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ABSTRACT

For the most part, this thesis represents an attempt to determine
various properties of some non-continuous functions. In what follows, the

real line (with its usual topology) is denoted R .

All functions in Chapter I are real valued functions of a real
variable. In this chapter we are concerned with (a) the existence of
open functions which are totally disconnecting, (b) the existence of
open and closed functions which are discontinuous and (c) a characterization
of closed sets of first category in.terms of the points of ‘discontinuity
of a function with a closed graph. The main results are as follows:

(a) There exists an open function £ : R+ R such that f is totally
disconnecting,

(b) Every real valued function of a real variable which is both open
and closed is continuous,

(¢) Aset. BcR 1is closed and of first category in R if and only
if there exists a function £ : R+ R such that £ has a closed

graph and the points of discontinuity ¢f f coincide with B .

In Chapter II we first study the relationships between peripherally
continuous, nearly continuous and connected functions. Secondly, we
exhibit some properties of connectivity and almost continuous functionms.
The highlights of this chapter are as follows:
(a) Let X,Y be T2 spaces, with X connected. Let £ : X+ Y be:
a connectivity function such that the set of points U, where £ 1is
continuous, is open and demse-in X and f|X - U 4s continuous.

Then f cannot be redefined on X - U such that f becomes
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continuous on X .

(b) Let F be the family of connectivity funétions from R into R .
Then there exist f1 and f2 € F such that sup (fl,fz) has a
totally disconnected graph.

(c) Let I to denote the closed unit interval, ILet. £ ¢ I + I be
a connectivity function and let er ~be the set -of points where £

is discontinuous. If Df is a closed set . of first category and £

is constant on Df , then £ is almost continuous.

In Chapter III we investigate for what -spaces Y does there

exist a connected (connectivity) function from the unit -interval I

onto Y ? For certain connected spaces (X,T) we will, with the aid

of connectivity functions, construct a topology T* on X such that T*

1s strictly larger then T and (X,T*) and (X,T) have the same connected

sets. The main results of - chapter III are as follows:

(a) A topological space Y with cardiﬁality less than or equal to the
cardinality of the continuum is connected if and only if Y is the.
connected image of the unit interval.

(b) Let X be connected and locally connected, Y second category and
metric, and let £ be a function from X into ¥ . If £ is
sequential and of Baire class I, then £ has a connected graph.

(¢) Let Y be any topological space such that I X ¥ ig completely
normal and the cardinality of the topology on I x Y 1is equal to
the cardinality of the continuum. Then Y i1is a connectivity image of
the unit interval.

(d) Let (X,T) be a first countable and connected Hausdorff space.

Then there exists a topology T* for X such that T* is stricrtly

*
larger then T and (X;T ) and (X;T) have the same connected sets.
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*
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INTRODUCTION - AN HISTORICAL NOTE

From the time one is introduced to beginning calculus one learns
that the concept of a continuous function is fundamental to mathematics.
However from beginning calculus onward one also encounters many important:

function which are not continuous.

This thesis represents an attempt to investigate some of the
properties of variéus non-continuous functions. We concern ourselves
mainly with open, closed, connected, connectivity, peripherally continuous
and almost continuous functions, as well as a new class of functions which
we have chosen to call sequentially continuous. It is however, the inves-
tigation of connectivity functions which occupies most of our efforts.
(Definitions for the properties just mentioned, as well as those introduced
below can be found at the beginning of the chapters into which the main

body of this thesis is divided.)

The study of non-continuous functions is not a new topic in
mathematics. Pethaps the derivative function was the first to receive
concentrated attention. It was known during the last century that the
derivative function has a connected graph. But this was not the only
non-continuous function which interestedlmathematicians during the nine-
teenth century. For example, Cauchy showed in 1821 that a real valued
function £ of a real variable satisfying the condition that
f(x +y) = £(x) + £(y) 1is either continuous or everywhere discontinuous.
It was not until 1905 that Hamel showed the existence of a discontinuous .

function satisfying this equation. 1In 1942 F. B. Jones [10] showed that

the graph of such 2 function may be comnected as a subset of the plane
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but may still be everywhere discontinuous.

Early in.this century Baire .introduced a class of functions
which now takes his name. This family includes the continuous functionms.
The  characterization of the Baire functions has been an.important part
of the study of the Lebesgue.integral. Darboux functions, which are-

8o named because of the work df the famous French mathematician Darboux,
have also played an important role.in the mathematical analysis of this
century. However, we will follow the convention of most modern writers
and henceforth we will use the term connected functions rather than
Darboux functions. Kuratowski and Sierpinski showed that a real valued
Baire class I function of a real variable is a connected function, if

and only if it has a connected graph.

Connectivity functions and some of the other non-continuous
functions with which we will concern ourselves got.a new start in the
late 1950's with the work of Stallings [26] and Bamilton [5]. Im 1957
Nash [21] defined a comnectivity function from a space A into a space
B as a mapping T such that the induced map g of A into A x B
defined by g(p) = (p,T(p)) transforms connected sets of A onto
connected sets of A x B . He asked whether or not every connectivity
function of a closed n-cell into itself has a fixed point. Hamilton [5]
gave an affirmative answer to this question. In order to do this he
introduced a new family of functions which he called peripherally
continuous and showed that every peripherally continuous function from
an n-cell into an m-cell n,m 2 2 , is a connectivity function. He
then showed that every peripherally continuous function from I® into

I° where n.2 2 has a fixed point. So far the existence of an everywhere
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discontinuous connectivity function from I~ onto I n,m 2 2 , has
not been demonstrated. Hamilton has shown that there exists a connected

function from I to I which has no fixed point.

Stallings [26] extended the work of Hamilton and introduced
the concept of an almost continuous function. He also showed that if
X dis an Hausdorff space and if every continuous function f :X - X
has a fixed point, then every almost continuous function g : X -+ X has
a fixed point. At the end of his paper Stallings posed several questions,
many of which have attracted the interest of others. The first one of
these questions has remained unsolved and is given a partial solution
in Chapter II of this thesis. He also asked if a connectivity function
f : I->1I is necessarily almost continuous. Several people, including
Thomas [28], Roberts [23] and Brown [1] have since given an example
to show that a comnectivity function £ from I to I is not necessarily
almost continuous. Conversely it has been shown by Whyburn [30] and
Hagan [6] that every peripherally continuous function defined on a
connected, locally connected, locally peripherally connected and
unichorent metric space into a space T 'such that S x T is completely
normal, is a connectivity funection. Thus, a function £ from i
into Im, n,m 22 , is a connectivity function if and only if £ 1is

peripherally continuous.

Hilderbrand and Sanderson [7] have defined a connectivity
retract and have shown that X is a finite polyhedron or has an
ordered topology then every connectivity retract has a fixed point if
every continuous function has a fixed point. They also showed that if

f is 2 comnectivity function and g is continucus then gf is also



a conmnectivity function. This is not true where g is only required

to be connectivity even if f is continuous.

Cornette [2] showed that every separable and connected metric
space is the connectivity image of the unit interval. One of more
interesting results of this thesis shows that if Y is a topological
space such that I x ¥ is completely normal and its topology has
cardinality equal to the cardinality of the continuum, then Y is a

connectivity image of the unit interval, I .

NOTATION The terminology of this thesis generally follows that of
pee—a————

Kelley [11] . Throughout we will use I to denote the closed unit
interval and [a,b] will denote the closed interval with end points
a and b . We have used (a,b) to denote both an open interval and
a point in the plane; however, it will be made clear from the context

which is being referred to.

If the continuum hypothesis is used in proving a particular
proposition, then this will be indicated both immediately before

stating the proposition and immediately following its use in the proof.

The various important definitions, lemmas, theorems and
examples in the following three chapters are numbered comsecutively
within each section of each chapter. Reference to a numbered item
without mention of the chapter or section is to the item of that number

in the same section in which the reference 1is made.



CHAPTER I

A. OPEN AND TOTALLY DISCONNECTING REAL FUNCTIIONS

It is well known that if X and Y are topological spaces
there may exist functions £ : X + Y such that f is open and dis-
continuous. Let R denote the real line with the usual topology.
Spira [25] considered the following question, can a function
f : R>R be open and not continuous? S. Marcus [19] showed that
there exists a function f£:': R >+ R such that £ is open and every-
where discontinuous. His function satisfied the equation £(x +y)
= £(x) + £(y) for all x,y € R and every connected set in the domain
is taken to a comnected set in the graph. He then asked the following

questions:

1) Does there exist an open function £ : R+ R such that

f i1is not connected?

2) If the answer to 1) is affirmative does there exist an
open function £ : R > R which does not have the connected

property on any interval?

We will give an affirmative answer to both these questions.

First the following definition:

I, DEFINITION Let X and Y be topological spaces. A function

f : X+>Y is totally disconnecting if it takes every comnected set

in X to a disconnected set in Y .



II. LEMMA Let {Gn}:=l be a base for the usual topology on R . Then

there exists two sequences of perfect sets {Ei}:=l , {Ez}°° such that

n n=1
i
(a) En c Gn for i=1,2 and n = 1,2,...
i 02i
(b) E n E =2¢ for 21l n#¥m and 1i,j = 1,2 .
(e) Ei contains no interval for i = 1,2, n = 1,2,...

Proof: We may assume that Gl is an open interval. It follows that

we can select 'Cantor like' perfect sets Ei and Ei such that

i . 1.2 i
(a) E1.C Gl for i=1,2, (b) El n E1 =¢ and (c) E1 contains
no interval for i = 1,2 . There exists an interval 12 c G2 such that
IZ n (Ei u Ei) = & ., Then choose 'Cantor like' perfect sets Eé and

2 i 1 2
E2 such that (a) EZ c I2 for 1 =12, (b) Ez n EZ = ¢ and
(c) E; contains no interval, 1 = 1,2 .

Assume for all k < n we have chosen Ei and Ei which
satisfy the hypothesis of the theorem. Now consider Gn . There exists
an interval In c Gn such that In n (zgi{Ei U Ei}) = ¢ . If no such
interval In exists, then Gn is contained in :Ei{Ei v Ei} . However,
since each Ei y 3 =1,2 ,1sk<n, is a perfect set containing no
interval this would contradict the Baire category theorem. Hence there
exists an interval In c Gn with the required property. Then choose

two perfect sets Ei and Ei such that (a) Ei S In for 1 =1,2,

(b) Ei n Ei = ¢ and (c) Ei contains no interval for i = 1,2 .

1, 2.»
Hence by induction there exists a family of sets {En}n=1 , {En}n=l
which satisfy the conditions of the lemma.



III. THEOREM There exists a function £ : R + R such that f is open
- ——

and totally disconnecting.

Proof: Let {Gn}:=1 be a base for the usual topology on R . Let

(B {E°}” . be th £ perf d in th

En a=1 * ‘Bl De the sequence of perfect sets constructed in the

preceding lemma. Put El = U El and E2 = U E2 . It follows from.
n=1l"n n=l"n

the construction of {E:}:=1 , 1 =1,2 , that E1 n E2 = ¢ ., Now Halp€rin

[4] has constructed a function g : R + R such that g takes on

N
every real value 2 ° times on every perfect subset of R . Let h1

be an homeomorphism of R onto (0,1) . Let h2 be an homeomorphism

of R onto (2,3) . Define a function f as follows:

f(x) = hl(g(x)) for x € El
f(x) = hz(g(x)) for x € E2
£x) =h (@(®)  for x e (' v EDC.

Then £ is well defined. We will now show that £ is totally dis~
connecting. Let G be an open set in R . Then there exists some Gn
in the base {Gn}:=l such that G, <G . Hence by II there exists

Ei < El and Ei c E2 such that Ei and Ei € G . Then since g maps
every perfect subset of R onto R, f(Ei) = (0,1) and f(Ei) = (2,3) .
Hence £(G) = (0,1) v (2,3) . So £ 4is open. Since every connected

subset C of R contains an open set G , it follows that

£(C) = (0,1) v (2,3) and £ is totally discomnmecting.

From the preceding theorem it follows that we have an affirmative
answer to the second question of the introduction to this section. It

therefore follows that the first question is also answered in the



affirmative.

COROLLARY Let A and B be any two disjoint, non-degenerate, open
subsets of R . Then there exists an open and totally disconnecting
function f : R+ R such that if V is any superset of an open set.

then £(V) = AuB.
Proof: This follows from the construction used in the proof of III.

In the next theorem we will .make use of the following result

due to C. Kuratowski and W. Sierpinski [15].

N
IV. THEOREM Every real perfect set contains 2 ° disjoint perfect
sets.
We now show that there exists a "large" family of open and
totally disconnecting functions from R into R . The next theorem

makes use of the continuum hypothesis.

N
V. THEOREM There exists 2 °© distinct functioms from R into R
- —

such that each is open and totally disconnecting.

Proof: Let {Gn}:=l be a base for the usual topology on. R and for

each n select El and E2 such that El u E2 c G_ as outlined in
n n n n n

the proof of II . Let Qo be the first ordinal number with

uncountably many predecessors. For some fixed integer n , let

{E:}a < g be acollection of perfect sets such that for o # B8 ,
= Yo
i i i i
¢,B<® ,E NnE,=¢ and E <cE  for a8 and i=1,2. For
o a ] a n 0
1, 1 1 2, = 2 2
each o put Aa = (jglEj) v Ea and Aa = (jglEj) u Ea . It is clear

j¥n j#n



that Ai n Al =9 for all a g Qo and for every open set Gn of the

)
base there exists perfect sets Ai and Aﬁ such that Ai < A:A i=1,2

Ai u Ai c Gn . Let g be the function defined by Halperin [4] such

N
that g : R+ R and g takes on every real value 2 ® times on every

perfect subset of R . Let ~hl be a homeomorphism of R onto (0,1)

and h2 a homeomorphism of R onto (2,3) . Define a function fu as

follows for each fixed <« S Q

(o]
£ =h (g)  x £ A
£(x) =hy(g(x))  x¢ s

Then fa is well defined and it follows as in the proof of theorem III
that each fa,a s Qo’ is open and totally disconnecting. It is clear
from the construction of each fa . that if o % B8 , then since

Ai ¥ Aé , 1 =1,2, fa # fB , 0yB £ Qo . Then by assuming the continuum
hypothesis, that is, that the cardinality of the set of ordinals less then

N
or equal to the first uncountable ordinal is 2 °, we achieve the required

result.

It is immediate from the foregoing results that an open function
may not take connected sets to connected sets. Even if we require the function
to satisfy stronger conditions it may still not be continuous. For example
Marcus [18] showed that there exists a function f from R onto R
such that f(x +y) = £(x) + £{(y) for 2all x and y in R and f 1is
everywhere discontinuous. Actually such a function may have a connected

graph and still not be continuous.

Question: Does there exist a function £ : R - R such that £ is open,
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satisfies the equation f(x +y) = £(x) + £(y) for all x,y € R and is

totally disconnecting?

To conclude this section we present one more result concerning

open and everywhere discontinuous functions.

VI. THEOREM There exists a function f : R > Rp, where n,m 2 1

such that f is onto, open and everywhere discontinuous.

Proof: Let fl : R" - R1 denote the projection mapping. Then f1
is open and onto. Let g : Rl > Rl be a function such that g is open
and takes every real value on every perfect set. Let h : Rl + R" be
such that h is one to one and onto, such a mapping exists since the
cardinality of Rl and R® are identical. Put f = hogofl . Then

f is an open transformation from R® onto R© and f takes om every
value 2N° on every open subset of RY . So f has the required

properties.

B. OPEN AND CLOSED REAL VALUED FUNCTIONS OF A REAL VARTABLE

As was pointed out in the last section, there exists a function
f : R >R such that £ takes on every real value 2No times on every
perfect set. Halperin [4] and Marcus [18] also showed that there exists
a function £ from R onto R where £(x + y) = £(x) + £(y) for all
X,y € R such that £ takes on every real value 2N° times on every
perfect set. It therefore follows that there exists an open function
f : R+ R such that f assumes every real value on every open interval.

It is interesting to note from the foregoing that there exists a function

f :R+>R such that f(x+y) = £(x) + £(y) for all x,ye R, £ 1is
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open, f takes closed intervals to a closed set and { maps all perfect

sets to closed sets.

(a) Does there exist a function £ : R~ R such that £ is

closed and maps every perfect set onto R ?

In section A we showed the existence of open real functions

which are totally disconnecting.

(b) Does there exist an open and closed real valued function of
a real variable which is both open and closed and totally

disconnecting?

We will give a negative answer to both these questions.

I. IEMMA Let xe¢ R and f : R~> R . If there exists an interval 1

containing x as an interior point such that every non-degenerate
closed subinterval of I containing x maps onto R, then £ is not

closed.

Proof: Suppose f : R+ R 1is a closed function and for some x ¢ R
and some interval I containing x as an interior point, every closed
subinterval Ix of I containing x 1s mapped onto R . Then for
every positive integer n let Sl/n(x) denote the non-degenerate
closed interval with center x and radius %? such that Sl/n(x) sI.
Let y € R such that £(x) # y . Since for each n, f(Sl/n(x)) =R,
we may select v, € f(Slln(x)) such that Yy ¥y for n=1,2,... and
|y - ynl < %-. Then choose an arbitrary element xi € f-l(yn) n

1 1,
Sl/n(x) and it follows that X X . Hence {xn}n=l u {x} 4is a closed
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set in R . But f({xi}:=l u {x}) 1is not closed in R since y is a
limit point of this set but not a point of the set which contradicts the

assumption that f is a closed function.

COROLLARY There does not exist a function £ : R > R such that f maps

every perfect set onto R and £ maps closed sets to closed set.

Proof Follows from the preceding lemma.

Hence we have a negative answer to question (a) stated in
the introduction to this section. The purpose of the next two lemmas
and the subsequent theorem is to give a negative answer to question (b)
stated in the introduction to this section. The next lemma shows that
a function £ : R+ R which is both open and closed cannot map every

closed interval to a non-compact interval.

II. LEMMA Let xe¢ R and £ :R>R . If £ is both open and closed
p—
then there exists some closed neighbourhood F of x such that if B

is a compact subset of F containing x , then £(B) is compact.

Proof: Suppose there exists some x € R such that for every neighbourhood
N of x , there exists a closed neighbourhood U of x , where Uc N,
and £(U) dis not compact. Hence, since £ 1is a closed function, £(U)

is an unbounded closed set. We may therefore assume that every closed
neighbourhood of x is mapped onto an unbounded set. For n = 1,2,...,
let Sn be an open interval of radius %- and center at x . We will
first show that f(§£) properly contains a ray of the form [E(x), + =)

or (-, £(x)] for n=1,2,.0. »

If f(Sn) is connected, by assumption f(gg) is unbounded

and hence contains a ray of the type required. So suppose for some n ,
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f(Sn) is not connected. Then f(Sn) can be written as the union of

two disjoint open intervals. This follows since £ is both an open and
closed function and f(g;) = f(Sn) u f(an) u f(bn) , where a , b~ are
the end points of the open interval Sn . Without loss of genmerality,

we may assume f(Sn) = (al,az) 1] (bz, + «) ., If there exists some

integer N such that N < 2y » then since f(§£) is closed, 3, = b2

and f(gg) contains [f(x), + ) . If a; ==, then

ffg;) = (- =, a2) u (b2, + ) and again we have f(§;) containing

(- =, £(x)] or [f(xX), + =) . We may therefore assume f(§;) > [f(x), + «)

for n=1,2,... .

Let vy ¢ [f(x), + ») such that y # £(x) . For each positive
integer n choose y_ e [E(x), + ) such that. Yy # £(x) and
lyn -vy| < %-. Select x € Sn such that f(xn) =3, for n=1,2,... .
Then x ~ x and {xnln =1,2,...} u {x} is a closed set.in R .
However A = f({xnln =1,2,...}u{x}) has a limit point y , which is not
contained in A . So A is not closed, contradicting the fact that f£
is a closed function. Hence there must exist some closed neighbourhood

F of x such that every compact subset of F containing x is mapped

onto a compact set.

Before stating the next lemma we need a theorem of Klee and
Utz [13] which gives us a situation when a function which preserves

connected sets and compact sets is'a continuous function.

III. THEOREM (Klee and Utz [13] theorem B). Let £ : X > Y where
——=rrTmEs
X is locally connected and X and Y are metric spaces. If f takes connected sets

to connected sets and compact sets to compact sets, then £ is continuous.
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We now use this theorem to show that open and closed functions

from R to R must have points of continuity.

IV. LEMMA Let f : R~> R be an open and closed mapping. If there

exists an open and bounded interval V such that £(V) is bounded, then

f 1is continuous at x for all x eV .

Procf: Let I be an arbitrary interval contained in V. We will

show that £(I) is connected. Suppose, on the contrary, that

£(I) = Al.U A2 where A1 = £(I) n Vl and A2 = £(I) n V2 , V1 and

V2 are disjoint open sets in R . Then £(int I) g A1 0] A2 and is an
open set in R . £(I) = £(int I) v £(a) U £(b) , where a and b are
endpoints of I , is closed in R . But since f£(I) is bounded, it
follows that £(I) must be an interval. Therefore f£ restricted to

V is a connected function. Also, since £ takgs closed sets to closed
sets, f restricted to V takes compact sets to compact sets. Therefore
by the theorem of Klee and Utz stated above, the restriction of £ to
V 1is a continuous function. ‘'Since f' is open in R , this implies f

is continuous at x for every x e V .

V. THEOREM Let f : R+ R be an open and closed function, then £ is
e — —1

continuous.

Proof: Let x € R . By II there exists a closed and hence an open
neighbourhood V of x such that £ is bounded on V . Hence by III

f 1is continuous at x . Since x was arbitrary, the result follows.

It is clear that V gives a negative answer to question (b)

which was stated at the beginning of this section.
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c. DISCONTINUOUS FUNCTIONS WITH A CLOSED GRAPH

Let £ be a mapping of a Hausdorff topological space X onto
another Hausdorff space Y . The subset {(x,£(x))|x ¢ X} of the product
space X x Y is called. the graph of £ . If g 4is continuous, it is
well known that the graph of £ is a closed subset of X x Y . It is
also well known that the converse statement is not true even when X =Y
= R . The following theorem which will be used in VII is also known

(see Kolodner [12]) .

I. THEOREM Let X and Y be Hausdorff spaces and let £ be a mapping

from X into Y . If the graph of f is compact as a subset of X x Y ,

then f 4is continuous.

The main purpose of this section is to find a characterization
of the points of discontinuity, Df , of a2 resgl valued function of a
real variable which has a closed graph. We consider the following

questicns:

(a) Can a function £ : R > R have a point of discontinuity

of the second kind?

(b) Given a functiomn £ : R -+ R which has a closed graph,

what can we say about Df ?

Before answering these questions we need a few definitions and some

notation.

II. DEFINITION Let x € R and consider the family of open intervals

(x,x + %) n=1,2,... . Let hn denote the least upper bound of £ on
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(x;x +~%O .~ Then the upper limit of f at x from the right is igf hn

and is -denoted by f(x+).

Similarly we define the lower limit . of f at x  from the right
and denote it by £(x+) . The upper and lower limits of £ at x from

the left will be denoted by £(x~) and £(x-) respectively.

III, DEFINITION f has a discontinuity at x of the first kind if

f(x-) = £(x-) , £(x+) = £(x+) and at least one of these numbers fails

to be equal to £f(x) .

IV. DEFINITION If £ is discontinuous at x and x is not a dis-

continuity of the first kind, then x is a point of discontinuity of.

the second kind.

It is easy to conmstruct a function £ : R + R such that £
has a closed graph and has a point of discontinuity of the first kind.
For example consider £(x) = %-, x#0 and £(0) =0 . Then £ has
a point of discontinuity of the first kind at 0O and the graph of £
is closed in the plane. We now give an example of a function which has:

a closed graph and a point of discontinuity of the second kind.

EXAMPLE 1. Put £(x) =0 for all x ¢ (0,1)

and £(x)

1
0 if x=;’n=l,2,oo-

Define £ on the remaining intervals (1/n + 1, 1/n) , for n = 1,2,...,

as follows; for n =1,
_ _1/4
f(x) = o177 if x e (1/2, 3/4) ,
1/4

f(x)

T - = if x e [3/4, 1) .
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In general, for n = 2,3,... let m be the mid point of the interval

[1/n + 1, 1/n) » and define

n(mh " n i l) 1
f(x) = x_l if xe(n—+i,mn],
n+1l
é& B mh . 1
f(x) = T:— if x ¢ [mn, -5) .
n

It is readily verified that £ is well-defined for all x ¢ R and £
is discontinuous at each point of D, , where D = {0} u {%4n =1,2,...} .
f has a closed graph, for let (x,y) € R x R be a limit point of the

graph of £ , which is denoted by YE . If (x,y) ¢ V£ , then x # %-,

L and y # 0 it follows from the definition

n=1,2,... . For if x
n

of f that there exists a neighbourhood N of ﬁ%,y) such that
NnvE=2¢%. Suppose x =0 , then y must also be G and if
(xn,f(xn)) -+ (x,y) , then X <0 for all n 2 No . Since £ is

continuous at x from the right v = £(x) and (x,y) € VE . If

-

x € {0} u {%4n 1,2,...} , then there exists an open set containing x
such that f is continuous at x and clearly (x,y) is a limit

point of YE if and only (x,y) € YE . Hence the graph of £ 1is

closed. f has a discontinuity of the second kind at x = 0 , for

. _1 .

if x ==, l:rle f(xn)

m -0 and lim f(m )
n 0 n

while f(x+) =+« ,

0 while if x =m =n=1,2,..., then
n n

+ o , it is easily seen that f(x+) =0

If £ : R+ R is discontinuous at x , then not all the five

quantities f(x) , £(x+) , £(x+) , £(x~) and £(x-) are equal. The

oscillation function w : R > R u {+ =} is defined at each x ¢ R to



- 18 -

be the maximum of the difference between these quantities at x .

Hobson [8] gives the following result: "If £(x) is defined
on an interval, the oscillation function w(x) 1is such that the set

of points for which w(x) 2 a , & a real number, forms a closed

set".

V. LEMMA Let f : R+ R be any function with a closed graph, then

the set of points where f 1is discontinuous forms a closed set.

Proof: Let x € R be a point of discontinuity of £ . Without loss
of generality we may assume T(x+) # f(x) . Assume - @ < p < + ® and
F(x+) =p . Then (x,p) is a limit point of the graph of £ , but

by assumption £(x) # p , so (x,p) ¢ /£ , contradicting that the
graph of £ dis closed. Hence f(x+) =+ » , Therefore if N is any
arbitrary positive integer w(x) > N . Hence by the result quoted

above the points of discontinuity of £ form a closed set.

It is a consequence of V that if Df "is dense in any

subinterval of R, them f is discontinuous on some closed sub-

interval. : -

VIi. LEMMA 1If f‘: R -+ R hae a closed graph and is bounded below,

then £ 1is lower semicontinuous.

Proof: Let - <M g £(x) for all x € R . Suppose there exists
x, € R such that £ 41is not lower semicontinuous at X, Then given
(- -]
€ > 0 there exists a sequence {x_} such that x_ -+ x_  and
: n ' n=1 n °

f(xn) < f(xo} -¢ for n=1,2,... Since {(xn,f(xn)|n =1,2,0..}
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is a bounded set in the plane, some subsequence {(x_ ,f(x ))};

i

converges, say to (xo,p) . But by the way the {xn}:=1 were choosen
f(xo) # p . This contradicts the fact that the graph of £ is closed.

Hence f 1is lower semicontinuous.

If £ is a lower semicontinuous function which is bounded
below, then it is easily seen that f may not have a closed graph.
In fact, if f is a bounded function which has a closed graph, it
follows that f is continuous. We will now give an example to show
that "bounded below" cannot be omiéted in lemma VI. In this example-

f will also have the property that D_ = K , where K is a Cantor

£
subset of [0,1] and every x € K is a point of discontinuity of

f of the second kind.

Example II. Let K be the Cantor set in [0,1] formed by removing

the "middle one-third open intervals". Let I be the family of

2n-1
k=1

where _n =1,2,3,... . Define £ : R+ R such that £(x) = 0 if

open intervals removed during the nth step. Then I = {(az,bz)}

X € {[0,1]c UK}. If n is even, define £ on In as follows:

( n _ n
£(x) = i e if x ¢ (ai,m;:]
. x - a;:
(b, - m)
) = o :k i x e [m,b)
k

where mi is the midpoint of (ai,bz) for k = 1,2,...2!1—l .

If n 1is odd define £ on In as follows:
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(b, - m)
Kk~ "k . n.n
f(x) = -n————bk — if x € [mk’bk)

where m. is the mid point of (a2,b0) for k= 1,2,...2%°% .

It is immediate that £ is well defined, continuous on

K and discontinuous at each point of K . It is also seen from the

definition of f that if x € K then £(xt) = f(x~) = -« and

A IO 81 15 X A N LEN el

f(x-) = f(x+) = + » , so at each point of K, f has a discontinuity
of the second kind. Let x X be such that f(xn) +p , p finite.
Then by the comstruction p = £(x) and so the graph of f 4is closed.

Also if x e K, f is neither upper nor lower semicontinuous at x ,

since f(x+) =+« and f(x-) =-=.

The above example shows that a function with a closed graph
can have a discontinuity of the second kind at each point of a perfect
subset of R which is of first category in R . We will now state
the main results of this section which characterize a closed set of
first category in R(that is, a closed nowhere demse subset of R)
in terms of the points of discontinuity of a function with a closed
graph. The example given in II will be shown to exemplify the "best
type" of result possible. To be more precise, every real valued
function of a real variable which has a closed graph is continuous

except at the points of a closed nowhere dense subset of R .

VII. THEOREM If £ : R+ R is a function with a closed graph, then
the set.‘Df of points of discontinuity of £ 1is a closed and nowhere

dense. set.

Proof: We have aiready seea in V that D_. is a clesed subset cf
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R . Suppose Df is dense in some interval I . Then, since D_. is

i
closed, Df > I . Now the set Bn ={x e I|-n g £(x) £ n} is closed
in I , for each positive integer n , since £ has a closed graph
and I = nngn . Hence some Bn contains a subinterval J of I,
since I is of second category. But then f is a bounded function
with a closed graph on J and hence by I, £ is continuous on J

which is impossible since J c I < Df .

VIII. THEOREM Let B be a subset of R which is closed and
p—————— —— 4

nowhere dense in R . Then there exists a function £ : R > R such

that

(2) £ 1is continuous on the complement of B ,
(b) £ is discontinuous at each point of B ,

(¢c) £ has a closed graph.

Proof: Since B is closed and nowhere demse in R , B¢ is open
and dense in R . Let B = U.G_ where each G_ is an open

n=l"n n

interval and if n #m Gn n Gm =¢ . Let Gn = (an,bn) ; for n=1,2,...,
and let m be the midpoint of (an’bn) for each n . Now define a
function £ : R - R such that f(mh) =n, for n=1,2,..., and £

is continuous, monotonically increasing on [mh’bn) and is asymptotic

to the line x = bn . Similarly, £ is defined on (an,mh] such that
f(mh) =n, f is continuous, monotonically decreasing and asymptotic

to the line x =a . If xe B, then put. £(x) =0 . It £follows that

f 1is well defined, £f 1is continuous on B¢ and diséontinuous on

B, for if x € B there exists a sequence {xn}:= in B® such that

1

x > x but f(xn) # £(x) . It is also clear that the graph of £ is
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closed.

We have thus answered both questions (a2) and (b) raised in

the introduction to this section.

COROLLARY A set B is closed and nowhere dense in R if and only
e ———— — —
if there exists a function f : R >R such that f has a closed

graph and D_ =3B .

£

Proof: This is an immediate consequence of VIII and the corollary

to VII.

IX. THEOREM Let f : R~> R have a closed graph. If £ is discon-
tinuous at some x € R, then there exists an interval IX with

endpoint x such that f(Ix) is not connected.

Proof: Suppose f is discontinuous at x £from the right. Then
without loss of generality we may assume that f(x+) =+ . Suppose
for every interval of the form [x,-:';] n=1,2,..., that f([x,{-‘l-]) is
connected. Then f([x;%]) 2 [f(x),») for each n . Let peR

such that f£(x) < p and let N be any neighbourhood of (x,p) in

R x R . Then for every n there exists an element xi € [x,%l such
that (xi,f(xi)) € N . Hence we may choose a sequence xi + x such
that (xi,f(xi)).+ (x,p) . This contradicts the fact that the graph
of f 4is closed. Hence for some n , f([x,%i) is not connected,

put I = [x,%ﬂ for this particular =n .

COROLLARY If £ is a derivative function and £ has a closed

graph, thenv f 1is continuous.
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Proof: This follows immediately from the preceding theorem and the
fact that every derivative function takes connected sets in the domain

to connected sets in the graph.

If A is a closed subset of the plane such that the pro-
jection my of A is an interval 1 and if to each x € I there
is associated a unique vy ¢ ﬂz(A) it follows from VII that every
function f : I >+ R whose graph is contained in A , must be con-
tinuous on some subinterval of I . We now ask the following question:
if for each x ¢ I we do not have a unique ¥y € wz(A) , then must
there exist some function £ : I - R such that the graph of f is
contained in A and £ is continuous on some subintérval of I ?

The following example gives a negative answer to this question.

Example III. This example is a modification of an example given on
page 84 [24] . Let I = [0,1] and let {rn}:_l be the sequence of

@
rationals in I . Let z Cn be an absolutely convergent series of
n=1
positive numbers. Define a function g : I - R as follows:

g(x) = 2 C where 0 <xg 1.
n
r =X

The sum is to be understood as taken over all Cn such that r £x.
Put g(0) = 0 . Then f is monotonically increasing and has a point
of discontinuity from the left at every rational point, in fact if

x is'rational g(x-) < gx) and if x = T then g(x) - g(x-) =
Cn,n=l,2,... g is continuous at x 1if x is irrational. Let A
be the clpsure of the graph of g in I xR . Then if x ¢ nl(A)

and x is rational there exists Y1 and y, € R such that (x,yl) .
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(xlyz) € A, while if x is irrational there exists only one y such

that (x,y) € A . Every function £ . which is defined on I and whose

graph is contained in A will be discontinuous at every ratiomal

point. Hence there does not exist 2 subinterval Il c I such that

. . 1
£ is continuous on I .
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CHAPTER 11
A. NEARLY CONTINUOUS, PERIPHERALLY
CONTINUOUS AND CONNECTED FUNCTIONS

We will first present definitions of the various functions
which are studied in this chapter. Let X,Y be topological spaces

and f a function from X into Y .

I. DEFINITION £ is nearly continuous [9] at x ¢ X 1if for each

open set V in Y containing £(x) , f-l(V) is a neighbourhood of

x in X .

Some authors [9], [16] refer to this property as almost
continuous but we use the term nearly continuous in order to avoid

confusion with almost continuous functions as given in definition V .

II. DEFINITION £ is peripherally continuous [4], [5] at x ¢ X if

for every neighbourhood U of x and every neighbourhood V of £(x) ,
there exists a neighbourhood G of x contained in U such that the

boundary, B(G) , of G in mapped into V by £ .

III. DEFINITION £ is connected if for every conanected set C < X,

£(C) 4is connected in Y .

IV. DEFINITION f is connectivity [21] if for every connected set

CcXx, {(x,£(x)|x € C} 1is connected in the graph of £ .

V. DEFINITION f is almost continuocus [26] if for every open set V

in X x Y which contains the graph of £ there exists a continuous
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function g : X > Y such that the graph of g is contained in V .

For the remainder of this section we will point out some of
the relationships between nearly continuous, peripherally continuous
and connected functions. Most of these properties will be fairly
elementary but they appear to be new. It was shown by Lin [16] that
if f : X+ Y is a mapping from a Baire space X to a second count-

able topological space Y , them £ is nearly continuous on a dense

subset .0of X .

VI. LEMMA If f : I+ Y is nearly continuous at a point x € I,

then f is peripherally continuous at X .

Proof: Let x €¢I and U and V be neighbourhoods of x and f(x)
respectively. Since f-l(V) is 2 neighbourhood of x , there exists

n € N such that Sl(x) cU and Sl(x) c f-l(V) , where Sl(x) is an

n n n
open interval with center x and radius %-. If x 1is not a right

end point of I , then there exists x, € Sl(x) such that X > x

n
and f(xl) € V.. For if such an x does not exist, then £(y) € v©

for all y e (x,x + %) and so vy ¢ f-l(V) which contradicts the fact

that Sl(x) c f-l(V) . Similarly there exists X, < x such that

n

X, € Sl(x) and f(xz) € V. Hence f 1is peripherally continuous
n

at x .

COROLLARY If f : I - Y , where Y is a second countable topological

space, then f is peripherally continuous on a dense subset of I .
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Proof: This follows from the preceding Lemma and the result by Lin

which is stated above.

Whyburn [30] and Hagan [6] showed that every peripherally
continuous function £ : - ™ , n,m = 2 1is a connectivity function.
The following simple example shows that a nearly continuous function

£ I2 +~ 1I° may be neither peripherally continuous nor connected.

Put £(x)

(0,0) if x = (xl,xz) and % and x, are rational

£(x) (1,1) otherwise.

It is also easy to see that a peripherally continuous
function from I to I may not be nearly continuous. (Put f(x) =

sin i-, x#0 and f£(0) = 0).
However the following result does hold:

VII. THEOREM Let X be any locally connected topological space
and £ : X+ 7Y such that £ is peripherally continuous. If the
image of every closed set.in X , with non empty interior, is dense

in Y , then £ is nearly continuous.

Proof: Suppose there exists x ¢ X and a neighbourhood V of £(x)
such that for every neighbourhood U of x there exists an X, € 1

and a neighbourhood Ux such that Ux n f-l(V) = ¢ . We may assume

1 1
Ux is open and connected. Then f@ix ) nV# ¢ . Hence the boundary
1 1
of U , B(U_) # ¢ and we may choose Yy € B(U ) such that £(y) e V.
X *1 *1

Since f 1is peripherally continuous every neighbourhood H of vy
contains an open neighbourhood Hl such that the boundary of Hl is

liv # & for ail Hl and since U
Xy CXq

mapped into V . But H

-
(2]
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connected B(Hl) n UX # ¢ , i.e there exists some yl € Ux such that
1 1
f(yl)e V . A contradiction, hence £ is nearly continuous.

VIII. THEOREM If f : I -~ Y is connected, where Y is Tl , then

f is peripherally continuous.

Proof: Assume false. Then for some x € I , there exists a neigh-
bourhood U and V of x and £(x) respectively such that the
boundary of every open set containing x and contained in U is not
mapped into V . We may assume without loss of generality that for every
vyeU and y # x , the interval. (x,y) is mapped into v® . Then
consider the image of [x,y] . Since £(x) is closed and fx) eV,
while f£((x,y]) € v¢ , £([x,y]) is discomnected. A contradictionm.

Hence f is peripherally continuous.

If Y is not T1 the above theorem may be false. The
converse to the above theorem is also not true even when Y =I . To
see this define f : I » I as follows: f(x) = ¢ for x rational
and f(x) =1 otherwise. Then £ 1is peripherally continuous but
not connected. Also there existsa space X and an pomeomorphigm £
from X onto X such that £ is not peripherally continuous. For
example let X be any set with more than one element. Let X, € X
be fixed. Define a topology T on X such that U € T if and only
if U 4is a superset of X, - Define f : X+ X to be the identity

mapping. For each U e T if x € U* , x 1is a boundary point of U .

Hence f is not peripherally continuous.

It is easy to see that if X is any non regular topological

space, then the identity function from X onto X is not peripherally
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continuous. However if X 1is regular every continuous function from X

into Y is peripherally continuous.

A one to one peripherally continuous function from I into

I may not be connected. However:

IX, THEOREM If £ : I > 1 is a one to one peripherally continuous
—

function and if f-1 is connected, then £ 1is a homeomorphism.

Proof: That f-l is continuous follows from theorem 3.2 [22], and

f is continuous by theorem 10 [17] .

B. CONNECTIVITY FUNCTIONS

In this section we éegin the presentation of our results
which indicate some of the properties of connectivity functions. First,
it is clear that since the projection is a continuous function, every
connectivity function is connected. The converse is not true even
when X =Y =R {22] . Solomon Marcus has shown that there exists
a function f : R+ R such that £ assumes every real value 2N°
times on every perfect set but f is not connectivity. Clearly f 1is

connected. Our next theorem shows how discomnnected the graph of a

connected function can be.

I. THEOREM Let £ : R+ R be any connected function. If there
exists a continuous functiom g : R+ R such that £(x) # g(x) for
all x and if for every interval I < R there exists Xy s Y1 € I

such that f(xI) < g(xI) and f(yI) > g(yI) , then the graph of £

is totally disconnected.
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Proof: Let A be any subset of the graph of f , and let Ty be
the projection to the domain. If nl(A) is not an interval, then A
is not connected in the product space. If vl(A) is an interval,
the since the graph of g 1is closed, the graph of f restricted to
A is not connected. Hence the graph of £ is totally disconnected

in RXR.

We now use the last theorem to give an example which estab-
1ishes the existence of a large family of connected functions from R
to R such that each member of this family is connected, but has a

totally disconnected graph.

Example: Let h : R+ R be any function which assumes every real
N

value 2 ° times on every perfect set [4]. Then let g : R->R be
any continuous function. Define f as follows:

(o if g(x) = h(x) # 0

f(x) =<1 if g(x) =h(x) =0

\R(x) otherwise .

Then 'f assumes every real value on every perfect set. It follows

from the preceding theorem that the graph of £ 1is totally disconnected.

COROLLARY (Marcus [18] Theorem IV) There exists a real valued function
" N

defined on R which takes on every real value 2 ° times on each

perfect set and such that its graph 1s totally disconnected.
Proof: Follows from the preceding example.

Before stating a characterization of a function with a

totally disconnected graph, we need the following notation and a
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Theorem by Hildebrand and Sanderson {71 .

Let (X,T) and (Y,0) be topological spaces and £ a
mapping from (X,T) into (Y¥,0) . Put g(x) = (x,£(x)) for all

x € X . Then g will be referred to as the graph function of £ .

Put of = {U c xlu = £ , Ve ol

Tvcl 3 that is, '1‘l is the smallest topology con-

Put Tl

taining both T and cl .

Let T x o denote the product topology on X x ¥ . By

a T-separation of a set A c X we shall mean that A = Al U A2 where

Al and A2 are open in A and Al n A2 = ¢ .

II. LEMMA (Hildebrand and Sanderson lemma 2.3 [7]) Given any

function f : (X,T) - (Y,0) , if K=A U B 1is a Tl-separation of
a set KcX, then g(X) = g(A)'U g(B) 1is a T x o-separation of

g(®) (g is the graph functiom of £) .

III. THEOREM Let £ : (X,T) - (Y¥,0) . The graph of f is totally
-

disconnected if and only if Tl is totally disconnected.

Proof: Suppose the graph of £ is totally disconnected. If there
exists a non singleton connected subset C in X , then since é is
continuous in Tl , the graph of £ restricted to C 1is connected
in (T1 x g) T x ¢ which implies that the graph of £ restricted
to C 4is connected in T x o . A contradiction. Hence the space

(X,Tl) is totally disconnected.

Conversely, let A be 2 subset cf the graph of £ If A



RIS B R AN EE BN EIRE e 8 728 I D FYOs KacK

- 32 -

is-connected in the T x ¢ topology, then nl(A) is a connected subset
of X in the Tl topology by lemma II. This implies that- A is a

singleton set.

The preceding theorem is analogous to theorem 2.4 of Hilde-~
brand and Sanderson which says that."a function £ : (X,T) -~ (Y,0) is
a connectivity function if and only if the.connected sets of T and

Tl are the.same'.

1V. THEOREM Let (X,T) be any connected Hausdorff space and £-: X + Y

where (Y,0) is also Hausdorff. Let g : X > Y be continuous. If ’

{x € X|£(x) = g(x)} 1is an open and proper subset of X , then f is

not a. connectivity function.

Proof: Let A= {x e X|E(x) # gx)} . Let xe A . To find a.

neighbourhood Ux of x in Tl

= ve (o) such that U_c A . Since
£(x) # g(x) , there exists Vf(x)’vg(x) such that vf(x) n Vg(x) = .
Choose a neighbourhood G of x in T such that g(G) < Vg(x) .
-1
Then put Vx £ (Vf(x)) NG . Let yeU , to show £(y) # g(¥) ,
this follows since f(y) € vf(x) and g(y) € Vg(x) . Hence Ux is
the required neighbourhood. Since A is open in Tl and AS =
{x|f(x) = g(x)} 1is open in T it is also open in Tl‘, hence X is
not connected with the Tl topology. Therefore £ is not a comnectivity

function by theorem 2.4 of Hildebrand and Sanderson.

When can a function f defined on a topological space X ,
such that £|A 41s continuous, where A 1s a demse subset of X , be
extended to a continuous function fl on X such that fl is con-

tinuous on X and fllA = f|A ? This is an important and much written
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about problem of general topology. Our next result gives a situation

when £ cannot be extended.

V. THEOREM Let X and Y be Hausdorff spaces and let X be con-

nected. Let f be a connectivity function such that the points U,
where f is continuous is a dense open subset of X and let

£]|X - U be continuous. Then £ cannot be redefined on X - U such

that f Dbecomes continuous on X .

Proof: Suppose there exists an extension of £ to fl such that

fllU = flU and fl is continuous on X . Then for every x e X - U
fl(x) # £(x) , for since U 4is demse in X and f is not continuous
at x there exists a net X, € U such that X, > X and f(xa) FrEE) .
Since fl(xa) = f(xa) for all o , and fl(xa) - fl(x) .

fl(x) # £(x) for all x € U . Now applying IV and we have a contradic-

tion to f being a connectivity function on X .

COROLLARY Let U,X,Y and f be as in the preceding theorem. In
addition let U be connected,then if U c A c X , £ cannot be redefined

on A -U such that f becomes continuous on A .

In the next chapter we shall show that there exists a large
family of function with domain the unit interval such that each member

of this family satisfies the conditions of theorem V .
Question: Can the condition that fIX - U 1is continuous be weakened?

VI. THEOREM Suppose £ and g are two lower semi-continuous func-

tions from (X,T) to (R,0) , where o is the usual topology on R ,
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X is connected and f£(x) # g(x) for all x e R . If TVf_l(c) =

Tvg-l(c) , then neither £ nor g is a connectivity function.

Proof: Put A

{x|f(x) > g(x)}

B = {x|f(x) < gx)} .

Then A nB=29¢ . It is not difficult to show that A U B

is a separation of X in the TVf-l(c) topology.

C. LATTICES OF CONNECTIVITY FUNCTIONS

If G is the family of continuous functions from a topological
space X to the real lime R , then G is a lattice under the operations
of supremum and infimum. If F dis the family of connectivity functions
from X to R, is F a lattice under the same operations? We will
show that even in the case where X = R , the answer to the above ques-
tion is no. However we shall show that there exist an interesting
family K of connectivity functions from R to R such that
G g K < F and K 1is a lattice. Using these results we will show
that if {Ta}aeA is a family of topologies on R such that for each
¢ €A, Ta 2T ,; where T is the usual topolegy on R , and Ta has
the same connected sets as T , then TavTB may be a totally disconnected
topology on R . However we shall show that theré does exist a family

{TB}BGB of topologies on R such that for each B , T, 2T , each T

B

has the same connected sets as T and {TB}BEB is a lattice.

B

Before preceding with these results we need a theorem and one

definition introduced by Brown [1].
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I.: DEFINITION (Brown [1]). Let f and g be the graphs of two functions.

from R into R . Then g cuts f if g has X-projection an interval

and there are two points P and Q of £ , P higher than Q, such

that:

(a) the abscissa of P and Q are in the X-projection of g,
(b) every point of cl(g) is lower then P and higher than Q,

(c) £ and cl(g) do not intersect.

Brown [1] then proves the following theorem which gives a

sufficient condition for a real valued function of a real variable to

be connectivity.

TI. THEOREM If f is a function from R into R and no lower semi-

continuous function cuts the graph of £ , then f 1s a connectivity

function.

Our next theorem shows that the family of connectivity

functions from R into R is not closed under the operation of

supremum and hence is not a lattice.

TIII. THEOREM Let F be the family of connectivity functions from R
———

into R . Then there exist fl,fz € F such that fi v f2 has a

totally disconnected graph [(fl v fz)(x) = sup (fl(x),fz(x)] .

Proof: Let {Gn}:=1 be a family of open intervals which form a base

for the usual topoiogy o R . Select two perfect sets Ei and Ei
1 2 i j
such that (1) En U En c Gn , for n=1,2,... , (11) En n Ei =9,

for n#m, o,m= 1,2,...,1,5 = 1,2 and (iii) Ei has empty interior,
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for i=1,2, n=1,2,... . This is possible by II section A of Chapter

I L]

Let B ={h : R~>R|h is of Baire class I} . For each n,
both B and Ei have cardinality equal to the cardinality of the
continuum. So there exists a one to one mapping Tn : Ei +~ B such
that Tn is onto for n = 1,2,3,... . Define fl : R—>R as follows:

fl(x) = £(x) for all x € Ei , b = 1,2,...,Nyhere f is any

function from R to R which takes on every value 2 © times on every

perfect set.

1 fl(x) = h(x) for all x € Ei ,n=1,2,... where Tn(x) =heB.
If x € nzl(Ei v E:'l)c , then we define fl(x) arbitrarily but such that

fl(x) #x . On Ei if fl(x) = x redefine fl(x) tobe x+1.

Since every lower semi-continuous function is of Baire class I , it
follows from the definition of £ that if I is any interval and g
any function of Baire class I , then there exists x € I such that
fl(x) = g(x) . It therefore is a consequence II that fl is a con-

nectivity function.

Now define a second connectivity function f2 from R into
R as follows:

Put £,(x) = £(x) , 1f £(x) £, for x ¢ E2,n=1,2,...,
where f is the function referred to in (1) . If £(x) = x , then put

fz(x) =x+1.

For each Ei , n=1,2,... there exists a set En < Ei such
,that each En has cardinality equal to the cardinality of the continuum

and f£,(x) > x for all x € E, . There exists a one—to-one function
e -
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L En + B such that each Ln is onto for n = 1,2,... . Define f£

n. 2

on En such that for all. x e En . fz(x) = h(x) where. Tn(x) =h,
n=1,2,... . Define f2 on Ei - En such that there exists an x;
and v1 where fZ(xl) <% and fz(yl) >y - Otherwise, arbitrarily

1 o = _ v m o 1 2
for Yy € En E 6T n = 1,2,... and x € ngl(En ugk

c. .
0 n) just making
sure that for all such x , £(x) # x . Again, applying II, we see

that f2 is a connectivity function.

Let: £(x) = fl(x) v fz(x) for all x e R . It follows from
the definition of £, on Ei'- E , for n=1,2,..., that given any
interval I ¢ R there exists some x € I such that f(x) < x and"
some y € I such that £(y) >y . Also for all x ¢ R, £(x) # x..

Since g(x) = x is a continuous function, it follows from I section B

that the graph of £ 1is totally disconnected.

However we shall see shortly that there do exist two dis-
continuous connectivity functions fl,f2 mapping R into R such that

f1 v f2 is a connectivity function.

We will now show that there exist two topologies Tl and

T2 on R such that Tl and T2 are both strictly larger then T ,

the usual topology on- R , and Tl and T2 have the same connected

sets as T , however (R,Tlsz) is a totally disconnected topological

space. .

Let fl and f2 be the two connectivity functions constructed

in the last theorem. Put T, = f_}(T) and T
fl 1l f2
T1 =TV Tfl and T2 =TV sz « Since both fl and f2 are totally

= f;l(m) . Put
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discontinuous connectivity functions, T1 and T2 have the same

connected sets as T and each is finer than T .

Iv. 1LEMMA g = £, v £, 1is a continuous function for the T_ Vv T
_— 1 2 fl f2

topology.

Proof: Let x € R and assume g(x) = fl(x) = fz(x) . Let U be an

arbitrary neighbourhood of g(x) . Then there exists Vi e T, and

f
1
Vi € Tf such that each is a neighbourhood of x in the respective
: 1 2 _ gl . 42
topologies and fl(Vx) c U and fZ(Vx) cU. Then G = Vx nV_ is

open in Tl v T2 and fl(G) c U and fz(G) U, hence g(G) cU
and g 1is continuous at x . If g(x) = fl(x) # fz(x) , then fl(x)
> fz(x) and we may choose a neighbourhood Ufl(x) and Ufz(x) such

_ 1
that Ufl(x) n Ufz(x) = ¢ . Then choose neighbourhoods Vx € Tfl and

2 1 2
Vx € sz such that fl(Vx) < Ufl(x) and fz(Vx) c Ufz(x) . Then
l 2 At omasmts e $am T 3
g(Vx n Vx) < Ufl(x) and g 4is centinucus iz the Tfl v ‘fz topology.

V. THEOREM (R,T1 v TZ) is a totally disconnected topological space.

Proof: Put T, , . = (£, V £,)"2(I) . Then it follows from the
—_— fl f2 1 2
previous lemma that T, S T, , since T

fl f2 flV f2 flV fZ
smallest topolgoy on R in which fl v f2 is a continuous function.
Hence Tv T cTv (T, vTIT_)=((Tv I _)V((VI_ )=T VT .

v
fl f2 fl f2 fl f2 1 2
It was shown in III that fl v fz has a totally disconnected graph,
hence by III of section B , (R,T V Tf v £ ) is a totally disconnected
1 2

topological space. Therefore (R,Tl v T2) 1s totally disconnected.

is the

It follows from the construction of Tl and T2 that each

is a topology on R which has the same connected sets as T , the usual
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topology on R , and both Tl and T2 are strictly larger then T .
However the above theorem shows that R with the topology Tl'v Tz R
which is the smallest topology containing both Tl and T2 , is a

totally disconnected topological space.

It should perhaps be mentioned in passing that there exists
topological spaces (X,T) such that if tY,c) is any other topological
space then every connectivity function from (X,T) into (Y,0) is
continuous. Whether there exists a topology T* on R such that
every conmnectivity function from R into (¥,0) is coantinuous is
an open question. This of course is equivalent to the question asked
by Thomas [22] "does there exist a topology T* on R such that
(R,T*) is connected and if Tl is any topology on R strictly larger

%*
then T then (R,Tl) is not connected?".

We now produce a family K of connectivity functions from
R to R such that K is a lattice under the operations of supremum
and infimum. First we state without proof a theorem whose proof is

given in the next chapter.

VI. THEOREM Let £ : R+ R . If £ d4is Baire class I and peripherally

continuous then f is a comnectivity function.

VII. THEOREM Let K be a family of function from R to R which

satisfy the following conditions;
(1) If £ e X then f is Baire class I and peripherally

continuous.
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(ii) 1f f,g € K such that both are discontinuous at
X, € R , then there exists a sequence X +-xs such
that f(xn) > f(xo) and g(xn) > g(xo) .

Then K is closed under the operations of infimum and supremum.

Proof: Let £ and g € K. Then there exists sequences of continuous

{g ¥

m=1

-]

function {fn}n=l ,

such that fn +~ £ and g, >8> where the
convergence is pointwise. Hence (fn" gn) + (v g) andso £V g is
Baire class I . To show £ V g is peripherally continuous at x

for each x e R . If (fV g)(x) = £(xX) say, then by (ii) we can always
find some sequence X X such that (f v g)(xn) = f(xn) n=1,2,... .
Hence f VvV g 1is peripherally continuous. Now, apply VI , and we have

the required result.

COROLLARY Let f and g be mapping from R into R . If f and g

are Baire class I , peripherally continuous and have no point of dis-

continuity in common, then f vV g is a connectivity function.
Proof: TFollows immediately from the preceding theorem.

Since every derivative function is a connectivity function,
the family K of the preceding theorem will contain all the derivative

functions that satisfy (ii) of VII.

If either of the assumption of condition (i) are omitted from
the hypothesis of ‘VII , then since every connectivity function is a
connected function, it follows from III of section A and III that the
conclusion may not hold. We now give an example which shows that

condition (ii) cannot be omitted.
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_ 1 1 _ -
EXAMPLE Let G = {GEE » Tt )}, for n=1,2,,.. . Let H
1 1 1 1 .
{(fﬁ:f , EE:E)} s for n=1,2,..., where for each n , (; s E:I) is

an open interval in R . Define f : R+ R as follows:

f(x) 0, for x ¢ (- =,0]

£f(x)

1, for x e [1,+ =)

or X € H.

1l 1
Gz Zox ) » for m=1,2,... . For

1 1
each n define f on 2n’mh] and [mh,ig:iﬂ such that the graph

Let o be the mid point of

of f 1is a straight line in the plane joining the points G%; » 1) and
(mn,O) and a straight line joining the points (mh,O) and CEE%T,I)

respectively.

Define g.: R >~ R such that g(x) = £(x) for x ¢ (0,1) .
f(x) =1 for all x € G . Then define g on H analogously to how
f was defined on G . It is clear from the definition of £ and g
that both are Baire class I and peripherally continuous, hence connectivity
functions. However f and g do not satisfy conditions (11) of
theorem VI. £ V g has a discontinuity at O of the first kind and

45 clearly not a connectivity function.

Iv. ALMOST CONTINUOUS AND CONNECTIVITY FUNCTIONS

At the end of his paper [26] J. Stallings says "one of the
important questions left unresolved is, under what conditions a connectivity
map of the unit interval into a space is almost continucus”. The ques=
tions which are then raised relating to this problem have been considered

in several papers but to the best of my knowledge this question has

never been answered. In this sectica we shall £

RN

rast provide a partial
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answer to this question (see V), then we shall state a theorem (see VI)

which ties together the various functions considered in this chapter.

I, LEMMA If £ : I -+X , where X is an arbitrary space , takes

closed connected sets to connected sets, then £ 1is a connected functionm.

Proof: Suppose A < I is connected and £(A) = Al U A2 is a separa-
tion. A = (a,b) , where endpoints may or may not be included. To

find a closed interval B ¢ A such that £(B) is not connected.

Choose an interval [xl,le = B such that [xl,x2] c A and f(xl) € A1

and f(xz) € A2 . Then f([xl,xz]) is not connected. A contradiction.

II. LEMMA Let f be any function defined on I, n = 1,2,..., such

that f takes closed connected sets to connected sets, then £ takes

open connected sets to connected sets.

Proof: Let A be an open connected set. If £(4) = Al U AZ is a
separation, let x ¢ f-l(Al) n A and X, € f-l(Az) nA. Since A is
open and connected there exists a path [xl,xZ] in A joining Xy

and X, « Then f([xl,le) is not connected. A contradiction.

III. LEMMA Let £ : I ~>Y , where I x Y is completely normal and

Hausdorff, such that f 1s almost continuous, then £ takes connected

sets to connected sets.

Proof: It follows from a corollary by Stallings [26] page 261 that if
A 1s closed a connected set in I , then the graph of £|A is connected.

Hence £(A) 4is connected in Y . By lemma I , £ is connected.

IV. THEOREM If g : X+ Y 4is almost continuous, them f ¢ X - X x Y

’
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where f is defined by f(x) = (x,g(x)) , is almost continuous.

Proof: Let V be an arbitrary open set in X x (X x Y) containing
the graph of £ . To find a continuous function h : X+ X x Y such
that the graph of h is contained in V . Since V is open in

Xx (X xY), for each (x,x,g(x)) there exists V(x,x,g(x)) ¢V
such that for some Vx and V(x,g(x)) s Vx x V(x,g(x)) c V(x,x,g(x))
Then P = <2x V(x,g(x)) is an open set containing the graph of g(x)
in X x Y . Hence there exists a continuous function p : X + Y

such that the graph of p is contained in P . Put h(x) = (x,p(x))

for all x € I . Then since <2x (Vx x V(x,g(x))) is contained in V ,

the graph of h is contained in V .

COROLLARY If £ ¢ I > Y is almost continuous, where I x Y is com-

pletely normal and Hausdorff, then £ 1is a connectivity function.

Proof: It follows from IV that g : I - I x Y is almost continuous,

where g is the graph of £ . By III g is a connected function,

hence f i1is connectivity.

V. THEOREM TLet f : I + I be a connectivity function and let Df ’
the set of points where f i1is discontinuous, be closed and nowhere

dense in R . If £ 4is constant on Df , then f dis almost continuous.

Proof: Let V be an open set in I x I such that the graph of f is
contained in V ., Let x ¢ Df and Vx be an open sphere with center
(x,£(x)) such that Vx ©€ V . Then there exists some y ¢ I such that
f 1s continuous at y and (y,£(y)) € Vx . For if this were not the

case, let p be any end point of some open interval Gp such that £
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is continuous on Gp , f is discontinuous at p and p € ﬂi(Vx)

Choose a closed sphere SP about (p,£(p)) such that Sp < Vx .

Then Sp U V; is a separation of the graph of f restricted to the
connected set GP Up . This contradicts the fact that f is a
connectivity function. Hence there exists y € I with the required

property.

Let X be the greatest lower bound of Df in I . Choose

an open sphere Vxl about (xl,f(xl)) such that Vxl eV . Let vy
be a point in wl(Vxl) such that f is continuous at Y109 > Xy
and (yl,f(yl)) € Vxl . If there exists 0 g P < X such that

(pl,f(pl)) € Vxl then join (plf(pl)) and (yl,f(yl)) by a straight
line Ll lying in Vxl . If no such Py exists, join (xl,f(xl))
and (y,,£(y,)) by a straight line L., 1lying in V_ . Then for

1 1 1 x;
every ¢t € [pl,yl] define a function g : [pl,yl] + [0,1] such that

g(t) = Et , Where zt is the y-coordinate of the point of the inter-~

section of the vertical line through t with L1 .

By choice of Yy o the set of all x € D_. such that x > ¥y

£
is again a closed set in I . Let x, = glb{x|x € D, and x > yl} .
Now choose an open sphere Vx containing (xz,f(xz)) such that

2
Vx cV and 'n'z(Vx ) has left endpoint greater than or equal to vy -

2 2
Now proceed as before and choose a point y, to the right of X, such
that £ is continuous at y, and (v,,f(y,)) € V. . Now choose p
2 2 2 %, 2
such that for all x where Yi £X £0D,y f 4is continuous at x . Then
define g, ° [pz,yZ] + [0,1] similar to the definition of g, on

[pl,yl] + Continue this process and choose x  for =n = 3,4,... until

we have exhausted the points of discontinuity of £ . This will require
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at most a.countable number of steps. Now define g : I +~.I by

g(x) = £(x) if x ¢ [pn,yn] for any =n ..

g(x)

gn(x) if x e [pn,yn] .

Then g is well defined, continuous and the graph of g is contained

in V .-

COROLLARY Let f be a function from I to I such that the set of:
]
points - Df where £ is discontinuous is a closed set of first category

and f is constant on. Df_. Then f 4is almost continuous if and only

if f is a connectivity function.
Proof: Follows from the last theorem and the corollary to IV .,

gUESTION:_ Is it true that every function £ ¢ I > I which is Baire

class T and peripherally continuous is almost continuous?

The above corollary gives us, in a special case, a characteriza-
tion of almost continuous functions from I to I in terms of comnectivity
functions. Thus we have a partial answer to the question of Stallings
stated in.the introduction to this section. Finally, we state a theorem
which ties together the various functions considered in this chapter.

Let N, P, C_2, C-l’ A denote the family of nearly continuous, peri-
pherally continuous, connected, connectivity and almost continuous functions

respectively from I to I .

VI. THEOREM Let N, P, C ., C ., A be as defined above, then
—_— -2 -1

A i C1 i C2 i P and P ; N . However N is neither contained in
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any of the other families.
The proof of this theorem is evident from what has gone before.

QUESTION: Does there exist an almost continuous function £ : I + I

such that f is everywhere discontinuous?
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CHAPTER III

A, EXISTENCE OF CONNECTED FUNCTIONS

Arkhangelshii wrote that onme of the 'fundamental problems" of
general topology is "under what circumstances can each space of a given
class A be mapped onto a space of class B by means of a mapping
belonging to class L ." For example, it is well known that a Hausdorff
space Y is a continuous image of the closed unit interval if and only
if Y is a compact, connected and locally connected metric space.
Instead of taking £ to be continuous, if we assume fis a connected or
connectivity function, then for what spaces Y does there exist a
connected or a connectivity function £ mapping the closed unit interval
onto Y ? When Y has cardinality less than or equal to the cardinality
of the continuum and Y is connected we will show that there exists a

connected funtion from the closed unit interval onto Y .

I. THEOREM A topological space Y , of cardinality less than or equal

to the cardinality of the continuum, is connected if and only if there

exists a connected function form I onto Y .

Proof: Clearly, if there exists a connected function from I onto Y ,

then Y dis connected.

Conversely, let Y be any connected space with cardinality less
than or equal to the cardinality of the continuum. Let £ be a function
from R onto Y . Let g be a function from I onto R such that g
maps every perfect subset of I onto R . It was pointed out at the
beginning of Chapter I Section A that such a mapping g exists. Then

put h=f o g and h has the required properties.
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In this chapter our main problem is to show the existence of
certain types of connectivity functions.from I onto Y , where Y is
a suitably choosen topological space. If Y 1is a separable metric
space; then Cornette [2] has shown that there exists a connectivity
function £ from I onto Y . However, the function constructed by
Cornette is everywhere discontinuous. We therefore consider the
following Arkhangelskii type question: What class of topological
spaces can. Y represent in order to ensure that there exists a connec-
tivity function - £ : I - Y such that £ is onto and f has-a point
of continuity on every interval? Subsequently, we will consider a.
much more general space Y and show the existence of a connectivity

function from I onto Y .

Before attempting these two questions in Section C , we
introduce a family of functions which we call sequential functions.
These functions will be used in Section C to construct a connectivity
function f from I onto Y , where Y is the union of an ascending

sequence of Peano spaces, such that f has a point of continuity when

restricted to each closed subset-of I .
B. SEQUENTIAL FUNCIIONS

In this section we will always assume that X and Y are first

countable topological spaces.

I, DEFINITION A function £ : X - Y will be called sequentially

continuous on X if for every open set G g X there exists x e X - G
such that x € G and a sequence X > X', X € G, for n=1,2,...

such that f(xn) + £(x) .
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It follows from the above definition that sequentially

continuous functions are defined only on connected spaces.

If £ 4is sequentially continuous on a space X , then f]G s
where G 1s an open connected subset of X , may not be sequentially

continuous on G . This can be seen from the following example.

Example I: Let f : I - I be defined as follows:

£(x)

0, for O < x< 3/4 ,

and £(x) 1, for 3/4 <x<I.

Then it is easily seen that f is sequentially continuous on I .
However, let fl be the restriction of £ to the open connected set
(1/2, 11 . 1f we put U = (1/2, 3/4) we see there does not exist an
xeU » X £ U and 2 sequence x € U such that x, Tx and

£,(x) +~ £,(x) . Hence f1 is not sequentially continuous on the

open and connected set (1/2, 1] .

We will now introduce a term for a function whose restrictions

to open and connected sets is a sequentially continuous function.

II. DEFINITION A function f : X+ Y dis called sequential on X if
for every open connected set G < X , the restriction of £ to G is

sequentially continuous.

It is clear that every sequential function is sequentially
continuous if X 1s connected. It also follows that every continuous

function is a sequential function. However the converse is not true even

when X=Y=1.
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IITI LEMMA If X is a locally connected and regular space, then every

peripherally continuous function £ from X into Y is sequential.

Proof: Let G be an open connected subset of X ; so G dis locally
connected. Let U be an open proper subset of G . Since every
component of U is open in G , it is sufficient to assume U is

connected. Then there exists x € G such that x e U and x £ U .

Let {vn}n=l be a neighbourhood base at x such that Vn > Vn+1 ’

for n=1,2..., and let H be a neighbourhood of £(x) . Since f£f

is peripherally continuous and X is regular, we can choose open
neighbourhoods Bn of x,n=1,2... such that Bn c.§n+l c Vn , for
each n and f(F(Bn)) < H , where F(Bn) denotes the boundary of Bn .
We may also assume that Vn NU#U, for n=1,2... Thus there exists
y, € F(Bn) nU, for n=1,2..., since U 1is connected; and also

v, T % and by construction we may assume f(yn) > £(x) , since Y is

first countable. Hence f 1is a sequential function.

However, as we show below, the converse to the above lemma is
not true even when X =Y = I2 . This will be of some importance to us
later when we use these functions to construct a connectivity functionm.
For it has been shown by many authors (See [6] and [30] ) that every
peripherally continuous function from I into I » where na,m > 2,

is a connectivity function.

EXAMPLE I. We define a sequential function £ : I2 -+ 12 which is not

peripherally continuous as follows:

£(x) = (0,0 when x = (xl,xz) and
X and x, are rational,

£f(x) = (1,1) otherwise.
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f 1is a sequential function. For let G be an open and connected subset
of I2 « Let U be an open subset of G and let x be a limit point
of U such that x ¢ U . It follows from the definition of f that

we can choose a sequence {xn};=1 such that x € U for each n ,

x, > X and f(xn) =f(x) , for n=1,2,... . Hence f is a sequential
function. However f is not peripherally continuous since f is not

a connected function and every peripherally continuous function from

12 into 12 is connectivity [6] .

On the other hand, the following relation does hold.

IV THEOREM A function f : I -+ Y is a sequential function if and

only if £ is peripherally continuous.

Proof: It follows from the preceding lemma that if f is peripherally

continuous, then f 1is a sequential function.

Conversely, suppose f 1is a sequential function. Let x ¢ I
and let U and V bé neighbourhoods of x and £(x) respectively
(U an open interval). Then consider [o0,x) nU =G , since G is open
in U there exists x, *x such that X, €G, for n=1,2,... , and
f(xn) + £(x) . Similarly, since B = (x,1] n U is open in U and f is
a sequential function, there exists Y, € B, for n=1,2,... , such that
Sy, X and f(yn? + £(x) . Therefore if V 1is an open set containing
f(x) and H is ;ny open set containing x , there exists an open set
HIcH such that x € Hl and f maps the boundary of Hl into V. So

f 41is peripherally continuous.

The motivation for sequentially continuous functions stems from

the following:
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V THEOREM Let f : X > Y be a function with a connected graph, where

X and Y are connected. Then f is sequentially continuous.

Proof: Suppose not. Then there exists an open set G c X such that
for every =x € G-G and for every x > X , where x, € G for

n=1,2,... , f(xn) does not converge to f(x) .

Put A = GxY . For every X ¢ G - G choose a neighbourhood
N(x,f(x)) of (x,£(x)) such that N(x,f(x))n {(g,£(g))|g e Gt =0.
This can be done since f maps every boundary point of G to a point

which is not a limit point of £(G) . Put B = u_ N ,

then B contains no point of the graph of £ restricted to G. Put

C= U (N xY) , where N nG=¢. C is open and contains no
=8 %
X € X-G

point of the graph of £ restricted to G . Let Al anc Bl denote
the intersection of A and BuC , respectively with the graph of f .
It follows that Al n B1 =93 , Al’Bl are open and contain the graph
of £ . Which contradicts the fact that f has a connected graph.

Hence £ 1s a sequentially continuous function.

COROLLARY 1. If f : X+ Y is a connectivity function where X and Y

are connected, then £ i1s a sequential function.

Proof: This follows since we may show as in the last theorem that the

restriction of f to every open and connected set is sequentially contin-

uous.

COROLLARY 2. Let £ : I - Y be a connectivity function, then f 1is

peripherally continuous.

Proof: This is an immediate consequence of III and the preceding corollary.
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As stated at the beginning, throughouﬁ this section we are assuming
that X and Y are first countable. However, first counﬁability can be

omitted in the statement of corollary 2.

In the preceding theorem we assumed the function had a connected
graph. This theorem does not hold with "connected graph" replaced by a

"connected function'.

EXAMPLE 2. Let X =1 and Y be any set with two or more points. Fix
x € Y and let {xo} be an open set. For every other y ¢ Y , the only
open set containing y is the whole space. This defines a topology T

on Y . Define a function f : I +Y as follows:

f(x) =y # X s if x # 1/2

£(x) , for x =1/2

L]
"

It is easily seen that £ 1s a connected function but f is
not a sequentially continuous function. Of course, f does not have a

connected graph.

Before presenting the final results of this section we will

state a theorem by M.K. Fort which will be used in VII.

VI THEOREM (Fort [3]). 1If fl, f2""' is a sequence of continuous
functions on a topological space X into a metric space Y , which
converge pointwise to a function g , then g is continuous except

at the points of a set of the first category.

The next theorem is a generalizaticn of a theorem by Kuratowski

and Sierpinski which says that every connected function £ : I - I which
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is of Baire class I is a connectivity function. This theorem, as we will
state it, given us a link between functions with a connected graph and
sequential functions. This result will be applied in the next section to
construct connectivity functions which have points of continuity. For the
remainder of this chapter we will understand that a Baire Class I
Zunction from a topological space X to a space Y is a function which

is the point wise limit of a sequence of a continuous functions from X

into Y .

VII THEOREM Let f : X+ Y be a function, where Y is metric, X is
connected and locally connected and every closed subset of X is of

second category in itself. If f is sequential and Baire Class I, then

f has a connected graph.

Proof: Let g denote the graph of £ . Suppose g is not connected,

then g = Al U Az » wWhere Al’ Az are open in g and Al n A2 =% . Let

'wl and T, be the projection mappings from XxY onto X and Y respect-

ively. Put B, = wl(Al), B2 = WZ(AZ), G

1 = int (Bl) and G, = int (BZ) .

1 2

Let F, = {x|xeX, N_n B, # ¢, for every neighbourhood of x}
and F, = {x|xeX, N_n B, ¢ ¢, for every neighbourhood of x} .
Suppose p is a limit of Fl n F2 ; then every neighbourhood of p must

intersect both B1 and 32 » SO P € Fl n F2 and hence Fl n F2 is

closed in X . Since £ is of Baire Class I, lel n F, has a point

of coatinuity by VI; say x ¢ Bl is this point. Let F=F, n F 1f

1l 2°

there exists a sequence {xn}n-l in 32 n F such that x, TX, then

since £f 18 continuous at x, (xn,f(xn)) > (x,f(x)) . But (x,£f(x)) € A1
and (xn,f(xn)) € A2 and this would contradict the seperation of the

and A, .

graph of £ by Al 2
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Hence there must exist some neighbourhood of x , say Ux s such
that Uk n (32 nF) =¢ . By the definition of ¥ , it follows therefore,
that every neighbourhood of x must intersect G2 . Let U be such an
open and connected set such that U n (B2 NF)=¢ . Since £ is a
sequential function and U is open and connected, there exists y ¢ U
and a sequence X, € 0 =Un G, such that X, >, ¥ ¢ 0 and

2

f(xn) + £(y) . But since vy ¢ G, » this implies that y € B F , which

s N
contradicts the fact that U n (B2 nF) =¢ . Hence the graph of £ is

a connected set.

COROLLARY 1. Let £ : I+ Y , where Y is a metric space and I the
closed unit interval. Let f be a Baire Class I function. Then £

is sequential if and only if f 4is a connectivity function.

Proof: Let £ be a sequential function. It follows from the last
theorem that the graph of f 1is connected. It then follows from a

remark by Cornette [2] that £ 4is a connectivity function.

Conversely let £ be a connectivity function, then the fact

that £ is sequential follows from Corollary 1 to Theorem V.

COROLLARY 2. Let £ : I +~Y , where Y dis a metric space and I the
unit interval. Let f be of Baire Class I, them £ 1s peripherally

continuous if and only if £ 1is a connectivity function.

Proof: This is immediate since in this particular case sequential functions

and peripherally continucus functions are equivalent (IV).

COROLLARY 3. Let £ : I -+Y , where Y dis a metric space and I the

unit interval. Let £ be of Baire Class I, then £ 1is a connected
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function if and only if f is a connectivity function.

Proof: This follows since every connected function is peripherally

continuous and connectivity implies connected.

Corollary 3 is a generalization of a theorem by Kuratowski and
Sierpinski which says that a Baire Class I real valued function of a real

variable is a connected function if and only if it is a connectivity

function.

C. EXISTENCE THEOREMS
FOR CONNECTIVITY FUNCTIONS

In this section we will present two main results. TFirst we
will show the existence of a class B of spaces such that for every
Y € B there exists a connectivity function from I onto Y with the
property that £ 1is continuous almost everywhere. Secondly, we will
show the existence of a more general class A of spaces containing B

such that for every Y € A there exists an everywhere discontinuous

function £ from I onto Y .

It is fairly easy to construct a connectivity function from
I onto R such that £ d4s continuous on I - {0} . Before proceeding

to the more general case we present two special examples of connectivity

functions from I onto R .

NOTATION: Given an interva {an+l’bn] , Wwhere an+l’bn are arbitary

real numbers, let m denote the mid point of this interval. Let m

denote the mid point of [m,bn] and let oo

. ] 1 h
[an+1,m] A real valued function £ defined on [an+l’bn‘ with the

denote the mid point of
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properties

@ fa,,)

f(bn) =f(m) =0,
(®) f(mn+1) = -q, f(mn) =+,

and (¢c) £ 4is linear on the intervals m and

]
(8 41 oBpg s gy ] 2

[m_,b_]
will be denoted as\ﬁ - function of amplitude n .

EXAMPLE 1. We will show that if K is the Cantor subset in I , then
there exists a function £ : I + R such that £ is onto, Df = X where
Df denotes the set of points where f is discontinuous, and f is a

connectivity function.

Let G, = {(1/3, 2/3)} , G, = {(1/9, 2/9), (7/9, 8/9} .

T ral 1 = I wher = j j £ = 2 eee
In general .let Gn LEn ja1 here En (an . bn) s for n=1,2,
and 1¢3g o1 . That is, {Gn}:;l~ is the family of open sets which

are removed from I to form the Cantor set. Let ei be the mid point

3

(ai, ei) , for n=1,2,... ,4=1,2,...2%% . 1n general let xg’k

of E‘l ,a=1,2,... ,1

HA
naA

2n—1 . Let xi’l be the mid point of

k-1 k, «
be the mid point of (ai, xi’ ) 5 for k=2,3,... . Then {xi’ }k=l

is such that for each fixed j and each n , lim xj’k = aj for

n=1,2,... and 1< 3j < 2n-1 . In the same manner, for each fixed n

and for each j such that 1 < j < 2n—1 construct a sequence

ok ok .3
{yi }k-l such that l%m yj b -

Define fl as follows: for n=1,2,... , 1 <3js 2n—1

3

fl(x) = g(x) if x € [xi’l, yi’l] ,» where g 1is a VA - function of

amplitude 1. fl(x) = g(x) , 1f x ¢ [xi’z, xi’l] , where g 1is again a

V\ ~ function of amplitude 1. Define £, exactly the same way on
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[yi’l, yi’z] . Put fl(x) = 0 for all other x ¢ [0,1] . Then £

is well defined and it follows from tie definition that fl is
continuous on [0,1] .

Let p be a positive integer greater than 1 . Assume fp—l

has been defined, then define fp as follows:

fp_l(x) if x ¢ [xi’p+l, xi’p] U [yi’p, yi’p+1] s, where n = 2,3,... ,

2n-l

fP(X)

1<3c . fp(x) = g(x) if x € [xi’p+l, xi’p] where g 1is a

g(x) , if x ¢ [yi’P, yj’P+l] s

n

VA - function of amplitude p . Also fp(x)
where g is a V/\- function of amplitude p .

We will show that‘ lgm fp(x) exists for each x ¢ I . This
follows, since given € >0, x ¢ I , x # 0 there exists a positive
integer Nz’e such that for all n,m > Nz’e, fm(x) = fn(x) hence
lfm(x) - fn(x)| <€ . Toshow f is continuous on K= , where

f(x) = 1im £ (x) . Since x ¢ G_ for some n , we have x ¢ [xJ’P,xj’p-l) s
p P n n n

or X € (yi’P-l, yi’P] or x ¢ (xi’l, yi’l) for some n, j and p .

Hence f(x) = fm(x) for all m > p . We will now show f is discontinuous
at each point of K. Let x ¢ K. Then £(x) = 0 since fn(x) =0 for
all‘ n. If Sx is any open interval containing x then for some integer
M there exists y ¢ Sx such that £(y) > M ; for if not, Sx - {x}

would be contained in the family of sets [xi’P R xi’p-l] u [yi’p-l, yi’P] ,

n-1-

where p <M and n=1,2,,.. , 1<} <2 . But this would contradict

A

the fact that x 1is a limit point of kS . Finally, we show that £ is
a connectivity function. It follows from the comstruction of £ that £
is of Baire Class I. So by Corollary 2 to VII of Section B it is sufficient

to show that £ is peripherally continuous, but this is clear from the

censtructicn cf £,
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In the preceding example we constructed a connectivity function
f : I >R such that f is constant on K and continuous on K° . We
will now comstruct an example of a connectivity function f from I onto
R which takes on every real value on every open set which contains points
of the Cantor set, K and f will be constant on K° . Although the
points of I where f is discontinuous is a proper subset of the Cantor

set, f 1is not of Baire Class I. Of course f is peripherally continuous.

EXAMPLE II. Let {Gn}n:1 be a base of open intervals for the usual
topology on 1 . If Gn nK# ¢, let En be a perfect subset of
Gn nK, for n=1,2,... . Now let Ei be a perfect subset of En
such that Ei does not contain an end point of any of the open intervals
which were removed to form K . This is possible since every perfect
subset ¢£f R contains 2N° disjoint perfect subsets. Let Tn be a
one to one mapping from Ei onto B , where B is the family of Baire
Class I functions from I into R . Define f : I - R as follows:

f(x) =0, if x ¢ Ei for any n .

£(x)

h(x) , if x € Ei where Tn(x) =h .

To show f is a connectivity function. If f is not connectivity this

implies there exists some interval I1 c¢ I such that if g is the graph
function associated with £ , then g(Il) is not connected. Now by the

construction of the En's » there must exist some n such that Ei c Il .
It therefore follows that every function of Baire Class I agrees with

f at some element x € Il + Hence by Theorem I, Sectuon C, Chapter II

g(Il) cannot be disconnected. Hence f is a comnectivity function.

An interesting consequence of the construction used in Example II

is the fcllewing: given any perfect set P ¢ R , then there exists a function
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f : R+ R such that f is constant on P° , taken on every real value

on P and {£ is a connectivity function.

We now state our first main result of this section.

[--}
I THEOREM Let Y be any metric space such that Y = u F_ , where
o n=1 ®
Fn < Fn+1 for n=1,2,... , and each Fn is compact, locally connected
and connected. If K c I is any closed set of first category then there
exists a function £ : I - Y such that £ is onto, conmnectivity and the

set of points where f 1is discontinuous is identical to K .

Proof: Since K is closed and of first category, k= u Gn » Where
n=1

G nG =2¢ for n#¥m ,G = (a_,b) and some G contains at least
n m n n’’n n

one of the end points 0 or 1. If x ¢ K and if N is a neighbour-

hood of x , then N contains an open interval contained in scme Gn .

We may also assume that if G_ = (a_,b_ ) , a_,b_ ¢ K. Let m_ be the
n n’ ' n n’ n n

mid points of (an’bn) for n=1,2,... . I1f 0 or 1¢ Gn then
let xi be the midpoint of the open interval (an,mn) s
let xg be the midpoint of the open interval (an,xi_l) s
let yi be the midpoint of the open interval (mn,bn) ’
and yﬁ be the midpoint of the open interval (yz—l, bn) .

If 0 ¢ Gn we need only construct the sequence {yz}p:l . Similarly, if

1l ¢ G we need only construct the sequence {xP} ¥ . Then limx’ = a
n n" p=l p ©n n
and lim yz = bn for n=1,2,... . For m=1,2,... construct a mapping

P
fm from I dinto Y as follows:
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. 2 1 1 2 1 1.
Define fl on [xn, xn] . [yn, yn] and [xn, yn] such that
fl maps each of these intervals continuously onto Fl
f(yi) = f(yi) equals some fixed Yo - This is possible by Hahn-Mazur-

and f(xi) - f(xi)

]

kiewicz Theorem [See 14], dc this for n = 1,2,... . If x ¢ [xi, xi] 0]

1 2 1 1 _
[yn, yn] U [xn, yn] , for any n , then put fl(x) =y, - It follows that
f1 is continuous on I . Let p be a positive integer > 1 . Assume
fp_l(x) has been defined for all x € I . Now define fp +I>Y as

follows:

B0 = ) G if x £ [k, xP]u IR, B,

for n=1,2,...
fp is defined on [x§+l, xi] and [yz+l] , for n = 1,2,... , such that
for each fixed n, fp maps [xg+1 ’ xz] and [yg s §+1] onto FP in
such a way that fp is continuous on each of these intervals and £ (x§+1) =
fp(xﬁ) = fp(yz) = fp(y§+l) =7y, s for n=1,2,... . It is immediately from
the definition of fp s that fp is continuous and well defined for
p=1,2,... . To show that {fp}P:1 converges pointwise to a function f .
Let x ¢ K, then fm(x) =y, for all m . If x e K , then x ¢ [mn’bn)
or X € (an, mn] for some n . If x ¢ [xg+l, xi] or X € [yi, yz+1]
for some n and some p , then in either case, fs(x) = ft(x) for all
s,t 2 ptl . Hence l%m fp(x) exists and is equal to £(x) for each xe I .
Next we show that f is continuous on K° and discontinuous at each point
of K. That f is continuous on K° is immediate, since K¢ is open
and f(x) = fp(x) for all integers p greater than some fixed integers
P, depending upon x . Let x ¢ K, then we will show that £f(x) is
mapped onto Yo Every open interval containing x contains some subinterval
In of Gn for some n . Then given an open shpere 'Syo containing Yo

there exists y ¢ In such that £(y) 41is mapped outside of Sy . Hence £
o
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is not continuous at x . It is clear that f maps I onto Y .

We finally see that f is 2 connectivity mapping by applying
Corollary 2 of VII in the preceding section. It is clear that f is Baire

Class I and peripherally continuous, hence the required result follows by

the aforementioned corollary.

Our next result deals with the existence of connectivity function
from I onto Y , where Y is a more general space then that considered
in I . In this case we will lose the property that £ is continuous when
restricted to a fairly "large" subset of I . F.D. Whitefield [29] showed
in his Ph.D. thesis the existence of a connectivity function £ from R
into R which is everywhere discontinuous. We were able to change his

"definition for the function £ and by modifying his proof we obtain the

following result:

II THEOREM Let I be the unit interval. Let Y be any connected
topological space such that IxY is completely normal and the topology
T on IxY has cardinality equal to the cardinality of the continuum.

Then there exists a comnectivity function £ from I omto Y .

Proof: Let {Gn}n:l be a base of open sets for the usual topology on I .
For each n , select En S Gn such that En is a perfect set, int En = ¢
and En n Em = ¢ for n¥m . This is possible by II , Section A, Chapter I.
By a result mentioned earlier (See IV, Section A, Chapter I) by Kuratowski
and Sierpinski, each En containg ¢ disjoint perfect set, where ¢ 1is

the cardinality of the continuum. So let Bn = {8%} be a family of

r'reR
perfect sets such that each B: c En , for r e R , and B: n Bz = $ for

s¥*r . Let At be a set which consists of an element from each perfect
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set of Bn for n=1,2,... . Now put A = {Ar}reR ,» then A has

cardinality equal to the cardinality of the continuum and if 1r,se R
and r # s we may assume that the selection has been made such that
A.r n As =¢ . Let g be a one to one mapping of the topology T on

IXY onto A . Let Y be an arbitrary fixed element of Y . Define

£f :I+Y as follows:

£(x)

. p .
Yo if x ¢ Ar for any r ¢ R

fx) =y if x ¢ Ar for some r € R

o
and ({x}xY¥) n g_l (Ar) =9 .
Finally suppose X € Ar for some r € R and ({x}x¥) n g-l(Ar) £ 0.

Put U = g_l(Ar) . If {y|G,y) ¢ U} =Y, thenput £(x) =y, . If
{yl(x,y) € U] 1is a proper subset of Y , then this set is open in Y ,
because for every vy ¢ {yl(x,y) € U} there exists an open sets Vy

and Uy containing x and y respectively such that Vx x UY cU.

Let p €lJVy , where the union is taken over all v ¢ {yl(x,y) € U} ,

then (x,p) ¢ U, so {y|(x,y) ¢ U} is open in Y . Since Y is connected

there exists a boundary point yl of {y|(x,y) € U} such that

yl £ {y|(x,y) e U} . Let W be an arbitrary neighbourhood of (x,yl) in

IxY . Then choose open sets U# and V 1 containing x and yl
y
respectively such that Ux x v 1 ¢ W, since yl is a limit point of
¥y

{y|x,y) € U}, it follows there exists (x,y) such that y ¢ {y|(x,y) € U}

and (x,y) € Ux x V . . Hence (x,yl) is a boundary point of U and

y-h
1 1
(x,y7) U . Put £f(x) =y .
To show £ has the required properties. Suppose £ is not a

connectivity function. Let h be the graph function of £ . Then there

exists some comnected set C = I such that n(C) is not connected in
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IXY . Since IxY is completely normal there exists open sets U and V
such that h(C) «c UuV and UnV=2%¢ . Let AU and AV denote the
respective images of U and V under g . By construction AU nC#¢
and AV NC#¢ . Let x ¢ AU n C and suppose f£(x) # Y, Then by

the definition of £ , ({x} X I) nU# ¢ and {y|(x,y) ¢ U} # Y .

Hence (x,f(x)) 1is a limit point of U and (x,f(x)) ¢ U . Clearly
(x,£(x)) ¢ V. But his contradicts h(C) < UuV , hence £f(x) = Yo

for all x ¢ Ay n C . sSimilarly if x e A; n C then £x) =y, -

Let U, and V., denote the projection of U and V onto I .

1 1
Then Ul and Vl are open in I and Ul u Vl contain C since T uV
contains h(C) . Also Ul n Vl contains a point of C . It follows from

the construction of a that AU n C and AV n C are demse in C .
Hence Ul n Vl contains points of AU nC and AV nC. Let

X € (Ul n Vl) n (AU n C) then f(x) = s and since x ¢ U ,

({x} x¥) nU# ¢ . Let G be an open set in I x Y containing

(x,yo) = (x,£(x)) . Then there exists an open set W c¢ I such that

X € W and an open set J containing Yo such that W xJ <« G . Since
£(x) = Yo if follows from the definition of £ that either Yo is a
boundary point of {y|(x,y) € U} or Y = {y|(x,y) € U} . 1In either case

their exists some y ¢ J such that y # y, and (x,y) € U . Hence

(x,yo) is a limit point of U . Also (x,yo) € U since h(C) cUu V

and UnV

¢ and U,V are open. Similarly, if x e (Ul n Vl) n (Av ne),

then f£(x)

(x,yo) e V.

Now let x € (Ul n Vl) n (AV nC) , then (x,£(x)) € V by the
above. Hence there exists an open set G containing (x,£(x)) such that

GeV and G=WxJ , where W,J are open sets containing x and £f(x)
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respectively, and W is choosen such that W c U1 n Vl . Since AnC
is dense in C, W contains a point 2z of AU nC. But 2z ¢ (Ul n Vl)

n (AU n C) implies (x,f(x)) € U . This contradicts the fact that U

and V are disjoint. Hence the graph of £ is connected.

Finally we show that f maps I onto Y. Let y e Y and
consider the open set Hy =Y -{y}. Ix I:I.y is open in I x Y and
let Ar be the image of I x I-Iy under g . Then if x ¢ A.r it follows

from the definition of £ that £(x) =y . Hence f is onto.

It is readily seen from the definition of A in the proof of
the last theorem that if C is any connected subset of I then
Cc Z;_E_E. for every r ¢ R . We will now show that if I1 is a non-
degenerate subinterval of I , then f(Il) =Y. For let ye Y and
Hy =Y - {y} . Let g(I x Hy) = A_, then by the construction of A,

there exists some x ¢ I1 such that x ¢ A.r . It follows from the

construction of £ that for all x ¢ Ar , £(x) =y . Hence f(Il) =Y.

Does there exists a family A of subsets of I x I = 12 such
that A = {Ar}reR » where each A_ bas cardinality equal to the cardinality
of the continuum, A.r n As =¢ for r £# s , with the property that if C
is any connected subset of the plane then A.r n C is demse in C for
every r € R ? Although such a family A of subsets of I (or R) exists, no
such family exists in 12. In order to show this we will need a theorem by
Cornette [2]. Let E denote the set in a plane with a dispersion point e

That is, E is connected and E-e is totally disconnected (see [14]).

III THEOREM (Cornette [2] Theorem 2). There does not exist a comnectivity

function f with domain I x I = 12 and range E .
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If there exists a family A of subsets of 12 which has the
property outlined above, then by using the same construction as in II
we can construct a connectivity function £ £from I2 onto Y , where
I" xY is completely normal. However I2 x E is completely normal and

hence the existence of the family A would contradict III. Hence no

such family exists in 12 .

D. THE EXISTENCE OF LARGER CONNECTED
TOPOLOGIES FOR A TOPOLOGICAL SPACE (X,T) .

In this section we present a few results concerning the existence
of a topology T* for a connected topological space (X,T) such that
T > T and (X,T*) is a connected topological space. Let Y be the set
consisting of the two elements C and 1 . Let ¢ be the topology on Y

where the open sets are ¢ , {0} and Y .

I THEOREM Let (X,T) be any connected topological space. There exists
* % %
a topology T on X such that T>T and (X,T) and (X,T) have the

+
same connected sets if and only if there exists a discontinuous connectivity

function from (X,T) onto (¥,o0) .

Proof: Suppose there exists a discontinuous connectivity function £ from
(X,T) onto (Y¥,0) . Then there exists some open set V in Y such that
f_l(V) is not open in T . Put T* equal to the topology generated by

T and f-l(V) + Clearly T* is larger than T and (X,T) and (X,T*)

have the same connected sets by Theorem 2.3 [7].

*
Conversely, suppose there exists a topology T on X such that

* *
T oT and (X,T) and (X,T ) have the same connected sets. To construct



- 67 -

a discontinuous connectivity function from (X,T) onto (¥,0) . Let
A € T* such that A £ T . Put £(A) =0 €Y and if x ¢ X and

x ¢A put £(x) =1. Themn f : (X,T) > (Y¥,0) in discontinuous. But
f (X,T*) + (Y,0) is continuous and hence a connectivity function.
Since T* x g >Tx0o , £ is a2 connectivity function from X,T)

onto (Y,0) .

II THEOREM If (X,T) is connected, Hausdorff and first countable,
*
then there exists a strictly larger topology T on X such that the

*
connected sets of (X,T ) and (X,T) are identical.

Proof: Let x € X and let {Bn}n:l be a monotone decreasing local

neighbourhood base of open sets at x, - Let x., € B, such that

1 1
xq #x . Choose V and V:L , open neighbourhoods of x;, and x
e} xy e 1 o
. 1 _ Vl
respectively such that V. n V. = ¢ and c B, . Select
3] X, X 2

x, € Vio such that X, # X, - In general suppose X has been choosen

such that x, € B, . Then let V and V be open and disjoint
k k Xy xg
' K
neighbourhoods of X and X respectively such that Vkoc Bk+l .

k
Let X1 on such that X1 ¥ X, - Hence we have selected a sequence

P = {xk}k=l such that X > X IZ follows from the way we selected the

X for k=1,2,... and from the fact that (X,T) is connected that

c

%
P is not open. Let T be the topology generated by P~ and the

topology T .

%
Suppose (X,T ) is not connected. Then X = Al u Az where

*
Al n Az = ¢ and Al and A2 areopenin T . If Pc Al R

* *
every element p ¢ P there exists an open set Np in T and containing

then for
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%
p such that Np S Al « Since for every open neighbourhood Np of p in

P

Hence there exists an open neighbourhood Np of p in T such that

*
T,N n P¢ is not a neighbourhood of p, NP = NP UB , where B c p¢ .

*
Np c Al . If x ¢ Al and x £ p , the neighbourhood of x in T

are formed from those of x in T by deleting the points of P . But
since P c Al » it follows there exists an Nx open in T such that Nx

is contained in Al . Hence Al is open in T . Also xo € A1 H

since for each ®%_€¢ P , choose y_ eV n XN , where N < A, and
n n x, X, X, 1

*
V% are as constructed earlier, then Yo~ %, in the T topology,
n rerr

rvrwr

hence x € A, .
o 1

A2 is open in T . This follows since given any neighbourhood
%

*
Nx of x €A such that N < A2 , we can find a nbhd Nx of x , open

X

in T such that Nx NP =2¢ , since X is Hausdorff and hence Nx c A2 .
So A2 nP #¢ and Al neP#o. 1If X € Al , then all

x e P , except for a finite number, must also be in Al , for if an

infinite subsequence of P say x_ e A2 , for k=1,2,... , then we can

*
select y_ € V nN , where N <A, such that y_ -+ x is the T
X X X 2 o
n, n n

topology which contradicts Al and AZ being open and disjoint in T

Now we can show as before that Al and A2 are open in T . A contra-

*
diction. Hence (X,T ) is connected.

*

Next we show that (X,T*) and (X,T) have the same connected
sets. Let £ : X + (¥,0) where f(Pc) =0 and £f(®P) =1, and Y is
as in I. Then £ 4is continuous in the T* topology and hence a connectivity
function from (X,T*) onto (Y,0). Hence f is discontinuous and comnectivity

%*
in the T topology. Now apply I again and we see that (X,T ) and (X,T)
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have the same connected sets.

We next give an example to show that if Hausdorff were omitted

from the hypothesis the conclusion of the above theorem no longer holds.

EXAMPLE I. X is an infiﬁite set. Find x, € X . The only neighbourhood
of X, is the whole space. For x ¢ X and x # X, s let x be open.
Let the topology generated by these open sets be denoted by T . (X,T)

is connected. However if T* is any larger topology on X , then

*
(X,T ) is not connected.

The following definition is well known [22].

ITI DEFINITION A topological space (X,T) is semi-locally connected

if for every x ¢ X there exists a2 locel base B at x such that for

every V e€B , X -V has at most a finite number of components.

It is clear that the real line with the usual topology is

semi-locally connected. However we have the following result.

* *

IV THEOREM Let T be any topology on R such that (R,T ) is
%

connected and T is strictly larger then the usual topology on R .

*
Then (X,T ) is not semi-locally connected.

* *
Proof: Suppose (R,T ) is semi-locally connected. Let £ : (R,T) » (R,T )
be the identity mapping. Then both £ and f_l are connected mappings

and f-l is continuous. Hence by Theorem 3.5 [22] £ is continuous. This

* *

contradicts the fact that T > T . Hence (R,T ) 1is not semi-locally
+

connected.

In eoncluding we consider the question of constructing a larger

*
topology T on a countable connected Hausdorff topological space (X,T)



- 70 -

such that (X,T*) has the same connected sets as (X,T) . All the
examples of countable connected Hausdorff spaces which we were able to
find in the mathematical literature have a countable base. Hence by
4using Theorem II we can construct a larger topology T* on each of

these given spaces such that (X,T) and (X,T*) have the same connected
sets. First we will show the existence of a countable connected Hausdorff
space (X,T) which has an infinite subset E such that at every point

X of E the neighbourhood system of =x does not have a countable base.
Secondly we shall show that even in this case there exist a topology T*

* *
on X suchthat T > T and (X,T ) has the same connected sets as
+

x,T) .

EXAMPLE II. In this example we show the existence of a countable connected

Hausdorff space (X,T) which is not first countable at each point x of
an infinite subset E of X . This will be a modification of an example
of a countable connected Hausdorff space with a dispersion point constructed

by Martin [20].

Let {Cn}nzo be a countable collection of subsets of rational

- numbers such that Ci n Cj =% for i#3j and each Ci ic dense in
the real numbers. Let X = {(x,y) | y 1s a non negative integer and
X € Cy} . Thus the points of X will sometimes be referred to as lying
on the lines in the plane with integer ordinates. Let E be the set of
points Yy » for n=0,+1,+ 2, ... , where for each n , yn is an

interior point of the open interval (n, n+l) and v, € Co . Now for

each x € X - E we will define the neighbourhood base at x as in [20].

Suppose p e X = E, n 1s a non negative integer, z € Cn

and p = (z,n) , where 2>0 if n=0. Let k be a positive integer,
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§ be a positive number less than -% + Let VkG(P) be the intersection
of X-E and {(x,y) | y=n and (z+ km =8) < x < (2 + kn +6)}

and let Ua(p) = [k:l VkG(P) u {p}l .

Suppose peX~-E, z ¢ oA and n is a negative integer such
that n <z <o+l , and p = (2,0) . Let k be a positive integer and g
a positive number less than -% . Let VkG(p) be the intersection of
X-E and {(x,p}: 0<y <-n, and (z+ km-8) <x<(z+kr+8§} ,
and let Ua(p) =[u" vka(p)] u {p} .

k=1

Suppose p e E. V is an open neighbourhood of p if V
consists of an infinite number of horizontal lines from X such that
v¢ also consists of a infinite number of horizontal lines, Co -pc v©

and for every line in V there exists a finite number of points from this

. . . c
line which are in V- .

We omit the proof that the above defines a basis for a topology

T on X . The space X is countable and the proof that x,T) is a

Hausdorff space is the same as that given in [20].

Vv LEMMA (X,T) is a connected space.

Proof: Suppose X = Al u A2 where A nA,=¢ and AsA, €T . TWe
may assume some Y, € E is an element of Al . Let x € A2 such that
x ¢ E . Than there exists a postive number 6 such that Us(x) c Az .
Since Az is closed, give a positive integer M there exists z ¢ Co

such that 2z < -M and (z,0) ¢ AZ’ z £ E. Hence when we consider CM

as a subset of the plane there exists an infinite number of points (p,M)

such that (p,M) ¢ Cy and (p,M) ¢ A, . Hemce y_ A, . This contradicts



- 72 -

our assumption. Hence (X,T) is connected.

VI LEMMA If x ¢ E , then the neighbourhood system of x does not

have a countable base.

Proof: Suppose x € E and there exists a decreasing family of open
[=-]
sets {Bn}n=1 which form a local base at x . From :ach Bn select a

horizontal line Pn in the plane such that Pn € X and all but a finite

subset of P_ is contained in B_ . Let x ¢ P such that x_ ¢ B
n n n n n

Put Pi = Pn -{xn} . Consider the open neighbourhood V of x which

consists of the x toéether with the family of horizontal line segments

1

Pn » for n=1,2,... . Then Bn is not a subset of V for n =1,2,...

Hence the family {Bn}n:l cannot form a local base at x .

Finally let (p,n) € X where n # 0 . Then following the same
. *
construction used in II we can construct a topology T on X such that

* *
T T and (X,T ) is connected.
+



100

11.

12.

- 73 -

BIBLIOGRAPHY

BROWN, J.B. Connectivity, Semi-connectivity and Darboux Property.
Duke Math. J. 36 (1969) 559 - 562.

CORNETTE, J.L. Connectivity functions and Images on Peano Continua.
Fund. Math. 58 (1966) 183 - 192,

FORT, M.K. Category Theorems. Fund. Math. 42 (1955) 276 - 288.

HALPERIN, I. Discontinuous Functions with the Darboux Property.
Am. Math. Monthly 57 (1950) 539 - 540.

HAMILTON, 0.H. Fixed points for Certain Non—-continuous Transforma-
tions. Proc. Am. Math. Soc. 8 (1957) 750 - 756.

HAGAN, M.R. Equivalence of Connectivity Maps and Peripherally
Continuous Transformations. Proc. Amer., Math. Soc., 17
(1966) 175 - 177.

HILDEBRAND, S.K. and SANDERSON, D.E. Connectivity Functions and
Retracts. Fund. Math., 57 (1966) 237 - 245.

HOBSON, E.W. The Theory of a Function of a Real Variable and the
Theory of Fourier's Series, Volume one. Dover Publicationm.

HUSAIN, T. Almost Continuous Mappings. Prace Matematyczne. 10
(1966) 1 - 7.

JONES, F.B. Connected and Disconnected Plane sets and the Func-~

tional Equation f(x + y) = £(x) + £(y) . Bull. Amer. Math.
Soc. 48 (1942) 115 - 120.

KELLEY, J.L. General Topology. Van Nostrand, 1955.

KOLODNER, I.I. The Compact Graph Theorem. Amer. Math. Monthly,
75 (1968) 167.



13.

14.

15.

16.

17.

18.

190

20.

21.

22,

23.

24,

25.

26.

- 74 -

KLEE, V.L. and UTZ, W.R. Some Remarks on Continuous Transformations.
Proc. Amer. Math. Soc. 5 (1954) 182 - 184.

KURATOWSKI, C. Topology. Volume 1. Academic Press. 1966.

KURATOWSKI, C. and SIERPINSKI, W. Sur un Probleme de M. Frechet

concernat les dimensions de unsembles. TFund. Math. 8 (1926)
193 - 200.

LIN, S.Y.T. Almost continuity of mappings. Bull. Can. Math. Soc.
11 (1968) 453 - 457.

LONG, P.E. Properties of certain non-continuous transformationms.
Duke. Math. J. 28 (1961) 639 - 645.

MARCUS, S. Functions with the Darboux property and functions with
connected graphs. Math. Annalen 141 (1960) 311 - 317.

MARCUS, S. Open and everywhere discontinuous functions. Amer. Math.
Monthly 72 (1965) 993 - 995.

MARTIN, J. A countable Hausdorff space with a dispersion point.
Duke Math. J. 33 (1966) 165 - 167.

NASH, J. Generalized Brouwer Theorem. Bull. Amer. Math. Soc.
Research Problem 62-1-76.

PERVIN, W.J. and LEVINE, N. Connected mappings of Hausdorff
spaces. Proc. Amer. Math. Soc. 9 (1958) 488 - 495,

ROBERTS, J.H. Zero-dimensional sets blocking comnectivity func-
tions. Fund. Math., 57 (1965) 173 - 179.

RUDIN, W. Principles of Mathematical Analysis. McGraw-Hill. 1964,

SPIRA, R. Open and discontinuous functions. Amer. Math. Monthly
69 (1962) 128 - 129,

STALLINGS, J. Fixed point theorems for connectivity mappings.
Fund. Math. 47 (1959) 249 - 263.



27.

28.

29.

30.

- 75 -

THOMAS, E.S. and JONES, F.B. Connected Gg graphs. Duke Math. J.
33 (1966) 341 - 345.

THOMAS, J.P. Ph.D. Thesis. University of South Carolina. 1965.
WHITEFIELD, F.D. Ph.D. Thesis. Oklahoma State University. 1968.

WHYBURN, G.T. Connectivity of peripherally continuous functions.
Proc. Nat. Acad. Sc. 55 (1966) 1040 - 1041.




