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Abstrect

Some spherically symmetrlc ‘and cylmdrlcally symmetrlc elastodynamic problems
are con51dered namely ‘the ﬁmte expansum of thick-walled. spherical shells and
cylindrical tubes, mcludlng compound tubes, and the unloaélng waves due to a
‘suddenly punched holein a p}'estressed sheet. Physical(ly realistic boundary conditions

are considered.

Heat conductioﬁ-is neglected so that the deformation is assumed to be adiabatic.

Also the isentropic approx1mat10n is adol;\ted that is, the effect on the material
constitutive equation of the j jump in entropy across a shock 1s neglected Isotl.lerrnal
: and 1sentrop1c stress-deformation relatlons ate discussed. A model for strictly enterlc
elasticity, proposed by Chadwick (1974a), is used to obta;n isentropic constitutive
equations. Cor'nments on the application and limitations of various st\raiﬁ energy

funclions are also presented.

Numeérical solutions are gbtained using a hybrid finite difference-characteristic
é_clieme. ‘This scheme is based on MacCorrﬁack’s predictor-corrector method, with
one\tof the two additional boundary conditions oBtained using the method of
characteristics and the other obtained using the Gottlieb-Turkel scheme. The hybrid
scheme is attractive due to it’s relative ease of implementation, despite complexities
of shock >formation, wave reflection at material boundaries and transmission and

reflection at the vinterfa;:e'between dissimilar materials.

The validity of the numerical solutions for nonlinear finite deformation is

-

supporteé by corhpar}son with various limiting cases for which sol‘ut'ions_ are available.
. . g -
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Chapter 1 | : -

Introduction | o -

1.1 Scope ‘of Thesis

Propagation of sphei‘ically and c‘ylindricaily symmetric finite amplitude waves in
compressible isotropi‘c hyperelastic solids is considered in this thesis. As a preliminary,
the constitutive behaviour of solid.rubberlike materiaje—is considered in Chapter 2,

including thermodynamic aspects of the deformation.

. Governing equations for both spherically and cylindrically symmetric finite )
velaqticitv are presented in consefvation'form in Chapter 3.  When a realistic
constitutive relatlon is utlhzed a hyperbolfc system of ﬁrst order quaql lmr‘m paxtml

-'d{ﬂerentlal equatlons 1s obtamed ’Ih systern, together w1th applopnato boundmy

and initial conditions, defines, a bounu _'_y
a

analytical solutlon can not, in general, be obtamed

N

mltlal value problem fox whr; h an cxwt'“

- Numerical methodslare:considered in C‘_hapter 4. Limitations and stability:

problems of existing techniques are discussed and a hybrid numerical scheme is

~

intro,‘duced. The hybrid scheme is attractive due to its relative ease of irhp]cmentation,
I : . : )
despite complexities of shock formation and reflection at material boundaries.

- Conﬁdence in the vahdlty of the hybrid scheme is based on _comparison of various

nurnerlcal results with limiting cases’ for Whl(‘h exact solutions are available and on

cof/nparlson ‘with' published nonlinear finite deformation solutions whxch have heen

obftain'ed indepeqdéntly.

Numerical results for several important problems of spherically did cylindrically -

g“‘symmetric elastodynamic deformation are presented in Chapter 5. These include :



e finite elastic expansion of a spherical cavity in an unbounded medium and

4
v

spherically symmetric deformation of a thick-walled shell.

o finite elastic expansion of a cylmdrlcal cav1ty in an unbounded medlum and .

cylindrically symrhetric deformation of a tlnck wa]led tube.

e finite amplitude plane stress uilloading waves in prestressed sheets of both finite

outer radius and unbounded extent. NG

e finite elastic deformation of concentric cylindrical ﬁubes, each of which has

distinct material properties.
1.2 Previous Related Research

.

[

) Sbhericp]ly and cylindrically symmetric elastodynami'e deformation problems have
been prev10usly considered by several researchers. Analytical solutions have been
obtamed for the correspondmg linear elasticity prob]em and varlous nurnerlcai

~techmques ‘have bee‘na used ‘to obtain solutlons for both hnear and nonlmgar )
kdeformatlon A brief summary of the related previous research in thls area is presented j
" below. J
Knowles (1960) 'sclved -the prob'iem,‘of the expansion of an\ incomp‘ress‘ible} o
cylindrical hyperelastic tube. A modification of this solution for a spherical shell
is included in this thesis. The ekpansion of an incor. vres<:ble tube or shell is‘a single-
: degree -of- freedom vibration problern rather than .. wave propagation problem; the
pxopagatxon velocxty of longntudmal waves in an 1ncompre531b1e material is infinite.

The govermng equation for this problem is a second order nonlinear ODE which gives

the position of a particular radius as a function of time. Although an exact solution



.

X
to this ODE is unavailable (when a realistic strain energy function is considered), a

numerical solution can be obtained uSing standard techniques.
’ i .
Knowles . akub (1965) considered the finite dynamic deformation of an
i’ncompfess'rble elastic medium containing a sphetical cavity. Their solut,.ioxix gwu

the period and maximum aLm-plitude of the motion 6f the cavity wall in terms of an

improper integral. A complete expression for the periodic motion is not glvcn
: =i
Mlkf)wmz (1960), used a Lanlace Transform technique for theslinear clasticity

problem of p‘la,ne stress unloading waves, in a prestressed sheet, due to a suddenly

punched hole. For this particular case, analytical inversion of thé ‘Laplace transform® _

S

was possible but in general, numerical methods are needed to evaluate the resulting
inversion integrals. The Laplace Transform method is restricted to problems of linear
elasticity. <

Chou vand Koenig (1966) applied the method of characteristics to solve lincag
-elastlcltV problems of cylindrical tube% and spherlcal qhellq The ¢ xmd({fmlu

relatxons are mtch;atf'd using a mumneric a‘ hmte dlfferenm qchum

-

f.! -

ac duw and Mxoduchowslu ‘(1975 1977) apphed the method of chara( teristics
to problems of nonlinear finite deformation. Implementation of this nrethod for
problems of this type is relatively difficult as is discussed in segtioh 1.4 and Chapter
4. In addition, the method of chara.cteristi\cs does not seem apﬁliéablc to almost-
incompressible elastic solids for the cylindrical tube_a:ul spherical shell problems
_since the method becomes unstable as Poisson ratio increases. Tlis is becanse the
slopes dR/dt, of two of the families of characteristics ! approaL'ch 00 as v — 0.5; The

highest Poisson ratio for which results are obtained by Haddow and Mioduchowski

(1978) is v = 0.48. The Poisson ratio of most solid rubbers is in the range

1 For spherically symmetric.and cylihdrical]y symmetric deformation, there are three families of

characteristics, one of which is parallel to the time axis in the space-time domain.



© 0.463 < v < 0.499895 as given by numerous references including Chadwick (1974a)
and Beatty and Stalnaker (1986).

2
S

1.3 Thermn'd:ynamic Considerations

“Most of the prev1ous reseaxch and solutxons for spherically and cylmdrlcally
symmetric clastodynamic problems ignores the thcrmodynamlc aspects ‘of the
deformation and related-constitutive material description. It is commonly assumed

" that the use of an isothermal stress-deformation relation is a suitable approximation.

An’ altcrnatlve approxmmtlon is to consider an adiabatic deformation. This is
v motlvated by the low thermal conducthty of most solid rubbers (Baumelster et al.,

1978). If it is further asbumcd that the effect of the entropy jump across a shock can -
be neglected (Bland, 1969), then the use of anisentropic stress-dcfor_matxon relation

)

_is appropriate. -

| v‘v(‘..y‘»he‘u'lw‘ick (iQ?i)@nd Chadwick and Creasy ‘(1984.) nropose equations“of state for
" strictiv‘ entropic and modified entropic elésti'citv respectively“The model for strictly
| ontlopxc elastlcnty is used in chapter 2 to evaluate the dlfference between isentropic
and isothermal stress-defo;matxon relations for the range of deformations considered

“ in this thesis;

| > P ’ . :
1.4 Numerical Methods for Finite Elasticity Problems

When a realistic constdtutive relation is utilized, the governing equations for -
spherically and cylindrically symmetric deformation are a quasi-linéar system of

hyperbolic PDE’s. The form of these equations and- associated boundary and initial
conditions necessitates implementation of a numerical method to obtain a solution.

[
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. Both the method of. characteristics and various finite difference methods have
been successfully used for various elastodynamic problems involving formation of a
shock. Implementation of the method of characteristics for problems of nonlinear

finite deformation fs relatively complicated for sever,@l reasons :

e Since the propagatioh speed of the disturbance is not constant, the
characteristics are not of constant slope and hence do not form straight lines
in' the space-time léiane."'l"heir position is not known apriori and must be

determined as part of the solution. - - v
-

e In general, the characteristic velocity and shock velocity do not coincide. The
P o’

complexity of implementing the method of characteristics is compounded when
wave reflection occurs and when partial transmission and reflection at an

interface between dissimilar materials exists..
. v - . o
+ Numerous finite difference methods have been proposed, including the Lax-
Wendroff, Godunov, MacCormack, Rusanov énd Upwind schemes (Sod, 1978). Each
" of these is a first order scheme, ex;:ept the MacCormack and Lax-Wendroff schemes’
which are of second order accuracy. A general form {& second- and third'-érdéx‘_
difference schefnes is given -by Warming, et al.. (1973) Suc'ces'sful( application of some

of these schemes for specific problems in elastgdynamics has been denonstrated by

various researchers including Haddow, et al. (1987a, 1987b). ' -

The use of finite differerice methods for elastodynamic problems.is‘attractive due
to the relative ease of implementation. This is primarily dwe to the implicit shock-
capturing nature of these methods. Both the location and intensity of a discontinuity

are obtained without explicit use of jump relations or shock fitting procedures.

When applied to the problems of spiierically ard cylindrically symmetric elasticity,

the use of MacCormack’s finite difference method with bou'ndary conditions obtained



from the Gottlieb-Turkel scheme (1978) does not yield plaugible results. The scheme
is numerically unstable; the solution for the de;l)'en‘dent variables increases without

bound. This stability limitation is illustrated and further discussed in Chapter 4.

A hybrid finite difference-characteristic scheme is proposed. This scheme is based
on MacCormack’s method with boundary conditions obtained using both the method
of characteristics and the Gottlieb-Turkel scheme. The use of the characteristic

)
W

relation is important to avoid numerical instability.



Chapter 2 - ’

Constitutive Relations .
2.1 Fundamental Equations

A fundamental equation of state for an isotropic hyperelastic solid is given by the

internal energy as a function of stretch and entropy,
U=U(\,s) ' (2.1)

where s is the specific entropy and U is a symmetric,ftlncifbll of the principal stretches

/\g,i:1,2,3. ’ o

" .
‘The nominal stress ! P;, corresponding to the principal stretches \; and the
§ . : :

Eempewture T are given by

i
R()‘x ,3) = poa—)‘_.a
. aU ) )

-

where: p, is the density in the undeformed reference configutation. If heat conduction

is neglected (so-that the deformation is considered to be adiabatic) and if the effect

" an isentropic relation between stress and deformation is giv..n by ~

' U (X, 0) ~ ‘
P, = ______'_’___’ . 2.3
po 6Ag ] o . ( )
where the entropy in the reference configuration is zero. The adiabatic approximation
is reasonable s.inc‘éf?%ﬁ'st solid rubbers have alow thermal conductivity (Baufneistcr

=,
et al., 1978). A

i
FEE < :
~ More precisely, the principal components of the Biot stress as discussed by Ogden (1984).
. /—.'

1

o 7



8
¥ .

The jump in entropy at a shock depends on the magnitude of) the shock (Whitham,
1974). As a result, the deformation behind a shock of changing stré@th can not be
“isentropic. However, neglect of the effect of the entropy fump across a shock on the
constitutive relations is jgstiﬁéd for shocks of moderate strength (Bland, 1969) as are

considered in this thesis.

An alternative fundamental equation of state is given by the Helmholtz free energy

'p;zr unit mass A, taken as a function of stretch ..nd temperature
, .

- LS

where A is a symmetric function of the principal stretches ); . Eq_uatib'n (2.4) can be

obtained from the internal énergy ué‘itng a Legendre transformation. It follows that

) POGT) = pots
o N S ." ‘aA v ) | | . ’ B )
S (‘/\,'., T) = —-ﬁ. ) . ; (25)

-

If an isothermal relation between stress and stretch at constant temperature T, is

s
- considered, then

AN, T,) :

R Al' ) To = o‘—,- Pl A&
:(’ ) = po T | | (26)
For a relation of this form, it is customary to express the strain energy function per

unit volume of the natural reference state at temperature T, as -
W) =po AN, To). B 2.7)
v1t follows that ” o g _
. ' oW , :

~ Pi= g Y

' | 3y (2:8)

for isothermal deformation from the reference state.. The prizcipal Cauchy stress

components for isotropic materials are related to the corresponding nominal stress

S

» -
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components by

A
. o, =—F, - (2.9)
; . N

‘where J = A\ Ay A; and summation convention does not apply.
The compressible deformation of spherical shells and cylindrical tubes which are
considered in this thesis, is based on strain energy functions for co?npressible isotropig,,

elastic solids of the form : :

\\ B
W = FO0) + g (J), ey

v

where p and & are the isothermal shear and bulk modulii, reqpcctivoly, for
"_mﬁmtesnnal deformation from the natural xeference state at te mpcraturo T,. The
functlon f(\;) is symmetric in /\, and . \

.

*‘f‘(/\,(-)-—-bov, - | o (2.11) .

for pure d}latatlon that is when )\1 = A, = /\3._'.T'lile“function g (J) satisfies t‘l}('

' condmons

e ““=f"_g"’;(.i-")":?"O}'""‘ R
g"(1) T= _"1, | | - e

whe‘reJ =1 for isochoric deformation. Justiﬁc‘ation of the form (2.10) for rubberlike
materialé is given by Chadwick and Creasy (1984).. Justlhcatlon for the use of“m

isothermal relation between stress and deformatlon 18 presented i in section 2. 3
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2.2 TIsothermal Strain Energy Functions N

Three strain energy functions (sef) for compressible materials are considered in this

: S
thesis. The Gaussian, and Blatz and Ko strain energy functions, can be expressed
in the form (2.10) and are compressible gerieralizations of the incompressible neo-

Hookean‘ form.

"The Blatz sef is derived for the deformation of a polyurethane foam rubber. A

brief discussion of limitations of this sef is presented in section 2.2.4.

N
2.2.1 Strain Energy Functions for Incompressible Materials

The discussion of incompressible materials considered in this thesis is based on

either the nco-Hookean sef

B ‘
W = '5(]1 - 3),

Il = _/\12+/\22‘*t/\32, ‘ . (213)
or the more general Mooney-Rivlin form . \

w;_g{(ll —3)a+ (I = 3)(1 —q)}, (214

where 0 < o S 1 and
L= A%+ A A2 4 A A 2 (2.15)

£

The parameter « can be adjusted in accordance with experimental data.



2.2.2 Gaussian and Modified Gaussian Strain Energy Functions

It is shown by Ogden (1982) that experimental data for hydrostatic compression

of soiid rubberlike materials can be described by

L]

: _ |
, f?): g —a, S (2.16)

where p is the hydrostatic pressure and x is the bulk modulus for infinitesimal -

deformation from the natural state.

It follows from (2.8), (2.9), (‘2.10) and (2.11), for hydrostatic compression,

p__ 4 217
kdJ (2.17)
so that integration of (2.16) gives
‘ 1/J7° 1y
. g(J)=-9-<—9—-+1nJ——§> (2.18)

where the constant of integration is specified by (2.12a). Using this relation for ¢(J),

2

a compressible generalization of the neo-Hookean sef based on (2.10) and (2.13) is

SO 2 2 2 2/3 K 7J_9 | 1 .
W_?{/\l a4 N =3 /}+§{T+ln J-sp )

The second term of (2.19) can be expanded using a Taylor scrics

K(J -1 +0(J-1)° (2.20)

B | =

Use of this relation results in the Gaussian sef for compressible elastic defosrmation

.

' ' 4 . 1 . .
W:-—’%{AI?+A22+A32—3J2/3}+§K(J_—1)2. (2.21)

The sef (2.19) is an extension ol che Gaussian sef (2.21), and it will be referred 1o as

‘the modified Gaussian strain energy function throughout this thesis.
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Equation (2.16) is based on experimental data for hydrostatic compressibn and is
not experimentally verified for hydrostatic tension. For hydrostatic tension, there
are problems associated with the formation of cavities and only relatively small
volume increases have been achieved experimentally (Ogden, '1984). Howe&fgf, if
the deformation is such that |J — 1] << 1, the sef (2.19) reduces to the Gaussﬂi;;ﬁ'
gef (2.21) and is a reasonable expression for the material behaviour. This is suppo;ted

/ e : S
in figure 2.1 which shows the relatiuns for pure dilatation in which nondimensional

1

pressure

._"9p

p = K ) < Lo ((222)
is plotted against dilatation (J — ' The discrete data points are from the

experimental work by Adams-and Gi’iﬁo/ﬁ/(1930) and Bridgman (1945) and are in
excellent agreement with the curve given by (2.16). Extension of the curve for

hydrostatic tension in which (J — 1) << 1 is plausible.

For the deformation of solia rubberlike materials. considered in this thesis, the
dilatatiap is small due to the nearly incompressible nature of the material at high
Poisson ratios. In addition, only positive pressures are applied at the inner cavity of |

the spherical and cylindrical shells under consideration. f

For the special case of spherically symmetric deformation

/\1 = /\r’
/\2 = /\3=)\¢,
- J o= AL ‘ _ (2.23)

The modifiecd Gaussian sef (2.19) is of the form

-9 ' :
_Hly 2,0y, 2] 2/3}' ﬁ{i_ __1.} (9
W 2{A, +202 =30 Bl U - o (9.24)
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and the Gaussian sef (2.21) is of the form

W =
»

N IR

{A, 2 93,7 - 3J2/3} + % K (J = 1) (2.25)

9
For the special case of plane strain, cylindrically symmetric deformation

Al —_ Ar’ ’ D -
Ay = g, '
/\3 = l,
J = A g, (2.26)
and the Gaussian sef (2.21) is o , Z
- W= g{)\,uxoul-h2/3}+%nu~1)2. | (2.27,
] . ‘ e \ |

r

2.2.3 Blatz and Ko Strain Energy Function

The Blatz and Ko sef '(14962) is also a compressible generalization of the neo-

Hookean madel and is usually expr?ssed in the form

B (1 —2v) 2v/2v~1
W= 2{(11 —3)-{-7(] —1)}, (2.28)
® .
where v is Poisson’s ratio for infinitesimal deformation from the natural undeformed

state. This sef can also be written in the general form (2.10) with

fN) = (L -3J%%,

o] —

K«g(‘]) = -Z— T50) {3 (Jz/_3 -1)+ EI—V—QU) (Jz"/z‘i‘l - l)} (2.29)

An important limitation of the Blatz and Ko sef is that, if a realistic value of v is

chosen for solid rubber, this sef predicts unrealistically high values of pressure for
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hydrostatic compression.. This is illustrated in figure 2.2, which is similar to that

presented by Ogden (1984), and shows nondimensional pressure

pr== (2.30)
K .
)
as a function of (I'— J). For the Blatz and Ko sef, the nondimensional pressure term

is , -
1

N - o S T e S X 1)

£ 2\ 14v
which can be obtained asing (2.17) and (2.29b). The discrete data points age

'experfmental data from the research of Adams and Gibson (1930) and Bridgman

(1945). The continuous curves are given by (2.31) and (2.30) for various values of

Poisson’s ratio.

The experimental data imply that the relation between p and (1 — J) is
indepehdent of Poisson’s ratio. This is not in agreement with the relation predicted
bythe Blatz and Ko relation (2.31). At high Poisson ratios, the predicted value of

pressure at a particular ‘latatioff is signiﬁcantly in error.

Numerical results for spherically symmetric deformation using the Blatz and Ko
sef are presented.in this thesis primarily for comparison with the numerical results
given by Haddow and Mioduchowski (1976). These authors use this sef and the

method of characteristics to solve the problem of finite deformgtion of a spherical

shell.

\
2.2.4 Blatz Strain Energy Function

I

Blatz (1969) proposed the following sef for polyurethane foam rubber

| a1l 1 1 } | |
== 2J-57, 2.32

4 2{A12+A22+A32+ J ‘ (2.32)

s
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where J = A A;A3 and a Poisson ratio of v = 0.25 is implied. The shear modulus

¢ and Poisson ratio v are for infinitesimal deformation from the natural undeformed

state.

The Blatz sef is based on experimental data in which sampfes of polyurethdnv
foam rubber were subjected to simple and strip-biaxial tension. Mee;surcment,s were
made under equilibrium C(\)nditAions. The particular foam ‘rubber which \;vas tested
had a 47% void space and ‘the effect of tili‘s void space on the dynamic deformation
of the foam material is not well understood. If the scattering effect of- the voids can\

be neglected, and if the static properties are adequate for the solution of dynamic

- deformation proBlems, then the use of the Blatz sef is justified. Iti/eﬂlot the intention

of this thesis to e.;plore this uncertainty.

EN

Numerical results for deformation of spherical and cylindrical shells using the
Blatz sef are included in this theéis, based on the assumption that the use of the Blatz

relation is jﬁstiﬁed for dynamic defgrmation. This is in accordance with the work of
e . - , )
‘other researchers (Davison, 1966) who have also made this assumption. However, the

/
results should be treated with some caution.
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Z.3 Justification for Isothermal

Stress-Deformation Relation

An estimate of the error involved in using an iso&iermal relation between stress
and stretch, rather than an isentropic relation, is presented in this section. This is
demonstrated by two examples which lustrate the difference between the numerical

solutions obtained for isothermal and isentropic stress-deformation relations.

Although in principle, there is no difficulty in using the isentropic relation instead
of the isothermal relation, the error involved .is ‘hegligiblle for the deformations
considered .in this thesis. The numerical'solutioné presented in chapter 5 are primarily
for isothermal strain energy functions. )

2.3.1 Static Simple Tension of a Solid Cylinder

‘.
 Consider the simple extension of a cylindrical {mst piece of arbltrary simply

connected cross section. The test-piece is subjected to 51mple tension as shown in

figure 2.3 and is deformed statically.

—

Chadwick (1974a) considers a similar problem but introduces several
approximations to obtain cloied form solutions for the temperature 7', dilatation term
J and nominal axial stress P;. The solution presented here is obtained numerlcally
and does not require the use of approximations to simplify the formulatlon Chadwick
also considers a superimposed atmospheric pressure which is easily mcluded but has
a mini;nal effect on the de(forma._tion. The atmospheric pressure is not included here

for clarity.

Following Chadwick, the Helmholtz free energy per unit mass is given by the form

A= Z (,}p) _ o h(‘])pET__T” +e(T=T,)—¢Tln (-17;) , (2.33)
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-

for a solid which exhibits strictly entropic elasticity for isochoric deformqtion-. The
density in the natural reference configuration at temperature T, is p,, ¢ is the speciﬁc

fxgat at constant deformation and_/a is the volume coefficient of thermal expansion.
\ [T ¢ W)

A solid 1is said to exhibit strictly ‘entropic-elasticity for isochoric ‘deformation if
.the stress arises entirely from changes in entropy (no contribution from the change in
!
. internal energy). For such a material, the internal energy U(J,T), can be’ expressed

as the sum ' : , Lo .
U(J,T) = Uy(J) + Un(T). O @2.34)
e oo '
For isochoric deformation,. U;(1) = 0  and the internal energy is a function of T alone.

-~

4

The specific heat at constant defermation is a function of T' alone for all deformations.
Y . .

~ In obtaining (2.33), the specific heat is taken as constant and this is a reasonable

approximation since (T — To)/Tg<< 1. The functiot W is taken to be the modified
Gaussian sef (2.19) and h(J) is an empif{ica.lly derived response function given by
. J -

hJ) = 2(.]5/2.—1)/5,/
- = (-D+0(J -1 o (2.35)

.
{

Equation (2.35b) can be derived from (2.35a) using a Taylor expansion and is a valid

approximdtion provided |J'— 1| << 1.
Y

The model given by (2.33) is a limiting case of a model for modified entropic

clasticity, later propo{sed by _éhadwick and Creasy (1984). The strictly entropic
. . ) { 3

elasticity model is used in this analysis, rather than the modified form, to estimate
the maxxmum difference between an_isothermal stress-deformation relatlon and an

oy

isentropic relatlon Most solid rubbers are approx1ma\tely 80% entroprq,(Chadwmk
and Creasy, 1984)

The prmcxpal Biot stress components P,, and entropy s, are given by (2.5a)
r .

-

.
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o

and (2.5b). Using the Helmholtz free energy given by (2.33), these terms are

(T W) J*?

o= (@) T eI
C W anh(J) (P) -
- _ ). 2.3
s o To'+ . +cln \ T, ) | (2.36)

where (2.35a) gives h(J). Using the nondimensional quantities

'_Fi = '&s : s = 'S—)
7 c,
’ L ak T, - W ‘
IH = ) T = 3 W= RS (237)
pocTy, K : H
the nondimensional nominal stress and entrop re B
= 5. _-{<T> oW 7\1‘—TO)J5/2}
, YT W an T, NP
a A . . =
- — T .
s = 8 {— W+ 7h(J)} +1n (T) (2.38)

—

- Henceforth nondimii\j:sional qualities are used l}aut the overbar notation is omitted.
4 : : ! B

For the special case of simple tension considered in figure 2.3,

7
/\2 = A3: H'X—v
. 1.

-
-

~

) y . : '
Using the modified Gaussidh sef W given by (2.19), isentropic deformation from the

natural reference state is governed by

/

A}

P, = Py=0. o Ty

- .,-w

q/
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T g T N1 (T =T,) I ‘
il _ — (1 _ - - - P
To{()‘l' A‘1’>+9A1(1 J )} T, N Y
T : J2/3 . F . . ’7(T—TO)J5/2 ’ }
2 O SV Sian IR S S R O = 0,
’11,{(Az )+9A2({ J >} T N

-8 {W—7h(J)}+ln <T’> = 0. (240)
wherc I'=x/p. It is npted that the entropy is zero in the natural undeformed state.—~

Fquatlons (2.40) are a coupled’ system bf nonhnear equations whlch can be solved for

the dependent va.rlables (J,T, P) usmg a Newton-Raplison scheme.

.

Consider formulation of the same uniaxial problem using 1sothermal stretch-

deformation relations. Using the modified Gaussian sef, the deformation is described

. {‘,\ by ): e l

- o Ay T v
S Gl -
- . ( TN o / 1
’ J2/3 T .
S o Tt S R T )
/ ( 2 "XZ > + gAQ' J Q’ : (2 4]‘)
“which can also be solved for the dependent variables (J, P) using a Newton Raphson
- 1 \ . A ‘ . . .
-scheme. _ A . ‘ s R

-The solutions shown in figure 2.4, compare the dependent variables P, and J
.using the two formulations of isentropic and isothermal stress-deformation rélastions.
The temperature curve for the isentropic.stress-deformation formulationis included

/s

and shows the thqrmal inver,sion behaviour typical of solid rubber.

The solutions shownare for particular va.lues of B, v, p and T,, chosén in
accordance w1th the properties of a vulcanlzed natural rubber as described by Wood
and Mart,m\(lgﬁéi)\l The pertlnent material propertles of the rubber are

C a = 636x107'm  °K | -
RS ' .
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k = 1.95x10° .  kPa
po= 4.2x10? kPa
¢ = 1662 - Jkg' KT
py. = 906.5 kgm™
T, = 298.15 °K (2.42)

- ~which result in the nondimensional quantities

B = 9.35x 107
v = 88039
v = . 049989 (2.43)

For simple tension up to a stretch of 1.8, the difference in the nominal axial stress
component (P;) for isothermal and isentropic deformation is indistinguishable for
the scales plotted. The dilatation J; diffe:rs for stretches greatér than approximately
A = >1.2>, the difference is most apparent when the térm (J—1) is compared. ﬁowevér,

the effect on the principal stretches X2, 75 small. This is evident since

Ay = hg = JAZI : | (2.44)

Although there is a significant difference in the magnitude of th= terfn (." = 1) for
‘the deformation considered, the maximum difference in the prir~ipal sztet(ﬁh_céé 1s
negligible. For example, for a stretch of A\; = 1.8 the stretch A; = X3 ditlers by less

than 0.005% between the two formulations.

Lo &
- 2.3.2 Dynamic Deformation of .a Cylinder

Ty
" The second example which illustrates the magnitude of the difference between an
isothermal stress-deformation relation and an isentropic relation, is to consider the

“g'
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dynamic deformation of a cylindrical shell. The analysis for a spherical shell is similar
and results in the same conclusions. A complete discussion of the governing equations
~and numerical solution technique for the isothermal stress-deformation formulation
is given in chapters 3 and 4. Only the significant differences for the isentropic stress-

deformation formulation are presented here.

For cylindrically symmetric deformation, the governing equations are given in

nondimensional form

(?-v_@P,_(P,—Po)

or _ OR R =%
6,\»,"_ a_v _0
or OR —‘ ’
4 O v _ o ~ > ar
. 87‘ R Oa . (—:-lv))

where P, and P, are the nominal stress ‘n the radial and tang{éntial directions
respectively, A, and Ay are the stretch in the radial and tangential directions, v
1s velocity, R is the radius in the natural reference state and 7 is time. The

nondimensionélizatipn scheme given by (2.37) has been used with

— Po N t 7 - R o
_ LN R= - 2.4¢
Rt R Y T (246)

where F; is the radius of the cavity wall in the reference state.

An isentropic relation between stress and deformation can be obtained from the

internal energy
aU (/\‘1 ) 30)
ar

where the entropy in the reference configuration is s, = 0. Using the Helmbholtz free

Pi(M,50) = po (247

-

energy (2.33) and a Legendre transformation, the nondimensional nominal stress can

thus be written

(M)

’ , oW

exp ﬂ(W—ihu)). .
{ }
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C \5/2 ‘ ' o
Py = j—(f\—/\-/;i)—{l ~exp (W — ~,h(J))} + %{exp ﬂ(W - 7h(J))},
*Z: /\r /\0,
h(J) =2(J%% ~1)/5, ©(2.48)

where W is the isothermal sef, taken ‘&o be the modified Gaussian sef (2.19) for
the purpose of this exa.mple.r;; These relations, in combination with the governing -

cquations (2.45) specify the isentropic stress-deformation formulation.
g .

"The isothermal stress-deformation formulation is presented in detail in Chapter 3

and is only briefly discussed here. The nominal stresses P, and Py, using the modified

Gaussian sef, are *
— oW _ -1/3 I'rl —10y -9
Bo= aA,'(A’””(A'A‘-’) )+9(/\,_/\’ e )
ow r 1.
D _ — M, —1/3> _( y -9 -1o> .
Py O (/\o Ar(ArAg) +3 y AT A7), (2.49)

and these relations, in combination with the governing equations (2.45) specify the :

isothermal stress-deformation formulation.

A | Bothhthe isentropic and isothermal _fdrmulations can be solved using the numerical
te?:hni_ques described in chapter 4. The solution shown in figure 2.5 is for a particular
choice of material properties which are Stypical of solid rubbers:_‘%js given by. (242)
anu (2.43). The figure shows the time dependence of A, A and vat the inside wall

" of the cylindrical rtubev for the isen_tropic formulation.” The iso_theximal formulation-
yi_él?ds similar results and cannot Be distinguished from ...c isentropic solution at the

scales plotted.
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Chapter 3
- /

Governing Equations

~ t :

3.1 Spherically Symrfnetric Deformation

3.1.1 Linear Elasticity

The governing equations for linearly elastic spherically symmetric deformation are
derived in detail in a number of references (Graff 1975, Chou and Koenig, 1966). The
equations presented here are in a slightly different form which is convenient for the

implemlcntation‘of the numerical scheme used in this thesis.

Consider a spherical coordinate system where 7 is the radial coordinate, ¢ is the
colatitude angle and @ is the azimuthal angle as defined in the usual notation. For the
special case of sphericall: ymmetric deformation in which body forces are heg’lected,

the nontrivial equation-of motion is

- do, 2(o,—0p) *+0v
Jar + r '—'pat’

. (3.1)

where p is the density, o, and oy are stresses is in the radial and tangential directions
respectively and the velocity in the radial direction is given by v. The equality

o4 = 0g is due to the sphericzil symmetry.

Consider the following nondimensional quantities

\ ot {
o A ’ '0-': = i’ F.-:?' — — ‘l_l.’ '{
H To ¥ P
4.
- P —_ ¢ — 0%
v=v,/—, = ), 8= —, (3.2)
H 14 ©
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L3
gig

where  is the shear modulus andr, is the inner radius of the spherical cavity. All.
further references to these variables is with respect to the nondimensional form but

R

the overbar notation is omitted.

The nontrivial infinitesimal strain components are given by

ou,
Crr = )
dr
v U, o .
€6 = | (3.3)

4

where spherical symmetry has been used to eliminate terms. A system of governing

~equations for dynamic, spherically symmetric, linearly elastic deformation is

T
\ Oe’,,_@ 0.
\ ar  Or
. dess ¥ _ : (3.4
or ro - (34)

where (3.4b) and (3.4c¢) result from differentiation of (3.3a) and (3.35) with respect

to time.

" Hooke’s law for isotropic, isothermal deformation is given in suffix notation

-

2v ’
oij = (1 _21/) Ckk 5,']' +2€,'j, (-3’))

\;vhere o;; is nondimensionalized by dividiag by the shear modulus s. Substitution

xn

_of the nontrivial stresses o, and o4 obtained from (3.5), into the governing

equations (3.4) results m‘the matrix form | A

| 3
v 0 '—IBI —1 v ’—2(2"3" "'/52 €og )/T _
0 ' 0 - g
9 _ 0 V2! e N = 03.6
5.0 € + 1 0 0 ) ¢ + i 03.6)
€ 0 0 0 €4 —’0/7‘ <
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where
2(1-v)
= /
i\ b / (1=-2v)’ '
b = (3.7
T (aw) '
The eigenvalues of the square rr‘fitnx are
cCy = 0,
_ 2(1-v)
€z = +\ i-2v)’
_ 2(1-v)
T CS. - - \ (1 ant 21/) ’ . . (38)

which give the nondimensional speed of propagation of longitudinal waves.

An alternate, and equally useful form for application of tée numerical scheme used
in this thesis, is to express the governing equations in terms of‘the nontrivial stress

components instead of the nontrivial strain components. This is accomplished by

expressing Hooke’s law in nondimensional form as ' N
; { }
, €ii = =4 0ii.— 0k Oi; 3.9
' \ e ¥} 2 J (1 + ) kk Cij ) , ( )

and considering time differentiation of the nontrivial strains e,, and ess - The

resulting system of equations can be written in matrix form as -

£0 " 0 -1 o, 1 0 v o,
1 2 0 9 0 —-2(1 9)

—2V ‘: 5’7'_' g4 + ( +l/) 'a—; T4

1 w=1/v 0 v 0 v

0
0
0.
(e —2r :
+{ 0 0 ] l} (3.10)

L O 0 21+v)/er
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Pre-multiplication of the inverse of the matrix which precedes the time differentiated
term yields the system of equations given by -
e 0 0 Ay o o, byv
o217, + 0 0 A —@—.a‘-{- by v =0, (3.11)
ar| * : Bolor]"? . : 7 -
v -Y 0 0 L v 2(0p —or)/r
where
‘ Ais = 2(v—1)[1-2v),
‘ vA'zg = ‘—2}//(1—21/),
, Jho= —tv/{r(1-20)},
b, = —2/{r(1-2v)}, . (3.12)
5 .

The governing equations, given by either (3.6) or (3.11) are a system of hyperbolic

equations with real elgenvalues given by (3.8).

Chou - and Koen;’g (1966) use the method of characteristics to solve a system
similar tor (3 11), expressed in terms of the dependent variables of stress and velocxty

Relatlons along characteristics can be determined using the techmqucs descnb(d in

Whitham (1974) and are as follows.

On dr/dT = + ﬁv(l'—— v)/(1 —2v), the characteristic relation is

-

.
s

2(1-v) , _ " 7 dr
—(l'—-_—?l/—)—dv {—-2(0,—0’¢)+2U\/(1_V)(1_2U) U} - (313)

On dr/dr = — \/2 (1- 1/5/(1 - 2v), the characteristic relation is

do, —

R E T | N U
da'r + _(1_:_2';)— dv = {_2 (0'7"(—' U¢) —2v \/;1 _ l/)(l _ 21/) } e (514)
e ‘ . N :



On dr/dr =0, '

(I+v)v
= )da,+2 T (3.15)

The problem of solvmg the system of hyperbolic PDE’s glven by j'S 11) has been

(10’4, =

reduced to solving a system of ODE’s given by (3.13) - (3.15), along the characteristic

directions which are constant for linear elasticity.

The jump relations across the characteristics can.be derived from the characteristic
relations following the procedure given by Chou and Koenig (1966). These relations

are summari/zed as

[0,] = Krt,
- v -
[0'¢] -v (1_1/) T, .
! ' (1 —2v)
- [ v ] = F m—_:;—) K T'l, ‘ (316)

where the upper sign is for-the family of characteristics of positive slope and the lowér
sign is for the fam1ly of characteristics of negative slope The square bracl\ets denote a
jump defined by the difference between the quantity just behind and _]ust ahead of the
discontinuity and the constant K can be determlned from the boundary conditions.

These relations indicate that for spherxcally symmetrlc deformation, discontinuities
! L
vary as r!.

3.1.2 Finite Dynamic Deformation

The governing equations for finite dynamic expansion of a spherical cavity in a_ﬁ

un}oounded medium are derived in detail by several authors. See for example, Fung
N : /
A\
S
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(1965) or Graff (1975); The Lagrangian equations of motion are written in symbolic

notation as
<

 DiwP+p,b= (3.17)

Pog[»/,
Y

where P is the first Piola-Kirchhoff stress tensor, ! p, is fhe density in the reference

configuration, b-is the body force pervu"nit mass, Vv is velocity and g is time. The

notation Dwv denotes the diyérgence with respect to the reference configuration. For

spherical symmetry, P is given by
P = diag {P;, Py, Ps). (3.18)

Three scalar equations of motion are implied by (3.17). For the special” case
of spherically symmetric deformatioy, two of the three equations of motion are
- \ -

trivially satisfied. If body forces are neglected, the non-trivial equation ‘of motion, in

-

Lagrangian form, is

\
Q___?__ P\ 26K -Py) _ s
. - 812() =5 =0 (3.19)

_where the nominal stress is defined in terms of the area of the undefor
configuration. The velocity in the radial direction is given by v and spheris

»

symmetry has been ushtzd in the ¢ and @ directions.

For finite deformation, it is convenient to consider the twoistretch terms which

give the’fra_dial and tangential stretch in the r and ¢ directions. These are
-~ ) i
or
/\r = ap?
OR v
. T‘ .
N | As = & | ('%20)

! The nominal stress tensor 1s the transpose of the first Plola-hlrchhoff stress Lonsor but for

sphencally symmetric deformation, the distinction dxsappears
4 . -

-
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where lower case letters refer to the deformed configuration and uppercase letters refer

Ao the reference configuration. Due to the spherical symmetry of the deformation,

the stret%l in the azimuthal direction (\g) is equal to the stretch in the colatitude
Wg). ,

direction

Consider the following nondimensional quantities

it

P, — P — . W
/ Pr:—_$ P¢=_¢a W:——’
[ H H
e) R - t H“ — Po ’ :
R=—, 7T=-—,—, v=v,/—, 3.21
R; R\ po Iz (3:21)

>where R; is the inner radius of the spherical cavity, p, is the density of the
undeformed configuration and g is the shear modulus for infinitesimal deformation
from the ground state. All further references are with respect to these nondimensio(rial -

quantities although the overbar notation is omitted.

. Finite spherically symmetric elastic deformation is given in nondimensional form

v {-P -2(P, — P,)/R
9 | i
A — < - 0 =0, .
+. 55 ) Y + | _ ) 0 (3 22)
/\4’ 0 ) ‘ —'U/R
where time derivatives of the stretcli terms given by (3.20) have been used for
compatibility: - : | .\
. ' ‘ - \
If the isentropic approximation is considered, substitution of the elastic
. constitutive relatlgns
, Po= RO, S
By = P¢()\,,)\i), » ‘ (3,23)
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N\ w

in equation (3.22) results in a system of totally hyperboli(."pa‘rtia.l differential equations
o e

in conservation form provided that.
-‘ -
~ op, v , -
> 0. - ’ 3.24
s BEED

-

\ B .
The hyperbolic nature of the governing equations and the resulting restriction on the

" convexity of P, is further discussed in section 4.1.

The modified Gaussian sef can be written in nondimensional form for spherically

v

symmetric deformation o -

4 - ' N -'( 2y-9 . . )

W, 2e) " = %{A s =300+ 1 { B2 ) l)}}
; a (3.25)

%
) \T'f-:tl;z this sef, the nominal stresses for spherically symmetric deformation are
) ' _ ow _ 2 "2 =1/3] Pyl -104y ,—18
b= O\, "{’\r—)‘f (/\.r)‘cb ) }ﬂ-g{x——)\r Aé }7
= 555, = {* = AAs(AA 2)";/3} ‘e {L . “9} ] (3.26)
¢ 2 8/\d, ¢ r di r ¢ 9 Adz r ¢ ) Jd.4

where T = x/p.

The Blatz and Ko sef is discussed in section 2.2.3 and is given in nondimensional

form, for spherically symmetric deformation, '

W %{(;\ré Loat= 3) + 1 _2’/{()\,1\,,;2)2"/(2”_]) _ 1}},  (3.27)

14

where v is Poissen’s ratio for infinitesimal deformation from the ground state. For

the Blatz anid Ke-sef, the nondimensional nominal stresses for spherically symmetric

1

P, = glj\‘j — {/\r _ A¢2 (Af‘.Aqb2) IV/(2u;l)},

deformation are
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o p, o= LW _ {2 = 22 (AA67)

= .2
5= 2on, (3.28)

s

1/‘(211—1)}.

" The Blatz sef is given in nondi,’nensional form for spherically symmetric

]

1)

deformation as .

1(1 2 o
W, Ay) = 5{;—2- F a2 - 5}. (3.29)

This sef describes deformation in a sponge rubber for which the Poisson ratio is
. M
v = 0.25 for infinitesimal deformation from the ground state. The nondimensional -

nominal stresses are

_ _Lle oy s 2
P = a/\r — 2{ 2), +2’\¢ }7 .
10W 1) .. _s . - "
Pd, §—8A¢ = 5{—2)\4, -+ 2/\r)\¢}. (330)

S . : ¢
3.1.3 Equilibrium Finite Deforqnation *
The equation whi‘ch governs spherically syrﬁmetric equilibrium deformatioﬁ can
* be written as a single ordinary differential equation‘i‘f thl\e isentropic approximation
is considered and*équations (3.23) apply. For the problem in which a pressure is
suddenly épplied and held constant at the wall of a spherical cavity in an unbounded
medium, the solution for the dynamic deformation’ problem approaches the solution
1, of the corres-poncijng equilibrium deformation problem as' 7 — oco. This can be used

to verify the numerical solution for the dynamic problem at large time.

The goverr{ing- ODE for finite equilibrium deformation can be obtained by

n : v
replacing the equation of motion (3.19) with- the equilibrium equation

oP, 2(P.-P,
2B o Pe)

R 31
I =0, (3.31)
The use of an isothermal sef W(A,, /\4,); results in the nominal stress components
- OW (A, Ag) -
Pr a/\r ’
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1OW (A, Ag) 2 0
Fo 2 Ay (3.32)
Sub,sj;jjﬁtﬂm of (3.32) into (3.31) yields
a (ow 2 (OW 10W ’
Y (A4S DT — 227 = 3.3
8R(6/\r)+R<a)\, -zax) 0 (3.33)
where = . | .
i(@W) _ (OZLV&+ o'W &) . ,“)'
ar\ox, ) = \ox?dr T anon, 4R/ (3.

For the limiting case of equilibrium deformation, both the radial and tangential stretch

are functions of R only. The dependence of Ay on R is given by

o = = J(R),
r = Rf(R). . (3.35)

Differentiating (3.35) with respect to. R defines A,(R) in terms of As(R)

dr i \

=—-—= "R R), - 3.36

A TR Rf(R) 1V f(R), , (3.36)

where f/(R) denotes differentiation with respect i R. Sul)stitut.ior‘l of relations
(3.35a) and (3.36) into (3.33) results in the second order ODE X

PW N ., W W 2 /OW 10w>
! ; "+ [ —— - =—— ] = 0. 3.37
(ax,? R> S (2 ozt aA,'aA,,,> f+ R(aA, T30, (337)

. For the modified Gaussian sef, the pertinent terms are

1 212/3 L f(Are")7° 2y
W = 5{)\,2+2)\¢2—3(/\,x\¢ )?/ }+§ 5 + In(A A4 )—5 :



38

ow
- O,

i _—
— _ 1/3 i -10 —-18

10w
200,

F

oW
oA

7 1 -
= 1+ %A#(Ar&sz)“"s + -g— { 7t 10/\r”“/\¢“‘18},

W

s SRS WO P RV IED N O 5 Wt Wintil 9 3.38
S = 5O {r.m10a,70), D

Similar relations can be obtained for. other strain energy functions such as the Blatz

and Blatz an'! Ko relations. .

)The boundary'fonditions for ét@tic deformation are similar to the bqundary
‘conditions for the dynamlc case. For deformation of a cavity‘ in an unbounded
‘ medlum the material is in the mlt]al state at R, . If the Cauchy radial stress is
specified at the cavity wall (R ='1), then a relation between ), and A, is specified

- %

o7 = 0o( Ny Ag)- o (3.39)

&

_since

L2

o
v

]

If Ay is known at R =1, this relation can be used to define f'(R = 1) by solving for
A, and. usmg Ar (Rf’ + f) In general-(3.39) is a nonlinear equatiori.

Implementatlon of the Runge Kutta techn1que°for the probfem of the expansion

of a spheucal cavxty in ;yl &nbounded medium involves an iterative procedure.
; 3 . -

’

e Assume a value for f(R=1)

/ ¢ 0

¢ Determine A using the boundary condition at R = 1 and thus determine

f(R=1),
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e Use the Runge Kutta method to solve the ODE for the solution at a radius

. R = Ry., numerically representative’ of Ry.

¢ Adjust the assumed value of f(R = 1) until the boundary condition A, = Ay = 1
is satisfied at R = R.0x. |

The choice of R,,,, as the value of B which is numerically representative of R, is a
limitation of this implementation of the ODE solution scheme. This limitation has an
observed minimal effect on the solution since f'(R) approaches zero as R approaches
infinity. - " '
3.1.4 Initial and Boundary Conditioﬁs .

e . o
For, a material which is undeformed and at rest in the reference state, the initial

stretches and velocity are

A (R0) = 1,
)‘df(R’O) = 1,
v(R,0) = 0. ! | (3.40) -

Relatively simple modiﬁcati_ons are required to consider the deformation of a
prestressed medium or to consider a cavity which is initially in spherically. syminetric
motion. 2 ‘

Bbundary conditions can be specified at a physical boundary _.;of the Spl‘criuxlly
symmetric. cavith - either the inner radius where R = R;, or an outer radiu..é where
R=R, if the medium is not of infinite extent. Two physically realistic boundary
conditions considered in this thesis are the specification: of the velocity v, and the

-

.Speciﬁcation of the Cauchy radial stress o.

2 Cylindrically symmetric deformation of a prestressed sheet is considered in section 3.3.

o
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If the bressure at the inner radius of a sphefiéal cavity is specified, then the
corresponding Cauchy radial stress, o,, is given at the inner cavity wall (R = 1). The
nondimensional Cauchy stress, defined in terms of the deformed coordinate system,

can b(:z_ related. to the nondimensional nominal radial stress P, using

3

o, = —5 P : (3.41)

For spherically symmetric deformation described by the modified Gaussian

L3

sef (3.25), the expression for the nondimensional nominal radial stress P, is given
by (3.26a). Using thisirelation and (3.41), the expre.;ion for the radial Cauchy stress

., ST

S . , .1 .
o= - A¢"~’(A,A¢2)-l/3} + g{A— - /\,‘.10/\4,‘18}. (3.42)

If a Heaviside step ‘hinction of pressure is applied at the inner radius of a spherical

cavity, the Cauchy stress at R =1 1s
o. (1, 7)=—¢q H(T), (3.43)

where ¢ is a constant and H(r) is the Heaviside function. Substitution of 63.43)

into (3‘.42), to eliminate o, yields an expression fér thevboundary condition at R =1,
1 2 -1y, L[ 1 -10y -18 N
— G H(T) = —{ A = A2 AT 4 = {— U } s (3.44)
. . Ad, 9 )\r )

- Specification of the radial stress is analogous to_specification of the relation
between A, and Ay4. For the deformation of a thick-#valled spherical shell, a relation

similar to that given by (3.43) can be used to i)_re'_scribé,» ,th_e:'appl/ied radial stress at
}'~ .-""v»y ‘ '\\"?- @

‘the outer surface. A

-, @ ‘ )T)

If the spherical cavity is initially qﬁiescent, then at a time‘jusft.be‘fore the Heaviside

step function of pressure is applied, (7 = 07), Ar = Ap = 1. At time 7 :‘0+, the
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a .
" boundary condition (3.43) can only be satisfied if there is a jump in ), . There can

not bea jump in /\d,/’since the displacement is continuous and Ay = r/R.

A similar analysis:gan be considered ﬁsixlg the Blatz, and Blatz and Ko strain
energy functions given by (3.29) and (3.27) respectively.

3.1.5 Jump Conditions i

If a Heaviside step function of internal pressure is applied at the inner wall of a
spherical cavity or if a wave breaks, the solution describing the clastic deformation -
will have discontinuities of the: dependent variables v and A, (or v, Py, 1’4; ). This weak
solution will satisfy the system of equations (3.22), where the solution is continuously’ ‘

differentiable - i.e., everywhere except at the discontinuity itself.

At the discontinuity, the solutidn for spherically symmetric elastic deformation

must satisfy the jump relations

VS ['U] = _[PT]7
Vs [A] = =[v],
D =0 | O (345)

where Vs is the shock velocity and the brackets indicate a up defined by the
difference between the qﬁant_ity just behinci and just ahead of the l(liscontir;mity. The
stresses P, and P, and the radial stretch A., are discontinuous across a S}.l‘('.)(".k front.
The tangential v,st.redtch Ag 1s continuous since the radial displacement Is continuous,

It follows from'(3.45a) and (3.45b) that

7] et

.=+ {3.46)

&
i
¥

where the positive sign refers to a shock travelling radially outward and the negative

sigﬁ refers to a shock travelling radially inward.

s
L h
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3.2 Cylindrically Symmetric Deformation

The governing equations for cylindrically symmetric deformation are similar to
those of the spherically symmetric case presented in section 3.1. Because of this
similarity, only a brief presentation of the governing equations for cylindrically
symmetric deformation is given. Important differences between the cylindrically

v

symrhetric and spherically symmetric cases are noted.

3.2.1 Linear Elasticity

Consider a cylindrical polar coordinate syrétem where r is the radial coordinate, 0
is the polar angle and =z is the axial coordinate defined in the usual manner. For the
special case of cylindrically symmetric deformation in wltich body forces are neglected,

™

- the nontrivial equation of motion is

do, ' (o, —0p) in
or + T

- (347)

where the nondimen‘sional scheme given by (3.21) has been used.
1If the length of the cylinder is large in comparison to the diameter, end effects

[ 2N

can be neglected. In particular for plane strair_;;’g‘thg'npﬁtrivial infinitesimal str&in

components are

& err = .5"5,

- ke = yfaﬁ B ' . (3.48)

g
>

Thé governin'g equ“ations for cylindrically symmetric linevarlelaéticity are



- matrix form

\
I\ s
Ov _Go, (9, —09) =0
ar  Or T B )
aerr _ _8_2 -0 3
_ or ar '
8699 v _ . . / ,
ar 0, ' | (3.49)

where (3.490) and (3.49c) result from differentiation of (3.48([}%11(1 (3.48b) with
respect to time. Using Hooke’s law in the form given by (3.5) the governing equations

’

can be written in matrix form as:

v 0 —m =72 v 2(600 — Eyr )/7‘
2 e + '—1 -0 0 ﬁ e + 0 =0 3.50
;- N ‘ orl =0, (3:50)
€gg ¢ 0 .0 0 €09 ' —v/r
where
. J
m = 2(1-v)/(1-2v), »
= 2v/(1-2v). - (3.51)

The eigenvalues of the square coefficient matrix are the same as for the spherical -
N -

- deformation case and are g\ivenv by (3.8).

An alternate form of the equations for cylindrically symmefric linear elasticity
is obtained .by expressing the governing equations in term of the nontrivial stress
components instead of the nontrivial strain components. Using Hooke’s law in the

form (3.9), and after some manipulation, the system of equations can be written in

o, 0 0 A o, v byv .

9. 0 0 Apte v $=0, 5 (352

571 + | B (5 og ¢+ 2V =0 g, )
v -1 0 0 v (09 —0,)/r '

B
&



where
A = =-2(1-3v)/(1=5v)
Agr = —4v/(1-5v)
= bKl = —4u/(l-5v)rs e
s obp = —=2(1-30)/(1-5v)r ) - (3.53)

The governing equations, given by either (3.50) or (3.52) are a system of hyperbolic
equations with real eigenvalues given by (3:8). On the family of characteristics for

which dr/dr = 0, the characteristic relation is

\ degg v v
t - =0 , (3.54)

This relation and the relations along the other two characteristics can be determined

using the techniques described in Whitham (1974).
I

The jump relations across the characteri_stics’can be derived from the characteristic
relations following the procedure given by Chou and Koenig (1966). These relations

are summarized as

[6,] = KrY?

(0] = ( - )ﬁffr’_m,;

1—v

1-2v) , _; '
= L K2 3.55
where the upper sigg is for the family of characteristics of positive slope and the lower
~ sign is for the family of characteristics of negative slope. The constant I can be
determined from the '?ﬁundary conditions. For cylindrically symmetric 'deforrﬁation,
discontinuities vary as r=1/2, |

L



3.2.2 Finite Dynamic Deformation

If the length of a cylinder is large in comparison to the diameter, end effoct§ can
be p{eglectec/ivand the non-trivial equation of motion is given in Lagrangian form as

'
@_i(&)_cpr'—l)e)

5r "9 \ ps R -0 (3.56)

P
—t

where the nondimensional scheme (3.21) and the symmetry of the 0 direction has
been used. The nominal stress in the r direction is P, and is defined in terms of the
area of the undeformed configuration and the velocity in the radial direction is given
by v.

For cylindrically symmetric deformation, it is convenient to express the radial,

1]

‘tangential, and axial stretch as

/\,-=—'°— /\g=—

c')R’ ) R’ (357)

where (r,0,2) are the coordinates in the deformed state and ([,0,Z) arc the
coordinates in the undeformed reference state:. In this discussion, plane strain is
assumed so that A, = 1. Finite dynamic cylindrically symmetric elastic deformation

" is governed by

o
N

v —Pr —(Pr"PO)/R
) ) :
DIt by 0 =0, (3.58)
/\g 0 —U/R

~

where time derivatives bf the stretch terms given by (3.57a) and (3.57b)have been
used for compatibility. .
.,

If an iséntropic approximation is considered, substitution of the elastic constitutive

relations given by
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Pr : Pr(AraAU)y

J

Py = Py(r, Ne), ' ' (3.59)
in equation (3.58) results in a system of strictly hyp'erbolic partial differential
equations in conservation form if a realistic sef is considered. |

For cylindrically symmetric deformation, the modified Gaussian sef (2.19), can be

written in nondimensional form.

g )
WA = %{A,Z A+ 1 =300 )3 4 g {Q—Ag-’i)— +ln (Ade) — %}}
(3.60)
The n'omiflal stress in the r and @ directions are
S 5 ‘ : » : /
. _ow : —1/3} Tl —10y -9
P = a/\r = {)‘r /\0(/\7'/\9) e 9 {/\r Ar A }3 X
? .
ow 3 I'r1l
_ Py= == ={d = A(AA -1\/3} = {— - AN “"}
. R LR PR EE S Ea . 66y

where I' = x/p.

The Blatz and Ko sef is given in nondimensional form for cylindrically symmetric

deforma,tiorf‘as '
& 2u/(2v— ,
y W= 5{(/\,2 202 = 2) + == (A he) 1 1}}, (3.62)
/ o . P CoTh

! o ! ¢
'

where v is Poisson’s ratio for infinitesimal deformation from the ground state. For~

the Blatz and Ko sef, the nondimensional nominal stresses for cylindrically symmetric

x

deformation are o
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_ oW 1/(u=1)
v Pr = 6_/\r = {/\r + (/\r)\o) }’ '
_ow 1/@v-1)Y - g Q
Py = oW _'{)\9 + (M) }‘ (3.63)

r'd
1

For the Blatz sef, the nondin}r;ensional form for eylindrically symmetric deformation

>

1s

| 111 1 :
W(/\r,)\o) = ‘_Z-{A 3 + X;f + 2/\,)\9 - 4}, (3()4)

and the nondimensional ncminal stresses for cylindrically symmetric deformation are

oW 1
= O, = }
F UA, { 723

p=W . {,\, ! } | (3.65)

¢

-

3.2.3 Equilibrium Finite Deformation {‘

v

As is the case for spherically symmetric éleformation, the equation which govcrnsﬂ
cylindrically symmetric equilibrium deformatio;l can be written as a single ordinar‘y
differential eguatic;;x if the isentropic approximation is considered aﬁd equations (3.59)
apply. For the problem in which a pressure is suddenly appliéd__ and held constant
at the wall of a cylindrical cavity ‘in an unbounded médiurﬂ, the solution for
. the dynamic deformation problem approaches the solution of the corresponding

equilibrium deformation problem as 7 — oo.

The 'equilibr{ium equation for cylindrically symmetric deformation is

aPr_i__(f)r_IDO)__
OR R -

0, . (3.66)
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and can be obtained by or_nittin% the inertia term of the equation of motion (3.56).

The use of an isothermal stress-deformation relation W (A,, Ag) results in the nominal

stress components i L
3
AW (A, Ag)
P o2,
AW (A, Ag)
. P = —— 3.67
Lot ¢ 6/\9, ( )

Substitution of (3.67) intd (3.66) yields

8 (OWN 1 OW  eWy .
a—é<0_AT)+E(0A,TaAQ)"O’ - B

where

) (0W> (62WJA P W d/\g>

EJAE)) onIdR T o 9%.0% dR (3.69)

- For cylmdllcally symmetric equlhbnum defouna‘mon both the radial and

tangential stretch are functions of R only and the dependence of Ay on R is glven

by

A
)
<

7 = Rf(R). . . (3.70)

Differentiating (3.700) with respect to R defines A\ (R) in terms of M(R) and the ‘
use of this relation with (3.70a) résults in the second order ODE

. 7 - . ‘
U o (o8 PW N ., 1(0W oWy
(8,\ )f +( ot T aA,aAg) f+ 12(8/\, B aAg> =0 (37

For the modified Gau351an sef, the pertment ‘terms are

W = 1{/\ + Xp? +1——‘2(A/\)2/3} 9{

4

A A 1
( 9") +In(M\Ag) — 5},
M

=¥ B : \\
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g‘;f = A — da(AAg)"3 - g{; \,"“’.f\o‘“}:
‘ gT“: = )\B—Af(/\r‘)i_a)'d-/a-‘}-'g{)‘ig—/\ e ‘;°},. |
\ gz‘; = 14 %Aﬁ(xrm)“‘/“ + —g {-;2 + 10A:“Ao‘9},
aii?;o _ ;§(A,Aa)—1/3 +T {/\',-wxe-‘f}i N | A(fi-?‘z)

Similar relations can be obtained for other strain energy functions such as the Blatz

and Blatz and ,K(V)M:I“elativons.

For expansion of a cavity in an unboimded medium, the material remains in the
initial state as R — oo. If the. Cauchy radial stress is specificd at the cavity wall

(R =1), ‘then a relation between /\ and /\g is given. This rclatlon can be solve(l

for A, in terms of Ay and can thus be used to déﬁne f'(1) for a given f(1) usmg
A=(Rf'+f). _ “4 P ' .

[iplementation of the Runge I\utta technlque for solutlon of tke governmg ODE
for the expansion of a cylindrical cav1ty in an ‘unbounded medium, involves tlu -
assumption of a value for f(1) and 1terat10n of this value until the boundary condmon
that f(Rmaz) = 1 is satisfied. The choice of a ﬁmte value of Rpgz, as the value of It ,
which is numencally representative of Ry, is a » limitation of this’ 1mplcmentatmn of

the solution scheme This has an observed mmlmal effect on the solution since f’(R)

approaches zero as. R approaches infinity.

s

~
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3.2.4 Initial and Boundary Conditions

For a material which is undeformed and at rest in the reference state, the initial

stretch and initial velocity are

M(R,0) = 1,
/\g(R,O) = 1,
v(R,0) = 0. . (3.73)

‘For the plane strain, cylindrically symmetric deformations considered in this thesis,
only the ‘ase of a cylinder which is initially undeformed and at rest is considered.
Relatively minor modifications are required to consider other initial conditions such
as a prestressed state or initial motion. Plane stress deforPation of a shée’vc which is

O

uutxally loaded by a uniform radial stress, is considered in section 3.3.

Two physwally realistic boundary conditions considered for the plane strain
deformation of a cylmder are the specification of the velo¢ity v, and the specification

of the Cauchy radial stress o,..

For cylindrically symmetric deformation of a material .des?ribed by the modified
Gaussian sef function (3.60), the expression for the nondimensional nominal radial
stress P, is given by (3.61a). The Cauchy stress, defined in terms of the deformed
coordinate system, can be related to the nondimensional nominal radial stress P,
using .

Oy = X; Pr. (374)

If the pressure at. the inner radius of a cylindrical cavity is specified, then the
coxrespondmg Cauchy radial stress is given at R = 1 since the boundary condition
,.vspecﬂ'ying o.(1,7) defines a relation between A, and Ag. A similar relation can
be used to prescribe the applied radial stress at the outer surface of a thick-walled

cylindrical tube.
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}

_can only be satlsﬁed if there is a jump in A, ThCIC can not be a j{n‘ig‘g 3
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If the medium is initially quiescent, at a time just before a Heaviside step furrction
of pressure is applied, (7 = 07), the stretch components are A, i Ao = = 1. Jixst" after
a Heaviside step function is applied, (r= 0+) the boundaly condltipxo on . gf’%r, Ag)

i 4 1 ol
";Vg, since -

Y
the displacement is continuous and Ay = r/R. :

3.2.5 Jump Conditions g

If a Heaviside step function of internal pressure is applied at the inner wall of a
cylindrical cavity, or if a wave breaks during the propagation of the disturbance, the.

solution describing the elastic deformation will have discontinuities of the dependent

variables v and A,. This weak solution will satisfy the system of equations (3.58),

where the solution is céntinuously differentiable.

At the discontinuity, the solution for cylindrically ymmetric elastic deformation

must satisfy the jump relations #
Vs [v] = —[R],
. VS [ /\T] = - { v ] ’
v | [N =0, (3.75)

where Vs is the shock velocity. The radial stretch A, , is discontinuous across a
shock but the tangential stretch- Ag, is continuous since the radial displacement is
, A N .
continuous. It follows from (3.75a) anl (3.75b) that ~
[Fr]
Eul

V=12 (3.76)

“where the positive sign refers to a shock travelling radially outward and the negati{fe

sign refers to a shock travelling radially inward.
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3.3 'Pl‘ane Stress of U.n-ifqrmly Prestressed Sheets

Consider a thin uniform sheet of rubberlike material ~'\.'vhich is prestressed by a
{inite, isotropic -biaxial stretch A circular hole is suddenly punched in the sheet,
l(sultmg in plane stress unloadmg waves. The radius of the hole is assumed to }be
large compared with the thickness of the sheet and the state of stress after the hole

is punched is a state of ‘geheralizcd plane stress.

This problem has been considered bylMiklowitz (1960) for linear plane stress and |
by Mioduchowski et al. (1978) for nonlinear plane stress. These authors use the
method of characteristics to solve for the nonlinear deformation in an unbounded

mediurm.

The presentation given here is also for nonlinear deformation but uses the hybri

li numerical scheme to simplify the problem.solution. In addition, thé numerical fesults
are exténded‘ t(; consider the deformation of a sheet of finite dimensions. As in the
work by Mloduchowskl et al. (1978), numerical solutions are for the incompressible

. Mooney Rlvlm sef, chosen to facilitate comparison with the method of characterlstlcs

\I/m}r%a] odlﬁcatxons are required to extend the ana.ly31s for a compressxble

vf
rial as is briefly 'discussed in the next section.

aolutlo

3.3.1 ynamic Deformation

For the deformation of a prestressed sheet, consider the radial, tangential and
axial'stretch terms as given by (3.57). The coordinates given by (R ©, Z) are for the
reference state, which is taken to be the unstlessed state, and the coordinates given
by (r,0,z) are for the stresaed state which exists bef01e and after the circular hole is

% . }(

N

punched in the bheet._ Q



"H

"\

i

If the thickness of the sheet is small compared to the radius of the punched hole,

then a plane stress /@pproxirhation can be used. For plane stress

U;,(:th,T) = ,0,‘

9% ) = o | | (3.77)

Oz

where o, is the Cauchy stress perpendicular to the surface of the sheet and
—h <z < h. Equations (3.77) suggest that o, and hence the nominal stress P, are

approximately zero throughout the thickness of the sheet.

The governing equations for cylindrically symmetric deformation are given in

section 3.2.2 and are repeated here,

13

Qv 0P, (P =Py«

dr  OR R . o
% — 22 o . '
ar  OR e
0)\9 v ‘ ] ) : o o
'8—,7_ — R 0. » - . (3.78)

'I'he first of these is the nontrivial equation of motion and the remaining equations are

compatibility relations. The nondimensional scheme given by (3.21) has been used.

If W is a sef for an incom‘pr&ssible material, then the relation

Ap= ——. | (3.79) -

can be used to obtain

W (A, Ae) = W(A,, Ao, 1/A M)y . (3.80)

and the nominal radial and tangential stresses are given by

AW (Ar; do)

PT aAr 1
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OW (Ar, Ao)

P
s O

(3.81)

respectively. For a compressible material with sef W(),,\g, A;), the flominal radial

. and tangential stretches are respectively given by

P OW (A Mgy As) | : U
r ° 6)\,- . ‘7. ) M.’gr‘-
:‘_‘L’:}! : . o E
W (A, g, A7)
P ", 3.8

a

j?i.@;“the plane stress approximation that P, = O, can be uséd to obtain A, = A:(X;, Ag)

using . RN
. OW(A,,/\(;,/\ )
S ETON

=0. | T (3.83)

If a realistic sef is considd‘ered 'the use of (3 81) or(3.82) with (3.78) results in a system
of strictly hypubohc equaﬁens with: dependent variables v, )\r, and /\9

! ' /LA ‘ ) i . . ) , 'q,’ "4 o
'3.3.2 Imtlal and Boundary Condltlons for Prestrescgd ‘Sheets

! N . 2
Y . b

Considr a prestressed sheet which is 1 itially-»at rest and loaded by a uniform
radh}\l Htress (P,)o ‘corresponding to a unifOrm biaxial stretch A;. A circular hole,
which is suddefﬁy punched in the sheet, ;s of current radlus a(7) in the deformed

}g@%‘fi '_,,(:oordlwate system and radius. A in the réference state so that the initial stretch is
[ 5 . . e . .
)

- o . . . . 7.

S o (3.84)
2o A ‘

COHSldCI‘ Lhe Jansxtlon betweean t:he prestressed state, before the circular punch




(1]
4]

It is reasonable to assume that there is a linear transition from (), to the radially
unstressed state at R = R; during the time 7., so that the boundary condition is

$ f

P.(Ri,7) = (_P,)D'{l - %H(r)} Hr. -7y, (3.86)

' N

where H(7) is the Heaviside step function. 3 A limiting case of (3.86) is =
P.(Ri,7)=(P)o {1 - H(7)}. (3.87)

which corresponds to instantaneous punching. The unloading wave moves radially
outward and reflects from the outer boundary if the sheet is of finite extent. Material

ahead of the shogk front is in the initial prestressed state unless a reflection occurs.

T

For deformation of a finite prestressed sheet for which the outer boundary at

R = R, is rigidly fixed, the appropriate boundary condition is

v(R,,7) =0. _ (3.88)

“:3.3.3 Constitutive Relation : Mooney Rivlin sef

Fot.the deformation of prestressed sheets considered here, the isothermal stretch-
aclormation relation for an incompressible material is given by the Mooney-Rivlin

sef'(2.1‘{1) which is expressed in terms of the strain invariants I, and [/, as given in

section 2.2.1. For cylindriéally symmetric generalized plane stress g
I, = \%+ )‘02 + __1__
1 v r | . /\TQ /\92 ’
L = M+ L L o T (‘3.89)
/- 2 T A A '

%

3 A suitable value for 7, is 7. = h/(2Vp) where h is the thickness

. punch velocity (Miklowgz, 19(;'0). :

the sheet and Vp is the

~
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where the incompressibility condition has been used to define A,. This results in
. ! .

P, =‘gy?z“M—Afﬂ{ﬁa+@)ﬂ~AfﬂU—aﬁ,
P, =‘%%={ur_xﬂmdm+4xmwfhﬁx1—@} (3.90)

Using (3.90a), the initial radial stress (Pr), which correspondsA to an initial stretch
Aos is 7

' ' 1 : ' _
(3%=(M—Xgu—a+aﬁy | (3.9
The relation be,twéen A, and Xg at R = R; is given by

{0 =A7X et Ot = A1 -0 = P(Ra7). (392)



3.4 Concentric Cylinders

) R_‘y i

Plane ‘strain deformation of concentric cylinders is considéred in this scctio)lr.’\).'i‘he
cylinders are assumed to be a perfect fit in the unstressed, undeformed reference
conﬁguration‘ and are composed of different hyperelastic matérials. The analysis
presented here is for the deformation of two uniform cylinders with different shear
modulii, Poisson ratios and densitites in the undeformed reference configuration. The

inner cylinder occupies the region R; < R < R. and the outer cylinder occupies the

region R, < R < R, where R. is the radius at which the two cylinders are in contact.

With some modification and additional complexity of the numerical solution

scheme, the analysis could be extended to consider several concentric cylinders.

3.81 Finite Dyriamic Deformation

A nondimensionalization scheme based on the material properties of the inner
cylinder of a two concentric cylinder pair is adopted. Using the subscript 1 to denote
the inner cylinder and 2 to denote the outer cylinder, the nondimensional quantities

are
P, —
B W = ,Kv

' , , 231 o -

' - R _ H1 — Pot ‘

R=—, T=«<—, —, V=v,[—. (3.93
. I; Ri \ par ’ Vo )

The governing equations for finite cylindrically symmetric deformation are

P =

I

-

E |

1

>~
—

vl

presented in section 3.2. For the inner cylinder, the governing equations are given

by (3.58) ar}’c‘l are répeated below -
AN .

' (v -PYy [(—(P—P)/R |
3] J ‘ '
= e - = (). 3.94
U /\9 0 -—’U/R
| | /o

~7



The nondimensional governing equations for the outer 'G.ylinder are given by

v ) —-P,/¢ —(P, — Py)/(RC)

0 . p—

P Ar Y+ Ex ~v + 0o . =0, | (3.95)m
/\9 ' . 0 —-U/R y

\ .
whcre ) .
— P2 | (3.96)
pol -

3.4.2 Initial and Boundary Conditions

If both concentric cylinders are at rest and in their natural undeformied state, 't‘he

C o e AF
initial condition are

A (RO) = 1

A (R,0) = 1
v(R,0) = 0 (3.97)

3

where A, and A, are the radial and tangential stretches respectively and v is the

radial velocity.

v

Consider ‘a deformation for which an isentropic approximation is valid and for
which the use of an isothermal stress-deformation relation is applicable. If the

deformation is caused by the application of a spatially uniform internal pressure at;

b
‘

R = R;, then a relation between A, and Ag is given at K = R,. .
“ For the specific case for which the modified Gaussian sef (3.60) governs the
material properties of both the inner and outer cylinders, the nondimensional radial

stress is giv. n by



Oy = )} R{ SR S_ R.,
o = >} R.<R< R,
. (3.98)
where :
_ 2(1 +l/1)
h 3(1 —21/1),
_ 2(1 +l/2)
2 3(1—=2u)
: ,“’1 . : .
= —, , 3.99y
b " , (3.99)

If a Heaviside step function of pressure is applied at the inner radius of the inner

cylinder, then the bo‘undary condition relating A; and Ag is
J,(l’, T) = éq H(T), » (3.100)

where ¢ is the magnitude of the suddenly applied pressure. The nonlinear equation

- given by (3.98a) can be used to obtain /\;(I,T) if Ap(1,7) is known.

At the houndary between the inner cylinder and the outer cylinder (R = R.), -
the tangential stretch, velocity, and radial stress are continuous. These transition
cond'itqioris are founded on the assﬁmptiop that the cylinders remain in contact during

the deformation and that a g_ap\zdoes not exist at the boundary between the cylinders.

Using equations (3.98a) and (3.98b), continuity of the radial stress at 1 = 12,

can be written

!
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- - Iy(1 - ,
[ =200 ™+ {5 - 00,

=:¢({Aj-—Ao(xﬁv)~”3}4—%}{3%-—(Af)'mA{$}>, (3.101)

where A¥ and I are the values of A, at R = R} and R = \R_‘ respectively and
continuity of the tangential strgtéh A; = Af = Ag has been used. Equation (3.101)

may be solved for A} for known values of A7 and Ag.

At the outer radius of the outer cylinder, R = R, and a boundary condition similar
to that which is applied at R = 1 can be specified. For the present‘ation considered
in this thesis, the outer boundary is stress free (o, = 0). Minog modifications are

required to specify other physically realistic boundary co-lyl'itions such as a non-zero

~external pressure or a velocity boundary condition.

3.4.3 Jump Conditions ' -

As is the case for the cylindrically symmetric deformation considered in section
3.2, if a wave breaks during the prépagation of the disturbance, the solution describing
the elastic deformation will have discontinuities of the dependent variables v and ), .
This weak solution will satisfy the governing equations (3.94) and (3.95), where the

‘1

solution is continuously differentiable.

At the location of the discontinuities, the solution for cylindl'ic;xlly symmetric

ciastic deformation must satisfy the jump relations

) VS [U] = _[Pf]n»

Vs [A] = =[] (Ri < R < R.), |
(M) o= 0, G . . (3.102)
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Vs [v] = - [Pr ]/Cv .
VS [/\7‘] = —[’U] (R- SRS Ro)x .
| [X] = 0, | | | (3.,103)Iﬁ

'
N\, -

|
for the inner and outer cylinder respectively and where Vs is the shock velocity. The

quantity ¢ appears due to the consideration that the nondimensional scheme is based

-on the properties of the.inner cylinder.,

It follows from (3.102) that the nondimensional shock velocity for the inner

cylinder is

Vs ==

(3.104)

where the positive sign refers to a shock travelling 1‘adia11y outward and the negative

sign refers to a shock travelling radially inward: The nondimensional shock velocity

for the outer &ylinder is

(3.105)

[

o

il

H-
SN =
< ~
bl Ias
SN’
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Chapter 4-

Numerical Methods

4.1 Method of C' ira—teristics

The method of ct -~~teris ~s c¢in be used to solve tl qﬁasi—linear hyperbolic
system of equations ich resiit v ien elastic corstitutiv  relations .(3.23) are used
in conjunction with 20 to.describe sphericaiy sym:  ric deformation. A similar
hyperbolic syétem resu. - ae- the elastic constitu celations (3.59) are used in

conjunction with (3.58) to describe ~ lind- allv svr  ctric deformation. The analysis
given in'this section is for the sphericali= - .ric case; the cylindrical case differs
only by minor modifications.

To. determine the characteristic relations for spherically symmetric deformation,

the system (3.22) must be written in"nonconservation form

,v

v E L{v
0 0
87' r + 8R r + b 07 | » (4 1)
where A is the matrix . o
0 —9F./0N, —0P.[/0)s
A = _1 . 0 0 b ' (4.2)
e 0 0 0o )
and b'is the vector ' \\
' —2(P, - Py)/R
b= 0 . (4.3)

—v/R
Since the isentfopip approximation is adopted, P, and P, are functions of A,

and Ay only. The method of characteristics can be applied to (4.1) to obtain the

62
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A
characteristic relations as is described in various references on chalactenshc th( oxy

(Whltham 1974, Hildebrand, 1976). The elgenvalues of th&matrw A are

. e gy 1
¢ o= 0, D
N aPp, ‘
04 = .o
2 TV oax ) ¢
: _ [ap,
C3 : ?i-‘-’“ (4 4)

: o\,
Consequently, the system of equatlons (4 1) is strlctfy hyperbolic if 0P, /d\;i 3 0
Each eigenvalue represernts the slope of a family of characteristics in the space-time

or B — 7 plane and the family of characteristic?r.aﬁ‘)rresponding toc; =0 are parallel

;’."f :

ke

to the 7 axis. - “

r

On dR/dT =+ aP d),, the. characterlst@c relation is
#

| [P, dv  [OP.\d)\  [0P)d) BN ALY

) 9 (dv - ) o\ v

AN Jdr T oM S dr T 0] dT Vor 7o
- \(4.5)

\
where . . i

‘ L _ |
by = Fﬂ(zp,“— Py). . o (4.6)

On dR/dr = —\/OPT/?./\T, the characteristic relation is \,..




which can easily be obtained by observing that the third equation of the governing

system of equations (3.22) is in characteristic form L o ﬂf‘»

For moderat;e deformatlon the use of an xsothermal stress- &cﬁﬁrm@;tloa relation

e

results in negligible error and strain energy functions such as thfe modlﬁed Gaussian

..JA

sef (3.25) can be used to express the chara,cterlstlc relatlons in terms of the pr1nc1p,alv

deformation components. ¢ For this sef, -the approprlate terrys '{’or use with the

characteristic relations are

L 4

IF, _ 1 4 -2 —4/3}' F{ 1 ‘ ;—i1’ —18}

= ltgh {(/\,A,,s R PR ¢

OP, 1 /3 e los

8/\{) - 2/\¢+ §A¢2‘{(f\r)\¢2) 4/3} +{(/\r)‘¢>2) 1/3} +2F/\r 10/\d> 19’
(P, = Py) = ()\ - )\4,){1 ~ 00 /\¢,2)‘1/3} + L {—-— i}{l ~ 0 -18}
. | 9 LA - A¢ . |

(4.9)

-

4

Similar relations can be. obtained for the Blatz and Ko and Blatz strain energy

o

functions.

4.1.1 Solutions for Linear Elasticity

The solutions gi\}en in t}llisq section are for spherically symmetric linear elasticity
and are presented pri'ma;rily for the verification and analysis of the nﬁmérical mé;chods
which are later used for problems of ‘n'onlinear.ela,stici‘ty. Tﬁe numerical solutions for
cylindrically symmetric linear elasticity are qualitdtively sirnilaf and are not included

here.

! Thermodynamic relations and assumptions are considered in section 2.
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Spherically symmetric linear elasticity has been investigated by a number of
authors including Chou and Koenig (1966) and Haddow and Mlodu(ho\w-l\x (1975 )
The numerical results given here are in agreement with those obtained by these

0

authors.

Cbnsfder a spherical cavity in an initially quiescent, unbounded medium.  The
spherical cavity is subjected to a Heaviside step function application of pressure of
nondimensional magnitude 0.01. The material has a Poisson ratio of v = 0.25,
Figure 4.1 shows the time dependence of circumferential stress o4(1,7) and velocity
v(1,7), at the wall of the cavity as obtained using the method of characteristics. The'
steady state value, as P — 00, of the circumferential stress is 7¢ = 0.005 and is in
agreement with the equilibrium solution (Sokolnikoff; 1956). "The solution shown in
figure 4.1 was obtained using a discrete time step of nondimensional magnitude 0.04;

the solution obtained with a smaller time siep can not be distinguished at the scales

used in this figure.

Figures 4.2 and 4.3 show the method of characteristics solution for lincarly clastic
deformation of a spherical shell for which R; : I, R, = 2 and v = 0.25. This
deformation is similar to that of-the preyious example but involves the additional
complexity of reflections from the inner and buter shell surfaces. The outer shell
surface is stress free, the inner surface is suhjected to a spatially uniforrln, suddenly
applied pressure of magmtude 0.01. The plots show the distribution of stress (o, and
og) at two distinct tlmes 7 =05 and T =1 . ¥ I‘orr: =-0.25, the nondlm(nslmml
shock velocity is ¢ = 1.732 and the travcl tll’TlC for the shock to traverse the spheric (xl
~ shell wall is thus 1/1./32 = 0.577. The shock front of figure 4.2 is moving Lo th(
right, the éhock front of figure 4.3 is also moving to the right after reflection from

both the outer and inner cavity walls.
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4.2 MacCorméclg:’s Method

An alternative numerical method for solving hypgl)olic systems of rl-);\.ll't.iz\.l
differential equations was proposed by MacCormack (1969). I\lilC(‘r()I‘lllil.(‘k"S ‘m‘et.hod
is a finite difference predictor- conectop\bcheme which is based on the Run[.,c Kutta
technique for ordinary differential equations (Warming et al., 1973). The m(‘tlm(l
is appealing due to it’s relative ease of implementation and implicit slm(‘k-captu1'1115

nature.

-

Consider the partial differential equations, given i conservation form
Ju 0 - o

ﬁ{H (u)}4+ b(u) =0, (4.10)

where u is a vector of dependent variables,’and H(u) and b(u) are functions of u.

For this system, the predictor-corrector implementation’of MacCormack’s method is

'

n ) n AT n n
W - E{H(um) H(u})} ~ A1 b(u ),
n 1 7' Ty AT . n ’
uf = 5{u_ +ul"Y AR{H(ug )~ HW)) - Ar b))} S (a1
The superscript refer. 5 an index of dlsuetc time. steps ‘A7, and Lj}( subq(upt

- refers to an ind. x of ' -rete space steps "AR. The t,erm u? is the finite difference
approximatior fo 1 at zrid point (1 +]*QHR, nAT). Overbar notation indicates the

. : s -
predictor compnnents, 1., overbar indicates the corrector components. R

For sphericzlly sy'n:aetric deformation, the vector u is given by {v, A, A} and
for cylindricall- sy nmetric deformation u is given by {v, A, }7. If'an adiabatic
approximation s usidered and the elastic constitutive rclations {3.23) are used,

v
then for the sp! rical case,

—Pr(Arv Xd))

."\
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-

(—2{P.(Ar, 2g) = Po(Ar, 24)}/R o
v/ R
and for the cylindrical ease, \
| —{Pr(Ar, hg) = Pa(A;, M)}/ R
: | 7 b= 0 : (413)
—U/R/ |

Some mi’thols (\Walmmg et al 1973) suggest that the difference operator. of the
spatxal derivative ten ~of MacCormack s predictor-corrector scheme be reversed at

‘ P alternating time steps. This is prOposed in an attempt to average the eﬁect of the
_differences between the predictor and corrector relations. An alternative to this is
‘to specify the difference operator of the spatlal derivative in terms of the diréction
of W&B ,propagatlon For the finite deformations considered in this thesis, nelther}~

these two madifications improve the numerical results. 1 —

As presented in s.ection. 3.1.4, two pllysfcally realisti¢’ boundary conditions
considered in this thesis are the specification of velocity/and the speciﬁe‘ition of
Cauchy radial stress. If the velecity is specified, then thé two remaining dei)[endent:
- variables (which are the stretch components) must be obtamed by two boundary
condition relatlons If the Cauchy radlal stress‘ é&fSpemﬁed then a relation between
the two principal stretches is- specxﬁed and two additional boundary condltlons are

nceded to complete the specification of the three dependent variables.

Gottlieb and Turkel (1978) consider various methods for obtaining the additional -

boundary conditions which are required for implementation of finite difference
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schemes. These authors propose that the differgnce operator of t'll(,‘ space derivative

term in MacCormack’s scheme be reversed to facplitate implementation of the method
) A

" at a boundary. For deformation of a sphe}rica.l shell or cylindrical tube, this

modification is required at both the inner and outer boundavies where R = B; and

R = R, respectively.

At the inner radius of a spherical or cylindricz{l cavity, t'he forward-difference
" predictor formulation (4.11a) can be applied without modification but the backward-
difference' corrector formulation (4.110) is not applicable. Tn order to-obtain the
cori'estor value of ¢ at R = 1, where £ is the appropriate clement of u, a forward-

difference corrector equation

§(n+l) {f + 6 n+l) {]1( 1141-1 ) —H n+1))} — AT ,)(51(_"77))} ‘(}1.14)

is used. Similarly, at the outer radius of a spherical shell or cylindrical tube, the
" additional boundary conditions are found by a backward-backward difference scheme.

&
!
4.2.2 MacCormack’s Method for the Unbounded Medium Problem

bR " v,

For spherically or cylindrically symmetric deformation of an unbounded medium,
a scheme to express the unbounded medium in finite terms is needed to facilitate
implementation of a numerical algorithm. The scheme used in this thesis is bdsed

on the consideration that the medium ahead of thé shock front is in l,_}u mxtml

i

state and unaffected until the disturbance arrives. The problem of cxpréssing the
unbounded medium in finite terms thus reduces to the problcm of obtaining the
radius of the shock front. (or an upper bound for this value) since application of the
finite dlfference algorlthm in the undlsturbed medmm does not aff(’ct the solution.

-This is accomphshed as follows.
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For the lifiear homogeneous form of (4.10), that is with b =0, a necessary
condition for numerical stability of the linear probl@in is that the Courant number

'w < 1, where ' -
A :
w=c—0, (4.15)

, . AR’ “
and c is the numerically largest eigenvalue of the square matrix A of (4.1) at a given
time step.  This stability criteria is known as the Courant-Friedrich—Lewy (CFL)

condition and is discussed by MacCormack (1969) and Anderson et al. (1984). ?

With a chosen value of w and a fixed value of AR, equation (4.15) can be used to

determine A7 with ¢ computed from the numerical solution at the previous time
step. For tl‘l\e:problems considered in this thesis, the value of w = 0.99 was used as it

was found that numerical instability occurs when w =1.

At each time step, the shock can advancé at most, a distance AR since

AR .
< —_—
V‘? < ¢ o ) (‘4._16)

where Vs is the shock speed and A7 has been chosen using the CFL stability
criteria.  After N time steps, the disturbance céﬁ;&?’z;‘cdva'r;ce_at most by N space
steps and R = lc:i- NAR is an upper bound for the radius of the shock front. At
the time corresponding to the N'** time step, the finite difference predictor-corrector
scheme (4.11) must be applied at all radii between R = 1 il}r}d R =1+NAR, although

application of the scheme at grid points beyond this ra,é’iius‘does not influencé the

numerical results.

4.2.83° MacCormack’s Method With Gottlieb-Turkel Scheme

The solution of figure 4.4 is obtained using MacCormack’s method with the -

* The CFEL stability criteria is actually fof initial value problems and relies on the assumption

that the boundary conditions have no effect on stability. )

A}
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Gottlieh-Turkel scheme and is the same linear elasticity problem considered in section
4.1.1. The method of characteristics solution of figure 4.1 is supérimposed for
compagison. As is evident in this figure, MacCormack’s method with the Gottlieb-
Turkel scheme, yields results which diverge from the correct solution. For the
particular deformation considered here; the method yields reasonable results up to
nondimensional time of approximately 0.75; beyond/ this time the circumferential -
stress becomes ..boinded. Note that the numerigal solution for velocity does not

exhibit insta ity #ver though the governing equations are coupled.

FFor the 1nf1um sinal and finite def01mat10n of sphenca,l shells and cyllndrlcal tubes
considered in this thesis, MacCormack s method in combination with Gottlleb Turkel
scheme, is unstable and does not yield viable solutions. The instability seems to be

related to the existence of the third family of characteristics which are parallel to the

7 axis in the B — 7 plané. ' ' ' (

”llas been demonstrated by Haddow et al. ,(19783,. 1978b), through several successful -

"Tor the class of bro_blem‘s in which there are only two fégnilies of characteristics,

‘ MacCormack’s method with Gottlieb-Turkel scheme yieldv’s satisfactory results. This~

_dppllcatlons ‘of MacCormack’s method for elastodynamic deformation. In each of
tllcse successful applxcatlons there are only two families of characteristics clue to the
| foun of the governing equations; there are no characterlstlcs parallel to the # axis.
‘For the class of problems in which there are three families of characterlstlcs one of
‘which is parallel to the 7 axis in the R — 7 plane, MacCormack’s method with the

,Gott\lieb-Turkel scheme is unstable and the scheme fails. Y y
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4.3 Hybrid Numerical Scheme

The instability of MacCormack’s method, with the additional boundary conditions

obtained from the Gottlieb-Turkel scheme, can be avoided by using a hybrid numerical
. .

scheme. This hybrid\ scheme, which is iitroduced in this section, is based on

\

MacCormack’s finite difference method with boundary conditions obtained from both

the Gottlieb-Turkel procedure and the characteristic relation along the 7 axis in the

R — 7 plane.

A significant advantage of this method, in comparison to other schemes such as
the method of characteristics, is that the schéneis relatively easy to implement. The
hybrid method is a shock capturing scheme for which the position and magnitude of

~a shock do not need to be specified to implement the solut;pn This is particularly’

. significant for nonlinear problems.

The numerical solutions obtained using the hybrid scheme agree with the solutions
for the limiting cases of infinitesimal deformation which have been obtained by other
methods. This agreemensgis a check on the validity of the scheme. In acidjtion, the
hybrid method numerical solution is in agreeme_ﬁ_t with the numerical solution for
the special case of nonlinear finite deformation of a Blatz and i\'o spherical shol), as
independently determined by Haddow and Mioduchowski (1975). A comparison with
their resﬁlté’l, wﬂhich> are obtained using the method of charactcristicsv, 1s presented in

: \
Sy

section 4.3.4.

4.3.1 Boundary Condition Relations

The hybrld method is essentlally the MacCormack predictor-corrector scheme
combined with some of the characterlstlc relatlons along clnaracterlstms quch are

pa,rallel_ to the 7 axisin the R—r planie. The boundary cond;tnons which are rcquxrcd
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to implement the scheme are obtained from the method of characteristics and the
Gottlieb-Turkel scheme. The details of this method are presented for the spherically

symmetric case only..The cylindrically symmetric case is similar and is not included

: .
here. Vo

Two physically realistic boundary conditions are considered in this thesis and
are first presented in chapter 3. A velocity boundary:condition“ can be specified, for
example, at a fixed boundary for which v = 0. Allternatively, the radial stress (o,)
at the inner or outer radius can be specified by the application of a spatially uniform

pressurce.

If the velocity at the wall of a spherical cavity is specified, A, and ;\q; are required
at the boundary in order to ‘mplement the finite difference scheme. When the velocity
is specified, the hybrid method utilizes the Gottlieb-Turkel scheme to obtain A, using
tile.predictor-corrector‘ relati;)ns (4.11). For the specific case of spherically symmetric

deformation, these relations are

n n AT n n
(/\T)J' o= {(/\‘T)j + AR (vj+l —Y; )}7
O = HO0m T 2T ™ o ) @
rij 9 )3 T AR 1+1 7 7' .

AV

where j= 1f"'//at' @he inner cavity wall. The hybrid method utilizes the characteristic
relation a}dﬁg.'the 7 axis of the R — 7 plane given by (4.8) to obtain the boundary.

condition-for )\'¢,. In finite difference form, this characteristic relation is

L ' | Adg = %AT, (4.18)

“where Ay is the finite change in Ay for the finite time step Ar.

Altelﬁfively, the Cauchy radial stress can be specified at.a boﬁndary. This is

equivalent to specifying a relation between A, and ). In this case, two additional
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boundary conditions are also needed to implement the hybrid numerical method. The
Gottlieb-Turkel procedure is used to obtain v and the characteristic relation (4.8) is

)
used to obtain Ay.

For the specific case of spherically symmetric deformation, using (1 lll) and (1.12),

the predictor-corrector relations for v are

n n AT n n QAT n ‘ n
T = for s (R = () - 2 (a3t - ) ),
n O 1 n ) n AT , A n n 2AT n '— 1 I
iItY = Sttt 4+ — (P — (P — (P¢)j+l_(1)r)j+ )
2 AR W

- . . (4.19)

where j = 1 at the inner boundary. Using this value of v, the characteristic relation

given by (4.18) is used to obtain Ay and the radial stretch A, is specified by the Caunchy

%, v radial stress boundary condition which relates A, and Ag. For a sudden application of

pressure of magnitude ¢, which thereafter remains constant, the boundary condition

- relation can be written

(4.20)

A dxscontmu]ty of radial stress, that 1s‘_ shock is initiated at R =1 and this

“ »
dlscontmurﬁv plopagates radially outward ’It follows that A, is discontinuous across

a shock but )\¢ s.continuous.

The use of cha,racterlstlc relatwns along characteristics wh]ch are parallel to the 7
axis is important in the 1mplementatlon of the boundary COHdlthﬂb if the Gottlu b -

Turkel scheme is used for both additional boundary conditions, the numcncal results
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are erroncous as has been previously hown. However, for the range of deformations
considered in this thesis, there is no advantage in using the characteristic relations at

all radii, although in principle there is no difficulty in doing so.

S

1(3/2 Comparison with Linear Elasticity Solution :

" The solution for the lincarly elastic deforrhd’tion considered in s;eétion 4.1.1 éan
<0 be obtained using the hybrid method. When corﬁpared with the method of -
characteristics solution or integral transform solution, the numerical results arqfin
close agreement and are not included here as they can.pot be distinguished from

 those of figure 4.1 at the scales plotted. e

The solutions for small amplitude finite defdrmation, shown in ﬁgureé 4.5 and 4.6

- can be compared with the solutions for infinitesimal deformation as determined by
the method of characteristics given previously in figures 4.2 and 4.3. "This finite

‘deformation solution is for fhe Blatz sef ® for which v = 0.25 as in the linear

elasﬁicity case. for a Hea\‘/iside application of pressure of magnitude ¢ = 0.01, the.

finite defogmation solution is in agv‘reement with the infinitesimal deformationzgolution _ -

obtained using the method of characteristics.

4.3.3 Verification of Jump Conditions

The jump conditions presented in section 3.1.5 are used to check the results
obtained from the numerical method.  This is demonstrated by the example shown in
figures 4.7 and 4.8 which show the relation between nominal stress, vélocity, arid"rﬁadiz{l

stretch and R at various times. The results are for the deformation of a sphefical
3

3 The validity of the solutions is questionable since. the Blatz sef models foam rubber and the

static properties may not be applicable to the dynamic deformation problem.
~ \

-
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shell of modified Gaussian material with R,/R; = 2, ¢ = 1, v = 0.495. Further

c.xémplcs of finite deformation are presented in Chapter 5.

" The plots show the solution at time 7 = 0.05 (before reflection from the outer

radius of the spherical shell) and at time 7 = 0.10, (after reflection from the outer

rddiuﬂ’s). The magnitudes of the discontinuities at the shock fronts are presented in
~

table 4.1 and the jump relations given by (3.45) are satisfied within an acceptable

©CIror.

. ; 7 =005 | 7=0.10
From [A] 0.00639 | 0.00496 -

Figures [P.] 0.6625 | 0.50375

' 4.7,4.8 [v] 0.0650 | 0.05000

Jump

Relation [v]? 0.004225 | 0.00250

Terms | [P.] [A.] | 0.004233 | 0.002499

Table 4.1: Jump Discontinuities at Shock Fronts : Spherical Shell

4.3.4 Comparison with a Previous Nonlinear Elasticity Solution

Results from the hybrid method numerical solution for finite deformatidn of
a Blatz and Ko spherical shell dre ‘compared with results from the method of

rharacteristics solution given by Haddow and Mioduchowski (1975). As is discussed
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in chapter 2, the Blatz and Ko sef does not adequately represent the dilatation of solid
rubberlike materials. The two solutions are presented here primarily for ¢omparison

of the two numerical methods.
&

Iigure 4.9 shows the tangential stretch at the inner (‘a,vit,.y wall (position of
the inner cavity wall) as a function of nondimensional time. T\l(‘ Dlilz.\,tz and Ko
material considered has a Poisson ratio v = 0.3 for infinitesimal d(‘l‘()rln;’\ﬁ(m from
the undeformed state. A step function applicatioh of pressare of magnitude ¢ = 0.25,

L4
is applied at theAnter radius; the outer radius is stress free. S
. ' : s
The hybrid scheme solution is given by the continuous curve; the discrete points

indicate results from ‘the method of chamctenstlcfu T 11(10 is excellent dg,,u'(nu ‘ni,
betwecn these two mdependent methods for tlns nonlinear, finite deformation

‘ J
problem. T ‘ ot

Another example for finite deformation, comparing the hybrid scheme numerical
solution with the method of characteristics solution, is given in section 5.3.1.

A}

4.3.5 Interface Céonditions for Concentric Cylinders

4 ’

There a:re two difﬁéulties which must be considered to implement the numerical
scheme for the concentric cylinder problem.. The first is that thc spati.al gri‘d size
can not be the same in both gylinders if the time step size and CFL qtdbxhty criteria

| glven by (4.15) are to be the same for both cylinders. This difficulty is overcome by
choosmg one of the spatial grid sizes and obtammg the other by equating the Courant
number and time step of equation (4-15). If the spatial grid size for the outer (Iy]i;ll(l(;r, :
AR,, is chosen, then AR; is given by ‘ . |
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Equation (4.21) implies that AR; must beradjusted at every time step since the ratio

of eigenvalues changes due to the nonlinear nature of the problem. In principle, this.

can be implemented by a co11iplica£e(l interpolation scheme, ;;.lt,hough in practice,
reasonable results can be obtaincd-by setting the spatial grid sizes using (4.21)
evaluated at the mnitial conditions. The penalty for thls slmpllh(dtlon is humeric al

dlspers1on \

The second difliculty in implemcrlftiﬁg a nf—umerical scheme for concentric (_f)'lil'l(l(;.l‘s
is to satlsfy continuity of vdocxty, angcni{lal stretch and Cauchy radial stress.at the
mterface The use of these three transition conditions and the relation along the
characteristic which is parallel to tI' * 7 axis in the R — 7 plane, leaves two remaining
relations to be determined (since there are six dependent variables at =R, ). This

is smnlar to the need for the additional boundary conditions. when the finite difference

method i is apphed to a single cylindrical or sphoncal shell

v

In the case of the single shéll, the use of a finite difference scheme with_tlm ('lot,tli‘vb-
| Turkel relations for both‘addit_ional boundary conditions,{does 1o yield ;erca.%()x]eﬂ)l(:
soluytion as is discussed in section 4.2.3 and shown in figure 4.4." A similar situation

arises if thé Gottlieb-Turkel relations are uscd-(for both interface conditions ~ut, the

transition. between the con’éentric cylinders. Figure 4.10 indicates this instability

for concentric &Eﬁdbrs where ( = 2, ¢ =17, 1 = 048, v, = 0495, It; = 1,

R, =125 and R, =1.5. Noté that these material properties are chosen to illustrate
; .

irnplementatio_n of the interface conditions and may not describe a realistic material.

1 For example, if v is specified at a boundary, two additional .boundary condition relations are

required to obtain A, and Xs.
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For this example, the modified Gaussian sef (3.25) is assumed to govern the
response of both cylin‘ders The severe numerical .dissipation and dispersion which
is ev1dent near the front of the disturbance, 1s a consequencawof the (111(10 grid stvp

chosen to illustrate the. mstablhty phenomcnon

Note that the unsatisfactory results shown in figure 1.10 satisfy continuity of -
A _
velocity, tangential stretch and Cauchy radial stress at the uderface. For example,
at R = R. = 1.25, the velocity is ¢ 1tinuous as required. 1o ever, a physically

unrealistic change i velocity occurs just after the interface.

A modification to the hybric numerical procedure’is required tc obtain a plausible
solution. The mod1ﬁcat1on involves three iterations at cach tim: step to obtain the

correct values of the dependent variables at the interface betwe n the cylinders.

On the first iteration, the six i~quired interface rela’ .ns are obtained using -

two Gottlieb-Turkel relations, three relations obtained rom'coniinui!ty of velocity,

——~

tangential stretch and Cauchy radial stress, and the chala(,tulstxc relation which is
R
. parallel to the 7 axis at R = R, , ' -
. . ‘L * ¢
dX v ,
== (4.22)
dr R

’

The numerical solution'/’gbtained after this first iteration is in error. The magnitude
of the error can be quantified by comparing the velocity of the inner cylinder at the
interface: (V' =), with the velocity of the outer cylinder at the interface (V*). Asis
“shown in figure 4.10, V't can be obtained by extrapolation of the solution in the
“outer éy]ilider in the spatial region beyond the interface. For continuity of velocity,

the desired criteria is that V— = V¥,

On the second iteration, the value of A7 (A, for tlie inner cylinder at 12 = R.), is

perturbed by a small amount from its value which was used in the first iteration (given
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l;y the éottlieb-Turkél scheme). The resulting error in velocity is again quantified
by the difference between V- and\V“" ‘as described above. In géneral, this dlfference
will stlll be non-zero, although the change in (V= — V) between the first and second
_iterations defines the dependence of this velocity difference on ‘A7 . Assuming that
the correct value of A7 is near that given by the Gottlieb-Turkel scheme, a linear
'extxapolatlon of the relation between the velocity error and the value of /\, , with
the objective that (V= — V*) = 0, specifies a corrected value of ;. ‘For the -
'numerical solutions presented in this thesis, this corrected value is then accepted
‘and a third iteration, using this value, is used to advance the solution by one time
step. Alternatlvely, an algorxthm to further converge on the correct value of A7 could
be implemented, although this does not appear necessary for the numerical solutions

considered in this thesis.

The hybrid nu'nlerical,method, rnbdiﬁed' by this correction procedure, results
in plausible solutions for the' defornﬁtion of concentric cylinders which satisfy theﬂ
required jump conditions given in section 3.4.3. In eddition, the numerical results
for the problem of two _concentdc cylinders reduce to the results for a single cylinder

when the material properties of both cylinders are the same.

Solutions for finite deformation of concentric cylinders are presented in section

(o]
i

l N
4.3.6 Limitations of the Hybrid Method

- Figure 4.11 shows the hybrid method solution for the deformation of an
unbounded, linearly clastlc medium. A Heavmde step function of pressure is apphed
at the wall of a spherical cavity with ¢ = 0.01 and v = 0.25. The numerical dlspersmn

and erroneous overshoot near the location of the discontinuity, is a limitation of
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most shock capturing finite difference schemes. The severity of the dispersion and

dissipadion is particularly evident in this example due to the crude spaceé step size of

Al} = 0.0025, chosen to illustrate this limitation.

The plot shows the spatial distribution of velocity at three disti’nct times 7 = 0.25,
7.= 0.50 ar-ld 7 = 0.75 and is comparable to the solution of the same problem shown
in figure 1.12 for a smaller grid size (AR = 0.00014)." As is evider.lt,hthve numerical
dispersiop can be reduced by dccréasing the spatial step size (and thus also the
temporal grid size) although this is at thé-expense of inc.rea'sed cbmputational time.
Computation time is inversel‘y related to the ’square of the spatial grid size since a B
change in the spatial grid size results in a change in the temporal grid size as given

by (415). "\

-

For this linearly elastic deformation, the shock front propagates at the constant
shock velocity given by (3.8) with ¢ = 1.732 for v = 0.25. The positions of the shock
front, which are.similar for both the crude solu.tion. of figure 4.11 and the refined

solution of figure 4.12, are in agreemvent with this shock velocity.

Combarison of the crude and refined sdlutioné indicatés that an extrai)ola’cion
procedure, which is based on the solution in a region behind the shock, can be used
to consider the effect of the overshoot at the shock front. For the‘reﬁned solution
shown in ﬁ‘gufe 4.12, such an extrapolation amounts to ignoring the overshoot. For
crude solutions in \vvhich there is 4 signiﬁcént axhount of numerical dispersiqn_#and
dissipation, the extrapol;xtion procedure is more complex. This is further discussed

and illustrated by an example in section 5.1.3.

If the overshoot shown in 4.12 is ignored, the jump conditions given by (3.45) are

satisfied.

A second limitation of the finite difference scheme ubfg 1 Liis thesis, is that the
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computation time for the problems of spherical and cylindrical deformation increases

significantly as the material approaches incompressibility. This occurs:because ‘the

relation Betwoen the spatial and time step size is dependent on the numerically largest .
cigenvalue of the A matrix in (4.1) and the eigenvalues increase in magnitudeds the
material approaches inco.mprcssil)ilit'y.. An estimate of this effect can be determined
by considering the lincar elasticity case in which the eigenvalues are constant and
arc related to the Poisson ratio és given by (38) Using v = 0.463 as th _ase 4case '

'

for which computation time is unity, the computation time increases by a factor of
2.6 for v = 0.495 and by a factor of 18.6 for v = 0.4999. Numerical solutions for
' Poisson ratios very ncar the incompressible limit; for which a reasonable grid size

is maintained, likely require extensive use of a supercomputer. The largest Poisson

ratio for which numerical results have been obtained by the author is v = 0.4998.

?



Chapter 5
-Numerical Solutions

5.1 ‘Spherically Symmetric Deformation

The numerical solutions presented in this section are for spherically symmetric
elastodynamic problems, namely expansion of a spherical cavity in an unbounded

medium and expansion of a thick-walled spherical shell.”
If a spatially uniform, sudden application of pressure of magnitude ¢ is applied |
at the cavity wall, the Cauchy radial stress at R = 1is

o.(1,7) = —q H(7). - _ (5.1)

If the applied pressure is a sinusoidal pulse of magnitude ¢ and duration 7., the

N

Cauchy radial stress at 2= is

o.(l, =—q sin(ﬂT

Ty

)Mn—ﬂnuy, (5.2)

For the numerical solutions presented in this section, the boundary condition at

"R=R,is .
o.(R,,7) =0, : ‘ (5.3)

) . o .
although a non-zero stress or velocity boundary condition could also be implemented.

-

- The radius ratio for thick-walled spherical shells considered here is R,/ It =2,
Ittjs dssumed th his ratio is 'sufﬁcicntly large that the shell remains spherically
symrﬁetric throughqut the deformation. |

The' Gaussian sef (2.21) and the modified Gaussian sef (2.19) are in reasonable

agreement with experimental data and are suitable for the moderate deformation

94
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1

of sdl'id ‘rubbcr considered in t_hi‘s»fthesisv Experlmental work by Brldgman

(1947), Levinson and ‘Burgess 4(1971) and Beatty and Stalnal{er (1986), 1nd1cates
that Poisson’s ratio for most solid rubber is in the range

0.463 < v < 0.499895. |

Numerical solutions for spherically symmetrn e Formatlon of a compress1blc sblld'

rubber are obtained for the Gaussian sef /- modlﬁed Gaussian sef (2 24)
with v = 0.495. Numerical results for hizne- ' . 1 atios can be obtained subJect
to the limitations of the hybrid numerical ¢ liscussed in section 4.3.6.

Numertcal solutions for deformation in incompressible, homogencous elastic

materials arc obtained fd:__p_lle nco-Hookean sef, (2.13).

5.1.1 I.ncompressible Spherical Shell f .

The analysis of finite elastodynamic deformation of incomprvess'ible spherical shells

is presented in Appendlx A. A spatially uniform pressure of magnitude q is suddenly :

»dpplled at the cavity wall and the boundary condition given by (5. 1) applies.

Figure 5.1 shows the pl\lase plane solution for the motion of the inner cavity wall of
an incompressible spherical shell where R,/R; = 2. The phase planc closc:: oscillation
of the sphcrical shell is periodic provided tﬂat the magnitude of the sudder.ly applied

pressure is less than the critical Value ‘which is approxxmately ge = 0.7435 for this

, wnﬁguratxon 2 I*ox q < q., the motion of the. caVJty wall is per10d1c and f01 q > qe,

the radial displacement increases monotonically until the shell bursts.

~_- . . . ‘
Isothermal strain energy functions are used to describe the stress-strain relations and are

1

discussed in section 2.
1 Nondimensional quantities as given by (3.93) are *1 '~ exclusively in this section unless otherwise

“noted. As before, quantities with dimension of stres nondimensional by dividing by the shear.

modulus u. p
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5,1.2  Equilibrium Solution : Spherical Cavity in an Unbo’unded Medium
v3 " Figure 5.2 shows the equilibrium solution for A, and Xy as a function of radius
R for a sphcrlcal cavrty in.an unbounded mechum P:or"thrs problem a sudden. -
change of. pressure of magnltude g =1 is applied at B =1 and held constant Thew
constitutive behaviour is given by the modified Gaussian sef (2.25) with v = 0.495.
Tlfc material is mrtxally qulescent and in the unstressed natutral state. The solutlon '

for the corrcspondmg dynamlc problem approaches the solution shown in this figure

a.ST-—)OO

: \ A fourth order Runge Kutta techmque wrth step size AR = 0. 01 was, used to‘ _
solve the governing ODE (3 37). . R R |

= 5;1.3 F.SvuddenwApoli‘lc:étion, of Pressure : Unbounded Medium
Iigures 5.3-5.7 show. the hybrid scheme numerical solution for the expansion
of a cavity in an unbounded medium due to a 'sudden application of pressure of
magnitude ¢ = 10. Solutions for compressible media are for the modified Gaussian
sef given by (3.25) with v = = 0.495. Solutions which are presented as a function of

nonslimensional radius are given at 7 = 0.2,0.4 and 0 6 those which are presented

as a function of nondlmensmnal time are for R = R 1e. the cavrty wall.

Fxcessive numerical dissipation and smearing of the shock is evident at the shock

: honts shown in figure 5.3. This is a consequence of the relatlvely crude step size
of AR = 0. 605 used in’ this example. As ié discussed in section 4.3.6, numerical
dissipation and dispersion can be reduced by decreasing the grid size at the expense
of incréased computatron time. Alternatively, an e:\trapolahon procedure such as
o ,tha sed by Haddow et al. (1986) can be used to obtaln a solution. Thrs procedure‘

" ;jmu .08 \.\trapola.tlon of the relations between the varrous dependent variables and
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~N
R at a fixed time, using the rgsults in the region behind the numerical dispersion.

. R . e . L. . ~ .
Extrapc* ticn is terminated when the jump conditions are satisfied. For spherically

symmet. .cformation, the termination éondition is
[v]?=[P][X], (5.1)

WblCh can be obtained by eliminating the shock VCl()(‘lty Vs, from (3.75a) and (3.75)). l

This relation can also be = ten as

= Pr (/\r - 1)1 ) | ) (‘r)lr))

noting that v = P, = 0 and A, = 1 ahead of the shock.

._Thcb extrapolation procedure can be implcmcuﬁ«gd cii.lwr numerically  or
graphical]y and for the present problem, no significant advantage is gained by a
numenca] approach. Figures 5.4 and 5. 5 show the radial stretch rﬂl(l ll(HIUﬂd] rectial
stress (aq obtamed using (3. %6 a 1) atr, 2 0_ 2,8, ':' .0, () cozfmpond,ng o the tunoq lm o _‘ ‘
ur hr*rm'(' 5.3. Table 5.1 lists the m %mtuﬂvs of the Jump quantitied give . in- (5.4).
T‘hese values were obtained using a graphlcal cxtrapolatlon procedure on _enlarged-

scale plots of P, A, and v. The discrepancy is within measurement uncertainty; the

jump conditions are satisfied. - - S

Numerical solutions which show the stretch components, velocit; and dilatation
at the cavily wall are given in ﬁgures 5.6 and 5 7 for compressible and incompressible
media respectively. As expected, the mateual at the cavity wall is in compression; J
is less thdn 1 and is almost constant. The effect of material compressibility is evident

although the compressible and-incompressible solutions are of a similar form.

A similar problem is considered in figure 5.8 which shows the Ldngcntial stretch

at the inner cavity wall of a spherical cavity in an unbounded medium. A Heaviside
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\ i
: r=02|7r=04|7r=06
From [A] | 0.08589 | 0.03383 | 0.01825
Figures 7] ]3.20000 | 1.93333 | .L.43333-

9.3-5.5 - [ 0.28667 | 0.17667 | 0.13500

Jump
.\\ ‘Relation | [v]? .1 0.08218| 0.03121 | 0.01823
' Terms | [P.] [A.] | 0.08589 | 0.03383 | 0.01825

S

[ 3

Table 5.1: Jump.DiscOntintlitigs .al_.'Sh.oc_k Fronts : [.J'.nl)m,m(l_v(l Medium

N

h_sfep functlon of p1essu1e 15 apphcd w1Lh g =1 and 1/': 0 I‘J) for'a modifie (] (muasmn .

rnatenal A longer ‘time scale than tha* of ﬁgum (> i usod

- B - . , . o

For ‘the compressible material, the motion is a ‘damped oscillation due to a
dissipation of mechanical encrgy across the shock. The dcforn’mt‘xon’ is irreversible
and there is a ju-mp in entropy across Lhe shock.  There is no dampm;’ for the

: 1ncomp1e531ble material provided the adlabatlc apprommdtlon is adopted.

The constitutive relatlons used in tho'numcrical solutions presented in Lhis section,
are based on lsothermal stress deformation formuldtlons rather than more d])p[()plld((
isentropic relatl s, Although this is an approximation, for th(' range of deformations

consndered, the error involved in using an 1sothennal strcss-d(,-formzmon rather t1ian

" an isentropic stress-deformation relation is negligible. This is discussed in chapter 2.4,

An example comparing deformation of a cylindrical tube using hoth an isothermal
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. 7/ .
and an isentropic stress-deformation relation is shown in figure 2.5.-

5.1.4 -Sudden Application of Pressure : Spherical Shell

The numerical result; of figure 5.9 are for the deformation of a spherical shell which
is subjhe(:t(')d to a Heavisicie step function of'prti:ssure where ¢ = 1, v ='0.495, and
R,/ & 2. A stress free boundary condition (o, = 0) is specified at R = R, = 2.
The figure shows the solutions for both a compressible material (as obtained using the
‘hybrid scheme) and for an incompressible material (as obtained using a fourth-order
Runge-Kutta scheme). The sawtooth form of the velocity is due to the reflection of

AN
a shock from the innér and outer shell surfaces.

: ‘ ) : N
‘The phase plane solution for a similar ‘deformation of a spherical shell for which

g = 0.4 and (1‘ = 1.0, is shown in figure 5.10. Solutions for deformation of both
incompressible and compressible rnedia are plotted. The solution for ¢ = 0.4 is stable
and the phase plane closes. The solution for ¢ = 1 is unstable and the velocity

increases monotonically until the shell bursts.

For a me-lified CGaussian material (2.24) with v = 0.495, the critical stability value
" of the magnitude of the suddenly applied pressure is near that of the in‘compressible

material shown in figure 5.1 and is approximately g¢. = 0.7435 when R,/R;'=2.-
—\ .

5.1.5 Sinusoidal Pulse : Unbounded Medium

Expansion of a spherical cavity in an unbounded medium, due to the application
of a sinusoidal pulse, is shown in figure 5.11. The applied sinusoidal pulse is of
magnitude ¢ = 10 and duration 7, = 0.1 and the constitutive behaviour of the

material is governed by the modified Gaussian sef (2.24) with » = 0.495.
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The figure shows the propagation of the initial disturbance and the eventual
breaking of the wave to form a shock. The stretch Ay, is continuous since no
separation of the material occurs. The jump conditions for spherically §ymmetric

deformation (3.45) are satisfied to an acceptable degree.

The wave breaks at an carlier time if the magnitude of the pllse is increased or*
if the Poisson ratio is decreased. The numerical scheme is not sensitive enough to

indicate the exact position at which the wave breaks.

5.1.6 Comparison of Gaussian Strain Energy Functions ‘

Numerical solutions for expansion of a spherical cavity.in an unbounded medium

were obtained. for both the modified Gaussian sef (2.19), where g(J) is based on
&

experimental data for hydrostatic cornpressi(f(of solid rubber materials (Ogden,
1982), and for the Gaussian séf (2.21). For the range of deformations considered,

the difference was found to be negligible for v =0.495. However; for v = 0.463,

which is a minimal value for solid rubber (Beatty and Stalnaker, 1986), the difference

)

could be significant.

.y

For example, figure 5.12 shows the solution for spherlcally symmetrlc deformation
9‘/\411 unbounded medium with v = 0. %3 and ¢ =1 using both the modified Gau531an
sef (2.19) and the Gaussian sef (2.21). The difference between the two strain energy
functions is most significant for the velocity and radial stretch components at 7 = 0.
A maximum difference of approximately 15% is evident in this case. The relation )
bctwecﬁ the Géussian and modified Gaussian strain energy functions is-evident from !
the Taylor series eka::i:n, discussed in section 2.2.‘;‘2, and given by (2.20). As
J — 1, the difference een these strairn energy functions décreases. For iS(;choric

deformation, the Gaussian and modified Gaussian strain energy functions are the
]

hy
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7

same; both reduce to the neo-Hookean sef.

¥

5.1.7 Solutions for Blatz Strain Energy Function \

\\ - .

The Blatz strain energy function; given by (2.32),‘describe.s the constitutive
behavionr <>fgsp6ngc rubber. Althopgh a numerical solution for dynamic deformation
is presented in the following figure, the use of the static properties of the sponge rubber
for d)‘/namic deformation may not be/v&;arranted. Thus, the solution presented here
may ‘not accurately represent the dynamic behaviour of a sponge material and should
be interpreted with caution. This limitation of the Blatz sef is further discussed in

chapter 2.2.4. o .
. P .
Figure 5.13 shows the radial and tangential stretches at the surfaces of a thick-

walled spherical shell. A sudden application of pressure of magnitude ¢ = 0.25 is
applied at the inner surface and the outer surface is stress free. The tﬂll{‘ﬁ’]’ltial
stretch at R = R; is equivalent to the radial displacement of thé inner surface when

R; is tz?ken to be-1.

[
8

Discontinuity in the slopes of the stretches is due to the.reflection of the initial

disturbance from the inner and outer walls of /the‘ spherical shell.
f
«
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5.2 Cyblindrically Symmetric Deformation

- Numerical solutions pr.esent,ed in this section” are for cylindrically symmetric
pf-c(ff)lcms in which the plane strain assumption is valid. As is the Sase for sphericallyyv"
symmetric deformation; the boundary condition dug to the application of a spatia'Hy;n
.'uniforrT] pressure p(v:), is given in terms of either aHeaviside step function (5.1) or a
sinusoidal pulse (5.2). The bouﬁdary surface at B = R, is assumed to be stress-free

although other boundary conditions can also be implemented.

Numerical results for deformation of cylindrical tubes areg presen‘ted\ 'fo; the
radius ratio R,/R; = 2. It is assumed tHat this ratio is-sufficiently large that
the f:ylindrical tube remains symmetric throughout the de'forrnatim{.‘. Solutions are -
presented for both the Gaussian sef (2.27) and the modified Gaussiar sef (3.60) with
v = 0.495. Numerical solutions for higher Poisson ratios can be obtained, subject to

the hmitations.of the hybrid numerical scl%eme as discussed in sec{mn 4.3.6. -

Numerical solutions for the incompressible neo-Hookea#n’ sef (2.13) are also

included.

Q€

5.2.1 Incompressible Cylindrical Ttube

Governing equations for the finite expansion of an incompressible cylindrical tube
are presented in sectibn 3.2.2. Figure 5.14 shows the phase plane solution for the
motion of the inner cavity wall where .-R,/R; = 2. The phase plane closes provided
that the magnitude of the suddenly applied” pressure is 1e§s than the critical value
whncl\;fo.r this radius ratlo is approximately ¢. = 0.685. When ¢ is less thm "the
~ critical value, the motlon of the cavity wall 1s perlodlc When ¢ > ¢., the motlo

unstable and the stretch increases monotonically until the tube bursts.
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5.2.2 Sudden Application of Pressure

The phase plane solution for expansion of a cylindrical‘t'ube for which R,/R; =2

-
is shown in figure 5:15 . The solution for the compressible material is obtained using
the hybrid scheme with the modified Gaussian sef (3.60) and v = 0.495. The solution

8 1

for the incompressible material is obtained using the neo-Hookean sef (2.13).
\ -

A sudden application of pressure of magnitude qy= 0.4 is applied at the inner wall.
This value of ¢ ié lesg than the critical value and the deformation is stable; the phase
plane closes. For a compressible material with sef given \by (3.60) and » = 0.495, the
critical value of thé magnitude of the suddenly applied pressure ¢, is near that of
the in.compressiblé tube shown in figure 5’.1\4\'and i1s approximately ¢. = 0.685 when
R,/R; =2. The sawtooth form of the vehlocity is due to thé reﬂectiqn of a shock {rom

the inner and outer surfaces of the tube.

-
-~
ER \ .
. . PR )

e~



0.6

0.4
l
e
s

0.2
s

v(l,7)
0.0
=

g / '/<1 P | 4 1 /{/
L TR/
neo-Hookean o v =0.49
© | :
CI? .
1.0 1.2 1.4 Y16 1.8
S ’ Ao (1, T) ’

N é‘ ’ l .
Fxgure 5.15: Phase Plane Solution" f@r Cylindrical Tube, R /R =2
Motion of the Inner Cav1ty Walk
Modified Gaussian sef, v.= 0.495 and neo-Hookean sef

p(r) = 0.4 H(r) )



119

5.3 Plane Stress of Uniformly Prestressed Sheets

-

S 4
Numerical solutions presented in”this section are for generalized plane stress
deformation of uniformly prestressed sheets. A circular hole of nondimensional radius

R =1, (referred to the reference state) is suddenly punched in-the sheet. This results

in radial propagation of unloading waves. The initial stretch is given by (3.84).

Prestressed sheets of finite outer radius and prestressed unbounded sheets are
both considered. Tor the finite sheets, the outer boundary at R = R, is rigidly fixed
. \ v .

N~

so that the boundary condition is v (R,,7) = 0.

Since the hole ié not punched instantancously, solutions are obtained for a linear
decrease of the nominal stress P, at R = 1, [rom the initial value to zero, whiclfoccurs
during a time 7.. For the rcsults‘ presented here, 7, = 0.05, although the difference
in the numerical results for this value an(ll instantaneous plugging are negligible. The
magnitude of 7, is discussed by Rinehart and Pearson (1954) and by Miéduchowski
ot al. (1978). E " L .

. A
*Numerical results are obtained using the hybrid finite differeé%c‘e-characteristi'c '

scheme which is discussed in section 4.3. An incompressiblgaterial, given by the

Mooney-Rivlin sef (2.14) is considéredv, with various o parameters. As discussed

in section 3.3.1., only minor modifications are required to: consider plane stress

~

dcformgtion of a compressible material.

~

5.3.1 Comparison with\Method of Cliaracteristic.s
)

Plane stress unloading waves in a presiressed sheet resulting from a suddenly

. . L
punched hole, have been previously considered by Mioduchowski et al. (1978). These
authors yse the method of characteristics to obtain numerical solutions. The hybrid

)

. \ ~
scheme numerical solutions presented in this section are compared with these resul\ts.

v
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Rigure 5.16 shows the stretch. components and velocity at the edge of the suddenly-

e

punched circular hole (R = 1) as a function of nondimensional time. A lim-m‘
transition from the pres.tresse'd’ to the stress-free état,o occurs at the edge of the hole
during the nondimensional time 7. = 0.05, as is given by ‘(3.86). The constitutive
behaviour' of the material is described using the Mooney-Rivlin sef+ (2.14) with

La=0.75. %

The continuous curve shows the solution obtained by the hybrid scheme and the
discrete data points show the method of characteristics solution of Mioduchowski, et
al. (1978). There is good agreement between these two independent solutions for this

nonlinear finite deformation problem.

5.3.2 Prestressed Finite Sheets

t
Consider the generalized plane stress unloading waves in a suddenly-punched,
,2uniformly prestressed sheet. The sheet is of finite extent and the outer boundary at

R=R, =6 is rigidly fixed so that v(R,,7) = 0.

<

Figures 5.17-5.21 show the hybrid scheme numerical solution using a Mooney-

¥

Rivlip sef (2.14) with a = 0.6 and 7. = 0.05 as given in section 3.3.2. These figures
show the velocity and nominal stress components as a function of radius, at times
7 = 2,4,6,14 and 16. The nominal stresses are obtained from the principal stretch

[

components using.(3.90) and are scaled by the magnitude of the initial stress (r)

using
i . Po -
b= myn
— P :
P = (5.6)
(Pr)o
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where (F;), corresponds to the uniform initial stretch and is given by (3.91).
.
- Henceforth, these scaled quantities will be used although the overbar notation will be

‘omitted.

The solution of figure 5.17 shows the propagation of the resulting shock at time
7 = 2, before reilection from the rigid boundary. The arrows indicate the direction
ofprbpageition. Thc méterial is-in biaxial tension (positive FP. and I%) throughout
the radius. The magnitude of the constant prestress ahead of the shock is 1 as given

by the scaling relations (5.6). - / -

Figure 5.18 shows the solution at time 7 = 4, after reflection from the rigid
boundary. The result of the reflection is a decrease in the radiai and tangential stress
- although both components of stress are still tensile at all radii. A shock is propagating

radially inward. .

The solution of figure 5.19 is'at time 7 = 6, after reflection from the freg edge of
the circular hole. The velocity and stress are no longer discontinubus, all,hou’gh the

radial stress is still positive and both components of stress are still tensile.

Figure 5.20 shows the solution at time 7 = 14 after several reflections from both
the rigid outer boundary and the free edge of the hole. At this particular time, the
velocity and stress are not discontinuous and the disturbance is propagating radi-ally

‘outward.

The solution of figure 5.21 is at time 7 = 16, after the next reflection from the
rigid outer boundary. It is evident that a shock has again formed and is propagating

0
°

" radially inward.
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5.3.3 Elastic Stabii\ity of Prestressed Finite Sheets

N

. An important consideration for the valiciity of the numerical solutions for plane
stress of a thin sheet as presented in this thesis, is that buckling or rippling of the sheet

does not occur. This type of elastic instability violates the principal assumptions on

which the governing equations are based. Numerical solutions for which a compressive

stress exists, are ques@ionzible since it is unlikely that a thin rubberlike sheet can

- ‘ ,
sustain a significant radial compressive stress without buckling.
X !

—

. The solutions shown in 5.22 nd 5.23 are for a conhgumtlon which is x(lontl(al to
~he prcv1ou:s~problem with the exception tr'at the rigidly constrained outer radius is
at R, = 2 rather than R, = 6. The solution at time 7 _SO 4, before reflection from
the rlgld\boundary, is shown in figure 5.22. Both thc radial and tangential stresses

are positive.

After reflection, at 7 = 0.8, th¢ radial stress is negative as shown in figure 5.23.

This radial compressive stress may causc the sheet to buckle; the solution shown in
- _ : h .

figure 5.23 may not be valid.

A
"

For plane stress deformation of prestressed sheets which are unloadéd by .a

suddenly-punched_circular hole, the existence of a compressive radial stress (after
reflectipn) is dependent op the magnitude of the initial stretch and the radial extent
of the sheet. If the outer radius is suﬁicicntly large, the decrease in radiaf stress which
occurs after reflection from the outer radius, will not result in a negative ((:dl'llprv.ssiV(:)
stress. As aspecificexample, for a Mooney- Rivlin material with o« = 0.6, A = 1.2 and
R; =1, the outer radius must be larger than approximately 5 to avoid compressive

radial stresses and thus potential buckling of the sheet.

o

-
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5.4 ‘Concenti'ic Cylinders

The numerical solutions presented in this section are for plane strain expansion

~ of two concentric cylinders which are subjected to a sudden application of pressure

of inagnitude ¢ at the inner radius of the inner cylinder. Both cylinders are initially
unstrcsscd and it is afsj)xme-cl Lhat they'remain in contact during the deformation.
The constitutive relations of both cylmders are obtamed from the modified Gaussian

sef given by (3.60). The notation of chapter 3.4 is adopted here; subscript 1 refers to

the inner cylinder,)subscript 2 refers to the outer cylinder and subscript % refers to

T

" Numerical solutions for two configurations are presented. The first of these is an
extreme case for which the ratios of shear modulii and densities of the!inner and outer

cylinder have been chosen to illustrate the effects of signiﬁcant‘ changes in ‘material .

«" properties. The second solution is for a more realistic choice of material properties.
7 N N . -

ial properties of both cylinders are chosen 4o be the same, the solution

reduces™o.the homogeneous case discussed in segtion 5.2.

I"lé,urw .24-5.26  show v, P, and ), respectively for the first configuration for
wlnch vy = 0.48, 1/2:0495 C—pog/pm =2, 1/)-—u2/,ul =17, R =1, R. = 1.25,

R, =1.4; and g=1. 3 Arrows indicate the direction of propagation.

-

At 7= 0.025 the-disturbance i 1s propagatmg outward and is still entirely wlthen
tlw mn( cylinder. At 7 = 0.05 a reflected component 1S propagatmg 1nwa1d and a

tmnbmltted component Is propagating outward.

As is<evident, the solutions satisfy continuity of v, Xg, and o, at the interface.

- When the density of the inner and cuter cylinder are different, as they are for th'ié-'l'

PR

3 Material properties are defined for infinitesimal deformation from the reference configuration,

\

taken to be the undeformed state.
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example, the slope of the vclocityi}s discontinuous at the interface.

The ﬁtlrﬂerical dispersioi and smearing which are evident at the shock fronts is
.s;puri‘ous and is a consequence of both the crude grid size and the fact that the Courant
number, in the outer cylinder is significantly less than 1. The latter occurs bef/:auﬂse;
the spatial grid sizes for the inner and oﬁter cylinder are fixed and are based on the
initial conditions of the deformation. A discussion of this effect is presented in section

1.3.5. The jump conditions for the inner and outer cylinder are given in section 3.4.3
~and arc’”sa’ftisﬁed if an extrz;p‘olation procedure, similar to that discussed in section '

5.1.3 is used to account for the numerical dissipation and dispersion.

Figm'éu5.27 shows the velocity as a function of R fqr a somewhat more realistic
conf‘lgurfgti()l{ for which »; = -0.48, ~1/2 - .495, C..:'[)()g/[)m = 1,{\¢ = po/p; = 3,
I?i )_2'-1, R, =1.25, R, - 1.5 and gq=1. When {( =1, thé velocity tis both function
~and slope continuous at the interface. |
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Chapter 6 - | &
Conclﬁding Remarks

The finite elasticity problems considered in this thesis are -problems which involve"
one sﬁafial dimension (radius). A significant extension of this:research is to consider
two and three dimensional problems in which spherical or cylindrical symmetry does
not apply. The additional C(.)n'lplexi‘ty of two andl three dimensional problems is
significant since additional dependent variables and governing equatiors are required -

to specify the préblem.

Based on the success of the hybrid scheme for problems of one spatial dimension,
an extension of thi¢ -heme for two and three spatial dimension problems may also
prove successful. 1 ~ nsion of MacCormack’s method for two and three dimensional
problems is stra.ightf';forward and-is discussed by several authors including Anderson
et al. (1984), MacCormack (1969) and Warming et al. (1973). However, like the
one dimensional case, application of the appropriate boundary conditions may not be-
as casily accdm;;lished and likely requires extension of the method of characteristics
for first order PDE’s in two and three dependent variables. A presentafion of this

o

extension is given by Zauderer (1983).

Ynother majof extension of the thesis work is to consider proi)lems invblving
simtjl‘l\taneous_propagation of both thermal and mechanical disﬁufbince,?. Part of the
difficulty of this problemisin obtaining a suitable constitutive relation w_}_ﬁch describes
the transport of heat in the medium. Fourie‘r’s law vheat cgnduction results in an

%,

infinite thermal propagation velocity. SR S e

The Maxwell relation (Achenbach, 1984) s a modiffc@j;ion .of%'-Fépl?ier’s law which
includes-a term which is proportional to the time rate of cha,rige of heat flux. The

addition of this term results in a finite thermal propagation velocity which, “for a

137
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one-dimensional thermal propagation problem is +,/a/7 where ofis the thermal
>

diffusivity and 7 is the relaxation time in the Maxwell relation.

Iy
Y . . . . . . ‘- M . s . .
An important consideration of this analysis is that limited experimental studies
have been conducted to obtain the relaxation time 7. I’s magnitude is presumed
to be small although expey(n/ta,l measurcments for a specific material are generally

-

una,va,i‘lable. . : » 4‘(“%%
~ The computational difficulty of a combined mechanical and thermal propugaiion
problem is related to the fact that the propagation speed of stress and %ﬂnal \vn.w'\g
. may differ by se\}'eral orders of magnitude. This will.cause excessive dispersion of the
mechanical wave if the nqrnérical stability\criteria is based on the numerically largest

characteristic velocity (dominated by the thermal wave velocity).

~ Most of the numerical solutions which are shown in various figures throughout
this *hesis, have taxed the limits of mainframe computing powe “rently availal,
to the author (several hours on an Amdahl 5870 and Floating P & 'stems FPS- 164
Attached Processor). Using these facilities, a limited amount « 1. crical dispersion
and dissipation is evident in the numerical solqi;ions for the tvpes of problems and
range of deformation considered. Extension of this rcécarch inar «such as, problems
of more fhan one space dimension, analysis of nearly incomprcg& .¢ media, or thermal

wave propagation will require extensive use of a supercomputer.
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Appendix A - N

‘Spherically Symmetric Deformatien_ in Incompressible
- Materials | "

.

The dyn&mic deforrnatiori of an incompressible spherical shell is considered in :
- this section. The analy31s presented here is a modification of the ana1y51s given by

Knowles (1960) for the expa,nsmn of an incompressible cylindrical tube. o

The dynamic deformation. of an incompressible hyperelastic s%)heric;&l‘ shell is
govefned by a second order,{ nonlinear ordinary differential equation ‘whose solution
gives the positior;‘of a particular radius as a function of time. The ODE which is
derived: here, gives the position of the inner cavity wall as. .a function of time. A
simple kin(jfnatic relation can be used to relate the position at any other radius with

‘the position of the cavity wall. /\ < ~
A

The analysis is given for the neo-Hookean sef (2.13) althougil there is no difficult

: T L . . X .
in principle in considering other incompressible strain energy'\relatlons.

L]

The nontrivial equation-of motion for spherically symmetric deformation in which

body forces are neglected, is given by (3.19) and is repeated below \ :

P, 2(P,—P) . O
RTT R o (A1)
Hhe velocity term has been written as Or/d¢ using r = r(R,t)."

- For an incompressible materfal, the nominal stress components are given by

a 2 OW (A, xg)
. = - ) = el 5
A P, o\, (W P/\¢> A ); N, P 4’/
P, - laxgw \a) = 1O ” b (A.2)
T 29 T PRMIT ST T
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. .

where p. is an arbxtra.ry Lagrangian multiplier wh)ch is not determined from the.

deformatlon The incompressibility condltlon given by J =A% =1 hay been used.

The neo-Hookean sef ( 3) for splierically symmetric deformation is

<
= ,. Tow= g{Ar2+2A¢?,f 3} . (A.3)
The nominal stress. combpnents obtained using (A.2) are
. : /
‘ 7
S P = —- p/\sﬁ (
: As” ' T
p -~
. Pd> = /t/\ - — . A
) $T (A1)
Substitution (éf these relations into the equation of motion (A.1) yields
~—
: Op 2u _ ’ ‘ o*r .
- 2‘__ i adl { Y 3 _ -2 } — - i 5
AR T T W D= AT ) =0 o (A.5)
where 7 i
d g (r 1
2 =—(—)=— -2 _ ) .
) 55 (M) oR\R) = B\ ¢) (A6)
N has been used. .
To apply the boundary condltlons 1t &convement to introduce ~
R - y
) \
Q=7— (A7)

Differentiation with respcet to R’ erterms of differentiation wnh respect to () can

i

be related using | : ' >
D d;Q_i_‘_d_(Rr—l)_a_
N : - OR ~ dR9Q ~ dR'T .. 7 AQ o
) ) H ‘ —_ 4 . . o '
. e = @=Q@0)0 (A8)

R 0Q -
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Using (A.7) and (A.8), the equation of motion (A?%) can be written

_Op _rQ* O
2u (Q*—1 — A9
Since the material is incompressible,
v \

P R=r R . R <R<R, : < (A.10)

s

where R; and R, are the inner and outer‘radii of the shell in the reference state. Using

this relation, the acceleration term of equation (A.Q), 8%7/ 912, can be expressed in

terms of d*r /dt2 where r; is the radius of the cavity wall in the deforrned coordinate

system. lef(,rcntlatmg both sides of equation (A 10) tw1ce with respect to time and

using (A.7) yields

027‘ - "l — Q3 2/3 dQT‘,' dT,‘ 2 , 1 _ QB \
o2~ (r?v—R?) r"{’"" dr? +2<dt) (kl_r ~123 )} (AL
Substitution of this relation into (Ax9) yiélds :
S T D
—p0 T2 (=1 -

pQ*(rd — R} d*r; (dr,->2< v1- QR > .
(1 —-Q3%)%s T Ty +2 7t 1 N T (A.12)'

If the inner and outer surfaces of the spherical sheltare subjected to spatially uniform

internal and external pressures II;(t) and II,(t) respectively, the boundary conditions

can be written
% N

u Bo(Rl) = 1) = B () = LA

or(Royt) = _na(t)':x%ﬁi(z;o,t) Q2P.(R,, 1) (A.13)

Using equation (A.4a), these boundary conditions can also be written
R : :

ot By

A\
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4‘ X ) 1{' e @
p+uQl = ST o Q=2
iy R,
—p+pQ, = -IL(t) for . Q.= (ALY
If equation (A.12) is integrated with respect to Q and th- boundary condition (A.14a)
¥
1s applied, the hydrostatic pressurc p must satlsfy i ‘
4 : : ' .
-p + = < A
\ 3
‘ _—“_ y Q? ., | /’7'? (127,‘, Q 7]2 }\J
T TR T T A

| . 2o (dr\? (@ L L (1=7" , [.
o) o o (- )

— L) | (A.15)

If equation (A.15) is evaluatéd at Q Q. and the boun(lary condition giver

by (A.14b) is used, the dlfferentlal cquatxon for ri(t) is ) ‘
2u(Q-Q) + B@i-eh Do
3k 2. | '
pr; d T Qo n '
1 . d 7
T W Rl TR
. . . . : Ny v .
i 2pri _qdr\P Qo ( (=) > |
—_r 1 - 1 Es
+ (T __RS)I/S(dt) \é: (1 __773)2/3 ( Iz'g) an . ‘
= IL(t) - , R , (A 16)

- - i

The intompressibility condition (.1.10) can be’used, to eliminate r, in the definition
- of (), ag.given by ,_, a0l A R -
Y R, . M | _
=== T - (A.17)
ro " (B B :

A\
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If the 1ntegrat10n in (A. 16) is performed the resultmg differential equation is

d2r, dr; A X
AT B( - ) + 0= (1) — TL() (A.18)
‘where
. ' r2 '
A= S lm{a-en-a-eo
“ ‘2pr‘- . .
Bo= (73 = R?)I/S{(l —QHP (-
-
. BTy LN d.
© 0 = 2u(Q - Q)+ %(Q“ QY (A19)
~ o . |
Consider a nondimgnsional scheme given by ~
' S oI =t |t (A.20)
R H . R,’

- which corresponds to the scheme used in Section 3.1.2 for deformation of compressible
matcri?ﬁs;&)eﬁning A1 as ‘
| e M= As(Rist) =ri/R: (A.21)

\
[, !

... the ordinary differential equation corresponding the deformation of an incompressible

spherical shell for the nec-Hookean sef is 5

i ) A dr?

d*\ B(%)z +C =TI(r) — To(7) (A.22)

“where
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a A ‘ 1/3 o 31/1 !
A = W{U-@?) - (1-Q5) } |
| . 2)‘1 3\1/ 3 1/3 |
B o= Gyl @) - - o))
' M _ 4/3 _ /1 3\4/3
T (R =
b0 = 2(0-Q)+ 5@ - Q) (A-23)

The nonlinear ODE (A.22) can be solved using a 4tk order Runge-Kutta Technique.
The solutions presented in this thesis are for IT,(7) = 0 although there is no difliculty

- . ‘ M -
I using a non-zero external pressure. ‘ o

For the'special case in which R, — oo, that is, deformation of a spherical cavity

in an unbounded medium, ®
R, R,
Qoz——-—)l as — — 00 (A2/1)
7‘O R,‘ ,\
\
— fhe ordinary differential cquatxon (A.22) is applicable with II,(7) = 0 and .
22
A = —Z21 (1 _ 03/
(/\113_1)1/3( Qz) .
2M 311/3 A 3\4/3
_ o i .
B (/\3 1)1/3(1 Qz) 2(/\1 _ 4/3( Q \
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éonfiguration B,, is given by (Ogden, 1984)

Appendix B

Finite Elasticity Terminology _
For problems_of spherical symmetfy, it is convenient to use spherical polar

coordinates denoted by 7,0, ¢ in the deformed coordinate system and R,©,® in the

reference (undefbrmed) coordinate systcén.' An analogous cylindrical polar coordinate

system denoted. by r,0,z and R, 0, Z is ‘convenient for problems of cylindrical

symmetry.

Spherically symmetsic homogenéous deformation of -body B, from its reference

ro= r(R,tj

6 = © O
6 =@ . | (B.1)

Cylindrically symmetric homogeneous deformation is given by

[ )
—~ 7\r = 7(R,t)
‘ 0 = 0

T A (B2)

The deformation gradient tensor F' is a two point tensor with components Fi,. -

In spherical polar coordinates, the components of F' are (Spencer, 1980)

‘ , o .
Lo L ar 1er 1o
. v | - 3r R 50 Rsin® 58 :
_ 2 r o8 ) o '
F= "R Ro@ = Rsn@ 0% ( (B.3)
- g @ r.u'nl)ﬁé T sind 8¢ :
 rsinldzg TRE56 Raino ad

and in cylindrical polar coordinates, the components of F are =
o : =
© 149



150

dr  19r - 9r
4 R Ree 9z
_ 20 r 20 90 (R
= TR Roe "oz : (B.1)
- S 9r 190: o o

9R R8O a

If the deformation is spherically or cylindrically symmetric, only the diagonal

components of (B.3) and (B.4) respcctively are non-zero.

By the polar decompositioh theorem, the deformation gradient tensor F' may be

uniquely decomposed into either of the products

F = RU
F VR . | (B.5)

where R is a second order orthogonal tensor and U and V arc symmetric positive

definite second. order tensors. U and V. are called the right and left stretc  tensors

respectively, and R is called the rotation tensor. For the s .l case of spherically
and cylindrically symmetric deformation, R = F where / is the #dentity tensor.
: ¥

since U is symmetric and positive definite, it’s principal values (Ay, Az, Ag) are real

a~d positive. The principal values of V are the same as those of U.

* A suitable measure of finite deformation is given by either the right Cauchy-Green
deformation tensor C or the left Cauchy—Green\ deformation tensor I3, where
c = FrT }
B FFrT . ' (B.6)-

il

The relation between tensors C and B and U and V can be obtained using (13.5)
and (B.6) | .
| C=FTF=UR"RU=U"

C=FF =VRR'V=V: BTy
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5
The principal stretches Ay, Ay, A3 aré invaria.nts whi‘ch are intringic to the deformation
and. are principal values of U and V. Since C = U? and B = V?, the principal values
of C and B are A2 A2 and AZ. Other combinations\ofi these principal stretches are

f

also invariant and it is convenient to define the strain invariants "

I, = iT'C:tTBZ/\:IZ—}-/\%-F/\g _ !
NP A0 ]. ) | 1 . - ’ . e
RS 5{(tr OV —trC?) = 5{(w B)f’ —tr BI} = A5+ AT+ A0 L

= detC=det B= DI\ o | - (B.8)

 The dilatation J is given by ‘
' . i J_o'=v,é)\'1)\2/\3 : g (B.9)

and can be written i'n"‘t'erm’s.,,o_f the deformation gradient F’

I = Iy= Vel C = \Jdet(FT F) = ded F*- (B.10)
4 e
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