
- 1 -

SCADA Full State Network Intrusion and
Malfunction Detection System

Mehdi Anisheh, Dale Lindskog, Pavol Zavarsky, Ron Ruhl
Concordia University College of Alberta

manisheh@student.concordia.ab.ca

{dale.lindskog, pavol.zavarsky, ron.ruhl}@concordia.ab.ca

Abstract - Industries are highly dependent on reliable,
accurate and automated control systems to monitor
equipment that are critical to their operation.
Supervisory Control And Data Acquisition (SCADA) is
the most advanced control system which is being widely
used in industries and it is an attractive target for threat
agents. Host based and network based intrusion
prevention systems (IPS) and intrusion detection
systems (IDS) are the best existing solution to improve
SCADA security against cyber attack. This paper
describes the evolution of network intrusion detection
systems (NIDS) from signature based NIDS to a novel
NIDS based on the general state of the SCADA control
system. One of the most recent NIDS is Modbus/DNP3
state-based NIDS, which is a significant improvement
toward detecting complicated attacks on SCADA
systems. In this paper we investigate the pros and cons
of Modbus/DNP3 state-based NIDS and introduce a
new technique to address the limitations and
weaknesses of this existing technology. We call our
proposed enhancement the SCADA full-state Network
Intrusion and Malfunction Detection System (NIMDS).
It functions by monitoring SCADA’s behavior and
double checking the control process.

 Keywords - SCADA; threat agent; cyber attack; IDS; IPS;

NIDS; NIMDS; state; state-based; Full-state;

I. INTRODUCTION

SCADA systems are used to control remotely located
equipment communicating via internal private
networks or external networks such as the Internet.
Unfortunately, a connection to Internet exposes the
SCADA systems to cyber attacks [1]. The ability of
SCADA systems to control remote equipment makes
it a target for threat agents who may attempt to
exploit its vulnerabilities and cause destruction to
equipment or its operation in high tech and vital
industries.

Regardless of how secure a system is, a system could
still be vulnerable to structured attacks because
attackers are constantly updating their methods of
exploitation to circumvent security safeguards.
Stuxnet is a recent example of a structured attack
which has specifically been used to attack SCADA
systems in nuclear power plants. It bypassed
detection by packet filters, signature based intrusion
detection and prevention systems (IDPS) and was
capable of reaching the SCADA Master and taking
control of it, while remaining concealed and
undetectable [2][3].
By detecting an attack at an early stage, it is possible
to mitigate the attack, by disabling the compromised
system, or activating a planned response program.
For minimal disruption, options such as switching to
a redundant SCADA system or disabling the SCADA
system and resorting to manual control of critical
equipments are possible responses.
Host based and network based intrusion detection
systems (HIDS and NIDS) are common tools to
prevent or mitigate massive damage to operations,
but they are too immature to be widely deployed in
SCADA systems [4].
Moreover, a HIDS is a single point of failure (SPOF)
as it fails to detect an intrusion when the host is
compromised. Signature based NIDS are not an
SPOF in this sense, and can potentially identify an
attack by analyzing the traffic and looking for the
attack signature. However, as the Stuxnet example
demonstrates, and as is well known, signature based
intrusion detection is easily evaded.
All traffic in a SCADA network is either a command
from the SCADA master to control devices, or data
from sensors to the master and there is no attack
signature to be detected by this type of NIDS. The
Modbus/DNP3 State-based Intrusion Detection
System [5] is more advanced than a signature based
NIDS. It monitors the states of a SCADA system. It

- 2 -

can detect a complex attack by analyzing the traffic,
keeping track of the states of the SCADA system and
comparing it with critical state rules stored in NIDS’s
database. A complex attack is constructed from a set
of commands from a compromised SCADA system
to the control devices which would lead the SCADA
to enter a critical state. So while each single
command could be seen as a legitimate, and thus no
attack would be detected by a signature based NIDS.
Modbus/DNP3 NIDS updates the states in its internal
representation of the SCADA to compare with
critical state rules in the database. Critical state rules
represent the combinational state of related control
devices, and an attack is detected when this
combinatorial state creates a critical state for the
SCADA system. Consider the steam dryer depicted
in figure 1. This is a good example to explain how
differently these two types of NIDS’s work. Paper
machines in pulp and paper industries have several
rolling dryers to press and dry the pulp to produce
paper.

Figure 1: SCADA controls steam flow in a Steam Dryer

In an attack to explode a steam dryer, an attacker
might force SCADA to send two commands in
sequence, first to open the dryer’s steam inlet valve
and second to close the dryer’s steam outlet valve.
The signature based NIDS will consider both packets
legitimate and won’t trigger any alert. On the other
hand, for the Modbus/DNP3 NIDS, the first
command updates the NIDS internal state, setting the
inlet valve to “Open”, while the second command
sets the outlet valve to “Close”. This is not consistent
with the related valve’s state, and therefore the NIDS
alerts that SCADA is falling in to a critical state.
Note that detecting an attack using the
Modbus/DNP3 NIDS is limited to critical state rules
and the attack pattern. Moreover, Modbus/DNP3
depends on active monitoring (see below), and this is
another limitation, since it imposes extra traffic on

the SCADA network and, also makes it (the NIDS)
itself vulnerable to cyber attacks.
The objective of this paper is to enhance NIDS
capability to detect intrusion and malfunction in
SCADA. The proposed technique also allows the
NIDS to operate transparently; therefore it won’t add
any traffic to SCADA network and also will avoid
being a new target for the attackers. Our proposed
SCADA Full-State Network Intrusion and
Malfunction Detection System (NIMDS) verifies the
integrity of the control system by passively
monitoring the control process, keeping track of
transitions and the resulting state of the control
system, in order to detect a malfunction. It passively
collects data from sensors and computes the expected
response to a state change, and then compares it with
SCADA’s actual response. Any difference between
the expected response and the actual response is an
indication of intrusion or malfunction. The proposed
NIMDS is consists of two components: a data mining
unit and a processing unit. The data mining unit
employs a packet analyzer and pre-processor and
eavesdrops on the network, passively collecting and
processing the required data, which is then stored in a
database which in turn will feed the processing unit.
The processing unit simulates and analyzes the entire
state of SCADA and stores simulation data and
calculated states in two other databases for further
comparison.
In sections II, III and IV of this paper, we will
describe the limitations of the Modbus/DNP3 NIDS,
and compare it to the proposed SCADA full-state
NIMDS. In section V, a summary of our proposed
SCADA full-state NIMDS will be given and the
structure will be discussed further.

II. FALSE NEGATIVE & FALSE POSITIVE

 Detecting an attack in Modbus/DNP3 NIDS is only
possible when the attack pattern corresponds to a
critical state rule stored in a database. For example,
consider an attack to disrupt operation by forcing a
SCADA to open both valves of the dryer shown in
Figure 1, in order to lessen the steam pressure
through the steam dryer or to increase the dryer’s
temperature. This won’t be detected by
Modbus/DNP3 NIDS because, first, there is no
inconsistency between the valves' states and second,
it doesn’t know why both valves are open or closed.
Critical state rules can be defined to raise an alert

- 3 -

when two or more related control devices are in a
specific position which is critical for operation. In our
steam dryer example, the critical state occurs when
the outlet valve is closed while the inlet valve is
open, since this state will cause the dryer to explode.
The other state can not be defined as a critical state
because SCADA controls the dryer’s temperature
through these valves. This false negative would be
detected in the SCADA full-state NIMDS, as it will
be programmed to know the entire process and status
of the control systems. In above mentioned example,
the NIMDS acts as a perfect mirror of the SCADA
and would raise an alert at the first step, since it is not
an anticipated command from the SCADA master to
open the dryer’s steam inlet valve. For the same
reason, it would also raise another alert if SCADA is
forced to open the dryer’s outlet valve. In summary,
Modbus/DNP3 NIDS only examines the consistency
in SCADA’s commands to the field devices, while
the NIMDS examines the logic between the states
and SCADA’s response to each state. Modbus/DNP3
IDS monitors that “portion” of the field devices for
which knowledge of their state is required determine
whether the SCADA is in a critical state [5].
Therefore, it could miss an attack, e.g. because it is
not monitoring that particular device, or because it
doesn’t know the attack pattern. It might also
generate false positives, by raising an alert when it
discovers inconsistency between states, such as when
the SCADA closes the inlet valve and opens the
outlet valve in order to lessen the dryer’s pressure.
Figure 2 shows a moisture sensor installed on a paper
production line to read the dryness and send data to
SCADA. SCADA’s decision to turn the state of each
dryer on or off is based on the data collected from the
specific sensors. If, at some point, it is not dry
enough, it should bring the dryer in operation;
therefore, the SCADA would first send a command to
open the dryer’s steam outlet valve, and then another
command to open the dryer’s steam inlet valve.
These two commands issued from SCADA to the
valves will be processed differently in each type of
NIDS’s. The Modbus/DNP3 NIDS looks for
inconsistency in valves’ states and it doesn’t care
why those states have changed. It checks to assure
both valves are open or closed and, therefore, if an
attacker forces SCADA to open or close both valves
the intrusion will not be detected.

In this example, the Modbus/DNP3 NIDS starts its
investigation when SCADA sends the first command
to open the outlet valve. It then waits to see the
second command to the inlet valve, to be able to
compare the states of those valves with the critical
state rules.

Figure 2: SCADA uses Moisture Sensor to check
paper’s dryness and two electric motor actuated valves
to control steam flow in each dryer.

By contrast, our proposed SCADA full-state NIMDS
can figure out the process order to each valve. It
determines the logical response to each state, and
keeps track of the status of the all control devices.
Since it is a live representation of SCADA, when, for
example, it receives data from a sensor (shown in
figure 2), it knows exactly which dryer should come
into action; therefore, it knows the sequence of
opening the respected valves (i. e. both valve’s state
should be changed to “Open” state). In the SCADA
full-state NIMDS, the data sent by sensors is the
starting point of the investigation. It expects SCADA
to open the outlet valve first and inlet valve after, and
if SCADA for any reason behaves differently, it will
raise an alert.

III. ACTIVE MONITORING

 The Modbus/DNP3 NIDS detection process requires
knowledge of the state of related devices, in order to
compare them with its critical state. If the attacker
forces the SCADA to open only the dryer's inlet
valve, Modbus/DNP3 NIDS will change its state to
“Open” and, to compare the state with the critical
state rules, it needs to know the state of dryer's outlet
valve as it is related to dryer’s inlet valve. In this case
it has to query the outlet valve to retrieve and
examine its updated state on critical state rules.

- 4 -

Active monitoring adds load to a SCADA network
and any synchronization with SCADA’s equipment
from the Modbus/DNP3 NIDS could cause a delay or
data loss on the SCADA side, which cannot be
tolerated [6]. Furthermore, with active monitoring,
the NIDS itself is vulnerable to attack: the attacker
can find it while sniffing the network, and can initiate
an attack against the NIDS, perhaps leveraging it to
attack SCADA systems.
The SCADA Full-state NIMDS monitors the system
passively and it doesn’t need to query any of the
control devices. If there is any need to query a
device, SCADA is the one that sends the query
because SCADA and NIMDS use exactly the same
logic and if the NIMDS needs to know the state of a
device, it is also needed by SCADA. If the SCADA
should send the query and it doesn't, there would be
an alert. Passive monitoring will allow the NIMDS to
be invisible to attacker and it won’t add any traffic in
SCADA’s private network.
If, for any reason, a feedback from NIMDS to
SCADA or any other industrial control system is
required, it could be done by connecting a discrete
device to the NIMDS with an IP address to transfer
the requested feedback to the control system.

IV. DEPENDENCY

 A NIDS should operate independently to data in the
SCADA master, as it is possible for an attacker to
manipulate data on a compromised system. The
Modbus/DNP3 NIDS is required to query the
SCADA system to synchronize its virtual state with
SCADA’s physical state. In our previous example, it
might query the steam dryer’s outlet valve to update
its state when SCADA sends a command to open the
inlet valve. The attacker can respond to NIDS’s query
that the outlet valve is open while in fact it is closed.
As the Modbus/DNP3 NIDS sees both valves are
open, it would consider this a normal state and won’t
raise any alert, while those valves are really in critical
state because of a malicious attack.
SCADA full-state NIMDS is designed to compute the
entire states of control devices. It passively collects
unprocessed data directly from the sensors when they
communicate with the master and can process the
data to calculate the state of each control device and
update its internal simulated states. The simulated
states in SCADA full-state NIMDS is exactly the

same as the actual states in SCADA. Therefore it
does not need to read data from SCADA and the
simulated data will be used to measure SCADA’s
functionality.

V. SUMMARY OF SCADA FULL-STATE NIMDS

Installing a dedicated IDS on a SCADA’s private
network can help us to monitor the SCADA’s
functionality. Our proposed SCADA full-State
NIMDS passively collects data sent from field
sensors and/or other SCADA systems and computes
the expected response (which is an expected
command from SCADA to these control devices) and
compares it with SCADA’s actual response. If there
is any discrepancy between expected and actual
response, it would be an indication of a malfunction
or intrusion. If SCADA is compromised by an
attacker, the data and the state of control devices
being displayed on HMI cannot be trusted as the
attacker could have manipulated to mislead the
operators to believe that the operation is normal. In
this case, it is almost impossible to detect the attack
by conventional NIDS or even Modbus/DNP3 NIDS.
The SCADA full-state NIMDS will be programmed
to operate similarly to the SCADA it is monitoring,
with the same algorithm used to compute the
expected response to each state. Since it is located on
the same network, it has access to original data
coming directly from sensors, and has the capability
to detect any intrusion or malfunction in control
system. As the SCADA full-state NIMDS passively
monitors the control system, it won’t add any extra
load or traffic, and therefore won’t slow down or
interrupt SCADA’s private network, and also will
avoid being a new target for the attacker.

VI. SCADA FULL-STATE NIMDS STRUCTURE

SCADA full-state NIMDS performs two major tasks
in order to accomplish its mission. The first task is
extracting the required data from the SCADA
network which will be accomplished by a packet
analyzer and pre-processor. The second task is
processing the data, which includes simulating and
analyzing the state of both SCADA and the
simulator. The following diagram (Figure 3)
represents NIMDS’s structure in detail and each unit
is described in the following section.

- 5 -

Figure 3: NIMDS structure

VII. PACKET ANALYZER

 The packet analyzer eavesdrops on the SCADA
network to collect the required data, and stores it in a
database. SCADA network traffic is straightforward
to analyze. Most of the IP enabled SCADA
components are using UDP to communicate. Each
packet would have a source and destination IP
address and a value. A packet analyzer might even
utilize snort rules to extract data from packets. It
would be easy to determine which device is the
sender by looking at the source address and which the
receiver device by checking the destination address.
If the sender is the SCADA master, the packet is
carrying a command to a control device, and if the
receiver is SCADA, then the packet is data from a
sensor to SCADA.

IIX. PRE-PROCESSOR

The pre-processor is responsible of validating all the
data collected by the packet analyzer. It has access to
a device database to verify whether the traffic is
coming from the right source, and going to the right
destination. The pre-processor can trigger an alert
when it identifies invalid network traffic. It could
also detect spoofed traffic by checking the time
stamp for every piece of data captured by packet
analyzer. It will set certain fields in the corresponding
record in the database for suspicious traffic to help
SCADA analyzer to identify any spoofed packet.
Traffic will be identified as suspicious, when it
comes from a source in an unacceptably short time
interval.

IX. PRIMARY DATABASE

We will call the database, referred to in previous
sections, the 'primary database', in order to
distinguish it from another database, which we will
call the 'simulator database'. The purpose of the
simulator database is to store the calculated expected
response from SCADA to the control devices. The
pre-processor records data collected (by the packet
analyzer) from the network in this primary database,
and there would be a corresponding record for each
transaction between sensors, control devices and
SCADA which will be refreshed by the pre-
processor. Each record consists of the following
fields:

- Sender and Receiver: the packet analyzer will be
programmed to find the sender and receiver
address based on the source and destination
address. The pre-processor checks the legitimacy
of the packet by checking the source and
destination addresses. The Simulator and
SCADA Analyzer can determine if the packet is
carrying data from a sensor (which might change
system’s state) or it is a command from SCADA
to a control device. If it is data from a sensor, the
simulator will process it to compute the expected
response from SCADA, and if it is a command
from SCADA, the SCADA analyzer will
compare it with its expected response to check
for deviation.

- 6 -

- Value: the current state of a device can be
determined by the value. For example, if it is a
relay, the corresponding value will be one or
zero to indicate “On” or “Off”, and if the record
is for a pressure sensor, the value is showing
current pressure. The value will be used for
simulation when the packet is data from a sensor,
and it will be used for comparison if the packet is
a command from SCADA.

- Time stamp: the packet analyzer sets the time
stamp for each record in database when it
captures a packet. This field will be used in both
pre-processing and in the SCADA analyzer for
the investigation process. Also, the simulator
calculates the estimated response time in the
simulation database, based on the time stamp in
primary database. The pre-processor uses this
time stamp to detect suspicious traffic, and
SCADA analyzer checks the time stamp to
determine if SCADA has had enough time to
respond to the last request. If the difference
between current time and time stamp is longer
than its expected time, the SCADA analyzer will
perform a comparison, otherwise it simply
ignores it.

- Suspicious bit: When the packet analyzer
captures new data, the pre-processor compares
the current time with the time stamp in the
corresponding record to verify that the captured
data has been sent within an acceptable time
interval. If the packet analyzer captures two
packets from a device in a short period of time,
the pre-processor sets the suspicious bit and
writes the last captured value in the “suspicious
value” field (see below), which will be processed
later by SCADA analyzer.

- Suspicious Value: this field contains the value
from the latest captured packet which, when set,
has been identified as suspicious by the pre-
processor. The SCADA analyzer can identify a
spoofed packet when the suspicious bit is set. It
calculates the expected response by using data
from the “suspicious value” field, and compares
it with calculated response using data from
“value” field. It will trigger an alert if the
responses are not identical.

- Process bit: process bit will be set when packet
analyzer writes to each record and simulator
resets it when the data has been used for
simulation and skips it in next trace when it is
reset. SCADA analyzer also uses this bit for
comparing a captured response from SCADA to
a simulated expected response in Simulation
database and resets it when comparison is
completed.

X. SIMULATOR

The simulator follows the same logic as the SCADA
master. It is stored in the SCADA Logic unit and uses
the primary database as input. The simulator will use
loop execution on the primary database, which is
similar to SCADA’s ladder logic: it traverses and
traces the entire database from left to right (or top to
bottom) and calculates the expected response for each
state and records it in Simulation and Device
databases which will then be compared with
SCADA’s response at the right time (“time stamp”
will be used to determine the right time: see Section
IX).
 The simulator keeps the simulation states in a
simulation database. It also keeps the state of the
entire devices (controllers and sensors) in a device
database, which will allow the NIMDS to determine
the latest state of each device passively, i.e., without
querying and therefore creating extra traffic on the
SCADA network.

XI. SCADA LOGIC

 The simulator works directly with SCADA logic to
compute and simulate SCADA’s state. It contains an
exact copy of the SCADA program, which could be a
translated version or an identical SCADA ladder
logic program. NIMDS’s capability to accept the
identical program will make it powerful, flawless,
easy to use and flexible. It can be equipped with this
ability by adding a dedicated complier to SCADA
logic to translate the program for the simulator.
We can use the steam dryer example to present a
better clarification of SCADA logic. As shown in
figure 4, when SCADA reads the moisture sensor, in
the first step it compares the data with its internal
database to determine whether the value has changed.
In case of any changes, SCADA utilizes some rules

- 7 -

to sequentially open or close electric motorized
actuator valves (M1 and M2) to control the steam
flow in each dryer. It sends a command to each valve
and also records the state of valves in its internal
database for future use.

Figure 4: Sequence of a process

Table 1 shows a sample rule set which, let us
imagine, is being used by both SCADA and NIMDS.
For example, if SCADA reads 45% from W1, it
keeps both inlet and outlet valves half open.

Table 1: A sample rule set

 The simulator uses the same rules from SCADA
logic to calculate the expected response; therefore it
sets two records (in the simulation database) with the
calculated value for each valve (which is 50% in this
example) and this data will be used for comparison.

XII. DEVICE DATABASE

 The device database keeps the states of the devices
(such as sensors and control devices) to enable the
simulator to calculate the expected response without
querying any devices in the network. The simulator
updates the state of each device based on device’s
current state (which is stored in device database) and

data stored in primary database. The device database
allows the simulator to have access to the latest state
of a device when it requires that for computing its
simulation of the process. The following is the
structure of each record in Device database.

- Device Address: Each device has a unique IP
address which will be used to identify that
device. The pre-processor uses the address to
validate the extracted data. If it finds a packet for
which neither the source nor destination address
can be found in Device database, it will raise an
alert.

- Device Type: Device type records whether a
device is a sensor or a control device. If the
device is a sensor, the simulator doesn’t need to
compute the calculated value, and the SCADA
analyzer also doesn’t need to do the comparison.

- Time stamp: This field defines the time which
SCADA is expected to send a command to the
respected control device.

- Actual Value: When SCADA sets the state of a
device or a device state is changed in a process
the actual value will be set.

- Calculated Value: This field is set by simulator
in response to state changes in a process.

- Process bit: the simulator sets the process bit
when it changes the calculated value, and the
SCADA analyzer resets the bit when it compares
the calculated value with the actual value.

XIII. SIMULATION DATABASE

The simulation database is where all the expected and
actual responses from SCADA are stored. The
simulator computes the anticipated response and
stores it in this database, to be compared later, by the
SCADA analyzer, with the real response. The
database has the following fields:

Moisture (W1) Inlet valve

position (M1)

Outlet valve

position (M2)

Less than 20% Closed Closed

20% - 40% 25% Open 25% Open

41% - 60% 50% Open 50% Open

61% - 80% 75% Open 75% Open

Over 80% Full Open Full Open

- 8 -

- Device Address: In the controlling system only,
SCADA sends commands to control devices, and
therefore we do not need to keep the source
address. Device address is the address of a
device which is receiving commands from
SCADA.

- Time Stamp: this field holds the maximum time
interval that SCADA requires to fire a control
signal to the respected device.

- Expected Value: the simulator saves the
calculated response in this field. This value is a
set point in a control device, which SCADA is
expected to set in response to a state change in
the control process.

- SCADA Value: the SCADA analyzer records
SCADA’s actual response in this field and
compares it with expected value; a difference
indicates malfunction or intrusion.

- Process bit: When the simulator calculates the
expected response, it also sets this field to
highlight that this record needs to be processed
by the SCADA analyzer, and that the SCADA
response is pending.

- Compare bit: This bit will be set by the SCADA
analyzer when the comparison is performed.

- Error bit: This bit will be set by the SCADA
analyzer when the expected value is not equal to
SCADA value, which to repeat, is an
identification of intrusion or malfunction.

XIV. SCADA ANALYZER

The SCADA analyzer monitors SCADA’s
functionality by comparing the processed data with
actual data collected from the network. It reads the
actual SCADA response from the primary database
and compares it with the simulated data in the
simulation database. It also analyzes the data with the
suspicious flag set, to reveal spoofed packets, by
calling simulator to calculate the expected response

for both “Value” and “Suspicious Value”. The
SCADA analyzer will raise an alert if the responses
are not unique. The SCADA analyzer checks the
Simulation database when it finds a command from
SCADA to a control device stored in primary
database. It also looks for the corresponding data in
the primary database when the time stamp in a record
in the simulation database is about to expire. There
would be an alert if SCADA has not set a control
device within the expected time interval. The
SCADA analyzer resets all the related flags, such as
the comparison bit and the process bit, when it
finishes its task on each record.

XV. ALERT MANAGEMENT

The alert management unit is responsible for
presenting the alerts and their criticality to the
process. It receives information from the SCADA
analyzer and pre-processor to show the failure and its
consequences on the control system.

XVI. ALERT LOG

Alert log unit keeps the alerts in a database, with each
alert describing the event in detail. It records the
reason for triggering an alert, including the device
name, time, what was supposed to happen and what
actually has happened. The log can help the process
engineer to track down the failure and make proper
corrections to the system.

XVII. SYNCHRONIZATION

One of the main advantages of our proposed SCADA
full-state NIMDS is its passive operation, which
allows it to collect the required data without querying
any control device for synchronization. If both the
NIMDS and SCADA start their operation at the same
time, there is no need for any synchronization and
NIMDS can start its normal operation without
concerns about any false positives or false negatives.
But what if the NIMDS starts to operate after the
SCADA system has already started? The easy
solution is to send a query to each device to find the
state of each device, but then our proposed NIMDS is
no longer passive. Moreover, this approach may not
work, as the devices may change state (perhaps even
several times) during the synchronization process.
Another option is to use a starter program to
passively set the state of each device while
communicating with SCADA. The best solution is to

- 9 -

allow the NIMDS to continue its normal operation
from the zero point. It will raise lots of alerts in the
beginning, but after a few seconds (or in the worst
case a few minutes), as the SCADA master talks to
all control devices and sensors, it will have the entire
device’s state, and synchronization will be completed
without any query.

XIIX. CONCLUSION AND FUTURE WORK

We have introduced a new technique for SCADA
system intrusion and malfunction detection. The
proposed technique can enhance detection: it
promises to be accurate, flexible, and independent; it
does not rely on attack patterns or signatures. It only
needs to understand the SCADA ladder logic
software to monitor SCADA’s functionality. SCADA
full-state NIMDS is a detection system, and is not
intended to replace other protection and prevention
methods, which of course should also be
implemented in a SCADA network.

REFERENCES

[1] Athar Mahboob and Junaid Zubairi: Intrusion
Avoidance for SCADA Security in Industrial
Plants, IEEE, 2010

[2] Gregg Keizer: Stuxnet code hints at possible

Israeli origin, Computerword, Sep 2010
http://www.computerworld.com/s/article/918898
2/Stuxnet_code_hints_at_possible_Israeli_origin
_researchers_say?taxonomyId=82

[3] Gregg Keizer: Is Stuxnet the best malware
ever?, Computerworld, Sep 2010
http://www.networkworld.com/news/2010/0
91610-is-stuxnet-the-best-malware.html

[4] Jared Verba & Michael Milvich : Idaho National
Laboratory Supervisory Control and Data
Acquisition Intrusion Detection System
(SDACA IDS), IEEE International Conference
on Technologies for Homland Security, May
2008

[5] Igor Nai Fovino, Andrea Carcano, Thibault De
Lacheze Murel, Alberto Trombetta and Marcelo

Masera: Modbus/DNP3 State-based Intrusion
Detection System, 24th IEEE International
Conference on Advanced Information
Networking and Applications, 2010

[6] Ning Cai, Jidong Wang and Xinghuo Yu:
SCADA System Security: Complexity, History
and New Developments, School of Electrical and
Computer Engineering, RMIT University,
Melbourne, Australia

