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We explore the issue of air passenger leakage at small and medium-size airports

We model relationships between passenger volume and air services at neighbouring airports

We present a supply-and-demand feedback model of airport choice

The existence of feedback is demonstrated – more passengers, more attractive services
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Supply-and-demand models for exploring relationships between smaller airports and 1 

neighboring hub airports in the U.S. 2 

 3 

Abstract 4 

Airport passenger leakage is the phenomenon of air passengers choosing to travel longer distances to access 5 

more extensive air services offered by airlines at an out-of-region hub (or, substitute) airport, instead of using 6 

their local airports. Airport leakage can cause further reduction in services offered by airlines at a local airport, 7 

thereby causing even further leakage, and so on, which can significantly impact an airport’s role in the growth 8 

of the local economy. This paper explores the geographic and operational attributes of local-and-substitute 9 

airport pairs in the United States, explicitly accounting for the interactive feedback relationship between 10 

passenger volumes and air service characteristics that contribute to the onset, persistence, and exacerbation of 11 

airport passenger leakage. A two-stage least squares regression model of air passenger demand at small- and 12 

medium-sized airports is first presented, where local passengers may travel by vehicle to larger, out-of-region 13 

hub airports. The results confirm that airfare and passenger volume relationships exist between the local and 14 

substitute airport pairs included in the dataset, and that lower airfares at the substitute airport have a greater 15 

impact on airport choices made by larger travel groups. They also suggest the existence of positive feedback in 16 

that if an airport attracts increasingly smaller passenger numbers with fewer air services and fewer air services 17 

with fewer passengers, without external intervention airport leakage impacts may be irreversible and exacerbate 18 

over time. A conceptual market share equilibrium analysis is used to illustrate the mechanisms of a direct two-19 

way feedback relationship between passenger volumes at a local airport and air service characteristics at both 20 

the local and substitute airports. With data, this quantitative framework can help guide airport planners in 21 

further assessing and verifying suspected passenger leakage issues at their airport. The results suggest that 22 

without intervention, airport leakage impacts may be difficult to reverse; further exacerbating the trend are 23 

technological advancements that make driving cheaper and easier (connected and autonomous vehicles). 24 

However, the results can also guide planners in choosing the types and degrees of infrastructure investments 25 

and airline incentives that may be used to expand or retain air services to attract passengers.  26 

Keywords 27 

Airport leakage; empirical model; airport planning. 28 
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1. Introduction 1 

Passengers at many small- and medium-sized U.S. airports are increasingly provided fewer flight options and 2 

higher airfares as a result of airline mergers, alliances, and various decisions made to cut operational costs and 3 

increase efficiency (Sharkey, 2014a; Sharkey, 2015), in addition to constraints on opportunities to expand 4 

infrastructure capacity. For instance, airlines are increasing their use of larger and more efficient jet aircraft over 5 

regional jets, which make hub airports more preferable for these airlines to operate from (Sharkey, 2014b). This 6 

in turn increases airline competition and decreases the concentration level of airlines at hub airport as measured 7 

by the Herfindahl–Hirschman Index (HHI) (Detzen, Jain, Likitapiwat, & Rubin, 2012; Lijesen & Rietveld, 8 

2002), which may be associated with more airfare discounts (Stavins, 2001). As a result, passengers that would 9 

typically use their smaller local airports may respond by driving relatively long distances to larger out-of-region 10 

hub airports (termed substitute airports) in order to take advantage of better flight options, lower airfares, and 11 

other airport amenities. This phenomenon has been termed airport leakage (Elwakil, Windle, & Dresner, 2013; 12 

Fuellhart, 2007; Suzuki & Audino, 2003; Suzuki, Crum, & Audino, 2004). 13 

As airports play an important role in connecting regions nationally and globally and supporting local economic 14 

development, the loss of passengers at these small- and medium-sized airports can have significant and long-15 

term impacts (Ottawa Macdonald-Cartier International Airport Authority, 2012; De Neufville, 1995). It may 16 

contribute to increased traffic and congestion at substitute airports. A shrinking passenger base at the local 17 

airport makes that airport less attractive to airlines, eventually leading to fewer flight options (Pitfield, Caves, & 18 

Quddus, 2010), then fewer passengers and even fewer flight options, and so on – a positive supply-and-demand 19 

feedback, or the “vicious cycle of local air services” (Kanafani & Abbas, 1987). For instance, after airline 20 

deregulation, air carriers reduced their services at Meadows Field Airport in Bakersfield, California, 21 

encouraging a large portion of travelers in the Bakersfield area to drive approximately 110 miles to Los Angeles 22 

International Airport (LAX). The shrinking market and revenues at Meadows Field resulted in fewer air carriers 23 

and flight options, which further drove local passengers to LAX (Kanafani & Abbas, 1987). Without incentive 24 

programs (Ryerson, 2016), other investments by local governments, or the benefits of external economic forces, 25 

passenger losses may be difficult to reverse (Sharkey, 2014b). It is important to have some quantitative insights 26 

into the mechanisms driving passenger leakage at these local airports to major out-of-region hub airports, with 27 

respect to the service characteristics of these airports, and vice versa, in order to gauge the need for (and degree 28 

of) investments that may help to stem this passenger leakage. 29 

This paper explores the operational attributes of local-and-substitute airport pairs in the United States. We 30 

explicitly account for the interactive feedback relationship between passenger volumes (demand) and air service 31 

characteristics (supply) that contribute to the onset, persistence, and exacerbation of airport passenger leakage. 32 
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We first present a two-stage least squares regression model of air passenger demand at small- and medium-sized 1 

airports, where local potential passengers may travel by vehicle to larger, out-of-region hub airports. The results 2 

confirm that airfare and passenger volume relationships exist between the local and substitute airport pairs 3 

included in the dataset, and that lower airfares at the substitute airport have a greater impact on airport choices 4 

made by larger travel groups. After confirming the existence of this relationship, we then present a conceptual 5 

market share equilibrium analysis to illustrate the mechanisms of a direct two-way feedback relationship 6 

between passenger volumes at a local airport and air service characteristics at both the local and substitute 7 

airports. They also suggest the existence of positive feedback in that if an airport attracts increasingly smaller 8 

passenger numbers with fewer air services and fewer air services with fewer passengers, without external 9 

intervention, airport leakage impacts may be irreversible and exacerbate over time. 10 

The contributions of this paper include the confirmation of relationships between airport leakage and 11 

explanatory factors such as travel group size and airport enplanement, and explicit consideration of the 12 

interaction between demand and supply in both the empirical model and the equilibrium analysis. Most 13 

importantly, this paper proposes a quantitative framework that can help guide airport planners in further 14 

assessing and verifying suspected passenger leakage issues at their airport. If an airport suspected of passenger 15 

leakage to an out-of-region hub airport exhibits characteristics similar to those in the regression model dataset, 16 

data collection to estimate and populate the proposed feedback model may be justified. The model results can 17 

be used, in turn, to quantitatively verify or refute the existence and severity of leakage. Analysis results can be 18 

used by local jurisdictions and airport planning authorities to gauge what types of, and to what degree, 19 

infrastructure investments and incentive programs should be considered in expanding or retaining air services to 20 

attract passengers back to the airport in question. More specifically, the results can provide some indication of 21 

how impactful intervention decisions may be in disrupting the positive feedback of air passenger leakage and 22 

service cutbacks, such that appropriate types and levels of investment can be applied.  23 

2. Literature review 24 

The study of airport passenger leakage implicitly assumes that air travelers within a certain distance of an 25 

airport, or within a defined region in which the airport is located, are expected to use that airport when flying 26 

(Fröhlich & Niemeier, 2011). These travelers presumed to be in the catchment area of that airport may “leak” to 27 

a larger airport for which they are not expected to be in the catchment. This phenomenon can be categorized as 28 

an airport passenger competition problem (Fuellhart, 2007; Lieshout, 2012). Although airport competition and 29 

passenger choice has been extensively studied for multi-airport regions (MARs), it has received far less 30 

attention in the context of airports experiencing expected passenger loss to larger, out-of-region hub airports. 31 

The passenger leakage problem has been studied using the same analysis methods applied to MARs problems, 32 
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insofar as both deal with understanding the mechanisms that determine how airports attract (and compete for) 1 

passengers with two or more airport options. Differences arise as the geographic scope of the leakage problem 2 

is interregional, while that of the multi-airport region problem is within a single metropolitan area. The service 3 

characteristics of these airports differ, as do the factors that influence passengers’ airport choice.  4 

Despite that interregional air passenger leakage is considered to be an issue of significance (Lian & Rønnevik, 5 

2011; Jang, 2010; Sharkey, 2014b), it has not been studied as much as the MARs problem due to a number of 6 

reasons. Firstly, it is often the case that the local metropolitan planning organization (MPO) collects various 7 

transportation data within the region it oversees. These agencies are not typically easily able (or willing) to 8 

collect data – particularly the disaggregate survey data required for discrete choice models – beyond their 9 

jurisdictions. Coordinated data collection by multiple regional authorities is difficult due to institutional 10 

structure and therefore happens very rarely (Miller, 2004). As a result, most past studies on airport leakage have 11 

been based on data collected specifically to study the problem by the airports experiencing the leakage (Suzuki, 12 

Crum, & Audino, 2003; Fuellhart, 2007; Kimley-Horn and Associates, Inc., 2012). Secondly, although airports 13 

and regions that experience passenger leakage may have anecdotally identified the issue, without an investment 14 

in data collection, it may be more difficult to determine whether the issue is severe enough to warrant further 15 

infrastructure investments and how much.  16 

Interregional air passenger leakage is also relevant within the context of the Essential Air Service (EAS) 17 

program (Grubesic & Matisziw, 2011). Passenger retention at small community airports in the EAS program, as 18 

well as overall program efficiency, has been studied by several researchers (Kaemmerle, 1991; Zhang & Xie, 19 

2005; Grubesic & Wei, 2012). Consistent with conclusions from airport leakage studies, it has been found that 20 

the quality and quantity of air services at small community airports, as well as the distances between them and 21 

other larger airports, are very important in retaining passengers at these EAS airports (Kaemmerle, 1991; Zhang 22 

& Xie, 2005). A study indicates that federal expenditures can be reduced by ending subsidies to some small 23 

community airports that share spatial market coverage (i.e. overlapped passenger catchment areas) with larger 24 

hub airports (Grubesic & Matisziw, 2011). 25 

Airport leakage has been studied from both the demand and supply (service) perspective. From the perspective 26 

of demand, airport leakage has been demonstrated to be a function of passenger market share, passengers’ 27 

airport choice, and airport ground access choice (Tam, Lam, & Lo, 2011; Chang, 2013; Cohas, Belobaba, & 28 

Simpson, 1995), and will be discussed in the following section. Also, different airports offer markedly levels of 29 

accessibility to the air transportation network, as measured, for example, by the number of direct connections 30 

from an airport. Airports also offer different levels of ground access as well (Matisziw & Grubesic, 2010). The 31 

airport supply-side consists of the service characteristics (airside, groundside, and in the terminal) at an airport. 32 
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Previous studies focused on how decisions regarding air services are made by the airport and airlines, and also, 1 

how accessible an airport is to the passenger market that they expect to serve (Budd, Ison, & Ryley, 2011). 2 

Although the previous studies relevant to airport leakage can be broadly divided into those that consider 3 

demand-side issues, supply-side issues, or both interactively, methodological approaches vary greatly. We will 4 

discuss the relevant existing literature by categorizing general study approaches, which consists broadly of 5 

passenger airport choice, supply-and-demand equilibrium and game theoretic approaches, and regression. 6 

2.1 Airport choice 7 

Discrete choice models have been applied extensively to study passenger airport choice in MARs (Harvey, 1987; 8 

Windle & Dresner, 1995; Hess & Polak, 2005; Loo, 2008), in addition to joint choices of airport, airline and 9 

ground access modes (Pels, Nijkamp, & Rietveld, 2000; Pels, Nijkamp, & Rietveld, 2001; Hess S. , 2004; Hess, 10 

Adler, & Polak, 2007; Tierney & Kuby, 2008). The results and findings of these studies vary significantly, at 11 

least partly due to the different modeling structures employed. Some studies have found that airport choice is 12 

most heavily influenced by ground access mode characteristics (Pels, Nijkamp, & Rietveld, 2003) while other 13 

studies have found that air services characteristics are more important (Harvey, 1987). Overall, the most 14 

important factors reported by these studies to impact airport choice include access time and/or distance, travel 15 

party size, car ownership, trip purpose (business or personal), airfare, flight frequency, flight time, direct or 16 

indirect flight, past delays, aircraft types used, etc. (de Luca, 2012). In addition, an early study has looked at the 17 

choice made between five airports throughout England using a basic multinomial logit model (Ashford & 18 

Bencheman, 1987). 19 

Discrete choice models have also been applied to study airport leakage, but as mentioned above, to a far lesser 20 

extent due to data availability. It has been found that leisure travelers are more likely to leak to substitute 21 

airports than business travelers; also, past experiences at an airport, access time, airfare, age and income have 22 

significant impacts on passengers’ airport choices (de Luca, 2012; Suzuki, Crum, & Audino, 2003). Based on 23 

survey data collected to gain understanding about passenger leakage from the Des Moines airport to 24 

neighboring airports, Suzuki (2007) has studied the joint airport and airline choice problem as a two-stage 25 

decision process to better represent the actual decision making process. 26 

2.2 Supply-and-demand equilibrium and game theoretic models 27 

As demonstrated above, there is extensive literature on how service attributes impact passenger demands, 28 

particularly in MARs. However, there has been less work in understanding how passengers’ airport choice in 29 

turn can influence airlines and airports in their provision of air services (supply), and so on – a two-way 30 

feedback relationship. In the few existing studies considering feedbacks, discrete choice models of air passenger 31 
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demand have been used in combination with other models to study this endogeneity. A key example of this is 1 

by Hansen (1995), who has treated the supply-side characteristics of airports in a MAR as endogenous in a 2 

disaggregate model of airport choice. Predicted equilibrium market shares have been found to show high 3 

agreement with actual market shares at the San Francisco and Oakland airports. Another study, again based on 4 

data from the San Francisco Bay Area, has estimated a nested logit model and considered that airport and 5 

airlines would respond competitively to maximize their benefits (Pels, Nijkamp, & Rietveld, 2000). They report 6 

that the elasticity of demand to flight frequency should be less than one as a sufficient condition for a 7 

competitive equilibrium to exist. 8 

In the context of the airport leakage problem, Suzuki et al. (2004) has combined an airline profit function with a 9 

multinomial logit market share model, and conducted a simulation experiment to investigate the relationship 10 

between passenger volumes and airfares. They find the optimal airfare required to maximize an airline’s profit, 11 

which is lower than the actual airfares offered at Des Moines airport. The paper suggests that underestimation of 12 

airport leakage may be the reason why airlines set higher airfares than is optimal (Suzuki, Crum, & Audino, 13 

2004). 14 

2.3 Regression models 15 

Airport leakage has been studied to its largest extent using regression models. In one study, airport passenger 16 

traffic “leaking” from local airports to substitute hub airports has been estimated, where the number of “leakage” 17 

passengers is determined from the tickets sold at a travel agent in the local airport’s region for flights departing 18 

at substitute airports (Phillips, Weatherford, Mason, & Kunce, 2005). The first step consists of a regression 19 

model of the proportion of “leaking” passengers. In the second step, the residuals from the first-step model are 20 

regressed on explanatory variables that only vary with respect to routes. The findings indicate that airfare 21 

differentials, the distance between the local airport and the substitute airport, and whether regional jets are 22 

provided are the three most important factors determining leakage from small community airports in Wyoming. 23 

In another study, a two-stage least squares model has been constructed for 14 U.S. airport pairs to capture the 24 

endogeneity of supply-side and demand-side attributes (Suzuki & Audino, 2003). It estimates airfare in the first 25 

stage, and then uses the predicted airfare variable in a second-stage model. The airfare and driving distance 26 

interaction variable indicates that air passengers may be attracted to a substitute airport that is up to 250 miles 27 

away (Suzuki & Audino, 2003). However, other studies limit this distance to one ranging between 100 and 200 28 

miles (Grubesic & Matisziw, 2011; Kanafani & Abbas, 1987; Lin, 1977; Kaemmerle, 1991). Fuellhart (2003) 29 

has used linear regression models that suggest the leakage of passengers from Harrisburg and Philadelphia 30 

airports to Baltimore – distances of 70 to 90 miles – is due to fare differentials, low-cost carrier service, and 31 

other factors. With zip code data collected for vehicles parking at Harrisburg airport, GIS and regression 32 
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analysis suggest strong leakage patterns from Harrisburg to Baltimore-Washington airport (Fuellhart, 2007). 1 

The author has used route level data to demonstrate relationships between airfare differentials and passenger 2 

volumes. Elwakil et al. (2013) has constructed a three-stage least squares model to explore the impact of 3 

competition in U.S. cities near the Canadian border. The study finds airfare differentials – which are significant 4 

between Canada and the U.S. – to be a potential cause of airport leakage for the transborder market (Elwakil, 5 

Windle, & Dresner, 2013).  6 

This paper attempts to combine two of the modeling approaches from above to present a framework for analysis 7 

of airport leakage. Firstly, we provide a systematic local-substitute airport pair selection process and 8 

autocorrelation correction for the two-stage least squares model proposed by Suzuki and Audino (2003), using 9 

more recent data. After confirming a relationship between passenger volumes and air service characteristics 10 

from the empirical analysis, we represent the endogenous (feedback) relationship between airfares and 11 

passenger volumes through an equilibrium analysis that utilizes the estimated airfare model and a simple binary 12 

airport choice model. This feedback model is used to explore the sensitivities of airport market share to airfares 13 

and vice versa.  14 

3. Models of supply and demand 15 

In this section, we will present two analyses of the feedback effects between supply and demand in airport 16 

leakage, through an econometric model and a conceptual market share equilibrium analysis. The econometric 17 

model explores the (geographically) generalized relationships using an empirical two-stage model as well as the 18 

positive feedback mechanism. Based on the results from the econometric model, the market share equilibrium 19 

analysis further explores the hypothesized relationships in an equilibrium context. This section has four 20 

subsections: hypothesized relationships between supply and demand variables, econometric model, conceptual 21 

market share equilibrium analysis, and overview of relationships between supply and demand variables.  22 

3.1 Hypothesized relationships between supply and demand variables 23 

According to the literature review, airfare is an important contributor to airport passenger leakage (Suzuki & 24 

Audino, 2003; Hansen, 1995; Pels, Nijkamp, & Rietveld, 2000). We begin with the hypothesis that higher 25 

airfares at the local airport will encourage more passengers to use substitute airports, resulting in fewer 26 

passengers at the local airport. In turn, fewer passengers at the local airport are expected to result in higher 27 

airfares at local airport. Similarly, lower airfares at the substitute airport will result in more passengers leaking 28 

to the substitute airport. We also assume that more flight legs, absence of low-cost carriers, lower flight 29 

frequencies at the local airport, lower populations (in the area intended to be served by the local airport), and 30 

closer distances between the local and substitute airports will contribute to airport leakage. We will examine the 31 
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above assumptions using the econometric model. Attributes that we assume are related to airport passenger 1 

volumes but may not specifically be related to airport leakage include seasonal fluctuations of airport passenger 2 

volumes. These will also be tested in the econometric model.  3 

In the conceptual model, we will examine the impacts of airfares at the local and substitute airports, flight 4 

frequencies, and ground access distance on airport choice and airport market share (after confirmation through 5 

the empirical model).  6 

3.2 Econometric model of supply (airfare) and demand (passenger volumes) 7 

In this section, we introduce a two-stage least squares regression model of airfare and passenger volumes, based 8 

on that proposed by Suzuki and Audino (2003). Airfare is a function of exogenous variables in the first stage, 9 

and passenger volumes are a function of the predicted airfare (and other exogenous variables) in the second 10 

stage: 11 

First-stage model: 𝐹 = 𝑓(𝑃, 𝑼) (1) 

Second-stage model: 𝑃 = 𝑓(�̂�, 𝑽) (2) 

Where, 𝐹  is airfare; �̂�  is the fitted airfare variable; 𝑃  is passenger volumes; and 𝑼, 𝑽  are other exogenous 12 

explanatory variables. Our model builds on the previously developed model by including a systematic airport 13 

selection process, new variable specifications, and bias corrections. The original model has accounted for air 14 

cargo volumes, airfares at substitute airport, driving distances between local and substitute airports, seasonality, 15 

and number of flight legs from the substitute airport (Suzuki & Audino, 2003). To consider seasonal 16 

fluctuations in passenger volumes, we use total quarterly passenger enplanement from all U.S. airports to each 17 

destination airport (included the dataset), excluding enplanement volumes from the local and substitute airports. 18 

The local and substitute airport passenger volumes were removed to reduce endogeneity between the 19 

seasonality variable and both the passenger and enplanement variables. We have explored additional variables 20 

including total passenger enplanement from the local and substitute airports to all U.S. airports. Explanatory 21 

variables are identified in Sections 3.2.3, 3.2.4 and 3.2.5. 22 

As the data exhibits autocorrelation and heteroscedasticity, a feasible generalized least squares (FGLS) model 23 

structure is adopted to account for these issues (Wooldridge, 2012). Time series data (such as we have here) is 24 

collected through repeated measurements of the same variables. Therefore, if there is a source of measurement 25 

error, it is likely to be repeated, resulting in autocorrelation (Maddala, 1992; Asteriou & Hall, 2007). Another 26 

possible source of autocorrelation is the omission of other important variables from the model. These variables 27 

may exhibit a trend over time and impact the dependent variable, but may not be included because the data is 28 

unavailable (Maddala, 1992; Asteriou & Hall, 2007). For instance, aircraft maintenance costs will impact 29 
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overall airline operating costs, and possibly, in turn, airfare; in addition, maintenance costs in some quarter is 1 

likely related to those of previous quarters. However, maintenance cost are not captured in the dataset and 2 

therefore, any impact it may have on airfares is thus included in the error term in the airfare model. The 3 

following four subsections describe the airport/region data selection process, specifications of the first-stage and 4 

second-stage models, and presentation and discussion of model estimation results. 5 

3.2.1. Data Sources 6 

U.S. airport passenger traffic, airline services, driving distances, census information, and aviation fuel costs are 7 

obtained from five sources. Airport passenger traffic and airline services data are from the Airline Origin and 8 

Destination Survey (DB1B) and the Air Carrier Statistics (T-100), both of which are available from the U.S. 9 

Department of Transportation (DOT) website (www.transtats.bts.gov). Driving distances between airports are 10 

from the Google Maps website (maps.google.com). Census data, including population and income, are from the 11 

U.S. Census, Department of Commerce (factfinder.census.gov/faces/nav/jsf/pages/index.xhtml). Aviation fuel 12 

cost data are available from the U.S. Department of Transportation. 13 

Table 1 Data sources 14 

Data source Information extracted 

Airline Origin and Destination 

Survey (DB1B)
1
 

Origin, destination, time, airfare, flight leg, group size 

Air Carrier Statistics (T-100)
2
 Origin, destination, time, passenger traffic, flight frequency, non-

stop miles, carrier, freight 

U.S. Census
3
 Population, per capita income 

Google Maps
4
 Driving distance

6
 

Aviation Fuel Cost
5
 Aviation fuel cost and consumption  

1 http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=125 15 

2 www.transtats.bts.gov/Fields.asp?Table_ID=258 16 

3 factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml 17 

4 maps.google.com 18 

5 transtats.bts.gov/fuel.asp?pn=0&display=data1 19 

6 The shortest driving distance on the website is used. Data was extracted on November 25, 2015. 20 

Data from 2005 through 2013 have been obtained for this work. Departure airport, destination airport, airfare, 21 

number of flight legs, passenger volumes, carrier name, non-stop flight distance, flight frequency, group size, 22 

and population information are available in the DB1B, T-100, and census datasets.  23 

3.2.2. Airport Selection Procedure 24 

We first identify small- to medium-size airports hypothesized to experience some level of air passenger leakage 25 

to larger hub airports. This selection is based on the supposition that if airport passenger leakage is occurring, 26 

http://www.transtats.bts.gov/Fields.asp?Table_ID=258
http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml
http://www.google.ca/maps
http://www.transtats.bts.gov/fuel.asp?pn=0&display=data1
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this is caused by, and contributes to, the substitute airport having significantly higher passenger volumes and 1 

better air service provision by airlines (i.e., cheaper and more frequent flights to common destinations) than the 2 

local airport. The output of the selection process will be a local airport, its substitute airport, and the destination 3 

airport (identifying an origin-destination (OD) pair). Figure 1 shows the filtering criteria applied to obtain the 4 

twenty local/substitute/destination airport combinations used in the model estimation. 5 

 6 

Figure 1 Local airport selection process 7 

As shown in Figure 1, the first step involves the selection of 25 candidate local airports and their corresponding 8 

substitute airports (to which passenger leakage from the local airports may occur). This step is based on a search 9 

for small- to medium-size airports in single-airport regions, with major hub airports within reasonable driving 10 

distances (Lin, 1977; Kaemmerle, 1991; Grubesic & Wei, 2012). We also considered anecdotal evidence when 11 

setting such driving distance criteria. For instance, passengers in the Huntsville region have been reported to 12 

“leak” to Hartsfield–Jackson Atlanta International Airport (ATL) even though ATL is more than 200 miles 13 

 

25 Candidate Local Airports 

250 Local OD Pairs 

106 OD Pairs 

20 OD Pairs 

CRITERIA:  

1. Substitute airport is an Operational Evolution 

Partnership (OEP) 35 airport 

2. Airfare advantage of substitute airport 

3. Flight leg advantage of substitute airport 

4. More passengers at substitute airport 

5. Medium- or long-haul air trip 

CRITERION: 

Top ten destinations for each local airport 

CRITERION:  

Complete quarterly datasets for each OD pair 

58 OD Pairs 

CRITERION: 

1. Local airport has one good substitute airport option 

2. Randomly choose 20 OD pairs 
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away (Huntsville International Airport, 2013). In Canada, residents in the Edmonton Capital Region in Alberta 1 

are known to drive over 200 miles to use Calgary International Airport rather than Edmonton International 2 

Airport (Jang, 2010). Hence, we felt it appropriate to include and explore local-substitute airport pairs as far as 3 

200 miles apart in our airport selection. 4 

The top ten destinations with the highest number of passengers are identified for each candidate local airport 5 

based on nine years of Airline Origin and Destination Survey (DB1B) data (from 2005 through 2013). Then, 6 

five filtering criteria are applied as follows:  7 

1) Substitute airports are included in the 35 Operational Evolution Partnership (OEP) airports designated 8 

by the Federal Aviation Administration (FAA), which are the 35 busiest commercial airports in the 9 

United States (Federal Aviation Administration, 2015). 10 

2) Average airfare to the destination from the local airport is higher than from the substitute airport.  11 

3) Average number of flight legs to the destination from the local airport is higher than from the substitute 12 

airport.  13 

4) Passenger volumes between the substitute and destination airport are no smaller than 1.5 times the 14 

volumes between the local and destination airport. This is to ensure that the substitute airport does have 15 

greater market share to the destination airport when compared to the local airport.  16 

5) Distance from the local airport to the destination airport is greater than 500 miles.  17 

After application of these conditions, 106 OD pairs remain. Then, the third filter ensures that there are sufficient 18 

quarterly data from both the DB1B and T-100 datasets, leaving 58 OD pairs remaining. The final filter ensures 19 

that each local airport has only one good candidate substitute airport. Twenty OD pairs have then been 20 

randomly selected for use. The resulting set of local airports, corresponding substitute airports, destination 21 

airports, and flight distances (from local to destination) are shown in Table 2.  22 

  23 
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Table 2 Final set of origin airports (local and substitute) and destinations 1 

Local Airport Substitute Airport Distance, local 

to substitute 
airport (miles) 

Destination Airport  Flight distance 

from local 
airport (miles) 

Jacksonville (JAX) Orlando (MCO) 173 Philadelphia  (PHL) 742 

Newark (EWR) 821 

Tucson (TUS) Phoenix (PHX) 117 Seattle–Tacoma (SEA) 1,216 

Milwaukee (MKE) Chicago Midway 

(MDW) 
94.9 

Orlando (MCO) 
1066 

Oklahoma City (OKC) Dallas/Fort Worth 

(DFW) 
195 

Atlanta (ATL) 
761 

Grand Rapids (GRR) Detroit (DTW) 147 Atlanta (ATL) 640 

Quad City (MLI) Chicago O’Hare 

(ORD) 

164 Denver  (DEN) 752 

Columbia Metropolitan 

(CAE) 

Charlotte Douglas 

(CLT) 

105 LaGuardia (LGA) 617 

Chicago O’Hare (ORD) 666 

Portland Jetport (PWM) Boston (BOS) 105 Chicago O’Hare (ORD) 900 

Charlotte (CLT) 812 

Manchester–Boston 

Regional (MHT) 

Boston (BOS) 53.7 Chicago O’Hare (ORD) 
843 

Bradley (BDL) Boston (BOS) 113 Chicago O’Hare (ORD) 783 

Charleston  (CHS) Charlotte (CLT) 204 LaGuardia (LGA) 641 

Chattanooga Metropolitan 

(CHA) 

Atlanta (ATL) 
123 

Washington National 

(DCA) 
523 

Colorado Springs 

Municipal (COS) 

Denver (DEN) 
86.9 

Los Angeles (LAX) 
833 

Eugene (EUG) Portland (PDX) 130 Denver (DEN) 997 

Huntsville  (HSV) Atlanta (ATL) 

201 

Washington National 

(DCA) 
613 

Dallas/Fort Worth 

(DFW) 
603 

Shreveport Regional 

(SHV) 

Dallas/Fort Worth 

(DFW) 
202 

Atlanta  (ATL) 
551 

We then searched for empirical evidence and anecdotal claims of leakage at the airports listed in Table 2. 2 

Chattanooga Metropolitan Airport, Columbia Metropolitan Airport, Huntsville International Airport, and 3 

Charleston International Airport were included in the dataset used by Suzuki & Audino (2003). Jacksonville 4 

International Airport is striving to attract more flights by offering incentives to airlines (Webner, 2015), given 5 

that residents of Jacksonville have been observed to drive two or more hours to Orlando International Airport. 6 

Passengers have also been observed to travel from Tucson to Phoenix Sky Harbor International Airport by bus 7 

because of better connections and better airfares (Sharkey, 2015). On social media, Gerald R. Ford International 8 

Airport in Grand Rapids, MI encourages patronage by local residents in order to stem losses of flight routes and 9 

frequency, acknowledging that passenger leakage occurs due to lower airfares offered elsewhere (Gerald R. 10 
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Ford International Airport, 2015). Approximately 40% passenger loss from Portland International Jetport 1 

(PWM) to Logan Airport in Boston has been claimed (Portland International Jetport, 2012). As mentioned 2 

above, a 2012 leakage study estimates that around 5% of passengers in the Huntsville service region use 3 

Hartsfield–Jackson Atlanta International Airport despite that it is more than 200 miles away from Huntsville 4 

(Huntsville International Airport, 2013). Finally, significant passenger leakage has been observed from 5 

Shreveport Regional Airport to Dallas/Fort Worth International Airport (Shreveport Airport Authority, 2014). 6 

3.2.3. Dataset and Descriptive Statistics 7 

Based on the data from data sources as mentioned in Section 3.2.1 and the airports we obtain from Section 3.2.2, 8 

we develop a dataset of all the variables that are hypothesized in the model as shown in Equation 1-2. The 9 

dataset has 719 observations, meaning almost all of the 20 local airports have 36 quarterly datasets each. 10 

Variables include the number of passengers, airfare, flight leg, non-stop miles, freight, group size, fuel cost, 11 

seasonality, enplanement, passengers using low-cost carriers, the number of flight departures, population, per 12 

capita income, driving distance between the local and substitute airport, quarter indicator variables, and local 13 

airport indicator variables. Among them, the seasonality variable represents total passenger enplanement per 14 

quarter from all U.S. airports, excluding the local airport and substitute airport, to the destination airport (Suzuki 15 

& Audino, 2003). The seasonality variable implicates quarterly fluctuations in air passenger volumes in the U.S., 16 

which is expected to have a positive relationship to passenger volumes at the local airport. There are two 17 

enplanement variables: one represents the passenger volume from the local airport to all U.S. destinations, 18 

excluding the subject destination airport; and the other represents passenger volume from the substitute airport 19 

to all U.S. destinations at quarter. We expect the local airport enplanement to have a positive relationship with 20 

local passenger volumes and the substitute enplanement variable a negative relationship. The explanations as 21 

well as expectations of the signs and relationships of the variables only in the final version of the model will be 22 

described in detail in the following sections.  23 

Descriptive statistics for the independent variables of the model are shown in Table 3. As the variables for 24 

airfare, flight leg, group size and non-stop miles shown are constructed from DB1B data, the number of 25 

observations in DB1B per quarter per origin-destination pair is also provided in Table 4.  26 

  27 
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Table 3 Descriptive statistics for model independent variables  1 

Variable Explanation Mean Std. Dev. Min. Max. 

𝐹𝑖𝑗𝑡 Airfare at local airport($) 210.24 51.15 102.35 372.67 

𝑃𝑖𝑗𝑡 Passenger volume 19,430 16,023 1,029 114,105 

𝐿𝑖𝑗𝑡  Flight leg 1.31 0.19 1.06 2.03 

𝑀𝑖𝑗  Non-stop miles(mile) 768.98 173.31 523.00 1,216.00 

𝑆𝑍𝑖𝑗𝑡 Travel group size 1.70 0.52 1.04 4.47 

𝐹(−𝑖)𝑗𝑡 Airfare at substitute airport($) 162.34 24.73 90.14 259.57 

𝑆𝑖𝑗𝑡 Seasonality 5,259,274 2,474,262 1,653,233 10,610,022 

𝐸𝑖𝑡 Enplanement at local airport 286,747 246,564 37,122 1,256,864 

𝐸(−𝑖)𝑡 Enplanement at substitute airport 4,645,724 2,413,309 1,336,676 10,822,651 

𝐶𝑡  Unit Aviation Fuel Cost($/gallon) 2.45 0.60 1.36 3.49 

 2 

Table 4 Observations per quarter per origin-destination (OD) pair in DB1B  3 

Local OD 

Number of observations per 

quarter 

Substitute OD 

Number of observations per 

quarter 

Min. Max. Min. Max. 

JAX-PHL 781 1533 MCO-PHL 2125 3624 

JAX-EWR 591 1369 MCO-EWR 1408 3218 

TUS-SEA 734 1088 PHX-SEA 2398 3603 

MKE-MCO 894 2653 MDW-MCO 880 2411 

OKC-ATL 473 859 DFW-ATL 2413 3797 

GRR-ATL 317 743 DTW-ATL 1722 3219 

MLI-DEN 106 261 ORD-DEN 2086 3666 

CAE-LGA 215 615 CLT-LGA 1364 4575 

CAE-ORD 191 532 CLT-ORD 1395 3365 

PWM-ORD 264 647 BOS-ORD 2010 6255 

PWM-CLT 144 556 BOS-CLT 800 2364 

MHT-ORD 286 766 BOS-ORD 2010 6255 

BDL-ORD 852 1898 BOS-ORD 2010 6255 

CHS-LGA 303 1440 CLT-LGA 1364 4575 

CHA-DCA 142 263 ATL-DCA 1959 2770 

COS-LAX 174 887 DEN-LAX 2761 4456 

EUG-DEN 100 349 PDX-DEN 1223 2946 

HSV-DCA 385 798 ATL-DCA 1959 2770 

HSV-DFW 196 374 ATL-DFW 2381 3820 

SHV-ATL 109 295 DFW-ATL 2413 3797 

 4 

For example, for JAX-PHL, it has 36 quarterly observations in the final dataset. For each quarterly observation 5 

in the final dataset, the average airfare variable is from DB1B in that particular quarter. The maximum number 6 

of DB1B records in one quarter is 1533 while the minimum is 781. As mentioned in Section 3.2.1, not all 7 
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variables are from DB1B data. Thus, Table 4 only applies to five variables in the model: airfare at the local 1 

airport, airfare at the substitute airport, flight legs, non-stop miles, and group size. 2 

3.2.4. First-stage (Airfare) Model 3 

The first-stage airfare model is specified as follows: 4 

ln(𝐹𝑖𝑗𝑡) = ∑ 𝜆𝑖 ∙ 𝐼(𝑖 = 1)

𝑖

+ 𝛼1 ln(𝑃𝑖𝑗𝑡) + 𝛼2 ln(𝐹(−𝑖)𝑗𝑡) + 𝛼3 ln(𝐶𝑡 ⋅ 𝑀𝑖𝑗) + 𝜇𝑡 

(3) 
𝜇𝑡 = 𝜌1𝜇𝑡−1 + 𝜖𝑡 

Where variables are defined as: 5 

𝐹𝑖𝑗𝑡  Average airfare per passenger from local airport 𝑖 to destination airport 𝑗 in quarter 𝑡 (USD). 6 

𝐼(𝑖 = 1)  Local airport indicator variable. 𝐼 = 1 if the route is from local airport 𝑖; and 𝐼 = 0 otherwise.  7 

𝑃𝑖𝑗𝑡 Passenger volume from local airport 𝑖 to destination airport 𝑗 at quarter 𝑡. 8 

𝐹(−𝑖)𝑗𝑡  Average airfare per passenger from substitute airport (−𝑖) to destination airport 𝑗 at quarter 𝑡 (USD). 9 

𝐶𝑡  Unit aviation fuel cost per gallon for domestic services provided by U.S. carriers at quarter 𝑡. 10 

𝑀𝑖𝑗  Non-stop miles from local airport 𝑖 to the destination airport 𝑗. 11 

𝜇𝑡  Airfare model error term at quarter 𝑡.  12 

𝜇𝑡−1  Airfare model error term at quarter 𝑡 − 1.  13 

𝜌1  First-order autoregressive parameter. 14 

𝜖𝑡  Error term for the autoregressive error model, assumed normally and independently distributed with 15 

mean 0 and variance 𝜎1
2, such that 𝜖𝑡~𝑁(0, 𝜎1

2). 16 

The first-order autoregressive parameter specification is included because the results of a Durbin-Watson test 17 

indicate presence of first-order autocorrelation (higher-order autocorrelation was not found to exist). Parameter 18 

estimation results for all included variables are discussed in Section 3.2.6. 19 

3.2.5. Second-stage (Passenger Volumes) Model 20 

The second-stage local airport passenger volume model is a function of the predicted airfare (from stage 1) and 21 

other exogenous explanatory variables. 22 

ln(𝑃𝑖𝑗𝑡) = ∑ 𝛿𝑖 ∙ 𝐼(𝑖 = 1)

𝑖

+ 𝛽1ln(𝐹𝑖𝑗𝑡)̂ + 𝛽2 ln(𝐿𝑖𝑗𝑡) +  𝛽3 ln(𝑆𝑖𝑗𝑡) + 𝛽4 ln(𝐹(−𝑖)𝑗𝑡)

+ 𝛽5 ∙ (𝑆𝑍𝑖𝑗𝑡 ∙ ln(𝐹(−𝑖)𝑗𝑡)) + 𝛽6 ln(𝐸𝑖𝑡) + 𝛽7 ln(𝐸(−𝑖)𝑡) + 𝜀𝑡 (4) 

𝜀𝑡 = 𝜌2𝜀𝑡−1 + 𝑣𝑡 
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In addition to the variables that were introduced previously, such as local airport indicator variable and airfare at 1 

the substitute airport, the following are also included:  2 

𝑙𝑛(𝐹𝑖𝑗𝑡)̂   Fitted log of airfare per passenger from local airport 𝑖 to destination airport 𝑗 at quarter 𝑡. 3 

𝐿𝑖𝑗𝑡  Average number of flight legs per passenger from local airport 𝑖 to destination airport 𝑗 at quarter 𝑡. 4 

𝑆𝑖𝑗𝑡   “Seasonality” variable – total passenger enplanement per quarter from all U.S. airports, excluding 5 

local airport 𝑖 and substitute airport (−𝑖), to destination airport 𝑗 at quarter 𝑡. 6 

𝑆𝑍𝑖𝑗𝑡 Average passenger group size from local airport 𝑖 to destination airport 𝑗 at quarter 𝑡. 7 

𝐸𝑖𝑡  Enplanement variable for the local airport – passenger volume from local airport 𝑖 to all U.S. 8 

destinations, excluding the subject destination airport, at quarter 𝑡. 9 

𝐸(−𝑖)𝑡  Enplanement variable for the substitute airport – passenger volume from the substitute airport (−𝑖) 10 

to all U.S. destinations at quarter 𝑡. 11 

𝜀𝑡  Passenger volume model error term at quarter 𝑡.  12 

𝜀𝑡−1 Passenger volume model error term at quarter 𝑡 − 1.  13 

𝜌2  First-order autoregressive parameter. 14 

𝑣𝑡  Error term for the autoregressive error model, normally and independently distributed with mean 0 15 

and variance 𝜎2
2, 𝑣𝑡~𝑁(0, 𝜎2

2). 16 

Again, the first-order autoregressive parameter specification is included because the results of a Durbin-Watson 17 

test indicate presence of first-order autocorrelation.  18 

3.2.6. Results 19 

The model has been estimated using Statistical Analysis System (SAS) software. The estimation results for the 20 

first-stage model and second-stage model are shown in Table 5 and Table 6, respectively. 21 

  22 
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Table 5 Estimation results, first-stage model 1 

Coefficient Variable Estimate t-value 

𝜆𝐽𝐴𝑋 I(𝐽𝐴𝑋 = 1) 2.83 10.26 

𝜆𝑇𝑈𝑆 I(𝑇𝑈𝑆 = 1) 2.70 9.79 

𝜆𝑀𝐾𝐸 I(𝑀𝐾𝐸 = 1) 2.65 9.34 

𝜆𝑂𝐾𝐶 I(𝑂𝐾𝐶 = 1) 3.12 10.98 

𝜆𝐺𝑅𝑅 I(𝐺𝑅𝑅 = 1) 3.20 11.53 

𝜆𝑀𝐿𝐼 I(𝑀𝐿𝐼 = 1) 2.88 10.72 

𝜆𝐶𝐴𝐸 I(𝐶𝐴𝐸 = 1) 2.85 10.67 

𝜆𝑃𝑊𝑀 I(𝑃𝑊𝑀 = 1) 2.88 10.56 

𝜆𝑀𝐻𝑇 I(𝑀𝐻𝑇 = 1) 2.83 10.17 

𝜆𝐵𝐷𝐿 I(𝐵𝐷𝐿 = 1) 2.98 10.19 

𝜆𝐶𝐻𝑆 I(𝐶𝐻𝑆 = 1) 2.79 10.06 

𝜆𝐶𝐻𝐴 I(𝐶𝐻𝐴 = 1) 2.65 10.26 

𝜆𝐶𝑂𝑆 I(𝐶𝑂𝑆 = 1) 2.90 10.62 

𝜆𝐸𝑈𝐺 I(𝐸𝑈𝐺 = 1) 2.74 10.02 

𝜆𝐻𝑆𝑉 I(𝐻𝑆𝑉 = 1) 3.20 11.76 

𝜆𝑆𝐻𝑉 I(𝑆𝐻𝑉 = 1) 3.17 11.44 

𝛼1 𝑃𝑖𝑗𝑡 -0.11 -6.81 

𝛼2 𝐹(−𝑖)𝑗𝑡 0.36 8.77 

𝛼3 𝐶𝑡 ⋅ 𝑀𝑖𝑗 0.22 10.25 

𝜌1 Autoregressive Parameter 0.75 28.14 

Model fit 

statistics 

𝜎1
2 0.008 

Regress R-Square 0.996 

Total R-Square 1.000 

  2 
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Table 6 Estimation results, second-stage model 1 

Coefficient Variable Estimate t-value 

𝛿𝐽𝐴𝑋 I(𝐽𝐴𝑋 = 1) -4.41 -4.05 

𝛿𝑇𝑈𝑆 I(𝑇𝑈𝑆 = 1) -4.79 -4.34 

𝛿𝑀𝐾𝐸 I(𝑀𝐾𝐸 = 1) -4.51 -4.23 

𝛿𝑂𝐾𝐶 I(𝑂𝐾𝐶 = 1) -4.55 -4.04 

𝛿𝐺𝑅𝑅 I(𝐺𝑅𝑅 = 1) -4.85 -4.41 

𝛿𝑀𝐿𝐼 I(𝑀𝐿𝐼 = 1) -4.87 -4.30 

𝛿𝐶𝐴𝐸 I(𝐶𝐴𝐸 = 1) -4.94 -4.57 

𝛿𝑃𝑊𝑀 I(𝑃𝑊𝑀 = 1) -4.72 -4.41 

𝛿𝑀𝐻𝑇 I(𝑀𝐻𝑇 = 1) -5.24 -4.82 

𝛿𝐵𝐷𝐿 I(𝐵𝐷𝐿 = 1) -4.42 -4.06 

𝛿𝐶𝐻𝑆 I(𝐶𝐻𝑆 = 1) -4.23 -3.97 

𝛿𝐶𝐻𝐴 I(𝐶𝐻𝐴 = 1) -4.72 -4.15 

𝛿𝐶𝑂𝑆 I(𝐶𝑂𝑆 = 1) -4.78 -4.30 

𝛿𝐸𝑈𝐺 I(𝐸𝑈𝐺 = 1) -4.65 -4.44 

𝛿𝐻𝑆𝑉 I(𝐻𝑆𝑉 = 1) -3.71 -3.27 

𝛿𝑆𝐻𝑉 I(𝑆𝐻𝑉 = 1) -4.16 -3.70 

𝛽1 𝐹𝑖𝑗𝑡 -0.52 -7.24 

𝛽2 𝐿𝑖𝑗𝑡 -1.00 -9.71 

𝛽3 𝑆𝑖𝑗𝑡 0.87 16.17 

𝛽4 𝐹(−𝑖)𝑗𝑡 0.24 3.31 

𝛽5 𝑆𝑍𝑖𝑗𝑡 ∗ ln(𝐹(−𝑖)𝑗𝑡) 0.02 3.82 

𝛽6 𝐸𝑖𝑡 0.53 7.48 

𝛽7 𝐸(−𝑖)𝑡 -0.27 -2.85 

𝜌2 Autoregressive Parameter 0.76 28.39 

Model fit 

statistics 

𝜎2
2 0.020 

Regress R-Square 0.996 

Total R-Square 1.000 

Durbin-Watson Test 2.051 

 2 

The results of the Durbin-Watson tests in both models indicate that first-order autocorrelation has not been 3 

detected in the FGLS model specification. All variables in the airfare model and passenger model are significant 4 

at the 95% confidence level. Local airport indicator variables have controlled some geographically specific 5 

characteristics of each local airport market that are not captured by other variables. The first-stage (airfare) 6 

model estimation results indicate that airfare (𝐹𝑖𝑗)  from a local airport 𝑖  to destination 𝑗  has a negative 7 

relationship to the number of passengers (𝑃𝑖𝑗) from 𝑖 to 𝑗. This confirms that when passenger volumes to a 8 

destination increase at the local airport, air service from the local airport will be provided by the airlines at a 9 

lower cost per passenger, reflecting economies of density (Caves, Christensen, & Tretheway, 1984). 10 



19 

 

Furthermore, higher passenger traffic attracts more airlines to the airport and intensifies airline competition, 1 

which can also reduce airfares (Borenstein, 1989; Borenstein & Rose, 1991). The value of 𝛼1 is quite small 2 

given the difference in absolute magnitude of airfare (in USD) versus quarterly passenger volumes between a 3 

local airport and a destination. Airfares from the local and substitute airports to a destination (𝐹𝑖𝑗 and 𝐹(−𝑖)𝑗 , 4 

respectively) are positively related, as one would expect that the major drivers of airfare are major economic 5 

and airline industry factors not controlled for in the model. Increases in the interaction variable of fuel cost and 6 

non-stop miles (𝐶𝑡 ⋅ 𝑀𝑖𝑗) from 𝑖 to 𝑗 will also increase airfares from 𝑖 to 𝑗. Higher per gallon fuel cost and/or 7 

greater flight distances will increase flight costs and, therefore, airfares (Caves, Christensen, & Tretheway, 1984; 8 

Vowles, 2006).  9 

The second-stage model results indicate that increases in airfare (𝐹𝑖𝑗𝑡) at the local airport will negatively impact 10 

passenger volumes (𝑃𝑖𝑗𝑡). This is as expected – when travelers can choose an origin airport, they will place 11 

significant weight on how airfares to their destination will compare, and lower airfares will attract more 12 

passengers (Suzuki & Audino, 2003). The average number of flight legs (𝐿𝑖𝑗𝑡) required to reach destination 𝑗 13 

has a negative impact on passengers (𝑃𝑖𝑗𝑡). If airlines at the local airport do not provide good direct flight 14 

options, passengers traveling from the local airport will decrease. This implies that they will either choose to fly 15 

from the out-of-region substitute airport, or not travel at all. In addition to direct flight availability, layover time 16 

between connecting flights is also important in passengers’ choices (Innes & Doucet, 1990). The total travel 17 

time, which includes layover time, certainly impacts air passengers’ travel choices (Adler, Falzarano, & Spitz, 18 

2005), but travel time information is unavailable in the dataset. As mentioned above, the seasonality variable 19 

(𝑆𝑖𝑗𝑡) represents quarterly fluctuations in air passenger volumes in the U.S., which as expected has a positive 20 

relationship to passenger volumes at the local airport. Also as anticipated, airfare (𝐹(−𝑖)𝑗𝑡) to destination 𝑗 from 21 

the substitute airport (−𝑖) has a positive relationship to passenger volumes to 𝑗 from the local airport. This 22 

implies that as 𝐹(−𝑖)𝑗𝑡 increases but 𝐹𝑖𝑗𝑡 (or, fares from the local airport 𝑖) remains constant, passenger volumes 23 

to 𝑗 from the local airport will increase. The impact, however, is smaller than the impact of local airport airfares 24 

to 𝑗 on passengers from 𝑖 to 𝑗, based on the estimated values for 𝛽1 and 𝛽4. 25 

Airfares at the substitute airport will impact travelers’ decisions differently depending on the size of their travel 26 

group. The positive parameter estimate on the interaction variable of group size and airfare (𝑆𝑍𝑖𝑗𝑡 ⋅ ln(𝐹(−𝑖)𝑗𝑡)) 27 

indicates that the impact of lower airfares (offered at the substitute airport) on decreasing local airport passenger 28 

volumes is magnified with larger group sizes. Anecdotally, we expect that group travelers are more likely to be 29 

families on leisure travel, that have the flexibility and motivation to travel a longer distance by car if there are 30 

savings to be gained on the purchase of multiple flight tickets. As a result, we expect that lower fares offered by 31 

airlines at an out-of-region airport are more impactful when travel group sizes are larger. We also expect 32 
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airfares to have a larger impact on leisure travel decisions compared to business travel (Hess, Adler, & Polak, 1 

2007; Zhang & Xie, 2005); therefore, the impact is magnified with leisure group travel. Travel purpose is not 2 

available in the data. However, it would be interesting to further assess how travel group size impacts travel 3 

decisions such as airport choice.  4 

Another second-stage model result is that overall enplanement (𝐸𝑖𝑗𝑡) increases at the local airport lead to higher 5 

passenger volumes (𝑃𝑖𝑗𝑡), to 𝑗, while increases in enplanement at the substitute airport (𝐸(−𝑖)𝑗𝑡) have a negative 6 

impact on 𝑃𝑖𝑗𝑡. If an airport retains higher overall levels of passenger traffic, it is also likely to retain passengers 7 

traveling to a particular destination 𝑗. However, as overall traffic levels at the substitute airport increase, it is 8 

likely that they offer better service to many destinations and as a result may draw passengers away from the 9 

local airport. This supports the notion that an airport with higher passenger volumes will in turn attract more 10 

passengers, leading to a positive feedback effect (Hansen, 1995). 11 

In summary, the model results indicate an inverse relationship between airfare and passenger volumes at a 12 

small- to medium-size airport within a (long-distance) drive of a major hub airport. This in turn suggests that 13 

more passengers at a local airport will lead to lower airfares offered by airlines at the local airport, and lower 14 

airfares would in turn attract more passengers. The influence of out-of-region hub airports within a long-15 

distance drive on the local airport are also captured; lower airfares and higher overall enplanement volumes at 16 

substitute airports may encourage lower passenger volumes at the local airport. However, we also demonstrate 17 

that the impact of airfares at substitute airports on passenger volumes at local airports will vary by travel group 18 

size. Significantly, airports with higher overall levels of passenger traffic are likely to attract more passengers to 19 

individual routes as well. 20 

3.3 Conceptual market share equilibrium analysis 21 

In Section 3.2 we have empirically confirmed the existence of a relationship between airfares at the local airport, 22 

and passenger volumes at both the local and substitute airports (in addition to several other attributes). 23 

Therefore, we now present an equilibrium analysis of how airport supply characteristics can impact passenger 24 

“leakage” to substitute airports or, the supply-and-demand feedback mechanisms at play (Hansen, 1995). This 25 

model proposes the use of the empirical airfare model with a binary logit model, to investigate the sensitivity of 26 

airport leakage to airfare, flight frequency, and ground access distance in a numerical equilibrium analysis.  27 

3.3.1. Model Specification and Assumptions 28 

We assume that air travelers can choose to depart from one of two airports – their local airport, and a larger hub 29 

airport up to 200 miles away. We represent this aggregate airport choice (or, market share) scenario using a 30 

binary logit model. We also use the airfare model of Equation 3 to capture the impacts of airport demand levels 31 
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(market share) on airfares at the local airport, thereby completing the supply-and-demand feedback loop. For 1 

the airfare model, we arbitrarily choose variable and coefficient values for the route from Jacksonville Airport 2 

(JAX) to Philadelphia Airport (PHL) (substitute Orlando, or MCO). 3 

For the binary logit model, we assume airfare, flight frequency, and ground access distance are the major 4 

drivers of airport choice, as these attributes are well-documented to have the most significant impact (Hess S. , 5 

2005; Hess & Polak, 2010). The air passenger utility function and market share model are as follows: 6 

𝑈𝑖 = 𝑉𝑖 + 𝜀𝑖 = 𝛼𝐹𝑖 + 𝛽 𝑙𝑜𝑔(𝑓𝑖) + 𝛾 𝑙𝑜𝑔(𝑔𝑖) + 𝜀𝑖 , 𝑖 = 1 𝑜𝑟 2 (5) 

𝑀𝑆𝑖 =
𝑒𝑥𝑝 (𝑉𝑖)

𝑒𝑥𝑝(𝑉1) + 𝑒𝑥𝑝 (𝑉2)
 

(6) 

Where,  7 

𝑖  is the departure airport; 𝑖 = 1 is the local airport while 𝑖 = 2 is the substitute airport. 8 

𝑈𝑖  is the utility of choosing Airport 𝑖 to travel to the destination airport.  9 

𝑉𝑖  is the deterministic utility of choosing Airport 𝑖.  10 

𝜀𝑖  is the stochastic error term. 11 

𝐹𝑖 is the average airfare from Airport 𝑖 to the destination airport. 12 

𝑓𝑖  is the flight frequency from Airport 𝑖 to the destination airport. 13 

𝑔𝑖  is the average ground access distance to Airport 𝑖. 14 

𝛼, 𝛽, 𝛾  are coefficients. 15 

𝑀𝑆𝑖  is the market share of Airport 𝑖; the total air passenger volume for the metropolitan region of Airport 16 

1 is 𝑇, and therefore passenger volumes at airport 1 can be expressed as 𝑃1 = 𝑇 ⋅ 𝑀𝑆1. 17 

3.3.2. Numerical Analysis 18 

In this numerical analysis, we find the sensitivity of an airport’s equilibrium market share with respect to 19 

different variables, which we define as a market share value that satisfies Equation 3, 5, and 6. In the numerical 20 

analysis, we assume some values for the parameters based on previous studies (de Luca, 2012), the route 21 

specification from Jacksonville (JAX) to Philadelphia (PHL) airports, and that airlines at the substitute airport 22 

(Airport 2) provide more flight frequencies than the local airport (Airport 1), as shown below. 23 

  24 
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Table 7 Variable and coefficient values in market share and airfare functions 1 

Market share model (Eqn. 5)  

𝛼 Coefficient of airfare -0.04 

𝛽 Coefficient of frequency 0.36 

𝛾 Coefficient of ground access distance -0.85 

𝑓1 Flight frequency at Airport 1 per quarter 100 

𝑓2 Flight frequency at Airport 2 per quarter 200 

𝑔1 Ground access distance to Airport 1 (miles) 30 

𝑔2 Ground access distance to Airport 2 (miles) 144 

Airfare model (Eqn. 3)  

𝜆 Coefficient for JAX-PHL route 2.83 

𝛼1 Coefficient for passenger volumes at Airport 1 -0.11 

𝛼2 Coefficient for average airfare at Airport 2 0.36 

𝛼3 
Coefficient for fuel cost and non-stop flight 

distance interaction term 

0.22 

𝑇 Total passenger demand 100,000 

𝐹2 Airfare at Airport 2 (USD) 200 

𝐶 Unit aviation fuel cost (USD/gallon) 3 

𝑀1 
Non-stop flight miles from Airport 1 to 

destination (miles) 

742 

Figure 2 shows equilibrium values for market share based on the numerical values in Table 7, for four values of 2 

the airfare coefficient (𝛼). The x-axis represents input values of market share, which we input to Equation 3 to 3 

obtain values for 𝐹1. By inputting the 𝐹1 values into Equation 5, we can in turn obtain 𝑀𝑆1 values again, which 4 

are called output market share values as represented by the y-axis. Equilibrium only exists where each curve 5 

(corresponding to a specific 𝛼 value) intersects the 45
o
 reference line. There are two types of equilibria: stable 6 

and unstable. A stable equilibrium exists when the curve cuts the 45
o
 reference line from above, when input 7 

market share increases. The market share will return to a stable equilibrium if a disturbance should happen to 8 

change the market share at any point (Sharov, 1996; Hansen, 1995). However, if a disturbance should occur to 9 

disrupt an unstable equilibrium, the market share will not return to that equilibrium (Sharov, 1996). By 10 

definition, unstable equilibria are unlikely to exist over the long term (Taylor & Jonker, 1978). As a result, we 11 

have focused our attention on stable equilibria.  12 
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 1 

Figure 2 Equilibria under alternative airfare coefficient (α) values 2 

The results for 𝛼 = −0.09 and 𝛼 = −0.33 are discussed here. They indicate that the number of equilibrium 3 

solutions changes as 𝛼 decreases. We have focused our discussion on positive stable equilibria points because 4 

they are able to reflect the sensitivity of market share in airport leakage. The trend of positive stable equilibria is 5 

that the equilibrium market share of the local airport (𝑀𝑆1) increases with respect to the increase of the absolute 6 

value of 𝛼. Given that 𝛼 represents how much weight a passenger assigns to airfare (relative to frequency and 7 

ground distance) when choosing an airport, more passengers will use the local airport when airfare is 8 

increasingly important to passengers, under the circumstances that airfare at the local airport is lower than the 9 

substitute airport. As more passengers use the local airport, airfares will also decrease due to economies of 10 

density (Lijesen, Rietveld, & Nijkamp, 2001), further magnifying the airfare advantage of the local airport. 11 

Thus, under the condition that airfare is highly important (i.e., the absolute value of 𝛼 increases) and the local 12 

airport’s airfares are lower, more passengers will use their local airport. This positive feedback effect suggests 13 

that an airport with higher passenger traffic will attract more passengers (Hansen, 1995), and so on. However, if 14 

airfare is less important to passengers (−0.33 < 𝛼 < 0), more passengers will use the substitute airport because 15 

airlines offer greater flight frequency than at the local airport (i.e. 𝑓1 = 100, 𝑓2 = 200). Consequently, airlines 16 

increase airfares at the local airport, making travel from the local airport less attractive to passengers. 17 

The sensitivity of 𝑀𝑆1with respect to the substitute airport’s airfare 𝐹2 is also impacted by the fact that 𝐹1 will 18 

also change when 𝐹2  changes. As a result, we will discuss the combined effect of 𝐹1  and 𝐹2  on the stable 19 

equilibrium for market share, using the numerical values in Table 7 but varying the values for substitute airport 20 

airfare (𝐹2). As shown in Figure 3, when 𝐹2 decreases, 𝐹1/𝐹2 increases and 𝑀𝑆1 decreases. Based on Equation 21 

5, when 𝐹2 decreases, 𝐹1 also decreases but at a slower rate. This means that when the substitute airport has 22 
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increasingly lower airfares compared to the local airport, the substitute airport will take more market share from 1 

the local airport. Even when 𝐹1  equals 𝐹2  (i.e. 𝐹1/𝐹2 = 1), market share at the substitute airport (𝑀𝑆2)  is 2 

approximately 80% and airport leakage still occurs, due to the flight frequency at the substitute airport being 3 

higher than at the local airport (recall 𝑓1 = 100 and 𝑓2 = 200).  4 

 5 

Figure 3 Market share equilibria as a function of 𝐹1/𝐹2 6 

3.4 Overview of relationships between supply and demand variables  7 

An overview of how various factors impact local airport passenger market share, as found in the model results 8 

presented earlier, is presented in Table 8. Table 8 is meant to summarize the highly generalized insights about 9 

these relationships, without geographic specificity. We find that some of the hypotheses of Section Error! 10 

Reference source not found. are confirmed. For instance, if fewer passengers are using the local airport, this 11 

goes hand-in-hand with lower airfares at the substitute airport, more flight legs required (to fly to particular 12 

destinations) at the local airport, and higher flight frequencies at the substitute airport. In the econometric model, 13 

the airfare at the local airport has been confirmed to have a negative relationship with traffic volume at the local 14 

airport. Moreover, higher flight frequency and shorter ground access distance of the local airport is positively 15 

related to the market share at the local airport. Inversely, if the substitute airport provides lower airfares, higher 16 

flight frequency, or has shorter ground access distance, the market share at the local airport will reduce. As 17 

indicated by the conceptual market share equilibrium analysis, the weights of airfare, flight frequency, and 18 

ground access distance, which implicate the importance of the three attributes in passengers’ airport choices, 19 

contribute to market share local airport differently. 20 
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Table 8 Sensitivities of demand or market share of local airport 1 

Analysis Feature 
If it 

should: 

Then passenger market 

share for that destination, 

at local airport, may: 

Econometric model Airfare at local airport  ↑ ↓ 

Flight legs (connections) from local airport ↑ ↓ 

Seasonality (attractiveness of destination airport) ↑ ↑ 

Enplanement at local airport  ↑ ↑ 

Enplanement at substitute airport ↑ ↓ 
Market share 

equilibrium analysis 
Airfare at substitute airport (𝐹2) ↓ ↓1

 

Flight frequency at local airport (𝑓1) ↑ ↑ 

Flight frequency at substitute airport (𝑓2) ↑ ↓ 

Ground access distance to local airport (𝑔1) ↓ ↑ 

Ground access distance to substitute airport (𝑔2) ↑ ↑ 

Weight of airfare (𝛼) ↑ ↑ 

Weight of flight frequency (𝛽) ↑ ↓ 

Weight of ground access distance (𝛾) ↑ ↑ 

1 
Based on the econometric model, this effect is larger when travel group sizes are larger as well.

  2 

Table 8 provides generalized results that do not pertain to specific geographic contexts. These relationships may 3 

of course vary or demonstrate different trends in specific geographic contexts. However, the purpose of the 4 

table is to provide some general insight into the relationships, as a starting point for further analysis. To analyze 5 

a specific geographic area (and local airport market) using the analytical modeling method, market-specific 6 

airfare models and a passenger market share model should be estimated using locally collected data. The utility 7 

coefficients for the market share model can be generated from local traveler survey data, which would require a 8 

targeted data collection effort by municipal planners and/or airport planners looking to operationalize this model 9 

to obtain quantitative evidence of leakage. There are limited instances of data collection and assessment of 10 

leakage in past literature, due to the challenges of collecting (and generally limited availability of) data covering 11 

a geographic scope that crosses municipal jurisdiction boundaries (Suzuki, Crum, & Audino, 2004; Fuellhart, 12 

2007; Kimley-Horn and Associates, Inc., 2012). However, if airport passenger leakage is considered to be a 13 

critical regional issue, and investments in a quantitative study of the problem are to be made, the proposed 14 

modeling effort is a potential candidate. 15 

4. Conclusions and discussion 16 

This paper has presented models for understanding the relationships between small- and medium-sized (local) 17 

airports and major hub (substitute) airports serving larger neighboring regions that are within a long-distance 18 

drive. The first model estimates how substitute airports can impact passenger volumes at small- and medium-19 

sized airports in the U.S. while capturing the endogeneity between airfare and passenger volumes. Refinements 20 
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and updates to this model from previous work (Suzuki & Audino, 2003) include a systematic process to select 1 

local airports and correction of time series-related biases. Then, a conceptual equilibrium analysis of supply-2 

and-demand feedback combines the empirical airfare model with a market share model to investigate the 3 

sensitivities of airport market share to air service characteristics of airfare and flight frequency. Both models 4 

capture the interactions and feedback between air services and airport passenger demand (or market share). 5 

The empirical model provides some generalized insights into major trends of airport leakage in the U.S. The 6 

modeling results suggest that when airfares at the local airport decrease, the airport will indeed retain higher 7 

passenger volumes. In addition, the attraction of lower airfares at the substitute airport is stronger when 8 

passengers travel in larger groups. Also, the higher the overall passenger traffic at a local airport, the more 9 

passengers the airport will retain; the higher the traffic at a substitute airport, the more passengers the substitute 10 

airport will attract. This result implies that positive supply-and-demand feedback – where an airport will attract 11 

more passengers if it has higher passenger volumes already, and so on – does exist. After confirming the 12 

existence of this feedback mechanism, we then explore equilibrium passenger market share between a local and 13 

substitute airport, utilizing a logit choice model with the empirical airfare model.  14 

The contributions of this paper include the confirmation of relationships between airport leakage and 15 

explanatory factors such as travel group size and airport enplanement, and explicit consideration of the 16 

interaction between demand and supply in both the empirical model and conceptual market share equilibrium 17 

analysis. Most importantly, however, the models presented in this paper may be used by practitioners to provide 18 

quantitative support in planning infrastructure investment strategies and other interventions. For example, with 19 

proper data collection, the conceptual model may be operationalized by airport and municipal planners in 20 

quantifying the severity of the potential leakage problem faced. As the results of this paper suggest that airport 21 

leakage impacts may be highly difficult to reverse without targeted intervention, the results of an 22 

operationalized model can guide planners in choosing suitable infrastructure investment strategies and other 23 

interventions that can expand or retain air services in attracting passengers back to the local airport. Possible 24 

strategies include the provision of airline incentives by municipalities (Ryerson, 2016), involving airlines in 25 

local airport planning processes, expansion planning of airport access facilities (Bieger & Wittmer, 2006), and 26 

advocating higher efficiency at local airports than major hubs, which of the later may have more delays 27 

(Bazargan & Vasigh, 2003). Investment should be based on planning that is strategic, incremental and flexible 28 

(De Neufville, 1995). Operationalized model results can provide indications of how impactful potential 29 

intervention decisions may be in disrupting the positive feedback mechanism of air passenger leakage and 30 

service cutbacks, such that appropriate types and levels of investment can be advocated for and planned 31 

accordingly. It should also be considered that leakage problems may be further exacerbated without intervention 32 
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in the future, as it becomes cheaper and easier to drive with technologies such as connected vehicles and 1 

autonomous vehicles. 2 

There are limitations in this work that should be further investigated, and key ways by which it can be extended. 3 

In the empirical model, the 20 origin-destination (OD) pairs are assumed to be independent, despite that several 4 

of these OD pairs have the same local, substitute or destination airports. It would be helpful to understand to 5 

what degree this impacts results. In addition, the application of conclusions from the empirical model is limited 6 

to the airports included in the dataset and possibly those that have similarities. More critically, in the 7 

equilibrium analysis, the numerical analysis results are based on assumed values for variables and coefficients, 8 

and thus are not geographically specific. A next step in moving this line of research forward is to conduct a 9 

survey of air travelers in a metropolitan region suspected of leaking air travelers to an out-of-region hub airport, 10 

in order to operationalize the model. Finally, the impacts of group size on leakage to out-of-region hub airports 11 

would be of great interest to further investigate, also through the collection of survey data. If data on other 12 

factors that influence passenger leakage are collected in the future, such as trip purposes and layover time, they 13 

could be used an explanatory variables in the models. 14 
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