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Abstract 

Objective: Among older adults, everyday physical activity (EPA) and mobility (MOB) are 

important contributors to age-related variability and change in executive functioning (EF). 

However, the role of these health and lifestyle influences may be moderated by genetic factors, 

especially those known to be risk factors for neurodegenerative disease. The goals of this 

research were to (a) confirm a single-factor EF latent variable fit this sample of participants and 

maintained measurement invariance, (b) determine the best fitting latent growth models for EF, 

EPA, and MOB, (c) examine how EPA, MOB and four genetic factors independently affect EF 

performance and change, (d) test moderating effects of the four genetic factors on EPA-EF 

relationships, and (e) test moderating effects of the four genetic factors on MOB-EF 

relationships. Method: The sample consisted of genotyped older adults (N=577, M age = 70.47 

years) over three waves (9 years) of the Victoria Longitudinal Study. The four genetic factors 

were Apolipoprotein E (APOE rs7412 and rs429358) Clusterin (CLU rs11136000), Complement 

receptor 1 (CR1 rs6656401), and Phosphatidylinositol binding Clathrin Assembly Protein 

(PICALM rs541458). Analyses included (a) confirmatory factor analysis establishing a single 

latent EF factor from four standard EF tasks, (b) latent growth modeling (Mplus 7.0) over a 40-

year band of aging (ages 53-95), and (c) path analyses to investigate the independent and 

interactive effects of APOE, CLU, CR1, PICALM, EPA and MOB on EF. Results: First, the 

single factor EF latent variable fit the sample of participants and had configural, metric and 

partial scalar invariance. Second, older adults significantly differed in both MOB and EF 

performance, exhibited significant 9-year EF and MOB change and individual variability in rate 

of MOB and EF decline. Third, higher levels of EPA were associated with better EF 

performance at the centering age (75 years) and less EF decline. In addition, higher levels of 

MOB were associated with better EF performance. Fourth, within the APOE ε3 (non-risk) and 
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the CLU risk (C+) groups, those with higher EPA exhibited better EF performance and more 

gradual change over time than those with lower EPA. Also, when APOE and CLU were used to 

create a risk score, higher levels of EPA were associated with higher levels of EF performance 

for the low-risk group, and more gradual 9-year change for both the low and mid-risk groups. 

Fifth, the effect of level of mobility on level of EF was stronger for both the APOE ɛ4 (risk) and 

CLU risk carriers than their non-risk peers. However, although this pattern of results was similar 

when APOE and CLU were combined into a risk score, moderation was not evidenced. 

Conclusion:  For individuals with low genetic risk for AD, participating in higher levels of EPA 

was beneficial to EF performance and change. In addition, level of mobility was strongly related 

to level of EF performance for individuals with high genetic risk for AD.  

 Keywords: everyday physical activity, executive function, mobility, APOE, CLU, CR1, 

PICALM, Victoria Longitudinal Study 

 

 

  



iv 
 

Acknowledgements 

This research was supported by grants from the (a) National Institutes of Health/National 

Institute on Aging (R01 AG008235) to Roger A. Dixon; (b) Alberta Health Services (University 

Hospital Foundation) to Roger A. Dixon, Jack Jhamandas, and David Westaway; and (c) the 

Canada Research Chairs program (to Roger A. Dixon). 

I would like to express my sincere gratitude to several people who have assisted me on the 

journey throughout my graduate program. First of all, I owe an enormous debt of gratitude to my 

supervisor, Dr. Roger Dixon, for his mentorship, support, understanding, patience, and guidance 

over the past two years. I am constantly challenged to become a better scholar because of his 

wisdom and counsel. Second, I would like to thank my colleagues and members of the Victoria 

Longitudinal Study lab for their help and presence throughout this journey. Third, I would like to 

especially thank Peggy McFall for all of her valuable comments, her open door, never-ending 

support and encouragement over the past two years. Fourth, I would also like to thank the 

members of my Supervisory Committee, Dr. Richard Camicioli and Dr. Sandra Wiebe for their 

time, effort, comments and suggestions for improving my work. Last, but definitely not least, I 

would like to thank my kids, Keaton, Makayla and Emma. They have been my biggest source of 

encouragement and my very own cheerleaders as we have faced many challenges on this 

adventure.  

  



v 
 

Table of Contents 

Introduction ..................................................................................................................................... 1 

Background ................................................................................................................................. 1 

Research Goals ............................................................................................................................ 7 

Method ............................................................................................................................................ 8 

Participants .................................................................................................................................. 8 

Measures.................................................................................................................................... 10 

Executive Function (EF). ....................................................................................................... 10 

Everyday Physical Activity (EPA). ....................................................................................... 11 

Mobility (MOB). ................................................................................................................... 11 

DNA Extraction and Genotyping .............................................................................................. 12 

Statistical Analyses ................................................................................................................... 14 

Analyses for RG 1: Verification of EF latent model and measurement invariance. ............. 15 

Analyses for RG2: Latent growth modeling for EF, EPA and MOB. ................................... 15 

Analyses for RG 3: Independent effects of EPA, MOB, APOE, CLU, CR1, and PICALM on 

the EF growth model. ............................................................................................................ 16 

Analyses for RG 4: Interactive effects of the individual genes x EPA on the EF growth 

model (RG 4a); Interactive effects of the genetic risk score x EPA on the EF growth model 

(RG 4b). ................................................................................................................................. 16 

Analyses for RG 5: Interactive effects of the individual genes x MOB on the EF growth 

model (RG5a); Interactive effects of the genetic risk score x MOB on the EF growth model 

(RG5b). .................................................................................................................................. 17 

Results ........................................................................................................................................... 17 

RG1: EF Latent Model and Invariance Verification ................................................................. 17 

RG2: Latent growth modeling for EF, PA, and MOB .............................................................. 18 

RG3: Independent effects of EPA, MOB, APOE, CLU, CR1, and PICALM on the EF growth 

model ......................................................................................................................................... 18 

RG 4a: Interactive effects of APOE x EPA, CLU x EPA, CR1 x EPA, PICALM x EPA and on 

the EF growth model ................................................................................................................. 19 

RG 4b: Interactive effects of AD genetic score x EPA on the EF growth model ..................... 22 

RG 5a: Interactive effects of APOE x MOB, CLU x MOB, CR1 x MOB, and PICALM x MOB 

on the EF growth model ............................................................................................................ 23 

RG 5b: Interactive effects of the AD risk composites x MOB on the EF growth model ......... 24 



vi 
 

Discussion ..................................................................................................................................... 24 

References ..................................................................................................................................... 47 

Appendix A ................................................................................................................................... 71 

Appendix B ................................................................................................................................... 72 

Appendix C ................................................................................................................................... 73 

 

  



vii 
 

List of Tables 

Table 1. Descriptive Statistics for Sample by APOE genotype and longitudinal wave ............... 37 

Table 2. Goodness of Fit Indices for Executive Function Confirmatory Analysis Models and 

Measurement Invariance Testing .................................................................................................. 38 

Table 3. Goodness of Fit Indices for EF, EPA and MOB Latent Growth Models ....................... 39 

Table 4. Difference tests for genetic predictors as moderators of EPA on EF level and change 

....................................................................................................................................................... 40 

Table 5. Difference tests for genetic predictors as moderators of MOB on EF level and change 

....................................................................................................................................................... 41 

  



viii 
 

List of Figures 

 

Figure 1.Predicted growth curve for executive function factor scores using everyday physical 

activity (EPA) at W1 as a predictor. ............................................................................................. 42 

Figure 2. Predicted growth curve for executive function factor scores by APOE allele status .... 43 

Figure 3. Predicted growth curve for executive function factor scores by CLU allele status ....... 44 

Figure 4. Predicted growth curve for executive function factor scores by AD genetic risk score 

(comprised of APOE and CLU) using everyday physical activity (EPA) as a predictor.. ........... 45 

Figure 5. Parallel process latent growth model of executive function and mobility across three 

measurement occasions in the Victoria Longitudinal Study......................................................... 46 

 

  



ix 
 

List of Abbreviations 

 

EF. . . . . . . . . . Executive Function 

EPA. . . . . . . . .Everyday Physical Activity 

MOB. . . . . . . . Mobility 

AD. . . . . . . . . .Alzheimer’s disease 

APOE . . . . . .  Apolipoprotein E 

CLU. . . . . . . . .Clusterin 

PICALM.. . . . .Phosphatidylinositol Binding Clathrin Assembly Protein 

CR1. . . . . . . . . Complement Component (3b/4b) Receptor 1  

BIN1 . . . . . . . .Bridging Integrator 1 

QIAgen . . . . . .QIAgility robotic system 

VLS . . . . . . . .  Victoria Longitudinal Study 

S1 . . . . . . . . . .  Sample (number)  

W1. . . . . . . . . . Wave (number) 

CFI . . . . . . . . . Comparative fit index 

RMSEA . . . . . .Root Mean Square Error of Approximation 

SRMR . . . . . . . Standardized root-mean-square residual  

RG1 . . . . . . . . . Research goal (number) 

 

  

 

  



 
 

Introduction 

Physical activity and mobility are two important influences on cognitive decline that 

occurs as a function of both normal aging and neurodegenerative disease. However, non-

modifiable factors, such as genetic risk, may also exert influence on cognitive aging decline, 

both independently and through moderating effects. The first aim of this research is to test 

independent effects of two factors on executive function (EF) performance and 9-year change 

with aging. The two factors are (a) everyday physical activity (EPA), which refers to leisure 

participation in a wide variety of activities, and (b) mobility (MOB), a composite measure 

comprised of indicators of gait and balance. The second aim is to examine whether these two 

influences are moderated by genetic risk, represented by four genotypes associated with 

cognitive decline and Alzheimer’s disease. The research background supporting these aims is 

presented in this section.  

Background 

Research examining the variability in decline in cognitive aging has identified several 

independent components of influence, including biological, health, genetic, and lifestyle factors 

(Baltes, 1987; Dixon, Small, MacDonald, & McArdle, 2012; Fotuhi, Hachinski, & Whitehouse, 

2009). However, examining singular influences on complex cognitive function and change is no 

longer ideal, as many sources are operating interactively to influence cognitive outcomes and 

trajectories. Accordingly, dynamic models representing networks of influence have been applied 

both conceptually and methodologically within aging research (e.g., Anstey, 2014). Recent 

investigations have confirmed lifestyle, health, and genetic factors operate interactively to exert 

risk-elevating or protective influences (Ferencz et al., 2014; McFall et al., 2014) leading to the 
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wide range of cognitive outcomes associated with aging, from healthy aging to 

neurodegenerative decline.  

Alzheimer’s disease (AD), the leading cause of dementia, is a progressive, complex, multi-

factorial neurodegenerative disease accounting for 60 - 80 percent of all cases of dementia 

(Barnes & Yaffe, 2011). Currently, there are over 500 000 people living with AD or related 

dementia in Canada, and it is projected the prevalence of AD will double by 2038 (Alzheimer’s 

Society of Canada, 2010). Pharmacological treatments have been ineffective at treating or 

preventing dementia, having only limited success for symptom management (Erickson, 

Weinstein, & Lopez, 2012; Mangialasche et al., 2010). Consequently, attention has focused on 

examining the role of modifiable, non-pharmaceutical components of influence (such as physical 

activity) in order to develop effective strategies for disease prevention (Barnes & Yaffe, 2011; 

Erickson et al., 2012; Farina, Tabet, & Rusted, 2014).  

Physical activity is a modifiable lifestyle factor defined as any skeletal muscle movement 

which results in energy expenditure. It can be categorized in several ways, including subgroups 

such as aerobic exercise, resistance training, and leisure physical activity (Caspersen, Powell, & 

Christenson, 1985). The benefits of controlled exercise interventions and fitness training to brain 

and general health are well known (Erickson et al., 2010, 2011; Kelly et al., 2014; Voss et al., 

2013). However, there are several barriers to daily implementation of high intensity physical 

activity for older adults, including health comorbidities which restrict participation in higher 

intensity exercise and fitness training (Schutzer & Graves, 2004). As such, there has been 

growing interest in EPA, a modifiable lifestyle factor which encompasses everyday leisure 

participation in a wide variety of activities available to older adults in voluntary moderate doses. 

Examples include walking, tennis, exercise, and gardening. Longitudinal research has found 
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beneficial cognitive effects of participating in leisure physical activity. Specifically, higher 

baseline EPA is associated with better scores and less decline in multiple cognitive domains, 

such as reasoning and memory, episodic memory, verbal fluency, and executive function (Blasko 

et al., 2014; Lindwall et al., 2012; Thibeau, McFall, Wiebe, Anstey, & Dixon, in press; Wang et 

al., 2013). EPA may be measured by self-report (Lindwall et al., 2012; Woodard et al., 2012) or 

accelerolmeter (actigraphy; John & Freedson, 2012; Strath, Pfeiffer, & Whitt-Glover, 2012), 

both of which can produce useful information. Research has indicated that these procedures 

produce correlated information across multiple populations (Freene, Waddington, Chesworth, 

Davey, & Cochrane, 2013; Gosney, Scott, Snook, & Motl, 2007; Jacobi et al., 2009; Kwak, 

Kremers, Brug, & Van Baak, 2007). 

In older adults, a physically active lifestyle has been found to improve body composition, 

mobility, and cognitive function (Chodzko-Zajko et al., 2009; Tremblay et al., 2011). Physical 

activity is likely to directly influence musculoskeletal and neuromuscular systems which can be 

observed through performance on measures of mobility, such as gait speed and balance (Gregg, 

Pereira, & Caspersen, 2000). It is well established that the incidence of mobility limitations 

increases with age and there is notable variability in the rate of such decline (Diehr, Thielke, 

Newman, Hirsch, & Tracy, 2013; White et al., 2012). Mobility declines are thought to be an 

early predictor of both cognitive and physical decline (Allali et al., 2014; de Vries et al., 2012; 

Mielke et al., 2013; Yogev, Hausdorff, & Giladi, 2008). However, the relationships among 

physical activity, mobility and cognitive aging are not fully understood. A recent review has 

indicated that participation in physical activity has been found to reduce functional limitations 

(as quantified by objective measures including gait speed; Paterson & Warburton, 2010). In 

addition, Berryman and colleagues (2013) reported that individuals who perform better on tests 
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of mobility demonstrate higher neuromuscular performance, higher aerobic capacities and have 

better cognitive flexibility. Therefore, as mobility is highly related to physical activity, objective 

measures of mobility could be used in addition to self-reported physical activity for a more 

robust measure of physical fitness. Also, it is plausible that maintaining mobility through 

physical activity could be beneficial to cognitive performance. 

Mobility (MOB) is a key functional health biomarker which has been associated with 

cognitive decline across many cognitive domains, including EF (Atkinson et al., 2010; Deary, 

Whalley, Batty, & Starr, 2006; Gale, Allerhand, Sayer, Cooper, & Deary, 2014). Notably, recent 

evidence suggests EF may play a pivotal role in the regulation of gait and mobility in older 

adults (Buracchio et al., 2011; Gothe et al., 2014; McGough et al., 2011; Mielke et al., 2013). In 

addition, declines in gait speed have been found to be predictive of cognitive decline, mild 

cognitive impairment and dementia (Mielke et al., 2013; van Kan et al., 2015; Waite et al., 

2005). Recently, higher levels of physical functioning (as measured by a composite of indicators 

of mobility and muscle strength) were found to be associated with better EF performance 

(Desjardins-Crepeau et al., 2014). Taken together, these studies add to the mounting evidence 

demonstrating that the effect of MOB on EF is relevant to both non-demented aging and the 

onset of dementia.  

Executive function (EF) encompasses higher-level cognitive processes required to make 

and execute plans, solve problems, set goals, shift between stimulus and response, and inhibit 

responses (e.g., Luszcz, 2012; West, 1996). These complex processes, mediated by the prefrontal 

cortex, are often categorized into three dimensions, namely, updating, shifting, and inhibition 

(Miyake et al., 2000). EFs are thought to be among the most age-sensitive cognitive functions 

(de Frias, Dixon & Strauss, 2006; Glisky, 2007; McFall et al., 2013, Raz, Dahle, Rodrigue, 
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Kennedy, & Land, 2011) due to significant age-related neurodegeneration occurring in the 

prefrontal cortices (Raz & Rodrigue, 2006). However, not all individuals show the same decline 

in EF performance as they age. Substantial individual differences suggest other factors, such as 

lifestyle, genetics, or health, may influence age-related EF decline. Therefore, age-related 

prefrontal volume loss and subsequent decline in cognitive performance may be exacerbated by 

genetic risk, lack of participation in leisure pursuits such as physical activity, and functional 

health declines (Ferencz et al., 2014; Hultsch, Hertzog, Small, & Dixon, 1999; Small, Dixon, 

McArdle, & Grimm, 2011; Solé-Padullés et al., 2009; Whalley, Deary, Appleton, & Starr, 2004). 

A number of genes have been associated with cognitive changes with aging (Harold et al., 2009; 

Harris & Deary, 2011; Lambert et al., 2009; Laukka et al., 2013; Mengel-From, Christensen, 

McGue, & Christiansen, 2011). Among these, APOE (rs7412; rs429358), CLU (rs11136000), 

CR1 (rs6656401), and PICALM (rs541458) have been identified as among the top genetic risk 

factors for AD (Corneveaux et al., 2010). 

ApoE is a lipoprotein involved in lipid metabolism and transportation. The APOE gene has 

three allelic variations, ε2, ε3 and ε4, yielding six possible genotypes: ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3, 

ε3/ε4 and ε4/ε4 (Lahiri Sambamurti, & Bennett, 2004). APOE has been associated with multiple 

trajectories and clinical outcomes of aging, including normative cognitive decline, MCI, and AD 

(Brainerd, Reyna, Petersen, Smith, & Taub, 2011; Small, Rosnick, Fratiglioni, & Backman, 

2004; Wisdom, Callahan & Hawkins, 2011).  Specifically, the risk for AD increases according to 

the APOE genotype, such that APOE ε2 may be relatively protective, ε3 is neutral (neither risk 

increasing nor protective), and ε4 increases the risk substantially (Corder et al., 1994; Lahiri et 

al., 2004). In addition, ɛ4 carriers performed significantly worse than ε4 non-carriers on 

measures of cognitive functioning, including executive function (Wisdom et al., 2011).  
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CLU encodes the protein clusterin, which inhibits complement activation and prevents β-

amyloid from aggregating into fibrils, by increasing clearance of Aβ across the blood-brain 

barrier. It is also associated with apoptosis, inflammation, the cell cycle, cholesterol traffic, and 

lipid metabolism (Lambert et al., 2009; Nuutinen, Suuronen, Kauppinen & Salminen, 2009; 

Sweet et al., 2012). Increased plasma clusterin levels have been associated with, AD severity, 

brain atrophy and disease progression (Thambisetty et al., 2010; Thambisetty et al., 2012). In 

addition, the CLU C allele has been associated with increased brain ventricular expansion, 

regardless of clinical status (Roussotte, Gutman, Madsen, Colby, & Thompson, 2014) as well as 

more rapid cognitive decline for individuals with and without cognitive impairment (Sweet et al., 

2012), while the T allele has been associated with better cognitive performance (Mengel-From et 

al., 2011) in very old adults of varying cognitive status from the Danish 1905 Cohort Study.   

 PICALM encodes phosphatidylinositol-binding clathrin assembly protein, is involved in 

vesicle formation (Hollingworth, Harold, Jones, Owen, & Williams, 2010) and amyloid 

precursor protein metabolism, and therefore may affect clearance of β-amyloid in the brain 

(Lambert & Amouyel, 2011). According to Hollingworth and colleagues (2010), it is also 

possible that PICALM contributes to neurodegeneration by causing dysfunction at the synapse. 

Recently, the PICALM T allele was associated with a lower age at midpoint of cognitive decline 

(Sweet et al., 2011), and was associated with susceptibility for AD (Gharesouran, Rezazadeh, 

Khorrami, Ghojazadeh, & Talebi, 2014).  

CR1 is thought to impact the development of AD through its role of regulating complement 

activity and is thought to promote clearance of Aβ particles, which can aggregate to form 

amyloid plaques (Lambert et al., 2009; Lambert & Amouyel, 2011). The CR1 rs6656401 

polymorphism has two alleles, an A and a G, which yield three allelic variations, A/A, A/G and 



7 
 

G/G. Recent research has indicated that rates of decline on measures of global cognition increase 

with the addition of each A (risk) allele (Chibnik et al., 2011), which has also been associated 

with an increased risk for AD (Zhang et al., 2010).   

Although several studies identify the effects of single genes on the development of 

neurodegenerative disease and declines in cognitive function, recent research has indicated that 

candidate genes may operate additively or interactively to influence cognitive outcomes (Dixon 

et al., 2014; Sapkota, Vergote, Westaway, Jhamandas, & Dixon, 2015). In fact, research has 

shown that various genotype composites, including combinations of PICALM, CLU, CR1 and 

APOE are associated with memory performance for older adults (Barral et al., 2012; Keenan et 

al., 2012; Verhaaren et al., 2012). Moreover, genetic effects on cognitive aging may be 

magnified when additional environmental risk factors are considered (Lindenberger et al., 2008; 

Nagel et al., 2008), such as low physical activity (Papenberg, Lindenberger, & Bäckman, 2015). 

Notably, Ferencz and colleagues (2014) confirmed the negative effect of high genetic risk score 

(a composite measure comprised of PICALM, CLU, and BIN1) on episodic memory performance 

was attenuated by participation in physical activity. We expand this research by examining 

whether genes or combinations of genes associated with an increased risk of AD moderate the 

effect of everyday physical activity or mobility on executive functioning in older adults.  

Research Goals 

The overall purpose of this study is to examine concurrent and longitudinal relationships 

between EPA, MOB and EF as potentially moderated by genes associated with AD genetic risk. 

We assembled a 3-wave (up to 9 years) VLS data set, covering a 40-year age span (55 – 95 

years), which included manifest measures of the key constructs, EF, EPA, MOB, and four 

theoretically selected genetic polymorphisms (i.e., APOE rs429358 and rs7412, PICALM 
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rs541458, CR1 rs6656401, and CLU rs11136000).  We used structural equation modeling to 

investigate five research goals. Research goal 1 was to confirm (a) that a single-factor EF latent 

variable model used in previous research (McFall et al., 2014; Thibeau et al., in press) applied to 

this slightly different sample of participants and (b) longitudinal measurement invariance of the 

EF latent variable model across three waves. Research goal 2 was to determine the best fitting 

latent growth models for EF, EPA and MOB. Research goal 3 was is to use conditional growth 

models to explore how (a) EPA and MOB independently affect level and change in EF, and (b) 

the genetic factors independently affect level and change in EF. Research goal 4 was to 

determine whether the genetic predictors or combinations of the genetic predictors moderate the 

association between EPA and EF performance and 9-year change in older adults. Research goal 

5 was to determine whether the genetic predictors or combinations of the genetic predictors 

moderate the association between MOB and EF performance and 9-year change.  

Method 

Participants 

Participants were community dwelling older adults drawn from the Victoria Longitudinal 

Study (VLS). The VLS is a Canadian large-scale, long-term investigation of neurocognitive 

aging as influenced by biological, medical, health, lifestyle, environmental and other factors 

(Dixon & de Frias, 2004). Three main sequential samples (initially aged 55-95 years) are 

followed at about 4-year intervals (M = 4.4). As the focus of this study is to examine change in 

EF as predicted by genetic variants, participants were limited to a source subsample of 

approximately 683 participants (bridging all three main VLS core samples). This source sample 

provided biofluid for genotyping between 2009 and 2011. Following previous protocols within 

the VLS (Dixon et al., 2012; McFall et al., 2014), a longitudinal data set from the same time 
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frame was assembled, with a total individualized duration of up to 9 years. Specifically, the 

present study consisted of Sample 1 (S1) waves 6, 7 and 8, Sample 2 (S2) waves 4 and 5, and 

Sample 3 (S3) waves 1, 2, and 3. For efficiency, the first wave in each sample will be henceforth 

termed as W1, the second W2, and the third W3.  

Exclusionary criteria were applied, including: (a) a diagnosis of AD or other forms of 

impairment and dementia, (b) Mini Mental State Exam score of < 24  (Folstein, Folstein & 

McHugh, 1975), (c) a self-report of “severe” for conditions such as high blood pressure, low 

blood pressure, epilepsy, spinal or thyroid conditions, depression, head injury, (d) reported 

alcohol or drug dependence, (e) reported use of  anti-psychotic medications, (f) self-reported  

“moderate” cases of  neurological conditions (Parkinson’s or stroke), (g) reported or identified 

cases of diabetes (e.g., with the VLS multilevel diagnostic criteria), and (h) participants with no 

EF, MOB or EPA data.  A total of 145 participants were excluded. 

The final sample contained N = 538 individuals (n = 357 females) all of whom contributed 

data to W1 (M age = 70.29 SD = 8.57, range 53.24 – 95.25). W2 consisted of n = 456 adults (M 

age = 74.51, SD = 8.48, range 57.27 – 94.53, n = 301 females). W3 consisted of n = 291 adults 

(M age = 76.12, SD = 8.02, range 62.44 – 94.90, n = 205 females). Table 1 presents basic 

demographic information. The design stipulated that S1 and S3 participants could contribute data 

to all three waves, but S2 participants contributed data to W1 and W2 (the third wave not 

available). All missing data were estimated by multiple imputations using Mplus 7 (Enders, 

2011; Little, 2013; Muthén & Muthén, 2010). By prevailing convention 20 or more imputations 

are recommended (e.g., Enders, 2011; Graham, Olchowski, & Gilreath, 2007; Rubin, 1987). We 

included 50 imputations, as we have done in previous studies (see McFall et al., 2014). 



10 
 

Measures 

Executive Function (EF). Four neuropsychological measures were used to represent two 

dimensions of EF, with two measures each of shifting, and inhibition, (Miyake et al., 2000). All 

four measures have all been used in standard form with older adults in VLS studies reporting 

psychometric (Bielak, Mansueti, Strauss & Dixon, 2006), structural and neuropsychological (de 

Frias et al., 2006, 2009), genetic (Sapkota et al., 2014), health (McFall et al., 2013, 2014), and 

lifestyle (de Frias & Dixon, 2014) factors.  

Shifting. (1) Brixton Spatial Anticipation Test (Burgess & Shallice, 1997) indexed shifting 

by measuring rule-attainment. The Brixton test consists of a 56-page stimulus booklet, each page 

showing the same display of 10 circles, with each circle numbered from 1 to 10. On each page, 

one of the circles is filled with a blue color. The position of this filled circle changes from one 

page to the next. The changes in position are governed by a series of simple rules that vary 

without warning. Participants were required to predict the blue circle placement based on 

previous presented patterns. Responses were considered correct if the response followed the 

current pattern, or when the trials changed, if it would have been correct had the pattern 

remained the same. The total errors were recorded (on a maximum of 54 trials) and converted to 

scaled scores. An overall standardized scaled score based on a scale ranging from 1 (impaired) to 

10 (very superior) was used for analysis. (2) The Color Trails Test (D’Elia, Satz, Uchiyama, & 

White, 1996) was designed to measure shifting. Color trails test Part 2 showed numbers from 1 – 

25 twice (each sequence has either a yellow or pink background) and required the participant to 

connect numbers in numerical order alternating between pink and yellow circles, disregarding 

the numbers in circles of the alternate color. A reverse coded latency score was used for analysis 

to be commensurate with all other tasks, thus higher scores indicate better performance.  
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Inhibition. (1) The Hayling Sentence Completion test was developed to index inhibition by 

measuring initiation speed and response suppression. It consists of two sections of 15 sentences, 

each missing the last word. Section 1 requires the participant to quickly and correctly complete 

the sentence, and measures response speed. Section 2 requires completing the sentence quickly 

with an unconnected word, and measures response suppression. Response latencies on both 

sections and errors on Section 2 are used to derive an overall scaled score for each participant on 

a scale ranging from 1 (impaired) to 10 (very superior). (2) The Stroop test measures inhibitory 

processes by requiring the respondent to name the color of the ink a word is printed in and 

supress the automatic response of reading the word itself (Taylor, Kornblum, Lauber, 

Minoshima, & Koeppe, 1997). The performance score is the interference index and reflects 

slowing in response to interference in Part C ([Part C time – Part A time]/Part A time). The 

interference index was reverse coded for the analyses to be commensurate with the other 

executive functioning tasks; therefore higher scores indicate better performance. 

Everyday Physical Activity (EPA). The measure is the four-item physical activity subscale 

from the VLS-Activity Lifestyle Questionnaire (Hultsch et al., 1999; Small et al., 2011; see 

Appendix C). Each item indexed frequency of participation in everyday physical activities (e.g., 

jogging, walking,tennis,swimming, biking, gardening) over a period of two years on a scale of 0 

(never) to 8 (daily). Responses were totalled, producing a continuous measure with scores 

ranging from 0 – 32.  Higher scores indicate more participation in everyday leisure physical 

activities.  

Mobility (MOB). The composite was formed with unit-weighted z-scores of the following 

indicators of mobility. Scores were reverse coded; therefore, a higher mobility score indicated 

better mobility performance. 
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Timed Walk. This task was designed to measure a person’s walking speed over a distance of 

20 feet. Participants were instructed to walk in a straight line as quickly and safely as possible 

just past the tape on the floor at a distance of 10 feet, turn around and walk as quickly and safely 

as possible back to the starting position. The amount of time taken to perform this task was 

recorded in seconds. 

Timed Turn. This task was designed to assess the ability to move using the legs. This is 

accomplished by assessing a person’s ability to make a complete circle from a standing position. 

Participants were instructed to stand directly behind a white line on the floor, with their  toes 

lined up along the line and feet slightly apart, then asked to make one complete turn in place, 

returning to the starting position with the toes lined up once again directly behind the white line. 

Time taken to complete the task was measured in seconds. 

DNA Extraction and Genotyping 

Saliva was collected according to standard procedures from Oragene-DNA Genotek and 

stored at room temperature in the Oragene disks until DNA extraction. DNA was manually 

extracted from the saliva sample mix using the manufacturer’s protocol and quantified using a 

NanoDrop ND-1000 Spectrophotometer (Wilmington, DE). Genotyping was carried out by using 

a PCR-RFLP strategy to analyze the allele status for APOE (determined by the combination of 

the single nucleotide polymorphisms (SNPS) rs429358 and rs7412), CR1 (rs6656401), CLU 

(rs11136000) and PICALM (rs541458). Briefly, SNP-containing PCR fragments were amplified 

from 25 ng of genomic DNA using specific primers (APOE: Fwd: 5’-

GGCACGGCTGTCCAAGGA-3’, Rev: 5’-GCCCCGGCCTGGTACACTGCC-3’; CLU: Fwd: 

5’-AAAGCAGGCTGCAGACTCC-3’, Rev: 5’-AGTGCTGGGATTACAGGTGTC-3’; CR1: 

Fwd: 5’-CTCCAGGCTTCCTTCCAGT-3’, Rev: 5’-TTAATGATCTCGAGCTGTGACC-3’; 
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PICALM: Fwd: 5’-AAACCACAGATGAACTGATGTAACTG-3’, Rev: 5’-

GGCATTAGGACCTGCCATC-3’). Reactions were set up in 96-well plates using the QIAgility 

robotic system (QIAgen). RFLP analysis was performed on a high resolution DNA screening 

cartridge on a QIAxcel capillary electrophoresis system (QIAgen) using the protocol OL700 

after digestion of the PCR amplicons with the restriction enzymes (all from NE Biolabs) of  

APOE: HhaI for 16 hours at 37°C. The analysis was confirmed upon migration of the restriction 

fragments on 10 or 15% acrylamide gels for the SNP. 

Genetic analyses included genotype categorization based on the presence or absence of the 

risk allele. APOE genotype was divided into three categories: ε2+ (protective) consisted of ε2/ε2 

and ε2/ε3 combinations, ε3 (non-risk) consisted of ε3/ε3, and ε4+ (risk) consisted of ε4ε4 and 

ε3/ε4 allele combinations. For all analyses including APOE, standard practice is to remove the 

genotype which combines the risk and protective alleles (ɛ2ɛ4; n = 28), in order to assess the 

independent effects of ɛ2 and ε4 (McFall et al., 2014). For the other three AD risk genes, the 

following rules were applied: (a) the CLU genotype was divided into two categories, C- (non-

risk) consisted of the T/T allele combination, C+ (risk) consisted of the T/C and C/C allele 

combinations (Bertram, McQueen, Mullin, Blacker & Tanzi, 2007; Harold et al., 2009; Lambert 

et al., 2009); (b) the CR1 genotype was divided into two categories, A+ (risk) consisted of  the 

A/A and A/G allele combinations, A- (non-risk) consisted of the G/G allele combination 

(Chibnik et al., 2011; Jin, Li, Yuan, Xu, Cheng, 2012; Lambert et al., 2009); and (c) the PICALM 

genotype T+ (risk) consisted of the T/T and T/C allele combinations, T- (non-risk) consisted of 

the C/C allele combination (Schjeide et al., 2011).  

To examine interactions with genetic risk score, we followed a series of steps for genotype 

categorization. First, risk scores were calculated for APOE by assigning a score of “0” for an ɛ2 
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allele, a score of “1” for an ɛ3 allele and a score of “2” for an ɛ4 allele. Therefore, ɛ2 

homozygotes were given a score of “0”, ɛ2ɛ3 heterozygotes were given a score of “1”, ɛ3 

homozygotes were given a score of “2”, ɛ3ɛ4 heterozygotes were given a score of “3”, and ɛ4 

homozygotes were given a score of “4”. Second, genetic risk scores were calculated based on the 

presence or absence of a risk allele for CLU. A score of “0” was assigned if no risk allele was 

present, “1” if one risk allele was present and a “2” if both risk alleles were present. Therefore, 

for CLU C-allele homozygotes were assigned a score of “2”, heterozygotes a score of “1” and T-

allele homozygotes a score of “0”. Third, cumulative genetic risk scores were calculated for the 

gene combination of APOE and CLU. Fourth, a tertile split was conducted on the genetic risk 

score, resulting in three groups (i.e., low, mid, and high genetic risk; see Appendix B). 

Statistical Analyses 

Structural equation modeling was conducted using Mplus 7 (Muthén & Muthén, 2010). 

Confirmatory factor analysis and latent growth modeling were used to test the five research 

goals. Model fit for all analyses was determined using standard indices: (a) χ
2 

for which a good 

fit would produce a non-significant test (p > .05), indicating the data are not significantly 

different than the model estimates, (b) comparative fit index (CFI) for which ≥ .95 was judged a 

good fit and between .90 and .94 was judged an adequate fit, (c) root mean square error of 

approximation (RMSEA), for which ≤ .05 would be judged good and between .06 and.08 would 

be judged adequate, and (d) standardized root-mean-square residual (SRMR) for which good fit 

is judged by a value of  ≤ .08 (Kline, 2011; Little, 2013). To test longitudinal measurement 

invariance, the confirmatory factor analysis models with free and constrained parameters were 

compared using a chi-square-based likelihood ratio test (Δχ
2
). However, as this test is sensitive to 

over-identifying lack of invariance in large sample sizes, it is recommended to use the ΔCFI test 
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(cut-off = .01; Cheung & Rensvold, 2002; Little, 2012) as well as the aforementioned standard fit 

indices (Kline, 2011; Meade, Johnson & Braddy, 2006).  

Analyses for RG 1: Verification of EF latent model and measurement invariance. We 

used a standard procedure to verify previously observed psychometric characteristics of EF. 

First, confirmatory factor analysis was performed to verify that a single latent EF factor 

(previously observed: McFall et al., 2013, 2014) fit this particular sub-sample of participants. 

Second, longitudinal measurement invariance was tested using (a) configural invariance, for 

which the same indicator variables load onto the latent variable to determine if the same EF 

measures represent the latent variable at each wave of data collection, (b) metric invariance, for 

which factor loadings are constrained to be equal for each latent variable indicating that each 

latent variable was measuring the same construct, and (c) scalar invariance, for which indicator 

intercepts are constrained to be equal allowing mean differences to be evident at the latent mean 

level. Third, EF factor scores were estimated in MPlus and used in all subsequent growth 

models. Multiple imputations were used for missing EPA, age, MOB, and EF factor score data. 

Analyses for RG2: Latent growth modeling for EF, EPA and MOB. Consistent with 

other VLS research, age was coded as a continuous factor. Age was centered at age 75, the 

approximate mean of the 40-year span of data. This is a commonly observed inflection period in 

cognitive aging (e.g., Dixon et al., 2012; Schaie, 2013; Small et al., 2011) and has been used in 

previous related research (McFall et al., 2014). Latent growth modeling was performed to 

establish the functional form of change for EF, EPA and MOB. Models tested include: (a) a fixed 

intercept model, which assumes no inter- or intraindividual variation (b) a random intercept 

model, which models interindividual variability in overall level but no intraindividual change (c) 

a random intercept fixed slope model, which allows interindividual variability in level but 



16 
 

assumes all individuals exhibit the same rate of change and (d) a random intercept, random slope 

model which allows interindividual variability in level and change (Singer & Willett, 2003).  

Analyses for RG 3: Independent effects of EPA, MOB, APOE, CLU, CR1, and PICALM 

on the EF growth model. The best unconditional EF growth model was used as the baseline 

against which conditional growth models with the independent predictors of change in two 

clusters (EPA, MOB; APOE, CLU, CR1, PICALM) were tested (Little, 2013). Path analyses was 

used to determine the effect of each predictor on level of EF performance at age 75 and 9-year 

EF change. 

Analyses for RG 4: Interactive effects of the individual genes x EPA on the EF growth 

model (RG 4a); Interactive effects of the genetic risk score x EPA on the EF growth model 

(RG 4b). To examine the genetic-EPA interactions, a series of steps were followed. First, a 

model which tested the effect of EPA on level of EF performance and 9-year EF change was 

estimated, with all the parameter estimates constrained to be equal across genetic groups. 

Second, the parameters were free to vary between genetic groups to examine moderation. These 

steps were completed for each genetic predictor (APOE, CLU, CR1 and PICALM).  Evidence of 

moderation was indicated by a significant difference test which compared the fully constrained 

to the unconstrained model (Kline, 2011). Third, education, gender, vascular health, (measured 

by pulse pressure, a proxy measure of arterial stiffness PP; Benetos et al., 2010; see McFall et al., 

2014, 2015; Raz et al., 2011) and body mass index (BMI) were separately and simultaneously 

included as covariates, as these factors have been associated with executive functioning in older 

adults.  

To examine whether an AD genetic risk score (i.e. APOE and CLU) altered the pattern of 

results seen in RG4a, the same procedure was followed. 
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Analyses for RG 5: Interactive effects of the individual genes x MOB on the EF growth 

model (RG5a); Interactive effects of the genetic risk score x MOB on the EF growth model 

(RG5b). To examine genetic-mobility interaction effects on the EF growth model a series of 

steps were followed. First, a parallel process model was estimated for the entire sample, with all 

the parameter estimates constrained to be equal across genetic groups. Second, regressions 

among latent growth factors were free to vary between genetic groups in order to compare 

differences in the predictive strength of mobility across genetic groups. Third, the latent growth 

factors for mobility were regressed on each of the covariates (Gender, PP, BMI, Education and 

PA). These steps were completed for each genetic predictor (APOE, CLU, CR1 and PICALM). 

Moderation was evidenced by a significant difference test which compared the constrained 

model to the model where the associations varied across genetic groups.  

Results 

RG1: EF Latent Model and Invariance Verification  

We first confirmed that a single-factor model consisting of the four EF indicators fit this 

sub-sample of participants (see Table 2 for all goodness of fit indices). Second, we used overall 

model fit and Δχ
2
 tests to confirm measurement invariance, including the sequence from (a) 

configural invariance (χ
2 

= 33.68 df = 35, p = .53), (b) metric invariance (Δχ
2
 = 8.149, Δdf = 6, p 

= .23, ΔCFI = .001), and (c) scalar invariance (Δχ
2
 =152.37, Δdf = 8, p <.001, ΔCFI = .08). The 

significant effect for the latter indicated this criterion was not met, and thus we proceeded to test 

a model with partial scalar invariance (Δχ
2
 = 21.341 Δdf = 4, p <.001, ΔCFI = .01). Despite a 

significant decrease in model fit, we retained the partial scalar model with intercepts constrained 

to be equal across time for Stroop and Brixton, given the observation of a larger pattern of good 

fit indices and the acceptable ΔCFI (i.e., RMSEA = .027, CFI = .99, SRMR = .06, ΔCFI = .01). 
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Two indicator variables (i.e., Hayling, Color Trails) exhibited mean differences outside of the 

latent variable. The invariance testing results indicated that the EF model measured the same 

construct over time, the same indicator variables marked EF at each wave, and partial scalar 

invariance allowed us to compare latent variable means (Kline, 2011).   

RG2: Latent growth modeling for EF, PA, and MOB 

The best fitting unconditional growth model for EF was established as a random intercept, 

random slope model (see Table 3). First, at age 75, older adults varied significantly in level of EF 

performance (b = 1.05, p < .001). Second, there was significant decline in EF performance (M = 

-.016, p = .003). Third, there was significant individual variability in the rate of decline (b = 

.003, p < .001). 

 Next for EPA, the preferred model was a random intercept, fixed slope model (see Table 

3). First, at age 75, there was significant variability in level of EPA (b = .156, p < .001). Second, 

older adults exhibited significant decline in EPA level (M = -.015, p < .003), but without 

individual differences in rate as evidenced by the non-significant random slope (p > .05) in the 

random intercept, random slope model.  

 For mobility, the preferred model was a random intercept, random slope model (see 

Table 3). First, at age 75, there was significant variability in level of MOB (b = .557, p < .001). 

Second, older adults exhibited significant decline in MOB level (M = -.061, p < .001). Third, 

there was significant individual variability in the rate of decline (b = .002, p = .001). 

RG3: Independent effects of EPA, MOB, APOE, CLU, CR1, and PICALM on the EF 

growth model 

 We tested two growth models with EPA as a predictor of EF level and change. The first 

model used the EPA growth model in parallel process with the EF growth model. Time-varying 
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EPA did not predict EF performance at age 75 (b = -.002, p >.05) nor 9-year EF change (b = 

.529, p >.05). The second time-invariant model with initial (W1) level of EPA revealed 

significant predictions for both EF performance at age 75 (b= .340, p <.001) and 9-year change 

(b = .016, p = .002; see Figure 1). Specifically, at W1 lower levels of EPA were associated with 

significantly worse EF performance (M = -.347) than were higher levels of EPA (M = -.007). 

Moreover, lower initial levels of EPA were associated with greater 9-year EF decline (M = -.042) 

than were higher levels (M = -.026). Thus, the time-invariant EPA (W1) model was used in 

subsequent analyses. 

We tested a model using the MOB growth model in parallel process with the EF growth 

model. Level of mobility at age 75 predicted level of EF performance at age 75 (b = .798, p 

=.003), but not 9-year change (b = .010, p =.81). In addition, change in mobility over 9 years did 

not predict change in EF over 9-years (b = .31, p > .70). Moreover, we examined possible bi-

directionality and results were similar. Specifically, level of EF performance at age 75 predicted 

level of mobility at age 75 (b = .252, p < .001) but not 9-year change (b = -.006, p = .80). Also, 

change in EF over 9 years did not predict change in mobility (b = .645, p = .27).  

 For EF, we tested four models with APOE, CLU, CR1, and PICALM as independent 

predictors of EF level and change. No independent effects were found, as none of the four genes 

tested predicted level of EF performance at age 75, or 9-year EF decline.  

RG 4a: Interactive effects of APOE x EPA, CLU x EPA, CR1 x EPA, PICALM x EPA and 

on the EF growth model  

We conducted four sets of two-model comparisons to examine whether APOE, CLU, CR1, 

or PICALM moderated the effect of EPA on EF.  
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For APOE, an interaction was evidenced by the fully constrained model producing a 

significantly worse fit than the unconstrained model (D = 28.24, Δdf = 14, p = .013; see Table 4 

for model comparisons). Specifically, level of EPA at W1 predicted both level of EF 

performance at age 75 (b = .391 p < .001) and 9-year EF change (b = .021, p = .001; see Figure 

2) for the APOE ɛ3/ε3 group only. Within the APOE ɛ3/ɛ3 group, older adults with low levels of 

EPA at W1 exhibited poorer EF performance (M = -.407) and steeper 9-year decline (M = -.049) 

than did their peers with high levels of EPA (M = -.016 and M = -.028, respectively; see Figure 

2b). This pattern was not present for the ɛ2/ɛ2 ɛ2/ɛ3 (protective) or the ɛ3/ɛ4 ɛ4/ɛ4 (risk) group, 

as level of EPA did not alter level of EF at age 75 (b = .454, p = .108; b = .122, p = .538, 

respectively) nor the 9-year EF change (b = .013, p = .416; b = .007, p = .492, respectively; see 

Figure 2a and 2c).  

When the covariates (gender, education, PP and BMI) were included in the analyses, 

education and PP exhibited significant effects on level of EF performance and 9-year decline for 

the APOE ε3 homozygote (non-risk) and APOE ε4+ (risk) group. Specifically, for the ε3 and ε4+ 

groups, higher education was associated with higher level of EF performance at age 75 and more 

gradual 9-year decline, and higher levels of PP (poorer vascular health) was associated with 

lower levels of EF performance at age 75 and steeper EF decline over 9 years. Gender exhibited 

significant effects on 9-year decline for the APOE ε3 homozygote (non-risk) group only. 

Specifically, higher levels of EPA at W1 were associated with less decline over 9 years for 

female ε3 carriers only. BMI did not exhibit significant effects on level of EF performance or 9-

year change for any of the ApoE groups. Notably, despite education, gender and PP having 

significant effects, no changes in the main results were observed.  
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A significant interaction was indicated for CLU (see Figure 3 for model fit indices). 

Moderation was evidenced by a significantly worse fitting constrained model when compared to 

the unconstrained model (D = 14.76, Δdf = 7, p = .03). Specifically, for the risk (C+) group, level 

of EPA at W1 predicted both the level of EF performance (b = .316, p < .001) and 9-year EF 

change (b = .016, p = .006). Within the risk group, older adults with lower levels of EPA at W1 

exhibited poorer EF performance at age 75 (M = -.298) and steeper 9-year EF decline (M = -

.049) than their peers with higher EPA levels at W1 (M = .018 and M = -.026, respectively; see 

Figure 3a). In contrast, for the CLU C- non-risk group, level of EPA at W1 affected only level of 

EF performance (b = .480, p = .013) not 9-year EF change (b = .018, p = .136; see Figure 3b). 

When the covariates were included in the analyses, BMI and gender did not exhibit 

significant effects on either level of EF performance or 9-year change. Education and pulse 

pressure both exhibited significant effects on level of EF performance and 9-year decline for 

only the CLU risk group. Specifically, within the CLU C+ group, higher education was 

associated with higher level of EF performance at age 75 and less 9-year decline, and higher 

levels of pulse pressure (poorer vascular health) was associated with lower levels of EF 

performance at age 75 and steeper EF decline over 9 years. In addition, the pattern of main 

results for the non-risk group changed with the inclusion of these covariates. Specifically, when 

education was added, the effect of EPA at W1 on level of EF performance at age 75 for the CLU 

C- (non-risk) carriers became non-significant (b = .414, p = .053). However, none of the other 

covariates (i.e., BMI, gender, or pulse pressure) changed the patterns of main results.  

For CR1 and PICALM, the constrained models did not provide a significantly worse fit than 

the unconstrained models, therefore there was no evidence for moderation (D = 9.8, Δdf = 7, p = 

.20; and D = 7.98, Δdf = 7, p = .33, respectively; see Table 4 for model comparisons). 
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RG 4b: Interactive effects of AD genetic score x EPA on the EF growth model 

Based on the results of RG4a, we examined whether there was genetic moderation by 

genetic risk score comprised of both APOE and CLU. We tested the effect of EPA, measured at 

W1, on level of EF performance at age 75 and 9-year change based on a tertile split of the 

cumulative genetic risk score of APOE and CLU (see Figure 4; Appendix B). The constrained 

model provided a significantly worse fit (D = 26.88, Δdf = 14, p = .02), providing evidence of 

moderation by the genetic risk score. First, for the low-risk group, level of EPA at W1 

significantly predicted level of performance (b =.574, p = .003) but not 9-year change (b = .019, 

p = .099, see Figure 4a). Specifically, within the low-risk group, older adults with lower levels of 

EPA at W1 exhibited poorer EF performance at the age of 75 (M = -.820) than did their 

genetically corresponding peers with higher levels of EPA at W1 (M = -.246). Second, for the 

mid-risk group, level of EPA at W1 significantly predicted 9-year change (b = .020, p = .019, see 

Figure 4b). Specifically, within the mid-risk group, older adults with lower levels of EPA at W1 

exhibited steeper EF decline (M = -.05) than their genetically corresponding peers with higher 

levels of EPA at W1 (M = -.03, respectively). EPA at W1 did not predict EF performance or 9-

year change for the high-risk group (see Figure 4c).   

All of the covariates exhibited significant effects on EF, with the exception of gender. 

Education and pulse pressure predicted EF level and change for the mid- and high-risk groups, 

and BMI predicted level of EF performance at age 75, and 9-year decline for the low-risk group. 

In addition, the pattern of main results changed with the inclusion of BMI, but did not change 

with the addition of education, gender, or pulse pressure. Specifically, when BMI was added, 

EPA at W1 also predicted 9-year decline in EF for the low-risk group (b = .002, p = .042).  
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RG 5a: Interactive effects of APOE x MOB, CLU x MOB, CR1 x MOB, and PICALM x 

MOB on the EF growth model  

 We conducted four sets of two-model comparisons to examine whether APOE, CLU, 

CR1, or PICALM, moderated the effect of MOB on EF.  

For APOE, an interaction was evidenced by the significant difference test between the 

constrained model and the model in which the regressions between latent growth factors were 

free to vary (D = 16.16, Δdf = 6, p = .013; see Table 5 for model comparisons). Specifically, 

level of mobility at age 75 was most strongly predictive of level of EF at age 75 for ε4 carriers (b 

= .844, p < .001). Level of mobility at age 75 was also predictive of level of EF at age 75 for 

ε3/ε3 carriers (b = .450, p < .001) but not for the ε2 carriers (b = .292, p > .05).  

When covariates were added into this model, PP exhibited significant effects on mobility. 

Specifically, better vascular health was associated with less 9-year decline for the APOE ɛ3/ɛ3 

carriers. However, the inclusion of the covariates did not change the main results, level of 

mobility at age 75 remained a stronger predictor of level of EF at age 75 for the risk group than 

the non-risk group.   

For CLU, an interaction was evidenced by the significant difference test between the 

constrained model and the model in which the regressions between latent growth factors were 

free to vary (D = 9.56, Δdf = 3, p = .022; see Table 5 for model comparisons). Specifically, level 

of mobility at age 75 was strongly predictive of level of EF at age 75 for risk (C+) carriers (b = 

.532, p < .001). Level of mobility at age 75 was not predictive of level of EF at age 75 for non-

risk (C-) carriers (b = .428 p = .05). 

When covariates were added to this model, BMI, PP and EPA exhibited significant effects 

on mobility, but gender and education did not. Specifically, lower BMI and higher levels of 
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physical activity were associated with higher levels of mobility at age 75 for only the CLU risk 

carriers. Better vascular health was associated with higher mobility at the age of 75, and less 9-

year decline for the CLU risk group. However, the inclusion of these covariates did not change 

the main results. 

For CR1 and PICALM, the constrained models did not provide a significantly worse fit than 

the unconstrained models, therefore there was no evidence for moderation (D = 4.40, Δdf = 3, p 

= .22; and D = 1.16, Δdf = 3, p = .76, respectively; see Table 5 for model comparisons). 

RG 5b: Interactive effects of the AD risk composites x MOB on the EF growth model 

 Based on the results of RG 5a, we examined whether there was genetic moderation by a 

composite comprised of APOE and CLU. We conducted a two-model comparison to examine 

whether a genetic risk score moderated the effect of MOB on EF, based on a tertile split of the 

cumulative genetic risk score of APOE and CLU. The pattern of results were similar to previous 

analyses, level of mobility at age 75 was a stronger predictor of level of EF at age 75 for the 

high-risk group than the mid or low-risk groups, however, the difference test between the 

constrained and partially constrained models was not significant (D = 12.06, Δdf = 6, p = .06; see 

Table 5 for model comparisons). 

Discussion    

The overall purpose of this research was to examine concurrent and longitudinal associations 

among a lifestyle factor (EPA), a mobility factor (MOB), and four genetic polymorphisms 

(APOE, CLU, CR1 and PICALM) as they are related to performance and change in EF. We 

distributed this aim into five goals.  

For Research Goal 1 (EF latent model and invariance verification) confirmatory factor 

analysis verified that a single-factor model fit the data well. This model demonstrated metric and 
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partial scalar invariance, indicating the EF latent variable was unified and stable across the three 

waves. The single-factor EF latent variable has been reported in other recent VLS research with 

different samples, including normal aging (de Frias et al., 2006), mild cognitive impairment (de 

Frias et al. 2009), diabetes patients (McFall et al., 2013), as well as a similar sample of normal 

aging participants (McFall et al., 2014; Thibeau et al., in press). 

For Research Goal 2 (latent growth models for EF, EPA and MOB) we expected results 

similar to previous VLS research for the growth models of EPA and EF (McFall et al., 2014; 

Thibeau et al., in press). For EPA, we observed (a) significant variability in performance and (b) 

significant decline in EPA (but without interindividual variability). For EF, we observed (a) 

significant performance variability, (b) significant 9-year decline, and (c) significant 

interindividual variability in decline. A novel finding occurred for MOB. We observed (a) 

significant performance variability, (b) significant 9-year decline, and (c) significant 

interindividual variability in decline. These results add to emerging literature which has 

identified differing trajectories of mobility decline in well-functioning older adults (Diehr et al., 

2013; White et al., 2013). The observed variability in performance and decline in EF is central to 

our subsequent research goals. 

Research Goal 3 (unconditional growth models using EPA and MOB) revealed two main 

results. First, for EPA, results verified that older adults with higher baseline levels of EPA had 

better initial EF performance and more gradual decline over the three waves. This is consistent 

with recent research (e.g., Bielak, Cherbuin, Bunce, & Anstey, 2014; Blasko et al., 2014; 

Buchman et al., 2012; Ferencz et al., 2014; Hamer, Lavoie & Bacon, 2013; Lindwall et al., 2012; 

Rovio et al., 2005; Wang et al., 2013; Woodard et al., 2012) indicating higher levels of EPA may 

attenuate cognitive decline. Also, of note is that the VLS measure of EPA encompasses a wide 
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scope of dosage, duration, and type of physical activity, including engagement in low to 

moderate intensity activities, therefore broadening the scope of physical activity known to be 

beneficial to cognitive function (Thibeau et al., in press). In fact, a recent meta-analysis of 

prospective studies examining the relationship between physical activity and cognitive decline 

has confirmed even low to moderate levels of physical activity provide significant protection 

against cognitive impairment for non-demented older adults (Sofi et al., 2010). A recent review 

of the literature has indicated moderate physical activity is liked with more efficient patterns of 

brain activity during tasks of executive control (Voelcker-Rehage & Niemann, 2013). Moreover, 

novel community-based lifestyle interventions are being developed to promote health for older 

adults by increasing participation in social, cognitive and physical activities (Varma et al., in 

press). Thus, engagement in low to moderate levels of physical activity may be a relatively 

accessible strategy for older adults to protect against cognitive decline associated with dementia.  

This benefit to cognition could occur through increased brain volume as a result of 

participation in EPA. Recently, Tamura and colleagues (2014) found that a mild-intensity 

calisthenics program was associated with prefrontal volume preservation, and that changes in 

attention and memory were positively correlated with the prefrontal volume change. 

Additionally, Erickson and colleagues (2010) indicated that greater amounts of walking 

predicted greater gray matter volume over a period of 9 years. As walking is an everyday activity 

included in the range represented in the construct of EPA, it is conceivable that participation in 

other forms of low to moderate intensity EPA benefits prefrontal gray matter volume, thereby 

favorably influencing EF in non-demented older adults.  

Second, for MOB, we tested time-varying MOB in parallel process with the EF latent 

growth model. Results indicated that level of mobility at age 75 predicted level of EF at age 75, 
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but not decline in EF performance. Bi-directionality was examined, and results were similar, 

level of EF at age 75 predicted level of mobility at age 75. These results are supportive of 

research associating executive function and mobility in older adults (Ble et al., 2005; Doi et al., 

2014; Watson et al., 2010).  Of note, however, is that mobility performance at age 75 did not 

predict EF decline over time. Although the absence of this association was also indicated by 

Payette and colleagues (2011), as a follow-up analysis we examined whether initial level of 

mobility was predictive of either EF performance, or 9-year decline. Results indicated that 

individuals with better initial levels of mobility had better EF performance and less 9-year 

decline than their peers with poor initial mobility. Although it was expected that similar results 

would be seen when mobility was used as a time-varying predictor, the absence of this 

association could be due in part to the relatively healthy, active sample of participants within the 

VLS. It is possible that these relatively active individuals do not experience the EF decline 

associated with mobility decline, as a function of physical inactivity. Physical activity has been 

found to increase gray matter volume in the prefrontal cortex (Colcombe et al., 2006), an area 

which mediates processes associated with EF.  Therefore, while still exhibiting mobility decline, 

this may not reflect EF decline, possibly due to level of engagement in protective lifestyle factors 

which increase brain matter volume. In fact, when EPA was examined as a predictor of mobility, 

higher levels of EPA were significantly associated with higher levels of mobility, and less 

mobility decline over time. This relationship was also shown by Berryman and colleagues 

(2013). Specifically, individuals with higher performance on measures of gait and balance had 

better EF performance and higher physical fitness levels.  

In addition, it has been shown that the association between mobility performance and EF 

decline is stronger if there is already evidence of mobility impairment due to a neurodegenerative 
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disease, or if the locomotor task is highly challenging (Yogev, Hausdorff, & Giladi, 2008). 

Therefore, it is possible we did not find evidence of an association between mobility 

performance and EF decline because (a) the sample was non-demented, normally aging 

participants or (b) the relatively straightforward mobility tasks did not require intense dual-

processing. To obtain more information about the processes of mobility involved within non-

demented older adult populations, future research could examine the EF-MOB relationship using 

mobility tasks with differing levels of cognitive load (Gill et al., 2015).   

The subsequent analyses of the genetic factors as independent predictors of EF level and 

change did not reveal notable results. Mixed results are evident in the literature for non-

demented older adults. Although APOE has been associated with some declines in cognitive 

function (Caselli et al., 2009; Yaffe et al., 2009), there are a few possible explanations for the 

absence of evidence of an independent effect of APOE. First, as one of the exclusionary criteria 

was a MMSE score indicative of impairment (< 24), it is possible carriers of the ɛ4 allele who 

are at higher risk of becoming impaired had already developed cognitive impairment and 

therefore were not included in the study. As mobility impairment could also be a phenotype of 

cognitive impairment, this exclusion could result in a sample of higher physically functioning 

APOE ɛ4 carriers who are protected from the risks associated with this gene. In fact, of the three 

genetic groups, the APOE ε4 group had the highest mean level of EPA. Although the groups 

were not significantly different from each other in EPA level, this marginally higher level of 

physical activity would be dependent upon a high level of mobility or other protective factors. 

Interestingly, when considering both the absence of (a) a relationship between mobility decline 

and EF decline and (b) an independent effect of APOE on EF, these results could provide a 

possible explanation as to why the ε4 carriers assumed to be at higher risk for negative cognitive 
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outcomes do not show detrimental cognitive performance or decline within this non-demented 

sample. Second, it has been suggested that APOE operates in combination with other risk and 

protective factors to influence cognitive outcomes (Bender & Raz, 2012; Runge, MacDonald, 

McFall, & Dixon, 2014). Therefore, higher levels of mobility at the age of 75 could be a 

considerable protection factor against further cognitive decline. This explanation is further 

examined in RG5. 

For Research goal 4a, we tested genetic moderation effects on the EPA-EF relationship. 

APOE and CLU both exhibited significant moderation effects, whereas CR1 and PICALM did 

not.  APOE ε3 carriers who had high levels of EPA outperformed and exhibited less 9-year EF 

decline than their genetically corresponding peers with lower levels of EPA. This effect was not 

seen within the ε2 or ε4 groups. This effect remained when other factors known to influence EF 

performance (education, PP, BMI, and gender) were considered. Interestingly, results of previous 

research on the interaction between physical activity and APOE status for risk of cognitive 

decline and dementia have proven to be inconsistent. Various studies have indicated a positive 

association for only the risk (ε4) carriers (Ferencz et al., 2014; Rovio et al., 2005; Woodard et al., 

2012), whereas others have not found a significant association (Lindsay et al., 2002; Luck et al., 

2014; Paillard-Borg, Fratiglioni, Xu, Winblad, & Wang, 2012). Our current results extend 

research by Podewils and colleagues (2005), who observed that engaging in higher levels of 

physical activity reduced the dementia risk only for APOE ε4 non-carriers. Of note, most of the 

recent research that examines APOE does so by comparing the risk (ε4+) and non-risk groups 

(ε4-), thus grouping together the ε2/ε2, ε2/ε3 and ε3/ε3 carriers (Ferencz et al., 2014; Luck et al., 

2014; Paillard-Borg, et al., 2012; Woodard et al., 2012). Therefore, little is known about a gene x 

EPA interaction for the ε2 carriers. Although the current results did not indicate an effect of EPA 



30 
 

for the APOE ε2 carriers, further research is needed to examine any potential synergistic effect of 

having the protective allele status (ε2) for APOE and participating in a risk-reducing lifestyle 

activity such as physical activity. 

Regarding possible mechanisms, recent work has indicated that higher levels of physical 

activity are associated with lower levels of beta-amyloid, insulin, triglycerides, and higher levels 

of high density lipoprotein (Brown et al., 2013). In fact, lower plasma Aβ levels as a result of 

physical activity, have been found for only the APOE ε4 non-carriers (Brown et al., 2013).  In 

addition, higher plasma Aβ has been associated with more cognitive decline (Cosentino et al., 

2010). Therefore, as seen in the current study, ɛ4 non-carriers may exhibit the cognitive benefits 

of engaging in physical activity through reduced circulating levels of Aβ. 

For the CLU risk carriers, participation in EPA attenuated the effect of genetic risk on EF 

performance and decline over three waves. This pattern was not seen within the CLU non-risk 

group after adjusting for education.  Recently, Ferencz and colleagues (2014) found that physical 

activity attenuated the risk of episodic memory decline for individuals who had higher scores on 

a genetic risk composite comprised of CLU, PICALM and BIN1. In their study, the CLU T allele 

was used as the risk allele, due to previous associations with episodic memory decline (Barral et 

al., 2012). In contrast, our research was guided by GWAS and other literature which indicated 

the C allele confers risk for AD and has been associated with decrements in cognitive function 

(Bertram et al., 2007; Harold et al., 2009; Lambert et al., 2007; Lambert et al., 2011; Mengel-

From, Christensen, McGue, & Christiansen, 2011). To our knowledge, this is the first study 

examining the relationship between CLU and EF in older adults.  

Interestingly, our findings indicated higher levels of EPA diminished the effect of the CLU 

genetic risk on EF performance and decline. This could be potentially due to EPA induced 
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structural changes in the brain, such as increased brain volume and angiogenesis (Boyle et al., 

2014; Bullitt et al., 2009; Lista & Sorrentino, 2009). Physical activity is known to increase blood 

flow and increase hippocampal and medial temporal lobe volumes in the brain (Bugg & Head, 

2011; Erickson et al., 2009; Erickson et al., 2011) which potentially could attenuate the brain 

atrophy normally associated with the CLU gene (Thambisetty et al., 2012). Future research 

should examine structural brain changes as a function of physical activity stratified by genotypes 

associated with risk for AD.    

When we combined APOE and CLU into a genetic risk score the results indicated that the 

risk score significantly moderated the EPA-EF association. Specifically, individuals with lower 

risk and high levels of EPA had better EF performance at age 75 than individuals with lower 

genetic risk and low levels of EPA. In addition, the mid-risk group with high levels of EPA also 

demonstrated a cognitive benefit, as they experienced less decline over the 9 years than those in 

the mid-risk group with lower levels of EPA. There was no benefit of EPA participation for the 

high-risk group.  When BMI was accounted for, the low-risk group also indicated a benefit of 

EPA on EF decline, as those with higher levels of EPA at W1 had less decline over the 9 years 

than their genetically corresponding peers with lower levels of EPA.  

This observed pattern of results gives further support to a synergistic relationship between 

protective factors (i.e., genetic and lifestyle factors) associated with non-demented cognitive 

aging. These results complement recent literature (e.g., Papenberg, Lindenberger, & Bäckman, 

2015); specifically, genetically advantaged individuals are also responsive to modifiable lifestyle 

and environmental factors. Of note is the fact that the effect of EPA on EF was not seen in the 

high risk carriers. Interestingly, fMRI research recently indicated a detrimental additive effect of 

the CLU C risk allele and APOE ɛ4 risk allele on brain activity during an executive attention task 
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in young adults (Green et al., 2014). This effect of genetic risk on brain activation has also been 

seen in older adult carriers of the APOE ɛ4 risk allele (Bookheimer et al., 2000). Specifically, 

non-demented ɛ4 carriers have greater patterns of brain activation during episodic memory 

performance, suggestive of a higher cognitive burden when completing the task.  Taken together, 

it is possible these results may indicate that any potential protective effect on EF associated with 

physical activity is not enough to overcome the effect of a high multi-gene AD-risk score. 

 For research goal 5, we tested the genetic moderation effects on the MOB-EF 

relationship. Moderation was observed for two of the four genes, APOE and CLU, but not for the 

genetic risk score. For APOE, level of mobility was the strongest predictor of EF performance at 

the centering age of 75 for the risk allele carriers (ɛ4), but was also a predictor of EF 

performance for the ɛ3 carriers. It is interesting to consider the present results in the context of 

literature which links the three variables: genetics, mobility and EF. There has been an invested 

effort in the expansion of reserach examining the association between APOE and EF. It is now 

widely accepted that the APOE ɛ4 allele is associated with greater risk of EF decline (Wisdom, 

Callahan, & Hawkins, 2011). In addition, EF has been consistently associated with mobility 

across normally aging populations, as well as MCI (Gothe et al., 2014; Holtzer, Mahoney, & 

Verghese, 2013; Martin et al., 2013; McGough et al., 2011). However, there have been very few 

studies examining the association between APOE and mobility, and results within these studies 

have been mixed. Specifically, APOE ɛ4 has been associated with poor performance on measures 

of gait speed at baseline (Melzer et al., 2005), faster rates of mobility decline in men (Verghese 

et al., 2013), and faster rates of gait speed decline in only one of four longitudinal studies of 

aging (Alfred et al., 2014). In contrast, the ɛ4 allele was not associated with mobility decline 

(Blazer, Fillenbaum, & Burchett, 2001). Our results, which combine all three variables (i.e., 
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MOB, APOE and EF), indicate the relationship between mobility and EF is stronger for the 

APOE risk carriers than the non-risk carriers. This highlights the importance for further research 

on the relationship between APOE and mobility, and consideration of the implications for 

cognitive decline.  

 Interestingly, our results indicated CLU also moderated the association between level of 

mobility and level of EF, as level of mobility was a predictor of level of EF at age 75 for only 

genetic risk (C+) carriers. To our knowledge there is no previous research on the relationship 

between CLU and mobility, nor CLU and EF. This highlights the need for further research to 

replicate these results,and to indicate possible biological mechanisms involved in this 

relationship. Speculatively, a pathway which may be implicated is the CLU-lipid association. 

Moderate physical activity is known to increase high-density lipoprotein (HDL) levels (Crichton 

& Alkerwi, 2015). HDL removes cholesterol from the artery wall, reducing the risk of 

cardiovascular disease (Rader, 2006) which is associated with increased brain activation and 

poor EF performance (Chuang et al., 2014) and is a major risk factor for AD (Newman et al., 

2005). As plasma clusterin levels have been positively correlated with HDL levels (Won et al., 

2014), and clusterin has been implicated in HDL’s cardioprotective effects (Hoofnagle et al., 

2010, it is possible that CLU may moderate the effects of mobility and physical activity on EF 

through its relation to HDL. 

 Notably, APOE and CLU moderate the EPA-EF and MOB-EF relationships in a similar 

manner, suggesting mobility and physical activity are strongly related. Additionally, Best and 

colleagues (2015) found that mobility and physical activity were both positively correlated with 

improvements in EF over a 12-month period. Therefore, it is possible that various biological 

pathways and mechanisms responsible for these effects would be similar. In fact, a recent study 
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has implicated insulin-like growth factor (IGF-1) as a biomarker in older adults at risk for 

mobility limitations (Lippi, Sanchis-Gomar, & Montagnana, 2014). IGF-1 declines with age and 

mediates exercise induced neurotrophic changes in the brain (Voss, Vivar, Kramer, & van Praag, 

2014). It also plays a role in increasing bone mass and density, muscle angiogenesis, muscle cell 

growth, muscle protein synthesis, brain synaptogenesis and neuronal growth (Lippi, Sanchis-

Gomar, & Montagnana, 2014). Therefore, it is possible that age-related declines in the 

production of IGF-1 could influence mobility and cognitive declines as a function of muscle 

strength, bone health and neuronal reductions.  

 Another mechanism which has been linked with the EPA-EF association is brain volume 

(Colcombe et al., 2006; Erickson et al., 2010). Likewise, slower gait speed has been linked with 

smaller prefrontal cortex volumes (Rosano et al., 2012). As the prefrontal cortex mediates EF 

processes, it is possible that level of mobility has an effect on level of EF as a function of 

prefrontal brain volume. Moreover, APOE ɛ4 has been associated with reduced prefrontal 

volumes (Bender & Raz, 2012) and CLU C+ has been associated with brain atrophy 

(Thambisetty et al., 2012). Therefore, it is possible that atrophy as a result of genetic risk 

exacerbates the relationship between mobility and brain volume. It is evident further research is 

needed in this area.   

 There are several limitations to this study. First, the participants of the VLS are initially 

selected to be relatively healthy, free of neurodegenerative disease and may possess several risk-

reducing factors, such as access to national health care, above-average in years of education, and 

community-dwelling status. As a group, they may not be representative of the broadest 

population of older adults; however, they could reflect a growing proportion of older adults in 

western countries. Second due to the design of the VLS, W3 data had not been collected for the 
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second sample contributing to this study. Therefore, only participants from the first and third 

VLS sample contributed to W3. A more complete design would have included participants from 

all three samples in W3. Third, we use a self-report measure of EPA and thus not all aspects of 

the construct domain are represented or observed. Future research may consider including both 

observational and self-report indicators in order to establish validity and create composite 

indicators. Fourth, APOE ɛ3/ɛ4 carriers were combined into a genetic group with ɛ4/ɛ4 carriers. 

In this relatively large sample, only 12 participants were ɛ4 homozygotes. As research has 

indicated the effect of the APOE risk allele could be a function of the number of alleles present 

(Corder, Saunders, & Risch, 1994), a larger representation of ε4 homozygotes could have 

affected APOE related mobility and cognitive decline results.  

There are also several strengths associated with this study. First, we used a modern statistical 

approach to systematically analyze five research goals. Second, we had a relatively large and 

well-characterized sample (W1 n = 538) which comprised a span of 40 years of aging. Third, age 

was measured as a continuous variable through an accelerated longitudinal design which allowed 

us to examine a change period of 9 years. Fourth, we included four standard, reliable 

neuropsychological manifest variables in our EF latent variable. In addition, for this study we 

used mobility as a time-varying predictor in parallel process with EF. Although much of the 

recent research has used regression modelling to determine whether mobility levels at baseline 

are predictors of cognitive performance (Doi et al., 2014; Melzer et al., 2005), the use of time-

varying predictors allows for (a) examination of both level and change in mobility and (b) 

estimation of possible long-term associations with EF. 

In conclusion, our results indicate that cross-domain risk and protective factors operate 

interactively to contribute to the variability observed for EF performance and change in non-
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demented older adults. This highlights the importance of examining multiple influences on 

cognitive performance and change in aging. We examined the relationships between lifestyle 

(EPA), physical health (MOB) and cognition (EF) in older adults, as moderated by genetic 

factors associated with AD. The current results indicated that the role of genetic risk is marked 

when examined interactively with lifestyle and physical health factors, as two genetic factors 

associated with AD (i.e., APOE, CLU) independently and synergistically moderated the EPA-EF 

and MOB-EF relationships Clinically, developing interventions which increase everyday 

physical activity may be an accessible strategy through which genetically advantaged older 

adults can garner cognitive benefits, potentially reducing the risk of dementia.  

  



 
 

Table 1 

 

Note. Results presented as Mean (Standard Deviation). W1 = Wave 1; W2 = Wave 2; W3 = Wave 3. The genotypic distribution for 

APOE is in Hardy-Weinberg equilibrium, χ
2 

= .84. 

  

Descriptive Statistics for Sample by APOE Genotype and Longitudinal Wave

APOE

W1 W2 W3 W1 W2 W3 W1 W2 W3

n 69 56 36 313 269 152 132 110 62

Age 70.58 (8.84) 75.08 (8.59) 74.69 (6.53) 70.53 (8.70) 74.78 (8.59) 75.16 (7.54) 69.71 (8.27) 73.61 (8.27) 74.02 (6.75)

   Range 53.24 - 86.87 57.27 - 86.87 63.84 - 87.17) 54.13 - 95.25 58.11 - 94.53 62.44 - 94.90 54.63 - 87.36 58.93 - 90.41 63.22 - 92.59

Gender (% female) 66.6 66.6 67.7 60.5 56.7 68 60.5 56.7 68

ε2ε2/ε2ε3 ε3ε3 ε3ε4/ε4ε4
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Table 2 

Goodness of Fit Indices for Executive Function Confirmatory Analysis Models and Measurement Invariance Testing 

          
Model  AIC BIC χ2 df p RMSEA  CFI SRMR Δχ2 Δdf 

One Factor EF (W1) 8513.16 8564.63 3.13 2 .29 .03 (.00 - .10) 0.99 0.02 
  One Factor EF (W2) 7389.46 7438.75 .02 2 0.99 .00 (.00 - .00) 1 0.001 
  One Factor EF (W3) 4078.43 4121.30 3.26 2 .20 .05 (.00 - .14) 0.98 0.25 
  Configural Invariance 19493.12 19729.16 35.55 35 .44 .01 (.00 - .03) 1 0.03 
  Metric Invariance 19042.86 19253.05 41.83 41 .043 .01 (.00 -. 03) .99 0.05 8.15 6 

Scalar Invariance 19137.40 19313.28 152.37 49 <.001 .06 (.05 - .07) 0.92 0.10 110.54* 8 

Partial Scalar Invariance
a
 19056.20 19249.23 63.17 45 0.038 .03 (.01 -.04) 0.99 0.06 21.34* 4 

 

Note. EF = Executive Function; W1 = Wave 2; W2 = Wave 2; W3 = Wave 3; AIC = Akaike information criterion; BIC = Bayesian 

information criterion; RMSEA = Root Mean Square Error of Approximation; CFI = Comparative Fit Index; SRMR = Standardized 

Root Mean Square Residual; * p < .001 
a 
Best fitting model used for Factor Score Analysis.  
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Model -2LL Parameters  AIC BIC D Δdf 

    Free     
  Executive Function (EF)             

    Fixed intercept 5184.44 2 5188.45 5197.02 
      Random intercept 3120.45 3 3126.45 3139.32 2064.00* 1 

    Random intercept, fixed slope 2840.41 4 2848.41 2865.57 280.04* 1 

    Random intercept, random slope
a
 1781.95 6 1793.95 1819.69 1058.46* 2 

Everyday Physical Activity (EPA)             

    Fixed intercept 2478.5 2 2482.5 2491.08 
      Random intercept 1855.22 3 1861.22 1874.09 623.28* 1 

    Random intercept, fixed slope
a
 1734.95 4 1742.95 1760.11 120.27* 1 

    Random intercept, random slope
b
 1732.95 6 1744.95 1770.69 1.998 2 

Mobility (MOB)             

    Fixed intercept 5351.34 2 5355.34 5363.92   

    Random intercept 4808.27 3 4818.27 4827.14 543.06* 1 

    Random intercept, fixed slope 4376.88 4 4384.88 4402.04 431.39* 1 

    Random intercept, random slope
a
 4198.15 6 4210.15 4235.89 178.73* 2 

 

Note. -2LL = -2 log likelihood; AIC = Akaike information criterion; BIC = Bayesian information criterion; D = difference statistic;  

* p < .001 
a
 Preferred model. 

b
 This model was not retained as the variance of the slope was not significant 

  

Table 3 

Goodness of Fit Indices for EF, EPA and MOB Latent Growth Models 
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Table 4 

Difference tests for genetic predictors as moderators of EPA on EF level and change 

Model -2LL Parameters free D Δdf p 

Individual Moderators 
     

APOE Constrained 1703.12 8 
   

APOE Unconstrained* 1674.88 22 28.24 14 < .001 

CLU Constrained 1766.2 8 
   

CLU Unconstrained* 1751.44 15 14.76 7 0.039 

PICALM Constrained 1764.44 8 
   

PICALM Unconstrained 1747.14 22 17.3 14 0.24 

CR1 Constrained 1766.4 8 
   

CR1 Unconstrained 1758.22 15 8.18 7 0.32 

Genetic Risk Score 
 

 
   

APOE CLU  Constrained 1681.88 8 
   

APOE CLU  Unconstrained* 1655 22 26.88 14 0.02 

 

Note. -2LL = -2 log likelihood; D = difference statistic; *indicates significant moderation 
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Table 5 

Difference tests for genetic predictors as moderators of MOB on EF level and change 

Model -2LL Parameters free D Δdf p 

Individual Moderators 
     

APOE Constrained 5643.12 15 
   

APOE Regression paths free* 5626.96 21 16.16 6 .013 

CLU Constrained 5922.10 15 
   

CLU Regression paths free* 5912.54 18 9.56 3 .022 

PICALM Constrained 5914.94 15 
   

PICALM Regression paths free 5913.78 18 1.16 3 .76 

CR1 Constrained 5922.10 15 
   

CR1 Regression paths free 5917.70 18 4.40 3 .22 

Genetic Risk Score 
 

 
   

APOE CLU  Constrained 5629.44 15 
   

APOE CLU  Regression paths free 5617.38 21 12.06 6 .06 

 

Note. -2LL = -2 log likelihood; D = difference statistic; *indicates significant moderation 
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Figure 1.Predicted growth curve for executive function factor scores using everyday physical activity (EPA) at W1 as a predictor with 

age as a continuous variable centered at 75 years. -2 log likelihood = 1766.19 Akaike information criterion = 1782.19; Bayesian 

information criterion = 1816.51 
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Figure 2. Predicted growth curve for executive function factor scores by APOE allele status 

using everyday physical activity (EPA) as a predictor with age as a continuous variable centered 

at age 75. -2 log likelihood = 1695.30; Akaike information criterion = 1727.29; Bayesian 

information criterion = 1795.17. Figure 2(A) is APOE ε2 (i.e., ε2/ε2, ε2/ε3). Figure 2(B) is 

APOE ε3 (i.e., ε3/ε3). Figure 2(C) is APOE ε4 (i.e., ε3/ε4, ε4/ε4). 
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A 

 

B 

 

Figure 3.Predicted growth curve for executive function factor scores by CLU allele status using 

everyday physical activity (EPA) as a predictor with age as a continuous variable centered at age 

75. -2 log likelihood = 1751.44; Akaike information criterion = 1781.43; Bayesian information 

criterion = 1798.16. Figure 3(A) is CLU C+ (i.e., C/C, C/T). Figure 3(B) is CLU C- (i.e., T/T).  
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Figure 4. Predicted growth curve for executive function factor scores by AD genetic risk score 

(comprised of APOE and CLU) using everyday physical activity (EPA) as a predictor with age as 

a continuous variable centered at age 75. -2 log likelihood = 1655.0; Akaike information 

criterion = 1699.00; Bayesian information criterion = 1792.33. Figure 4(A) is the low risk group. 

Figure 4(B) is the mid-risk group. Figure 4(C) is the high risk group.  
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Figure 5. Parallel process latent growth model of executive function and mobility across three 

measurement occasions in the Victoria Longitudinal Study. This model is described notationally 

in the text. Latent variable intercepts and slopes for mobility are regressed on the covariates. 

Residual variances for mobility latent variables are shown by smaller arrows going toward the 

latent variables. EF = Executive function factor score at a measurement occasion. M = Observed 

composite mobility score at a measurement occasion. 

 

 

  



47 
 

References 

Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Cooper, C., Deary, I. J., … the HALCyon 

Study Team. (2014). Associations between APOE and low-density lipoprotein cholesterol 

genotypes and cognitive and physical capability: the HALCyon programme. Age, 36(4), 

9673. doi:10.1007/s11357-014-9673-9 

Allali, G., van der Meulen, M., Beauchet, O., Rieger, S. W., Vuilleumier, P., & Assal, F. (2013). 

The neural basis of age-related changes in motor imagery of gait, An fMRI study. The 

Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 69(11), 

1389-1398 doi:10.1093/gerona/glt207 

Alzheimer's Society. (2010). Rising tide: The impact of dementia on Canadian society: 

Executive summary. ISBN: 9780973352221 

Anstey, K. J. (2014). Optimizing cognitive development over the life course and preventing 

cognitive decline: Introducing the cognitive health environment life course model 

(CHELM). International Journal of Behavioral Development, 38(1), 1-10. 

doi:10.1177/0165025413512255 

Atkinson, H. H., Rapp, S. R., Williamson, J. D., Lovato, J., Absher, J. R., Gass, M., . . . 

Espeland, M. A. (2010). The relationship between cognitive function and physical 

performance in older women: Results from the women's health initiative memory study. The 

Journals of Gerontology Series A: Biological Sciences and Medical Sciences 3, 300- 306. 

doi:10.1093/gerona/glp149 

Baltes, P. B. (1987). Theoretical propositions of life-span developmental psychology: On the 

dynamics between growth and decline. Developmental Psychology, 23(5), 611-

626.doi: 10.1037/0012-1649.23.5.611 

http://psycnet.apa.org/doi/10.1037/0012-1649.23.5.611


48 
 

Barnes, D., & Yaffe, K. (2011). The projected impact of risk factor reduction on Alzheimer's 

disease prevalence. Lancet Neurolology, 201, 10(9), 819-28. doi: 10.1016/S1474-

4422(11)70072-2 

Barral, S., Bird, T., Goate, A., Farlow, M. R., Diaz-Arrastia, R., Bennett, D. A., . . . Mayeux, R. 

(2012). Genotype patterns at PICALM, CR1, BIN1, CLU, and APOE genes are associated 

with episodic memory. Neurology, 78(19), 1464-1471. 

doi:10.1212/WNL.0b013e3182553c48 

Bender, A. R., & Raz, N. (2012). Age-related differences in memory and executive functions in 

healthy APOE ɛ4 carriers: The contribution of individual differences in prefrontal volumes 

and systolic blood pressure. Neuropsychologia, 50(5), 704-714. 

doi:10.1016/j.neuropsychologia.2011.12.025 

Berryman, N., Bherer, L., Nadeau, S., Lauzière, S., Lehr, L., Bobeuf, F., . . . Bosquet, L. (2013). 

Executive functions, physical fitness and mobility in well-functioning older 

adults. Experimental Gerontology, 48(12), 1402 1409. doi:10.1016/j.exger.2013.08.017 

 Bertram, L., McQueen, M. B., Mullin, K., Blacker, D., & Tanzi, R. E. (2007) Systematic meta-

analyses of Alzheimer disease genetic association studies: the AlzGene database. Nature 

Genetics, 39, 17–23. doi:10.1038/ng1934 

Best, J. R., Davis, J. C., & Liu-Ambrose, T. (2015). Longitudinal analysis of physical 

performance, functional status, physical activity, and mood in relation to executive 

function in older adults who fall. Journal of the American Geriatrics Society, 63(6), 

1112-1120. doi:10.1111/jgs.13444 

Bielak, A. A. M., Cherbuin, N., Bunce, D., & Anstey, K. J. (2014). Preserved differentiation 

between physical activity and cognitive performance across young, middle, and older 

http://dx.doi.org/10.1016/j.exger.2013.08.017


49 
 

adulthood over 8 years. The Journals of Gerontology Series B: Psychological Sciences 

and Social Sciences,69 (4), 523-532. doi:10.1093/geronb/gbu016 

Bielak, A. A. M., Mansueti, L., Strauss, E., & Dixon, R. A. (2006). Performance on the Hayling 

and Brixton tests in older adults: Norms and correlates. Archives of Clinical 

Neuropsychology, 21(2), 141-149. doi:10.1016/j.acn.2005.08.006 

Blasko, I., Jungwirth, S., Kemmler, G., Weissgram, S., Tragl, K. H., & Fischer, P. (2014). 

Leisure time activities and cognitive functioning in middle European population-based 

study. European Geriatric Medicine, 5(3), 200-207. doi:10.1016/j.eurger.2013.09.003 

Ble, A., Volpato, S., Zuliani, G., Guralnik, J. M., Bandinelli, S., Lauretani, F., . . . Ferrucci, L. 

(2005). Executive function correlates with walking speed in older persons: The 

InCHIANTI study. Journal of the American Geriatrics Society, 53(3), 410-415. 

doi:10.1111/j.1532-5415.2005.53157.x 

Bookheimer, S. Y., Strojwas, M. H., Cohen, M. S., Saunders, A. M., Pericak-Vance, M., 

Mazziotta, J. C., & Small, G. W. (2000). Patterns of brain activation in people at risk for 

alzheimer's disease. New England Journal of Medicine, 343(7), 450-456. 

doi:10.1056/NEJM200008173430701 

Boyle, C. P., Raji, C. A., Erickson, K. I., Lopez, O. L., Becker, J. T., Gach, H. M., . . . 

Thompson, P. M. (2015). Physical activity, body mass index, and brain atrophy in 

alzheimer's disease. Neurobiology of Aging, 36, Supplement 1, S194-S202. doi: 

10.1016/j.neurobiolaging.2014.05.036 

Brainerd, C. J., Reyna, V. F., Petersen, R. C., Smith, G. E., & Taub, E. S. (2011). Is the 

apolipoproteins e genotype a biomarker for mild cognitive impairment? Findings from a 



50 
 

nationally representative study. Neuropsychology, 25(6), 679-689. doi: 

10.1037/a0024483. 

Brown, B. M., Peiffer, J. J., & Martins, R. N. (2013). Multiple effects of physical activity on 

molecular and cognitive signs of brain aging: Can exercise slow neurodegeneration and 

delay Alzheimer's disease? Molecular Psychiatry, 18(8), 864-874. 

doi:10.1038/mp.2012.162 

Buchman, A., Boyle, P., Yu, L., Shah, R., Wilson, R., & Bennett, D. (2012). Total daily physical 

activity and the risk of AD and cognitive decline in older adults. Neurology, 78(17), 

1323-1329. 

Bugg, J. M., & Head, D. (2011). Exercise moderates age-related atrophy of the medial temporal 

lobe. Neurobiology of Aging, 32(3), 506-514. doi:10.1016/j.neurobiolaging.2009.03.008 

Bullitt, E., Rahman, F. N., Smith, J. K., Kim, E., Zeng, D., Katz, L. M., & Marks, B. L. (2009). 

The effect of exercise on the cerebral vasculature of healthy aged subjects as visualized 

by MR angiography. American Journal of Neuroradiology, 30(10), 1857-1863. 

doi:10.3174/ajnr.A1695 

Buracchio, T. J., Mattek, N. C., Dodge, H. H., Hayes, T. L., Pavel, M., Howieson, D. B., & 

Kaye, J. A. (2011). Executive function predicts risk of falls in older adults without 

balance impairment. BMC Geriatrics, 11, 1-7. doi:10.1186/1471-2318-11-74 

Burgess, P. W., & Shallice, T. (1997). The Hayling and Brixton tests. Thurston, Suffolk, 

England: Thames Valley Test Company. 

Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and 

physical fitness: Definitions and distinctions for health-related research. Public Health 

Reports, 100(2), 126-131. Retrieved from http://www.jstor.org/stable/20056429 



51 
 

Caselli, R. J., Dueck, A. C., Osborne, D., Sabbagh, M. N., Connor, D. J., Ahern, G. L., . . . 

Reiman, E. M. (2009). Longitudinal modeling of age-related memory decline and the 

APOE ε4 effect. New England Journal of Medicine, 361(3), 255-263. 

doi:10.1056/NEJMoa0809437\ 

Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing 

measurement invariance. Structural Equation Modeling, 9(2), 233-55. 

Chibnik, L., Shulman, J., Leurgans, S., Schneider, J., Wilson, R., Tran, D., & ... De Jager, P. 

(2011). CR1 is associated with amyloid plaque burden and age-related cognitive 

decline. Annals of Neurology, 69(3), 560-569. doi:10.1002/ana.22277 

Chodzko-Zajko, W. J., Proctor, D. N., Fiatarone Singh, M. A., Minson, C. T., Nigg, C. R., 

Salem, G. J., & Skinner, J. S. (2009). American College of Sports Medicine position 

stand. Exercise and physical activity for older adults. Medicine and Science In Sports And 

Exercise, 41(7), 1510-1530. doi:10.1249/MSS.0b013e3181a0c95c 

Chuang, Y.-F., Eldreth, D., Erickson, K. I., Varma, V., Harris, G., Fried, L. P., … Carlson, M. C. 

(2014). Cardiovascular risks and brain function: a functional magnetic resonance imaging 

study of executive function in older adults. Neurobiology of Aging, 35(6), 1396–1403. 

doi:10.1016/j.neurobiolaging.2013.12.008 

Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: 

A meta–analytic study. Psychological Science, 14(2), 125-130. doi: 10.1111/1467-

9280.t01-1-01430 

Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, 

G.W., Roses, A. D. . . Pericak-Vance, M. A. (1993). Gene dose of Apolipoprotein E type 



52 
 

4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 

921–923. 

Cosentino, S. A., Stern, Y., Sokolov, E., Scarmeas, N., Manly, J. J., Tang, M. X., Mayeux, R. P. 

(2010). Plasma β-amyloid and cognitive decline. Archives of Neurology, 67(12), 1485-

1490. doi:10.1001/archneurol.2010.189. 

Crichton, G. E., & Alkerwi, A. (2015). Physical activity, sedentary behavior time and lipid levels 

in the observation of cardiovascular risk factors in Luxembourg study. Lipids In Health & 

Disease, 14(1), 87-95. doi:10.1186/s12944-015-0085-3 

D’Elia, L. A., Satz, P., Uchiyama, C. L., & White, T. (1996). Color Trails Test: Professional 

Manual. Psychological Assessment Resources, Odessa, FL. 

de Frias, C. M., & Dixon, R. A. (2014). Lifestyle engagement affects cognitive status differences 

and trajectories on executive functions in older adults. Archives of Clinical 

Neuropsychology, 29(1), 16-25. doi:10.1093/arclin/act089 

de Frias, C. M., Dixon, R. A., & Strauss, E. (2006). Structure of four executive functioning tests 

in healthy older adults. Neuropsychology, 20(2), 206-214. doi:10.1037/0894-

4105.20.2.206 

de Frias, C. M., Dixon, R. A., & Strauss, E. (2009). Characterizing executive functioning in older 

special populations: From cognitively elite to cognitively impaired. 

Neuropsychology, 23(6), 778-791. doi:10.1037/a0016743 

de Vries, N. M., van Ravensberg, C. D., Hobbelen, J. S. M., Olde Rikkert, M. G. M., Staal, J. B., 

& Nijhuis-van der Sanden, M. W. G. (2012). Effects of physical exercise therapy on 

mobility, physical functioning, physical activity and quality of life in community-

dwelling older adults with impaired mobility, physical disability and/or multi-morbidity: 



53 
 

A meta-analysis. Ageing Research Reviews, 11(1), 136-149. doi: 

10.1016/j.arr.2011.11.002 

Deary, I. J., Whalley, L. J., Batty, G. D., & Starr, J. M. (2006). Physical fitness and lifetime 

cognitive change. Neurology, 67(7), 1195-1200. doi: 10.1212/01.wnl.0000238520.06958.6a 

Desjardins-Crépeau, L., Berryman, N., Vu, T. T. M., Villalpando, J. M., Kergoat, M., Li, K. Z., . 

. . Bherer, L. (2014). Physical functioning is associated with processing speed and executive 

functions in community-dwelling older adults. The Journals of Gerontology Series B: 

Psychological Social Sciences, 69(6), 837-844. doi: 10.1093/geronb/gbu036 

Diehr, P. H., Thielke, S. M., Newman, A. B., Hirsch, C., & Tracy, R. (2013). Decline in health 

for older adults: Five-year change in 13 key measures of standardized health. The 

Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 68(9), 

1059-1067. doi:10.1093/gerona/glt038 

Dixon, R. A., & de Frias, C. M. (2004). The Victoria Longitudinal Study: From characterizing 

cognitive aging to illustrating changes in memory compensation. Aging, 

Neuropsychology, and Cognition, 11, 346–376. doi:10.1080/13825580490511161 

Dixon, R. A., Small, B .J., MacDonald, S. W. S., & McArdle, J. J. (2012). Yes, memory declines 

with aging-but when, how, and why? In M. Naveh-Benjamin & N. Ohta (Eds.), Memory 

and aging (pp. 325-347). New York: Psychology Press. 

Dixon, R.A., DeCarlo, C.A., MacDonald, S.W.S., Vergote, D., Jhamandas, J., & Westaway, D. 

(2014). APOE and COMT polymorphisms are complementary biomarkers of status, 

stability, and transitions in normal aging and early mild cognitive impairment. Frontiers 

in Aging Neuroscience, 6, Article 236. doi:10.3389/fnagi.2014.00236 



54 
 

Doi, T., Shimada, H., Makizako, H., Tsutsumimoto, K., Uemura, K., & Suzuki, T. (2015). 

Apolipoprotein E genotype and physical function among older people with mild 

cognitive impairment. Geriatrics & Gerontology International, 15(4), 422-427. 

doi:10.1111/ggi.12291 

Enders, C. K. (2011). Analyzing longitudinal data with missing values. Rehabilitation 

Psychology, 56, 267 – 288. doi:10.1037/a0025579 

Erickson, K. I., Banducci, S. E., Weinstein, A. M., MacDonald, A. W., Ferrell, R. E., Halder, I., . 

. . Manuck, S. B. (2013). The brain-derived neurotrophic factor Val66Met polymorphism 

moderates an effect of physical activity on working memory performance. Psychological 

Science, 24(9), 1770-1779. doi: 10.1177/0956797613480367 

Erickson, K. I., Leckie, R. L., & Weinstein, A. M. (2014). Physical activity, fitness, and gray 

matter volume. Neurobiology of Aging, 35, Supplement 2, S20-S28. 

doi:10.1016/j.neurobiolaging.2014.03.034 

Erickson, K. I., Miller, D. L., & Roecklein, K. A. (2012). The aging hippocampus: Interactions 

between exercise, depression, and BDNF. The Neuroscientist, 18(1), 82-97. 

doi:10.1177/1073858410397054 

Erickson, K. I., Raji, C. A., Lopez, O. L., Becker, J. T., Rosano, C., Newman, A. B., . . . Kuller, 

L. H. (2010). Physical activity predicts gray matter volume in late adulthood: The 

cardiovascular health study. Neurology, 75(16), 1415-1422. 

doi:10.1212/WNL.0b013e3181f88359 

Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., . . . Kramer, A. 

F. (2011). Exercise training increases size of hippocampus and improves memory. 



55 
 

Proceedings of the National Academy of Sciences, 108(7), 3017-3022. 

doi:10.1073/pnas.1015950108 

Erickson, K. I., Weinstein, A. M., & Lopez, O. L. (2012). Physical activity, brain plasticity, and 

Alzheimer's disease. Archives of Medical Research, 43(8), 615-621. 

doi:10.1016/j.arcmed.2012.09.008 

Farina, N., Tabet, N., & Rusted, J. (2014). Habitual physical activity (HPA) as a factor in 

sustained executive function in Alzheimer-type dementia: A cohort study. Archives of 

Gerontology and Geriatrics, 59(1), 91-97. doi:10.1016/j.archger.2014.03.016 

Ferencz, B., Laukka, E. J., Welmer, A. K., Kalpouzos, G., Angleman, S., Keller, L. . . . 

Bäckman, L. (2014). The benefits of staying active in old age: Physical activity 

counteracts the negative influence of PICALM, BIN1, and CLU risk alleles on episodic 

memory functioning. Psychology and Aging, 29(2), 440-449. doi:10.1037/a0035465 

Folstein, M. F., Folstein, S. E., McHugh, P. R. (1975). “Mini-mental state”. A practical method 

for grading the cognitive state of patients for the clinician. Journal of Psychiatric 

Research, 12, 189-198. doi:10.1016/0022-3956(75)90026-6 

Fotuhi, M., Hachinski, V., & Whitehouse, P. J. (2009). Changing perspectives regarding late-life 

dementia. Nature Reviews Neurology, 5, 649–658. doi:10.1038/nrneurol.2009.175 

Freene, N., Waddington, G., Chesworth, W., Davey, R., & Cochrane, T. (2014). Validating two 

self-report physical activity measures in middle-aged adults completing a group exercise or 

home-based physical activity program. Journal of Science and Medicine in Sport, 17(6), 

611-616. doi:10.1016/j.jsams.2013.11.002 



56 
 

Gale, C. R., Allerhand, M., Sayer, A. A., Cooper, C., & Deary, I. J. (2014). The dynamic 

relationship between cognitive function and walking speed: The English longitudinal study 

of ageing. Age, (36)4, 1. doi:10.1007/s11357-014-9682-8 

Gharesouran, J., Rezazadeh, M., Khorrami, A., Ghojazadeh, M., & Talebi, M. (2014). Genetic 

evidence for the involvement of variants at APOE, BIN1, CR1, and PICALM loci in risk of 

late-onset Alzheimer's disease and evaluation for interactions with APOE 

genotypes. Journal of Molecular Neuroscience: MN, 54(4), 780-786. doi:10.1007/s12031-

014-0377-5 

Gill, D. P., Gregory, M. A., Zou, G., Liu-Ambrose, T., Shigematsu, R., Hachinski, V., & ... 

Petrella, R. J. (in press). The healthy mind, healthy mobility trial: A novel exercise 

program for older adults. Medicine and Science in Sports and Exercise. 

Glisky E. L. (2007). Changes in cognitive function in human aging. In D.R. Riddle (Ed.), Brain 

aging: Models, methods, and mechanisms (Chapter 1). Retrieved from: 

http://www.ncbi.nlm.nih.gov/books/NBK3885/ 

Gosney, J., Scott, J., Snook, E., Motl, R. (2007). Physical activity and multiple sclerosis: Validity 

of self-report and objective measures. Family & Community Health, 30(2), 144-150. doi: 

10.1097/01.FCH.0000264411.20766.0c 

Gothe, N. P., Fanning, J., Awick, E., Chung, D., Wojcicki, T. R., Olson, E. A., . . . McAuley, E. 

(2014). Executive function processes predict mobility outcomes in older adults. Journal 

of the American Geriatrics Society, 62(2), 285-291. doi: 10.1111/jgs.12654 

Graham, J. W., Olchowski, A.E., & Gilreath, T. D. (2007). How many multiple imputations are 

really needed? Some practical clarifications of multiple imputation theory. Prevention 

Science, 8, 206- 213. doi:10.1007/s11121-007-0070-9 



57 
 

Greene, N., Waddington, G., Chesworth, W., Davey, R., & Cochrane, T. (2014). Validating two 

self-report physical activity measures in middle-aged adults completing a group exercise 

or home-based physical activity program. Journal of Science And Medicine In Sport, (6), 

611-616. doi:10.1016/j.jsams.2013.11.002 

Gregg, E., Pereira, M., & Caspersen, C. (2000). Physical activity, falls, and fractures among 

older adults: a review of the epidemiologic evidence. Journal of the American Geriatrics 

Society, 48(8), 883-893. 

Hamer, M., Lavoie, K. L., & Bacon, S. L. (2013). Taking up physical activity in later life and 

healthy ageing: The English longitudinal study of ageing. British Journal of Sports 

Medicine,48(3), 239-243. doi:10.1136/bjsports-2013-092993 

Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M., … Williams, J. 

(2009). Genome-wide association study identifies variants at CLU 

and PICALM associated with Alzheimer’s disease, and shows evidence for additional 

susceptibility genes. Nature Genetics, 41(10), 1088–1093. doi:10.1038/ng.440 

Harris, S. E., & Deary, I. J. (2011). The genetics of cognitive ability and cognitive aging in 

healthy older people. Trends in Cognitive Sciences, 15(9), 388-394. 

doi:10.1016/j.tics.2011.07.004 

Hollingworth, P., Harold, D., Jones, L., Owen, M. J., & Williams, J. (2011). Alzheimer's disease 

genetics: current knowledge and future challenges. International Journal of Geriatric 

Psychiatry, 26(8), 793-802. doi:10.1002/gps.2628 

Holtzer, R., Mahoney, J., & Verghese, J. (2014). Intraindividual variability in executive 

functions but not speed of processing or conflict resolution predicts performance 



58 
 

differences in gait speed in older adults. The Journals of Gerontology Series A: 

Biological Sciences and Medical Sciences, 69(8), 980–986. doi:10.1093/gerona/glt180 

Hoofnagle, A. N., Wu, M., Gosmanova, A. K., Becker, J. O., Wijsman, E. M., Brunzell, J. D., … 

Heinecke, J. W. (2010). Low clusterin levels in high density lipoprotein associate with 

insulin resistance, obesity, and dyslipoproteinemia. Arteriosclerosis, Thrombosis, and 

Vascular Biology, 30(12), 2528–2534. doi:10.1161/ATVBAHA.110.212894 

Hultsch, D. F., Small, B. J., Hertzog, C., & Dixon, R. A. (1999). Use it or lose it: Engaged 

lifestyle as a buffer of cognitive decline in aging? Psychology and Aging, 14(2), 245-263. 

doi:10.1037/0882-7974.14.2.245 

Jacobi, D., Charles, M., Tafflet, M., Lommez, A., Borys, J., & Oppert, J. (2009). Relationships 

of self-reported physical activity domains with accelerometry recordings in French 

adults. European Journal of Epidemiology, 24(4), 171-179. doi:10.1007/s10654-009-

9329-8 

Jin, C., Li, W., Yuan, J., Xu, W., & Cheng, Z. (2012). Association of the CR1 polymorphism 

with late-onset Alzheimer's disease in Chinese Han populations: A meta-

analysis. Neuroscience Letters, 527(1), 46-49. doi:10.1016/j.neulet.2012.08.032 

John, D., & Freedson, P. (2012). Actigraph and actual physical activity monitors: A peek under 

the hood. Medicine and Science in Sports and Exercise, 44(1 Suppl 1), S86–S89. 

doi:10.1249/MSS.0b013e3182399f5e 

Keenan, B. T., Shulman, J. M., Chibnik, L. B., Raj, T., Tran, D., Sabuncu, M. R., … De Jager. 

(2012). A coding variant in CR1 interacts with APOE-ɛ4 to influence cognitive 

decline. Human Molecular Genetics, 21(10), 2377–2388. doi:10.1093/hmg/dds054 



59 
 

Kelly, M. E., Loughrey, D., Lawlor, B. A., Robertson, I. H., Walsh, C., & Brennan, S. (2014). 

The impact of exercise on the cognitive functioning of healthy older adults: A systematic 

review and meta-analysis. Ageing Research Reviews, 16, 12-31. 

doi:10.1016/j.arr.2014.05.002 

Kline, R. B. (2011). Principles and practice of structural equation modeling (3
rd

 Edition). New 

York, NY: Guilford Press. 

Kramer, A. F., & Erickson, K. I. (2007). Capitalizing on cortical plasticity: Influence of physical 

activity on cognition and brain function. Trends in Cognitive Sciences, (8), 342. 

doi:10.1016/j.tics.2007.06.009 

Kwak, L., Kremers, S. P. J., Brug, J., & Van Baak., M. A. (2007). Measuring physical activity in 

field studies: Comparison of a questionnaire, 24-hour recall and an accelerometer. European 

Journal of Sport Science, 7(4), 193-201. doi: 10.1080/17461390701674088 

Lahiri, D. K., Sambamurti, K., & Bennett, D. A. (2004). Apolipoprotein gene and its interaction 

with the environmentally driven risk factors: Molecular, genetic and epidemiological 

studies of Alzheimer’s disease. Neurobiology of Aging, 25(5), 651-660. 

doi:10.1016/j.neurobiolaging.2003.12.024 

Lambert, J., & Amouyel, P. (2011). Genetics of alzheimer's disease: New evidences for an old 

hypothesis? Current Opinion in Genetics & Development, 21(3), 295-301. 

doi:10.1016/j.gde.2011.02.002 

Lambert, J., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., . . . Amouyel, P. 

(2009). Genome-wide association study identifies variants at CLU and CR1 associated 

with alzheimer's disease. Nature Genetics, 41(10), 1094-1099. doi:10.1038/ng.439 

http://dx.doi.org/10.1016/j.neurobiolaging.2003.12.024


60 
 

Laukka, E. J., Lövdén, M., Herlitz, A., Karlsson, S., Ferencz, B., Pantzar, A., . . . Bäckman, L. 

(2013). Genetic effects on old-age cognitive functioning: A population based study. 

Psychology and Aging, 28(1), 262-274. doi:10.1037/a0030829 

Lindenberger, U., Nagel, I. E., Chicherio, C., Li, S. C., Heerkeren, H.R., & Bäckman, L. (2008). 

Age-related decline in brain resources modulates genetic effects on cognitive functioning. 

Frontiers in Neuroscience, 2(2), 234-244. doi:10.3389/neuri.01.039.2008 

Lindsay, J., Laurin, D., Verreault, R., Hébert, R., Helliwell, B., Hill, G. B., McDowell, I. (2002). 

Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of 

Health and Aging. American Journal of Epidemiology, 156, 445–453 

Lindwall, M., Cimino, C. R., Gibbons, L. E., Mitchell, M. B., Benitez, A., Brown, C. L., . . . 

Piccinin, A. (2012). Dynamic associations of change in physical activity and change in 

cognitive function: Coordinated analyses of four longitudinal studies. Journal of Aging 

Research, 2012, 1-12. doi:10.1155/2012/493598 

Lippi, G., Sanchis-Gomar, F., & Montagnana, M. (2014). Biological markers in older people at 

risk of mobility limitations. Current Pharmaceutical Design, 20(19), 3222-3244. 

Lista, I., & Sorrentino, G. (2010). Biological mechanisms of physical activity in preventing 

cognitive decline. Cellular And Molecular Neurobiology, 30(4), 493-503 

Little, T. D. (2013). Longitudinal structural equation modeling. New York, NY: Guilford Press 

Luck, T., Then, F. S., Luppa, M., Schroeter, M. L., Arélin, K., Burkhardt, R., . . . Riedel-Heller, 

S. (2014). Association of the apolipoprotein E genotype with memory performance and 

executive functioning in cognitively intact elderly. Neuropsychology, 29(3), 382-

387.. doi:10.1037/neu0000147 

http://www.ncbi.nlm.nih.gov/pubmed?term=Laukka%20EJ%5BAuthor%5D&cauthor=true&cauthor_uid=23276211
http://www.ncbi.nlm.nih.gov/pubmed?term=L%C3%B6vd%C3%A9n%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23276211
http://www.ncbi.nlm.nih.gov/pubmed?term=Herlitz%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23276211
http://www.ncbi.nlm.nih.gov/pubmed?term=Karlsson%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23276211
http://www.ncbi.nlm.nih.gov/pubmed?term=Ferencz%20B%5BAuthor%5D&cauthor=true&cauthor_uid=23276211
http://www.ncbi.nlm.nih.gov/pubmed?term=Pantzar%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23276211
http://www.ncbi.nlm.nih.gov/pubmed?term=B%C3%A4ckman%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23276211


61 
 

Luszcz, M. (2011). Executive function and cognitive aging. In K. W. Schaie & S. L. Willis 

(Eds.), Handbook of the psychology of aging (7th ed., pp. 59–72). San Diego, CA: 

Academic Press. doi:10.1016/B978-0-12-380882-0.00004-8 

MacDonald, S.W.S., DeCarlo, C.A., & Dixon, R.A. (2011). Linking biological and cognitive 

aging: toward improving characterizations of developmental time. The Journals of 

Gerontology, Series B: Psychological Sciences and Social Sciences, 66B(S1), i59–i70. 

doi:10.1093/geronb/gbr039 

Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P., & Kivipelto, M. (2010). Alzheimer's 

disease: Clinical trials and drug development. The Lancet Neurology, 9(7), 702-716. 

doi:10.1016/S1474-4422(10)70119-8 

Manini, T., & Pahor, M. (2009). Physical activity and maintaining physical function in older 

adults. British Journal Of Sports Medicine, 43(1), 28-31. doi:10.1136/bjsm.2008.053736 

Martin, K. L., Blizzard, L., Wood, A. G., Srikanth, V., Thomson, R., Sanders, L. M., & 

Callisaya, M. L. (2013). Cognitive function, gait, and gait variability in older people: a 

population-based study. Journals of Gerontology Series A: Biological Sciences & 

Medical Sciences, 68(6), 726-732. doi:10.1093/gerona/gls224 

McFall, G. P., Wiebe, S. A., Vergote, D., Westaway, D., Jhamandas, J., Bäckman, L., & Dixon, 

R. A. (2015). ApoE and pulse pressure interactively influence level and change 

in the aging of episodic memory: Protective effects among ε2 carriers. Neuropsychology, 

29(3):388-401. doi: 10.1037/neu0000150 

McFall, G. P., Wiebe, S. A., Vergote, D., Anstey, K. J., & Dixon, R. A. (in press). The 

Alzheimer's genetic risk composite (AGRC) interacts with diabetes status to predict 



62 
 

neurocognitive speed level and change in non-demented older adults. Alzheimer’s and 

Dementia: Diagnosis, Assessment and Disease Monitoring.  

McFall, G. P., Wiebe, S. A., Vergote, D., Westaway, D., Jhamandas, J., & Dixon, R. A. (2013). 

IDE (rs6583817) polymorphism and type 2 diabetes differentially modify executive 

function in older adults. Neurobiology of Aging, 34(9), 2208-2216. 

doi:10.1016/j.neurobiolaging.2013.03.010 

McFall, G.M., Wiebe, S.A., Vergote, D., Jhamandas, J., Westaway, D., & Dixon, R.A. (2014). 

IDE (rs6583817) and pulse pressure are independently and interactively associated with 

level and change in executive function in older adults. Psychology and Aging, 29(2), 418-

430. doi: 10.1037/a0034656 

McGough, E. L., Kelly, V. E., Logsdon, R. G., McCurry, S. M., Cochrane, B. B., Engel, J. M., . . 

. Liu-Ambrose, T. (2011). Associations between physical performance and executive 

function in older adults with mild cognitive impairment: Gait speed and the timed "up & 

go" test. Physical Therapy, 91(8), 1198-1210. doi: 10.2522/ptj.20100372  

Meade, A. W., Johnson, E. C., & Braddy, P. W. (2008). Power and sensitivity of alternative fit 

indices in tests of measurement invariance. Journal of Applied Psychology, 93(3), 568-

592. 

Melzer, D., Dik, M. G., van Kamp, G., Jonker, C., & Deeg, D. J. (2005). The apolipoprotein E e4 

polymorphism is strongly associated with poor mobility performance test results but not 

self-reported limitation in older people. The Journals of Gerontology Series A: Biological 

Sciences and Medical Sciences,60(10), 1319-1323. doi: 10.1093/gerona/60.10.1319  

http://dx.doi.org/10.1016/j.neurobiolaging.2013.03.010


63 
 

Mengel-From, J., Christensen, K., McGue, M., & Christiansen, L. (2011). Genetic variations in 

the CLU and PICALM genes are associated with cognitive function in the oldest 

old. Neurobiology of Aging, 32(3), 554 e7-11. doi:10.1016/j.neurobiolaging.2010.07.016. 

Mielke, M. M., Roberts, R. O., Savica, R., Cha, R., Drubach, D. I., Christianson, T., . . . 

Petersen, R. C. (2013). Assessing the temporal relationship between cognition and gait: 

Slow gait predicts cognitive decline in the Mayo Clinic Study of Aging. , The Journals of 

Gerontology Series A: Biological Sciences & Medical Sciences, 66(8), 929-937. 

doi:10.1093/gerona/gls256 

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A.H., Howerter, A. &, Wager, T.D. 

(2000). The unity and diversity of executive functions and their contributions to complex 

“frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100. 

doi:10.1006/cogp.1999.0734 

Muthén, L.K., Muthén, B.O., (2010). Mplus user’s guide (6
th

 ed). Los Angeles, CA: Muthén and 

Muthén. 

Nagel, I. E., Chicherio, C., Li, S. -C., von Oertzen, T., Sander, T., Villringer, A., . . . 

Lindenberger, U. (2008). Human aging magnifies genetic effects on executive 

functioning and working memory. Frontiers in Human Neuroscience, 2, 1-8. 

doi:10.3389/neuro.09.001.2008 

Newman, A. B., Fitzpatrick, A. L., Lopez, O., Jackson, S., Lyketsos, C., Jagust, W., & ... Kuller, 

L. H. (2005). Dementia and Alzheimer's disease incidence in relationship to 

cardiovascular disease in the Cardiovascular Health Study Cohort. Journal of The 

American Geriatrics Society, 53(7), 1101-1107. doi:10.1111/j.1532-54I5.2005.53360.x 



64 
 

Nuutinen, T., Suuronen, T., Kauppinen, A., & Salminen, A. (2009). Clusterin: A forgotten player 

in Alzheimer's disease. Brain Research Reviews, 61(2), 89-104. 

doi:10.1016/j.brainresrev.2009.05.007 

Paillard-Borg, S., Fratiglioni, L., Xu, W., Winblad, B., & Wang, H. (2012). An active lifestyle 

postpones dementia onset by more than one year in very old adults. Journal of 

Alzheimer's Disease, 31(4), 835-842. doi:10.3233/JAD-2012-120724 

Papenberg, G., Lindenberger, U., & Bäckman, L. (in press). Aging-related magnification of 

genetic effects on cognitive and brain integrity. Trends in Cognitive Sciences. Advance 

online publication. doi:10.1016/j.tics.2015.06.008 

Paterson, D. H., & Warburton, D. E. R. (2010). Physical activity and functional limitations in 

older adults: A systematic review related to Canada’s physical activity guidelines. 

International Journal of Behavioural Nutrition and Physical Activity, 7(38), 1-22. 

doi:10.1186/1479-5868-7-38 

Podewils, L. J., Guallar, E., Kuller, L. H., Fried, L. P., Lopez, O. L., Carlson, M., & Lyketsos, C. 

G. (2005). Physical activity, APOE genotype, and dementia risk: Findings from the 

cardiovascular health cognition study. American Journal of Epidemiology, 161(7), 639-651. 

doi:10.1093/aje/kwi092  

Rader, D. J. (2006). Molecular regulation of HDL metabolism and function: implications for 

novel therapies. Journal of Clinical Investigation, 116(12), 3090–3100. 

doi:10.1172/JCI30163 

Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: Patterns, cognitive correlates 

and modifiers. Neuroscience & Biobehavioral Reviews, 30(6), 730-748. 

doi:10.1016/j.neubiorev.2006.07.001 



65 
 

Raz, N., Dahle, C. L., Rodrigue, K. M., Kennedy, K. M., & Land, S. (2011). Effects of age, 

genes, and pulse pressure on executive functions in healthy adults. Neurobiology of 

Aging, 32(6), 1124-1137. doi: 10.1016/j.neurobiolaging.2009.05.015 

Rosano, C., Studenski, S. A., Aizenstein, H. J., Boudreau, R. M., Longstreth, W. T., & Newman, 

A. B. (2012). Slower gait, slower information processing and smaller prefrontal area in 

older adults. Age & Ageing, 41(1), 58-64. doi: 10.1093/ageing/afr113 

Roussotte, F. F., Gutman, B. A., Madsen, S. K., Colby, J. B., &Thompson, P. M., (2014). 

Combined effects of Alzheimer risk variants in the CLU and ApoE genes on ventricular 

expansion patterns in the elderly. The Journal of Neuroscience, 34(19), 6537–6545. 

doi:10.1523/JNEUROSCI.5236-13.2014 

Rovio, S., Kåreholt, I., Helkala, E., Viitanen, M., Winblad, B., Tuomilehto, J., . . . Kivipelto, M. 

(2005). Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's 

disease. The Lancet Neurology, 4(11), 705-711. doi:10.1016/S1474-4422(05)70198-8 

Rubin, D. B. (1987). Multiple imputations for nonresponse in surveys. Hoboken, NJ: Wiley. 

doi:10.1002/9780470316696 

Runge, S. K., Small, B. J., McFall, G. P., & Dixon, R. A. (2014). APOE moderates the 

association between lifestyle activities and cognitive performance: Evidence of genetic 

plasticity in aging. Journal of the International Neuropsychological Society : JINS, 20(5), 

478–486. doi:10.1017/S1355617714000356 

Sapkota, S., Vergote, D., Westaway, D., Jhamandas, J., & Dixon, R. A. (2015). Synergistic 

associations of catechol-O-methyltransferase and brain-derived neurotrophic factor with 

executive function in aging are selective and modified by apolipoprotein E. Neurobiology 

of Aging, 36(1), 249-256. doi:10.1016/j.neurobiolaging.2014.06.020 



66 
 

Schaie, K. W. (2013). Developmental influences on adult intelligence (2
nd

 ed.). New York, NY: 

Oxford University Press. 

Schjeide, B. M., Schnack, C., Lambert, J., Lill, C. M., Kirchheiner, J., Tumani, H., & ... Bertram, 

L. (2011). The role of clusterin, complement receptor 1, and phosphatidylinositol binding 

clathrin assembly protein in Alzheimer disease risk and cerebrospinal fluid biomarker 

levels. Archives Of General Psychiatry, 68(2), 207-213. 

doi:10.1001/archgenpsychiatry.2010.196 

Schutzer, K. A., & Graves, B. S. (2004). Barriers and motivations to exercise in older 

adults. Preventive Medicine, 39(5), 1056-1061. doi:10.1016/j.ypmed.2004.04.003 

Singer, J. D., & Willett, J. B., 2003. Applied longitudinal data analysis: Modeling change and 

event occurrence. New York, NY: Oxford University Press. 

doi:10.1093/acprof:oso/9780195152968.001.0001 

Small, B. J., Dixon, R. A., McArdle, J. J. & Grimm, K. J. (2011). Do changes in lifestyle 

engagement moderate cognitive decline in normal aging? Evidence from the Victoria 

Longitudinal Study. Neuropsychology, 26, 144-155. doi:10.1037/a0026579 

Small, B. J., Rosnick, C. B., Fratiglioni, L., & Bäckman, L. (2004). Apolipoprotein E and 

cognitive performance: A meta-analysis. Psychology and Aging, 19(4), 592-600. 

doi:10.1037/0882-7974.19.4.592 

Smith, J.C., Nielson, K.A., Woodard, J.L., Seidenberg, M., & Rao, S.M. (2013). Physical activity 

and brain function in older adults at increased risk for Alzheimer’s disease. Brain 

Sciences, 3, 54-83. doi:10.3390/brainsci3010054 

Sofi, F., Valecchi, D., Bacci, D., Abbate, R., Gensini, G. F., Casini, A., & Macchi, C. (2011). 

Physical activity and risk of cognitive decline: A meta-analysis of prospective 



67 
 

studies. Journal of Internal Medicine, 269(1), 107-117. doi:10.1111/j.1365-

2796.2010.02281.x 

Solé-Padullés, C., Bartrés-Faz, D., Junqué, C., Vendrell, P., Rami, L., Clemente, I. C., . . . 

Molinuevo, J. L. (2009). Brain structure and function related to cognitive reserve 

variables in normal aging, mild cognitive impairment and Alzheimer's disease. 

Neurobiology of Aging, 30(7), 1114-1124. doi:10.1016/j.neurobiolaging.2007.10.008 

Stampfer, M. J. (2006). Cardiovascular disease and Alzheimer's disease: common links. Journal 

Of Internal Medicine, 260(3), 211-223. doi:10.1111/j.1365-2796.2006.01687.x 

Strath, S. J., Pfeiffer, K. A., & Whitt-Glover, M. C. (2012). Accelerometer use with children, 

older adults and adults with functional limitations. Medicine and Science in Sports and 

Exercise, 44(1 Suppl 1), S77–S85. doi:10.1249/MSS.0b013e3182399eb1 

Sweet, R. A., Seltman, H., Emanuel, J. E., Lopez, O. L., Becker, J. T., Bis, J. C., … Kuller, L. H. 

(2012). Effect of Alzheimer disease risk genes on trajectories of cognitive function in the 

Cardiovascular Health Study. The American Journal of Psychiatry, 169(9), 954–962. 

doi:10.1176/appi.ajp.2012.11121815 

Tamura, M., Nemoto, K., Kawaguchi, A., Kato, M., Arai, T., Kakuma, T., & ... Asada, T. (2015). 

Long-term mild-intensity exercise regimen preserves prefrontal cortical volume against 

aging. International Journal Of Geriatric Psychiatry, 30(7), 686–694. doi: 

10.1002/gps.4205 

Taylor, S. F., Kornblum, S., Lauber, E. J., Minoshima, S., Koeppe, R. A. (1997). Isolation of 

specific interference processing in the Stroop task: PET activation studies. NeuroImage, 

6, 81-92. doi:10.1006/nimg.1997.0285 



68 
 

Thibeau, S., McFall., P. G., Wiebe, S. A., Anstey, K. A., & Dixon, R. A. (in press). Genetic 

factors moderate everyday physical activity effects on executive functions in aging: 

Evidence from the Victoria Longitudinal Study. Neuropsychology.  

Tremblay, M. S., Warburton, D. E.., Janssen, I., Paterson, D. H., Latimer, A. E., Rhodes, R. E. . . 

.Duggan, M. (2011). New Canadian physical activity guidelines. Applied Physiology 

Nutriition and Metabolism, 36, 36-46. doi:10.1139/H11-009 

van Kan, G. A., Rolland, Y., Gillette-Guyonnet, S., Gardette, V., Annweiler, C., Beauchet, O., . . 

. Vellas, B. (2012). Gait speed, body composition, and dementia. the EPIDOS-Toulouse 

cohort. The Journals of Gerontology, Series A, (4), 425. doi:10.1093/gerona/glr177 

Varma, V. R., Tan, E. J., Gross, A. L., Harris, G., Romani, W., Fried, L. P., . . . Carlson, M. C. 

(in press). Effect of community volunteering on physical activity. American Journal of 

Preventative Medicine.  

Verghese, J., Holtzer, R., Wang, C. L., Katz, M. J., Barzilai, N., & Lipton, R. B. (2013). Role of 

APOE genotype in gait decline and disability in aging. The Journals of Gerontology Series 

A: Biological Sciences and Medical Sciences, 68(11), 1395-

1401. doi:10.1093/gerona/glt115 

Verhaaren, B. F. J., Vernooij, M. W., Koudstaal, P. J., Uitterlinden, A. G., van Duijn, C. M., 

Hofman, A., . . . Ikram, M. A. (2013). Alzheimer's disease genes and cognition in the 

nondemented general population. Biological Psychiatry, 73(5), 429-434. 

doi:10.1016/j.biopsych.2012.04.009 

Voelcker-Rehage, C., & Niemann, C. (2013). Structural and functional brain changes related to 

different types of physical activity across the life span. Neuroscience & Biobehavioral 

Reviews, 37(9, Part B), 2268-2295. doi:10.1016/j.neubiorev.2013.01.028 



69 
 

Voss, M. W., Vivar, C., Kramer, A. F., & van Praag., H. (2014). Bridging animal and human 

models of exercise-induced brain plasticity. Trends in Cognitive Sciences, 17(10), 525-

544. doi:10.1016/j.tics.2013.08.001 

Voss., M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Kim, J. S., Alves, H., . . . Kramer, 

A. F. (2013). Neurobiological markers of exercise-related brain plasticity in older adults. 

Brain, Behaviour, and Immunology, 28, 90-99. doi:10.1016/j.bbi.2012.10.021 

Waite, L. M., Grayson, D. A., Piguet, O., Creasey, H., Bennett, H. P., & Broe, G. A. (2005). Gait 

slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney older 

persons study. Journal of the Neurological Sciences, 229-230, 89-93. 

doi:10.1016/j.jns.2004.11.009 

Wang, H., Jin, Y., Hendrie, H. C., Liang, C., Yang, L., Cheng, Y., . . . Gao, S. (2013). Late life 

leisure activities and risk of cognitive decline. The Journals of Gerontology Series A: 

Biological Sciences and Medical Sciences, 68(2), 205-213. doi:10.1093/gerona/gls153 

Watson, N. L., Rosano, C., Boudreau, R. M., Simonsick, E. M., Ferrucci, L., Sutton-Tyrrell, K., . 

. . for the Health ABC Study. (2010). Executive function, memory, and gait speed decline 

in well-functioning older adults. The Journals of Gerontology Series A: Biological 

Sciences and Medical Sciences, 65A(10), 1093-1100. doi:10.1093/gerona/glq111 

West, R. L. (1996). An application of prefrontal cortex function theory to cognitive 

aging. Psychological Bulletin, 120(2), 256-271. doi:10.1037-0033-2909.120.2.256 

Weuve, J., Glymour, M., M., Hu, H., Sparrow, D., Spiro, A., Vokonas, P., S., & Litonjua, A., A. 

(2011). Forced expiratory volume in 1 second and cognitive aging in men. Journal of the 

American Geriatrics Society, 59(7), 1283-1292. doi:10.1111/j.1532-5415.2011.03487.x 



70 
 

Whalley, L. J., Deary, I. J., Appleton, C. L., & Starr, J. M. (2004). Cognitive reserve and the 

neurobiology of cognitive aging. Ageing Research Reviews, 3, 369-392. 

doi:10.1016/j.arr.2004.05.001 

White, D. K., Neogi, T., Nevitt, M. C., Peloquin, C. E., Zhu, Y., Boudreau, R. M., . . . Zhang, Y. 

(2013). Trajectories of gait speed predict mortality in well-functioning older adults: The 

health, aging and body composition study. The Journals of Gerontology Series A: 

Biological Sciences and Medical Sciences, 68(4), 456-464. doi:10.1093/gerona/gls197 

Wisdom, N. M., Callahan, J. L., & Hawkins, K. A. (2011). The effects of apolipoprotein E on 

non-impaired cognitive functioning: A meta-analysis. Neurobiology of Aging, 32(1), 63-

74. doi:10.1016/j.neurobiolaging.2009.02.003 

Won, J. C., Park, C-Y., CH, S. W., Lee, E. S., Youn, B-S., & Kim, M-S. (2014). Plasma clusterin 

(APOJ) levels are associated with adiposity and systematic inflammation. PLoS ONE 

9(7): e103351. doi:10.1371/journal.pone.0103351  

Yaffe, K., Fiocco, A. J., Lindquist, K., Vittinghoff, E., Simonsick, E. M., Newman, A. B., … For 

the Health ABC Study. (2009). Predictors of maintaining cognitive function in older 

adults: The Health ABC Study. Neurology, 72(23), 2029–2035. 

doi:10.1212/WNL.0b013e3181a92c36 

  



71 
 

Appendix A 

 

Note. Results presented as Mean (Standard Deviation). W1 = Wave 1; W2 = Wave 2; W3 = 

Wave 3. The genotypic distribution for CLU is in Hardy-Weinberg equilibrium, χ
2 

= .55. The 

genotypic distribution for CR1 is not in Hardy-Weinberg equilibrium, χ
2 

= .02. The genotypic 

distribution for PICALM is not in Hardy-Weinberg equilibrium, χ
2 

= .01. 

  

Descriptive Statistics for Sample by  Genotype and Longitudinal Wave

CLU

W1 W2 W3 W1 W2 W3

n 448 386 223 91 69 40

Age 70.26 (8.73) 74.53 (8.64) 74.59 (7.10) 70.41 (7.77) 74.30 (7.61) 75.94 (7.83)

   Range 55.36 - 90.79 57.27 - 94.53 62.44 - 94.90 55.36 - 90.79 59.94 - 87.83 64.24 - 92.59

Gender (% female) 66.6 66 68.6 63.7 63.7 67.5

PICALM

W1 W2 W3 W1 W2 W3

n 405 333 190 133 121 72

Age 70.70 (8.58) 74.98 (8.53) 75.18 (7.35) 69.11 (8.42) 73.26 (8.23) 73.67 (6.77)

   Range 53.24 - 95.25 57.27 - 94.53 62.44 - 94.40 54.67 - 90.73 59.06 -90.41 63.36 - 89.69

Gender (% female) 67.1 66.6 71 63.9 62.8 61.1

CR1

W1 W2 W3 W1 W2 W3

n 356 285 163 183 170 100

Age 70.52 (8.56) 74.54 (8.58) 75.07 (7.58) 69.82 (8.59) 74.42 (8.34) 74.36 (6.59)

   Range 53.24 - 95.25 57.27 - 91.88 62.81 - 92.89 54.13 - 90.73 58.11 - 94.53 62.44 - 94.90

Gender (% female) 68.8 67.7 73 61.7 62.3 61

A+ (risk) A-

C+ (risk) C-

T+ (risk) T-
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Note. Results presented as Mean (Standard Deviation). W1 = Wave 1; W2 = Wave 2; W3 = Wave 3. Low-risk group consisted of  

APOE/CLU combinations ɛ2ɛ2/CC, ɛ2ɛ2/TC, ɛ2ɛ2/TT, ɛ2ɛ3/TT, ɛ2ɛ3/TC, ɛ3ɛ3/TT. Mid-risk group consisted of APOE/CLU 

combinations ɛ2ɛ3/CC, ɛ3ɛ3/TC, ɛ3ɛ4/TT. High-risk group consisted of APOE/CLU combinations ɛ3ɛ3/CC, ɛ3ɛ4/CC, ɛ3ɛ4/TC, 

ɛ4ɛ4/CC, ɛ4ɛ4/TC, ɛ4ɛ4/TT.  

 

  

Descriptive Statistics for Sample by Genetic Risk Score and Longitudinal Wave

Genetic Risk Score Low Risk Medium Risk High Risk

W1 W2 W3 W1 W2 W3 W1 W2 W3

n 105 85 52 192 168 91 217 182 107

Age 70.17 (8.49) 74.03 (8.22) 74.74 (7.03) 70.97 (8.88) 75.37 (8.81) 75.53 (7.97) 68.82 (8.39) 73.94 (8.32) 74.22 (6.58)

   Range 53.24 - 90.79 57.27 - 89.71 63.84 - 89.79 54.13 - 95.25 58.44 - 91.88 62.44 - 94.90 54.63 - 90.73 58.93 - 94.53 63.22 - 92.89

Gender (% female) 63.8 62.3 69.2 64.5 64.2 62.6 67.2 66.4 71.9



 
 

Appendix C 

VLS Activity Lifestyle Questionnaire- Physical Activity 

(VLS-ALQ) 

Date: _____ / _____ / _____       Participant #:  ______________  

         d          m           y         Scorer’s Initials: ______________ 

 

 ACTIVITIES QUESTIONNAIRE     

        

Our lives are organized to a great extent by the types of activities we participate in.  In this questionnaire, you 

will find a list of activities that different people do in their everyday lives. 

You may never have participated in some of these activities.  Others you may have participated in several 

years ago.  In this questionnaire, we would like you to tell us how many of these activities you have 

participated in within the last two years. 

You will be asked to indicate about how often you engage in each activity.  Do not worry if you cannot give 

an exact figure.  Circle the letter that MOST NEARLY describes the frequency with which you have done the 

activity during the past two years.  Here is an example: 

I go shopping at a mall or downtown: 

 

a. Never  e. About once a month 

b. Less than once a year f. 2 or 3 times a month 

c. About once a year g. About once a week 

d. 2 or 3 times a year h. 2 or 3 times a week 

  i. Daily 

 

Let's assume that you go to a mall or downtown once or twice a month most of the time.  There may have 

been a month when you did not go at all, or there may have been a month when you went more often.  But 

once or twice a month most nearly describes what you usually have done over the last two years.  Thus 

alternative f is circled. 
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In addition to estimating how often you do them, there are two other things we would like you to tell us about 

the activities you have participated in over the last two years. 

First, we would like you to tell us whether you participated in an activity for the very first time within the last 

two years.  Here is an example: 

I travel in a foreign country: 

a. Never e. About once a month     I did this for 

b. Less than once a f. 2 or 3 times a month     the "very 

 year g. About once a week     first time" 

c. About once a year h. 2 or 3 times a week     within the 

d. 2 or 3 times a year i. Daily     last two years 

Let's assume that you travelled to a foreign country once within the last two years.  Thus, alternative c is 

circled.  But let's assume this was the very first time you had taken such a trip.  Thus an X is placed in the 

front of the "very first time" statement. 

Second, we would like you to tell us whether you did something new or different related to an activity during 

the last two years.  Here is an example: 

a. Never e. About once a month    I did this for 

b. Less than once a f. 2 or 3 times a month    the "very   

 year g. About once a week    first time" 

c. About once a year h. 2 or 3 times a week    within the 

d. 2 or 3 times a year i. Daily    last two years 

 

      I did something 

     "new and different" 

        related to this activity 

     within the last 2 years 

 

Let's assume you play cards about once a week.  Thus, alternative g is circled.  Let's also assume that you 

have been playing cards for a number of years.  Thus, the "very first time" statement is NOT checked.  But, 

finally, let's assume that in addition to playing the game you usually play, you were introduced to a new card 

game within the last two years.  This represents a departure from the routine of your participation in card 

playing.  It would be something new and different related to an activity you have been doing within the past 

two years.  Thus, an X is placed in front of the "new and different" statement.
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For each of the activities listed on the following pages, please circle the number that most nearly describes 

the frequency with which you have participated in them during the last two years.  Also, for those activities 

you have participated in place an X beside the "very first time" or "new and different" statements if these 

describe your experience with the activity within the last two years. 

 

21. I garden indoors or outdoors: 

 a. Never 

 b. Less than once a year 

 c. About once a year 

 d. 2 or 3 times a year 

 e. About once a month 

f. 2 or 3 times a month 

g. About once a week 

h. 2 or 3 times a week 

i. Daily 

   "very first time" 

 

 

  "new and different" 

 

 

22. I engage in exercise activities such as jogging, swimming, bicycling, or walking: 

 a. Never 

 b. Less than once a year 

 c. About once a year 

 d. 2 or 3 times a year 

 e. About once a month 

f. 2 or 3 times a month 

g. About once a week 

h. 2 or 3 times a week 

i. Daily 

   "very first time" 

 

 

  "new and different" 

 

 

23. I engage in outdoor activities such as sailing, fishing, or backpacking: 

 a. Never 

 b. Less than once a year 

 c. About once a year 

 d. 2 or 3 times a year 

 

 e. About once a month 

f. 2 or 3 times a month 

g. About once a week 

h. 2 or 3 times a week 

i. Daily 

   "very first time" 

 

 

  "new and different" 
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24. I engage in recreational sports such as tennis, bowling, or golf: 

 

 a. Never 

 b. Less than once a year 

 c. About once a year 

 d. 2 or 3 times a year 

  

e. About once a month 

f. 2 or 3 times a month 

g. About once a week 

h. 2 or 3 times a week 

i. Daily 

  

  "very first time" 

 

 

  "new and different" 

 

 

 

 

 


