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Abstract

The decay rate of exotic atoms is of great importance due to their short lifetimes, which
presents a challenge when attempting to probe them. The study of pionic atoms can open
up a new area of physics, and experiments such as the PiHe collaboration have found a new
method of laser spectroscopy for pionic helium. [1].

The first part of this thesis provides a rigorous calculation of the atomic form factor,
which involves evaluating an integration of a slowly convergent and oscillatory integrand.
The main goal is to transform the integral into a summation which is easy to compute from
the computational perspective. Using the plane wave expansion, the integral is separated
into two separate integral, which are radial and angular integrals. The integral involving
the product of Bessel functions and associated Laguerre polynomials is used to calculate the
radial integral. The angular integral is evaluated using the Wigner’s 3−j symbol. An explicit
analytical expression for the discrete-discrete transition form factor is presented, exactly in
the way they are implemented in the program. Atomic form factor is an important factor in
the calculation of decay rate and scattering amplitude.

The second part of the thesis investigates the decay rate of the pion bound in a Coulomb
potential, which is an exotic atom. The bound pion in a hydrogen atom is formed when an
electron of an ordinary hydrogen atom is replaced by a negative pion. We consider the bound
pion decaying into a bound muon, producing muonic hydrogen and a muon antineutrino.
Using the form factor calculation from the first part, we present the decay rate of the bound
pion and the most probable final state of the muon. In the calculation of decay rate, we
considered the non-relativistic wave function of the initial and final particles, since the velocity
of pion in hydrogen is of the order of αc, where α is the fine structure constant.
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Preface

This thesis is arranged as follows: In Chapter 2, we studied the atomic form factor for
unequal masses. The atomic form factor calculation is inspired by the decay rate of bound
pion decay into a bound muon. We have implemented the technique of [2] and introduced
different masses for the initial and final particles and generalized direction of transferred
momentum, which we will use in our calculation of bound pion decay. Chapter 3 has the free
pion decay calculation. In Chapter 4, we have introduced field operators to calculate free
pion decay and extended the field operators and states for the bound field. Using the bound
field operators, we have calculated bound pion to bound muon decay. The final decay formula
includes the modulus squared of the form factor from Chapter 2, which is then integrated
over the neutrino angle.

Recent experimental findings on pionic atoms by the experimenters at the Paul Scherrer
Institute (PSI) is one of the main motivation behind this work. The idea of this work belongs
to Prof. Andrzej Czarnecki. The mathematical formalism of Chapter 2 is from a collaboration
with Mohammad Rashid Taher. I have developed the Julia package for form factor calculation
and compared it with the previous Fortran codes. For Chapter 4, Prof. Andrzej Czarnecki
helped me with the calculation. With the value of form factor from Chapter 2, we have
calculated the decay rate of bound pion into bound muon decay.
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Chapter 1

Introduction

In 1935, Yukawa first predicted the existence of the pion theoretically, which was considered
a mediator for strong force [5]. From 1939 to 1942, Indian physicists D. M. Bose and Bibha
Choudhuri used photographic plates to study cosmic rays in the high-altitude mountain of
Darjeeling and found long curved ionizing tracks distinguishable from the tracks of alpha
particles and protons. They identified that the cosmic particle is about 200 times the mass
of an electron [6, 7, 8]. Due to the shortage of higher sensitive experiments, they could not
confirm that the ionizing curve was for meson. Later in 1947, British physicist C. F. Powell
proved the existence of pion [9]. Pion is the lightest hadron and was used as a probe for the
strong interaction. It is easy to produce as it is produced when protons hit a target.

Mesonic atoms were first made around 1947 and have been used in the experiments
to understand the behavior of the particle in atoms [10]. Due to the long lifetime of pion
compared to the electronic interactions, it is used as a probe. Pionic atoms are made when the
electron is replaced by the negative pion. These types of atoms are not stable; the pion can be
absorbed by the nucleus, destroying the atom, which is governed by strong interaction. The
pion can also emit characteristic photons while changing the state through electromagnetic
interaction, and the pion can decay via weak interaction and produce muon. The produced
muon is usually in the free state, but it can also be bound. We will calculate the decay rate
of the pion bound in hydrogen, which decays into a bound muon. In calculating the matrix
element, one crucial part is the calculation of form factors.

Hans Bethe formulated the calculation of form factors where he considered an atom in
the initial state characterized by quantum numbers n1, l1, m1, and it emits or absorbs a
photon and goes into a new state characterized by new quantum numbers n2, l2, m2. Ac-
cording to [11], the hydrogen-like discrete-discrete atomic form factor is the Fourier trans-
form of ϕ∗

n2l2m2
(r)φn1l1m1(r) with respect to transferred momentum q, where φn1l1m1 (r) and
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ϕn2l2m2 (r) are initial and final particle wave functions:

F n2l2m2
n1l1m1

(q) =

ˆ
drφ∗

n2l2m2
(r)eiq·rφn1l1m1(r). (1.1)

The master calculations of the atomic form factors were performed by Bethe, who found
a simple analytical formula [11]. However, the atom states were described by parabolic
quantum numbers. Bethe’s formulation is used in [12] to calculate the bound-bound transition
cross section in hydrogen-like atoms using the initial and final particle in parabolic coordinates
and quantization axis along the transferred momentum.

The integrand of Eq. (1.1) is oscillatory and irregular, as shown in Fig. 1.1. The integral

Figure 1.1: The integrand is not only oscillatory but also irregular, ψ1 and ψ2 with different
Bohr radii multiplied with cos(qr) plotted as a function of r. The oscillatory integrand is
very hard to evaluate numerically.

of Eq. (1.1) can be split into radial and angular integrals. The form factor calculation
depends on the evaluation of the radial integral. The radial integral involves two associated
Laguerre polynomials. The author of [3] used a Clebsch Gordan type linearization relation
for the product of the two associated Laguerre polynomials. The integral containing Bessel
functions is evaluated using the classical tables of integrals by Gradshteyn and Ryzhik [13]
(entry 6.623.1), and the form factor is expressed in terms of Gegenbauer polynomials and
used the quantization axis perpendicular to the transferred momentum. Another analytical
formula for form factor was found by Massey and Mohr, which was also expressed in terms
of Gegenbauer polynomials and used the atomic states in parabolic coordinates [14]. An
alternative method of evaluating the radial integral is developed in [15] for dimuonium studies.
The radial integral becomes the product of Bessel functions and the associated Laguerre
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polynomials when one of the polynomials is expanded using the definition of Arfken and
Weber [16]. This integral is evaluated using the mathematical result [17] and computed the
diagonal atomic form factors for the quantization axis along transferred momentum. In this
thesis, we have implemented this new technique of [15] to calculate the form factor for non-
equal mass with an independent direction of transferred momentum. By the non-equal mass,
we mean that the final particle mass changes through the decay or scattering processes.

A bound pion can be absorbed by the nucleus or decay through weak interaction, pro-
ducing a muon (which can be bound or free) and a muon antineutrino. In this thesis, we
consider the case where the final produced muon stays bound. To calculate the decay rate,
we have used our formulated form factor calculation. In this decay process, we need the form
factor for unequal masses since the initial and final particles are different.
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Chapter 2

An Implementation of Atomic Form
Factor for Non-equal Masses

2.1 Introduction

A form factor is an essential element in the calculation of the decay rate of bound particles.
During decay, the particle changes into another particle or particles, and the mass is changed.
Studying these types of decay requires the knowledge of form factors.

We have considered the technique of [2] and implemented different masses, introduced
the independent direction of the quantization axis, and made a Julia package to calculate
form factors.

Pionic hydrogen is an exotic atom. It is formed when an electron in the hydrogen atom
is replaced by a pion. An exotic atom has a short lifetime because of the lifetime of the
substitute particles. The lifetime of free π− is τπ− = 26ns. We can not assume that this
lifetime resembles the lifetime of pionic hydrogen because the charged meson is bound.

Pionic hydrogen decays into muonic hydrogen. The Bohr radius of the pionic hydrogen
and the muonic hydrogen is different because of their different masses. In the study of the
bound pion decay rate, we need the discrete-discrete transition form factors for non-equal
masses. A convenient formula for form factor for the equal mass was presented in [2]. In this
chapter, we present a method for evaluating an integral, which is the Fourier transform of
initial and final particle wave functions with respect to transferred momentum during decay.
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2.2 Analytical Expression for the Discrete-discrete Form

Factors

According to [11], the hydrogen-like discrete-discrete atomic form factor is the Fourier
transform of ϕ∗

n2l2m2
(r)φn1l1m1(r) with respect to transferred momentum q, where φn1l1m1 (r)

and ϕn2l2m2 (r) are initial and final particle wave functions:

F n2l2m2
n1l1m1

(q) =

ˆ
drφ∗

n2l2m2
(r)eiq·rφn1l1m1(r) (2.1)

=

ˆ
drR∗

n2l2
(r)Yl2m2(Ω)e

iq·rRn1l1(r)Yl1m1(Ω), (2.2)

where Ylm(Ω) are spherical functions, Rnl(r) is the hydrogen-like radial wave functions, and
dr = r2drdΩ, with dΩ = sinθdθdϕ. The radial wave functions of initial particle have the
form

Rn1l1(r) =
2

n2
1

√
(n1 − l1 − 1)!

(n1 + l1)!
e
− r

n1

(
2r

n1

)l1

L2l1+1
n1−l1−1

(
2r

n1

)
, (2.3)

with Lm
n as the associated Laguerre polynomials. The associated Laguerre polynomials de-

fined as in [16]

Lm
n (x) = (n+m)!

n∑
k=0

(−1)k

k!(n− k)!(k +m)!
xk. (2.4)

We are using the Bohr orbit of the initial particle, as the unit of length so the radial wave
functions of the final particle can be written as

Rn2l2(r) =
2

ρ3/2n2
2

√
(n2 − l2 − 1)!

(n2 + l2)!
e
− r

ρn2

(
2r

ρn2

)l2

L2l2+1
n2−l2−1

(
2r

ρn2

)
, (2.5)

where ρ = a2
a1

, with a1 = initial particle Bohr radius and a2 = final particle Bohr radius. We
are implementing different masses through the ratio of Bohr radii.

It is possible to expand the plane wave given in eq. (2.2) as a sum over spherical harmonics

eiq.r =
∞∑
l=0

l∑
m=−l

jl(qr)clm(Ωq)Y
∗
lm(Ωr). (2.6)

We can choose the direction of q along z-axis. For q = qẑ, q · r = qrcosθ, and θ is the polar
angle between r and the z-axis. Hence the double sum in eq. (2.6) must be independent of
the azimuthal angle ϕ. This is possible only if clm(qẑ) = 0 for all m ̸= 0. That is, only the
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m = 0 term of eq. (2.6) survives and it follows that

eiqrcosθ =
∞∑
l=0

(
2l + 1

4π

)1/2

Al(q)jl(qr)Pl(cosθ), (2.7)

where Al(q) ≡ cl0(qẑ), and we have employed the relation between Yl0(θ, ϕ) and the Legendre
polynomial, Pl(cosθ). We can find the coefficient Al(q) by using the orthogonality relation of
the Legendre polynomials. The coefficient is

Al(q) = il
√

4π(2l + 1). (2.8)

Using this coefficient in (2.7)

eiqrcosθ =
∞∑
l=0

il(2l + 1)jl(qr)Pl(cosθ) (2.9)

Using the addition theorem of spherical harmonics,

Pl(cosθ) =
4π

2l + 1

l∑
m=−l

Ylm(r)Y
∗
lm(q), (2.10)

the plane wave expansion becomes [18]

eiq·r = 4π
∞∑
l=0

l∑
m=−l

iljl(qr)Ylm(Ωq)Y
∗
lm(Ωr), (2.11)

Using this expansion in Eq. (2.2), we get

F n2l2m2
n1l1m1

= 4π
∞∑
l=0

l∑
m=−l

ˆ ∞

0

r2drR∗
n2l2

(r)Rn1l1(r)i
ljl(qr)

ˆ
Ylm(Ωq)Y

∗
l2m2

(Ωr)

· Y ∗
lm(Ω)Yl1m1(Ωr)dΩr (2.12)

= 4π
∞∑
l=0

l∑
m=−l

ˆ ∞

0

r2drR∗
n2l2

(r)Rn1l1(r)i
ljl(qr)Ylm(Ωq)I

m1m2m
l1l2l

, (2.13)

6



where

Im1m2m
l1l2l

=

ˆ
dΩY ∗

l2m2
(Ω)Y ∗

lm(Ω)Yl1m1(Ω) (2.14)

= (−1)m2+m

ˆ
dΩrYl2,−m2

(Ωr)Yl,−m(Ωr)Yl1m1(Ωr). (2.15)

The angular integral Eq. (2.15) can be expressed in terms of Wigner’s 3j−symbol [19]

Im1m2m
l1l2l

= (−1)m2+m

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

(
l1 l2 l

0 0 0

)

·

(
l1 l2 l

m1 −m2 −m

)
(2.16)

= (−1)m2+m

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π
I, (2.17)

where I =

(
l1 l2 l

0 0 0

)(
l1 l2 l

m1 −m2 −m

)
. The 3j−symbol

(
l1 l2 l

0 0 0

)
is nonzero

only if l + l1 + l2 is an even integer [20], and

(
l1 l1 l

m1 −m2 −m

)
is nonzero only if m =

m1 −m2 and | l1 − l2 |≤ l ≤ l1 + l2 . So we can do the sum over l with a step of 2. We are
using the Bohr orbit of the initial particle as the unit of length and initial particles reduced
mass µ as the unit of mass. Introducing wave functions in the integral of Eq. (2.13) gives

F n2l2m2
n1l1m1

= 4π
22+l1+l2

(ρ)3/2 n2
1n

2
2

√
(n1 − l1 − 1)!

(n1 + l1)!

√
(n2 − l2 − 1)!

(n2 + l2)!

l1+l2∑
l=|l1−l2|

·
ˆ ∞

0

r2dre
− r

n1

(
r

n1

)l1

L2l1+1
n1−l1−1

(
2r

n1

)
iljl(qr)

· e−
r

ρn2

(
r

ρn2

)l2

L2l2+1
n2−l2−1

(
2r

ρn2

)
Ylm(Ωq)I

m1m2m
l1l2l

, (2.18)

where Im1m2m
l1l2l

is Eq. (2.16), and ρ = a2
a1

.

F n2l2m2
n1l1m1

= N

l1+l2∑
l=|l1−l2|

ilYlm(Ωq)I
m1m2m
l1l2l

Il, (2.19)
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where

N =
4π22+l1+l2

ρ3/2+l2n2+l1
1 n2+l2

2

√
(n1 − l1 − 1)!

(n1 + l1)!

√
(n2 − l2 − 1)!

(n2 + l2)!
, (2.20)

Il =

ˆ ∞

0

r2+l1+l2dre
− r

n1
− r

ρn2L2l1+1
n1−l1−1

(
2r

n1

)
jl(qr)L

2l2+1
n2−l2−1

(
2r

ρn2

)
. (2.21)

Now expanding L2l2+1
n2−l2−1 using Eqs. (2.4), and (2.21) becomes

Il =

n2−l2−1∑
k=0

(−1)k2k

ρknk
2k! (n2 − l2 − 1− k)! (2l2 + k + 1)!

·
ˆ ∞

0

drr2+l1+l2+ke
−rn2ρ−rn1

ρn1n2 L2l1+1
n1−l1−1

(
2r

n1

)
jl(qr). (2.22)

Writing the spherical Bessel functions in terms of Bessel function of the first kind, and using
the identity

jn(x) =

√
π

2x
Jn+ 1

2
(x), (2.23)

in Eq. (2.22), we get

Il =

√
π

2q

n2−l2−1∑
k=0

(−1)k2k

ρknk
2k! (n2 − l2 − 1− k)! (2l2 + k + 1)!

·
ˆ ∞

0

drrl1+l2+k+ 3
2 e

−rn2ρ−rn1
ρn1n2 L2l1+1

n1−l1−1

(
2r

n1

)
Jl+ 1

2
(qr). (2.24)

We can write

γ = l1 + l2 + k +
3

2
, δ =

n2ρ+ n1

ρn1n2

, ν = l +
1

2
, (2.25)

n = n1 − l1 − 1, β =
2

n1

, α = 2l1 + 1, (2.26)

and Eq. (2.24) becomes

Il =

√
π

2q

n2−l2−1∑
k=0

(−1)k2k

ρknk
2k! (n2 − l2 − 1− k)! (2l2 + k + 1)!

·
∞̂

0

e−δrJν(qr)r
γLα

n(βr)dr. (2.27)

8



The integration in Eq. (2.27) can be done using the following mathematical result [17]

∞̂

0

e−δxJν(µx)x
γLα

n(βx)dx =
n∑

k=0

(−β)kµνΓ(n+ α + 1)Γ(ν + γ + k + 1)

k!Γ(n− k + 1)Γ(α + k + 1)2νΓ(ν + 1)δν+γ+k+1

· 2F1

(
ν + γ + k + 1

2
,
ν + γ + k + 2

2
; 1 + ν;−µ

2

δ2

)
. (2.28)

Using Eq. (2.28) in Eq. (2.27) gives

Il =

√
π

2q

n2−l2−1∑
k=0

(−1)k2k

ρknk
2k! (n2 − l2 − 1− k)! (2l2 + k + 1)!

n∑
k1=0

(−β)k1qνΓ(n+ α + 1)Γ(ν + γ + k1 + 1)

k1!Γ(n− k1 + 1)Γ(α + k1 + 1)2νΓ(ν + 1)δν+γ+k1+1

· 2F1

(
ν + γ + k1 + 1

2
,
ν + γ + k1 + 2

2
; 1 + ν;−q

2

δ2

)
. (2.29)

Now introducing the expression for Ylm(Ωq)

Ylm(Ωq) = Ylm(0, ϕ) = δm0

√
2l + 1

4π
, (2.30)

which corresponds to the case when the direction of the transferred momentum q is taken as
the direction of the quantization axis. The form factor is

F n2l2m2
n1l1m1

= N

l1+l2∑
l=|l1−l2|

AlIl, (2.31)

where

Al = il(−1)m2+m2l + 1

4π

√
(2l1 + 1)(2l2 + 1)I. (2.32)

A similar result was obtained in Eq. (24) of [15]. The non-equal mass in this calculation
comes through the Bohr radius. Because Bohr radius ∝ 1

mass . So, a2
a1

= µ1

µ2
, where µ1 is the

mass of the initial particle and µ2 is the mass of the final particle. This formula (2.31) can be
used in Python, Julia, Mathematica, or any other standard computer language. With ρ = 1,
Eq. (2.31) reproduces all the results given in [21] for equal masses.
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2.3 Description of Programs

We provide a Mathematica implementation of the discrete-discrete atomic form factor as
given by Eq. (2.31).

• n1, l1, and m1 are integers representing the quantum numbers of the initial atomic
state.

• n2 and l2 are integers representing the quantum numbers of the final atomic state.

• ρ is floating point ratio of Bohr radii a1 and a2. a1 and a2 are the Bohr radii of the
initial and final particle respectively.

• q is the transferred momentum in atomic units. Atomic units: qatomic units = q/µ, where
µ is the reduced mass of the hydrogen-like atom.

We have introduced another term called θ to implement the generalized direction of trans-
ferred momentum. The function is mformq(n1, l1,m1, n2, l2,m2,ρ, q, theta).

• theta is the direction of transferred momentum and in radian units.

To make the formula easy to use so that one can calculate the form factor without knowing
the source code; we developed a Julia package called FormFactor, which can be used as regular
Julia packages. The Julia package and Mathematica code give the same result. The program
is designed for Mac OS X and Windows 64bit and for Julia v1.7. The licensing of the program
is MIT. We provide the Julia package for calculating the discrete-discrete atomic form factor.
The Julia package can be used directly from the Github repository. To use this package, one
has to run the following commands in Julia REPL

1 pkg> add https : // github . com/nuzhat07/FormFactor . j l . g i t
2 j u l i a > import FormFactor
3 j u l i a > us ing FormFactor
4 j u l i a > mform (1 , 0 , 0 , 1 , 0 , 1 . 0 , 0 . 6 6 , 0 . 0 )
5 0.8132334486398062

2.4 Test Run, Input and Output

To illustrate the output of the program we plot the atomic form factors versus transferred
momentum and the ratio of the Bohr radii. The following Fig. 2.1 is for F 5,0,0

4,2,0 (q), we can
see that the discrete-discrete atomic form factor evaluated at zero transferred momentum is
0 because of the orthogonality of these states.
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Figure 2.1: 3D plot of discrete-discrete form factor for transition from 4d to 5s versus trans-
ferred momentum and the ratio of the Bohr radii.

The output results and computation time for integration and summation are given in
Table 2.1 for the following combinations of quantum numbers.

2.5 Comparison with Previously Published Results

2.5.1 Comparison with Results from [3]

Previously published literatures for form factor calculation only account for the equal
masses. In our formula the mass comes through the value of the ratio of Bohr radii, ρ. So,
for the comparison part, we inserted the value of ratio of Bohr radii, ρ = 1, which corresponds
to the equal masses. The computation time of our Julia code for 30 form factors is 44.14s.
We have compared the computation time with the previously published Fortran code [3] for
the same quantum numbers. For the comparison, we have modified the “ffdiff.f” file given in
A.6. We have changed the for loop in that file to calculate 30 form factors. The value of the
transferred momentum and the combination of quantum numbers used in the Fortran code
and in the Julia code were same. The computation time of the Fortran code is 4.88s. As
expected the Julia code is almost 9 times slower than the Fortran code. The value of form
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n1,l1,m1,n2,l2,ρ,q Form Factor
(Integration)

Form Factor
(Summation)

% deviation Ratio of
Integration

Computation
Time and

Summation
Computation

Time
2, 1, 0, 1, 0, 0.5, 0.66 0.0883452i 0.0883452i 0 109892.0
3, 2, 0, 2, 1, 0.5, 0.66 0.0301999i 0.0301999i 0 53377.6
3, 1, 0, 2, 1, 0.5, 0.66 0.0587835 0.0587835 0 345396.0
3, 2, 1, 4, 2, 1.0, 0.66 −0.12248 −0.12247996 0 122265.0
4, 2, 2, 3, 2, 1.0, .66 0.0468502 0.04685025 0 111257.0
5, 3, 0, 4, 3, 0.5, 0.66 −0.0565619 −0.0565619 0 229612.0
5, 4, 3, 4, 3, 1.0, 0.66 0.00398216i 0.00398216i 0 130256.0
6, 4, 0, 2, 0, 0.5, 0.66 −0.00244159 −0.00244159 0 152241.0
9, 5, 0, 9, 5, 0.7, 0.66 −0.00783776 −0.00783776 0 314721.0
10, 9, 1, 9, 1, 1.0, .66 −0.00000066 −0.00000066 0 916695.0

Table 2.1: Form factors calculated using the integration and summation. The integration
and summation using Eq. 2.31 are done in Mathematica. The function F6 in the appendix
A.1 can calculate the integration. From comparing the computation time, we can say that
our algorithm is almost 100000 times faster. Instead of doing the direct calculation of form
factor, using this algorithm, we can save a lot of time and computation energy.
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factor ranges between 0 to 1, our Julia code gives the value of form factor within the range
up to n = 40.

2.5.2 Comparison with Recently Published Results from [4]

We are comparing the computation time with another recently published Fortran code [4].
But during the compilation of their Fortran code we have found an error which is published.
The error is related to the IMPLICIT NONE statement. This statement is a non-executable
statement. When it is used, the IMPLICIT NONE statement disables the typing provisions of
Fortran. When the IMPLICIT NONE statement is included in a program, any variable that
does not appear in an explicit type declaration statement is considered an error. While
compiling we faced exactly the same error. In the published program file called crsmumu.f,
inside three functions the IMPLICIT NONE statement was used by the authors but the type
was not declared of the external functions. Through working with this, we have found the
quick workaround. We can use a flag for the compiler which will ignore the out of date non-
standard Fortran syntax. The flag is -std=legacy. We have written a main program using DO

loop to calculate 30 form factors. We have used the functions written in the file crsmumu.f ,
taken the quantization axis along the transferred momentum, and chosen the computation
method 1 which is [15]. The time to calculate 30 form factors is about 7s. If the output of a
Fortran code has 3 digits in power we can use the format ES11.2E3 to display the output.

2.6 Real and Imaginary Part

From our code it is visible that even values of l will contribute to the real form factor.
If l1 + l2 = even then l is always even since we are summing over l with a step of 2. On
the other hand the form factor becomes imaginary for odd values of l1 + l2. For example the
transition form factor F 200

210 is imaginary because l1 + l2 = 1.
Also for the numerical integration, the imaginary and the real part of the integrand can

be separated. Our integrand is

2π

¨
r2drsinθdθφ∗

n2l2m2
(r)eiqrcosθφn1l1m1(r) (2.33)

which can be separated into two parts using Euler’s formula. The integrand becomes

2π

¨
r2drsinθdθφ∗

n2l2m2
(r) (cos(qrcosθ) + isin(qrcosθ))φn1l1m1(r). (2.34)

We can have different powers of r from the wave function. According to the definition of the
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radial part of the wave function Eq.(2.3), r have powers of l. When the power of r is even we
have only a real part in our numerical integration result. The sine function is odd and even
power of r is even for this reason the numerical integration of the imaginary part vanishes.
If l1 + l2 is even then r can have an even power. The imaginary part will survive when the
power of r will be odd. If l1 + l2 is odd then r can have an odd power. This assumption can
be checked by the result of two separate integration given below Fig. 2.2.

Figure 2.2: The integration is separated into two parts, one is real and another is imaginary
part. The two results are compared.

2.7 Challenges in Numerical Computation of the Form

Factor

The expression in Eq. (2.31) is adequate for the study of transitions between states of
low and moderate values of principle quantum numbers about n ≈ 50. This is because
the expression gives rise to catastrophic cancellation errors or machine overflows for larger
values of n, preventing the numerical work to progress [22]. The catastrophic cancellation
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error is a numerical issue which arises when two numbers that are very close in value are
subtracted from each other, resulting in a large error in final answer. The direct numerical
computation of a hypergeometric function of large arguments depends on, in addition to the
accuracy of the machine used, how skillfully the computer code is written. For high principle
quantum number n the wave functions in the matrix element extends to a large distance
from the nucleus. Also the ψnlm state with large n contains n3 oscillations, arising from n

nodes along each axis of the xyz coordinate system. Consequently, the matrix element got
n3 × n3 oscillations from wave functions and more oscillation can come from the operator.
When a brute-force numerical technique is directly applied to evaluate the matrix element,
these oscillations usually cause cancellation and/or rounding-off errors.

Also to avoid computation difficulty in Julia, we have replaced the factorials by Gamma
functions since

Γ(n) = (n− 1)!, (2.35)

where n is an integer.
The sum over l with a step of 2 reduces the memory allocation by 50% which increases

the speed of the code.
In [3] they have mentioned that for n = 13, the deviation from the correct value is of

the order of 1%. With our formula we can calculate the form factor which matches with the
correct values from the integration up-to 8 decimal points. In [23], the author mentioned that
Gordon formula shows problem after n = 50 and our formula shows problem after n = 59.

2.8 Generalized Form Factor

By generalized form factor, we mean that the direction of transferred momentum is indepen-
dent of the z-axis. To get the generalized form factor, we have to get an independent z-axis
other than the quantization axis. We can do that by using the generalized formula for the
direction of the transferred momentum. We have to use general formula in Eq. (2.30) which
is

Ylm(Ωq) = Ylm(θ, ϕ) = (−1)m

√
(2l + 1)Γ(l −m+ 1)

4πΓ(l +m+ 1)
Pm
l (cosθ)e(imϕ). (2.36)

Here θ is the angle between the radial vector r and transferred momentum q, Fig.2.3.
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2.8.1 The Angle Between Transferred Momentum and Radial Vec-

tor

Let us consider the angle between transferred momentum q and the radial vector r is θ. If
we take the unit vectors in the direction of q and r respectively then we have

q̂ = x̂sinθqcosϕq + ŷsinθqsinϕq + ẑcosθq, (2.37)

r̂ = x̂sinθrcosϕr + ŷsinθrsinϕr + ẑcosθr, (2.38)

where θq and ϕq are the polar and azimuthal angle of q and θr and ϕr are the polar and
azimuthal angle of r.

cosθ = q̂ · r̂

= sinθqcosϕqsinθrcosϕr+

sinθqsinϕqsinθrsinϕr + cosθqcosθr

= sinθqsinθrcos (ϕr − ϕq) + cosθqcosθr (2.39)

With the generalized direction of transferred momentum the form factor becomes

Figure 2.3: The angle between the transferred momentum, q and radial vector r.
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F n2l2m2
n1l1m1

= N

l1+l2∑
l=|l1−l2|

BlIl, (2.40)

where

Bl = il(−1)m2+m

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π
IYlm(θq, ϕq), (2.41)

and Ylm(θq, ϕq) is from Eq. (2.36)

2.9 Why Julia?

Julia, a very recent language, is developed by Jeff Bezanson, Stephan Karpinski, Viral B.
Shah, and Alan Edelman in 2012 [24]. It is a high-level, Just In Time (JIT) compiled, a
dynamic programming language for scientific, technical, and numerical computing [25]. Julia
has the features of scripting language as well as the compiled language [25, 26]. There is
a classification of programming language based on the appearance of the variable type. A
programming language is statically typed if the type of a variable is known at compile time.
On the other hand, a programming language is called dynamically typed if the type of a
variable is a runtime object. Simply, dynamically typed language does not require defining
the type of variables used in the program.That is why it is easy to write code in dynamic
languages. User-friendly behavior comes at the cost of speed. Dynamic language takes more
time during the runtime since it needs to check the type of variables in contrast to static
language. Even though Julia is dynamically typed but it has a feature of user-defined type
similar to static language.

Figure 2.4: Division of programming languages by data types.

Another core virtue of Julia is JIT compilation with Low Level Virtual Machine (LLVM)
compiler framework to generate machine code. LLVM defines an assembly-like language that
Julia uses as a shared intermediate representation (IR) between different compiler optimiza-
tion passes and other tools in the framework. There are three isomorphic forms of LLVM
IR:
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• A binary representation that is compact and machine readable.

• A textual representation that is verbose and somewhat human readable.

• An in-memory representation that is generated and consumed by LLVM libraries.

Julia uses LLVM’s C++ API to construct LLVM IR in memory and then call some LLVM
optimization passes on that form. LLVM compiler is also used by Fortran.

The first time we run a Julia function, it is parsed, and types are inferred. The JIT
compiler then generates LLVM code, which is optimized and compiled down to native code.
When the function is called a second time with arguments of a specific type, the already
generated native code is called, resulting in much less time to run than the first time. The
JIT compiler is a combination of Ahead Of Time (AOT) compilation and interpretation,
converting the program source code into native machine code just before the program is
run. This machine code is executed by the native hardware, which is more complex than the
parsing and lowering to bytecode used by Python, but in exchange for the complexity, Julia
gets its speed.

Python is also a dynamic language in contrast to Fortran or C, but why did we choose
Julia over Python? Most dynamic languages are much slower than static languages. Python
is an interpreted language that transforms the source code into bytecode, and the bytecode
is then interpreted into machine code through a Python interpreter. Compiled languages are
converted into machine code that the processor can execute. For this reason, Julia is faster
than most other dynamic-interpreted languages.

Multiple dispatches, parallel computing, etc, make Julia unique. Using all of the argu-
ments of the function to choose which method should be invoked, rather than just the first,
is known as multiple dispatches [27]. Parallel computing can mean two things:

• Distributed computing: separate memory domains, using multiple cores on same ma-
chine or on different machines.

• Multi-threading: multiple cores on the same machine, all sharing memory.

Because of this multi-threading attribute, we were able to implement this in our code and got
a better performance (see Fig. 2.5). We have introduced parallel computation in our code
through the FLoops macro from Julia. FLoops is a macro that performs parallel iteration
in Julia [28]. For this macro, our code works best with four threads in Julia, the Apple M1
processor, and 8 GB memory. We have plotted the computation time of the Julia one thread,
Julia four thread, and Fortran code timing in Fig. 2.5. We can see that multi-threading
reduces the computation time.
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Figure 2.5: The plot is for the computation time for different number of form factors using
Julia and Fortran. The compared Fortran form factor calculation is from [4]. For Julia,
we have used single thread and multi-thread to do the computation. Multi-threading more
efficient than single thread Julia and Fortran.

2.10 Conclusion

We have transformed the hard-to-evaluate integral Eq. (2.1) into a summation formula using
the mathematical techniques described in the chapter. Using the summation formula, we have
developed a package in Julia for the calculation of form factor, which can be used for any
decay or scattering with a generalized direction of transferred momentum. The package takes
only the input of the quantum numbers, the ratio of Bohr radii, the transferred momentum,
and the direction of transferred momentum and gives the value of the form factor as an
output. With our formula, one can calculate the form factor for a wider range of quantum
numbers than in previous literature.
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Chapter 3

The Decay Rate of Free Pion

3.1 Introduction

In 1935, Japanese physicist Yukawa Hideki predicted the existence of pion as the carrier
particles of the strong force which was proven later in 1957 by British physicist Cecil F.
Powell. Pion is considered as the hydrogen atom of quark model because it it simpler than a
proton. Pion is made of a quark and an anti-quark. Pions are the lightest mesons with spin
0 and a masses of around 273 times of an electron. They are unstable, charged pion has a
mean lifetime of 26ns. Pion usually decays into muon and muon anti neutrino π− → µ−+ ν̄µ.

Figure 3.1: Quark structure of a negatively charged pion, consisting of a down quark and an
up anti-quark.
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3.2 Free Pion Decay

The decay rate of free pion calculation is inspired by an example from [29]. The decay of free
charged pion (π−) produces a muon (µ) and a muon antineutrino (ν̄). This process can be
described by the Feynman diagram in Fig.3.2. The coupling of the pion with the W boson

Figure 3.2: Feynman diagram of free pion decay. The decay happens via weak interaction
producing muon and muon anti-neutrino. The blob is describing the coupling of π− to W−.

is defined by the blob in the figure. The golden rule for decay rate gives the decay width as
[30]

Γ =
1

2mπ

ˆ
dΠLIPS|M|2 (3.1)

Using the Feynman rules for amplitude, the matrix element becomes

M = Fα ·
[
ū (pµ)

(−igw)
2
√
2
γα
(
1− γ5

)
v (pν̄)

−igαβ
M2

w

−igw
2
√
2

]
, (3.2)

where gw is the weak coupling constant, gw =
√
4παw, pπ, pµ, pν̄ are the four momentum

of pion, muon and anti neutrino respectively, Mw is the mass of the W - boson and Fα is
describing the π− → W interaction. The gαβ from the propagator term contact with γα from
the vertex factor and give the covariant γα. Dropping the overall i, we get

M =
g2w
8M2

w

[
ū (pµ) γα

(
1− γ5

)
v (pν̄)

]
Fα. (3.3)

The Fα term should be a four vector to contract with γα. Since pion is a spin-less particle,
the form factor can only be made with four momentum, pπ = p of the pion. So the pion form
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factor consists of a scalar quantity fπ times pα

Fα = fπp
α, (3.4)

fπ is the pion decay constant. Squaring and summing over the outgoing spins, we get

|M|2 =
[
g2wfπ
8M2

w

]2
pαpβ

[
ū (pµ) γα

(
1− γ5

)
v (pν̄)

] [
ū (pµ) γβ

(
1− γ5

)
v (pν̄)

]∗
. (3.5)

Using the Casimir trick [29],∑
all spins

[ū(a)Γ1u(b)] [ū(a)Γ2u(b)]
∗ = Tr

[
Γ1(��pb +mb)Γ̄2(��pa +ma)

]
,

we can simplify the terms in the square brackets of Eq. 3.5 as

|M|2 =
[
g2wfπ
8M2

w

]2
pαpβTr

[
γα
(
1− γ5

)
��pν̄γ

β
(
1− γ5

)
(��pµ +mµ)

]
, (3.6)

and after using the rules for trace calculation we have

|M|2 =
[
g2wfπ
8M2

w

]2
· 8
[
2 (p · pν̄) (p · pµ)− p2 (pν̄ · pµ)

]
. (3.7)

Since p = pµ + pν̄ we can write

p · pν̄ = pν̄ · pµ, p · pµ = m2
µ + pν̄ · pµ, (3.8)

p2 = p2ν̄ + p2µ + 2pν̄ · pµ, 2pν̄ · pµ =
(
m2

π −m2
µ

)
. (3.9)

Thus the amplitude becomes

|M|2 =
(

gw
2Mw

)4

f 2
πm

2
µ

(
m2

π −m2
µ

)
. (3.10)
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Now, we only need the integral of phase space

ˆ
dΠLIPS =

ˆ
(2π)4δ4(pπ − pµ − pν̄)

(2π)32Eµ(2π)32Eν̄

d3pµd
3pν̄

=

ˆ
(2π)4δ(mπ − p0µ − p0ν̄)δ

3
(
pµ + pν̄

)
(2π)32Eµ(2π)32Eν̄

d3pµd
3pν̄

=

ˆ
2πδ(mπ − p0µ − p0ν̄)

(2π)32Eµ · 2Eν̄

d3pν̄

=

ˆ
δ(mπ − p0µ − p0ν̄)

4πEµEν̄

|pν̄ |2d3pν̄

=
1

4π

ˆ
δ(mπ − u)

u
|pν̄ |du

[
u = p0µ + p0ν̄

]
=

1

4π

|pν̄ |
mπ

, (3.11)

The outgoing momenta for two body decay is

|pν̄ | =
1

2mπ

(
m2

π −m2
µ

)
, (3.12)

and combining Eq. 3.11 and 3.12, phase space becomes

ˆ
dΠLIPS =

1

8π

m2
π −m2

µ

m2
π

(3.13)

So

Γ =
f 2
π

256πm3
π

(
gw
Mw

)4

m2
µ

(
m2

π −m2
µ

)2
. (3.14)

With the following values [31]

mπ = 139.57× 106eV, Mw = 80.38× 109eV, fπ = 130.41× 106eV, (3.15)

mµ = 105.67× 106eV, gw = 0.65, (3.16)

life time, τ of free pion becomes

τ =
1

Γ
= 26ns. (3.17)

The lifetime of free pion is a well known value.
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Chapter 4

Bound Pion to Bound Muon Decay

4.1 Introduction

The exotic state of an atom is a state where the electron of an ordinary atom is replaced by
other subatomic particles of the same charge. When the replacing subatomic particle is a
meson, these exotic atoms are called mesonic. In 1947, theoretical studies by Enrico Fermi
and Teller [32] concluded the existence of mesonic atoms. A Pionic hydrogen atom is an
exotic atom because a negative pion replaces the electron of an ordinary atom to form it.
In this chapter, first, we calculated the free pion decay into free muon using field-theoretic
formalism. Then we used the field-theoretic approach again to calculate the bound pion to
the bound muon decay by introducing states as a combination of plane waves.

4.2 Free Pion to Free Muon decay

Let us consider a free pion decay π → µν̄ caused by the interaction

H = πµ̄ν. (4.1)

The scalar field is

π (x) =

ˆ
d3p√

(2π)3 2Ep

(
ape

−ipx + H.c.
)
,
[
ap, a

†
p′

]
= δ3 (p− p′) . (4.2)

The initial state is
|πp⟩ =

√
(2π)3 2Epa

†
p |0⟩ . (4.3)
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This choice of normalization is Lorentz-invariant,

⟨πp|πp′⟩ = 2Ep (2π)
3 δ3 (p− p′) . (4.4)

This describes particles with density 2Ep. Feynman [33] said, “This is a crazy normalization
but very useful in practice. We shall always normalize in this way.”

The spinor muon field is ([34], p. 430)

µ (x) =

ˆ
d3p√

(2π)3 2Ep

2∑
r=1

[
b(r)p u(r)p e−ipx + c(r)†p v(r)p eipx

]
, (4.5)

{
b(r)p , b

(r′)†
p′

}
= δrr

′
δ3 (p− p′) , u(r)†p u(r)p = 2Ep. (4.6)

The final-state muon with three-momentum µ is described by

|µµ⟩ =
√
2Eµ (2π)3b(r)†µ |0⟩ , (4.7)

⟨µµ|µµ′⟩ = 2Eµ (2π)3 δ3 (p− p′) , (4.8)

and analogously for the neutrino. The matrix element of H is (suppressing spin indices), for
the free-scalar decay,

TF = (2π)4 δ4 (p− µ− ν)MF = ⟨µµνν |H|πp⟩ (4.9)

= 4GFVudFπp
α

ˆ
d4x ⟨0|

√
2Eµ (2π)

3bµ

√
2Eν (2π)

3cν (4.10)
ˆ

d3p√
(2π)3 2Ep

(
ape

−ipx + H.c.
)

(4.11)

ˆ
d3q√

(2π)3 2Eq

(
b†qu

†
qe

−iqx + cqv
†
qe

−iqx
)
γ0γα

1− γ5

2
(4.12)

ˆ
d3k√

(2π)3 2Ek

(
bkuke

−ikx + c†kvke
ikx
)

(4.13)

√
(2π)3 2Ep′‘a

†
p′ |0⟩ (4.14)

= 4GFVudFπp
α (2π)4 δ4 (p− µ− ν) [ūµγ

αvνR] , (4.15)

where Fπ is the pion decay constant, and Vud is the relevant Cabibbo-Kobayashi-Maskawa
(CKM) matrix element. Therefore the square of the matrix element summed over final state
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muon spin is

¯|MF |2 = (4GFVudFπ)
2 pαpβTr

[
(��pµ +mµ) γ

α1− γ5

2 ��pν
1 + γ5

2
γβ
]
. (4.16)

The decay rate is

Γ (π → µν) =
(4GFVudFπ)

2

2mπ

pαpβTr
[
(��pµ +mµ) γ

α1− γ5

2 ��pν
1 + γ5

2
γβ
]

(4.17)
ˆ

d3µ

(2π)3 2Eµ

d3ν

(2π)3 2Eν

(2π)4 δ4 (p− µ− ν) (4.18)

=
(2GFVudFπ)

2

2mπ

pαpβTr
[
(��pµ +mµ) γ

α
(
1− γ5

)
��pν
(
1 + γ5

)
γβ
]

(4.19)

1

4π

|pν̄ |
mπ

. (4.20)

The outgoing momenta for two body decay is

|pν̄ | =
1

2mπ

(
m2

π −m2
µ

)
. (4.21)

The decay rate becomes

Γ (π → µν) =
(2GFVudFπ)

2

2mπ

m2
µ

(
m2

π −m2
µ

)
2

(4.22)

1

8πm2
π

(
m2

π −m2
µ

)
. (4.23)

=
(GFVudFπ)

2

8πm3
π

m2
µ

(
m2

π −m2
µ

)2 (4.24)

The last equation of this section Eq. (4.24) also gives the 26ns lifetime as it should be.

4.3 Bound Pion to Bound Muon

The interaction is bound pion decay into bound muon which is Zπ− → Zµ− + ν̄µ, described
by the Feynman diagram Fig. (4.1). The initial bound state of the pion |i⟩ is a combination
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Figure 4.1: Feynman diagram for bound pion decay

of plane waves, instead of a single plane wave |ϕp⟩ =
√
(2π)3 2Epa

†
p |0⟩,

|i⟩ =
ˆ

d3p√
(2π)3

φ (p) a†p |0⟩ , (4.25)

1 = ⟨i|i⟩ =
ˆ

d3p√
(2π)3

φ⋆ (p)
d3q√
(2π)3

φ (q) δ3 (p− q) (4.26)

=

ˆ
d3p

(2π)3
|φ (p)|2 =

ˆ
d3r |ψ (r)|2 . (4.27)

Also, the final state muon is described by a combination of plane waves. Instead of |µµ⟩ =√
2Eµ (2π)3b

(r)†
µ |0⟩, now

|µB⟩ =
ˆ

d3p√
(2π)3

φ(µ) (p) b
†
p |0⟩ , (4.28)

analogously to Eq. (4.25), with
´ d3

p

(2π)3

∣∣φ(µ) (p)
∣∣2 = 1. And the final state neutrino is de-

scribed by

|ν⟩ =
√

(2π)3 2Eνc
†
ν |0⟩ . (4.29)

The scalar pion field is

ϕ (x) =

ˆ
d3p√

(2π)3 2Ep

(
ape

−ipx + H.c.
)
,
[
ap, a

†
p′

]
= δ3 (p− p′) . (4.30)
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The spinor muon field is ([34], p. 430)

µ (x) =

ˆ
d3p√

(2π)3 2Ep

2∑
r=1

[
b(r)p u(r)p e−ipx + c(r)†p v(r)p eipx

]
, (4.31)

{
b(r)p , b

(r′)†
p′

}
= δrr

′
δ3 (p− p′) , u(r)†p u(r)p = 2Ep. (4.32)

The bound-to-bound T -matrix element is

TBB = ⟨µµνν |H| i⟩ (4.33)

= 4GFVudFπp
α

ˆ
d4x ⟨0|

√
(2π)3 2Eνcν

ˆ
d3q′√
(2π)3

φ(µ) (q
′) bq′ (4.34)

ˆ
d3p√

(2π)3 2Ep

(
ape

−ipx + H.c.
)

(4.35)
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†
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†
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−iqx
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1− γ5

2
(4.36)
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−ikx + c†kvke
ikx
)

(4.37)

ˆ
d3p′√
(2π)3

φ (p′) a†p′ |0⟩ (4.38)

= 4GFVudFπp
α

ˆ
d4x

ˆ
d3q
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2Eq
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√

2Ep

φ (p) ūqγ
αvνRe

−i(p−q−ν)x

(4.39)

=
4GFVudFπp

α2πδ (mπ −mµ − Eν)

2
√
mπmµ

ˆ
d3r

ˆ
d3q

(2π)3
φ(µ) (q)

d3p

(2π)3
φ (p) ūqγ

αvνR

ei(p−q−ν)·r (4.40)

=
2GFVudFπ2πδ (mπ −mµ − Eν)√

mπmµ

pα [ūqγ
αvνR]

ˆ
d3rφ̃⋆

(µ) (r) φ̃(i) (r) e
−iν·r. (4.41)

In this calculation, we used the non relativistic approximation for the scalar’s and for the
muon’s energies, replacing them by masses. The spatial integral involving the muon and
the scalar spatial wave functions and the plane wave factor representing the neutrino is the
transition form factor from chapter (2); it is dimensionless. TBB has units of mass in power
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−2 + 1− 1− 1 + 1 + 1 = −1. The rate is

Γ (πB → µBν) =
∑

pol.µ,ν

1

T

ˆ
d3ν

(2π)3 2Eν

|TBB|2 (4.42)

=
1
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ˆ
d3ν

(2π)3 2Eν

4π2T (2GFVudFπ)
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(
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ˆ
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(µ) (r) φ̃ (r) e−iν·r
∣∣∣∣2 (4.48)

=
(mπ −mµ) (2GFVudFπ)

2

4πmπmµ

m2
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(
m2

π −m2
µ

)
2ˆ

dΩ
∣∣∣∣ˆ d3rφ̃⋆

(µ) (r) ˜φ(π) (r) e
−iν·r
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It has units of mass in power +1 + 3 − 1 + 2 (−1) = 1. We took the factor from trace out
of the integral over neutrino angles because if the muon is taken at rest, this trace does not
depend on neutrino direction.

Now, we can find the expression for the ratio of bound pion decay rate to the free pion
decay rate, using Eq. (4.24) and Eq. (4.49)

Γ (πB → µBν)

Γ (π → µν)
=

4m2
π (mπ −mµ)

mµ

(
m2

π −m2
µ

) ˆ dΩ
∣∣∣∣ˆ d3rφ̃⋆

(µ) (r) ˜φ(π) (r) e
−iν·r

∣∣∣∣2 . (4.50)
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4.3.1 The Value of Transferred Momentum and Ratio of Bohr Radii

for Pionic Hydrogen Decay

We are considering the pionic hydrogen is at rest and also the decay product muonic hydrogen
is at rest and the transferred momentum is conveyed to muon anti neutrino. The transferred
momentum is coming from the change of mass of the initial to final particle. With these
information we can calculate the value of transferred momentum for this decay. The free
pion and muon masses are respectively 139.57MeV and 105.7MeV. But the bound pionic and
muonic hydrogen masses are the reduced mass of pionic and muonic hydrogen. The reduced
mass formula is

µ =
m1m2

m1 +m2

. (4.51)

So the reduced mass of pionic hydrogen is

µπ =
mpmπ

mp +mπ

=
938.27× 139.6

938.27 + 139.6

= 121.52MeV. (4.52)

And the reduced mass of muonic hydrogen is

µµ = 94.99MeV. (4.53)

The value of transferred momentum in atomic units would be

q =
µπ − µµ

µπ

=
(139.57− 105.7)

139.57
= 0.24. (4.54)

In our form factor formula, we have introduced the ratio of Bohr radii ρ in Chapter 2. Since
the Bohr radius is inversely proportional to the mass of the respective particle. The numerical
value of the ratio of Bohr radii would be

ρ =
aµ
aπ

=
mπ

mµ

= 1.28. (4.55)

4.3.2 Most Probable Final State

If the pion is initially in (n, l) = (17, 16) state and decays into muon, we can find the most
probable final state. Since we can use our formula to write the decay width as a function of
final state values. The 3D plot of n, l, and decay width will give a peak, which represents
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the state with the highest decay width Fig. 4.2.

Figure 4.2: The interpolating surface serves just to guide the eye but only integer values of
n, l make physical sense. The figure shows the 3D plot with the contour of transition decay
width with respect to the n and l values of the final state of the muon. The peak represents
the muon’s final state with the largest probability. The pion decays from (n, l) = (17, 16)
state.

4.4 PSI Experiment

Pionic helium is different from a normal helium atom; one of the electron from a normal
helium atom is replaced by a negatively charged pion. Masaki Hori, Anna Soter, and his
team designed an experiment at the PSI facility to do the laser spectroscopy of the pionic
helium. They have observed an infrared transition of three-body pionic helium atoms by
laser spectroscopy. With this experimental result, the precision of pion mass will increase by
2− 3 orders of magnitude.

The proton beam from the PSI is used to hit a graphite target to produce the pion beam,
which is then transported through an E × B Wien Filter to remove the e−and µ− contam-
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ination from the produced π− beam. The traversed π− beam goes through a scintillation
counter before stopping into the superfluid helium target. Most of the pion is absorbed by
the helium nucleus, and a fraction of the pion beam produces the metastable pionic helium.
The produced metastable pion is irradiated by an infrared laser to make a transition from
(n, l) = (17, 16) to (n, l) = (17, 15) [35] and eventually absorbed by the helium nucleus. This
causes the breakup of the nucleus, which can be detected. These pionic atoms can absorb
or emit energy of discrete amounts, which can produce a quantum leap from one state to
another. If the atom was present in the experiment tank and irradiated by the specific laser,
then there will be the peak of nuclear fission fragments, and this is clear evidence of the
existence of the atom [35].
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Conclusion

In Chapter 2, by implementing mathematical technique, we derived the formula for the cal-
culation of atomic form factor for non-equal masses and generalized direction of transferred
momentum, which transformed the integral into a summation. Then the formula is im-
plemented in Mathematica and Julia for the evaluation of the summation. From the Julia
implementation, we developed a Julia package, which can be used to calculate the form factor
using only the quantum numbers, the value of transferred momentum, the ratio of Bohr radii,
and the direction of transferred momentum. The transition form factor formula and devel-
oped package can calculate any transition or decay form factors with transferred momentum
in any direction or in the z-direction.

In Chapter 3, we reproduced the free pion decay rate calculation using Fermi’s golden
rule. In the first part of Chapter 4, we reproduced again the free pion decay rate calculation
using the field-theoretic approach, which gives the lifetime of free pion 26ns. Then the same
field theoretic approach is used to calculate the bound pion decay rate. With the form factor
value from Chapter 2, we have calculated the decay rate of the bound pion and predicted
that if the transition occurs from (n, l) = (17, 16), then the final muon state (14, 10) has the
largest probability.

The future work, we can now easily find the X-ray energies that this muon will be emitting
while falling to the ground state 1S. This transition happens by electromagnetic interactions,
so it happens rapidly with time, typically picoseconds (that time is on the order 1

Z4α5mµ
),

while the decay of the muon is caused by weak interactions, so it is a much slower process,
and the muon lives on average 2.2µs. Thus the muon can be treated like an almost stable
particle and has enough time to fall to the ground state. The prediction of X-ray energies
will allow our experimental colleagues to discover this transition from bound pion to bound
muon.
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Appendix A

Form Factor Code

A.1 Mathematica Code for Integration

Figure A.1: Description of Mathematica code to calculate numerical integration. We have
defined the wave function and the spherical harmonic function. F6 function calculates the
numerical integral.
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Figure A.2: Mathematica code to calculate the form factor using the Eq. (2.31).

A.2 Mathematica Code for Summation

A.3 Break Down of Mathematica Summation Calcula-

tion

The summation code in Mathematica starts to show problem while calculating the form
factor for the combination of quantum numbers (10, 8, 7, 1, 8, 7, 0.66). Mathematica is giving
the error which is given in figure (A.3). The result of the numerical integration is −1.76983×
10−25 + i5.67761 × 10−9. On the other hand, the result of the summation done in Julia is
0.0 + i5.677613206253347× 10−9.

A.4 The Name, Purpose, Usage and Output of Example

Run

The FormFactor package is a Julia package to calculate atomic transition form factor. The
code for this package can be found in the source code of the GitHub page https://github.

com/nuzhat07/FormFactor.jl.git. A package contains modules, tests, and documentation.
We use PkgTemplates.jl that helps us create all of these files and the configuration for a
package. Before creating the package, we need to define a template that contains the initial
configuration. First, we need to install PkgTemplates.jl. To install, we run the following
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Figure A.3: The error given by the Mathematica code A.2.

commands,

us ing Pkg
Pkg . add (" PkgTemplates ")

Now, we can create our package template by executing the following commands:

us ing PkgTemplates
t = Template ( ;

user="your−GitHub−username " ,
l i c e n s e="MIT" ,
authors =["your−name " ] ,
p lug in s =[Git ( ) ,

GitHubActions ( ) ,
] ,

)

Then, the following command will create our package.

t ("YourPackageName")

Your package directory contains the following:
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• LICENSE: The license that the package uses. For our package, we set the MIT license.

• Manifest.toml: It includes information on the package dependencies.

• Project.toml: It contains high-level information about the project.

• README.md: It contains information about our package. The README file has
information on how to install our package and examples of how to use it.

• src: It contains the file Formfactor.jl. This is where we write the code for our package.

• test: It contains the file runtests.jl. This is where you write the code for testing your
package.

src file has three .jl file, one of them is extra_form.jl file which calculates the form factor, an-
other one is Formfactor.jl which is the main file of the package, and example.jl includes exam-
ple code. extra_form.jl is imported into Formfactor.jl file. test file includes my_form_test.jl
and runtests.jl. In my_form_test.jl, we have written the tests with a tolerance of 1/1000000.

To use the package in Julia REPL, we have to run following commands: Pkg is Julia’s
package manager. Pkg comes with a REPL. To get into the pkg> REPL, one needs to press
] from the Julia REPL.

pkg> add https : // github . com/nuzhat07/FormFactor . j l . g i t

To get back to the Julia REPL, press backspace or ^C.

1 j u l i a > import FormFactor
2 j u l i a > us ing FormFactor
3 j u l i a > mform(3 ,2 , −1 ,2 , 1 , 1 . 0 , 0 . 66 )
4 0.19986502849251148

The mform function calculates the form factor for the assigned values. Also, one can check our
test files from GitHub. By cloning the GitHub repository onto ones computer using URLs.
One have to use the command git clone in the command line with the SSH or HTTPS URLs.
To clone any GitHub repository one have to posses a GitHub account. There is another way
to check our test files. One can download the ZIP file from the Download ZIP option and
open the file in any standard IDE such as VS code or Atom and see the tests are passing or
failing.

One can use this package to calculate a single form factor for given quantum numbers, the
ratio of Bohr radii, and transferred momentum, an example given in the previous paragraph.
Also, using the example.jl file from GitHub package, one can utilize a range of quantum
numbers to calculate a list of form factors. After installing and importing the FormFactor
package, one can check the output of the example.jl file or modify the file to get customized
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output. To achieve this, one needs to download the ZIP file, which will be downloaded as
FormFactor.jl-master. After unzipping the file, example.jl file can be found inside the src file.
Then one has to run the following command julia in the command line, and drag and drop
the example.jl in the terminal. Following is the output of example.jl file in the command
line.

> j u l i a example . j l

Screen output:

n1 l 1 m1 n2 l 2 form f a c t o r
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 0 0 1 0 0.8132334486398062
2 0 0 2 0 0.01711469127418809
2 1 0 2 1 −0.2773393490062824
2 1 1 2 1 0.3379867312677579
3 0 0 3 0 0.04332381544215912
3 1 0 3 1 0.06492183920351319
3 1 1 3 1 0.062487634226406505
3 2 0 3 2 0.14659853512409513
3 2 1 3 2 −0.19253685442347762
3 2 2 3 2 0.06505062969336908
4 0 0 4 0 0.02022506367731816
4 1 0 4 1 0.021695363145468622
4 1 1 4 1 0.020286498406379572
4 2 0 4 2 0.006071324630217897
4 2 1 4 2 −0.07112415772266187
4 2 2 4 2 0.032884238643133556
4 3 0 4 3 −0.06509529076544626
4 3 1 4 3 0.0658273037172201
4 3 2 4 3 −0.034513466856061326
4 3 3 4 3 0.006446826742729846
5 0 0 5 0 0.00887186658851675
5 1 0 5 1 0.0029606120661347887
5 1 1 5 1 0.00964488611800748
5 2 0 5 2 −0.014447821536305552
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5 2 1 5 2 −0.028606890281786593
5 2 2 5 2 0.01721205791306006
5 3 0 5 3 −0.035665841642096366
5 3 1 5 3 0.04346734453047298
5 3 2 5 3 −0.026327906695564913
5 3 3 5 3 0.005262991878638247

. . .

10 9 6 10 9 −1.4191844167407435e−9
10 9 7 10 9 2.5543175809394167 e−10
10 9 8 10 9 −2.8520799900826646e−11
10 9 9 10 9 1.4893597031965703 e−12

To calculate the computation time, we used example.jl file in command line with command
> time julia example.jl. The following Table A.1 contains the form factor value of various
initial and final states using Julia, Fortran [3, 4], and numerical integration .

n1, l1,m1, n2, l2, ρ, q Julia Fortran [3] Fortran [4] Numerical Integration
2, 1, 1, 2, 1, 1.0, 0.66 3.38e−1 3.03e−1 3.38e−1 3.38e−1
3, 2, 1, 4, 2, 1.0, 0.66 1.22e−1 3.78e−2 1.22e−1 1.22e−1
4, 2, 2, 3, 2, 1.0, .66 4.69e−2 3.25e−2 4.69e−2 4.69e−2
10, 9, 1, 9, 1, 1.0, .66 6.6e−7 6.24e−9 6.6e−7 6.6e−7
12, 5, 2, 11, 4, 1.0, 0.66 1.57e−3 2.48e−10 1.57e−3 1.57e−3

Table A.1: Absolute value of Form factors using different algorithms and different program-
ming languages.

A.5 Julia Code

The FormFactor package is a Julia package to calculate atomic transition form factor. The
code for this package can be found in the source code of the GitHub page https://github.

com/nuzhat07/FormFactor.jl.git.

A.6 Modified ffdiff.f file used for comparison

The modified ffdiff.f file can be found in the readme file of the GitHub package https:

//github.com/nuzhat07/FormFactor.jl.git. We have modified the file with our desired
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value of transferred momentum and range of quantum numbers to compare the computation
time.

A.7 The main program

The main.f file is also added in the readme file of the GitHub package https://github.

com/nuzhat07/FormFactor.jl.git. The main program of our interest has an array of two
elements which indicates quantization axis along the direction of transferred momentum and
the computation method 1 of [4], respectively. The FTRANS function is from crsmumu.f file
of [4] package.
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Appendix B

The Hydrogen Atom

B.1 The Schrödinger Equation for Hydrogen Atom

The time-independent Schrödinger equation in spherical coordinates is [36](
− ℏ2

2m
∇2 + V (r)

)
ψ(r, θ, ϕ) = Eψ(r, θ, ϕ), (B.1)

where the Laplacian, ∇2 = 1
r2

∂
∂r

(
r2 ∂

∂r

)
+ 1

r2
1

sin θ
∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

(r sin θ)2
∂2

∂ϕ2 , in spherical coor-
dinates. The solution of the Schrödinger equation is of the form ψ(r, θ, ϕ) = R(r)Y (θ, ϕ).
Substituting it into the Eq. (B.1) and dividing by ℏ2RY

2mr2
we get,[

1

R

d

dr

(
r2
dR

dr

)
− 2mr2

ℏ2
(V (r)− E)

]
+

1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂ϕ2

]
= 0. (B.2)

The first term of the equation depends on r, and the second term on θ and ϕ. So Eq. (B.2)
can be valid if and only if

1

R

d

dr

(
r2
dR

dr

)
− 2mr2

ℏ2
(V (r)− E) = l(l + 1),

1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂ϕ2

]
= −l(l + 1),

(B.3)

where l(l+1) is a constant. The first equation is the Radial equation, and the second equation
is the Angular equation. The solution of the Angular equation is the spherical harmonics.
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To solve the radial part, let us make a transformation from R(r) to u(r), where

R =
u

r
,
dR

dr
=

1

r2

(
r
du

dr
− u

)
d

dr

(
r2
dR

dr

)
= r

d2u

dr2
.

(B.4)

So the radial equation becomes, after multiplying − ℏ2
2mr

− ℏ2

2m

d2u(r)

dr2
+

[
V (r) +

ℏ2

2m

l(l + 1)

r2

]
u(r) = Eu(r). (B.5)

This equation is similar to the 1-dimensional Schrödinger equation in variable r with effective
potential

Veff (r) = V (r) +
ℏ2l(l + 1)

2mr2
. (B.6)

The Hydrogen atom is a two-body system with an electron of charge −e, circulating the
heavier proton of charge +e. Since the mass of the electron is much lighter compared to the
proton, then the system can be reduced to a single particle system. The potential energy of
the electron due to the proton can be found from Coulomb’s law,

V (r) = − e2

4πϵo

1

r
. (B.7)

Here, we will consider only bound states with E < 0. As V (r) → 0 with r → 0 the system
will have a continuum spectrum for E ≥ 0.

Let us define

k ≡
√
−2mE

ℏ
, (B.8)

the radial equation becomes

1

k2
d2u

dr2
=

[
1− me2

2πϵoℏ2k
1

(kr)
+
l(l + 1)

(kr)2

]
u. (B.9)

Introducing a new parameter

ρ ≡ kr, ρo ≡
me2

2πϵoℏ2k
. (B.10)

We get a simpler equation
d2u

dρ2
=

(
1− ρo

ρ
+
l(l + 1)

ρ2

)
u. (B.11)

The next step is to find the asymptotic behavior of the solution at the boundaries. At ρ→ ∞,
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the constant term in the brackets dominates and we are left with,

d2u

dρ2
= u. (B.12)

The general solution is
u(ρ) = Ae−ρ +Beρ, (B.13)

but eρ blows up as ρ→ ∞, so B = 0 and

u(ρ) ≈ Ae−ρ, (B.14)

for large ρ. And as ρ→ 0,
d2u

dρ2
≈ l(l + 1)

ρ2
u. (B.15)

The general solution is
u(ρ) = Cρl+1 +Dρ−l, (B.16)

but ρ−l blows up as ρ→ 0, so D = 0. Thus

u(ρ) ≈ Cρl+1, (B.17)

for small ρ. Factoring out the asymptotic functions the solution becomes

u(ρ) = ρl+1e−ρv(ρ). (B.18)

Let us calculate the second derivative of u(ρ)

du

dρ
= ρle−ρ

[
(l + 1− ρ)v + ρ

dv

dρ

]
, (B.19)

and
d2u

dρ2
= ρle−ρ

([
−2l − 2 + ρ+

l(l + 1)

ρ

]
v + 2(l + 1− ρ)

dv

dρ
+ ρ

d2v

dρ2

)
. (B.20)

Let us now substitute these in the Eq. (B.9)

ρ
d2v

dρ2
+ 2(l + 1− ρ)

dv

dρ
+ [ρo − 2(l + 1)]v = 0. (B.21)

This is so-called “hyper-geometric” equation. The v(ρ) can be expressed as a power series in
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ρ,

v(ρ) =
∞∑
j=0

cjρ
j. (B.22)

Differentiating term by term

dv

dρ
=

∞∑
j=0

jcjρ
j−1 =

∞∑
j=0

(j + 1)cj+1ρ
j. (B.23)

Differentiating again,
d2v

dρ2
=

∞∑
j=0

j(j + 1)cj+1ρ
j−1. (B.24)

Inserting these into Eq. (B.21), we have

∞∑
j=0

j(j+1)cj+1ρ
j+2(l+1)

∞∑
j=0

(j+1)cj+1ρ
j−2

∞∑
j=0

jcjρ
j+[ρo−2(l+1)]

∞∑
j=0

cjρ
j = 0. (B.25)

Equating the coefficients of like powers produces,

j(j + 1)cj+1 + 2(l + 1)(j + 1)cj+1 − 2jcj + [ρo − 2(l + 1)]cj = 0. (B.26)

Or,

cj+1 =
2(j + l + 1)− ρo
(j + 1)(j + 2l + 2)

cj, (B.27)

this is the recursion formula which determines the coefficients. To get a polynomial of degree
nr the recursion should stop at j = nr. So that

cnr+1 = 0, (B.28)

which means that
2(nr + l + 1)− ρo = 0. (B.29)

Defining
n ≡ nr + l + 1, (B.30)

where n is the so-called “principle quantum number” and nr is the “radial quantum number”,

ρo = 2n. (B.31)

Since nr = 0, 1, 2, ... and l = 0, 1, 2, ..., the principle quantum number is positive integer
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n = 1, 2.... We can have energy E from Eq. (B.8)

E = −ℏ2k2

2m

= − ℏ2

2m

(
me2

4πϵoℏ2n

)2

= − mc2α2

2(nr + l + 1)2

(B.32)

where α = e2

4πϵoℏc =
1

137
which is the fine structure constant. Combining Eq. (B.10) and Eq.

(B.31)

k =

(
me2

4πϵoℏ2

)
1

n
=

1

an
(B.33)

where
a ≡ 4πϵoℏ2

me2
(B.34)

is the Bohr Radius and
a =

ℏ
αmc

. (B.35)

The spatial wave function for Hydrogen atom is

ψnlm(r, θ, ϕ) = Rnl(r)Y
m
l (θ, ϕ), (B.36)

where
Rnl(r) =

1

r
ρl+1e−ρv(ρ), (B.37)

and v(ρ) is a polynomial of degree nr = n− l − 1, the coefficients of v(ρ) are determined by

cj+1 =
2(j + l + 1− n)

(j + 1)(j + 2l + 2)
cj. (B.38)

Since n ≡ nr + l + 1, the ground state of hydrogen has l = 0 and m = 0. So

ψ100(r, θ, ϕ) = R10(r)Y
0
0 (θ, ϕ). (B.39)

With j = 0, v(ρ) is a constant
R10(r) =

c0
a
e−r/a. (B.40)

The normalization constant

∞̂

0

|R10(r)|2r2dr =
|c0|2

a2

∞̂

0

e−2r/ar2dr = |c0|2
a

4
= 1. (B.41)

48



So co = 2√
a
.And Y 0

0 = 1√
4π

, so the ground state wave function of hydrogen atom is

ψ100(r, θ, ϕ) =
1√
πa3

e−r/a. (B.42)

We also can determine Rnl using special function, v(ρ) is a polynomial of degree nr

v(ρ) = L2l+1
nr

(2ρ) = L2l+1
n−l−1(2ρ), (B.43)

where
Lp
q−p(x) ≡ (−1)p

(
d

dx

)p

Lq(x), (B.44)

is an associated Laguerre polynomial and

Lq(x) ≡ ex
(
d

dx

)q

(e−xxq), (B.45)

is the qth Laguerre polynomial. Finally, the wave function can be written as

ψnlm(r, θ, ϕ) = Are
−r/na

(
2r

na

)l [
L2l+1
n−l−1(2r/na)

]
Y m
l (θ, ϕ), (B.46)

where Ar is the normalization constant.

B.2 The Klein-Gordon Equation for Hydrogen Atom

The Klein Gordon equation for free particle is

∂µ∂
µψ +m2ψ = 0, (B.47)

where ∂µ∂µ = ∂2

∂t2
−∇⃗2. The Coulomb potential is incorporated in the Klein-Gordon equation

by minimal coupling. To solve the Klein-Gordon equation for the hydrogen atom we will be
using U(1) gauge covariant Klein-Gordon equation. If a globally U(1) symmetric theory
couples to a gauge field Aµ by the covariant derivative ∂µ → Dµ ≡ ∂µ + iQAµ where Q is
charge, a locally symmetric U(1) theory is appeared. This way of coupling a gauge potential
to a matter field is called principle of minimal coupling [29]. The gauge covariant Klein-
Gordon equation is

DµD
µψ +

m2c2

ℏ2
ψ = 0. (B.48)

Here Dµ = ∂µ − ie
ℏcAµ. Since the system is a hydrogen atom and the potential is Coulomb
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potential, it can be represented as a four-vector with the zeroth component as Coulomb
potential and the rest of the components zero.

Aµ =


Ze

4πϵ0r

0

0

0

 . (B.49)

Using the property of four vector and the above Aµwe have the Klein-Gordon equation for
the hydrogen atom,

(
1

c

∂

∂t
− i

Ze2

4πϵ0ℏcr

)2

ψ −∇2ψ +
m2c2

ℏ2
ψ = 0 (B.50)

− c2∇2ψ +
m2c4

ℏ2
ψ =

(
i
∂

∂t
+ c

Zα

r

)2

ψ (B.51)

− c2ℏ2∇2ψ +m2c4ψ =

(
iℏ
∂

∂t
+ ℏc

Zα

r

)2

ψ. (B.52)

Here α = e2

4πϵoℏc . Energy operator has a form from the wave-function ψ = ei(kx−ωt) and
E = ℏω,

iℏ
∂ψ

∂t
= Eψ. (B.53)

Inserting this into Eq. (B.52) gives

−c2ℏ2∇2ψ +m2c4ψ =

(
E + ℏc

Zα

r

)2

ψ. (B.54)

Since Coulomb potential is a spherically symmetric potential, the Laplacian, ∇2 in Eq. (B.54)
should be in spherical coordinate

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
. (B.55)

The Laplacian from Eq. (B.55) putting into Eq. (B.54)
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− c2ℏ2
(

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ϕ2

)
+

m2c4ψ =

(
E + ℏc

Zα

r

)2

ψ (B.56)

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ϕ2
− m2c2

ℏ2
ψ

+

(
E

cℏ
+
Zα

r

)2

ψ = 0 (B.57)

∂

∂r

(
r2
∂ψ

∂r

)
− r2

m2c2

ℏ2
ψ + r2

(
E

cℏ
+
Zα

r

)2

ψ = − 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
− 1

sin2 θ

∂2ψ

∂ϕ2
. (B.58)

To do the separation of variables introducing ψ = Y (θ, ϕ)R(r) and dividing by Y R

1

R

d

dr

(
r2
dR

dr

)
− r2

m2c2

ℏ2
+ r2

(
E

cℏ
+
Zα

r

)2

=

− 1

Y sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
− 1

Y sin2 θ

∂2Y

∂ϕ2
, (B.59)

which gives two separated equations equals to some constant

1

R

d

dr

(
r2
dR

dr

)
− r2

m2c2

ℏ2
+ r2

(
E

cℏ
+
Zα

r

)2

= l(l + 1) (B.60)

− 1

Y sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
− 1

Y sin2 θ

∂2Y

∂ϕ2
= l(l + 1). (B.61)

The angular equation

1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂ϕ2
+ l(l + 1)Y = 0. (B.62)

The angular equation is the same as the Schrödinger equation so the normalized angular
wave functions are called spherical harmonics

Y m
l (θ, ϕ) = ϵ

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

eimϕPm
l (cos θ), (B.63)

where ϵ = (−1)m for m ≥ 0 and ϵ = 1 for m ≤ 0, Pm
l (x) = (−1)m(1 − x2)m/2 dm

dxmPl(x),
P−m
l (x) = (−1)m (l−m)!

(l+m)!
Pm
l (x), Pl(x) =

1
2ll!

dl

dxl (x
2 − 1)l, −l ≤ m ≤ l.
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The radial equation of the Klein-Gordon equation starts to deviate from the Schrödinger
equation

1

r2
d

dr

(
r2
dR

dr

)
+

[(
E

ℏc
+
Zα

r

)2

− m2c2

ℏ2
− l(l + 1)

r2

]
R = 0 (B.64)[

1

r2
d

dr

(
r2
d

dr

)
+

E2

ℏ2c2
+

2E

ℏc
Zα

r
− m2c2

ℏ2
+
Z2α2 − l(l + 1)

r2

]
R = 0. (B.65)

Substituting

R =
u

r
, (B.66)

and

dR

dr
=

1

r

du

dr
− u

r2
(B.67)

1

r2
d

dr

(
r2
dR

dr

)
=

1

r

d2u

dr2
. (B.68)

Eq. (B.65) becomes[
d2

dr2
− l(l + 1)− Z2α2

r2
+

2ZEα

ℏcr
− m2c4 − E2

ℏ2c2

]
u = 0. (B.69)

To make the equation more convenient introducing new parameter, β = 2 (m2c4−E2)
1
2

ℏc[
d2

dr2
−
l2 + l + 1

4
− Z2α2 − 1

4

r2
+

2ZEα

ℏcr
− β2

4

]
u = 0 (B.70)[

d2

dr2
−

(l + 1
2
)2 − Z2α2 − 1

4

r2
+

2ZEα

ℏcr
− β2

4

]
u = 0, (B.71)

and another parameter µ =
√

(l + 1
2
)2 − Z2α2

[
d2

dr2
−
µ2 − 1

4

r2
+

2ZEα

ℏcr
− β2

4

]
u = 0 (B.72)[

1

β2

d2

dr2
−
µ2 − 1

4

r2β2
+

2ZEα

ℏcβ
1

βr
− 1

4

]
u = 0. (B.73)
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Let’s make another substitution,

ρ = βr, λ =
2ZEα

ℏcβ
, w(ρ) = w(βr) = u(r), (B.74)

which gives [
d2

dρ2
−
µ2 − 1

4

ρ2
+
λ

ρ
− 1

4

]
w(ρ) = 0. (B.75)

Next we examine the asymptotic form of the solutions. For the case of large ρ

d2w

dρ2
=

1

4
w. (B.76)

The general solution is:
w = Ae−

ρ
2 +Be

ρ
2 , (B.77)

but eρ blows up (as ρ→ ∞) so B = 0. Evidently

w ∽ Ae−
ρ
2 . (B.78)

For the case of small ρ
d2w

dρ2
=
µ2 − 1

4

ρ2
w. (B.79)

The general solution of this equation is:

w = Aρ
1
2
+µ +Bρ

1
2
−µ. (B.80)

The second term is not normalizable, so B = 0. Therefore, the desired asymptotic form is:

w ∼ ρ
1
2
+µ. (B.81)

Peeling off the asymptotic behavior, introducing the new function v(ρ) :

w = ρ
1
2
+µe−

ρ
2 v(ρ). (B.82)

First derivative of w

dw

dρ
=

(
1

2
+ µ

)
ρµ−

1
2 e−

ρ
2 v(ρ)− 1

2
ρ

1
2
+µe−

ρ
2 v(ρ) + ρ

1
2
+µe−

ρ
2
dv(ρ)

dρ
. (B.83)
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Taking the second derivative of w

d2w

dρ2
= ρ

1
2
+µe−

ρ
2

[
µ2 − 1

4

ρ2
v −

(
1

2
+ µ

)
1

ρ
v + 2

(
1

2
+ µ

)
1

ρ

dv

dρ
+

1

4
v − dv

dρ
+
d2v

dρ2

]
. (B.84)

With the value of the second derivative of w, the radial equation reads

[
µ2 − 1

4

ρ2
v −

(
1

2
+ µ

)
1

ρ
v + 2

(
1

2
+ µ

)
1

ρ

dv

dρ
+

1

4
v − dv

dρ
+
d2v

dρ2
−
µ2 − 1

4

ρ2
v +

λ

ρ
v − 1

4
v

]
× ρ

1
2
+µe−

ρ
2 = 0 (B.85)(

1

2
+ µ

)
1

ρ
v − 2

(
1

2
+ µ

)
1

ρ

dv

dρ
+
dv

dρ
− d2v

dρ2
− λ

ρ
v = 0. (B.86)

Now again defining few new constants

b = µ+
1

2
− λ, d = 2µ+ 1, (B.87)

d2v

dρ2
+

(
d

ρ
− 1

)
dv

dρ
− b

ρ
v = 0. (B.88)

Using power series for finding solutions

v(ρ) =
∞∑
j=0

cjρ
j, (B.89)

and differentiating

dv

dρ
=

∞∑
j=0

jcjρ
j−1, (B.90)

differentiating again,

d2v

dρ2
=

∞∑
j=0

j(j − 1)cjρ
j−2. (B.91)
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Inserting these into equation Eq. (B.88), we have

∞∑
j=0

j(j − 1)cjρ
j−2 + d

∞∑
j=0

jcjρ
j−2 −

∞∑
j=0

jcjρ
j−1 − b

∞∑
j=0

cjρ
j−1 = 0 (B.92)

∞∑
j=0

[j(j + 1)cj+1 + d(j + 1)cj+1 − jcj − bcj] ρ
j−1 = 0. (B.93)

The recursion relation yields by equating the coefficients of same powers,

cj+1 =
j + b

j(j + 1) + d(j + 1)
cj (B.94)

cj =
b+ j − 1

j(d+ j − 1)
cj−1. (B.95)

Now for large j, the coefficient is

cj+1 ≈
1

j
cj. (B.96)

Therefore,

cj =
1

j!
c0, (B.97)

so

v(ρ) =
∞∑
j=0

cjρ
j = c0

∞∑
j=0

1

j!
ρj = c0e

ρ. (B.98)

To terminate the series there must occur some maximal integer, j = nr:

cnr+1 = 0. (B.99)

From the recursion relation

b+ nr = 0, (B.100)

where nr is a non-negative integer the so called radial quantum number. Replacing b

b+ nr = µ+
1

2
− λ+ nr = 0, (B.101)
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again replacing µ and λ and β,√(
l +

1

2

)2

− Z2α2 +
1

2
+ nr = λ =

2ZαE

ℏcβ
=

2ZαE

2(m2c4 − E2)
1
2

(B.102)√(
l +

1

2

)2

− Z2α2 +
1

2
+ nr =

2ZαE

2(m2c4 − E2)
1
2

. (B.103)

By manipulating the last equation we have the energy,

E = mc2

1 +
Z2α2(

nr +
1
2
+
√(

l + 1
2

)2 − Z2α2

)2


− 1

2

(B.104)

Defining, n = nr + l + 1 the principal quantum number, the energy equation becomes,

E = mc2

1 +
Z2α2(

n− l − 1
2
+
√(

l + 1
2

)2 − Z2α2

)2


− 1

2

(B.105)

The radial wave function is

R(r) = Ar
1

r
(βr)

1
2
+
√
(l+ 1

2)
2
−Z2α2

e−
βr
2 vnl(βr) (B.106)

where, Ar is the normalization constant and vnl(βr) = vnl(ρ) is a polynomial of degree
nr = n− l − 1. The complete wave function therefore is

ψ = Ar
1

r
(βr)

1
2
+
√
(l+ 1

2)
2
−Z2α2

e−
βr
2 vnl(βr)Y

m
l (θ, ϕ) (B.107)

Ar is the normalization constant. The Klein-Gordon equation does not perfectly describe the
hydrogen atom. Because this equation is ideal for relativistic scalar, but the electron is not
a relativistic scalar. The normalization constant is

Ar =
chΓ

(√
4l2 + 4l − 4Z2α2 + 1 + 2

)
2
√
c4m2 − c4m2

α2Z2(√
l2+l−α2Z2+1

4−l+n− 1
2

)2+1

(B.108)
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B.3 Dirac Equation for Hydrogen Atom: Ground State

The Dirac equation is [37] (
γµ

∂

∂xµ
+
mc

ℏ

)
ψ = 0, (B.109)

where γµ with µ = 1, 2, 3, 4 are 4× 4 matrices given by

γk =

(
0 −iσk
iσk 0

)
γ4 =

(
I 0

0 −I

)
. (B.110)

σk are 2× 2 Pauli matrices. In the presence of electromagnetic couplings, the Dirac equation
becomes (

∂

∂xµ
− ie

ℏc
Aµ

)
γµψ +

mc

ℏ
ψ = 0, (B.111)

and the time dependance of ψ is given by ψ = ψ(x, t)|t=0e
−iEt/ℏ. Then we can write the

coupled equations [
σ ·
(
p− eA

c

)]
ψB =

1

c

(
E − eA0 −mc2

)
ψA, (B.112)

−
[
σ ·
(
p− eA

c

)]
ψA = −1

c

(
E − eA0 +mc2

)
ψB, (B.113)

with Aµ = (A, iA0). The wave function of the stationary states in the standard representation
is

ψ =

(
ψA

ψB

)
=

(
g(r)Y j3

jlA

if(r)Y j3
jlB

)
(B.114)

where Y j3
jl is normalized spin-angular function which is formed by the combination of Pauli

spinor with spherical harmonics of order l. The spin-angular functions in two-component
form is

Y j3
j=l± 1

2
,l
= ±

√
l ± j3 +

1
2

2l + 1
Y

j3− 1
2

l

(
1

0

)
+

√
l ∓ j3 +

1
2

2l + 1
Y

j3+
1
2

l

(
0

1

)
(B.115)

The radial function f and g depends on k. The Dirac equation transform into the following
form with scalar potential only

c(σ.p)ψB = (E − V (r)−mc2)ψA, (B.116)

c(σ.p)ψA = (E − V (r) +mc2)ψB. (B.117)

57



Using the identity (σ.a)(σ.b) = a.b + iσ.(a × b), we can write σ.p

σ.p =
(σ.x)

r2
(σ.x)(σ.p)

=
(σ.x)

r2

(
−iℏr ∂

∂r
+ iσ.L

)
. (B.118)

Operator σ.x
r

acting on Y j3
jl will give an eigenfunction of J2, J3, and L2 with the same j and

j3 but of opposite orbital parity, which means

(σ.x)

r
Y j3

jlB
= −Y j3

jlA
, (B.119)

and
(σ.x)

r
Y j3

jlA
= Y j3

jlB
. (B.120)

Thus

(σ.p)ψB = i
(σ.x)

r2

(
−iℏr ∂

∂r
+ iσ.L

)
f(r)Y j3

jlB

= i
(σ.x)

r2

(
−iℏr∂f

∂r
+ i(k − 1)ℏf

)
Y j3

jlB

= −ℏ
df

dr
Y j3

jlA
− (1− k)ℏ

r
fY j3

jlA
. (B.121)

Similarly,

(σ.p)ψA = iℏ
dg

dr
Y j3

jlB
+ i

(1 + k)ℏ
r

gY j3
jlB
. (B.122)

We can rewrite the equations Eq. (B.116) and Eq. (B.117), using Eq. (B.121) and Eq.
(B.122)

−cℏdf
dr

− (1− k)ℏ
r

f = (E − V −mc2)g, (B.123)

cℏ
dg

dr
+

(1 + k)ℏ
r

g = (E − V +mc2)f. (B.124)

Introducing new parameter

F (r) = rf(r), G(r) = rg(r), (B.125)
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we get radial equations

ℏc
(
dF

dr
− k

r
F

)
= −(E − V −mc2)G, (B.126)

ℏc
(
dG

dr
+
k

r
G

)
= (E − V +mc2)F. (B.127)

For hydrogen atom the scalar potential V is given by

V = −Ze
2

4πr
. (B.128)

To make equations Eq. (B.126) and Eq. (B.127) more convenient, introducing more param-
eters

α1 =
(mc2 + E)

ℏc
, α2 =

(mc2 − E)

ℏc
, (B.129)

γ =
Ze2

4πℏc
= Zα ≡ Z

137
, ρ =

√
α1α2r, (B.130)

and which changes the coupled equations as follows

(
d

dρ
− k

ρ

)
F −

(√
α2

α1

− γ

ρ

)
G = 0, (B.131)(

d

dρ
+
k

ρ

)
G−

(√
α1

α2

+
γ

ρ

)
F = 0. (B.132)

Similar to the non relativistic treatment of the hydrogen atom, the solutions to Eq. (B.131)
and Eq. (B.132) is of the form

F = e−ρρs
∑
m=0

amρ
m, G = e−ρρs

∑
m=0

bmρ
m. (B.133)

Substituting Eq. (B.133) in Eq. (B.131) and Eq. (B.132), and equating the coefficients of
e−ρρsρq−1, we get the recursion relations

(s+ q − k)aq − aq−1 + γbq −
√
α2

α1

bq−1 = 0, (B.134)

(s+ q + k)bq − bq−1 − γaq −
√
α1

α2

aq−1 = 0. (B.135)

59



For q = 0, we have

(s− k)a0 + γb0 = 0, (s+ k)b0 − γa0 = 0. (B.136)

Here a0 and b0 are not zero, the secular determinant of Eq. (B.136) must vanish; hence

s = ±
√
k2 − γ2. (B.137)

To keep
´
ψ†ψd3x finite, the condition to be fulfilled is

ˆ
|F |2dρ <∞,

ˆ
|G|2dρ <∞. (B.138)

Thus F and G must not diverge at the origin, s > −1
2
. To fulfill

k2 − γ2 ≥ min(k2)− γ2 ⋍ 1−
(
Z

137

)2

, (B.139)

the above requirement, we need to take the positive root of Eq. (B.137).
F and G would increase exponentially as ρ → ∞ if the power series did not terminate.

Assuming that the two power series terminate with the same power, nr, where,

anr+1 = bnr+1 = 0, anr ̸= 0,bnr ̸= 0. (B.140)

Setting q = nr + 1 in Eq. (B.134) and Eq. (B.135), we obtain,

anr = −
√
α2

α1

bnr . (B.141)

Now setting q = nr, multiplying Eq. (B.134) by α1, Eq. (B.135) by
√
α1α2, and subtracting

[α1(s+ nr − k) + γ
√
α1α2] anr − [

√
α1α2(s+ nr + k)− γα1]bnr = 0. (B.142)

Using Eq. (B.141) in Eq. (B.142)

−
√
α1α2(s+ nr − k)− γα2 −

√
α1α2(s+ nr + k) + γα1 = 0 (B.143)

2
√
α1α2(s+ nr) = γ(α1 − α2). (B.144)

After putting the values of α1 and α2, we have√
(mc2)2 − E2(s+ nr) = Eγ. (B.145)
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Squaring this, gives

(
(mc2)2 − E2

)
(s+ nr)

2 = E2γ2 (B.146)

E2
(
(s+ nr)

2 + γ2
)
= (mc2)2(s+ nr)

2

E2 =
(mc2)2(s+ nr)

2

(s+ nr)2 + γ2

E2 =
(mc2)2

1 +
(

γ
s+nr

)2
E =

mc2√
1 +

(
γ

s+nr

)2
=

mc2√
1 + Z2α2(

nr+
√
(j+ 1

2)
2
−Z2α2

)2

. (B.147)

Expanding Eq. (B.147) gives

E = mc2

1 + Z2α2(
nr +

√
(j + 1

2
)2 − Z2α2

)2


− 1
2

(B.148)

= mc2
[
1− 1

2

(Zα)2

n2
− 1

2

(Zα)4

n3

(
1

j + 1
2

− 3

4n

)
− ...

]
. (B.149)

For the ground state, nr = 0, k = −1 (spin parallel to angular momentum), Eq. (B.147)
becomes

Egd = mc2
1√

1 + Z2α2

(j+ 1
2)

2
−Z2α2

= mc2
1√

(j+ 1
2)

2
−Z2α2+Z2α2

(j+ 1
2)

2
−Z2α2

= mc2

√√√√(j + 1
2

)2 − Z2α2(
j + 1

2

)2
= mc2

√
1− Z2α2. (B.150)
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Using Eq. (B.150),

√
α1α2 =

1

ℏc
√

(mc2)2 − (mc2)2(1− Z2α2)

=
1

ℏc
mc2Zα

=
Z

aB
, (B.151)

where aB = ℏ
αmc

. Using Eq. (B.141)

a0 = −
√
α2

α1

b0

= −
√
α1α2

α1

b0

= −
Zαmc2

ℏc
mc2+E

ℏc

b0

= − Zαmc2

mc2 +mc2
√
1− (Zα)2

b0

a0
b0

= − Zα

1 +
√
1− (Zα)2

. (B.152)

Let us find the wave function, using Eq. (B.125) in Eq. (B.114), we can write

ψ =

(
ψA

ψB

)
=

(
g(r)Y j3

jlA

if(r)Y j3
jlB

)

=

(
G(r)
r

Y j3
jlA

F (r)
r

Y j3
jlB

)
. (B.153)

For ground state wave function, nr = 0 and k = −1

s =
√
1− (Zα)2, ρ =

Zr

aB
. (B.154)

Inserting m = nr = 0 in Eq. (B.133)

F = e−ρρs
∑
m=0

amρ
m, G = e−ρρs

∑
m=0

bmρ
m

= e
− Zr

aB

(
Zr

aB

)√1−(Zα)2

a0, = e
− Zr

aB

(
Zr

aB

)√1−(Zα)2

b0. (B.155)
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Using Eq. (B.155) in Eq. (B.153), the wave function becomes

ψ = N

 e
− Zr

aB

(
Zr
aB

)√1−(Zα)2
1
r
b0Y

j3
jlA

ie
− Zr

aB

(
Zr
aB

)√1−(Zα)2
1
r
a0Y

j3
jlB


= Ne

− Zr
aB

(
Z

aB

)(
Zr

aB

)√1−(Zα)2−1
(

b0Y
j3
jlA

ia0
σ.x
r

Y j3
jlA

)

= Ne
− Zr

aB

(
Z

aB

)(
Zr

aB

)√1−(Zα)2−1
 b0Y

j3
jlA

−i Zα

1+
√

1−(Zα)2
b0

σ.x
r

Y j3
jlA


= Nb0e

− Zr
aB

(
Z

aB

)(
Zr

aB

)√1−(Zα)2−1
 Y 0

0 χ
s

−i Zα

1+
√

1−(Zα)2
σ.x
r

(−Y 0
0 χ

s)


=
Nb0
2
√
π
e
− Zr

aB

(
Z

aB

)(
Zr

aB

)√1−(Zα)2−1
 χs

i

(
1−
√

1−(Zα)2

Zα

)
σ.x
r
χs

 . (B.156)

Introducing new constant and parameter,

Ñ =
Nb0
2
√
π

(
Z

aB

)
, µ =

√
1− (Zα)2, (B.157)

in Eq. (B.156)

ψ = Ñe
− Zr

aB

(
Zr

aB

)µ−1
(

χs

i1−µ
Zα

σ.x
r
χs

)
, (B.158)

where Ñ is the normalization constant. To find the normalization constant, have to calculate
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the integration
ˆ ∞

−∞
ψ∗ψdV = 1 (B.159)

ˆ ∞

−∞
Ñ2e

− 2Zr
aB

(
Zr

aB

)2[µ−1](
χs∗χs +

(1− µ)2

Z2α2
χs∗χs

)
r2 sin θdθdϕdr = 1 (B.160)

4π

22(µ−1)

(
1 +

(1− µ)2

Z2α2

)
Ñ2

ˆ ∞

−∞
e
− 2Zr

aB

(
2Zr

aB

)2(µ−1)

r2dr = 1 (B.161)

4π(
2Z
aB

)2
22(µ−1)

(
1 +

(1− µ)2

Z2α2

)
Ñ2

ˆ ∞

−∞
e
− 2Zr

aB

(
2Zr

aB

)2µ

dr = 1 (B.162)

2× 4π(
2Z
aB

)2
22(µ−1) 2Z

aB

(
1 +

(1− µ)2

Z2α2

)
Ñ2

ˆ ∞

0

e
− 2Zr

aB

(
2Zr

aB

)2µ

d

(
2Zr

aB

)
= 1 (B.163)

4π(
Z
aB

)3
22µ

(
1 +

(1− µ)2

Z2α2

)
Ñ2Γ(1 + 2µ) = 1, (B.164)

using the integral

Γ(1 + x) =

ˆ ∞

0

e−ttxdt. (B.165)

Finally the normalization constant becomes

Ñ2 =

(
Z
aB

)3
22µ−2

π
(
1 + (1−µ)2

Z2α2

)
Γ(1 + 2µ)

(B.166)

Ñ = 2µ−1

(
Z

aB

)3/2
1√
π

√√√√ 1(
1 + (1−µ)2

Z2α2

)
Γ(1 + 2µ)

(B.167)

= 2
√

1−(Zα)2−1

(
Z

aB

)3/2
1√
π

√√√√√ 1(
1 +

(1−
√

1−(Zα)2)2

Z2α2

)
Γ
(
1 + 2

√
1− (Zα)2

) (B.168)

= 2
√

1−(Zα)2−1

(
Z

aB

)3/2
1√
π

√√√√ 1 +
√
1− (Zα)2

2Γ
(
1 + 2

√
1− (Zα)2

) . (B.169)
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The wave function with the normalization constant

ψ = 2
√

1−(Zα)2−1

(
Z

aB

)3/2
1√
2
√
π

√√√√ 1 +
√

1− (Zα)2

Γ
(
1 + 2

√
1− (Zα)2

)e− Zr
aB

(
Zr

aB

)√1−(Zα)2−1

×

(
χs

i
1−
√

1−(Zα)2

Zα
σ.x
r
χs

)
. (B.170)
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