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ABSTRACT

In this thesis we examine some of the properties of the slowly decaying
solutions of the nonlinear Schrédinger equation. By the superpositioning slowly
decaying solutions we get the so called harmonic soliton solutions. In particular
we examine some of the modulating properties of the harmonic soliton solutions
for the defocusing Schrodinger equation:

iUy + uzz — 2[ul?u =0
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Chapter 1

Beginnings

1.1 Introduction

Most wave motions are modeled by linear hyperbolic equations, which we
can solve by means of the Fourier transform as we will discuss in Chapter 2.
After some simplifications these models often lose their hyperbolicity and more
important their linearity, [12]. As a result the Fourier transform method can no
longer be applied.

In this thesis we investigate the possibility of a replacement of the Fourier
transform for some nonlinear KdV-type equations, in particular the nonlinear
defocusing Schrédinger equation. First we remark, that the Fourier transform
method is a mathematical description of what is known in physics as linear mod-
ulation of waves. Linear modulation can be used to construct localized in space
solutions for linear partial differential equations, so called wave packets. The

natural question one can ask is whether the existence of nonlinear modulation



yields exact solutions of a nonlinear partial differential equation. The analogy
between Fourier analysis and the Inverse Scattering Theory used for solving the
Cauchy problem for integrable equations suggests that if any nonlinear partial
differential equations allow nonlinear modulation, then they would be the inte-
grable equations. It will be shown that the nonlinear defocusing Schrédinger
equation permits nonlinear modulation.

In Chapter 2 we tersely review the ideas behind the Fourier transform method
for linear partial differential equations. We will review how to construct an
arbitrary solution of the form e'**~«(¥)t) which can be viewed as the simplest
components. In Chapter 3 we use the representation of such solutions to derive
the KdV and NLS equations. The solutions to the KdV and NLS can then be
obtained by the inverse scattering method. Chapter 4 contains the main results
of this thesis, namely the generation of the N-harmonic soliton solution for the
defocusing Schrédinger and some time evolution profiles for the N-harmonic
soliton case. These results are new and could possibly be applied to Soliton-

Lasers and Soliton-Based Communication Systems, [13].

1.2 Background and Some History

Solitary waves were first observed by J. Scott Russel in 1834. After extensive

experiments in the laboratory, he observed that:

1. solitary waves are long, shallow water waves of permanent form,

2. solitary waves propagate at speed ¢ = 1/g(h + a),



where g is the acceleration due to gravity, a is the amplitude and * is the uni-
form depth of the waveguide/channel. Further investigations into the existence
of solitary waves were undertaken by Airy (1843), Stokes (1847), Boussinesq
(1871-72) and Raleigh (1876). Korteweg and de Vries (1895) derived a nonlinear
equation, named after them, governing long one dimensional, small amplitude,
surface gravity waves in a shallow media, [14]. Further progress came when
Fermi, Pasta and Ulam (1955) considered the problem of a one dimensional an-
harmonic lattice of equal masses coupled by nonlinear springs modeled by the
KdV, [15]. This subsequently lead to the discovery of so called solitary waves
L.e. a localized traveling wave solution, of the form f(z-ct), of a nonlinear par-
tial differential equation. Zabusky and Kruskal (1965) did extensive computer

simulations for the initial value problem for the KdV:
ur + uug + (0.022)% ugpr =0

u(z,0) = cos(vz), 0<z<2

where u, 4z, uc; are periodic functions on [0,2] for every t. They discovered
some solitary wave-type solutions with some rather interesting properties, [16].

They called them solitons. They observed:
1. solitary wave is a stable formation;

2. when solitary waves move with different velocities, the faster one will over-
take the slower one and, after a complicated nonlinear interaction, the
solitons emerge in their original form with possible delays (phase shifts)

due to interaction (Fig. 1).



3. every sufficiently smooth and exponentially decaying solution of the KdV
with initial condition u(z,0) = ¢(z), decomposes as ¢ — oo into a finite

number of solitary waves of various speeds and a dispersive tail (Fig. 2).

This kind of behavior is expected for linear problems, for example for the wave
equation uy = ¢ uz; with u(z,0) = ¢(z) on 0 < z < [, u(0,t) = u(l,t) and
u¢(z,0) = ¥(z), since each eigenfunction evolves separately, but that this could
happen for a nonlinear problem was not expected. Later on, a number of other
equations with solutions possessing properties similar to that of solitons were

discovered, e.g.
e Nonlinear Schrodinger: u; + uzr + 2v[uf?u =0, v ==%1
e Sine-Gordon: uy; — uzr + sin(u) =0
¢ Kadomstev-Petviashvili: (u; + uzzr + 6utz)z + 3uyy =0

We start by reviewing the ideas behind Fourier transform which will subse-

quently lead us to the KdV and the NLS.






Chapter 2

Fourier Transform for linear

equations

The most general Cauchy problem solvable by the Fourier transform is the

one reducible to the form, [7]

P(D,7)u=0 fort >0 (2.1)
™" u=0 fork=0,1,..., m—2 andt=0 (2.2)
™y = f(z) fort =0 (2.3)
where
7] a -9
= = = — 2.4
b=D,..., D) (3:1:1’ ’63:,,) T T T B (2:4)



and P(D,7) = P(Dy,...,Dy,7) is a polynomial of degree m in its n + 1 argu-
ments.

Consider the simplest case of (2.1)-(2.3) that appears in the theory of waves,
[2]:

—w(k)
k

U = Uy (2.5)

u(z,0) = f(z) (2.6)

A formal solution of the standard problem (2.5)-(2.6) can be obtained using

the Fourier transformation

u(z,t) = 9%/ a(k,t) e*=dk (2.7)
a(k,t) = / u(z,t) e *=dz (2.8)

Assuming the validity of the interchange of derivative and integral, by taking

the Fourier transform of (2.5), we get:

du
- 7 - 2.9
= = w(k)t (2.9)

which is a linear differential equation with solution:
i(k,t) = a(k,0) e~k (2.10)

where

a(k,0) = f(k) = /_ " fe) e da (2.11)



The solution of (2.5)-(2.6) is:

u(z,t) = 51; / Fk) ==t gk (2.12)

If the system (2.10) is conservative, i.e. w(k) is a real function and dispersive
(w”(k) # 0), then the solution may decay into wavepackets which move with
group velocities w'(k) and decays as ¢t — co. So an arbitrary solution can be
decomposed into e!**~«(¥)t) which can be viewed as the simplest components of

that solution.



Chapter 3

Origins

3.1 Derivation of KdV and NLS equations

We first begin by deriving the well known KdV equation and then the NLS
equation since the analysis of the NLS equation parallels that of the KdV equa-
tion. We showed in the previous chapter that an arbitrary wave can be decom-
posed into harmonics e**=«(¥)) " Consider the plane wave corresponding to one

of these harmonics:

v(z,t) = e'tk=—wt) (3.1)
Assume the dispersion relation is of the form:

w(k) = ak — Bk (3.2)
A partial differential equation for v(z,t) with this dispersion relation is:

vt + Q'Ux + ﬁvzxz = 0, (3-3)



which is often called the linearized KdV equation, [6]. In shallow water theory,

the following conservation law must also hold, [2]:
agU + arj = 0 (34)
For the linearized version of the KdV equation, j is given by:
. I -
J=ov+ vz + 57Tv (3.9)
Combining (3.2),(3.3),(3.4) together we obtain, [2]:
Ve + oz + BUzzr +yvv, =0 (3.6)
Using the rescaling,

z = \/BE + a/Br, (3.7)

t=+/Br (3.8)
and
w(&, ) = Zo(a,t) = Lo(v/BE + ay/Br, V/Br) (3.9
we can rewrite (3.6) in the standard form
Wr + weee + Bwwe =0 (3.10)
In a similar fashion we derive the nonlinear Schrédinger equation (3.11):

s + Ugr + 20|uf?u =0 i (3.11)

10



For a modulate wavetrain with most of the energy in wave numbers close

to some values ko, f (k) is concentrated near k = kg, and one can approximate

(2.12) by:

o=t / " (k) ettt (bmtoul (ko Peg /2] g
)

T 2r
where wo = w(ke), wjy = w'(ko), wf = (ko).
Let £ — kg = &, then:

@ = — eiliozuot / " Flho + ) et gy
2% —co

gilkoz—wnt)

: gﬂ(t, z:),

¥~

¢

where o(t, z) describes the modulation in (3.13) and satisfies

: 1
Wpe + wipz) + 5wiPzs = 0
with the corresponding dispersion relation:

1
W(k) = rwy + -2-52 wy

The equation for @ with the original dispersion relation

_ 2
(k= ka)*

w(k) = wo + (k — ko)wp + 5 0

is:

. P kgwg .oy ”
Zét — | Wo — kowo + ) 03] + z(wo —_ k0w0)©x+

wqy _
-+ 7@;: =0

<

11

(3.12)

(3.13)

(3.14)

(3.16)

(3.17)



If the approximation (3.14) to the linear dispersion is combined with a cubic

nonlinearity, [2], we have:

. 1,
i(pe + wopz) + 5W00ee + glol’e = 0 (3.18)

Since p(t, z) = a-e**=W1) is still a solution to (3.18), we get that the non-
linear correction to the dispersion relation modifies W to:
W = rwh + ';—Zwé' —gqlel? (3.19)
Equation (3.18) can be normalized by choosing a frame of reference moving
with linear group velocity wy to eliminate the ¢, term in (3.18) and then, after
rescaling the variables, [2], we get the nonlinear Schrodinger equation (3.11).
There are actually two NLS’s, one with v = 1, the other with v = —1.
The NLS can be considered as the Hartree-Fock equation for a one-dimensional
quantum Boson gas with §—point interaction. Then v plays the role of a coupling
constant: the case v > 0 corresponds to attractive interaction between particles
and v < 0 is the repulsive case, [6]. The two cases are essentially different in
optical applications, describing selffocusing or defocusing of the light rays in

nonlinear waveguides, [10].

3.2 Inverse Scattering Theory for KdV and
NLS equations

To illustrate the method of solving KdV, NLS-type equations using the method

of inverse scattering developed by Gardner-Green-Kruskal-Miura, [17, 18], we

12



start by considering the simplest of the equations, [5]. Consider the KdV equa-

tion
U + 6uUz + Ugzr = 0 (3.20)

with
u(z,0) = f(z) (3-21)

where f(z) is sufficiently smooth and decays rapidly as || —+ oo. The basic idea
is to relate the KdV equation to the time-independent Schrédinger scattering

problem:
(L= M) i=thee +upp =0 (3.22)
The time-dependence of the eigenfunctions (3.22) is given by
e = M= (v + uz)¥ — (4X — 2u)y, (3.23)

where 7 is an arbitrary constant parameter and A is the spectral parameter.

The KdV can then be written using the Lax pair [M,L], as:
L, =[M,I] (3.24)

where the operators M and L are given by:

82
63

Equation (3.24) is satisfied if and only if u(z,t) satisfies the KdV.

13



The solution of the KdV with initial condition (3.21) is as follows:

At t = 0, we need to determine the spectrum of the Schrédinger equation
(3.22) which consists of a finite number of discrete eigenvalues, A, = £ >0,

n =1,...,N and continuous spectrum, A = —k? <0. The corresponding eigen-

functions are:
1. For A = €2 : on(z,t) = ca(t) e as £ — oo, with 5 w2z, t)dr =1
2. For A = —k2:
(a) ¥(z,t) = e £ r(k,t) €% as z — 0
(b) ¥(z,t) = a(k,t) e** as z — —c0

where r(k,¢) and a(k,t) are the reflection and transmission coefficients respec-
tively.

At t = 0 we define the scattering data to be:

S(,0) = ({6 ca(O)1s » r(k,0), a(k,0))

The time evolution of the scattering data
S 1) = ({6m cn(®» 7(k,1), a(k,)
is given by the formulae:
o {,=constant
o c.(t) = ca(0) e%nt, n=1,...,N
o a(k,t) = a(k,0)

14



e r(k,t) = r(k,0) &t

Using the scattering data define

N oo
F(z;t) = Z c2(t) e~ 4+ %/ r(k,t) e*dk (3.27)

n=1

Then we recover the potential u(z,t) via:
u(z,t) = 2—6—[[{(:1: z;t)] (3.28)
: az ? 1
where K(z,z;t) is the solution of the Gel'fand-Levitan-Marchenko equation
K(z,y;t)+ F(z + y; t) + / K(z,z;t)F(z+y;¢)d==0 (3.29)

The method just described is a concise version of the method of inverse
scattering developed by Gardner-Green-Kruskal-Miura.

Zakharov and Shabat (1972) showed that the inverse scattering approach
may also be applied to solve the NLS, [1]. In particular they showed that the

nontrivial operators

{1+ 0 9 0 @t
L =1 6—+
0 1—& T u 0
and
10) ¢ Rl g
e a _1+K3 Uz _ 2
M :=ix 5;3'*‘ i|ul? ’V—l—h‘.z
01 S ol N
11—k«

satisfy Lax’s equation (3.24) if and only if u(z, t) is a solution of the NLS equa-

tion.

15



If we let

N (o o]
F(z) = Zc,, e'*nT 4 él; / r(€) e%*de (3.30)

n=1 -

where
o 7(£,t) = r(£,0) 57
o ci(t) = ¢;(0) '

Then we obtain the Gel’fand-Levitan-Marchenko system:

Ki(z,y) = F(z +y) + /oo Ky(z,8)F(s + y)ds (3.31)

Ky(z,y) = — /°° K, (z,s)F(s+y)ds (3.32)

which allows us to recover the potential via

u(z) = 2Ky (z,z), [o |u(s)]?ds = —2K,(z, z).
In the reflectionless case the reflection coefficient is zero, i.e. r(k,t) = r(k,0) = 0,
and we can solve the Gel'fand-Levitan-Marchenko equation using the method of

separation of variables, [18], [19].

12 denotes the complex conjugate of u

16



Chapter 4

Soliton Theory

4.1 Derivation of the N-soliton solution

Besides the method described in Chapter 3, we can obtain the N-soliton
solutions for the NLS following the methods of [1], [4], and [6]. We first observe

that the NLS can be written as:
Ui=Ve =V, U] (4.1)

which is a compatibility condition for:

ao

-_ = 4.2
Oz ve (4.2)
od
= 4.3
rri (.3)
where
0 -1 0 .
U= L (4.4)
r 0 0 1

17



0 -1 r 0 —rz 0 0 —rgq

The field functions q(z,t) and r(z,t) are independent of A. Note that (4.1)

can also be written in Lax’s form:

. d 0
(“a?):[“”‘a—x]

We can easily obtain the field functions for both NLS’s with r = +§ = 0 and
v ==£l1.

For r = @ =0 and v = +1 equations (4.4) and (4.5) assumes the form:

-1 0
Uy =i\ (4.6)
0 1
1 0
Vo = 202 (4.7)
0 -1
and equations (4.2), (4,3) degenerates into
9% _ Un®, (4.8)
Oz
0%
3_; = W% (4-9)

Solving the system (4.8), (4.9) we get,

18



z,t, A z,t, A eiMz+2iMt) 0

&, = wo1( ) You( ) _ o (4.10)
wo2(z,t,A)  o2(z,t, A) 0 e=iMa+2iAe)

With @, given we can now obtain N-soliton solutions, ¢(z,t), by means of

the N-fold Backlund-Darboux-Matveev transformations [4], [6], in the form:

1 81 A1 AB A2 A2B, e )\‘IV‘I /\1"
1 B d Xfe A5 MG - ATH MY
N 1 ,B2N /\QN /\2N,82N /\§N /\%N,Bmv cct ’\12\1(\;—1 /\Zv
q(z.t) =2
1 B0 M AMB A2 A%z, .. /\i\'r—l /\"1\4—151
1 B2 X2 A3 AL AL, P TAA D P
2 2 N-1 N-1
1 ﬁzN /\ZN ’\2./\1’,821\1 ’\2N ’\QNﬁZN te /\2N /\QN /321\’

(4.11)

QPQ]_(.’E, t! A_7)

, A; = &; +1n;, c= constant.
¢'02(1',t,/\j) J 6] 77J

where 3; = ¢

For the NLS equation, r = £§, Aj+5 = Aj, and Bj4n = —g— for some constants
M3
Ny &is with j < N.
The 1-soliton solution of the NLS is:
(21 exp(—2i(éz + 2(E2 —n?)t + %)) P
cosh(2n(z — p + 4€t))
u(z,t) = ) (4.12)
2 exp(=2i(€z + 2" —n)t+ %)) . _
\ sinh(2n(z — p + 4¢t))

19



and the corresponding ® functions given by :

Casel: v = -1

@, P52
®= Qsml—h(g) (4.13)
P21 P22
where:
* du=((A~&—in)e’ + (—in+ £ — A)ef) emAe-2id™
o &5, =2p e (Z(A—26)+2t(212 ~ 262+ 22) ~2+¢)
o &y = —2in e~ i(=(A-28)+2¢(20%-262+2%) - 2%¢)
o Qo= ((A—&+in)e’ + (in + & — A) e7%) eh=r2id®
° 0 =2(z —p+4tf)n
Case II: v = +1
. Q11 P12
®= m (4.14)
D71 Dz

where:
o By = ((=A+E+in)el + (—in + £ — A)eb) e=iN=—2int
o &), = 2in i(=(A-26)+26(207 =282 +27) —2¢)
o &y = 2in e~ {(=(A—20)+2t(2n?-267+1%) - 2+¢)

20



[ ] @22 = ((—A + 5 — in)ea + (i'r, + 6 —_ A) e-e) eiAx+2iA2t
¢ §=2(z—p+4tl)n

The constants 7 = $(\;) and € = R(\;) determine the amplitude and velocity
(v = —4¢) of the soliton respectively, [1]. Unlike the KdV soliton, n and € are
independent and can be choosen arbitrary. In the general N-case, the N-soliton
solution of the NLS equation depends on 4V arbitrary constants; nis &y Pis Vj-

For distinct &;, as t —+ +oc the N-soliton breaks up into individual solitons
in such a way that the fastest soliton is always in front of the slowest one in the
rear, and vice-versa as ¢ — —oo. In this case, p; (the center coordinates) and
;i (Phase angle) are no longer fixed. For identical &;, the solitons form a bound

state, [9].

4.2 Harmonic Solitons

The NLS with v = 1 (self-focusing case) has regular solitons that describe
modulated pulses. For the NLS with v = —1 (de-focusing case) we get singular
solitons, due to the singularity they can no longer be modulated pulses the way
the regular solitons are. We will show that we can still obtain modulation for
v = —1 using what we call harmonic solitons. These harmonic solitons appear
when §();) = n; = 0, i.e when both the numerator and denominator of (4.11)

are zero. By taking 121(1) of (4.11) we get (4.15):
n

q= -2t AB™! (4.15)

21



where:

where f; = e nHe2i0) 40 = —24(p; — z —4¢;t), V5’8
constants ,for j < n. The (n + j)-th row of A or B is obtained by subtracting
J-th row of (4.11) from the (n + j)-th row of (4.11), dividing the result by n; and

taking limit as n; — 0, [11]. The one harmonic soliton solution, ¢(z, t), (Fig 3),

1 B2 &2

-

0 mb

0 w2B 1

—

0 unbn

B &1

B2 &2

Bn  &n

73V S §

#2862 1

ﬂvnﬁn 1

(1+u1£1)61

(1+u262)02

(14+unén)Bn

&16:

&202

Enln
(1+2p1€1)8:1

(14+2u262)82
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of the NLS caz be obtained by takingn =1 in (4.15) :

exp(—2ifz — 418t — iy
z—p+4£

2n_exp(—2i{z —4i(® — )t —iy)
sinh(2n(z — p + 4£t))

g(z,t) = lim
n7—+0

{(4.18)
e = b
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Fig.3(a) Fig.3(b)
Figure 3 : Shows snapskois of the single harmonic soliton solutica:

Nes

(-

at timet = 1.00 and (b} at time t = 1.50 wizh ;

The eigenfunction corresponding to the harmonic soliton that sasisfies the

2), (4.3) is

-

compatability conditions (4. obtained by taking hm in equation (4.13)
—a

yielding:
[[+2(A=&)(p—z—4¢)] exp(—iA(=+2)2)) ~{ exp(i[=2vE— 4262 =228 + Az L2172
p—z—4i p—z — 4z
6=

i exp(i[276+42£%+2z8 Az —2)22])

p—z— 4t

(—i+2(A=&)(p—z—4t§)] exp(PM(=+2\2))

p—z—4dif
(4.17)
Each harmonic soliton is determined By the constants A, p and ~ which
corresponds to frequency, displacement and phase shift respectively. By analogy
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with solitons, we define the nonlinear superposition of N harmonic solitons given
by the the sets of parameters A = ()q,--- 1AN), P = (p1,---,pa) and T =
(71:--- ,7~5) to be the potential obtained by taking r(k,t) = r(k,0) exp(4i£®t)

in the form:

N
r(k) =lim 3 (e™*xp, o, g (k) + ey o (k) (4.18)
Jj=1

1 if ki <k<k

Xk k2] (K) = (4.19)
0 otherwise

The corresponding potential is given by (4.15).

4.3 Nonlinear Interference

Formulas (4.18)-(4.19) describe the interaction of N-harmonic solitons. Al-
though we cannot prove it, it certainly seems to be true that each N-harmonic
soliton (4.18) is a meromorphic function with at most N real poles. The 2-

harmonic soliton solution of the NLS equation is:

exp[=2i(z 1 + Mt + M) - (=i + (A — do)7) |
sin? (11 A1 — y2de + 8(A2 — A2) + z(0; — M) — 4(A — Mo )2mimp
exp[—2i(zA2 + AJt + 12)2)] - (i + (A1 = Ag)71) }
sin? [’7’1/\1 — Yoo + t(/\f — )\g) +z(A — ,\2)] —4(A; — \)?1im2

g =4(); — \g) [

(4.20)

where
Tk = Z — pr + 2tX, k=1,2 (4.21)
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Formula (4.20) makes sense only when A, # +);. Yet for A = A, + n,
n € Z, the concept of superposition of two harmonic solitons can be naturally
extended to the case A, = +A; by taking the limit of (4.20) as A\, — A; and

~v2A2 —> 71 A1. This yields a harmonic soliton with:
[ ] A = /\1 = /\2
¢ Y= =72

e and p satisfying

1 1 1
— (4 —( Z (A
Ptgy(nd) pt ax, (1242 P2+ (1)
, 0
For p;’s large we can neglect the 5—/\—(72/\2) term to get,
2
1 1 1
-~ —+(-1)"— (4.22)
P P P2

25



Ne) ' [} —~
12

b )
e ot S o ol
_ \7 vr BT :m =<
N
G- A 1m .
-
S
L
“ VI % v
I ..m A mw. « o1
3 Vi o A -
" , o)
.._. (%] 3 Lo ] PM pyae) _ _
I a [ £ %) e
g S
. -
1 i 0 3
Ju 4 . v S R
© ¢ oD ! O
= ¢ J.. 2 -
I N T
US| — % 0
L)) -t + wu N
rﬂ ~t T.; [ n O
42 . f«w\ -t ..M
u\. rm m ‘vnw.. - 1_ m.m v_n
) o I pe] ! —~
S A § o N
g0 L8 gy 0
-l 9 nnu% [ g m mm " M I
o s by g B -
: S v v |
n o het w l-l
w M a A u
2y] ~ + W =
RS 7 ~<
i B RERE R B |
R S 5! Hoo, g &
S 1 [~ ﬁ n W -2
. 73 T m —~~ -~
¥} =~ — « ¢ o nﬂ
= ol <z o, W S S Y| _
o= m w B, O = NS —
At e A T T —- b Mcw a T
== - u a2 W 42 A W..
: = = A I 3
- e 1 T o] (] -3 —_— [w] o
By = & g &
—_—_— K 2R
P ' 1 1 i, ) [ ¥ ,ﬁ I ! . 9 o
- ug - ol o o N Ty " " ] oA N
(<] < ] i i o i i 3 ¢ L o«
) } 1 [ ) Q, W A ﬂﬂm
- 0 Q
&« g 38

26

@ (—20A1 (Mt + 71 + 2))

~.

The harmonic soliton obtained as the result of their nonlinear superposition-
e

ing in D is of the form:



Away from the poles the superpositioning of the harmonic solitons is practically
reduced to adding their absolute values, just like in the linear case. In linear
theory this phenomenon is called linear interference so we call its nonlinear
analogue nonlinear interference. It is exactly this phenomenon that is responsible
in linear theory for the formation of wavepackets. The nonlinear analogue also
leads to the formation of wavepackets, in this case nonlinear. Since there is no
theory for the nonlinear case, we simply construct some of the wavepackets.

Figure 5 shows the time evolution of the 8 harmonic soliton solution. The
N-harmonic soliton solution does not necessarily vanish outside D as z — +00.
Comparison with the linear Schrodinger equation suggest that by choosing An’s
sufficiently small such that A, < A4 + |AA| then we can choose X and T
arbitrarily large. This allows us to create a wavepacket of desired magnitude
and halflife. Equations (4.11), (4.15) have been used to verify this numerically.
Figures 6-9 shows some other interesting properties exhibited by the harmonic
soliton solutions of the NLS. The values of p, are chosen to be of the forms
por®, pon?, por and pg so that we can mimic the § function with its antideriva-
tives. Figures 8 and 9 shows the time evolution of some N — wave type and

0-type solutions respectively.
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Remarks
A standard MATLAB package was used to obtain these graphics. However when
€ was chosen such that £ € Q° we obtained fake wavepackets Fig.10(2},this car

either be correcied by choosing £ € Q°¢, Fig.10(b), or by increasing the resolution.

-

o
-

n
€ @
M 5 1 e
R Dt SO R

Lok
1N b
R,

Fig.10(a) Fig.10(b]

The Matlab Programme (I) was construcied using equation (<£.11),see figures
~ o - .

3,4,6-10 and Matlab Programme (II) was constructed from equation (4.13) yield-

ing figures 5.



Conclusion

Although we could not apply the Fourier transform method to solve the NLS,
we were still able to obtain exact solutions using the concept of nonlinear mod-
ulation. Using the analogy between Fourier analysis and the Inverse Scattering
Theory used for solving the Cauchy problem for integrable equations we were
able to show that the nonlinear defocusing Schrédinger equation permits nonlin-
ear modulation. Also using the N-harmonic soliton solutions we were also able
to construct localized in space solutions for the nonlinear defocusing Schrédinger
equation, the so called wave packets.

Some other possible extensions that can be made in this thesis is the further
simplification of the the determinants found in (4.15), so we could possibly write
the general N-harmonic soliton solutions in an applicable form for large N. One
can also try producing an analytic proof for the existence of N-real poles for the
N-harmonic soliton solution or question the existence of a generalized formula

similar to (4.22) for N 2 3 that would ultimately link the KdV and the NLS.
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Appendix

Matlab Program (I)

clear xp up M
disp(’started’)

% Input Area
remfake=(\pi/3)*2~(1/8)*1.012345678901*exp(1)/2.71;

delxi=0.19%remfake;
halfdim=8;
p0=-11000
xio=1:halfdim;

for n = 1:halfdim,
xio(n)=delxi*(n-1) ;
end

halfgam=1:halfdim;
halfgam=(pi/2)*ones(1,halfdim);

halfp=1:halfdim;

for n = 1:halfdim,
halfp(n)=-p0*n~(0.5);
end

t£0=0.0;

t£=100.0;
numt=100;
x0=-40.0;
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x£=60.0;
yo=-4;
yf=4.0;
numx=300;

framespeed=0;
SgnSch=1;

% End of Input Area
epss=0.000000001;

deltax=(xf-x0)/numx;
nx=1:numx;
xp=x0-deltax + nx*deltax;

deltat=(tf-t0) /numt;
nt=1:numt;
tp=tO0-deltat+nt*deltat;

frameshift=framespeed*deltat;
dim=2*halfdim;

lam=1:dim;

for n=1:halfdim,
lam(2#n~-1)=i*epss+xio(n);
lam(2#n) =-i*epss+xio(n);
end

gam=1:dim;

for n=1:halfdim,
gam(2*n-1)=halfgam(n);
gam(2*n) =halfgam(n);
end

p=1l:dim;
for n=1:halfdim,
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p(2%*n~-1)=halfp(n);
p(2*n) =-halfp(n);
end

disp(’plotting loop started’)

AN=eye(dim) ;

AD=eye(dim);

b =1:dim;

for it=1:numt,

t=tp(it);
x0=x0+frameshift;
xf=xf+frameshift;
xp=x0-deltax + nx*deltax;
end

up=1:numx;
upi=1:numx;
for ix = 1:numx,

for n= 1:halfdim,

b(2*n-1)=exp(2+*i*gan(n)+2*epss+*p(2*n-1) ) * (exp(2*i*lam(2*n-1)*xp(ix)+
2¢i*t*(lam(2*n-1))"2));

b(2*n)=exp(2*i*gam(n)+2*epss*p(2*n)) *(exp(2*i*lam(2*n) *xp (ix)+
2xixt*x(lam(2*n))~2));
lamfac=1;
for k=1:halfdim,
if k7=n
lamfac=lamfac*(lam(2%n-1)-lam(2*k-1)) (lam(2*n)~lam(2*k))~(-1);
else qgqqg=1 ;
end
end
b(2*n-1)=b(2*n-1)*lamfac;
b(2#*n)=b(2*n)*conj(lamfac);
end

for n = 1:dim,
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for m = 1:halfdinm,
AD(n,2*m~-1)=lam(n) "~ (m-1);
AD(n,2*m) =(lam(n)~(m-1))*b(n);
end
end
AN=AD;
for n=1:dim,
AN(n,dim)=lam(n) "~ (dim) ;
end

up(ix) = real(det(AN)/det(AD));
upl(ix) = real(i*det(AN)/det(AD));
end

figure(it)

plot(xp,up)
axis([x0,xf,y0,y£])
valueoft=t

print -dps -append pusa.ps

figure(it+numt)
plot(xp,upl)
axis([x0,xf,y0,y£f])
valueoft=t

print -dps -append pusa.ps

disp(’finished’)
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Matlab Program (II)

clear xp up
disp(’started’)

% Input Area

remfake=(pi/3)*2~(1/8)*1.012345678901*exp(1)/2.75;
delxi=.1*remfake;

xi0=3;
halfdim=10;

xiave=xiO+delxi*(halfdim-1)/2;
p0=-70;

gam=1:halfdim;
gam=(0)*ones(1,halfdim);

xi=1:halfdim;

for n = 1:halfdim,
xi(n)=xi0+delxi*(n-1);
end

p=1:halfdim;
for n = 1:halfdim,
p(n)=pO*exp(2*(xi(n)-xiave)~2);

end

t£0=0.0;
t£=0.0;
numt=1;

x0=-40;
x£=50;
y0=-.04;
y£=.03;
numx=600
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framespeed=4%3.25;
SgnSch=1;

% End of Input Area
dim=2%halfdim;

deltax=(xf-x0)/numx;
deltat=(tf-t0) /numt;

nx=1:numx;
nt=1:numt;

AN=eye(dim) ;
AD=eye(dim) ;

b =1:halfdim;
mu =1:halfdim;

up=1:numx;
upi=1:numx;

tp=t0-deltat+nt*deltat;

frameshift=framespeed*deltat;
disp(’plotting loop started’)

for it=1:numt,
t=tp(it);
xp=x0-deltax+nx*deltax;

for ix = 1:numx,

for n= 1:halfdim,
b(n)=exp(i*gam(n) +2*i*xi(n)*xp(ix)+4*i*t*(xi(n))"2);

mu(n)=-2*i*(p(n)-xp(ix)-4*t*xi(n) ); -
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end

for m = 1:halfdim,
for n = 1:halfdim,
AD(m,2*n-1)=xi(m) ~(n-1);
AD(m,2*%n) =(xi(m)"(n-1))+*b(m);

AD(halfdim+m,2*n-1)=(n-1)*xi(m) ~(n-2);
AD (halfdim+m,2%n) =(n~1+mu(m) *xi(m))*. ..

(xi(m) " (n-2))*b(m);
end

AD(halfdim+m,2 ) = mu(m)*b(m);
end
AN=AD;
for m=1:halfdim,
AN(m,dim)=xi(m) " (halfdim);

AN(halfdim+m,dim)=halfdim*xi(m)~(halfdim-1);
end

up(ix) = imag(~2i*det(AN)/det(AD));
end

figure(it)

plot(xp,up)

axis([x0,xf,y0,yf])

valueoft=t

print -dps -append pusa.ps

x0=x0+frameshift;
xf=xf+frameshift;

end

disp(’'finished’)
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