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ABSTRACT

A rudimentary discussion of crystal symmetry
includes unit cells, symmetry elements and operations, space
group notation and general position definitions. Using the
Laue equations and Bragg's law, the geometry of film dif-
fraction patterns is discussed including the idea of recip-
rocal space. An expression is developed which shows the
structure factor to be a Fourier transform of electron den-
sity. Modifications to the structure factor expression
using Friedel's law and symmetry operations are illustrated.
Two methods, direct and Patterson, for locating atoms within
the unit cell are explained. The basic experimental and
computational techniques used are given.

The history of transition metal hydrides is
briefly tfaced from the earliest preparation of Fe(CO)4H2
through the NMR characterization of HRe(C5H5)2 to the deter-
mination of the hydride position by neutron diffraction in
HMn(CO)S, and the formulation of bridged hydride species as
in HMnRez(CO)l4. The preparation and structural properties
of Group IV substituted carbonyl hydrides of transition
metals are given.

The compound H2W2(C0)4Si2(C2H5)2 crystallizes in
space group P2l/n (z = 2) with cell dimensions a = 9.212(1),
b = 10.131(1), c = 12.749(1) ﬁ, B = 99.07(1)°. The struc-

ture was refined to an R factor of 0.038 for 945 reflec-
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tions. The tungsten atoms are held together by a W-W bond
and by two silicon bridges. There are two distinct W-Si
bond lengths, the longer being interpreted as a three-
centre two-electron bond involving the hydrogen atom.

The compound HFe(CO)4Si(C6H5)3, crystallizes in
the triclinic space group PT with a = 10.062(1), b = 10.377(1
(1), ¢ = 10.800(6) A, « = 90.96(3), B = 111.43(1), y = 98.55
(1)° and 2 = 2. The structure was refined using data from
eight crystals to an R factor of 0.061 based on 1612 reflec-
tions. The .terminal hydridic hydrogen is at a normal co-
valent distance from iron.

The compound (7-C.H )HMn(CO)ZSi(c6H5)Cl2 crystal-

575
lizes in space group PI with a = 10.995(1), b

8.171(1),
100.26(1)°

it

c = 8.486(1) A, o = 98.25(1), B = 98.06(1), Y
and 2 = 2. Its structure waé refined to an R factor of
0.039 using 968 reflections. The hydridic hydrogen atom is
located in a bridging position with respect to manganese
and silicon forming a bent three-centre two-electron bond
with Mn-H = 1.49 and Si-H = 1.79 i.

The compound (Tr—CSHS)HFe(CO)(Si(CH3)2C6H5)2 crys-
tallizes in the orthorhombic space group Pbca with Z = 8
and a = 19.028(3), b = 13.320(2), ¢ = 17.316(2) A. The
structure was refined to an R factor of 0.055 with 1180
reflections. The structure may be viewed as a distorted

tetragonal pyramid with the centroid of the cyclopentadienyl



ring at the apex, the carbonyl and dimethylphenylsilyl
ligands in the basal plane with the latter trans to each
other and the iron displaced toward the cyclopentadienyl
ring. The remaining position in the basal plane of the
pyramid is assumed to be occupied by the hydridic hydrogen

which was not conclusively located.
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General Crystallographic Introduction



GENERAL CRYSTALLOGRAPHIC INTRODUCTIONl'2

I. Crystals and Symmetry

A. The Unit Cell

A crystal consists of atoms arranged in a pat-
tern which can contain a single atom, a group of atoms, a
molecule or a group of molecules and which repeats periocd-
ically in three dimensions. To discuss the pattern quan-
titatively, a system of reference points is necessary and
SO one point is chosen at random. All points with identi-
cal environment and orientation to this point constitute
a lattice. By connecting the lattice points with straight
lines a parallelopiped or unit cell can be formed which can
be repeated by translation from one lattice point to ano-
~ ther to generate the entire lattice. If the positions of
the atoms within one unit cell are known, by extension,
the atom positions throughout the crystal are determined.
The size and shape of the unit cell are specified by the
lengths of the three independent edges, a, b, ¢ and by the
three angles a, B, ¥ between these edges as shown in the
figure below. The axes a, b, ¢ define a coordinate system
appropriate to the crystal. The location of a point within
a unit cell may be specified by means of three fractional
coordinates (x, y, z) defined by starting at an origin (O,
0, 0) and moving xa along the a axis, yb along the b axis

and zc along the c axis.
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General Crystallographic Coordinate System

B. Symmetry Elements and Operations

The three-dimensional repeating unit in the lat-
tice can show symmetry. An object is said to have symmetry
if some movement of the object or operation on the object
leaves it in a position indistinguishable from its original
position, Some symmetxry elements and their corresponding
symmetry operations along with the Hermann-Mauguin symbol
are given in Table I. The collection of symmetry elements
possessed by a molecule is called a point group, while a
study of the characteristics of point groups is called
group theory and will not be treated further here.

In principle, the unit cell which is picked as



Symmetry
" Element
Identity

Rotation axis

Mirror plane

Centxre of
symmetry

Rotary
inversion

Table I

Symmetry Operations

Symmetry
" Operation

Rotate by 360°

Rotate by <%gg)°‘

Reflection

Invert through a
point

o
Rotate by igg :
Invert through a
point

Hermann-
Mauguin

- Symbol

i

B
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outlined above may be chosen in an infinite number of ways.
However, in practice, symmetry may be used to restrict the
number of choices for the unit cell. 1In describing crys-
tals, seven three-dimensional coordinate systems are used
(Table II). It can be seen that symmetry considerations
dictate some of the relationships between, and values of,
the six parameters a, b, ¢, a, B, Y.

In addition, in order to preserve the advantages
of a unit cell chosen on the basis of symmetry, a centred
cell in one of the basic crystal systems can be chosen.

As shown in Table III fourteen Bravais lattices are then
possible. The symbols used in the diagrams are Hermann-
Mauguin symbols: P, primitive; c, c-faced centred; I,body-
centred; F,all faces centred. Each component of a symbol
refers to a different direction except if used in conjunc-
tion with a slash, so that for example, mmm implies three
mutually perpendicular mirror planes while 4/m indicates

a mirror plane perpendicular to a four-fold rotation axis.

C. Translational Symmetry Elements and Space Groups
So far, symmetry as it applies to the repeating
pattern or unit cell contents has been considered, but
the repetition of the unit of pattern in space also can
result in symmetry. There are three new symmetry elements

involved, the first of which is the lattice translation



Table II

Crystal Systems

Crystal No. of Independent
System © ~ Parameters Parameters
Triclinic 6 aFb#c
oF BFY
Monoclinic 4 a#b#c
a=y=90° B#90°
Orthorhombic 3 agb#c
a=p=y=90°
Tetragonal 2 a=b#c
o= B=Y=9O°
Rhombohedral 2 =b=c
a=p=y#90°
Hexagonal 2 a=b#c
a=p=90° y=120°
Cubic 1 a=b=c

o= B=Y=9 0°



a a

Table IIX

Bravais Lattices
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itself. Then, there are screw axes, np which constitute
a rotation of 360/n° followed by a translation of p/n in
the direction of the axis. Thirdly, there are glide planes
consisting of reflection in a plane followed by transla-
tion. Thus, "a" implies reflection in the plane followed
by translation of a/2 in the a axis direction. There are
230 ways, called space groups, in which motifs may be
repeated, which can be symbolized by Hermann-Mauguin sym-
bols as already described. 'Thus, P21/c implies a primi-
tive monoclinic cell,with a 2-fold screw axis parallel to
the b axis,and with a glide plane perpendicular to brwith

a translation of c/2.

D. General Positions

Equivalent or general positions refer to the po-
sitions generated within the unit cell by the actions of
the synmetry elements. So, using the previous example of
P21/c, if there is one position at fractional coordinates
(x, vy, 2), there is a second position related to this by a
two-fold screw along the b axis, that is at (X, y+%, 2z).
A third position related to the first by a ¢ glide is at
(x, ¥, z+%), and finally, there is a position with frac-
tional coordinates (X, %-y, %-2z), that can be described

either as a ¢ glide performed on the second position, or

a 2l performed on the third position. These four posi-
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tions are called the equivélent positions fo; the space
group P21/c. (The standard hotation places the centre of
symmetry at the origin.) Special positions are sets of
particular locations which are related by the symmet?y ele~-
ments, and at which objects (molecules) may be placed if
and only if they have symmetry which is identical to that

of the cell.

II.  X-Ray Diffraction

A. Laue Equations

X-rays are electromagnetic radiation with wave-
lengths in the range 0.1 to 100 i. They are produced for
diffraction purposes by decelerating rapidly moving elec-
trons very quickly by collision with a metal target, and
converting their energy of motion into a gquantum of radia-
tion., The most useful X-rays for studying molecular struc-
ture have wavelehgths in the vicinity of 1 R which is com-
parable to interatomic distances in crystals. The periodic
structure of a crystal can be used to diffract X-rays just
as gratings are used to produce diffraction patterns with
visible light. Diffracted X-rays are observed only in
certain allowed directions determined by the repeat dis-
tance of the periodic structure and the wavelength of the
radiation. The direction for which diffraction occurs

may be defined by three equations called the Laue equations:



a(cosul-cosvl) = hA

b(cosﬁz—cosvz) = kA

c(cosu3-cosv3) A (1)

where a, b, ¢ are the repeat distances in the unit cell;
Hir My, Mg are the angles between the incident beam and

the a, b and ¢ axes respectively; Vir Vo vy are the angles
between the diffracted beam and the axes; A is the wave-
length of the X-radiation; h, k, % must be integers if
constructive interference is to occur. See Figure 1 for

l-dimensional case,

B. Bragg's Law and the Reciprocal Lattice

Another way of defining the conditions for con-
structive interference in the diffraction process is by
Bragg's law:

2dsin® = n} (2)
Here d is the perpendicular distance between successive
planes in the crystal; 6 is the angle between the incident
X-ray beam and these planes; n is an integer and A is the
wavelength of the radiation. (Figure 2)

At this point it is convenient to introduce the
concept of reciprocal space and the reciprocal lattice,
since information available in interpreting X-ray diffrac—
tion geometry is often in terms of reciprocal parameters.

By considering Bragg's law in the form sing = ni/2d it is
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seen that sin® which measures the deviation of the dif-
fracted beam from the direct beam varies directly as 1/d.
The reciprocal lattice is based on this quantity 1/d:

from an'arb;trarily chosen origin, normals to all possible
direct lattice planes hk& of length l/dhk2 are drawn with
dhk£ equal to the perpendicular distance between planes

in the hk{ set. The set of points so determined constitutes
the reciprocal lattice. Some of the relationships between

the direct and reciprocal lattices for the triclinic case’

are given in Table IV.

C. Geometry of X-Ray Diffraction

The Laue equations may be applied directly in
interpreting thé geometry of X-ray diffraction. 1If a crys-
tal rotates about onevof the unit cell axes, say the a axis,
with the incident X-ray beam normal to this axis, My = 90°
and cosyy = 0. If h = 0, the first Laue equation is satis-
fied for Vi = 90°. As the crystal rotates, positions are
reached such that the remaining two Laue equations are
simultaneously satisfied and constructive interferxence
occurs. The allowed directions (\)l = 90°) are always in a
plane normal to the axis of rotation. For values of h
other than 0 there is a cone of diffracted radiation with
a half-angle of (90~vl)°. The diffraction pattern may be

seen by wrapping a cylinder of f£ilm around the crystal.
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The resulting photograph consists of a series of spots on
straight lines, one line per value of h, whose separation
can be used to calculate the length of the crystal axis,
a:

hA
sin tan—l(y/r)

a =

where A is the wavelength of the X-rays, r is the radius
of the cylinder of film and y is the film distance from
row 0 to row h.

The lengths of the other axes, the angles between
these axes, as well as the crystal system and space group
are best obtained with the aid of Weissenberg and preces-
sion photographs. The Weissenberg camera allows each row
of the rotation photograph (corresponding to one value of
h) to be expanded to cover the entire cylindrical £ilm.
From these films it is possible to deduce two reciprocal
cell dimensions and the reciprocal angle between them, thus
being able to calcﬁlate the unit cell volume. The symmetry
of the oscillation and Weissenbexg photographs as well as
systematic absences (discussed below) allows assignment of
the crystal system and the possible space group or groups.
The precession camera gives an undistorted view of the
reciprocal lattice, and can be used to provide the cell
constants not readily obtained .from Weissenberg photographs «

while using the crystal in the same orientation as for the
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Weissenberg photographs.

D. The Structure Factor

To be able to relate the intensities of the dif-
fraction patterns observed on films to the contents of the
unit cell, it is necessary to develop some mathematical
descriptions.

A simple harmonic wave may be described in texrms
of a point moving on a circle at a constant angular velo-
city, that is, a rotating vector. Since waves scattered
by an atom will have the same velocity but different ampli-
tudes and phases, they may be represented as static vectors
in the complex plane. (see Figure 3). The vector repre-
sentation for a wave of amplitude fl and phase angle ¢l
(measured with respect to the wave scattered by hypothetical
electrons at the cell origin) is flexp(i¢l). The resultant
sum of j waves scattered by j atoms in the direction of the

scattering vector to the hk{ plane is given by

F(hkR) = Zf.exp(id.) (3)
3 3 J

with F(hkf) termed the structure factor. The phase angle,
¢j' may be expressed in terms of hkf and the fractional

coordinates (xj Yj zj) of the atoms in the cell as

¢j = 21r(hxj + kyj + zzj) (4)

-
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so that

F(hk%) = If.exp2mi(hx, + ky. + 2z.) (5)
573 3 3 3

Equation (5) may be resolved into real and imaginary com-

ponents such that

F(hk2) = 5f.cos2m (hx.+ky.+Lz.) + iIf.sin2m(hx,+ky.+82.)
373 s TR I B
(6)
which can be written F(hkg) = A + iB

A = If.cos2w (hx_ . +ky.+%z.) B = If.sin2m (hx.+ky.+2z. 7
s (hx jthyy+izy) 553 (hxy#kyy+hzg) (7)

The magnitude of the structure factor |F(hkg)|, called the
structure factor amplitude, is quantitatively equivalent
to that number of electrons,which if scattering in phase,
would show the same diffracting power as the actual set of
electrons distributed throughout the unit cell, and can be
evaluated as (A2 + Bz)l/2 (see Figure 3). Using the above
definitions of A and B, the structure factor amplitude is
then expressed as a function of the coordinates of the

atoms in the cell:
' 2
F(hk2 = LE. 21 (hx.+ky.+2z.
| F( ) | {[ Jcos 7 ( X5 yJ zj)]
. 2 1/2
+ [Zf,sin27(hx, +ky.+8z, } 8
[ 5 ( “y¥ky 4 J)] (8)

It is this equation which can be used to calculate struc~
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ture factor amplitudes. Observed values of the modulus of
the structure factor, which may then be compared with these
calculated values,éan be obtéined from X-ray diffraction,
because the intensity of the radiation reflected from an
hk% plane is proportional to IF(hkz)lz. There are various
other factors in addition to electron density which influ-
ence the intensities, and the derivation of the values of
[F(hkl)l2 from measured intensities requires correction
for polarization of X-rays, for the length of time the
plane is in the reflecting position (Lorentz effect) and
for absorption of X-rays by the crystal. The intensities
may be measured on films or by using counting methods

which involve a diffractometer.

The phase of the resultant wave is

a(hkg) = tan—l(§> 9)

(Figure 3), but since only the amplitude of the structure
factor is determined experimentally, the A and B parts are
not resolved, and the value of the phase angle cannot be

directly measured. This is known as the phase problem.

E. Electron Density as Fourier Transform of the
Structure Factor
A periodic function can be represented by a

Fourier series which consists of a summation of sine and

L



Figure 3

A and B in the Structure Factor

17.
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cosine terms. Since a crystal is periodic, its electron
density can be represented by such a series. The follow-
ing equation gives the three-dimensional periodic electron
density ét a point (x, y, 2z) in the unit cell, where mno

are any integers:

[o] .
(xyz) = Z c exp (27l (mx+ny+oz)) (10)
pAXY mn, o=—c MNO
On substitution of this expression for electron density

into the structure factor expression given by equation (5),
F(hkg) = fvp(xyz)exp(2wi(hx+ky+zz))dv (11)

On simplifying, it can be shown that the Fourier coeffici-
ents ¢ o = %F(hkz) and mno are identical to hk%. Thus
the three-dimensional Fourier synthesis of the electron

density can be written as

1 oo
plxyz) =5 I
h,k,2=-

F(hkf)exp (-27i (hx+ky+Lz)) (12)
{vo]
F, Modifications of the Structure Factor: Friedel's
Law
Calculated structure factors are modified to
account for thermal vibration by introducing a temperature

factor. The struvcture factor then becomes

F (hk2) = E_Ifjexp(Z'rri(hxj+kyj+£zj))exp(—Bj(sine/A)z) (13)
j
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where Bj is proportional to the mean square displacement
of atom j from its equilibrium position. Anisotropic tem-
perature factors can be used to account for variation with
direction of the amplitude of vibration.

For a molecule with a centre of symmetry, if
there is an atom at (xj, Yj’ zj) there is an identical
atom at (—xj, —yj, —zj). For atoms not related by the
centre, equation (6) can then be written:

F(hk) = If.(cos27(hx.+ky.+2z.)+cos2 —hx.—k..—zz.
( ) : J( ( 57RY 5 zJ) cos2T ( 3 yJ J))

+iTf. (sin27 (hx.+ky.+2z.)+sin2w (~hx.-ky.-2z. 14)
: 3( m( 3 yj j) in2mw( x:l yJ zj)) (14)

Since cos (-x) = cos(x) and sin(-x) = -sin(x), equation (14)

reduces to’

F(hke) = 2If.cos2n(hx.+ky.+2z

33 ] J j) (15)

So for centrosymmetric crystals, the imaginary component
has vanished, and the phase problem has been reduced to
deciding the sign of F(hk®).

If a crystal does not have a centre of symmetry,

—

F(hk&) = A(hkQ2)+iB(hk?%); F(hk?) = A(hke)-iB(hke). (16)

(F(hk?) is identical to F(-h -k -2))
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The intensities in either case are proportional to A2+B2.

Since the hkf% and hkf planes have the same intensities,
the diffraction pattern has a centre of symmetry. This is
Friedel's law. As a consequence of this law, it is not
possible to tell from inspection of films if a crystal is
centrosymmetric, but the presence of a centre can be revealed
either by the structure itself once it is derived or by
statistical analysis of the distribution of intensities
about the mean.

An exception to Friedel's law occurs in the case
of anomalous dispersion. This happens when the incident
X-ray wavelength is near an absorption edge of a scatter-
ing element in the crystal. Mathematically, the result of
this is to cause the atomic scattering factors for these

atoms to be complex numbers.

G. Systematic Absences

It is now possible to discuss the assignment of
the space group of a crystal from a consideration of sym-
metry and systematic absences. The crystal system can be
assigned by a study of the symmetry expressed on the
Weissenberg and rotation films. For example, if a mirror
plane perpendicular to the rotation axis is seen on the
oscillation film, and two mirror planes 90° apart on the

Weissenberg 0 level film, then the crystal is said to have
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mmm symmetry characteristic of the orthorhombic (or higher
symmetry) crystal system. The assignment of a particular

space group is often facilitated by the occurrence of sys-—
tematic absences. For example, if there is a c glide plane
perpendicular to the b axis, then for an atom at (X, ¥Yr 2):
there is an equivalent atom at (x, ¥, z+%). The contribu-

tion to the structure factor of these two atoms is

F(hkg) = (exp(2ﬂi(hx+ky+lz))+exp(2ni(hx—ky+zz+gl)))f (17)

If k = 0, F(h0&) exp(2ﬂi(hx+zz))(l+exp(2ﬂi£/2))f

exp (2mi (hx+122)) (1 (-1 5 £ (18)

0 for & odd

2exp (27i (hx+2z) £ for § even.

Unless & is an even number, ho9 reflections will be sys-
tematically absent., Thus the absence of h0& reflections
for % odd is indicative of a ¢ glide plane perpendicular
to b. Similar derivations reveal other characteristic
absences as given in Table V.

By a consideration of these absences, the space
group of the crystal, if not uniquely determined, can at

the very least be narrowed to two or three choices.
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Symmetry

" Blement

2 fold screw along

Glide
Plane

Glide
Pl%pe

b

Glide
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translatioh
translation
translation
translation
translation
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centred lattice
centred lattice
centred lattice
centred lattice

centred lattice
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Table V

Affected
" Region

hoo
0kO0
002

0k&

h0o2

hk0

hk&

22,

Condition
for
systematic
- Absence
h = 2n+l
k = 2n+l
g = 2n+l
k 2n+l
g = 2n+l
h = 2n+l
g = 2n+l
h = 2n+l
k = 2n+l
k+8 = 2n+l
h+2 = 2n+l
h+k = 2n+l
not all h,k,%
odd or even

h+k+2 = 2n+l
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III. Determination of Atom Positions

Atom positions within the -unit cell cannot be
directly inferred from the observed intensities. As
previously described, only values of [F(hk.@)]2 are
available from intensity data, while values for F(hky) are
needed to map out the electron density and thus determine
the structure. That is, the phases as well as the magni-
tudes of the F(hkf) must be found. There are several
methods‘by Which phase information may be extracted from

the intensity data.

A, Patterson Synthesis
One way is by a Patterson synthesis. The Patter-
son function is derived by taking the product of the elec-
tron densities as expressed by equation (12) for points (x,
Y, 2) and (x+u, y+v, z+w) and integrating over the volume

of the unit cell:

=0

P(u,v,w) = f1ris0 ¥ F(hki)exp (-27i (hx+ky+2z 5%
tVy ) 0”0 Oh,k,ﬂ,:-“{. 4 P (1 4 ))h,k,
F(th)exp(—Zwi(h(x+u}+k(y+v)+2(z+w))dxdydz (19)

This leads on simplification to

P(u,v,w) = - % |F (hk2) | 2cos2m (hutkviiw)  (20)
h,k, 4=

The Patterson function P(u,v,w) reaches maximum
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values at the points (u, v, w) which correspond to the
coordinates of vectors between pairs of atoms. The Pat-
terson function can be used to obtain a ma? of the vectors
between atoms. There is a Patterson peak for each inter-
atomic vectdr. The function has a large positive value at
the origin corresponding to the vectors from each atom to
itself. A crystal structure investigation usually includes
the calculation of the Patterson function at a large num-
ber of points throughout the unit cell, so that those points
where P(u,v,w) is large can be found. The interprétation
of the Patterson function is complicated by the following:
1) If there are N atoms in the unit cell, there are (N2—
N)/2 peaks other than the origin which are indepéndent; )
Thus, the map is crowded., 2) Because the atoms are not
points, each Patterson peak occupies a considerable volume
which causes overlap of peaks.

For these reasons, Patterson maps are most use-
ful for molecules which contain one or more atoms which
have appreciably higher atomic numbers than the others.
Since the atomic scattering factors increase with the num-
ber of electrons the atoms have, the heavy atoms will con=-
tribute more to the structure factors. Because the Pat-
terson peak heights due to these heavy atoms are propor-

tional to the electron density at each atom, they may be

easily picked out,and the heavy atom positions so obtained
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used in calculations of t+he structure factors.

B. Direct Methods

Methods used to determine the phases of the
structure factors without first deriving a set of atom
parameters are called direct methods. Because the number
of observations of hki plane intensities is much larger
than the number of parameters involved (three positional
and either one for isotropic oxr six for anisotropic tem-
perature factors per atom) , the structure factors are not
all independent. To derive some of the relationships
between the structure factors, it is necessary to define
a unitary structure factor as U(hk&) = F(hk%)/?fi. If the

structure has a centre of symmetry, this can be written:
U(hk) = vn.cos2m (hx.+ky.+2z.) (21)
33 Mt R
where nj = fj/Zfi. Using Cauchy's inequality:
i
2 2 2
va.b, |“<(X a. b (22)
|52 | (j:"kk)_ | ,
cihoa. = (no)% and b, = (n,) cos2m (hx,+ky,+8z)), it fol-
with aj = nj an k= (g cos2m (hx, +ky, +22 ), % o
lows that

2 2
IgniCOSZN(hxi+kyi+in)] Sgnjinkcos 2n(hxk+kyK+£zk) (23)

Since an = 1 and coszA = (l+cos2A)/2, the inequality
J
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U (hk8) 2<% (140 (2h 2k 22)) (24)

can be obtained. As an example, if U(130) = 0.5 and U(260)
= 0.6, then the sign of U(260) must be positive to satisfy
the inequality. Another inequality for centrosymmetric

structures is:

U2 (hk2)+U2 (h'k' 4 1) +U2 (h'+h k'+k £'+8)
< 1420 (hk2)U(h'k'2') U (h+h' k+k' 2+2') (25)

These are known as Harker-Kasper inequalities.
Thus if the signs of U(hk2) and U(h'k'%'), symbol-
ized by S(hk&) and S(h'k'%2'). respectively, are known that

of U(h+h‘ k+k! %+2&') can be deduced from equation (21) as
S(h+h' k+k' 2+2') = S(hk&)S(h'k'L") (26)

provided the structure factors are large. The probability
that this will give the correct sign for F(h+h' k+k' 2+2')
increases as the magnitude of the structure factors involved
increases. Once a few signs have been determined, equation
(23) can be used to generate more signs and so on. The large
structure factors required for this process are also those
whose phases are most needed to produce a useful Fourier
representation of the structure. This method was devel-

oped by D. M, Sayre3,_with more recent reviews on it found

in several books.4'5’6
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C. Completing the Structure

Once the phases of some of the structure factors
havé been determined, a Fourier map is calculated, and the
atomic positions taken as the locations of the maxima of
the electron density function. The atomic positions and
the parameters describing thermal vibration are then refined
by means of a least squares calculation, which minimizes
the function Zw[FobS[—[Fcalclz, with w a weighting function.
The resulting parameters are those which produce the most
accurate values of interatomic distances and bond angles:,
while at the same time give the best agreement between cal-
culated and observed structure factor amplitudes. This
agreement is usually expressed mathematically by a residual

or R factor:

ZHFobsl—chalcIl

R, = (27)
! ZIFobsl
or by the so-called weighted R factor:
0 ([P s =1Fearc
_ obs calc
R, = (28)
2 Iw|F |2
obs

with w a weighting factor. R, 1is similar to a normalizea

2
standard error and more closely approximates the true
statistical quality of the refinement than does Rl' It

can be shown7 however that both Rl and R2 become smaller
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if the number of observations approaches the number of
parameters, and so the proviso must be added that, pro-
vided the number of observations greatly exceeds the num-
ber of parameters, the smallness of Rl’ or better R2, is
a measure of the reliability of the information given by

the structure.

1V. Experimental

The molecules studied during the course of this
research being very similar, it is natural to suppose that
many of the crystallographic technigques usedeould also be
similar. To this end, this experimental introduction will
discuss some of the generally applied methods and computer
programs, while the individual vagaries of the molecules

will be given each in its particular chapter.

A. The Collection and Correction of a Set of Inten-

sities
All data sets were collected on the manual Picker

four circle diffractometer using either CuKa or MoKa X-
radiation monochromated by a graphite single crystal (002
reflection). A coupled /26 scanning technique was used
with a scan rate of 2°/minute. Backgrounds were estimated
from a linear interpolation of two stationary crystal,
stationary counter measurements made at the limits of the

scan. The diffractometer settings were calculated by the
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program MIXG2 written by P. Shoemaker.

Accurate cell parameters were obtained from a
least squares analysis of a number of high sin® reflections
of widely varying hk{ values, which were accurately centred
in the counter window of the diffractometer, using CuK, X-
codiation (A = 1.54051A). A listing of DREFINE, the pro
gram used for this analysis, and a discussion of its gener-
ation and scope are given in Appendix C.

The stabilities of the crystals used throughout
this study were monitored by periodically measuring a
small number of reflections of varying sin6 throughout each
data set collection. These were then available as a basis
_for-decomposition corrections if required.

All crystals were corrected for absorption effects
using W.C. Hamilton's GONO9 program. Reflections which
were independent of ¢ except for absorption effects (for
example, the h00 reflections when the crystal is mounted
with a coincident with the ¢ axis of the diffractometer)
were measured in 10° intervals from 0° to 180° in ¢. Their
consistancy after correction for absorption gave reassur-
ance that the absorption corrections had been applied cor-
rectly. The dimensions of all crystals were measured using
a calibrated eye piece on a microscope. Generally, perpen-
dicular distances between faces were measured.

. . . 4
since the counter 1S non-linear above 10 counts/
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second, all reflections whose peak count exceeded this were
re-examined at lower values of the current. Appropriate
corrections to these strong reflections were applied. At
the completion of refinement, systematic errors due to sec-
ondary extinction (attentuation of primary X-ray beam by

the transfer of energy to the reflected beam) were analyzed

for by comparing Fobs and Fcalc values. Thus any very strong,
very low sin6 (<0.1) data which showed Fobs<<Fcalc were
rejected.

B. The Solution and Refinement of the Structure
The intensity data were corrected for Lorentz
and polarization effects and reduced to structure factor
amplitudes using the program PMMO, a local data reduction

1

program. Standard deviations for each observation were

computed using
o (I) = (CT+0.25(t /£, )2 (B, +B,)+(pI))*
¥ o/ Fp! (B1TE) TP

where CT is total integrated peak count obtained in time
tc; Bl and B2 are background counts each obtained in time
tb; and I = CT—%tC/tb(Bl+BZ). The p term allcws for mach-
ine variability and has values around 0.03. A rejection
criterion of the form I/0(I)<T was used to eliminate unob-
served reflections from the refinement. T was usually 3.0.

Unless otherwise noted, the positions of the

transition metal, silicon and any other heavy atoms were
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located using a Patterson map.generatéd by the program
FORDAP, written by A. Zalkin and modified by B. M. Foxman.
These positions were used in a least squares refinement
using the program SFLS5 written by C. T. P. Prewitt ﬁnd
modified by M. J. Bennett and B. M. Foxman, from which
electron density difference maps were obtained again using
FORDAP., From these difference maps it was possible to
locate carbon, oxygen and in some cases hydrogen atoms.
The atomic scattering factors of Cromer and Waber8 were
used for all atoms except hydrogen with anomalous disper-
sion corrections Af' and Af'' as found in the International

9,10

Crystallographic Tables applied to silicon and heavier

atoms., For hydrogen, the experimental scattering factors
of Mason and Robertsonll or of Stewart, Davidson and Simp-
son12 were used.

During refinement using the program SFLS5 or

SFLS5 as modified for hindered rotation by W. Hutcheon,l3

. e e . 2
the function minimized in each case was Ew(]Fobsl-]Fcalc[)

with w = 1/02(F ). The residual factors used to measure

obs
the degree of difference between experiment and model are
given by equations (27) and (28).

The introduction of anisotropic temperature fac-
tors was under*taken only if justified by electron density

difference maps and by the Hamj,lton14 statistical test

(significance level 0.05).
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Tables of bond lengths, bond angles and non-
bonded contacts together with their estimated standard
deviations were obtained from the program ORFFE2 written
by W. Busing and H. A. Levy. Equations of planes and
deviations from these planes were found using MGEOM by
J. S. Wood. All molecular diagrams, both perspective and

packing, were obtained from ORTEP written by C. K. Johnson.



CHAPTER II

General Chemical Introduction
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GENERAL CHEMICAL INTRODUCTION

Transition metal carbonyl hydrides were first
known in the 1930's when for example iron carbonyl dihy-
dride Fe(CO)4H2 was prepared by Hieber and Leutert15 and
cobalt carbonyl hydride HCo(CO)4 by Coleman and Blanchard,16
but not until the last ten to fifteen years have these com-
pounds been fully characterized. Ia 1955, a high field
NMR proton absorption was assigned to the hydridic hydrogen
in HRe(C5H5)2l7 (t = 22.5) and subsequently, this high
field shift (t = 15-40) was found to be characteristic of
all hydrogen atoms bonded to transition metals. This im-
plication of high shielding led to the concept of very
short metal-hydrogen bonds, and indeed, the hydrogen was
oftenls'ls’18 thought to be buried in the metal orbitals
rather than being a stereochemically active ligand. (More
recent interpretations of the high field NMR shift attri-

19,20,21)

bute it to more subtle electronic factors At

the same time, there was indirect evidence for hydridic

hydrogen occupying a stereochemically significant position

. L\ 22 . 23
in compounds such as HPtCl(P(C6H5)2C2h5):2 , HPt (P (C,Hg)3)»BY

and HOsBr(CO)P(C6H5)3.24 Their geometries were such that

a space was left that if filled by the hydrogen would com-
. plete a more cs less regular geometry. In 1964 an X-ray

_ 525,26
and neutron diffraction investigation of ReH9 2 showed
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the Re-H distance to be 1.683, thus locating hydridic hydro-
~gen positively for the first time. A similar study by J.
Ibers on HMn(CO)527 in 1969 also located the hydridic hydro-
gen conclusively and showed the hydrogen occupied a defin-
ite coordinate position with a normal covalent bond with
the metal of length l.60£. X-ray crystallographic evidence
for the hydridic hydrogen atom locations had previously con=
firmed a stereo-chemically significant location for it with
normal bond lengths in most cases (for example HRh(CO)
(P(C6H5)3)328 and COH(NZ)(P(C6H5)3)329). An exception does
occur in ((C6H5)3P)4HRh.%C6H680 where there is no obvious
stereochemical position for the hydrogen.

studies of polynuclear transition metal hydrides
have suggested the hydrogen can be in a bridging position

30 1

. 3
as for example 1in HMnRez(CO)14 P P(C6H5)2HMn2(CO)8 '

H2Re3(CO)1532 and HCrz(CO)la33’34. The bridges range from
bent to linear:

(CHs) o (), _

P H—?&k:;
(CO) Mn —in (CO) (CO)\Re———Re(CO)
4 4 4 4

\H

(CO)SCr—H—Cr(CO)5 (CO)4I‘{e—H—Re(CO)5

Mn
(COo) g
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Transition metal carbonyl derivatives that contain both a
hydride and a main group IV substituent other than carbon
are by no means abundant, but a few examples can be found,
particularly in work done in this department. a selection
of such compounds together with available structural infor-
mation is given in Table VI.

As can be seen from this table, there are two
basic types of hydrides formed by substituted silanes and
transition metal carbonyls-mononuclear and blnuclear
Reactions of disubstituted silanes have resulted in bi-

nuclear hydrides as in the case of the formation of

. 35a)

W2(CO)8(Si(CH3)2)2.

2W(Co) ¢ + (CH3)2siH2-—13\’—>Wz(CO)lOSi(CH3)2 + 200 + H,

. . hv .
W2(C0)1051(CH3)2-+ (CH3)251H2———*H (CO) (SJ.(CH3)2)2 + 2CO

These reactions do not occur with first row transition
metals; however, with these, mononuclear species may be
obtained by reaction of trisubstituted silanes with transi-
tion metal carbonyls, as for example in the formation of

(r-C H )HMn(CO) Sl(C H ) 35b)

(‘lT--CSHS)Mn(CO)3 + (C )3SlH-——>(H—C )HMn(CO) Sl(C H5)3

By further reaction with substituted silanes, another car-

bonyl group can be replaced by the silane as in the forma-
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, . 36
tion of (ﬂ-CSHS)HFe(CO)(81Cl3)2.

[ (1-CgHg)Fe(CO),], + HSlCl3-—E——w(ﬂ-C <) Fe (CO) ,SiCl,
. . hv , .
('IT—CSHS)Fe (Co) 251C13 + HSlC13-————>('ﬂ'-C5H5)HFe(CO) (SlCl3)2

The structures*af'one binuclear species,
2 2(CO)8(o1(C H5)2)2, two monometal monOSLllcon species,

HFe (CO) Sl(C and (W—C )HMn(CO) SlCl (C ), and one

Hs)3
monometal disilicon species (w- C )HFe(CO)[Sl(CHB)Z(CGHS)]Z
form the main body of this thesis. These structures were
undertaken to obtain structural information on compounds

of these types, particularly with respect to hydrogen loca-

tion, and are part of a continuing study on silyl-

substituted transition metal hydrides.
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CHAPTER IIX

The Crystal and Molecular Structure of

HyW, (CO) g81, (C,Hy) ,
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INTRODUCTION

The reactions of disubstituted silanes with
second and third row transition metal carbonyl derivatives
produce an interesting series of polynuclear species con-
taining hydridic hydrogen. The first members of the series
synthesized had stoichiometries of the form

(1) HyRe, (CO) gSiR,, (R - CeHsrCHy,CHL) ;
(2) H,Re, (CO)G(SiRZ)Z, (R = CHy ,C,H) ;
(3) HZRez(CO)7(SiR2)2, (R = CH3, C2H5)
and were formed by the reaction of dirhenium decacarbonyl
and the appropriate diaryl or dialkyl silane.49 Both the
2 5,250 and spectroscopic stu-

" dies on the above compounds pointed to the formation of a

structure of H Rez(CO)ssi(CGH )

hew type of hydrogen bridge in which the hydridic hydrogen
is bonded essentially in a terminal fashion to the rhenium
atom but is at the same time also weakly bonded to the sili-
con atom. The geometry of the Re28i2 unit in the struc-
tures HyRe, (CO) g (51 (CgHy) ,) ,°t and x)ke, (C0) ¢ (81 (C,H,) ) 2
is unchanged by the formation of the postulated silicon
hydrogen bond, although this was not known when the
research described in this chapter was begun.

With tungsten hexacarbonyl, analogous ditungsten

derivatives might be expected, and indeed, H2W2(CO)8(SiR2)2

is formed according to the reaction
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The structure of Hz
forms the topic for this chapter.
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H W (CO)S(SlR )2

WZ(CO)S(Sl(CZHS)Z)Z was undertakep and

structures

{CoHg)n
H---—Sl--

(CON,W W(CO)4
\Si/ (Y

(CHs)y

(GLIV
H- -Si
(CO)W:

W (c 074

si-Hyi
(C2H5)2

These structures show the variation from pure terminal

hydride, through termina
gen bond to definite. insertion of t

the tungsten silicon bond.

change,

in which both tungste
hydrogen atoms were not equivalent.

especially useful,

1 hydride with weak silicon hydro-
heo hydrogen atom into
Assuming there is no fast ex-
spectroscopic evidence would eliminate all cases

n atoms were not equivalent and both
This compound is

since if bridging did occur, the un-

bridged distance is available as an internal reference.
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EXPERIMENTAL

The compound H2W2(CO)8(Si(C2H5)2)2 was prepared
by J. K. Hoyano and was recrystallized from n-hexane to
obtain yellow crystals suitable for single crystal X-ray
diffraction studies. Rotation, CuK, Weissenberg hkoO,hkl,
hk2 and MoK precession h0% photographs showed the compound
to be monoclinic with systematic absences hO% for h+g =
on+l and 0k0 for k = 2n+l determining the space group P2l/n,
a non-standard setting for le/c. The unit cell was found
to be a = 9.212(1), b = 10.131(1), c = 12.749(1) g, B =
99,07 (1)° at 22°C from a least squares analysis of twelve
reflections of high sin6/A. The density was determined
experimentally as 2.04 gm/cc by means of flotation using
aqueous zinc iodide. It agrees only poorly with the cal-
culated density (2.165 gm/cc) found for two molecules/unit
cell, a molecular weight of 766.2 and unit cell volume
1174.9 23. Several possible reasons for the discrepancy
arise: 1) defective crystals; 2) contamination by a simi-
lar but less dense compound; 3) incorporation of a small
amount of solvent into the lattice. Under microscopic
examination the crystals used to determine the density did
not have any obvious defécts, while contamination by the
molybdenum analogue was ruled out by mass spectrometry.
However, a solvent occupancy of perhaps 5% does appear

feasible as this would adjust the calculated C,H and Si
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analyses toward those actually found. (Table VII) Further
evidence for solvent occurs in the mass spectrum which shows
a peak at 56 a.m.,u, consistent with 06H14+.
this peak is also consistent with that for the Si(C2H5)2+

Unfortunately,

fragment. However, the dimethyl analogue also shows an
intense peak at 86 a.m.u. and in this case the only obvi-
ous source of the peak is the solvent, n-hexane,

With the crystal mounted so that a* was coincident
with the diffractometer ¢ axis, intensity data were col-
lected using Cuk radiation, a 26 limit of 100° and a scan
covering #1° in 26 of each peak. Backgrounds were counted
for 30 seconds. Eight reflections with varying 26 values
were measured periodically as standards during the data col-
lection; these showed that decomposition which was a linearly
dependent function of time and of sin6/\ occurred. On this
basis, a decomposition correction was applied, after which
the standards showed variations consistent with counting
statistics alone. At the end of data collection the high
sin®/)\ standards had fallen to about 80% of their initial
values. Of 1214 independent reflections measured, 945 were
found to be above background using a criterion I/G(I)§2.0.53

The crystal used for data collection was of
approximate dimensions 0.15X0.10X0.12 mm with crystal'
faces of the form {100} and {011}. BAn absorption correc-

tion (u = 10.90 cm™ ') was applied using the h00, h = 2,4,
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6, reflections measured in 5° intervals in ¢ from ¢ = 0 to
¢ = 180° as a check. After correction, these data showed

an internal consistency of #1% on |F|.
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Table VII

% Composition of H2W2(CO)8[81(C2H5)2]2

" Element W c o Si 'g
Found - 25.16% - 7.51% 3.08%
Calculated

No Solvent 47.98% 25.08 16.70% 7.33 2.89
Calculated

5% Solvent 47.71 25.42 16.61 7.29 2.97
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SOLUTION AND REFINEMENT

P2l/n is a non-standard space group whose general
positions were derived as (x,y,2), (X,¥,2), (4tx, %-y, %+z)
and (%-x, %ty, %-2z). With two ﬁolecules/unit cell, the four
tungsten atoms must be located at the general positions.

The largest peaks on the Patterson occurring at (0.5, 0.33,
0.5), (0.21, 0.5, 0.5) and (0.3, 0.18, 0.029) and identified
as (%, 2y, %), (%-2x, %, %-2z) and (2x, 2y, 2z), respectively,
give the tungsten atom location (x,y,z) as (0.15, 0.09,
0.015). The location of the silicon atom from the Patterson
map was found to be (0.09, -0.09, -0.09) by a consideration
of thg W-51i vectors. An electron density map computed using
structure factors phased by the silicon and tungsten atoms
allowed the location of all but cne of the remaining atoms.
The C8 atom was found from an electron density difference
map computed using structure factors phased on all the
other atoms.

During the course of refinement, three molecular
models were tested. First, with all atoms isotropic, R, =

0.11, R, = 0.11. After corrections for decomposition and

2
absorption, the tungsten and silicon atoms were allowed to
be anisotropic with resuiting residual factors Ry = 0.045

and R, = 0.059. Finally all atoms were allowed to vibrate

anisotropically causing Rl = 0,038 and R2 = 0,051. The
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isotropic model for the decomposition correction could
introduce a systematic'érrorvinto the data that would
influence the anisotropic temperature factors. The aniso-
tropic refinement did not change the fractional coorain—
ates significantly, but it was essential to attempt the
computation of corrections for therﬁal motion.54

With the completion of the refinement, the stan-
dard deviation of an observation of unit weight was 1.27.
(Defined by ¢ = Ew(lFobS[ - ]Fcalcl)z/(m - n) with m the
total number of observations and n the number of rejected
observations.) The largest shift in any parameter was
less than one of an estimated standard deviation as ob-
tained from the final least Squares cycle, Final electron
density maps computed using 1) all data; 2) data limited
by sin6/)x 0.3 showéd no direct evidence for hydrogen atom -
locations. The all data difference map showed densities
ranging from -0.41 to 0.68 e A~3,

Table VIII lists the observed and calculated
structure factor amplitudes: 10[F .| and 10|F_ ;.| both
in absclute units of electrons. The final positional para-
meters and anisotropic temperature factors for all atoms
are given in Table IX. The estimated standard deviations
were obtained from the inverse matrix of the final least

squares cycle,



Table VIII

Observed and Calculated Structure Factor
Amplitudes for H2WZ(CO)SSJ‘_2(C2H5)4

48.
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RESULTS

The moleculér geometry and numbering system used
are shown in Figure 4, while the atoms in the plane of the
heavy atom core are shown in Figure 5. The molecular pack-
ing viewed down a,b,c respectively are shown in Figure 6,
7, 8. These drawings were all made using the program ORTEP.
Tables X and XI give the bond lengths and bond angles
respectively. Some intramolecular contacts are listed in
Table XII while Table XIII gives the intermolecular con-
tacts. These results and the estimated standard deviations
associated with them were calculated using the program
ORFFE2. MGEOM was used to calculate the least squares
planes and the distances of selected atoms from these

planes as given in Table XIV,.
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Figure 4

perspective View of H2W2(CO)8[Sl(C2H5)2]2
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2

Figure 5

Structural Fragment

52.
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Figure 7

Packing of H2W2(CO)8[SJ_(C2H5)2]2 down the b Axis
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Figure 8

Packing of H2W2(C0)8[Si(C2HS)2]2 down the c Axis
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Table X
(a)

Bond Lengths

Uncorrected Corrected Corrected
Atoms ' Distance‘(z) Distance (i)(b) Distance (i)(c)
w-w (&) 3,183 (1) | - .
W-Si 2,586 (5) 2.595(5) 2.654 (5)
W-si' 2.703(4) 2.712(4) 2.785{4)
wW-Cl 1.94(2) 1.95(2) 2,04 (2)
W-C2 2.01(2) 2.02(2) 2.11(2)
W-C3 1.98(2) 2.,00(2) 2.09(2)
W~C4 1.99(2) 2.00(2) 2.10(2)
Si-C5 1.90(3) 1.95(3) ' 2.07(2)
8i-C7 1.89(2) 1.93(2) 2.03(2)
Cl-01 1.19(2) 1.22(2) 1.40(1)
c2-02 1.16(2) 1.22(2) 1.38(1)
C3-03 1.11(2) 1.16(2) 1.37(1)
Cc4-04 1.13(2) 1.17(2) 1.39(1)
C5~Cé6 1.25(3) 1.30(3) 1.60(2)
Cc7-C8 1.55(2) - - 1.,56(3) 1.78(2)

(a) Standard deviations in parentheses refer to last digit
guoted.

(b) Correction for thermal motion: second atom assumed
to ride on first atom.

(c) Correction for thermal motion: atoms assumed to move
independently.

(d) Primed atoms related by an inversion centre.



" Atoms

W'—W—Si(
W'-W-Si
Si-w-sit
Si-W-Cl
Si-W-C2
Si-W-C3
Si-wW-Cc4
Si'-W-C3
Cl-W=-C2
Cl1-W-C3
Cl-w-C4

C2-W-C3

57.

Table XI
Intramolecular Angles(a)

Angle Atoms Angle
54.70(10) C2-W~-C4 90.2(6)
41.33(10) C3-W-Cc4 78.4(7)

106.03(12) W-Si~-W! 73.97(12).
88.9 (5) W-Si-C5 123.8(9)
93.0(4) W-Si~-C7 114.3(6)

144.8(5) C5-8i-C7 101.0(11)
66.6(5) W~-Cl-01 173.6(14)

109.1(5) W-C2-02 177.1(14)

2177.1(6) W-C3-03 178.8(17)
89.0(7) W-C4-~04 177.3(16)
92.5(7) Si~C5-C6 115.1(24)
90.6(7) Si~-C7-C8 112.2(14)

(a) Standard deviations in parentheses refer to last
digit quoted.

(b) Primed atoms related by an inversion centre.
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Table XIX

Non-Bonded Intramolecular Contacts

Distance(a)

Atoms @)

si Cy 3.20(2)
sic, 2.55(2)
si ¢, 3.36(2)
si cy' 3.33(2)
sic,! 3.29(2)
cy C, 2.84(3)
Cy C4 2.74(3)
c; Cyf 3.16(2)
C, Cs 2.51(3)
C, C4 2.83(2)
C; C, 2.84(2)
Ce C, 2.93(3)

(a) Standard deviations in parentheses refer to last digit

quoted.
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DISCUSSION

As Table IX shows, all atoms have abnormally high
temperature factors. These are consistént with a lattice
containing a small number of sites which are vacant, or
occupied by smaller molecules, viz. n-hexane.

A metal-metal bond between the tungsten atoms is
evidenced by the tungsten-tungsten distance of 3.18 & and
by the acute bridging angle (74°) at the silicon atom.55
The tungsten-carbon (carbonyl) distances range from 1.94
to 2.01 2 with an average of 1,98 i which agrees with those

(]
(1.96 A average) observed in other tungsten carbonyl deri-

vatives whose structures are known ((n—CSHS)W(CO)3(G—C6H5)

° 56 ° 57 ...
1.96 A; (ﬂ—CsHS)W(CO)3AuP(C6H5)3 1.97(5) A; bipy
58 2
(CO)3BrWGeBr3 1.91(6) A; (C4H1082)(CO)3C1WSnCH3Cl2 1.96

(4) a°°

). The carbon-oxygen distances in the carbonyl
groups are normal with a range of 1.1l to 1.19 i, average
1.15 2. These groups are very nearly linear the WEB angles
averaging 176.7°.

The geometry of the diethyl silicon group shows
no unusual features. The two independent silicon-carbon
distances show goéd internal agreement and the average,
using the model for thermal motion correction, is 1.94 2,
the value that would be predicted on the basis of covalent
60a)

radii. The carbon-carbon distances in the ethyl groups

show a significant difference which can be resolved by
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using the independent atom model for C5C6 and the uncor-
rected model for C7C8 (see Table X).

The most interestihg and important aspect of
this structure involves the central W2512 core. This
cluster is planar with four of the eight carbonyl groups
lying approximately in this plane as shown in Figure 5;
while the remaining carbonyl groups are approximately
perpendicular to the plane. There are two distinct
tungsten-silicon bonds of 2;596(6) and 2.703(4) R, and
despite the high thermal parameters, it would be impossible
for such a variation in bond length to occur in a central,
relatively rigid group as is the Wzsi2 unit. However, the
significant difference in bond length can be considered as
evidence for direct insertion of a hydrogen atom into the
longer tungsten-silicon bond. While the actual difference
of 0.107<£ is not as large as the 0.4 2 that can be esti-
matedGl'30 for linear M-M and M-H-M systems, it is consis-
tent with a non-linear W-H-Si and would be analogous to
the proposed bent Re-H-Re two electron system in Re3H2(CO)l;.32
The angular distribution of ligands as shown in Figure 5
further supports the non-linear insertion of the hydrogen
with SIWC4 66.6° and Si'We3 109.1°, Si'W being the long
bond. Predictions of the expected value for a normal
tungsten-silicon bond are uncertain due to uncertainties

in the value for the covalent radius of tungsten: values
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o .
6Ob)and l.62vA62 are acceptable (if it is assumed

of 1.30
that molybdenum and tungsten have identical covalent radii).
Coupled with 1.17 i as the covalent radius for silicon, the
predicted values for W-Si are 2.47 and 2.79 i respectively
and both tungsten-silicon distances lie within this range.
1f the calculated value of 2.79 R is considered the most
appropriate with this type of molecule, then both bonding
systems are shorter than expected. It is possible to in-
voke direct silicon-tungsten 7 bonding over both the shor-
ter and longer tungsten-silicon distances on purely geo-
metric grounds resulting in an increase in the tungsten-
silicon bond order. The presence of T bonding is supported
by Graham's semi-quantitative treatment of infrared data63
which suégests that 7 bonding does play an important part
in transition metal-silicon bonding.

The bonding of the central unit may be described

ass

(CaHs5)2
iy

(copy=———W(cO),

H-. i
(CaHs)2

a metal-metal bond, two tungsten~silicon ¢ bonds with some
7 bond character and two bent three-centre two-electron
tungsten-hydrogcn-silicon ponds (the two electrons being

supplied by the silicon and hydrogen atoms). This view
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allows the effective atomic number rule to be applied to
the tungsten atoms: each tungsten atom needs twelve eléc—
trons to reach an inert gas configuration, eight come from
the carbonyl groups, one from the metal-metal bond, one
from the sigma W-Si bond and two from the bent 3-centre
2-electron bond with hydrogen-silicon. The tungsten coox-
dination can be discussed in terms of a pentagonal bipyra-
mid., The two axial bonds are then to the carbonyl groups
Cl101 and C202 and the five equatorial sites correspond to
the other two carbonyl groups, the tungsten-silicon bond,
the tungsten-tungsten bond and the 3-centre 2-electron
W-H-Si bond.

As described in the introduction to this chapter,
the rhenium compounds which appeared analogous to this
tungsten compound have no alteration in the geometry of
the central Re,Si

2772
~shift of substituents to accommodate the hydrogen which can

cluster, That is, they show neither a

be thought to occupy a stereochemical position, nor a change
in the rhenium silicon bond length. Conversely as has been
seen, in the tungsten compound there is direct insertion of
the hydrogen into the tungsten-silicon bond producing a
lengthening of the bond and a shift of other substituents

to allow for the hydrogen (VI). The latter is most likely
the only true hydrogen-bridged transition metal bond that

has been investigated in this series, The dirhenium sys-
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tems, HZReZ(CO)BSlRZ’ (R = C6H5’ CH3, CZHS); H4Re2(CO)6

(SlRZ)Z’ (R = CH3, C2H5); and H2Re2( 2)2, (R = CH3,

C2H5) probably contain only terminally bound hydrogen al-

CO)3(SiR

though structures II and V are possible. However, as later
chapters will show, weak Si-H bridges appear only in ster-
ically crowded situations not found in the rhenium compounds,
but present in this tungsten system where one more carbonyl

has to be accommodated.



CHAPTER 4

The Crystal and Molecular Structure of HFe(CO)4Si(C6HS)3
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INTRODUCTION

The crystal structure of (ﬂ—CSHS)HMn(CO)ZSi(C6
64

Hg) 3

determined by W. Hutcheon showed the hydridic hydrogen to

have a weak interaction with the silicon atom at a distance
<]

1.76(4) A from it (compared with the Si-H bonding distance

65). This compound did not show an Mn-H

of 1.48 A in SiH,
stretch in the infrared, but its trichlorosilyl analogue,
which was too unstable for an X-ray structure, did. Inter-
preting this difference in infrared activity as indicative
of different hydrogen behavior, Hutcheon proposed the fol-
lowing explanation for these two compounds: In the tri-
phenylsilyl compound, close contact between silicon and

hydrogen is favored by a slight negative charge on the sili-

con atom,

while in the trichlorosilyl compound (and in (w~C5H5)H

73

Fe(CO) (Sicl )}, the chlorine substituents cause the sili-

3)2
con to be slightly posiﬁive, thereby destablizing the weak
hydrogen bond. In this view, then, non-interacting hydro-
gens are expected to give rise to bands in the infrared.

Although such bands were obscured by the carbonyl stretches

in the case of HFe(CO)4Si(C6H5)3, it has the same triphenyl-

silyl substituent as (n—CSHS)HMn(CO)281(C6H5)3 and would
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~be expected to have the same weak silicon-hydrogen inter-
action as the manganese prototype, thus confirming the
electrostatic rationale of Hutcheon. Deuterium substitu-
tion studies on both compounds which might be expected to
produce a characteristic M-D stretch around 1300 cm_l, and
which perhaps would have shown differences between these
compounds, were unfortunately not carried out. The struc-

fure of HFe(CO),Si(C.H.), forms the topic for this chapter.
4 6°5'3



68.

EXPERIMENTAL

The compound hydrido-triphenyl-silyl-tetracarbonyl
iron (HFe(CO)4Si(CGH5)9 forms colorless prismatic crystals
which decompose with the formation of a black coating.
Rotation and Weissenberg photographs disclosed a triclinic
cell. The unit cell dimensions were obtained from a least
squares refinement of 26 values of thirteen reflections
from crystal VIII, as described in Appendix C. The cell
dimensions are a = 10.062(1) 2, b = 10.377(1) i, c =
10.800(6) i, o = 90.96(3)°, B = 111.43(1)°, vy = 98.55(1)°.
The density was determined by flotation using aqueous po-
tassium iodide to be 1.37 gm/cc which agrees well with the
calculated density (1.374 gm/cc) obtained for two mole-
cules per unit cell, a molecular weight of 428.3 and unit
cell volume of 1034.9 23.

All crystals were mounted with a* coincident with
the ¢ axis of the diffractometer and the intensity data
within the 1 g sphere were collected using MoKu radiation.
The peak scan 26 range was 1.4° with backgrounds counted
for twenty seconds.

Because of the severe decomposition problem, eight
crystals were used during the data collection. Each crys-
tal was prepared for X-ray crystallography by washing off

the black coating with ethanol .to leave a well-formed col-
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orless crystal, mounting the crystal on a thin glass fibre,
coating it with shellac, and coverigg the fibre and crystal
by a glass capillary which had been flushed with dried argon.
It was possible by these means to use each crystal for from
4 to 20 hours (see Table XV). No crystal was used after
the intensities as measured by a set of eight standard
reflections fell below 80°/, of the initial intensitv.
Decomposition corrections were applied to each crystal by

a least squares analysis of the standard reflections. The
decompositién was found to vary with sin6/), with time
irradiated, and with absolute time. Consequently, a cor-
rection that was linear in sin6/)A and time was applied to
each collection time period.

Each crystal used (except VIII) had faces of the
form {010}, {100} and {012}; their dimensions are given in
Table XV. Absorption corrections (p = 8.34 cm_l) were
applied to the decomposition corrected data. . The consis-
tency of these corrections was tested using data from the
h00, h = 3,5,9, reflections measured from ¢ = 0° to ¢ = 180°
in 10° intervals and corrected for decomposition. The
internal consistency of each data set was within the limits
of counting statistics as was tested by substituting values
for o (F), the standard deviation in F, obtained from cor-
rected ¢ scan data, and average values for counts into the

equation
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2

N + N + (pN

2
Npk'

T+Nbgl bg pk)

g(F) =

1
VLP

Nf

where LP are Lorentz-polarization factors, N is the total

peak count, Nbgl and Nbgz are background counts and Npk =

NN -N . Solving the equation for p, the machine constant,
T bgl bg2

gave effectively zero,l implying good internal consistency.
After decomposition corrections and absorption
corrections had been applied, the first seven of the indi-
vidual data sets were merged into one set by using data col-
lected on the seventh crystal, which included four randemly
selected reflections collected with each of the first six
crystals. A least squares fit was used and after all cor-
rections, the standards as measured for each of the seven
crystals were consistent with each other to an average of
4% (range 3.2 to 4.5%). Twenty-two reflections were cor-
rected for nonlinearity of the counter.
Of 2180 independent reflections measured, 1567
were estimated to be significantly above background using
a criterion I/G(I)S3.0.53
The eighth crystal was used to obtain data for
the determination of accurate cell constants and for cor-
recting three regions of data, each of which contained an
inordinate number of unobserved reflections and in which

F <<F for most observed blanes. The 151 reflections

obs calc
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50 collected contained 133 observed datum using the above
criteria, increasing the total number of reflections to
1612, The significant data were corrected for absorption
and decomposition and merged with the previous data set
using the standard reflections. This data was collected
and merged with the preceding data after refinement was

essentially complete.
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SOLUTION AND REFINEMENT

A Patterson map was calculated using the uncor-
rected data set with the expectation of finding the two
iron and two silicon atoms contained in the unit cell. The
space group pT was assumed. The vector list, its multipli-
cities, and relative weights are given in Table XVI. Upon
examination of the Patterson map, four possible solutions
as given in Table XVII were apparent, with the second being
chosen as the most probable since it alone gave both a
good Fe-Si distance (2.3 2) and had a peak correéponding

to (2x ). A least sguares refinement using

si %¥Ysi 2%si
structure factors phased on the second solution gave Rl =
0.24 and R2 = 0.31, but an electron density map did not
reveal the positions of any of the remaining atoms. At
this point, corrections were made for the decomposition,
but again the observed Fourier map did not locate any atoms
other than the input iron and silicon. Since the space
group could be Pl rather than PI, the data was tested sta-
tistically for the presence of a centre using the program
FAME written by R. Dewar and A. Stone. The distribution
found; as well as that expected for centro- and non-centro-
symmetric structures;is given in Table XVIII and clearly
confirms the choice of PT as the space group. At this

point, it was decided to use direct methods to solve the

structure. With the original data set and using the pro-



Vector

2yFe

2¥pe

Table XVI

Patterson Vectors

Fe
~fe
Fe + Zsi
Fe + Eél
Fe + ZSl
Fe + Eél
Si
_éi

Multiplicity

74.

Relative
Weight

676
676
728
728
728
728
196
196
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gram FAME to choose six hkf planes of large relative inten-
sity and interaction, and the program MAGIC alsoc written

by Dewar and Stone to assign signs to the three non-origin
defininé planes, the method of symbolic addition developed
by Sayre3 allowed the phases of the 250C relatively .strong-
est intensities to be determined. An E(hk®) map,

2
B (kg2 = [E(hk2)

er.z
J

with € a measure of the systematic absences in the data,
phased in this way showed the iron and silicon in the posi-
tions dictated by the fourth Patterson solution, and also
located the carbonyl éroups and phenyl rings. A least
squares refinement with the phenyl carbon atoms as rigid
bodies and all otherx non—hydroéen atoms as isotropic atoms
gave Ry = 0.100 and R2 = 0.143 after four cycles. When
corrections were made for decomposition and absorption and
the data sets were merged, Rl = 0,093 and R2 = 0,138,

Next, the iron, silicon, carbonyl carbon and oxygen atoms
were made anisotropic, and anomalous dispersion corrections9
were applied to the silicon and iron atoms. The locations
of the hydrogen atoms were determined from an electron
density difference map, and the addition of the phenyl
hydrogens as rigid bodies resulted in Rl = 0.069 and R, =

0.117. The fifth largest peak on this map, 0.57 e/A3 was



79.

located at (~.471, .170, -.245) and was attributed to the
hydridic hydrogen. It is of very similar density to the
hydrogen peak found by Ibers29 et al in the structure of

CoH(NZ)(P(C6H When electron density difference maps

5)3) 3¢
limited in sin6/X (sin6/x<0.45, 0.40, 0.35, 0.30, 0.25,
0.20) were calculated, this hydridic hydrogen peak was the
highest peak on each map. The heights of the peaks were
less than those predicted by the calculated theoretical
values of Lia Placa and Ibers66 probably because the tem-
perature factor used initially in the calculations (that

of tﬁe iron) was too small: the hydrogen atom appears

more spread out as evidenced by its large refined tempera-
ture factor. When this temperature factor is used in the
calculation of the theoretical value (B = 8.7 iﬁ column 3
of Table XIX), much better agreement is obtained., However,
probably the best temperature factor to use would

be near in value to the carbonyl carbon values which aver-
age about 5.3, Hence, these values of the integral are
also included in the table. The agreement is adeguate.

A comparison of these calculated peak values for the hy-
dridic hydrogen with those observed for this peak for vari-
ous sin6/)\ cut-offs is given in Table XIX. The addition

of the hydridic hydrogen as an isotropic atom reduced the
R‘factors to R, = 0.067 and R, = 0.112,

1

A strong correlation (0.9895) between two of
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the angular parameters, E and &, for rigid body 1 was
observed, and in efforts to eliminate it, the cell was

redefined twice: 1) a =b.; b -c i ¢ =agi a, =B, B =Yg

:-h:-k: . =h =C =a = H =
Ya= %7 HER L ; ln no, 2) an Coi bn ao, cn bo' o,

o
vy ; B.=o_; v =B_; h =L _; k =ho; 2n=ko. This only resulted

o/ "n "o n o n o n

in shifting the corrélation from rigid body 1 to rigid
body 3 (0.9819) to rigid body 2 (0.9888) indicating that
the phenyl rings essentially define the coordinate sysﬁem.
Finally, refinement of each of E and £ separately, followed
by joint refinement was tried, but the correlation remained.
So, the coordinate system with the greatest correlation was
retained, and the value of E fixed.

The final R values after substituting the 133
observed reflections collected with the eighth crystal
were R, = 0.061 and R, = 0.083. At the completion of the
refinement, no coordinate shifted more than 1/3 of a stan-
dard deviation, and the final standard deviation for an
observation of unit weight was 2.432. This rather large
value can be attributed in part to the rigid body constraint
placed on the phenyl rings and in part to the numerous cor-
rections to the data set. A final electron density dif-
ference map was calculated with all atoms in their refined
positions; it had a maximum density of 0.59 e/zox3 and a

minimum of -~0.44 e/A3.

Table XX lists the £inal coordinate and thermal

parameters for the individual atoms while Table XXI has
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the rigid body parameters. The derived parameters for the
rigid bodies are given in Table XXII. The standard devia-
tions quoted were obtained from the inverted matrix of the
final least squares cycle. The observed and calculated
structure factor amplitudes, lOlFobsf and lO[Fcalc[ are

given in Table XXIII.



82.

L°8

36 L

Vﬁmvm

S [{¥dETYT + YUETET + 3yyige +

(oT) €T
(t1)8
(ot)e
(T TT
(o1)28
(z1) sy
(6)61
(T v
(z) 9t
(1)6T

£€2g

(s)ge-
(01)8~
(0T) 08
(1T) e
(oT) L6
(T v

()6~
(o) T-

(Q)s

(T)zt

tlg

{1T) 20T
(€1) €9
(TT) 20T
(£T) 59
(z1) 91T
(y1) 00T
(oT) ST
(v1) 98
() 1Y

(z)zs

zTilg

€€ kx4
Na g + Nx g w z

(0T) PST
(zT)eTT
(1T) 68T
(21) LOT
(TT) 28T
(zT)6TT
(0T) 0ST
(or)LL

(e) 6L

(z)98

€Eg

(®)

«pojonb 3THTP 3ISET o3 x938X

(6T)¥TE
(8T)¥9T
{sT)90¢C
(8T)EVT
(sT) 96T
(02) 69T
(eT)OVT
(8T)vel

(y) 101

(z)ozt

Tzg

syogoweIed TRWIBY

yrig)-ldxs Xq

(0T) 9ET
(eI PTT
(cT)eve
(s1)s8T
(v1) €92
(v1) 59T
(111891
(9T VLT

(£) 90T

{Z)STT

1ig

(a)

XX °T9=L

«zoyeourexed TewIdyd otdo

pautTIop ~voa x sxoloey dan

(6)zLy -
(L)esST o
(0T)Z6E£C 0~

(8) L¥LS" 0~
(6)ELEV" 0~
(LYL69Y" 0~
(6)yLZ? "0~
(L)z85€" 0~
(8) 68G€° 0~
(g)zste o~

(T)8ELE"O-

z

1 pue ©3B'UTPIOOD Teutd

(tTTYvve -
(6)656T 0~
(0T)9zTTZ 0~
(8)659€" G-
(TT)L9TE" 0~
(6)L8€070
(z1)¥890° 0~
(8)1505°0-
(¢1) 2109 0~
(€Y 60ET" 0~

(1) 96€T" 0~

P

sosouauaxed UT SUOTIBTASD pIepueis

(01)09T°0
(LyosLy'0
(01)6007°0
(g)8vtTy°C
(0T)TS9€"0
(8)€£69€E°0
(01)P2€E°0
(8)5090°0
(T1Y8%ST°C

(2)

~n

-1

oL 0
(TYE$8270

I30ST quaTeaTnbz (2)

JeI9dWwal o1doa3osSTUY (a)

(e)

¥0
29
€0

€2

ot
]

]
f

wory



83.

670° L
20T 9
z26°9
(€)600°9
(v)zoo°s

(€)z8s* g

3

‘pojonb 3THBTP 3seT 03 I9F2I sosoyjzusied UT SUOTIRTASD DIRPURIS (®)

989°T
800" €
GLT"O
(€)s89°T
(v)go0°€

Anvwmba.o

T

8VE"€
¥%0°0
6L8°%
(p)8ve"€
(v) %700

(7)6L8" ¥

a

(®)

6GL0"

TLIT -

8L0€" -
(v)65L0°
(v)eLot -

(v)ysLoe -

z

IXX oT9®eqL

L9TZ "~

6v22"

veve -
(¢) Lotz -
(s)evze*

(v)veve -

X

saozowexed Apog pIrdbTV

*pOUTIOI JIOU SISM USATH oIe SIOIID POJRWTISS OU YDTUM JI0F sSIsqswered (a)

806T"
682"
TOST -
(7)806T"°
(v)eLse®

(v) TOST ~

X




Thermal and Derived Positional Parameters
for Rigid Bodies (&)

Ring Atom
1 Cil
Phenyl Cl2
Carbon Cl1l3
Ccl4
Cl5
Clé6
2 cz21
Phenyl cz22
Carbon C23
c24
Cc25
C26
3 c31
Phenyl c32
Carbon C33
C34
C35
C36
4 H12
Phenyl H13
Hydrogen HL4
H15
H16
5 H22
Phenyl H23
Hydrogen H24
H25
H26
6 H32
Phenyl H33
Hydrogen H34
H35
H36

(a) Standard deviations in

quoted.

Table XXII

X
-.0150 (4)
-.0554 (5)
-.1¢%05(6)
~.2853(4)
~.2448(5)
-.1097(6)

.2400(6)

.1832(6)
.1596 (6)
.1672(6)
.1984(6)
.2219(6)
.2143(6)

.0140
~.2178
-.3820
-.,3142
-.0823

.0551
.1358
.3686
.5208
L4401

.1373
.1501
.2035
. 2443
L2315

i
=
\Xe]
[e]
V]

i1

NN

W W

> ~J

o \O

o~
Nt ot
— e e e e e

{
.
N
PN
v
o
—

1532 (7)

.1827(7)
.3248(6)
.3589(5)
.2506(7)
.1086(6)
.0746(5)

i

I

.1524
.2302
.3202
.3323
.2545

.0876
. 3463
.4836
.3621
.1034

L4012
.4615
.2770
.0322
. 0280

I

parentheses refer to last digit

H

Z

.2696(5)
.3957(5)
.4339(4)
.3460(5)
.2199 (5)
.1817(4)

.1903(5)
.1975 (4)
.1743(5)
.1440(6)
.1369 (4)
.1600(5)

.0484 (4)
.0333(5)
.0909 (6)
.2002(4)
.1851(5)
.0608 (6)

L4577
.5249
.3750
.1580
.0907

.2193
1797
1275
.1150
.1546

L1129
.1000
.2888
.2647
.0518
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B
4,1(2)
5.2(2)
7.0(3)
6.8(2)
6.7(2)
4.7(2)
3.8(2)
5.2(2)
7.1(3)
7.2(3)
6.7(2)
5.6(2)
3.4(2)
5.5(2)
6.4(2)
6.0(2)
6.6(2)
5.8(2)
5.9
7.6
7.4
6.9
5.4
5.8
7.6
7.6
7.7
6.5
6.0
6.8
6.5
7.5
5.3



Obs

Table XXIII

erved and Calculated Structure Factor
Amplitudes, lOIFo] and 10|F_|
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86.

RESULTS

The molecular geometry aﬁd the numbering system
used are shown in Figure 9, The molecular packing viewed
down each of the axes are given in Figures 10 to 12, These
drawings were made using the program ORTEP. Table XXIV
gives the bond lengths while the bond angles are listed in
Table XXV, In Table XXVI some non-bonding intramolecular
distances are given while intermolecular contacts are
listed in Table XXVII. These results and the standard
deviations associated with them wereAcalculated using the

program ORFFE2.
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=T

Figure 9

Perspective view of HFe(CO)4Si(C6H5)3, the
anisotropic atoms having 50% probability
thermal ellipsoids
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Figure 10

Packing of HFe(CO)4Si(C6H5)3 down the a axis

and ¢ is csinB)

(b is bsiny
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Figure 11

Packing of HFe(CO)4Si(C6H5)3 down the b axis

(a is asiny and € is csinoa)
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Sl(C6H5)3 down the c axis

Figure 12

packing of HFe(CO)4

b is bsino)

—

(a is asinf and



Atoms

Fe-5i
Fe-Cl
Fe-C2
Fe-C3
Fe~C4

C1-01

c2-02

c3-03
C4-04

Fe-H

Table XXIV

91.

o
Bond Lengths (A) in HFe(CO)4Si(C6H5)3

Length

2.415(3)
1.777(12)
1.,747(10)
1.821(10)
1,795 (11)
1.158(10)
1.161(10)
1.123(10)
1.144(10)

1.64(10) (@

Aﬁoms

si-Cll
Si-C21
si-C31
c-C (Ring 1)
c-C (Ring 2)

c-C (Ring 3)

(a) Refined position for hydrogen.

Length

1.910(5)
1.896(5)
1.898(5)
1,391
1.391

1.391



Atoms

Si Fe Cl
Si Fe C2
Si Fe C3
Si Fe C4
Fe Cl1 01
Fe C2 02
Fe C3 03
Fe C4 04
Fe H Si
Cl Fe C2
Cl Fe C3
Cl Fe C4
C2 Fe C3
C2 Fe C4

C3 Fe C4

Table XXV

Bond Angles

" Angle (°) Atoms
83.9(3) Fe Si Cl1
85.6(3) Fe 8i C21

178.0(4) Fe 8i C31
85.6(3) Cl1l si c21
172.5(9) Cll si c31
175.9(10) C21 si c31
179.0(9) Si Cll cl2
178.1(9) Si C21 c22
61(3) Si C31 c32
149.8(4) Si Fe H
95.2(4) Si Fe H
102.4(4) Cl Fe H
94.3(4) C2 Fe H
104.9(5) C3 Fe H

96.3(4) C4 Fe H

92.

Angle (°

110.3(2)
112.5(2)
112.2(2)
107.9(3)

107.2(3)

)

106.5(3)

120.3(3)

118.8(3)

121.8(3)
82(3)
36 (2)
76 (3)
75(3)
96 (3)

168(3)
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Table XXVI

Some Non-Bonded Intramolecular Contacts

Atoms Distance (i) Atoms Qistancq_iél
Si H 2.73(10) cl C3 2.658(14)
CL H 2,10(9) Cl C4 2.783(16)
C2 H 2.06(10) c2 C3 2.616(14)
C3 H 2.57(9) :

clz H 2.69(9) C2 C4 2.809(14)
cli H 2.96(9) c3 c4 2.694(14)
Si Cl 2.841(10) cil c31 3,064(8)
si C2 2.872(9) cll c21 3.078(8)

si C4 2.897(9) c2l C31 3.040(7)
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DISCUSSION

A perspective drawing of ﬁfe(C0)4Si(C6H5)3 is
shown in Figure 9. The geometry around the iron atom can
be described as a distorted octahedron with the six lig-
ands being the four carbonyl groups, the hydridic hydro-
gen and the triphenylsilyl group. Around the silicon, the
coordination is almost a regular tetrahedron. As can be
seen, the hydrogen, which is at a normal covalent bond dis-—
tance from the iron, is in a non-bridging position with
respect to the gilicon atom.

The silicon-phenyl bond lengths which average
1.901 i are sligntly longer than those found in (w—CSHS)-
HMn(CO)zsi(C6H5)364 which average 1,886 2.

The distortion from tetrahedral symmetry is min-
imal with Fe—Si—C(C6H5) angles varying from 110.3(2)° to
112.5(2)° and C(CGHS)—Si—C(CGHS) from 106.5(3)° to 107.9(3)°.
The phenyl rings were treated as rigid bodies throughout,
with the hydrogen atoms given the same orientation and
centre of gravity as the attached carbon atoms at a dis-
tance 1 i from them. As previously noted, the strong cor-
relation between E and § in the rigid bodies was handled
by fixing the value of E for the rigid body displaying the
highest correlation. The implications of these correla-

tions can be seen in the packing diagrams, Figures 10, 11
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and 12 where a different phenyl ring is perpendicuiar to
the plane of the page in each viewing direction, thus es-
sentially defining the coordinate system. Under these
conditions, satisfactory values of the derived atomic posi-
tions and their associated standard deviations were obtained
as are shown in Table XXII.

The iron-carbon distances vary from 1.747(10)
to 1.821(10) R which are comparable to those in other iron
carbonyls: Fe(CO)S,67 axial 1.797(15) i, equatorial 1.842
(15) ) Fe, (C0)q 58 1.85(5) A; CyqlygFe;, (CO) 69 1.741(8)-

2 9 C10t10 5
1.785(8) i. The average iron-carbon distance is 1.78(3) g,
the estimated standard deviation being some three times the
standard deviation for the individual atoms. Hence, it is
likely that these bond lengths are significantly different
from each other, and in fact they can be divided into two
sets: Fe-Cl, Fe-C2 which are trans to each other and Fe-C3,
Fe-C4 which are trans to non-carbonyl groups, these being
the longer set. This result is highly unusual: it is ex-
pected that carbonyls trans to other carbonyls will have
the longest bonds, the so-called trans effect, as in such
compounds as HMn(CO)527 where carbonyls trans to ecach other
have a bond length of 1.836 (5) i and that trans to the
hydrogen is 1.821(9) A and HRe Mn(CO)l47l where trans car-
bonyl bond lengths are 1. 840 (15) A and nontrans 1.830(3) A.

An explanation for this discrepancy is not at all obvious
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although the distortion from strict octahedral symmetry
may have an influence: the three carbonyl groups cis to
the silicon are inclined about 5° toward it (Se/gg\Cl =
83.9(3)°, Si Pe C2 = 85.6(3)°, Si Fe C4 = 85.6(3)° while
the carbonyl groups trans to each other are greatly dis-
torted toward the hydrogen atom (ci’EZ\bz = 149.8(4)°).
It is unfortunate that this potentially significant result
has occurred with a data set that has undergone much cor-
rection, but the trend does appear to be real since other
distances and angles seem to be free of obvious systema-
tic error. A structural determination of the anion, Fe(CO)4’
Si(C6H5)3_ would prove highly useful since first of all,
being the conjugate base of a reasonably strong acid, it
should be stable, and secondly the carbonyl angle‘distor—
tions would be changed. If the same general pattern of
carbon-iron distances were found, this would represent a
rare and significant exception to the almost universal
trans rule.(a)

The iron-silicon bond length of 2.415(3) R is

consistent with that found in (w—CSHS)HMn(CO)ZSi(C6H5)364

(a) More recent information seems to indicate that the car-
bonyl groups are exchanging with each other, that is
that the molecule is fluxional, in which case the above
arguments concerning the trans effect would not be

meaningful.
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o
(Mn-Si = 2.424(2) A) if one considers the decrease in metal
iron radius with increasing atomic number in going from
manganese to iron. It is somewhat shorter than the single
: o

bond length of 2.51 A predicted on the basis of covalent

. °60a) ‘s °70 . .
radii (1.17 A for silicon and 1.34 A for iron) which

may suggest some double bond character between silicon and

iron.

The most interesting aspects of this crystal struc-

ture determinatioh involve the position of the hydridic
hydrogen atom. Using the most reliable position for it

(as determined from an electron density difference map
limited to sin®/A<0.35), the hydridic hydrogen atom is
located 1.56 i from the iron atom and 2.63 i from the sili-
con atom. As was mentioned in the introduction, the simi-
larity of this compound to (ﬂ—CSHS)HMn(CO)ZSi(CGHS)3 led
to the expectation of a hydrogen atom weakly bonded to
silicon, an expectation which has not been realized.
Hutcheon's rationalization of the hydrogen-silicon inter-
action was electrostatic: if the substituents on silicon
were electronegative (£for example chlorine) then electro-
static repulsion prevented the weak H-Si bond from forming;
with electropositive substituents (phenyl, for example),
the weak interaction could occur. Hence the prediction of
weak hydrogen silicon interaction in this structure. But

with the finding that the hydrogen is not bridged here,
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a careful examination of the two structures was made which
revealed a possible explanation for when hydrogen-silicon
interaction will occur. The only significant difference
appears to be in the highly crowded environment of the man-
ganese structure. T+ is necessary for the hydrogen atom
to move closer to the silicon atom in order to prevent
close contact of the carbonyl carbon atoms in the mangan-

0 . A 3
ese case (as it is, C Mn C = 88.7(3)°). In the 1ron com-

. . . A

pound, no such steric crowding occurs with the C Fe C
angles all greater than 90°. So no interaction between

silicon and hydrogen is required.



CHAPTER 5

The Crystal and Molecular Structure of
(ﬂ—CSHS)HMn(CO)ZSiClZ(C6H5)
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INTRODUCTION

Following the completion of the crystal struc-

64 in which

ture determinations of (n—CSHS)HMn(CO)2S:L(C6H5)3
the hydridic hydrogen is bonded weakly to the silicon atom
(Si-H = 1.76(4) A) as well as to the manganese atom, and

of HFe(CO)4Si(CSH (a) in which the hydrogen has no inter-

5)3
action with the silicon atom, it was realized that the most
probable cause of weak silicon hydrogen interaction was
steric hindrance: in the presence of a cyclopentadienyl
ring, steric crowding forces the hydrogen into closer con-
tact with the silicon atom. A further test of this hypo-
thesis is provided by the compound whose structure is the
subject of this chapter: hydridodichlorophenylsiiyl(ﬂ—
cyclopentadienyl)dicarbonyl manganese ('ﬁ-CSHS)HMn(CO)2SiCl2
(C6H5). It should be just as crowded as (ﬂ—CSHS)HMn(CO)2
Si(C6H5)3 and should have the same weak silicon-hydrogen
interaction in spite of the apparently unfavorable electro-
negative nature of the chlorine substituents of silicon.

| At the same time, the infrared data could be
shown to be non-predictive for hydrogen-silicon interaction.
Although (W—CSHS)HMn(CO)ZSiCl3 shows a Mn-H stretch at
1890 cm T and (n—CSHS)HMn(CO)ZSi(C6H5)3 does not (although

there is a weak band in the Raman), both are expected to

(a) This work, Chapter 4.
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have the same form of silicon-hydrogen interaction on the
bésis of steric crowding. As previously noted nothing can
be said for H(CO)4FeSi(C6H5)3 where the important region is
obscured by the carbonyl stretches. In (W—CSHS)HMn(CO)ZSi
Cl, (CHc) there is a Mn-H stretch at 1895 cm *. A clear-

cut solution to the confusing infrared evidence could have
come from a study of the deuterium substituted compounds
which would have M-D stretches in the relatively empty

region around 1300 cmfl. Unfortunately this study has not
yet been carried out, so it is not possible to see if changes

in metal-hydrogen stretching intensities can be correlated

to changes in the silicon substituents.
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EXPERIMENTAL

Crystals of hydridodichlorbphenylsilyl(chyclo—
pentadienyl)dicarbonyl manganese, (W—CSHs)HMn(CO)ZSi
(CGHS)CI2 were supplied by A. Hart-Davis in a form suit-
able for X-ray diffraction work. They were prepared by
ultraviolet irradiation of (ﬂ—CSHS)Mn(CO)3 in the presence
of excess phenyldichlorosilane and were recrystallized
from pentane.38 Preliminary photography did not reveal
any systematic absences or symmetry other than T thus
indicating a triclinic cell which could belong to space
group Pl or PI. PI was assumed, and this was later con-
firmed by an analysis of the statistical distribution of
E(hk®) values (Table XXIX). Precise cell constants were
determined from a least squares analysis of 2l°reflections
(as éescribed in Appfndix Cc) as a = 10.995(1) A, b = 8.171

98.25(1)°, B8 = 98.06(1)°, Y = '

]

(1) A, c = 8.486(1) A, o

it

100.26(1)° at 22°C (K ;) = 1.54051 A). The density as
determined by flotation using aqueous zinc iodide was

1.50 gm/cc which agrees well with that calculated (1.490
gm/cc) for two molecules per unit cell, a molecular weight
of 353.15 and a unit cell volume of 786.72 A>. The cIys-
tals were slightly sensitive to moisture, but coating with

shellac and storing in a desiccator were sufficient to

prevent any apparent decomposition over a period of months.
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The dimensions and habit of the crystal used for
data collection are shown below. The crystal was mounted
with the a* axis coincident with tﬁe ¢ axis of the dif-
fractometer, and data out to 42° in 26 was collected (the
limit observed on the Weissenberg films) using MoKa radia-
tion to minimize absorption. The peak scan range was 2°
with stationary background readings counted for twenty
seconds on each side of the peak scan. Seven well distrib-~
uted standard reflections measured at various times through-
out the data collection indicated no decompdsition of the

crystal. The maximum variation was about #3v,

%/i(lm—lo)z where m was the number of observations
vV = J
m of intensity and IO was the average of

these Im

with no apparent pattern in the peak height values. Absorp-
tion corrections (u = 12.9 cnt) were applied to the data
with the transmission factors ranging from 0.921 to 0.935.
The appropriateness of these corrections was confirmed by

the agreement of the ¢ scan data (hOb, h=2,5, ¢ = 0-180° in
10° steps) after correction. Of 1524 independent reflections
measured, 968 were considered to be significantly above
background using a criterion I/¢(I)<3.0 with a p value of

0.03 as described in the crystallographic introduction.
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SOLUTION AND REFINEMENT

The structure solution and refinement was straight
forward with the manganese, silicon and chlorine atoms
located from a Patterson map and the remaining atoms from
electron density difference maps. With just the four
heavy atoms in place, R; = 0.33 and R, = 0.41. An elec~
tron density difference map phased on these four atoms
revealed the carbonyl grbups whose addition gave R, = 0.24
and R2 = 0.32, The remaining non-hydrogen atoms were
found on a difference map phased on these eight atoms.
After several cycles in which the heavy atoms were aniso-
tropic and had anomalous dispersion corrections applied
to their scattering factors (Af'Mn = 0.3, Af"Mn = 0.85,
Af'gy = 0.10, AE''gy = 0.10, Af'G; = 0.10, AF'', = 0.20),°
the carbonyls were isotropic, the phenyl carbon ring was
a rigid body and the cyclopentadienyl carbon ring was a
hindered rotor,l3 R, = 0.073 and R, = 0;084. The initial
parameters for the rings were calculated using the program
MMMR with a radius of 1.395 A for the rigid body and 1.20
R for the hindered rotor.

The hydrogen atoms were located on an electron
density difference map with peak heights ranging from 0.47

o
to 0.29 e/A3. The phenyl hydrogens were added as a rigid

body having the same orientation and centre of gravity as
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the phenyl carbon ring and with a C-H distance of 1 i,
while the cyclopentadienyl hydrogens were added as a hin-
dered rotor similarly riding on thé cyclopentadienyl car-
bon ring. The second largest peak on this map, 0.44 e/}‘;3
(x = 0.150, y = =0.345, z = -0.307) was between the man-.
ganese and silicon atoms in a position similar to that of
the hydridic hydrogen in (w—CSHS)HMn(COQZSi(C6H5)3-64
After four cycles in which the positional and thermal
parameters of all individual atoms and of the carbon rings
and the centre of gravity parameters of the cyclopentadi-
enyl hydrogen ring were refined, Rl = 0,041 and R2 = 0.047.
A difference map showed that the peak between the silicon
and manganese atoms was the largest with a peak height of
0.49 e/g3. It was of similar density to that found by

Ibers29 et al in the structure of HCo(Nz)(P(CGH To

5)3)3.
further check the validity of this apparent hydride peak,
difference maps were calculated using various sin6/) data
cutoffs (sin®/A4£0.35, £0.30, £0.25, £0.20). On each map
the largest peak was the hydride, it being greater than
the next largest peak by a factor of at least two. The

peak positions and their heights as well as the height cal-

culated by evaluating the integral

2.2
c =2 ) "%exp (-Bs?/1672) s2ds

Pu

P
B _—7foo(l +
27

where g is the sin® limit, a is the Bohr radius, and B the
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isotropic temperature factor as described by La Placa and
Ibers,66 are given in Table XXX. Subsequently, then, this
hydridic hydrogen was added as an isotropic atom and allowed
to refine. The final R values were Rl = 0,040 and R2 =
0.044 obtained with all non-ring, non-hydrogen atoms aniso-
tropic, with the phenyl ring as a rigid body, the cyclo-
pentadienyl ring as a hindered rotor and the hydridic hydro-
gen as an isotropic atom.

A final difference map computed with all atoms as
described above showed a peak range of -0.29 to 0,34 e/£3.
At the completion of refinement, no parameter shifted more
than one half of an estimated standard deviation, and the
standard deviation for an observation of unit weightvwas
1.259,

Table XXXI lists the observed and calculated
structure factor amplitudes, 10|r | and 10[F | both in
absolute units of electrons. The final positional and
thermal parameters for the individual atoms are given in
Table XXXII. Parameters for the rigid bodies and hindered
rotors are found in Table XXXIII while the derived indi-
vidual atom positions are to be found in Table XXXIV. The
estimated standard deviations were obtained from the
inverse matrix of the final least squares cycle, Slant
Fourier maps were calculated through the planes of the

phenyl and cyclopentadienyl rings and are shown in Figures
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13 and 14 respectively.
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Table XXXI

lated Structure Factor Amplitudes
o|F_| and 10]|F |
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Figure 14

Slant Fourier through the Cyclopentadienyl Ring Plane
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RESULTS

The molecular geometry and the numbering system
used are shown in Figure 15 while the geometry of the man-
ganese atom is shown in Figure 16. The molecular packing
viewed down the a, b, and c axes respectively is shown in
Figures 17, 18, 19. The drawings were made using the pro-
gram ORTEP. Table XXXV gives the bond lengths and angles
within the molecule. Some intramolecular contacts are
listed in Table XXXVI while Table XXXVII gives intermolec-
ular contacts. These results and the estimated errors
associated with them were calculated using the program

ORFTE2.
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Figure 15

Perspective view of (n—CSHS)HMn(CO)281C12(C6H5),

the anisotropic atoms having 50% probability
thermal ellipsoids
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Figure 16

Geometry of the Mangancse Atom Surroundings in
(n—CSHS)HMn(CO)?SiClz(CGHS)
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Figure 17

Packing of (ﬂ—CSHS)HMn(CO)ZSlClz(CGHS)

down the a axis
(b is bsiny and ¢ is csing)
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Figure 18

Packing of (n—CSHS)HMn(CO)ZSiCl

Down the b Axis
(a is asiny and c is csina)

2 (CgHg)
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Figure 19

Packing of (ﬂ~C5H5)HMn(CO)ZSiC12(C H_)

65
Down the ¢ Axis
(a is asinB andg b is bsina)



Table XXXVa

123.

. [+]
Bond Lengths (A) in (1r—C5H5)HMn(CO)ZSi(C6H5)CR2

© Atoms

Mn-Si
Mn-Cl
Mn-C2
Mn--Cp
Mn-c21 P
Mn-C22
Mn-C23
Mn-C24
Mn-C25
Mn~-H
Cl-0l

C2-02

Length

2.310(2) ¥
1.768(10)
1.780(9)
1.774 (1)
2.156 (6)
2.140(6)
2.130(6)
2.141(6)
2.157(6)
1.49(6)
1.155(9)

1.153(8)

Atoms -

Si-Cl
Si-Ce2
Si-Cll
Si-H
(C"C)phenyl
(C'C)C
(C—H)phenyl
c21-u21 ()
C22~H22
C23~H23
C24-H24

C25-H25

Length

2.103(3)
2.098(3)
1.873(4)
1.79(6)
1.395
1.418(4)
1.000
1.03(4)
1.06(4)
1.03(4)
0.98(4)

0.98(4)

(a) Standard deviations in parentheses refer to last
digit quoted.

(b) Cyclopentadienyl atom positions derived from the hin-

dered rotor parameters.

(c) Centre of gravity parameters of the hydrogen ring atoms
only were refined.



Si
Si
si
Si
Cl
Ccl
Cl
c2

c2

5

5

Bond Angles

Atoms

5

Mn

Mn

Mn

Mn

Mn

Ccl

c2

Cl
c2
cp ®)
H
c2
cp
H
Cp
H

H

H Si

0l

02

Table XXXVb

124.

(°) in (ﬂ—CSHS)HMn(CO)ZSi(C6H5)C22

Angle

78.8(3) (&)

111.2(2)
120.13(8)
51(2)
89.5(4)
123.5(3)
112(2)
122.2(2)
74(2)
120(2)
89 (3)
178.5(7)
178.0(7)

Atoms

Mn Si C&l

Mn Si C42

Mn Si Cll

Mn Si H

CR1l si
C21 si
Cel si
cf2 si
cf2 si
Ccil si

c_. c2l

e

c_ c22

e

c_. C23

C_. Cc24

o R o]

Cc_ C25

o

ca2
Cl1
H

Cll

H21
H22
H23
H24

H25

Angle

115.4(1)
110.6 (1)
117.8(2)
40 (2)
100.5(1)
105.1(2)

88 (2)

105.6(2)

-148(2)

101 (2)
169(2)
170(2)
170(2)
170(2)
169 (2).

(a) Standard deviations in parentheses refer to last
digit quoted.

(b) C

represents the centre of gravity of the carbon
rEng in the cyclopentadienyl ligand.



Atoms

Mn Cl1

Mn CR1L
Mn Cg2
si Ccl
Si H24
Si c24
Si C2
Si C23
Si C25
Cll H
C21 H24

C21 Cl1

Table XXXVI

[+]
Distance (A)

3.590 (4) (&)
3.733(2)
3,625 (2)
2.623(9)
2.76(3)
3.037(6)
3.389 (9)
3.466(2)
3.624 (7)
2.71(6)
2.88(4)

3.160(5)

Atoms

CLl c 2
CR2 H16
Cg2 Cl1
Cl c2
Cl H
Cl H23
Cl c23
Cl Cc22
C2 H

C2 H21
C2 c21

02 H

125.

Some Non-Bonded Intramolecular Contacts

o

Distance (A)

3.229(3) -
2.720(2)
3.165(4)
2.50(1)
2.71(6)
2.81(4)
2.836(10)
2.916(10)
1.98(6)
2.66(3)
2.752(10)

2.88(6)

(a) Standard deviation in parentheses refers to last

digit quoted.
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DISCUSSION

A drawing of the compound (n—CsHs)HMn(Colzsiclz
(C6H5) is found in Figure 15. The geometry about the man-
ganese atom (Figure 16) can be described as a distorted
square pyramid and that of the silicon atom as a distorted
tetrahedron. The molecule has a hydrogen atom cis to the
silicon and close enough to interact with it (1.79(6) 2).

The silicon-chlorine distances in this compound
are 2.103(3) and 2.098(3) i, the same within experimental
error, but somewhat longer than those reported for similar
compounds (see Table XXXVIII). For (n-CgH)HFe (CO) (sic13)2,73
the silicon chlorine bonds average 2.052(3) R but when cor-

54

rections are made for thermal motion, with the chlorine

atoms allowed to ride on the silicon atom, the bonds are

somewhat lengthened (Table XXXVIII) with the average being

]
2.078(3) A, When similar corrections are made for the ther-

C.H.)) the bond length

5

mal motion of (ﬂ—CSHS)HMn(CO)2(81Cl 6
(av). It is interest-

5 (

o

increases only slightly to 2.112(3) A

ing to note that the shortest uncorrected Si-~Cl distance of
has

2.043(4) A for Si(l1)-Cl(3) in (ﬂ~C5H )HFe (CO) (SiCl

5 3)2
undergone the greatest correction for riding becoming 2.090
(5). It is expected that the electropositive nature of the

phenyl substituent will increase the electronegativity of

the silicon atom relative to that in the trichloro compound,
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thus causing the bond lengths between silicon and the chlo-
rine atoms to be longer in the dichlorophenyl silyl compound.

There is some distortion from tetrahedral geometry
about the silicon atom with the Mﬁgzbl angles being 115.4
(1)°, 110.6(1)° and the MﬁEIC(C6H5) angle 117.8(2)°. The
Cigzb(C6H5) angles are 105.1(2)° and 105.6(2)° and the
CfEIEl angle is 100.5(1)°. The geometry of the phenyl
ring was fixed as a planar rigid body having a C-C dis-
tance of 1.395 i and C-H distances of 1.00 i. The centre
of gravity and orientation of the carbon ring are adopted
in the hydrogen ring.

The distances of the carbon atoms of the cyclo-
pentadienyl ring from the manganese atom range from 2.130(1)
to 2.156(1) i with the average distance being 2.144 (1) i.
These are comparable to those found in (n—CSHs)HMn(CO)ZSi
(C6H5)364 which average 2.140(4). The manganese atom is
1.774 (1) i from the centroid of the ring. The cyclopenta-
dienyl ring was treated as a planar hindered rotor with
C-~C distance 1.417 i and with the orientation of the hydro-
gen ring identical to that of the carbon ring. The value
of the barrier to rotation of the hindered rotor is 1.22(6)
which is quite low indicating a large amount of libration
of the carbon atoms.13 in fact, it corresponds to a root
mean square angular displacement of about 13°, larger than

that of similar compounds (Table XXXIX). Thus, the hin-
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dered rotor model appears appropriate since it allows for
this libration. As well, the values for the temperature
factors of the manganese and the ring as a whole should be
very similar if the assumption made in the hindered rotor
approximation is true: that is, that most of the motion
of the ring is in the plane of the ring and tangential to
it. The difference, in this case 0.64 22, can be attri-
buted to out of plane oscillations of the ring which are
not allowed for in the hindered rotor approximation and/or
to librations of the molecule as a whole. According to
Hutcheonl3, differences of 0.6 32 are acceptable and al-
though no firm rule was establishedpin compounds similar
to this one, such differences occur (Table XXXIX). So the
hindered rotation model for the cyclopentadienyl ring is
particularly suitable. The centre of gravity of the hydro-
gen ring was allowed to refine. It moved toward the man-
ganese atom about 0.18 g relative to the centroid of the
carbon ring causing the ring as a whole to be umbrella
shaped with about a 10° bend. (Centroid of carbon ring-
carbon-hydrogen angles are 169(2)-170(2)°). This effect
has been observed in an electron diffraction study of
ferrocene95 where the bending is aboﬁt 5°, A simple explan-
ation suggests that the m electron density cloud of the

cyclopentadienyl ring is contracted on the metal side and
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expanded on the other side, and that the hydrogens lying
in the nodal plane between them are thus displaced toward
the metal.

The carbonyl carbon atoms are 1.768(10) and 1.780
(9) R from the manganese comparable to those in other man-
ganese carbonyls such as (ﬂ~C5H5)Mn(CO)374 {Mn-C =_l.89(21)

75

and ((w~C CH3)Mn(CO) diars (Mn—-C = 1.77(3})}). The car-

584 2)2
P

bonyl groups are almost colinear with the metal, the MnCO

angles being 178.5(7)° and 178.0(7)°. The geometry around

the manganese atom as shown in Figure 16 is very similar

to that foundvin the triphenyl analogue and closely resembles

a substituted (n-CSHS)Mn(CO)3 (see Table XL).

The manganese-silicon distance of 2.310(2) g is
significantly shorter than the calculated single bond dis-

603d)

=]
tance of 2.56 A (using 1.17 A for the radius of silicon

and 1.39 %00

for manganese) and suggests an increase in
bond order between manganese and silicon. It is even
shorter than the bond found for Mn-Si in the triphenyl
analogue (2.424(2) 3)64. A discussion of the bonding
characteristics of the ligands (C6H5)3Si and ClZ(C6H5)Si

is in order at this point. (C6 Si can be considered as

Hs) 3
a stronger m acceptor than Cl2(C6H5)Si, back donation from
chlorine to silicon having reduced the 7 acceptor ability

of silicon with respect to manganese in the latter. If

this were the only factor operating in the formation of the



132.

Mn-Si bona, the bond in the Clz(CGHS)Si coﬁpound would be
longer than that in the (C6H5)3Si one., That it is shorter
implies that factors other than 7 acceptance are applic-
able. According to Graham,63 (C6H5)38i is considered an
inferior ¢ acceptor relative to ClZ(CH3)Si (and presumably
by extension to C12(C6H5)Si). It is this characteristic
(i.e. poor o acceptance) which causes a longer bond to be
formed in (m-CgHg)HMn (CO) ,81i(C He) 5.

The peak attributed to the hydridic hydrogen lies
in an otherwise empty space between the manganese and
silicon atoms, and is the highest peak on all difference
maps computed to search for it and the second highest peak
on the difference map used to locate the phenyl and cyclo-
pentadienyl hydrogen atoms. However, it is only 1.49(6) 2
from the manganese atom, somewhat shorter than the normal
covalent bond length of 1.60 i as found in HMn(_CO)_529 by
X-ray diffraction. Nonetheless, this peak did follow the
calculated peak height relationship found to be character-

66 Table

istic of hydridic hydrogen by La Placa and Ibers,
XXX. Furthermore, the near identity of the geometries of
this and the triphenyl analogue in which the hydrogen was
located 1..55 g from the manganese atom supports the sup-
position of a hydrogen in the bridging position. It has

78,12

been a general observation that the interatomic

distances measured by X-ray diffraction are 0.05 to
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0.20 i shorter than the internuclear distances measured
by neutron diffraction probably because of a shift of the
K electron toward the heavier atom on bonding. Thus, the
observed shortness in this compound is in the expected
direction of error. Also, the shortness could in part
be attributed to anharmonicity of the stretching motion
of the bond, that is, the potential function describing
this motion is not a parabola but an asymmetric function--
see for example Figure 22. If a spherical approximation
is then used to describe an atom which may be better des-
cribed by an elongated ovoid, an apparent bond shortening
may occur. Owing to this minor discrepancy in the bond
length, the peak is shown in Figures 15 and 16 with dotted
lines, but is labelled 'H' and will subsequently be
referred to as the hydridic hydrogen.

The distance from the hydridic hydrogen to the
silicon is 1.79 A which is considerably longer than the
465 but is much shorter

than a normal intramolecular contact. Because silicon has

[e]
Si-H bond distance of 1.48 A in SiH

a larger radius than carbon, it would be expected that the
C...H contact would be less than that of Si...H. Since

this is not the case, the C2...H distance being 1.94 g, an
interaction between silicon and hydrogen in the form of a

weak bond is postulated.
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It is possible to speculate on the reasons for
bridging hydrogen in this and the triphenyl analogue while

HFe(CO)4Si(C has a terminally bonded hydrogen. In

65! 3
the beginning, it was proposed that the electronegativity
of the chlerine atoms prevented a significant interaction
between silicon and hydrogen in the case of (ﬂ—CSHS)—
HMn(CO)ZSiCl364 which was too unstable for the structure
to be determined crystallographically. On this basis,

HFe(CO)4Si(CﬁH was predicted to contain a bridged hydro-

5)3
gen, but as Chapter 4 has shown, this is incorrect. Using
this criterion as well, (ﬂ—CSHS)HMn(CO)ZSiC12(C6H5) would
be thought to contain a terminal hydrogen, also incorrect.
On examination of the differences between the iron and man-
ganese triphenyl compounds, the most likely cause of the
difference in hydridic hydrogen behavior was deemed to be
the presence of the cyclopentadienyl ring which constrains
the geometry of the ligands surrounding the transition
metal. This constraint means that for the hydrogen to
occupy a position not interacting with the silicon, the
angle between the carbonyl groups would have to be less
than 90° and significant interaction between them would
occur. However, if the hydrogen atom position is distorted
toward the silicon, there is room for the carbonyls to be

in positions which substantially reduce their interactions.
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Thus, stexic hindrance forces a weak interaction between
hydrogen and silicon in both the triphenyl and dichloro~
phenyl manganese compounds.

' The infrared evidence is shown to be useless for
predicting the nature of hydrogen interactions in compounds
of this type,in that although the dichlorophenyl compound
shows a Mn~-H stretching freguency in the terminal bond
region while the triphenyl analogue shows no such band,
both are now known to contain hydrogen in similar environ-

ments.
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Figure 2078

a) Typical anharmonic potential function.
ution corresponding to the
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Chapter 6

The Crystal and Molecular Structure of
(TT—CSH5) HFe (CO) [Si (CH3) 2C6H5] 2
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INTRODUCTION

The crystal structure of hydrido bis (trichloro-
silyl)carbonyl-w~cyclopentadienyl iron, (ﬂ—CSHS)HFe(CO)
(SiCl3)2, by L. Manojlovié-Muir, K. Muir and J. A; Ibers >
failed to locate the hydridic hydrogen mainly becausé the
compound unfortunately crystallized in a non-~centrosym-
metric space group. When the compound hydrido bis (phenyl-
dimethylsilyl)carbonyl~n-cyclopentadienyl iron, Cﬁ—CSHS)
HFe(CO)[Si(CH3)2C6H5]2, which differed from the aforemen=
tioned compound only in the silicon ligands, became avail-
able and revealed, on preliminary investigations by A.
Faust,79 a centrosymmetric orthorhombic space group, it
was hoped that the hydridic hydrogen could be found. It
was thought that the electronegativity arguments;_refuted
by the structure of (ﬂ—CSHS)HMn(CO)zsiClz(C6H5),Cay might
possibly need to be revived in a revised form: for situ-
ations not sterically hindered, the relative electronega-
tivity of the silicon atom caused by its ligands determines
whether it interacts with the hydridic hydrogen atom. In
addition, it is possible to compare the geometry of this
compound with the mono-silicon ones, particularly (ﬂ—CSHS)
HMn(CO)zsiClz(C6H5), by the formal replacement of a carbonyl
moiety in the latter with a silicon group. For these rea-

sons, this structural determination was undertaken.

(a) Chapter 5.
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EXPERIMENTAL

The compound, hydrido bis (phenyldimethylsilyl)

carbonyl-m-cyclopentadienyl iron, (ﬂ-C5H5)HFe(CO)

[Si(CH3)2C6H5]2, was obtained in a form suitable for X-

ray crystallographic studies from E. Wood. The crystals

weye prepared according to the following reaction se-

guence:

heat

[(ﬂ_CSHS)Fe‘CO)2]2 + (CGHS)(CH3)2SiH
(ﬂ—CSHS)Fe(CO)ZSi(C6H5)(CH3)2

. . hv
(C6H5)(CH3)281H + (W*C5H5)Fe(CO)QSl(C6H5)(CH3)2-——————~>

(ﬂ-CSHS)HFe(CO)[Si(CH3)2C6H5]2

The crystals formed can be recrystallized from pentane.
Preliminary photography established the crystal
class as orthorhombic or higher with a mirror plane per-
pendicular to the axis of rotation seen in an oscillation
photograph and two mirror lines 90° apart seen in the
Weissenberg zero level photograph. The space group was

15

uniquely determined as Pbca (#61 D2h) when systematic

absences 0k&, k = 2n+l, h02, & = 2n+l; and hk0, h = 2nt+l
were observed. Precise cell constants were determined

from a least squares analysis of eight reflections, accur-
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ately centred on the Picker manual diffractometer as pre-

viously described (Appendix C) as a = 19.028(3), b = 13.320
o o

(2) and ¢ = 17.316(2) A at 25°C (CuKu A = 1.54051 A).

1
The density was determined as l.27(3)

gm/cc at
22°C by flotation using aqueous zinc iodide and this agrees
favorably with that calculated (1.277 gm/cc) for eight
molecules per unit cell, molecular weight of 420.48 and a
unit cell volume of 4371.75 i3. The golden yellow crystals
appeared to be stable in air so no special handling pre-
cautions wefe reguired.

The box-like crystal used for data collection had
as crystal faces the sets of planes {210} and {001} and
dimensions 0.140 x 0.152 x 0.206 mm. It was mounted with
the ¢ (and c*) axis coincident with the ¢ axis of the dif-
fractometer, and data to 45° in 26 was collected using MoKu
radiation. Each plane was scanned for one minute by mov-=
ing one degree on either side of its centre, and back-
grounds were estimated by stationary counts for 20 seconds
at the limits of the scan. Throughout the data collection
eight reflections of well distributed 26 values were mon-
jtored. These did not show any decomposition of the crys-=
tal, the maximum variation observed being less than 30

where o is defined as in Chapter 1, with no apparent pat-

tern in the peak height values. 004, & = 4, 6,
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10 data were collected at 10° intervals in ¢ from 0° to
180° in order to judge the correctness of the absorption
corrections. W was 8.73 cm_l and the transmission factors
for the data set varied from 0.866 to 0.912.

Of 2876 reflections measured, 1180 were consid-
53

ered to be above background using a criterion I/0(I)43.0

and 1395 were above background if the criterion is lowered

to I/0(I)&2.0.
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SOLUTION AND REFINEMENT

With eight molecules in the unit cell occupying
the eight general positions for space group Pbca [(x ¥y 2).
(% ¥ 2), Cotx %~y Z), (-x %ty 2z), Gx Vv ytz), (htxy
Loz), (X %+y %-2), (X -y %+z)] and three heavy atoms per
molecule (iron, silicon, silicon), it was expected that the
solution to these heavy atom positions could be obtained
from a Patterson map in a routine, if somewhat difficult
manner. To this end, a table of expected iron-iron and
iron~-silicon vectors was prepared and a Patterson map cal-
culated. The vector types, their multiplicity and relative
weights are given in Table XLI. The identification of the
peaks in the Patterson was complicated by the fact that
the first non-special position peak was located in nine-
teenth position in the peak listing. Some of the Patter-
son peaks together with their relative weights and the
assignments to iron vectors attempted for them as well as
the indicated solutions for the iron positions are given
in Table XLIIa. These solutions for the iron atom were
used in the assignment of iron-silicon vectors to the Pat—
terson peaks in order to obtain positions for the silicon
atoms. Constraints placed on these proposed positions were
that the iron-silicon distance be about 2.3 R and the

S
gi Fe Si be obtuse. Using these criteria, several pos-—
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sible Sil and si2 positions were obtained, in much the
Same manner as that illustrated in Table XLIIb which uses
the second solution for the iron atom. None of the at-
tempted solutions led to an R factor below 0. 35 nor yiel-
ded an observational electron density map on which any of
the other atoms could be found.

At this point, it was decided to try direct
methods., The choice of phasing planes was made difficult
because there were no planes with % odd in the largest two
hundregd E(hke) values. This appeared to be the result of
the speciality of the iron and one of the silicon positions
which were shown by the Patterson vectors to have the Same
Y and z coordinates. It was Neécessary to separate the data
into £ odd and 2 even planes in order to get the beginning
set of planes given in Table XLIII from the program FAME.
The % odd data was pProcessed by leaving out the contribution
to the E(hky) values of the iron and one silicon atom per
molecule, and as a result, the E(hke) wvalues given for +the
% odd planes in Table XLIII are much larger than they would
be if calculated using the full molecule. The interactions

of the £ odd Planes were few and this fact was borne in mind
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during the use of the program MAGIC from which signs were
assigned to the non-origin defining planes and phases
determined for 200 intensities (not the strongest since
there were no % odd data in the strongest 200) by the
method of symbolic addition. From an E(hk2) map calculated
using these 200 reflections, the locations for the iron
and the silicon atoms were determined as in Table XLIV.
With these atoms in position, several electron density
maps revealed the location of the carbonyl group, the ring
carbons and the methyl carbons. With all non-ring atoms
isotropic, the phenyl groups as rigid bodies and the cyclo-
pentadienyl ring as a hindered rotor, several cycles of
refinement led to Rl = 0.192 and R2 = 0,250, with Rl and

R, as defined in Chapter 1, which did not show signs of
being decreased. An analysis of the R values for each hkf
level revealed that those with £ even had a composite value
of R, = 0.092 while those with £ odd had a value of Ry =
0.571 over the first six levels. By considering the spe-

cific expression for the A term of the structure factor

for the space group Pbca,

2-h, 81

E:]—{-)COSZW(ky--—k-%—&)c052ﬂ(£z~——z—)

A = 8cos2m(hx- 7

it was seen that movement of all atoms by 1/4 in z would

change only the £ odd data leaving the 2 even data un-
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Table XLIII

Planes Used for Phasing in Direct Methods

Sign Plane B (hk 1)
4 2 1 6@ 2.885
- 71 2 3.152
+ g 4 7(ak®) 2.692
+ 9 2 4(3) 3.462
N 12 302 3.342

(a) origin defining

(b) E(hk2) values for these odd % planes are not on the

same scale as for the other planes. (See text.)
Table XLIV
Direct Methods True
Atom Indicated Position Position
Fe (.36 .25 .33) (.36 .25 .58)
sil (.48 .25 .33) (.48 .25 .58)

si2 (.31 .30 .22) (.31 .30 .47)
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touched. This change was implemented with a marked lower-
ing of the R values (Rl = 0,086 and R2 = 0,093 after two
cycles) and a dramatic decrease in the composite 2 odd

data (Rl = 0.143). (The data cut off was 30 with o defined
as in Chapter 4}.

The true solution is present in the Patterson
map, as, of course, it must be. The Patterson y values
for the heavy atoms given in the sample in Table XLII are
the same as those in the true solution. The z value for
iron in the true solution corresponds to solutions 3 and
4 in Table XLIIa if 1.0 is added onto the vector positions
used in determining it. For example, an interpretation of
peak 3 as (% 0 1.170) gives the true solution. Similarly
for the x position of iron: if 1.0 is added to peak 5 and
the vector assignment of solutions 2 and 4 followed, the
true solution results.

From this point on, the refinement proceeded
routinely. Throughout, the phenyl ring carbon atoms were
treated as rigid bodies and the cyclopentadienyl carbons
as a hindered rotor. Electron density difference maps
showed that all other non-hydrogen atoms had some aniso-
trophy and anisotropic temperature factors were subsequently
introduced but initially only for iron and silicon atoms.
Anomalous dispersion factors were applied to the iron and

silicon atoms. At this stage using data with a rejection
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criterion of 20, Rl = 0.088, R2 = 0.098, Next, all hydro-
gen atoms were found on a difference map with peak heights
from 0.39 to 0.59 electrons/§3. The phenyl ring hydro-
gen atoms were placed in rigid bodies riding on the phenyl
carbon atoms at a distance 1 i from the latter, while the
cyclopentadienyl hydrogen atoms were set in a hindered
rotor riding analogously on the cyclopentadienyl carbon
atoms. The methyl hydrogen atoms were first introduced as
rigid bodies with an idealized radius of 0.9455 i and,
when their positions became stablized, were allowed to be
hindered rotors. The positions and orientations of all of
these hydrogen rings were allowed to refine, but attempts
at temperature factor refinement or of refinement of the
barriers in the hindered rotors resulted in meaningless
values with unacceptable errors. Thus, the temperature
factors of the rigid body hydrogens were set at those of
the attached carbon +0.5 while the temperature factor and
barrier to rotation for the cyclopentadienyl hydrogen ring
was taken to be that of the carbon cyclopentadienyl ring.
The methyl hindered rotors were given temperature factors
equal to the isotropic temperature factors for the carbon
atoms to which they are attached and arbitrary barriers

of 2.0. With the introduction of the hydrogen atoms, and
with all non-ring atoms now anisotropic, the R values

were Rl = 0,059 and Rz = 0.06]1 after several refinement
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cycles and using 30 again as the data cut off.

A difference map computed at this time showed
that the largest peak,which had been the tenth largest
(0.50 e/£3) in the hydrogen atom locating map,was found
at (0.388, 0.237, 0.519). This peak of height 0.68 e/A%
believed to be the hydridic hydrogen peak, was found on
maps limited in sin@/A(sine/r<0.35, 0.30, 0.25, 0.20).
The results of these maps are summarized in Table XLV,
where they are compared to theoretical values predicted

66 (See Chapters 4 and 5 for de-

by La Placa and Ibers.
tailed description.)
The addition of this peak as an isotropic hydro-
gen atom led to a position for it of (0.386, 0.235, 0.517),
after least squares refinement with a fixed temperature
factor 0.5 greater than the isotropic temperature factor
for the iron atom. The final R values were R; = 0.055
and R, = 0.058. An analysis of hkzo
showed R

and hkSLe data

dd ven

1 0.079 for 2 odd and Rl = 0.050 for 2 even.

Throughout, the form factors of Cromer8 were

used for the non-hydrogen atoms and those of Stewart,
Davison and Simpson12 for the hydrogen atoms. The final
standard deviation for an observation of unit weight was

1.111. A final difference map computed with all atoms in

3

=]
their refined positions showed a maximum of 0.39 e/A” and

o
a minimum of -0.33 e/A3.
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‘Table XLVI lists the observed and calculéted
structure factor amplitudes 10[F | and 10|F_| both in absol-
ute units of electrons. The final positional and thermal
parameters for the individual atoms are given in Table
XLVII. Parameters for the rigid bodies and hindered
rotors are found in Table XLVIII while the derived indi-
vidual atom positions are found in Table XLIXa and XLIXb.
The estimated standard deviations were obtained from the

inverse matrix of the final least squares cycle.
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Table XLVI

Observed and Calculated Structure Factor Amplitudes
10|F | and 10]F |
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Ring .

5
Cyclopen-
tadienyl

Carbon

6
Cyclopen-
tadienyl
Hydrogen

7
Methyl
Hydrogen

8
Methyl
Hydrogen

9
Methyl
Hydrogen

10
Methyl
Hydrogen

Derived Parameters for Hindered Rotors

Atom

C31l
C32
C33
C34
C35

H31l
H32
H33
H34
H35

H41
H42
H43

H51
H52
H53

H61
HG62
H63

H71
H72
H73

Table XLIXDb

X

0.3285(8)
0.2684(5)
0.2724(8)
0.3349(6)
0.3696(7)

0.338(6)
0.232(4)
0.242(7)
0.353(5)
0.413(6)

0.517(8)
0.508(7)
0.575(5)

0.497(8)
0.507(13)
0.569(11)

0.339(6)
0.377(9)
0.407(7)

0.216(9)
0.189(7)
0.242(8)

Y

0.2068(7)
0.2211(6)
0.1518(2)
0.0946(6)
0.1286(7)

0.240(5)
0.273(5)
0.151(6)
0.042(5)
0.097(6)

0.355(9)
0.420(8)
0.344(9)

0.059(8)
0.122(9)
0.124(9)

0.416(10)
0.438(9)
0.350(8)

0.406(10)
0.335(8)
0.430(10)

160.

Z

0.6965(7)
0.6490(6)
0.5868(5)
0.5958(7)
0.6636(4)

0.751(5)
0.660(5)
0.544(4)
0.564(6)
0.692(3)

0.471(8)
0.550(10)
0.541(6)

0.573(10)
0.42(9)
0.558(5)

0.351(5)
0.434(10)
0.376(9)

0.430(6)
0.501(11)
0.518(8)
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RESULTS

The molecular geometry and the numbering system
used are shown in Figure 21 while the geometry of the iron
atom is shown. in Eigure 22. The drawings were made using
the program ORTEP. Table La gives the bond lengths while
in Lb the bond angles are listed. In Table LI some intra-
molecular distances are given with various models for
thermal motion considered. Intramolecular contacts are
given in Table LII and intermolecular contacts in Table
LIITa and LIIIb. These results and the standard devia-
tions associated with them were calculated using the prog-

ram ORFFE2,

=B
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Figure 21

Perspective View of (Tr—CSHS)HFe(CO)[SJ.(CH3)2C6H5]2
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Figure 22

Geometry of the Iron Atom Surroundings
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Table La

o
Bond Lengths (A)

Atoms Length Atoms Length
Fe Sil 2.336(3) &) c5 H53 0.94(9)
Fe Si2 2.342(4) c6 H61 1.26(10)
Fe Cl_ 1.707 (15) C6 H62 0.86(10)
Fe C31 2.100(9) C6 H63 0.93(10)
Fe C32 2.099 (9) c7 H7L 1.06(10)
Fe C33 2.099(9) C7 H72 1.00(10)
Fe C34 2.100(2) c7 H73 1.02(10)
Fe C35 2.100(9) Cl2 H12 1.09 (5)
Fe CC 1.717(2) C13 H13 0.99(5)
sil ca 1.884 (15) Cl4 H14 0.91(5)
sil C5 1.873(14) C15 H15 0.94(5)
511 Cll 1.917(7) C16 H16 1.03(5)
Si2 C6 1.882(17) C22 H22 1.10(5)
5i2 C7 1.884(15) C23 H23 1.11(5)
si2 c21 1.907(7) c24 H24 1.03(5)
cl 0 1.171(14) C25 H25 0.95(5)
¢ C(phenyl) 1.395 C26 H26 0.96(5)
c c(Cple) 1.421(6) c31 H3L 1.06 (5)
c4 Ha¥ 1.09(9) C32 H32 1.00(5)
c4 H42 1.04(9) C33 H33 0.94(5)
C4 HA43 0.92(9) c34 H34 0.96 (5)
C5 HS1 1.05(9) €35 H35 1.04(5)
C5 H52 1.06(9)

(a). Standard deviations in parentheses refer to last digit
guoted.

(b) Phenyl and cyclopentadienyl atom positions derived
from rigid body and hindered rotor parameters, respec-
tively.

(c) Centre of gravity and ring orientation parameters of
hydrogen ring atoms only were refined.



Si
Si
Si
Si
Si
Cl
Fe
Fe
Fe

Fe

Atoms

1l Fe S8i2

1l Fe Cl

1l Fe C
p

2 Fe Cl

2 Fe C
P

Fe C

P
Sil C4
sil C5
Sil Cil

Si2 Ce

Table Lb

Bond Angles (°)

Angle

112.49)15) Fe
85.5(5) Fe
119.17(14) Fe
81.4(4) Cc4
119.82(12) c4
129.4(5) C5
115.8(5) C6
111.6(5) Cé6
107.0(6) c7

116.0(5)

Atoms
si2 C7
§i2 Cc21
Ccl O
8il C5
sil Cl1
Sil Cll
si2 C7
si2 c21

si2 c21

165.

Angle
108.5(5)
113.8(3)
177.9(12)
107.0(6)
104.8(5)
107.0(6)
106.4(8)
104.2(6)

107.4(6)
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Table LI

Intramolecular Distances with Corrections
for Thermal Motion

Uncorrected Corrected(f) Corrected(g)
Atoms Distance (A) Distance (A) Distance (A)
Fe Sil 2.336(3) (¢ 2.336(3) 2.372(3)
Fe Si2 2.342(4) 2.346(4) 2.379 (4)
Fe Cl 1.767(15) 1.712(14) 1.760(14)
Ccl O 1.171(14) 1.212(14) 1.296(13)
sil c4 1.884(15) 1.891(15) 1.936(15)
sil C5 1.873(14) 1.886(14) 1.928(14)
sil Cl1l 1.917(7) - -
Si2 C6 1.882(17) 1.900(16) 1.943(16)
si2 C7 1.884(15) 1.914(15) 1.969(15)
§i2 C21 1.907(7) - -

(a) Correction for thermal motion: second atom assumed
to ride on first atom.

(b) Correction for thermal motion: atoms assumed to move
independently.

(c) Standard deviation in parentheses refer to last digit
guoted.
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Table LII

Some Non-Bonded Intramolecular Contacts

Atoms Distance (Z) Atoms Distance (i)
sil c1 2.782(14) Sil C35 3.00(8)
§i2 C1 2.685(14) . Cl H73 2.84(13)
O H16 2.76(7) Cl C31 2.91(2)

C5 H12 2.68(8) Cl C32 2.91(2)
c6 cz21 2.991(17) O H16 2.75(7)
sil H16 2.88(9) Cl2 H35 2.87(7)

Si2 C33 3.00(1)
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DISCUSSION

The coordination polyhedron about the iron atom
can be described as a distorted tetragonal pyramid with
the centroid of the cyclopentadienyl ring at the apex, the
carbonyl and dimethylphenylsilyl ligands in the basal plane
with the dimethylphenylsilyl groups trans to each other,
The iron atom occupies a position above this basal plane
in the direction toward the cyclopentadienyl ring so that
the CE;’;;\E angle is 129° and the CE;‘;;\Ei angles are
119° and 120° while the Si Fe Si angle is 112°. This leaves
one position in the tetragonal pyramid trans to the car-
bonyl group and in the basal plane to accommodate the hy-
dridic hydrogen. This geometry most strongly resembles
that found by Ibers73 et al for the trichlorosilyl analogue
(see Table LIV). It also is similar to that of (m=CgHg) MOR

82

(CO)3 (R=C, I C3H783) where the cyclopentadienyl centroid

275"
is again at the apex and the alkyl and CO groups are in
the basal plane with the molybdenum displaced from the
basal plane toward the ring. In addition, there is an
analogy to the mono silyl compounds such as (ﬂ—CSHS)HMn

. ~ 64
3 where k3 = C12C6H5 ox (C6H5)3 (see Table LIV)

where a CO group has replaced one of the silicon moieties

(CO)281X

in the basal plane.

The iron-cyclopentadienyl carbon distances aver—
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o
age 2.100(10) A which is comparable to that in (w—CSHS)Fe

Q
(2.093(4) A) but somewhat longer than that in

3
2, (a)
ferrocene (2.047(5) A)

(H) (CO)sicl
. This weakening of the cyclo-
pentadienyl carbon-iron bonding can be understood in terms
of replacement of one of the two cyclopentadienyl rings

by strongly m accepting groups. The iron atom is 1.717(2)
from the centroid of the ring. The treatment of the ring
as a planar hindered rotor appears appropriate with the
overall temperature factor for the ring being 3.84, or

0.69 above the isotropic temperature factor of the iron
which is very close to the average increase of 0.60 observed
for a variety of compounds.13 The barrier to rotation'

can be correlated to a root mean square oscillation of
about 8°, again indicating the suitability of the hindered
rotor approximation, which considers this libration. The
radius of the ring, 1.209 g, leads to a carbon-carbon dis-
tance of 1.421 g which is slightly longer than the average
(1.404 g) observed in the trichlorosilyl analogue, probably
because in the latter there was individual atom treatment
of the ring without correction for librational motion.

The hydrogen atoms, initially set to ride on the carbon
atoms, were refined only in position and orientation. With
the barrier and temperature factor fixed at the carbon ring

N o o
values, the C-H distances ranged from 0.94(5) A to 1.06(5) A.

(a) This work: Appendix B.
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The Fe-C~0 angle of 177.9(12)° shows the near
linearity expected while the C-O distance of 1.171(14) i
is within the accepted range for carbonyl distances.84 The
distance of the carbonyl carbon to the iron atom is 1.707
(15), considerably shorter than in the trichloro analogue
(1.758(9)). This can be rationalized as follows: chlorine,
being an electron withdrawiag substituent, leaves the sili-
con in the trichlorosilyl compound much more able to ac-
cept electron density from the iron than do methyl and
phenyl substituents which are electropositive. Thus, the
iron atom in the dimethylphenyl silyl case, being unable to
donate as much electron density to the silyl groups, in-
creases its T bonding with the carbonyl group resulting
in shorter Fe-CO bond. Further evidence for the reduced
bonding between silicon and iron is provided by the silicon-
iron bond distances of 2.336(3) and 2.342(4) i, identical
within experimental error, but longer than in the trichloro-
silyl compound (2.252(3) RL A prediction of the expected
bond length may be cbtained by summing the covalent radii
for iron and silicon. The best choice for iron radius is
1.34 i obtained from the Fe-Fe distance of 2. 679 (3). i and
the Fe-C 3 distance of 2.123(15) A in Fe (C2H2)3(CO)6 0.
Coupled w1th the accepted radius of 1.1760a for silicon, a

Fe-Si single DOnd of 2.51 A can be predicted. That the bond

length found is shorter than thls can be interpreted as



175.

indicative of some dw—dw back-bonding from the metal.

The silicon-phenyl carbon distances average to
1.912(5) R, somewhat longer than the silicon-methyl car-
bon distances which average 1.879 (6) i. It is expected
that the silicon~phenyl carbon distances would be shorter
since sp2 hybridization is involved whereas the methyl car-
bons bond by sp3 hybridization.85 Using a covalent radius

3

of 0.73 for sp2 carbon and 0.772 for sp~ carbon with the

covalent radius of silicon gives Si—CSPZ = 1,90 R and Si-
Csp3 = 1.94. The reasons for the observed reversal may in
part be caused by inadequate allowance for thermal motion:
when the methyl carbons are allowed to ride on the silicon
atoms, the average Si—CSP3 bond distance is increased to
1.898(10) R (av.), certainly moving in the right direction.
Such a riding correction is not possible for Si—Csz dis-
tances in this case since the rigid body approximation used
for the phenyl groups necessitates the use of isotropic
temperature factors. But if such a riding correction were
done, it would increase the Si—CSPZ distances and in all
probability, the anomaly would remain. The angles C-Si-C
average to 106.1(18)5, while four of the six Fe-Si-C angles
are larger than the tetrahedral angle, giving some measure
of the distortion from tétrahedral symmetry about the sil-

icon atons.

The phenyl hydrogen atoms were treated as rigid
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bodies with the positions and orientations refined and the
temperature factors fixed at 0.5 greater than the attached
carbon atoms. The carbon-hydrogen bond lengths varied
from 0.94 to 1.11 i. The hindered rotor model, used to
describe the methyl hydrogen atoms, seemed to be particu-
larly appropriate, since while free rotation of the hydro-
gens is known for methyl groups, in this case the hydrogen
atoms were not completely disordered as they were located
from electron density difference maps as peaks of normal
heights. Methyl groups have previously been considered as
hindered rotors in the case of the antibiotic cyathin A3

(C20H3003)86 and trifluoro substituted methyls in Cs[Y

87,88 where HFA represents the hexafluoroacetyl

(HFR) 4]
acetonate ion CF3COCHOCF3. The C-H distances in the methyl
groups vary from 0.86 to 1.26 g.

The most disappointing factor in this structural
determination was the failure to positively locate the
hydridic hydrogen. Initially, all signs seemed favorable:
the space group was centrosymmetric, the unit cell large,
the metal was in the first row transition series, the ab-
sorption was low, the crystal stable to X-rays. The first
indication of problems came when the data was being collected,
when it was observed that data with £ odd was significantly

weaker than % even data, and, as can be seen from the final

structure factor listing (Table XLVI), the amount of & odd
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data observed is substantially less than % even data. The
£ 0dd levels, being weak, have higher standard deviations
causing reliability factors for these levels to be higher,
with the unfortunate result that the data set is not pre-
cise enough to locate the hydridic hydrogen unambiguously.
The weakness of the 2 odd data arises in the following way:
the iron atom and one of the silicon atoms lie at appréxi—
mately v = 0.25 which is on the glide plane perpendicular
to c for space group Pbca causing the iron and silicon
atoms to overlie each other at intervals of 0.5 when viewed
down the ¢ axis. For these atoms, the c¢ glide becomes in
fact a simple translation of 0.5 in the c¢ direction, result-
ing in an effective halving of the unit cell and in a null
contribution to the % odd planes and a maximum contribu-
tion to those for & even.

With the peak from the electron density dif-
ference map, which located all hydrogens, that seemed most
appropriate for the hydridic hydrogen (one located in ap-
proximately the remaining position in the tetragonal pyra-
mid) , a refinement as a hydrogen atom was attempted. It
located the hydrogen 1.28(9) R from the iron atom, 2.22(8)
2 from Sil and 1.81(9) i from Si2. The usual refined posi-~
tions for hydrogen atoms place them closer to other atoms
than expected, so it was decided to use the method of La

66

Placa and Ibers of computing difference maps limited in
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sin6/) to more accurately locate the hydrogen. The results
of these calculations are shown in Table XLV where it can
be seen that the peak did not behave as expected: it was
too large at all levels, the iron-hydrogen distances were
much shorter than the accepted lst row transition metal-

o]
hydridic hydrogen distance of about 1.6 A,27

and in partic-
ular the map at sin6/X<0.35 which should give the best
value for this distance is the shortest (1.26 i). In view
of these discrepancies, it seems unwise to assign a defin-
ite position to this hydrogen.

A consideration was next made of the possible
locations for the hydrogen atom. A graph was plotted of
the silicon~hydrogen distance against the H~Fe-Si angle
assuming an iron-hydrogen distance of 1.6 i and a H—Fe--CCp
angle of 125° (near to that observed with the refined hy-
drogen position) (Figure 23). It can be seen from the graph
that it is possible to locate the hydrogen in a position
essentially equidistant from each silicon (2.08 g with a
Hfgg\éi angle projected on the cyclopentadienyl plane of
73°) without it being in a bonding position with either.

A similar situation exists for the trichloro analogue, with

a similar graph (Figure 24) being possible.
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Figure 23
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Figure 24
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CHAPTER 7

Summary and Conclus ions
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SUMMARY AND CONCLUSIONS

The compounds whose structures have been deter~
mined during the course of this research fall into two
categories: those sterically crowded, H2W2(C0)8Si2(_C2H5)4
and (7~ C )HMn(CO) sicl (CGHS) in which there is signifi-
cant silicon-hydrogen interaction and those which are not

crowded, HFe(CO) ,Si(C_H and (m— C )HFe(CO)[Sl(CH )
4 6 372

5)3
H5]2 where silicon-hydrogen interaction is unimportant.
Tt would perhaps be of use to discuss these compounds (and
those similar ones whose structures have also been deter-
mined) in terms of chemical and spectroscopic properties.
As well, some of the subtler aspects of steric crowding
should be mentioned.

Beginning with the latter, it might be concluded
from a cursory inspection of Figures 16 and 22 that in
both (ﬂ—C )HMn(CO) SlCl (C ) and (n—C )HFe(CO)[Sl
(CH3)2 6 5]2, the environment of the transition metal is
virtually identical (silicon replacing one carbon in the
former), and that if steric crowding occurs in one, it
should be present in the other. However, there is reason
to believe that the increased iron-silicon bond length over
the manganese-carbon bond length could be sufficient to
allow a non-bonded silicon-hydrogen arrangement in the
disilicon species.

There is no evidence of inherent stability for
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a weakly bridging hydrogen. On the contrary, it is only

in cases of steric crowding that a close silicon-hydrogen
approach occurs. There are two possible explanations for
this close approach: 1) silicon could be an unusually soft
atom, that is, the repulsive term for the normal potential
curve is unusually small or 2) there may be a secondary
minimum in the non-bonded region of the interatomic poten-
tial curve for silicon-hydrogen (see Figure 25). If

the molecule is crowded, there could be a Si~H contact at
the first minimum, the energy change with respect to the
8i~H contact being the same as at the second minimum and

at points in excess of it, but with a reduction in other
interligand repulsions causing the minimum. - This second
explanation requires a discontinuity of Si...H contacts
whereas the first does not. At present, there is insuffi-
cient evidence to separate these since only one non-crowded
hydrogen has been positively located (in HFe(CO)4Si(C6H5)3)
and only two hydridic hydrogens in crowded environments

(in (ﬂ—CSHS)HMn(CO)ZSlR3, R = (C6 and R = C12C6H5).

Hg) 3
All compounds’except the latter tw%,studied in this series
can place the hydrogen so that C...H22.0 and Si...H22.2 i
which are in accordance with the shortest cis ligand con-
tacts observed between atoms attached to transition metals.
Where anomalous contacts have been observed with group IV

elements, a pseudo five coordination exists with no angular

distortion of the firmly attached atoms. The fifth inter-
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action,; if interpreted as a weak bond, agrees with the
secondary minimum explanation and adds the requirement
that the minimum lie below zero energy in keeping with the
definition of a bond.

The entire question of the acidity of the hydro-
gen in these molecules is confused, and at the present no
hard and fast correlation between acid strength and struc-
ture is apparent. In fact, the more evidence available
in the form of completed structures, the more obscure be-
comes the acidity message. For example, (ﬂ~CSH5)HMn(CO)2
Si(C6H5)3 is a relatively weak acid (H+ is removed cnly by

alcoholic base) while HFe(CO)4Si(C is a stronger acid

65) 3
(H+ can be removed with P(OCGHSB)’ the first is sterically
crowded, the second not, thus, sterically crowded molecules
were thought to be weak acids because of the silicon—hydrogenA
interaction. This hypothesis is refuted by the structure

of cis(ﬂ-CSHS)(CO)2HReSi(C6H5)372 which is nonetheless a weak
acid, even though the increase in transition metal covalent
radius reduces interligand repulsions so thét the hydrogen
can be in a non-interacting position with respect to the sil-
icon., Also, the most logical thermodynamic argument suggests
that, provided the other ligands can remove the electron den-

sity, the crowded molecules would be the stronger acids,

since the conjugate base formed is less crowded:
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n Mn
siie &>
®) o

The relative electronegativities of the other ligands is
also a factor in determining relative acidities: (ﬂ~C5H5)
HFe(CO)(SiCl3)2 is a stronger acid than (n—CSHS)HFe(CO)
[Si(CH3)2C6H5]2 which can most likely be accounted for by
the increased electronegativities of the trichlorosilyl
groups enhancing the leaving ability of the hydrogen,
rather than by some change in structure. Even though
neither molecule is considered sterically crowded, there
is a slight possibility of weak hydrogen-silicon inter-
action in the latter compound, since some inconclusive evi-
dence (Table XLV) exists that shows the hydrogen prefers
to locate closer to one silicon than the other. If such
" interaction were to be proved in the one compound and
negated in the other (by a neutron diffraction study, for
example), a potential energy diagram with a double minimum
could be made which would allow two energically stable
positions for the hydrogen with respect to the silicon.
The use of infrared bands for transition metal-
hydrogenAstretches is a routine identification procedure
in the study of transition metal carbonyl hydrides with

1

bands occurring around 1500 cm {1-~D stretches at about
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1300 cm’_l if the deuterated compounds are studied). In

the study of transition metal carbonyl derivatives contain-
ing silicon and hydrogen, an attempt was made to find
appropriate infrared bands (which were not always present)
and to correlate them with the silicon hydrogen interaction.
(ﬂ-CSHS)HMn(CO)ZSi(C6H5)3 had no band identifiable as an
Mn-H stretch in the infrared while ('n—CSHS)HMn(CO)ZSiCl3

l). The triphenyl silyl compound had a struc-

daid (1890 cm
ture with silicon-hydrogen interaction and this was believed
to interfere with the production of an infrared Mn-H stretch.
Since the trichlorosilyl compound did show a band, suppos-—
edly there was no silicon-hydrogen interaction and an elec-
trostatic explanation for the differences was postulated.

The region for Fe~H stretch in HFe(CO)4Si(C6H5)3 was ob-
scured by the carbonyl stretching frequencies, but the
stretch was expected to be absent anyway since the silicon
substituents were identical to those of the manganese com-
pound where silicon-hydrogen interaction was found. As
Chapter 4 has shown, no silicon-hydrogen interaction exists
here, and the electrostatic arguments were dropped in favor
of the steric crowding hypothesis. (ﬂ—CSHS)HMn(CO)2SiC12C6H5
has a Mn-H stretch at 1895 cm_l; using electrostatic or
infrared arguments it should have an unbridged hydrogen;
using the steric crowding hypothesis, it should contain
bridged hydrogen. In fact, this molecule has a bridging

hydrogen. Thus, one of the more useful tools for eluci-
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dating structure, infrared spectroscopy, has been shown to
be useless in predicting silicon-hydrogen interaction in
compounds of this type. While there is still a possibility

of coordinating the intensities of the transition metal-

hydrogen stretch with the nature of the silicon substitu-
ents, this is yet, to pe done.

While X-ray crystallography is not an ideal tech-
nique for locating hydrogen atoms in the presence of heavy
atoms, its use in determining these structures has led to
a better understanding of the factors influencing the
hydrogen position. Specifically, these structures have
shown that the major factor influencing the nature of the
silicon—hydrégen interaction is steric hirndrance with
electrostatic factors of less importance. To clear up the
exact nature of the hydrogen silicon interaction, it would
be desirable to do neutron diffraction studies on some of
these hydrides. These studies would locate the hydrogen
atoms much more precisely. In addition, careful spectro-
scopic studies to determine the potential energy curves

for silicon hydrogen interactions would be very useful.
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energy

internuclear distonce Si=H

Figure 25: Potential energy diagram showing a double

minimum.



REFERENCES



10.

11.

12.

13.

188.

G. H. Stout and L. H. Jensen, X-Ray Structure Determin-

ation, Macmillan, New York (1968] .

Donald E. Sands, Introduction to Crystallography, W. A.

Benjamin, New York (1969).

D. M. Sayre, Acta. Cryst., 5, 60 (1952).

A. E. Kitaigorodskii, The Theory of Crystal Structure
Analysis, Consultants Bureau, New York (1961).

M. M. Woolfson, Direct Methods in Crystallography,

Oxford University Press, New York (1961).

J. Karle in Advances in Structure Research by Diffrac-—

tion Methods, R. Brill and B. Mason, eds., Wiley-

Interscience, New York (1964), pp. 55-89.
W. C. Hamilton, Norelco Reporter XII, 31 (1965)..
D. T. Cromer and J. T. Waber, Acta. Cryst. 18, 104
(1965) .
D. T. Cromer, Acta. Cryst. 18, 17 (1965) .

International Tables for X-Ray Crystallography, Vol-

ume III, Kynoch Press, Birmingham, England (1962).

R. Mason and G. B. Robertson in Advances in Structure

Research by Diffraction Methods, R. Brill and B.

Mason, eds., Wiley-Interscience, New York (1966).
R. F. Stewart, E. R. Davidson and W. T. Simpson, J.
Chem. Phys. 42, 3175 (1964).
M. J. Bennett and W. L. Hutcheon, Acta. Cryst., to be

published.



14,

15.

16.

17.

18.

19.

20.
21.

22.

23.

24,

25,

26.

27.

28.

S.

189.

C. Hamilton, Acta. Cryst. 18, 502 (1965).

Heiber and F. Leutert, Naturwiss, 19, 360 (1931).

W. Coleman and A. A. Blanchard, J. Amer. Chem. Soc.
58, 2160 (1936).

Wilkinson and J. M. Birmingham, J. Amer. Chem. Soc.
77, 3421 (1955).

A. Cotton and G. Wilkinson, Chem. and Ind. 1956,
1305.

M. Stevens, C. W. Kern and W. N. Lipscomb, J. Chem.
Phys. 37, 279 (1962).

L. Lohr and W. N. Lipscomb, Inorg. Chem. 3, 22 (1964).
D. Buckingham and P. J. Stephens, J. Chem. Soc.
2747, (1964).

Eisenberg and J. A. Ibers, Inorg. Chem.‘i, 773 (1965).
G. Owston, J. M. Partridge and J. M. Rowe, Acta.
Cryst 13, 246 (1960).

L. Orioli and L. Vaska, Proc. Chem. Soc., 333 (1962).
Knox and A. P. Ginsberg, Inorg. Chem. 3, 555 (1964).
C. Abrahams, A. P. Ginsberg and K. Knox, Inorg.
Chem. 3 528 (1964).

L. La Placa, W. C. Hamilton, J. A. Ibers and A.
Davison, Inorg. Chem. 8, 1928 (1969).

L. La Placa and J. A. Ibexrs, J. Amer. Chem. Soc. 85,

3501 (1963).



29.

30.

31.

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

190.

R. Davis, N. C. Payne and J. A. Ibers, Inorg. Chem.

8, 2719 (1969).

'D. Kaesz, R. Bau and M. R. Churchill, J. Amer. Chem.

Soc. 89, 2775 (1967).

J. Doedens, W. T. Robinson and J. A. Ibers, J. Amer.
Chem. Soc. 89, 4323 (1967).

R. Churchill, P. H. Bird, H. D. Kaesz, R. Bau and

B. Fontal, J. Amer. Chem. Soc. 90, 7135 (1968).

B. Handy, P. M. Treichel, L. F. Dahl and R. G.
Hayter, J. Amer. Chem. Soc. 88, 366 (1966).

B. Handy, J. K. Ruff and L. F. Dahl, J. Amer. Chem.
Soc. 92, 7312 (1970).

K. Hoyano, Ph.D. thesis, University of Alberta (1971),
a) p. 63, b) p. 157.

Jetz, Ph.D. thesis, University of Alberta (1970),

a) p. 194.

Jetz and W. A. G. Graham, Inorg. Chem. 10, 4 (1971).

Hart-Davis, private communication.

J. Aylett and J. M. Campbell, Nucl. Chem. Lett. 4,
79 (1968).

J. Aylett and J. M., Campbell, J. Chem. Soc. A,

2110 (1969).

Wood, private communication.



42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

191.

N. Haszeldine, R. V. Parish and D. J. Parrey,

J. Chem. Soc. A, 683 (1969).

J. Chalk and J. F. Harrod, J. Amer. Chem. Soc. 817,
16 (1965).

N. Haszeldine, R. V. Parish and D. J. Parrey, J.
Organmet. Chem. 9, p. 13 (1967).

C. Taylor, C. F. Young and G. Wilkinson, Inorg.
Chem. 5, 20 (1966).

Chatt, C. Eabon, P. N. Kapoor, J. Chem. Soc. A,
881 (1970).

C. Baird, J. Inorg. Nucl. Chemn. 29, 367 (1967).

J. Oliver and W. A. G. Graham, Inorg. Chem. 10, 1
(1971).

K. Hoyano and W. A. G. Graham, J. Amer. Chem. Soc.,
submitted for publication.

Elder, Inorg. Chem. 9, 762 (1970).

J. Bennett and T. E. Haas, in preparétion.

J. Bennett and M. Cowie, in preparation.

J. Dbedens and J. A. Ibers, Inorg. Chem. 6, 204
(1967) .

R. Busing and H. A. Levy, Acta. Cryst. 17, 142
(1964).

F. Dahl, E. R. de Gil, R. D. Feltham, J. Amer.
Chem. Soc. 91, 1653 (1969) and references therein.

A. Semian, Yu. A. Chapovskii, Yu. T. Struchkov and



57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

192,

A. N. Nesmeyanov, Chem. Commun., 666 (1968).

J. B. Wilford and H. M. Powell, J. Chem. Soc. A, 8
(1969).

M. E. Cradwick and D. Hall, J. Organomet. Chem. 25,
91 (1970).‘

M. Elder and D. Hall, Inorg. Chem. 8, 1273 (1969).

L. Pauling, The Nature of the Chemical Bond, Cornell

University Press, Ithaca, New York (1960), a) p.
246, b) p. 256.

L. B. Handy, P. M. Treichei and L, F, Dahl, J. Amer.
Chem. Soc. 88, 366 (1966).

M. J. Bennett and R. Mason, Nature (London), 205, 760
(1965).

W. A. G. Graham, Inorg. Chem. 7, 315 (1968).

M. J. Bennett and W. L. Hutcheon, in preparation.

A. F. Wells, Structural Inorganic Chemistry, 3rd edi-~
tion, Oxford University Press, London (1962}, p.
696.

S. J. La Placa and J. A. Ibers, Acta. Cryst. 18, 511
(1965).

M. I. Davis and H. P. Hanson, J. Phys. Chem. 69, 3405
(1965) .

H. M. Powell and R. V. G. Ewens, J. Chem. Soc. ;232,

286.



69.
70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

M.

M.

L.

193.

R. Churchill, Inorg. Chem. 6, 190 (1967).

Meunier-Piret, P. Piret, M. van Meerasche, Acta,
Cryst. 19, 85 (1965).

R. Churchill and R. Bau, Inorg. Chem. 6, 2086 (1967).

A. Smith, private communication.

Manojlovié-Muir, K. W. Muir and J. A. Ibers, Inorg.
Chem. 9, 447 (1970). '

F. Berndt and R. E. Marsh, Acta. Cryst. 16, 118
(1963).

J. Bennett and R. Mason, Proc. Chem. Soc. (1964),
395,

T. Robinson and J. A. Ibers, Inorg. Chem. 6, 1208
(1967).

W. Muir and J. A. Ibers, Inorg. Chem. 9, 440 (1970).

C. Hamilton and J. A. Ibers, Hydrogen Bonding in

Solids, W.A. Benjamin, Inc., Amsterdam (1968), p.
62-63.
Faust, private communication.

W. Baker and P. Pauling, J. Chem. Soc. D 1495
(1969).

International Tables for X-ray Crystallography, Volume

M.

M.

I, Kynoch Press, Birmingham, England (1962).

J. Bennett, Doctoral Dissertation, Sheffield Uni-
versity, 1965.

R. Churchill and J. P. Fennessy, Inorg. Chem. 6,

1213 (1967).



84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

%4,

95.

M.

F. Dahl and R. E. Rundle, Acta. Cryst. 16, 419
(1963) . '

A. Cotton and G. Wilkinson, Advanced Inorganic

Chemistry, Wiley, 1966, p. 105.

Tuggle, private communication.

L. Hutcheon, Ph.D. thesis, University of Alberta,
1971.

J. Bennett, F. A. Cotton, P. Legzdins and S. J.
Lippard, Inorg. Chem. 7, 1770 (1968).

Jetz, private communication.

Wilkinson, M. ﬁosenblum, M. C. Whiting and R. B.
Woodward, J. Amer. Chem. SOC. 74, 2125 (1952).

F. Eiland and R. Pepinsky, J. Amer. Chem. Soc. 74,
4971 (1952).

D. Dunitz and L. E. Orgel, Nature, Lond. 171, 121
(1953).

D. Dunitz, L. E. Orgel and A. Rich, Acta. Cryét. 9,
373 (1956).

J. Bennett and W. L. Hutcheon, in preparation.

K. Bohn and A. Haaland, J. Organometal. Chem.

(Amsterdam) , 5, 470 (1966).



Appendix A

Structure of Sn(Fe(CO)4SiC13)2Cl2
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EXPERIMENTAL

Yellow-orange crystals of Sn(Fe(CO)4SiCl3)2C12
were obtained in a form suitable for X-ray crystal study
from W. Jetz. The parallelopiped crystals were mounted
along their largest dimension and coated with shellac to
retard decomposition. The preliminary photography obtained
from several crystals consisted of CuKa Weissenbergs h04%,
hil%, h28 and MoKd precession 0k%. They showed the crystal
to be orthorhombic with systematic absences 0kO0, k = 2n+l
and h00, h = 2n+l which imply space group P21212. Lattice
parameters from film showed a = 11.82 i, b = 10.41 i, c =
9.86 2. The observed density (2.15 gm/cc) obtained by flo-
tation agrees with that calculated (2.174 gm/cc) for 2
molecules per unit cell, molecular weight 794.3 and unit
cell volume 1213.2 £3. The crystals decomposed to red-

brown amorphous material in X-rays and so the structural

determination was terminated at this point.
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DISCUSSION

The structure proposed for this compound89 was:

cO CcO

This proposed structure has a mirror plane through the tin
and its chlorine substituents.

For the space group P21212 with two molecules
per unit cell, the coordinates of the equivalent positions
are (x, v, 2), (X, ¥, 2z), (stx, %=y, 2z) and (4%, %ty, zZ).
Thus the two tin atoms must occupy the special positions
(0, 0, z) and %, %, Z), and the remaining portion of each
molecule the corresponding equivalent positions. Since
these equivalent positions are related by a crystallogra-
phic 2-fold rotation axis rather than a mirror plane, the
proposed structure is incorrect. A structure consistent
with the crystallographic data is shown below:

o slzclg co
\\‘Fe
Ck\ ‘ \\CO



Appendix B

Redetermination of the Crystal Structure of Ferrocene
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INTRODUCTION

The sandwich structure of bis-cyclopentadienyl

90

iron (ferrocene) suggested in 1952 and confirmed by X-

o1 and 195392 was determined

93

ray crystal structure in 1952
in detail by Dunitz, Orgel and Rich in 1956. This ap-
pendix describes a reinvestigation of this crystal struc-
ture. A reexamination of the structure was considered
desirable in order to apply some of the newer techniques

to the description of the motion of the cyclopentadienyl
rings, that is, to treat the rings as hindered rotors.
Additionally, a comparison was wanted between ferrocene and
ferrocenium picrate, (Fe(C5H5)2+)(H3C6N3O7")94 in terms

of bond distances, thermal motion, barrier to rotation and

SO On.
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EXPERIMENTAL

Ferrocene crystals suitable for X-ray crystallo-
graphy were obtained from Dr. B. G. Kratochvil. An orange
needle was mounted along the needle axis and coated with
shellac. As expected, the preliminary photographs——CuKu
Welssenbergs hk0, hkl, hk2 and MoKu precession hO%--showed
the crystal to be monoclinic with systematic absences 0kO
for k = 2n+l and h0% for h+f = 2n+l. These absences are
characteristic of space group P21/n, a non-standard setting
of P2 /c. Lattice parameters a = 5.9340(13) A, b = 7.6104
(4) A, ¢ = 9.0437(7) A and 8 = 93.206(16)° were obtained
from least squares analysis of high angle reflections. The
density by flotation was 1.49 gm/cc and is in good agree-
ment with that calculated (1.502 gm/cc) for Z = 2, unit cell
volume 407.8 33 and molecular weight 185.1.

The crystal used for data collection was of approx-
imate dimensions 0.35 x 0.12 x 0.15 mm and was bounded by
faces of the form {011} and {100}. It was mounted with a¥*
coincident with the ¢ axis of the diffractometer. Inten-
sity data were collected using CuKa radiation with a peak
scan of 26 range of 2°, a 26 maximum limit of 125° and with
30 second backgrounds. Decomposition (most probably sub-
limation) dependent on time and sin6/A was observed and

corrected for using the standard reflections. At the com-
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pletion of data collection, the high sin6/A reflection had
fallen to about 80% of its initial value.

An absorption correction (p = 144.8 cm—l) was
applied with the transmission factor range being 0.21 to
0.41. The scan data (400 reflection) after correction
showed an internal consistancy of *#4%. Of the 647 inde-
pendent reflections measured, 485 were estimated to be‘
significantly above background using a criterion I/o(I)Z2

3.0.
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SOLUTION AND REFINEMENT

The iron atom occupies the special position (0,
0, 0). . The coordinates of the carbon atoms in the cyclo-
pentadienyl ring were obtained by transforming the cooxr-
dinates for the PZl/a cell given by Dunitz, Oxgel and

Rich93

to the le/n cell. The a and c axes vere inter-
changed on conversion from one cell to the othex. The

trans formation effected was:

101 X,
010 Ya = (xn Yn zn)
100 Z

a

where x_, y., z. refer to the P2,/a cell and x_, ;
a a 1 n' Yn

4
a n

refer to the P21/n cell. The coordinates so obtained were
used in a least squares refinement. Two of the cyclopen-
tadienyl éarbons failed to refine, and on preparation of
a model, the Dunitz et al x coordinates for C4 and C5 were
found to be incorrect (Table LV). The hydrogen atoms were
positioned 1 i from the ring carbons and in the plane of
the ring with isotropic temperature factors of 5.0. Neither
the positions nox the temperature factors for the hydrogen
atoms were refined.

With the corrected Cy anq Cg coordinates and all

atoms isotropic, three cycles of refinement with the twenty-
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two variables gave Rl = 0.137 and R2 = 0.158. When the
carbon ring was refined as a hindered rotor and the hydro-
gen atoms were placed in a hindered rotor identical to
that for the carbon atoms, but with the ring radius 1 i
larger, the number of variables fell to eleven and least
squares refinement gave Rl = 0.119 and R2 = 0.136. On
allowing the iron atom to have anisotropic temperature
factors and taking into account its anomalous dispersion,
the R factors dropped to Rl = 0.077 and R, = 0.090 in five
cycles. During the final cycle of least squares refinement,
no parameters shifted by more than 0.2 of its estimated
standard deviation. The final standard deviation of an
observation of unit weight was 1.81.

Table LVI gives the absolute values for the ob-
served and calculated structure factor amplitudes, lO[FO]

and lOIFcl. Positional parameters and temperature factors

are given in Table LVII.
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Table LVI

Observed and Calculated Structure Factor Amplitudes
10|F | and 10(F,]
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DISCUSSION

A drawing of the ferrocene molecule is given in
Figure 26, The barrier to rotation of the ring implies a
root mean square libration of about 15%°, a rather large
oscillation waich indicates that some errors can be eXpected
in carbon-carbon bond lengths found using an individual
atom approach. The temperature factor of the ring being
just 0.44 above that of the iron suggests the motion of
the ring is indeed in the plane perpendicular to the iron-
ring centroid direction, another indication of the approp-
riateness of the hindered rotor model.

A comparison of ferrocene with the cyclopenta-
dienyl rings as nindered rotors to ferrocene as determined
in 1956 by Dunitz, Orgel and Rich is given in Table LVIII.
As can be seen, the iron carbon distances average to iden-
tical values within experimental error, while the carbon-
carbon distances in the hindered rotor refinement are
slightly longexr reflecting the inclusion of the ring mo-
tion. These carbon-carbon distances agree fairly well
with those found in an electrcn diffraction experiment95
(1.42(3) g) of ferrocene vapor at 140°C.

Ferrocene can also be compared with other similar
compounds, and as was mentioned in the introduction, one

of the purposes for this redetermination was to compare
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it with ferrocenium picrate. The iron-carbon distances
are longer (2.070 g yav.)) in the latter which has eclipsed
rings while the carbon-carbon distances are shorter (1.395
g) and Hutcheon gives a detailed discussion87 in terms of
molecular orbitals for these differences.

| In conclusion; the determination of this structure
allowed the rudiments of X-ray crystallography to be léarned
without undue expenditure in ‘time Or money while producing

some useful information.
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Figure 26

Perspective Drawing of Ferrocene
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Appendix C

DREFINE, a Program in FORTRAN to Obtain Accurate
Cell Parameters
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DREF

The program DREF was written originally in oxder
to obtain accurate cell parameters with an estimate of
their standard deviations from a least-squares analysis of
a number of hkf planes. It is intended for use with data
obtained from the Picker manual four-circle diffractometer
without the monochromator. Reflections of high sing/A
values are accurately centred in the window of_the counter
by appropriate adjustment of w, ¢, ¥ and 26. The 26 values
of the accurately centred peaks are used in this program.
Best results are obtained uisng CuKal radiation, with at
least three reflections per parameter: for example, a
minimum of 9 for an orthorhombic or 18 for a triclinic.
Results can be improved by taking more planes, by having
a number of widely varying hkg values, and/or by using
extremely high 26 values.

A brief discussion of the theoryl involved in DREF

follows. The d-spacing in a crystal can be expressed as:

52 h2a*2+k2b*2+£20*2+2hka*b*cosY*+2h2a*c*cosB*+2k2b*c*cosa*
d

il

= f (a*, b*, c*, a*, B¥*, Y *) (1)

calc

It can be measured at several hkf values and is related

to the 26 angle measured on the diffractometer by Bragg's



- 210.

Law:
| .
2sin® = ni(3x) (2}

The principle of least squares states that the best values
for the parameters a*, b*, c¥, u*; g*, y* are those which
minimize the sums of the squares of the properly weighted
differences between the observed and calculated values of
the function for all observational points. In this case

the quantity to be minimized is given by:

D= rglwr[(%)gbs - (%)ialc]z (3)
with w, placing more emphasis on the highest sind/A values
and m being the number of observations. So the parameters
a*, b*, c*, a*, B*, y* are considered as variables to be
adjusted to minimize this D. This is done by differentiat-
ing the right hand side of (3) with respect to each of the

parameters in turn and setting the derivative to zero:

5t
a 2
m 2|/ 1 1 r calc| _
T w — -[ = —— =0
r=1 ¥ a 2/ a 2 op
r /obs r /calc
p = a*, b*, c%*, a*, B*, y* (4)
These are the normal equations.
Because lg is a non-linear function, it is nec-

d
essary to approximggécit by a Taylor series before attempt-

ing to solve the set of simultaneous equations given by (4):
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f(a*, b*, c*, a*, B*, Y¥) X f(a*!, b*', c*', ax', B*', y*')

3f(a*'...Y
sa*

df (a*" . ..y*

*') (arenkt ') (ke ki
(a*-a*")+..+ y Y )  (5)

where a*',..y*' are approximate values of a*.,.y*. Applica-
tion of a least-squares process to the linear equations ob-
tained by substituting (5) into (4) will give values for (a*-
a*')...(y*-y*') such that a*' = a*'+(a*-a*').,.y*" = y¥'+
(y*~y*') are better approximations to the best values for

the parameters a*...y* than the initial a*'...y*'. Because
the Taylor‘series was truncated at the first derivative
level, the calculations outlined above must be repeated

until convergence takes place. In this program, conver-

gence is considered complete when

Ap <o0.1 (6)

A
'/E)E(fobs-f )

calc

where Ap is the change in parameter p, fobs and £ are

calc
the observed and calculated % values for the hk2 plane,
the summation is over all hk{ planes and w is an appropri-
ate weighting factor.

To simplify the programming for all crystal sys-
tems and at the same time to ensure that the interrelations

of the parameters a*...y* are accounted for, particularly

in the error terms, equation 1 was rewritten as:



212.
3‘1—2 = h2 (pla*2+p2b*2+p3c*2) +k2 (pzlra.*2+p5b*2+p6c"=2)-H?,2 (p7a*2+p8b*2+p9c*2)
-+2hk (pla*+p2b*+p3C*) (p4a*+p5b*+960*)ﬂ.(qlcosa*+q2cosB*+q3cosy*)
. +2h4 (pla*+p2b*+p3c*) (p7a*+p8b*+p9c*) (q4cosa*+qscoss*'+q6cosy*)
+2k2 (pda*+p5b*+p6c*) (p7a*+p8b*+p9c*) (q7cosa*+q8cosB*+q9cosy*) (7)
and the least squares procedure carried out on this expanded
form. The correct set of p and g vectors is generated
within the program when the user selects an appropriate
crystal sysfem indicator. For example, for a monoclinic
system, the indicator is 2 and p(i) = (100010001) and g(i) =
(001010100) while for a rhombohedral crystal, the indicator
is 5 and p(i) = (100010001) and g(i) = (000000000).

Since both input and output is desired in the form
of direct lattice paramters and equation 7 is in terms of
reciprocal lattice parameters, it is necessary to convert
from one to the other using the usual relationships. (See
General Crystallographic Introduction Table 1iv)

The error terms are calculated by evaluating the
derivatives of the direct lattice parameter with respect to
each of the reciprocal lattice parameters, summing the
squares of all terms and then taking the square root. That

is,

(3]

i

/ 2\
b3) ‘2
Error = | I ,“‘ 3 where Py = a*,b*,c¥* a%,B*, yv*. (8)
3Py
/

and a can be replaced by b,c,a,6,v.

Qs
i
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1)

2)

3)

4)

5)

6)

1)

2)

26

3),

4)
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The input to the program consists of the follow-

Title card (18a4)

o
Cell card a,b,c,o,B8,y in A and ° respectively, 260, the
input 26 value (usually 0 and corresponding to 28 for

the instrument) (7F10.5)
Wavelength of radiation (F10.5)

a) Parameters to be varied: a,b,c,a,s,y,2eo; 0 - do not
vary; 1 - vary.

b) Crystal system: 1-triclinic, 2-monoclinic, 3-ortho-
rhombic, 4-tetragonal, 5-rhombohedral, 6-hexagonal,

7~-cubic. (8I1)
Planes and 26 values (3I4, F10.2)
h = 99 terminates data set

The output gives the following information:

Title :

Listing of hk{ planes and corresponding values for zeobs’

—i—— and
H4
calc dobs dcalc

Estimate of variance

0l1ld parameters, their shift, new parameters, and cor-
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responding error terms

5) A repeat of 2) to 4) for each cycle until convergence

is reached.

A listing of DREF, a sample set of input and the
corresponding output for the monoclinic crystal system fol-
low. The program requires only a few seconds for operation

and is routinely activated from a terminal.



anonnnon

onn

nOoo

oo

88
89
90
g1
92
o3
94
95
<6
97
a8
99
100

101

1020

102

1021
1022
1023
1024

215.

x4k DREF, A PROGRAM TO REFINE CELL PARAMETERS BY LEAST SQUARES

COMMON A(7):KI(7)aH{32100)+FO(L100)FC(100) NDsNV+J+C(6)+15(6).DEL
COMMON AN (28) +V{T7)sVOsAS(6)sCSS(6)1SNSIBE) s WGT(100)sP(9),0(9) ¥
COMMON CON.RAD

DIMENSION TEMP(7)TEMO(7),AZZ(6):AP(6),EA(3,4)45AA(6),35RT2(3)
DIMENSIGN IH({3)+SAL{7)+sXA(T7)+AZ(5)+SS{6)TITLE(18),CONV(100)

¥ FORMATS

FORMAT (18A4)

FORMAT ('1',18A4)

FORMAT(314,F10.2)

FORMAT (' VOLUME='FS.2)

FORMAT (' MATRIX IS SINGULAR')

FORMAT (811}

FORMAT (7F10.5/F10.5)

FORMAT (' *'4F10.4)

FORMAT (10 oLD SHIFT NEW ERROR! )
FORMAT (%' OVARIANCE ESTIMATE IS 'El12.4)

FORMAT (¢ '314,2F10¢3,2F10.6)

FORMAT ('0 H K L THO THC FO FCt)
FORMAT (' LAMDA='F7.5, * 2%THETA 0='F6.3)

%% READ IN DATA

RAD=180.0/3.1415927

ND=0

READ (5.88) TITLE

WRITE (6+89) TITLE
READ(S:94) (A1), 1=147)a¥
WRITE(G.100) W.AL7)

REAC(S5+93) (KI(I),1=1,7):IND

w%x% CHOOSE P,Q VECTORS APPROPRIATE TO CRYSTAL SYSTEM

00 101 I=1+9

P(IY=0.0

Q(1)=0.0

1IF (INDEQG.S) GG TG 1021

DO 1020 I=34742

Q(I)=1.0

IF (INDeEQ+4+0ReINDEQ.6 +CGRINDJEQ.7) GO TO 1023
DO 102 I1=1,9,.,4

P(1)=1.0

GO TO 104

DO 1022 1=199+4

Q{I)=1.0

DO 1024 I=1+4+3

P(I})=1.0

IF (INDeEO.4OR«INDEQ.S) GO TO 1025
P(7)=1.0-

GO 7O 104
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1025 P(9)=1.0
*%%¥ READ IN REMAINING DATA

104 ND=ND+1
READ(5+90) (IH{I)41=1,3).CON
IF(IH({1).GE«99} GO 7O 120
DO 108 I=1,3
H{I «ND)=TH(I)
108 CONTINUE

%X WEIGHTING FUNCTION CALCULATED

CONV ({ND)=CON ~
WGT(ND)I=SIN((CON+A(7))/{2.0%RAD))
FOUND)I=(2.%%GT(ND) /W) %%2
GO T0 104
120 ND=ND-1
. R EPREPARE CONSTANTS
NV=0
DO 150 I=1,7
NV=NV+KI(1)
150 CONTINUE
235 CONTINUE
201 DO 220 I=1,3
C(I1)=COS(A(I+3)/RAD)
C{I4+3)=C{1)
S{I)=SIN(A{I+3)/PAD)
S(I+3)=S(1)
220 CONTINUE
DO 221 I=1,.,3
AS(T)=A(1)
221 AS(I+3)=AS(1)
VO=AS(!)*AS(E)*AS(B)*SORT(1.0—C(l)*C(l)—C(Z)*C(Z)—C(3)*C(3)+2.0*
1C(L1)*C(2)%C(3))
WRITE(R.¢1) VO
DO 222 1=1,3
AS(TI}=ASCIH+1)=AS{1+2) 45(1)/VD
222 CSSUI)=(C(I+1)#CLI+2)~C{T))/(S{Ic1IXS(I+2)}
DO 223 I=1,7.,3
. TEMO(IN=Q(I)*CSS{1)+Q(1+1)%CSS(2)4+0(1+2)%CSS(3)
223 TEMP(I)=AS(1)*2( 1) +AS(2)%P(14+1)+AS(3) =P (I+2)
J=1 '
JJ=7
DD 224 1=1,3
CSSIINI=TEMR(JJI)
AS(T)=TEMP( M)
J=J+3
JI=JJ-3
CSS(I1+¢2)=CSS(1)
AS(I+3)1=AS( 1)
224 SNS(I)=SQRYI(1,0-CSS(I1)rCSSL1))

FERAFCONTROL FETUINS HERE TO STARYT NEXT CYCLE

DO 240 1=1,28
ANC1)=0.0

240 CONTINUE
DO 250 I=1,7
V(1)=G.0
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250 CONTINUE
DEL=0.0

#%% %L.00P THROUGH DATA

WRITE(6299)
D0 300 J=1,ND
CON=CONV(J}
CALL CALC
pDD 260 I=1.+3
IH{I3=H(1,)
260 CONTINUE
CC=SORT(FC(J])#W/2.0
CC=2.*ARSIN(CC)*§AD—A(7)
WRITE(5.98) (IH(I)9‘=ly3)OCONQCC‘FO(J)oFC(J)
DEL=BEL+(FD(J)~FC(J))**Z#WGT(J)
300 CONTINUE
CALL SMI({AN,NV, [SING)
IF(ISING.EQ.0) GO TO 320
WRITE(6.:92)
GO TOQ 600

£+% DEL IS VARIANCE

320 DEL=DEL/FLOAT(ND~NV)
WRITE(6.97) DEL
DO 340 I=1,NV
1J=1 ‘
1JD=NV-1
EP=0.0
DO 335 J=1.NV
EP=EP+AN(IJ)#V(J)
IF(J—I)330‘331'332
330 1J=1J+1JD
1J0=1J0-1
GD TO 335
331 SA(1)=AN(IJ)
332 1J=1J+1
335 CONYINUE
XA(1)=EP
340 CONTINUE

#%% CONVERGENCE TEST

KON=0
DO 350 I=14NV
SA(!)=SQRT(ABS(SA(I))*DEL)
SS(!)=ABS(XA([))/SA(I)
IF(SS(T1)eGTa0e1) KON=1

350 CONTINUE
1=0
DO 400 N=1,3
IF (KI{N)«EQ.0Q) G0 TO 390
1=1+41
AZ(N):AS(N)+XA(I)
GO 70 400

300 AZ(NI=AS(N)

400 CONTINUE
DO E0C N=1.3
IF (KI(N+3).CQ.0) GO YO 490
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490

S00

499

501

S03

504
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I=1+1

AZZ(N):(ARCDS(CSS(N))+XA(I))

SAA(N)Y=SALT)

GO TO 500

AZZ(N)=ARCOS(CSS(N))

SAA(N)=0e0

AZZ(N+3)=AZZ(N)

D0 499 I=1¢74+3
TEMP(1)=AZ(1)*P(I)+AZ(2)*P(I+1)+AZ(3)*D(I+2)
TEMO(1)=COS(AZZ(1))#G(I)+COS(AZZ(2))*OII+1)+COS(AZZ(3))*Q(I+2)
J=1 '

JI=7

DO S0t I=1.3

AZ(I)=TEMP(J)

CSS(I)=TEMO(JJ)

J=J+3

JJd=JdJ-3

CSS(I+3)=CSS(I)

AS(I)=AZ(I)

AS(I+3)=AS(I)

SNS(I)=SODT(1.O—CSS(I)*CSS(l))

SNS(I%3)=SNS(I)
VNR=AZ(1)*AZ(2)*AZ(3)#SGRT(1.D—CSS(l)*CSS(1)—CSS(2)*C$S(2)—CSS(3)
lCSS(3)+2.0*CSS(l)*CSS(?)*CSS(3)) )
SRTI:I.O/SOQT(I-O—CSS(!)*CSS(\)—CSS(2)*CSS(2)—CSS(3)*CSS(3)+2.0
1#CSS(1)*CSS(2)*CSS(3))

WRITE (6+96)

J=1

1=0

K=7

DO S20 N=1,3

1F (KI(N)-EQ.O) GO TO 510

I=1+1

AP (N)=AS{N+1)*AS(N+2 #SNS (N) /VNR

XA(T)=AP{NI-A(N)

%% EA ARE ERROR TERMS

EA(N.l)=SNS(N)*SPTI/(AZ(N)*AZ(N)*P(J))*SA(I)

po 503 M=1,43
EA(h»M+1)=(SIN(AZZ(M))#SAA(M)*SRTl/AS(N))*(Q(K+M—1)$CSS(N)~SNS(N)*
lSRTl**Z*(CSS(i)*O(M)+CSS(2)*Q(N+3)+CSS(3)#O(M+6)—CSS(1)#CSS(Z)*O(“
1+6)—CSS(3)*(CSS(1)*O(M+3)+CSS(2)$O(M))))

K=K~-3

SA(1)=0.0

Do 504 JJ=1.+4

SA(I):SA(I)+EA(N'JJ)*EA(N9JJ)

SA(I)=SQRT(SA(I))

WRITE (6H+93) A(N)'XA(I).AP(N)‘SA(I)

A(N)=AP(N)

GO YO 5H20

A(N):AS(N+1)*AS(N+2)*SNS(N)/VNR

WRITE (6.,95) A(N)

J=J+4

L=3

po 550 N=4 406

1F (KI{N)€Q.0) GO TO S30

I=1+1

AP(N):ARCC$((CSS(?)*QSS(3)—CSS(1))/(SNS(Z)*SNS(3)))*RAD

XA([):AP(N)—A(N)
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SRTZ(N~3)=—10/SORT(10—((CSS(Z)#CSS(3)—CSS(1))/(SNS(Z)*SNS(3))**2»
DO 508 M=1.3 .
08 EA(N—3QM)=SAA(M)*SRTZ(N—})*SXN(AZZ(M))*((CSS(Z)*CSS(S)—CSS(L))
1 %(—~CSS(3) QM )/(SIN(AQCOS(CSS(Z)))*SIN(AQCOS(CSS(3)))*#2
Z*SQRT(l.O—CSS(B)**Z)7—CSS(2)$O(M+3)/(SIN(ARCOS(CSS(3)))
3*SIN(ARCOS(CSS(2)))**ZKSGQTﬂl-O—CSS(Z)**Z)))+(—CSS(2)*O(M)—CSS(3)*
40(M+3)+O(N+6))/(SIN(ARCOSLCSS(2)))*SXN(ARCOS(CSS(B)))))
524 SA(1)=0.0
DO 506 J=1.3
506 SA(I)=SA(I)+EA(N—3;J)*EA(N—3:J)
SA(I)=SORT(SA(I))*PAD
WRITE (6:95) A(N)XA(E)s AP (N)SA(L)
A(NY=AP(N)
GO TO 540

© 830 A(N)=ARCDS((CSS(Z)*CSS(B)—CSS(I))/(SNS(Z)*SNS(B)))*RAD

.00

aOo0on

WRITE (6.,95) A(N)

540 TEM=CSS(1)
€SS ({11=CSSIN-2)
CSSIN-2)=TEM
TEM=SNS(1)

SNS (1 )=SNS(N-2)

SNS {N-2)=TEM

IF (Le<EQG.—3) GO TD S22
po s21 ° I1=1,3
TEMG(I1)=0(11+6)
0(I146)=0(TI+L)

521 Q(II+L)=TEMQ(IT)

L=L~-3
GO TO 550

sp2 DO 523 11=1.43
TEMQ(]I)=0(II+3)
Q(1143)=0(11)
Q(IT)I=0(I1+5)

523 O(I1+63=TEMQ(IT)

550 CONTINUE
DO 560 I=2.+,3
CSS(T)=CSS(I+1})

S60 SNS(1)=SNS(I+1)
CcSS(4)=CSS( 1)
SNS(4)=SNS(1)

IF (KI(7)e«E0.0) GC TO 580

XA(NVI= 2.*XA(NV)#RAD

SA(NV)I= 2+%SA(NV X2 AD

AP(NV) = A{TI+XALNY

WRITE(G+95) A(7).XA(HV);AP(NV).SA(NV)
AL7)Y= AP(NV) :

DO 570 I=1,N0
KGT(I)=SIN((CCNV(I)+A(7))/(2.0*RAD))

570 FO(1)=(2-0*WGT([)/W)**2

580 IF (KON<EQe1) GC TO 235

600 S0P
END

SUBROUT INE CALC
4% CALCULATES DERIVATIVIEES USED IN TAYLOR EXPANSTON, 17D FUNCTION

COMMON A(?)aK!(?)‘H(3‘iOO)QFO(IOO)qCC(lOO)'ND-NVqJ'C(é)qS(G).DEL
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COMMON AN(zs).V(7),v0'A516).cssts).SNS(e).weT(100).0(9),0(9).w
COMMON CONs RAD
DIMENSION HA(6) 4DF(7),PT(7),0T(T)
DO 200 I=1,3
HA(I)=H{T+3)
200 HA(I+3)=HA(TY)
N=0
DO 210 L=14+7+3
oT(L)=0(L)*c55(1)+0(L+1)*CSS(2)+Q(L+2)#CSS(3)
210 PT(L)=P(L)*AS(1)+P(L+1)*AS(2)+P(L+2)¢AS(3)
DO 230 [=1.3
IF (KI(1).EQe.0) GO TO 230
N=N+1
DF(N)=2~0*(AS(I)*(HA(!)*HA(1)*D(I)+HA(2)*HA(2)*P(I+3)+HA(3)*HA(3)
1%P(I46) )+ HA(I)*(HA(E)*OT(I)*(PT(1)*P(I+3)+PT(4)*P(1))+HA(3)*OT(M
1*(PT(1)*°(I+6)+PT(7)*P([)))+HA(2)*HA(B)*QT(7)*(PT(4)*P(1+6)+PT(7)
1%P(Y+3)))
230 CONTINUE
DO 240 1=1,3
IF (KI{I1+3).EQ.0) GO TO 240
N=N+1
DF(N):—Z.O*SNS(I)*(HA(])*PT(1)*(HA(2)*PT(4)*G(I)+HA(3)*PT(7)*Q(X+3
1)) +HA(2) ZHAL 3 XPT L&) *PT(7)%Q(1+61))
240 CONTINUE
IF (KI{7)<EQ.0) GO TO 241
THETA= . 5% CON+A(7)) /RAD
DF(NV)= B/ {WEWIESIN{THETA) #COS (THETA)

241 FC(J)=HA(1)*HA(1)*(9(l)*AS(l)**2+P(2)*AS(2)**2+P(3)*AS(3)**2)+
lHA(Z)*HA(Z)*(P(Q)*AS(l)*AS(I)+P(5)*AS(2)*AS(2)+P(6)*AS(3)*AS(3))+
2HA(3)*HA(3)*(P(7)*AS(l)*AS(l)+D(8)*AS(2)*AS(2)+P(Q)*AS(3)*AS(3))+
32.0*(HA(1)*PT(1)#(HA(Z)*PT(i)*OT(1)+HA(3)*PT(?)#QT(4))+HA(2)*HA(3
GEPT(&4)#PT(7)%QT (7))

N=0

DO 250 I=1,NV

DO 248 K=T NV

N=N+1

AN(NY =ANCN) +DF (1) #DF(K)*WGT(J)
248 CONTINUE

V(I)=V(I)+(FD(J)—FC(J))*DF(I)*WGT(J)
250 7ZONTINUE

RETURN

END

SUSROUTINE SMI(AMAT . IRDER ISING)
FORTRAN 4 VERSION—ALGORITHM 150 SYMIN2-UPPER TRI STORAGE
DIMENSION REDO(?).AMAT(?B).OAR(?)‘PAW(7)

LOGICAL RFDO
JISING=0

8012 DO 8013 IMAT=1,IRDER
8013 RROO(IMAT)I=.TRUE.

GRAND LOOP

00 8096 IMAT=1,IRCER

GEARCH FOR PIVOT




8035

8037

8060
8065

8067

809%
8096
8097

BIG=0+.
o0 8020 JpPP=1, IRDER

LRP:IRDEQ*(JPP—l)—((JDP—X)*JPP)/2 +JPP
IF(.NOT-(RBOO(JPPJ.AND.(ABS(AMAT(LRP)).GT-BIG)))

BIG=ABS(AMAT(LRP))

KAT =JPP

CONTINUE

1F (816)8035;8100'8035
ISING=1

GO TO 8097

PREPARATION OF ELIMINATION STEP 1

RBOD(KAT)=«FALSE.

LRP:IPDER*(KAT—I)—((KAT—I)*KAT)/Z +KAT

QAR(KAT)=1-/AMAT(LRP)
PAR(KAT)I=1.

AMAT (LRP)=0.

KKAT=KAT-1

IF (KKAT.LT.1) GO TO 8065
po 80£0 JPP=14+ KKAT

LR°=IRDER*(JPP—I)—((JPP—I)*JPP)/2 +KAT

PAR(JP”)zAMAT(LRD)
SIG = le
1F (REOC(JIFEPIISIC ==S1G

QAR(JIPP) =51G #AMAT(LHP)*QAR(KAT)

AMAT (LRP) =04
KKKAT=KAT 1

iF (KKKAT.GT.TQDER) GO TO 8094

pC 8090 JPP=KKKAT,IRDER

LRP=IRDER*(KAT—!)—((KAT—!)*KAT)/2+JPP

SIG =1

1€ (REDO(JPP)) SIG =-51G
PAR(JPP)I=S1G *AMAT (LRF)
OAR(JPP)=—AMAT(LRP)::0AR(KAT
AMAT(LRP)=0.

ELIMINATICN PROPER

DO 809S JPP=1,4 IRDER
DO 8095 KAT=JPP, LRDER

)

LRP:IRDER*(JDP—l)—((JUD—I)*JPP)/2+K&T

AMAT(LRP):AMAT(LRP)+PAQ(JPP
CONTINUE

RETURN

END

YRQAR{KAT)

221,

GO TO 8020
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MONOCL IMIC TEST SET SAMPLE DATA SET
5.92 7.606 9.029 $0.00 93.12 90.00 0.0
1.5405

11101002

111.22

110.89

102.34

121.84

115.2¢€

112.€64

103.03

11572

120.52

100.87

110411

112.29

122.29

PPHOWNND S S -

--..-MNUPQ\U\O\\I(!!DU)
CONOINDNLICY UN -

O =N AN
-t

]
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MONOCLINIC TEST SET SAMPLE DATA SET
LAMDA=1.54050 2&«THETA 0= 0.0
VOLUME= 40555

THO THC FO FC
111.220 111.325 10147802 1.149248
'110.890 111.069 1.143273 14145731
102.340 102507 1.022874 1.025273
121.840 122.0C3 1.2873€E4 1.289472
115.260C 115.3%4 1202393 1.204175
112.64¢C 112.802 14167178 1169379
103.030 102.184 1,032775 1.034986
115.720 115517 1208501 1e211114
120.520 120.737 1.270752 1.273500
100.870 101.008 1.0016¢4 1.003£3€
110.110 110.3205 1.132526 1.1325215
112.290 112484 1.1€2421 1.1650064
122.290 122584 1292671 14296623

VARIANCE ESTIMATE IS 0.715S8E~-03

~pPNaNOWNNY S =T
=mepWPARONTORR
CYUNONINOOOWN~T

-

oLD SHIFT NEW ERROR
59200 0.0140 S G340 0.022¢4%
7.6060 0.0044 76104 0.0072
940290 00147 90437 0.0126

89.9999

93.1200 0. 0857 93.2057 0.2812
89.99993

VOLUME= 40777

THO THC 0 FC
111.220 111.224 1.147802 1.147861
110.890 110.832 1.143273 1143172
102+ 340 102.3¢4 1.022874 1.022937
121.840 121.852 1.2873¢4 1287516
115+ 2€0 115.242 1.2023932 1.202155
112.€40 112.€43 1.167178 1.167216
103030 103.020 1.02277% 1C32637
115720 115.729 1.2CE501 1.208622
120.520 120.518 1.270752 1.270735%
10Ce870 100.852 1.0016%4 « 001433
110.110 1i0.116 1.132526 1.132609
112260 112.283 1162821 1.162324
122290 122.305 1.29297 1.293170

mneEpENOWNNES-T
m e NWRAOOONGOOR
OON@NDNMNON G-

-

VARI ANCE ESTIMATE IS 0e2348E-07

QLD SHIFT NEW ERROR
593240 0.0000 56340 C G013
7.6104 -~ 00000 7.5103 C. 0004
90437 0. 0006 9.0437 C.0007

89.9928

93,2057 0. 0004 $3.20061 0.0162

£69.99%8




