACCESS.2020.2990117
http://books.google.com/books?id=EaBQAAAAMAAJ%20http://catalog.hathitrust.org/api/volumes/oclc/48906875.html%20http://proquest.safaribooksonline.com/0201760436%20http://proquestcombo.safaribooksonline.com/0201760436%20http://0-proquest.safaribooksonline.com.emu.l
http://books.google.com/books?id=EaBQAAAAMAAJ%20http://catalog.hathitrust.org/api/volumes/oclc/48906875.html%20http://proquest.safaribooksonline.com/0201760436%20http://proquestcombo.safaribooksonline.com/0201760436%20http://0-proquest.safaribooksonline.com.emu.l
http://books.google.com/books?id=EaBQAAAAMAAJ%20http://catalog.hathitrust.org/api/volumes/oclc/48906875.html%20http://proquest.safaribooksonline.com/0201760436%20http://proquestcombo.safaribooksonline.com/0201760436%20http://0-proquest.safaribooksonline.com.emu.l
http://books.google.com/books?id=EaBQAAAAMAAJ%20http://catalog.hathitrust.org/api/volumes/oclc/48906875.html%20http://proquest.safaribooksonline.com/0201760436%20http://proquestcombo.safaribooksonline.com/0201760436%20http://0-proquest.safaribooksonline.com.emu.l
https://doi.org/10.1007/978-981-15-1483-8_43
https://doi.org/10.1007/978-981-15-1483-8_43
https://doi.org/10.5120/ijais12-450574
https://doi.org/10.1201/1078/44432.21.3.20040601/82476.7
https://doi.org/10.1201/1078/44432.21.3.20040601/82476.7

BIBLIOGRAPHY BIBLIOGRAPHY

[38] L. Ben Othmane, P. Angin, H. Weffers, and B. Bhargava, “Extending the agile development

process to develop acceptably secure software,” IEEE Transactions on Dependable and Secure

Computing, vol. 11, no. 6, pp. 497–509, 2014. doi: 10.1109/TDSC.2014.2298011.

[39] C. Ladas, Scrumban - Essays on Kanban Systems for Lean Software Development. Seattle,

WA, USA: Modus Cooperandi Press, 2009.

[40] K. S. Jeff Sutherland, The 2020 Scrum Guide, 2020. [Online]. Available: https://scrumguides.

org/scrum-guide.html (visited on 11/07/2021).

[41] H. Takeuchi, I. Nonaka, and W. groups, “The new new product development game,” Harvard

business review, vol. 64, no. 1, p. 137, 1986. [Online]. Available: https://hbr.org/1986/01/

the-new-new-product-development-game.

[42] I. Gat, “How BMC is scaling agile development,” Proceedings - AGILE Conference, 2006,

vol. 2006, pp. 315–320, 2006. doi: 10.1109/AGILE.2006.33.

[43] B. Tanveer, A. M. Vollmer, and U. M. Engel, “Utilizing change impact analysis for effort

estimation in agile development,” Proceedings - 43rd Euromicro Conference on Software En-

gineering and Advanced Applications, SEAA 2017, pp. 430–434, 2017. doi: 10.1109/SEAA.

2017.64.

[44] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “Development and deployment at face-

book,” IEEE Internet Computing, vol. 17, no. 4, pp. 8–17, 2013. doi: 10.1109/MIC.2013.25.

[45] M. T. Valente, “Engenharia de Software Moderna,” p. 394, 2020. [Online]. Available: https:

//engsoftmoderna.info/.

[46] P. Pokharel and P. Vaidya, “A Study of User Story in Practice,” 2020 International Con-

ference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy,

ICDABI 2020, 2020. doi: 10.1109/ICDABI51230.2020.9325670.

[47] M. Cohn, User Stories Applied: For Agile Software Development. USA: Addison Wesley Long-

man Publishing Co., Inc., 2004.

[48] E.-M. Schön, J. Thomaschewski, and M. J. Escalona, “Agile Requirements Engineering: A

systematic literature review,” Computer Standards & Interfaces, vol. 49, pp. 79–91, 2017.

doi: https : / / doi . org / 10 . 1016 / j . csi . 2016 . 08 . 011. [Online]. Available: https :

//www.sciencedirect.com/science/article/pii/S0920548916300708.

[49] I. K. Raharjana, D. Siahaan, and C. Fatichah, “User Stories and Natural Language Processing:

A Systematic Literature Review,” IEEE Access, vol. 9, pp. 53 811–53 826, 2021. doi: 10.1109/

ACCESS.2021.3070606.

[50] N. Nunes, L. Constantine, and R. Kazman, “iUCP: Estimating Interactive-Software Project

Size with Enhanced Use-Case Points,” IEEE Software, vol. 28, no. 4, pp. 64–73, 2011. doi:

10.1109/MS.2010.111.

[51] S. McConnell, Software Estimation: Demystifying the Black Art. USA: Microsoft Press, 2006.

[52] S. Boral, “Domain V: Adaptive Planning,” in Ace the PMI-ACP® exam: A Quick Reference

Guide for the Busy Professional. Berkeley, CA: Apress, 2016, pp. 201–261. doi: 10.1007/978-

1-4842-2526-4_6. [Online]. Available: https://doi.org/10.1007/978-1-4842-2526-

4%7B%5C_%7D6.

61

https://doi.org/10.1109/TDSC.2014.2298011
https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html
https://hbr.org/1986/01/the-new-new-product-development-game
https://hbr.org/1986/01/the-new-new-product-development-game
https://doi.org/10.1109/AGILE.2006.33
https://doi.org/10.1109/SEAA.2017.64
https://doi.org/10.1109/SEAA.2017.64
https://doi.org/10.1109/MIC.2013.25
https://engsoftmoderna.info/
https://engsoftmoderna.info/
https://doi.org/10.1109/ICDABI51230.2020.9325670
https://doi.org/https://doi.org/10.1016/j.csi.2016.08.011
https://www.sciencedirect.com/science/article/pii/S0920548916300708
https://www.sciencedirect.com/science/article/pii/S0920548916300708
https://doi.org/10.1109/ACCESS.2021.3070606
https://doi.org/10.1109/ACCESS.2021.3070606
https://doi.org/10.1109/MS.2010.111
https://doi.org/10.1007/978-1-4842-2526-4_6
https://doi.org/10.1007/978-1-4842-2526-4_6
https://doi.org/10.1007/978-1-4842-2526-4%7B%5C_%7D6
https://doi.org/10.1007/978-1-4842-2526-4%7B%5C_%7D6

BIBLIOGRAPHY BIBLIOGRAPHY

[53] S. Z. Ziauddin, Shahid Kamal Tipu, “An Effort Estimation Model for Agile Software Devel-

opment,” Advances in Computer Science and its Applications (ACSA), vol. 2, no. 1, pp. 314–

324, 2012.

[54] M. Jorgensen, G. R. Bergersen, and K. Liestol, “Relations Between Effort Estimates, Skill

Indicators, and Measured Programming Skill,” IEEE Transactions on Software Engineering,

2020. doi: 10.1109/TSE.2020.2973638.

[55] M. Usman, J. Börstler, and K. Petersen, An Effort Estimation Taxonomy for Agile Software

Development, 4. 2017, vol. 27, pp. 641–674. doi: 10.1142/S0218194017500243.

[56] M. Vyas, A. Bohra, C. S. Lamba, and A. Vyas, “A Review on Software Cost and Effort Esti-

mation Techniques for Agile Development Process,” International Journal of Recent Research

Aspects, vol. 5, no. 1, pp. 1–5, 2018.

[57] E. Dantas, M. Perkusich, E. Dilorenzo, D. F. Santos, H. Almeida, and A. Perkusich, “Effort

estimation in agile software development: An updated review,” Proceedings of the Interna-

tional Conference on Software Engineering and Knowledge Engineering, SEKE, vol. 2018-

July, no. June, pp. 496–501, 2018. doi: 10.18293/SEKE2018-003.

[58] J. Grenning, Planning Poker or How to avoid Analysis Paralysis while Release Planning, Vol.

3. Hawthorn Woods: Renaissance Software Consulting, 2002.

[59] O. Malgonde and K. Chari, An ensemble-based model for predicting agile software development

effort, 2. 2019, vol. 24, pp. 1017–1055. doi: 10.1007/s10664-018-9647-0.

[60] M. Arora, S. Chopra, and P. Gupta, “Estimation of regression test effort in agile projects,”

Far East Journal of Electronics and Communications, vol. SpecialVol, no. February 2020,

pp. 741–753, 2016. doi: 10.17654/ECSV3PII16741.

[61] R. Popli and N. Chauhan, “Estimation in agile environment using resistance factors,” Proceed-

ings of the 2014 International Conference on Information Systems and Computer Networks,

ISCON 2014, pp. 60–65, 2014. doi: 10.1109/ICISCON.2014.6965219.

[62] M. Owais and R. Ramakishore, “Effort, duration and cost estimation in agile software devel-

opment,” 2016 9th International Conference on Contemporary Computing, IC3 2016, pp. 1–

5, 2017. doi: 10.1109/IC3.2016.7880216.

[63] W. Aslam, F. Ijaz, M. Ikramullah Lali, and W. Mehmood, “Risk Aware and Quality En-

riched Effort Estimation for Mobile Applications in Distributed Agile Software Develop-

ment,” Journal of Information Science and Engineering, vol. 33, no. November, pp. 1–21,

2017. doi: 10.6688/JISE.2017.33.6.6. [Online]. Available: http://web.a.ebscohost.

com/ehost/pdfviewer/pdfviewer?vid=10%7B%5C&%7Dsid=213cf351-71b5-4f17-a717-

f14e11a15065%7B%5C%%7D40sessionmgr4006.

[64] C. Prasada Rao, P. Siva Kumar, S. Rama Sree, and J. Devi, An agile effort estimation

based on story points using machine learning techniques. Springer Singapore, 2018, vol. 712,

pp. 209–219. doi: 10.1007/978-981-10-8228-3_20. [Online]. Available: http://dx.doi.

org/10.1007/978-981-10-8228-3%7B%5C_%7D20.

[65] E. Mendes, “Practitioner’s Knowledge Representation,” in Springer Berlin Heidelberg, 2014.

doi: 10.1007/978-3-642-54157-5.

62

https://doi.org/10.1109/TSE.2020.2973638
https://doi.org/10.1142/S0218194017500243
https://doi.org/10.18293/SEKE2018-003
https://doi.org/10.1007/s10664-018-9647-0
https://doi.org/10.17654/ECSV3PII16741
https://doi.org/10.1109/ICISCON.2014.6965219
https://doi.org/10.1109/IC3.2016.7880216
https://doi.org/10.6688/JISE.2017.33.6.6
http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=10%7B%5C&%7Dsid=213cf351-71b5-4f17-a717-f14e11a15065%7B%5C%%7D40sessionmgr4006
http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=10%7B%5C&%7Dsid=213cf351-71b5-4f17-a717-f14e11a15065%7B%5C%%7D40sessionmgr4006
http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=10%7B%5C&%7Dsid=213cf351-71b5-4f17-a717-f14e11a15065%7B%5C%%7D40sessionmgr4006
https://doi.org/10.1007/978-981-10-8228-3_20
http://dx.doi.org/10.1007/978-981-10-8228-3%7B%5C_%7D20
http://dx.doi.org/10.1007/978-981-10-8228-3%7B%5C_%7D20
https://doi.org/10.1007/978-3-642-54157-5

BIBLIOGRAPHY BIBLIOGRAPHY

[66] E. Ungan, N. Cizmeli, and O. Demirors, “Comparison of functional size based estimation and

story points, based on effort estimation effectiveness in SCRUM projects,” Proceedings - 40th

Euromicro Conference Series on Software Engineering and Advanced Applications, SEAA

2014, pp. 77–80, 2014. doi: 10.1109/SEAA.2014.83.

[67] A. E. D. Hamouda, “Using agile story points as an estimation technique in CMMI organiza-

tions,” Proceedings - 2014 Agile Conference, AGILE 2014, pp. 16–23, 2014. doi: 10.1109/

AGILE.2014.11.

[68] S. M. Satapathy, A. Panda, and S. K. Rath, “Story point approach based agile software effort

estimation using various SVR kernel methods,” Proceedings of the International Conference

on Software Engineering and Knowledge Engineering, SEKE, vol. 2014-Janua, no. January,

pp. 304–307, 2014.

[69] P. V. de Campos Souza, A. J. Guimaraes, V. S. Araujo, T. S. Rezende, and V. J. S. Araujo,

“Incremental regularized Data Density-Based Clustering neural networks to aid in the con-

struction of effort forecasting systems in software development,” Applied Intelligence, vol. 49,

no. 9, pp. 3221–3234, 2019. doi: 10.1007/s10489-019-01449-w.

[70] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations

in vector space,” 1st International Conference on Learning Representations, ICLR 2013 -

Workshop Track Proceedings, pp. 1–12, 2013. arXiv: 1301.3781.

[71] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global Vectors for Word Representa-

tion,” in Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1532–1543.

[Online]. Available: http://www.aclweb.org/anthology/D14-1162.

[72] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirec-

tional transformers for language understanding,” NAACL HLT 2019 - 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language

Technologies - Proceedings of the Conference, vol. 1, no. Mlm, pp. 4171–4186, 2019. arXiv:

1810.04805.

[73] J. Patihullah and E. Winarko, “Hate Speech Detection for Indonesia Tweets Using Word

Embedding And Gated Recurrent Unit,” IJCCS (Indonesian Journal of Computing and Cy-

bernetics Systems), vol. 13, no. 1, p. 43, 2019. doi: 10.22146/ijccs.40125.

[74] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting Similarities among Languages for Machine

Translation,” 2013. arXiv: 1309.4168. [Online]. Available: http://arxiv.org/abs/1309.

4168.

[75] K. P. Murphy, Probabilistic Machine Learning: An introduction. MIT Press, 2021. [Online].

Available: probml.ai.

[76] I. G. Courville, Y. Bengio, and Aaron, Deep Learning. MIT Press, 2016.

[77] Abhishek, A. Dhankar, and N. Gupta, “A systematic review of techniques, tools and appli-

cations of machine learning,” Proceedings of the 3rd International Conference on Intelligent

Communication Technologies and Virtual Mobile Networks, ICICV 2021, no. Icicv, pp. 764–

768, 2021. doi: 10.1109/ICICV50876.2021.9388637.

[78] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning. 2021.

63

https://doi.org/10.1109/SEAA.2014.83
https://doi.org/10.1109/AGILE.2014.11
https://doi.org/10.1109/AGILE.2014.11
https://doi.org/10.1007/s10489-019-01449-w
https://arxiv.org/abs/1301.3781
http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/1810.04805
https://doi.org/10.22146/ijccs.40125
https://arxiv.org/abs/1309.4168
http://arxiv.org/abs/1309.4168
http://arxiv.org/abs/1309.4168
probml.ai
https://doi.org/10.1109/ICICV50876.2021.9388637

BIBLIOGRAPHY BIBLIOGRAPHY

[79] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. doi: 10.

1023/A:1010933404324. [Online]. Available: https://doi.org/10.1023/A:1010933404324.

[80] P. Argentiero, R. Chin, and P. Beaudet, “An Automated Approach to the Design of De-

cision Tree Classifiers,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. PAMI-4, pp. 51–57, 1982.

[81] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, pp. 123–140, 2004.

[82] S. M. Satapathy and S. K. Rath, “Empirical assessment of machine learning models for

agile software development effort estimation using story points,” Innovations in Systems and

Software Engineering, vol. 13, no. 2-3, pp. 191–200, 2017. doi: 10.1007/s11334-017-0288-z.

[83] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of ensemble effort estimation,”

IEEE Transactions on Software Engineering, vol. 38, no. 6, pp. 1403–1416, 2012. doi: 10.

1109/TSE.2011.111.

[84] N. Quadrianto and Z. Ghahramani, “A very simple safe-Bayesian random forest,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 6, pp. 1297–1303,

2015. doi: 10.1109/TPAMI.2014.2362751.

[85] S. M. Aslam, A. K. Jilani, J. Sultana, and L. Almutairi, “Feature Evaluation of Emerging

E-Learning Systems Using Machine Learning: An Extensive Survey,” IEEE Access, vol. 9,

pp. 69 573–69 587, 2021. doi: 10.1109/access.2021.3077663.

[86] G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Software Defect Prediction via Attention-

Based Recurrent Neural Network,” Scientific Programming, vol. 2019, 2019. doi: 10.1155/

2019/6230953.

[87] I. Karabayir, O. Akbilgic, and N. Tas, “A Novel Learning Algorithm to Optimize Deep Neural

Networks: Evolved Gradient Direction Optimizer (EVGO),” IEEE Transactions on Neural

Networks and Learning Systems, vol. 32, no. 2, pp. 685–694, 2021. doi: 10.1109/TNNLS.

2020.2979121.

[88] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to construct deep recurrent neural

networks,” 2nd International Conference on Learning Representations, ICLR 2014 - Confer-

ence Track Proceedings, pp. 1–13, 2014. arXiv: 1312.6026.

[89] J. Lambert, “Stacked RNNs for Encoder-Decoder Networks : Accurate Machine Understand-

ing of Images,” Department of Computer Science, Stanford University, pp. 1–9, 2014. [Online].

Available: https://cs224d.stanford.edu/reports/Lambert.pdf.

[90] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber, “LSTM:

A Search Space Odyssey,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 28, no. 10, pp. 2222–2232, 2017. doi: 10.1109/TNNLS.2016.2582924. arXiv: 1503.04069.

[91] S. T. A. .-. T. T. .-. Weidman, Deep learning from scratch : building with Python from first

principles LK - https://concordia.on.worldcat.org/oclc/1119738856, English, Sebastopol, CA,

2019. [Online]. Available: http://proquest.safaribooksonline.com/?fpi=9781492041405.

[92] A. T. A. .-. T. T. .-. Géron, Hands-on machine learning with Scikit-Learn, Keras, and

TensorFlow : concepts, tools, and techniques to build intelligent systems LK, English, Se-

bastopol, CA, 2019. [Online]. Available: http://proquest.safaribooksonline.com/?fpi=

9781492032632.

64

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s11334-017-0288-z
https://doi.org/10.1109/TSE.2011.111
https://doi.org/10.1109/TSE.2011.111
https://doi.org/10.1109/TPAMI.2014.2362751
https://doi.org/10.1109/access.2021.3077663
https://doi.org/10.1155/2019/6230953
https://doi.org/10.1155/2019/6230953
https://doi.org/10.1109/TNNLS.2020.2979121
https://doi.org/10.1109/TNNLS.2020.2979121
https://arxiv.org/abs/1312.6026
https://cs224d.stanford.edu/reports/Lambert.pdf
https://doi.org/10.1109/TNNLS.2016.2582924
https://arxiv.org/abs/1503.04069
http://proquest.safaribooksonline.com/?fpi=9781492041405
http://proquest.safaribooksonline.com/?fpi=9781492032632
http://proquest.safaribooksonline.com/?fpi=9781492032632

BIBLIOGRAPHY BIBLIOGRAPHY

[93] C. Dyer, M. Ballesteros, W. Ling, A. Matthews, and N. A. Smith, “Transition-based de-

pendency parsing with stack long short-term memory,” ACL-IJCNLP 2015 - 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing of the Asian Federation of Natural Language

Processing, Proceedings of the Conference, vol. 1, pp. 334–343, 2015. doi: 10.3115/v1/p15-

1033. arXiv: 1505.08075.

[94] K. Cho et al., “Learning phrase representations using RNN encoder-decoder for statistical

machine translation,” EMNLP 2014 - 2014 Conference on Empirical Methods in Natural

Language Processing, Proceedings of the Conference, pp. 1724–1734, 2014. doi: 10.3115/v1/

d14-1179. arXiv: 1406.1078.

[95] E. Kiperwasser and Y. Goldberg, “Simple and Accurate Dependency Parsing Using Bidirec-

tional LSTM Feature Representations,” Transactions of the Association for Computational

Linguistics, vol. 4, no. August, pp. 313–327, 2016. doi: 10.1162/tacl_a_00101. arXiv:

1603.04351.

[96] G. Charlyn Pushpa Latha and M. Mohana Priya, “A review on deep learning algorithms

for speech and facial emotion recognition,” International Journal of Control Theory and

Applications, vol. 9, no. 24, pp. 183–204, 2016. doi: 10.34306/csit.v1i3.55.

[97] L. Hou, D. Samaras, T. Kurc, Y. Gao, and J. Saltz, “ConvNets with Smooth Adaptive

Activation Functions for Regression,” in Proceedings of the 20th International Conference on

Artificial Intelligence and Statistics, A. Singh and J. Zhu, Eds., ser. Proceedings of Machine

Learning Research, vol. 54, Fort Lauderdale, FL, USA: PMLR, 2017, pp. 430–439. [Online].

Available: http://proceedings.mlr.press/v54/hou17a.html.

[98] E. Lewinson, Python for finance cookbook - https://concordia.on.worldcat.org/oclc/1139921653,

Inglês, Birmingham, UK, 2020. [Online]. Available: http://www.vlebooks.com/vleweb/

product/openreader?id=none%7B%5C&%7Disbn=9781789617320.

[99] Atlassian, Showing Advanced Roadmaps custom fields in Jira, 2021. [Online]. Available: https:

//confluence.atlassian.com/advancedroadmapsserver0329/showing-advanced-roadmaps-

custom-fields-in-jira-1021219170.html.

[100] P. R.

bibinitperiod H. S. Christopher D. Manning, Introduction to Information Retrieval - NLP -

Stemming and Lemmatization, 2008. [Online]. Available: https://nlp.stanford.edu/IR-

book/html/htmledition/stemming-and-lemmatization-1.html (visited on 10/07/2021).

[101] S. Suyanto, A. Arifianto, A. Sirwan, and A. P. Rizaendra, “End-to-End Speech Recognition

Models for a Low-Resourced Indonesian Language,” 2020 8th International Conference on

Information and Communication Technology, ICoICT 2020, no. ii, 2020. doi: 10.1109/

ICoICT49345.2020.9166346.

65

https://doi.org/10.3115/v1/p15-1033
https://doi.org/10.3115/v1/p15-1033
https://arxiv.org/abs/1505.08075
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://arxiv.org/abs/1406.1078
https://doi.org/10.1162/tacl_a_00101
https://arxiv.org/abs/1603.04351
https://doi.org/10.34306/csit.v1i3.55
http://proceedings.mlr.press/v54/hou17a.html
http://www.vlebooks.com/vleweb/product/openreader?id=none%7B%5C&%7Disbn=9781789617320
http://www.vlebooks.com/vleweb/product/openreader?id=none%7B%5C&%7Disbn=9781789617320
https://confluence.atlassian.com/advancedroadmapsserver0329/showing-advanced-roadmaps-custom-fields-in-jira-1021219170.html
https://confluence.atlassian.com/advancedroadmapsserver0329/showing-advanced-roadmaps-custom-fields-in-jira-1021219170.html
https://confluence.atlassian.com/advancedroadmapsserver0329/showing-advanced-roadmaps-custom-fields-in-jira-1021219170.html
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://doi.org/10.1109/ICoICT49345.2020.9166346
https://doi.org/10.1109/ICoICT49345.2020.9166346

	Abbreviations
	Introduction
	Software Effort Estimation and Agile
	Background
	Problem Statement
	State of the art
	Contribution of this thesis
	Organization of this thesis

	Literature Review
	Agile methodology
	Agile manifesto
	Scrum
	User Story

	Agile Software Effort Estimation
	Types of Agile Software Effort Estimation
	Planning Poker
	Story points
	Machine Learning Approach for Story Points Estimation

	DL for Story Points
	Text Preprocessing
	Text Feature Extraction
	N-gram
	Bag of Words (BoW)
	Word embeddings

	Text Feature Selection
	ML and Neural Networks
	Supervised Learning
	Semi-supervised learning
	Unsupervised Learning
	Linear regression models
	Random Forest model
	Deep Learning and Neural Networks
	Recurrent Neural Networks (RNN)
	Stacked LSTM
	Gated recurrent unit (GRU)
	Bidirectional LSTM (BiLSTM)
	Convolutional Neural Network (CNN)

	Performance Metrics

	Data Collection and Preprocessing
	Jira
	Dataset
	Text Preprocessing

	Results and Discussion
	Text Feature Selection
	Word2vec Visualization
	Deep learning Architectures
	Eval. of Deep Learning Models

	Conclusion and Future Works
	DL Architectures
	Summary and Model Architectures

	Bibliography

