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       Abstract 

 Equity-linked life insurance contracts are a type of investment product issued by 

insurance companies to provide the insured with more appealing benefits, compared with 

the traditional insurance policy. Such benefits are not only linked to the performance of 

the underlying investments in the financial market, but also related with some insurance 

type events, such as death and survival to the contract maturity. Therefore, the 

equity-linked life insurance contract includes both the financial risk generated from the 

performance of the risky assets and the insurance risk reflected by the policyholders’ 

survival probability. In this thesis, we consider the problem of utilizing imperfect hedging 

techniques to value equity-linked life insurance contract with market restrictions: 

stochastic interest rate and transaction costs. We employ two powerful imperfect hedging 

techniques to investigate the problem – quantile hedging and efficient hedging. We show 

that they are effective tools for managing both financial and insurance risk inherent in 

equity-linked life insurance contracts in a stochastic interest rate economy. Moreover, we 

incorporate transaction costs in the analysis of quantile hedging on equity-linked life 

insurance contract.  

 In chapter 2 and chapter 3, we hedge a single premium equity-linked life insurance 

contract with a stochastic guarantee from quantile and efficient hedging with a stochastic 

interest rate respectively. We present the explicit theoretical results for the premium of a 

contract paying the maximum of two risky asset values at maturity, providing the insured 

can survive to this date. These results allow the straightforward calculation of survival 



 

probabilities for the contract owner, which can quantify the insurance companies’ 

mortality risk and target their potential clients. Meanwhile, the numerical examples 

illustrate the corresponding risk management strategies for insurance companies by 

applying quantile and efficient hedging. 

Chapter 4 analyzes the application of quantile hedging on equity-linked life 

insurance contracts in the presence of transaction costs. We obtain the explicit 

expressions for the expected present values of hedging errors and transaction costs. 

Furthermore, the estimated expected present values of hedging errors, transaction costs 

and total hedging costs are also computed from a simulation approach to compare with 

the theoretical ones. Finally, the quantile hedging costs of the contract’s maturity 

guarantee inclusive of transaction costs are discussed.  
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1. Introduction 

Traditional life insurance products are designed to provide financial security for the 

policy holders and their families. The benefits are always fixed and provided on the death 

or survival of the insured life. The policy holder can pay single or periodic premiums 

during the contract term. Insurance companies only need to consider insurance risk, 

which is reflected by mortality for the purpose of risk management. However, the 

insurance market has been changing tremendously around the world over the past 

decades. Policyholders have become more aware of investment opportunities outside the 

insurance market, particularly in the financial market such as stocks, mutual funds etc. 

They prefer to enjoy the benefits of equity investment with mortality protection. In order 

to meet this challenge, insurance companies have issued a new type of investment 

products - equity-linked life insurance contracts, such as the variable annuities in USA, 

Segregated funds in Canada. 

In contrast to the traditional life insurance policy, the benefit provided by an 

equity-linked life insurance policy depends on both the performance of some financial 

assets, such as stocks and foreign currencies, as well as insurance type-events, such as 

how long the contract owner will survive. Therefore, this benefit is stochastic and 

appealing to policyholders because of higher yields from the financial market and a 

variety of guarantees. Equity-linked business has been especially successful and contains 

variety types of products. For instance, variable annuities and equity-indexed annuities 

have become popular these years in the United States, which offer different forms of 

equity-linking guarantees. In Canada, segregated funds have been popular since the late 

1990s, which offer complex guaranteed values on death or maturity. In the United 

Kingdom, unit-linked insurance typically combines a guaranteed minimum payment on 

death or maturity with a type of mutual fund investment. While in Germany, 
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equity-linked endowment insurance is being introduced. 

With the growth in equity-linked business, issuing such products also brings pricing 

and risk management challenges to insurance companies. They are facing not only the 

traditional insurance risk but also the financial risk generated from the investment. 

Therefore, the topic of finding the appropriate hedging approach to value the contracts, 

risk elements and to provide the efficient risk management strategies is important from 

both theoretical and practical perspectives. The main goal of this thesis is to investigate 

the problem of appropriate valuing equity-linked life insurance contracts and hedging the 

involved risks. 

Equity-linked life insurance contracts have been studied since the mid 1970s. As will 

be discussed in Section 2.1, applying the perfect hedging approach from the 

Black-Scholes option pricing theory has become a popular method since the initial papers 

Brennan & Schwartz (1976, 1979) and Boyle & Schwartz (1977). However, the fact that 

the insurance market is incomplete was not considered. This motivated a number of 

research works devoted to the application of imperfect hedging techniques to value the 

contract such as mean-variance (Moeller (1998, 2001)), utility-based approach (Hodges 

& Neuberger (1989), Young & Zariphopoulou (2002)), etc. In this thesis, we select two 

well-accepted imperfect hedging techniques: quantile hedging and efficient hedging to 

value the equity-linked life insurance contract. Quantile hedging was developed by 

Follmer & Leukert (1999), which can obtain the optimal hedge by maximizing the 

probability of successful hedging. A closely related idea appears by Browne (2000). 

Efficient hedging was also developed by the same authors in Follmer & Leukert (2000) 

which aims to minimize the expected shortfall risk. The idea to use both powerful 

methods in the area of equity-linked life insurance was proposed in two papers by 

Melnikov (2004a, 2004 b). 

In current literatures, such as Bacinello & Ortu (1993), Ekern & Persson (1996), 

Milevsky & Posner (2001), Melnikov & Romaniuk (2006, 2008), Melnikov & 
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Skornyakova (2005, 2011)), many financial market restrictions are placed on the models, 

one of which is to assume a zero or constant interest rate. As equity-linked life insurance 

contracts usually have long-term maturities, the valuation results may be sensitive to a 

change of interest rates. Therefore, our study of quantile and efficient hedging on 

equity-linked life insurance contracts considers a stochastic interest rate environment, 

which is more representative of the real world situation. Another important restriction is 

the frictionless market, which does not consider the transaction costs. In the real financial 

market, the investors must pay transaction costs during each trading. As the benefit of 

equity-linked life insurance is based on the investment in financial market, insurance 

managers are also involved in hedging and trading in the financial market due to the 

selected portfolio’s performance. Therefore, in this thesis, we also incorporate the 

transaction costs as a factor into the study of quantile hedging costs for the premium of 

equity-linked life insurance contract and the costs for maturity guarantees.  

The outline of the thesis is arranged as followed: 

In Chapter 2, we first give a short review of the imperfect hedging techniques on 

equity-linked life insurance. Then we discuss the problem of applying quantile hedging 

on equity-linked life insurance contracts in a stochastic interest rate economy. We work 

with a single premium contract with a stochastic guarantee. The contracts under 

consideration are based on two risky assets, which satisfy a two-factor jump-diffusion 

model: one asset is responsible for future gains, and the other one is a stochastic 

guarantee. In our setting, the stochastic interest rate behavior is described in the 

Heath-Jarrow-Morton framework. In addition, explicit formulas for both the premium of 

the contracts and the implied survival probability are obtained by the changing of 

measures technique under an initial budget constraint. Risk management strategy from 

quantile hedging for the insurance contract is also discussed. 

In Chapter 3, instead of quantile hedging, we study the same problem of hedging 

equity-linked life insurance contracts in a stochastic interest economy with efficient 
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hedging technique. We work on the same contract, which has a stochastic guarantee as in 

Chapter 2. In Section 3.3, we present our theoretical results of a contract’s premium and 

the implied survival probability where the two risky assets’ financial models are driven 

by the same Wiener process. It can be considered as a special case where the models are 

generated from two correlated Wiener processes with correlation 1ρ = . In Section 3.4, 

we conduct the research in the case of 1ρ < and give the theoretical results. Moreover, 

numerical examples illustrate how the efficient hedging technique can be applied to 

manage the balance between financial and insurance risks for a risk-taking insurance 

company. 

In Chapter 4, we analyze the application of quantile hedging on equity-linked life 

insurance contracts in the presence of transaction costs. Following the similar time-based 

replication strategy discussed by Leland (1985) and Toft (1996), we present the explicit 

expressions for the expected present values of hedging errors and transaction costs. The 

results are derived by using Leland’s transaction costs adjusted hedging volatilityσ . For 

the purpose of comparison, the estimated expected present values of hedging errors, 

transaction costs and total quantile hedging costs are obtained from a similar simulation 

approach utilized by Boyle & Hardy (1997). Finally, the costs of maturity guarantee for 

equity-linked life insurance contract inclusive of transaction costs are discussed.  

In Chapter 5, we simply conclude the thesis and suggest several directions for future 

studies in the area of imperfect hedging on equity-linked life insurance.  

The thesis also concludes with bibliography, Appendix 1 which contain the proof of 

Theorem 3.1 from the Multi-Asset Theorem in Melnikov & Romaniuk (2008), and 

Appendix 2 with some formulas in Toft (1996) which can be used to prove the Theorems 

4.2 ~ 4.5.  
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2. Quantile hedging on equity-linked life insurance contracts in a 

stochastic interest rate environment 

2.1. Brief history of imperfect hedging in insurance market 

Using different hedging strategies for pricing has been common in financial 

mathematics since the celebrated results by Black & Scholes (1973) and Merton (1973) 

on the pricing of call options. In a complete financial market, the so-called fair price is 

the minimal capital required to replicate the contingent claim. These results from the 

financial market shed light on the area of valuation for equity-linked life insurance 

products in insurance market.  

Brennan & Schwartz (1976, 1979) and Boyle & Schwartz (1977) were the first 

papers to investigate the problem of premium calculation for equity-linked life insurance 

contracts. They decomposed the payoff of a single premium equity-linked life insurance 

contract into a call/put European option on the reference asset and some guaranteed 

amount. Then, the Black-Scholes option pricing results was applied to evaluate the 

equity-linked life insurance contract embedded with some financial guarantee.  

Since then, it has becomes a conventional practice to reduce the payoff of the 

contract into a call (put) European option and apply perfect hedging techniques to 

calculate the premium. Bacinello & Ortu (1993) extended the results of Brennan & 

Schwartz (1976, 1979) to the case where the contract’s minimum guarantees depend 

functionally on the premiums and are determined endogenously. Aase & Persson (1994) 

assumed that the number of shares of the reference portfolio included in the benefit is 

non-random, and they derived the analytical results in the case of periodic premiums. 

Later, Ekern & Persson (1996) applied fair pricing valuation to price the contracts with 

various kinds of guarantees, including fixed deterministic and stochastic guarantees. 

Boyle & Hardy (1997) examined the pricing and reserving for the contract’s maturity 
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guarantee. The authors provided a minimum level of benefit at contract maturity based on 

stochastic simulation and option pricing approaches. Milevsky & Posner (2001) applied 

the risk-neutral options pricing to value the various kinds of variable annuities with the 

minimum death benefit guarantee. 

Issuing equity-linked life insurance contracts as the investment products, insurance 

companies are involved in the risk from both financial and insurance markets. The risk 

from the insurance market is also called mortality risk. The standard actuarial practice 

assumes that sufficient contracts can be written to eliminate the mortality risk. However, 

it will be explained in detail in Section 2.5 that the insurance market is incomplete so that 

the mortality risk cannot be offset by trading in the insurance market. As a result, perfect 

hedging from the Black-Scholes and Merton framework applied on the valuation of 

equity-linked life insurance contract is questionable. Many studies turned to investigate 

the application of imperfect hedging techniques on the valuation research. 

Moeller (1998) exploited mean-variance hedging on equity-linked life insurance 

contracts. The method is determined by minimizing the squared of the difference between 

the terminal value of the hedging strategy and the value of contingent claim at contract 

maturity. Moeller (2001) further examined a portfolio of equity-linked life insurance with 

risk-minimizing hedging strategy within a discrete-time setup in the Cox-Ross-Rubinsten 

(CRR) model. Generalized from the utility-based indifference pricing approach in 

Hodges & Neuberger (1989), Young & Zariphopoulou (2002) introduced an expected 

utility approach to value the insurance risk in a dynamic financial market setting. Young 

(2003) determined the risk-adjusted single and continuous premiums and the 

corresponding reserves for equity-indexed term life insurance by extending the principle 

of equivalent utility. Moore (2009) studied the optimal surrender strategy on an 

equity-indexed annuity by maximizing the expected utility of bequest and discussed the 

optimal time to surrender the contract. 

Follmer & Leukert (1999) developed the quantile hedging technique, which can 
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optimally hedge the option with maximal probability in a class of self-financing strategies 

with restricted initial capital. This technique was applied to value equity-linked life 

insurance contracts by Melnikov (2004a, 2006) in the Black-Scholes framework. 

Melnikov & Skornyakova (2005) extended the risky assets’ financial model into a 

two-factor jump-diffusion model, where the second risky asset could be considered as a 

stochastic guarantee for the contracts. Melnikov & Romaniuk (2006) studied the effect of 

different mortality models on risk management with unit-linked life insurance contracts 

where the risks are assessed from quantile hedging. Yumin Wang (2009) presented how to 

optimally hedge the variable annuity contracts with guaranteed minimum death benefits.  

Compared with quantile hedging, efficient hedging introduced in Follmer & Leukert 

(2000) is a more general imperfect hedging approach, which focuses on minimizing the 

expected size of shortfall risk. The shortfall risk is defined as the expectation of the 

positive difference between the terminal value of the hedging strategy and the value of 

contingent claim at contract maturity weighted by a loss function. Efficient hedging 

technique has also been applied to hedge equity-linked life insurance contracts. Melnikov 

(2004b) investigated the problem in a diffusion financial setting. Kirch & Melnikov 

(2005) utilized the efficient hedging for optimal pricing equity-linked life insurance 

contracts in a jump-diffusion framework, where the models of two underlying risky assets 

are driven by the same Wiener process. Melnikov & Romaniuk (2008) made the 

contribution considering the contracts whose payoff depends on the performance of 

several risky-assets. Melnikov & Skornyakova (2011) worked on the contracts with 

stochastic guarantee and the shortfall risk measured by a power loss function.  

2.2. Description of the problem 

Different imperfect hedging techniques have been intensively studied for pricing 

equity-linked life insurance contracts. The risk management strategies are also designed 

based on the corresponding techniques. Most research papers mentioned in Section 2.1 
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assumed that the interest rate is either constant or deterministic throughout the entire life 

of the contract. Figure 1 shown below is the historical data on 20 years monthly Treasury 

Bills rates with 3-month maturity. Data range is from July-1993 to July 2013 (Data is 

available at Board of Governors of the Federal Reserve System). It is observed from 

Figure 1 that rate is randomly distributed over 20 years. It sticks near 5% over the first 7 

years. However, it is not able to maintain the same trajectory for the long term. The value 

of the rate after 15 years drops as low as 0.04%. The assumption of a flat interest rate for 

hedging equity-linked life insurance contract may be possible for short-term ones. 

However, life insurance products usually have long-term maturities, and it is more 

practical to incorporate a stochastic interest rate in the analysis.  

 

 

Figure 2.1 Three-month Treasury Bills rate from July 1993 till July 2013. 

 

Many research papers are devoted to value equity-linked life insurance contract with 

stochastic interest rate. For example, Nielsen & Sandmann (1995) utilized the random 

interest rate options to value equity-linked life insurance with periodic premium. As no 

closed form solution was obtained, numerical techniques were applied to approximate the 

contract value. Nielsen & Sandmann (1996) derived the existence of fair premium 

principles for the guarantee within equity-linked life insurance contract. Miltersen & 



 

9 

Persson (1999) derived the explicit pricing formulas for maturity and multi-period 

guarantees on both the stock market return processes and the short-term interest rate 

return processes. The price calculation based on the perfect hedging in Brennan & 

Schwarz (1976). Bacinello & Persson (2002) further generalized the pricing formulas for 

equity-linked life insurance contract from deterministic interest rate to stochastic interest 

rate by a similar strategy. One important assumption in their study is the independence 

between financial and mortality factors. 

As the insurance market is incomplete, Gao et al. (2010) first studied the effect of 

stochastic interest rates on quantile hedging of equity-linked life insurance contracts. The 

authors considered a contract with deterministic guarantee that depends on a constant rate 

of return. They obtained the results in the context of diffusion models for simplicity. Due 

to the infrequent and large surprises to the investor’s information set, there exist jumps in 

various financial assets prices. It has been shown that jumps have significant implications 

for derivative pricing, risk management and portfolio allocation. From a practical point of 

view, discontinuous models inclusive jump components are more realistic for both the 

stochastic interest rate and the value of risky assets.  

In the following chapter, our aim is to examine the jump-diffusion model for quantile 

hedging in a stochastic interest rate environment. We focus on a single premium 

equity-linked life insurance contract with more a appealing maturity guarantee dominated 

by the performance of a risky asset. The Heath-Jarrow-Morton (HJM) term structure 

model is widely accepted as the most general framework to value the stochastic behavior 

of interest rate. It includes the term structure models of Vasicek (1977), Cox, Ingersoll 

and Ross (1985) as special cases. Here we use a generalized HJM jump-diffusion model 

of the term structure of interest rate, which is similar to the framework of Shirakawa 

(1991), and Chiarella & Sklibosios (2003).  

In Section 2.3, the quantile hedging technique developed in Follmer & Leukert (1999) 

is discussed in detail. In Section 2.4, some well-known stochastic interest rate models in 
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literatures are introduced briefly. Section 2.5 presents the theoretical results of applying 

quantile hedging on equity-linked life insurance contracts. Section 2.6 provides a 

numerical example to demonstrate the risk management strategy for an insurance 

company from quantile hedging. Note that all the analysis in this thesis does not consider 

either model risk or parameter risk. Numerical examples are only for illustration purpose. 

The employed or estimated parameters might not be accurate for different time periods or 

other situations. The idea is to provide a convenient way to focus on the main purpose of 

this thesis. 

2.3. Quantile hedging 

 In a complete financial market, every contingent claim can be hedged perfectly. 

However, in an incomplete market, it is possible to stay on the safe side by superhedging 

(See El Karoui & Quenez (1995), Karatzas (1997)). In many situations, superhedging 

needs a large amount of initial capital to set up the portfolio, which seems costly from the 

practical point of view. In this case, it naturally arises the following questions: what if the 

investor is unwilling or unable to put up the large amount of initial capital required for 

super-hedging? Are we able to construct a hedging strategy so that the investor can 

achieve the maximal probability of a successful hedge with a smaller amount of initial 

capital? The answers can be found in Follmer and Leukert (1999) in which the authors 

developed an imperfect hedging technique - quantile hedging. In this section, we will 

introduce this approach in detail, where the hedge is implemented with probability less 

than 1. 

 There exist two forms of problems involved with quantile hedging: the primary one 

is to minimize the value of a minimal hedging given the hedging probability; the dual 

problem is to maximize the hedging probability given a constraint on the initial value of a 

minimal hedge. In this sense, such hedging problem is methodologically related with the 

problem of statistical confidence estimation. Quantile is one of the main concepts in the 
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general theory of estimation, which is the boundary of the domain of estimation with a 

specific probability. So the approach of hedging with probability less than 1 has come to 

be named as “quantile” hedging.  

As an imperfect hedging technique, quantile hedging is based on the important 

statistical result of the Neyman-Pearson fundamental lemma. Suppose we want to test the 

null hypothesis 0H with probability measure 0P , against the alternative hypothesis 1H with 

probability measure 1P . Type I errorα is defined as rejecting 0H when it is true, and 

Type II errorβ is defined as accepting 0H when it is false. Generally, the probability 

measure corresponding to the alternative hypothesis is considered as the real-world 

probability measure or the objective measure. The aim of the test is to reject 0H when it 

is indeed false. During the test of two hypotheses, we need to control the size of Type I 

errorα while minimizing the Type II error β . Equivalently, we can fixα and maximize 

the power of the test1 β− . Referring to Lehmann (1986), the Neyman-Pearson lemma is 

stated as following: 

Lemma 2.1: .eyman-Pearson lemma  

A sufficient condition for a most powerful test: If a test φ satisfies  

                         ( )( )0E Xφ α=                           (2.1) 

                      

1

0

1

0

1

0

dP
when c

dP

dP
when c

dP

φ

 >
= 
 <


                      (2.2) 

for some constant c , then it is the most powerful for testing measure 0P against 

measure 1P at levelα . 

 The conclusion of the Neyman-Pearson lemma is the basis for the analysis of both 

quantile hedging and efficient hedging which will be discussed in Chapter 3. It provides 
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the structure of the set on which the power of the test 1 β− is maximized with a given 

significance levelα . 

We follow the main ideas in Follmer & Leukert (1999) and assume the risk-free 

interest rate is a constant r . Note that Follmer & Leukert (1999) conducted the 

calculations assuming that the risk-free interest rate r equals zero. Suppose that the 

discounted price process ( ) [ ]0,t t T
X X

∈
= of the underlying risky asset is a semimartingale 

on a probability space ( ), ,F PΩ with the filtration ( ) [ ]0,t t T
F

∈
. Let P denote the set of all 

equivalent martingale measures. If the set P is non-empty, there is no arbitrage 

opportunity in the market.  

A self-financing strategy ( )0 , tVπ ξ= is defined by an initial capital 0 0V ≥ and a 

predictable process tξ which is the number of units invested on risky asset, if the 

corresponding value process
tV satisfies: 

               0
0

t

t s sV V dXξ= + ∫ , [ ]0,t T∀ ∈ , . .P a s−                  (2.3) 

Such strategyπ is admissible if  

                    0tV ≥ , [ ]0,t T∀ ∈ , . .P a s−                        (2.4) 

We consider a contingent claim whose payoff H is
TF -measurable. A successful 

hedging set A  is defined as { }: rT

TA V Heω −= ≥ . The completeness of the market 

implies an unique martingale measure 
* PP ≈ , such that the payoff H can be hedged 

perfectly under the martingale measure
*P with the required initial cost 

( )*

0

rTH E He−= , where
*E denotes the expectation with respect to

*P . With the unique 

hedging strategy, we also have ( ) 1P A = . However, if the investor is unable to allocate 

the required initial capital for perfect hedging, what is the best hedge he can achieve with 

a smaller amount 0 0V H<ɶ ? The problem can be formulated as to construct an admissible 
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strategy ( )0 , tV ξ such that 

                  ( )0
0

max
T

T s sP V V dX Hξ= + ≥ =∫                  (2.5) 

         Under constraint       
00 0V V H≤ <ɶ                         (2.6) 

Follmer and Leukert provided the answer by quantile hedging, where the conclusions can 

be summarized into the following lemma in Melnikov, et. al (2002, pp105-107). 

Lemma 2.2: Let TA F∈ɶ be the solution of the following problem: 

                          ( ) max,P A →                        (2.7) 

                      ( )*

0 0

rT

T AE H e I V H− ≤ <ɶ                      (2.8) 

where {}I ⋅ is the indicator function. Then a perfect hedgeπɶ with initial value 0V for the 

contingent claim
A

H H I= ⋅ ɶ
ɶ  is the solution of the problem (2.5)-(2.6), and the successful 

hedging set A coincides with Aɶ .  

 Lemma 2.2 states that the constructed optimal hedgeπɶ , so called quantile hedge, is 

the perfect hedge for a modified contingent claim Hɶ . The payoff H can be hedged with 

maximal probability on the set Aɶ , which is also called the maximal success set. Based on 

Neyman-Pearson lemma, the structure of Aɶ can be obtained. We can define a probability 

measure 
*Q with density: 

                              

*

*

0

rT

dQ H

dP H e
=                           (2.9) 

It is assumed that
*Q corresponds to measure 0P and P corresponds to measure 1P during 

the hypothesis test in Lemma 2.1. Under the measure
*Q , the budget constraint 

( )*

0

rT

AE He I V− ≤ ɶ  becomes 

                         ( ) ( )
* 0 0

*
0

rT

V V
Q A

H E He−
≤ =
ɶ ɶ

                  (2.10) 
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We maximize the power of the hypothesis test given the Type I errorα equal to 0

0

V

H

ɶ
. 

From Neyman-Pearson lemma, the maximal success set Aɶ has the following structure: 

                        
*

rTdP
A aHe

dP

− = > 
 

ɶ ɶ                         (2.11) 

where 
*dP

dP
is the density of the equivalent martingale measure, and aɶ is a constant 

determined from the condition 
*

*
inf :

dP
a a Q a

dQ
α

  
= > ≤  

  
ɶ . With the structure for 

the maximal success set Aɶ , it allows us to calculate the explicit expressions for initial 

cost 0V and the units of risky assetξ . 

2.4. Brief Introduction on interest rate models 

 Interest rate is one of the most important factors for pricing and hedging derivatives, 

determining the cost of capital, and managing risk from both financial and insurance 

markets. The topic of term-structure modeling has been covered for many years, which 

aims to create the plausible projections of future interest rate paths or scenarios. 

Extensive amount of stochastic term-structure models have been developed for 

forecasting the short, medium and long term interest rate values and reflecting the shape 

of the yield curve. Some equilibrium models are derived from proposed relationships 

between supply and demand for funds. Some no-arbitrage models use the current term 

structure as a starting point and generate changes from the current values. Furthermore, 

the term-structure models range from very simple to extremely complex. Some 

single-factor interest rate models contain only one stochastic variable, while other 

two-factor and multi-factor models include more stochastic variables which can better 

capture the term-structure behaviour in the real world as well as reflecting the 
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mean-reversion speed and the volatility factor. In this section, we will briefly introduce 

some well-known stochastic interest rate models in literatures.  

 Merton (1973) was the first one to introduce a single-factor model for the 

term-structure of interest rates. The model can be described as following: 

                           t r r tdr dt dWµ σ= +                        (2.12) 

where
rµ and

rσ are constants, and 
tW is the standard Wiener process. Even though the 

Merton’s model has bias, such as the negative interest rate values and constant 

risk-premium, it is important and can be considered as the starting point from which the 

variety of short term rate models are developed.  

 Vasicek (1977) modeled the short term interest rate as an Ornstein-Uhlenbeck 

process, which is also known as a mean reverting process. The model is given by 

                          ( )t t tdr a b r dt dWσ= − +                    (2.13) 

where a , b and σ are positive constants; 
tW is a standard Wiener process. The 

parameter b reflects the long run equilibrium level towards which tr reverts. The drift 

factor ( )ta b r− represents the expected instantaneous change on the interest rate at time t . 

The advantage of Vasicek model is to reduce the probability of unreasonable large or low 

interest rates by utilizing the mean reverting process.  

 One of the main disadvantages of Vasicek model is the negative values of interest 

rate, which is improved by the model proposed in Cox-Ingersoll-Ross (CIR) (1985). The 

CIR model is also known as the square root model: 

                           ( )t t tdr a b r dt dWσ= − +                  (2.14) 

where a determines the speed of adjustment. The CIR model takes only positive values of 

interest rate due to the presence of the square root in the diffusion coefficient. Even if the 

interest rates approaches zero, it can still become positive. Besides, the interest rate can 

follow a steady state distribution.  
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 Ho & Lee (1986) described a single-factor no-arbitrage model, which is the first 

arbitrage-free model of term-structure of interest rates. The continuous time model is 

described as following: 

                              
( ) 20,

t t t

t t

dr dt dW

f t t

θ σ
θ σ

= +
 = +

                    (2.15) 

whereσ is a constant volatility, ( )0,tf t is a instantaneous forward rate at time 0t = , 

tθ is a function of time t . With Ho-Lee model, the initial term-structure is exogenously 

obtained. It follows a lattice model with upward and downward movements, tending 

towards a binomial tree. The probabilities of upward and downward movements are 

determined by risk-neutral probability measures. However, Ho-Lee model contains no 

mean-reverting characteristic and is not arbitrage-free in all cases. 

  Hull & White (1990) developed a class of models which incorporate mean-reverting 

features and have more flexibility to fit a given yield curve. The generalized Hull-White 

model has the expression as: 

                          ( )t t t t t tdr a r dt dWθ σ= − +                    (2.16) 

where tθ is selected to ensure that the model fits the initial term-structure. Functions 

ta and tσ are parameters which are chosen to fit the market price of a set of actively 

traded interest-rate options. It is noted that when 0ta = and tσ is a constant, Ho-Lee 

(1986) is a special case of the generalized Hull-White model.  

 Heath, Jarrow and Morton (HJM) (1992) constructed a family of continuous-time 

term-structure models in an arbitrage-free framework. The behavior of instantaneous 

forward rate ( ),f t T , which is locked at time t for investing at timeT , was modelled as: 

              ( ) ( ) ( ), , , tdf t T t T dt t T dWα σ= + , 0 t T≤ ≤              (2.17) 

where processes ( ),t Tα and ( ),t Tσ may be random, tW is the Wiener process under 
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actual measure P . It is also proved that under risk-neutral measure
*P , the non-arbitrage 

drift is a function of selected forward rate volatility as: 

                    ( ) ( ) ( )
0

, , ,
t

t T t T t s dsα σ σ= ∫                      (2.18) 

which brings a big advantage for calibration the parameters of the term-structure model. 

The spot rate tr is defined as the instantaneous forward rate at time t for date t , i.e., 

                     ( ),tr f t t=  for all [ ]0,t T∈                      (2.19) 

The HJM model is easy to understand and naturally calibrated to the currently 

observed yield curve. It is widely accepted as the most general and consistent framework, 

which includes Vasicek, CIR and Hull-White models as special case. With the rapid 

advances in computer technology, HJM model is becoming increasingly practical. 

Various generalized models are being adopted by practitioners for pricing and hedging of 

interest rate derivatives. Brace, Gatarek & Musiella (1997), Jamshidian (1997), and 

Miltersen, Sandmann & Sondermann (1997) extended HJM model to capture 

non-instantaneous forward rates. The modification comes to be known as the Libor 

Market Model (LMM). Amin & Jarrow (1992) made the contribution on modifying HJM 

model to include additional risky assets and also considered American-type options. 

Shirakawa (1991) incorporated jump component into HJM model to solve the call option 

pricing problem for European pure discount bond. The author assumed only a finite 

number of possible jump sizes and there exist a sufficient number of traded bonds to 

hedge away all of the jump risks to guarantee the completeness of the market. Chiarella 

& Sklibosios (2003) generalized HJM model into a jump-diffusion framework assuming 

a specific formulation of level and time-dependent volatility. They obtained the 

corresponding Markovian representation of the spot rate and bond price dynamics in 

terms of a finite number of state variables.  

Besides the above described term-structure models, there exist other well-known 

interest rate models such as volatility models including Exponentially Weighted Moving 
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Average models (EWMA), Generalized ARCH models (GARCH). There is no single 

model which is best for all applications. In this thesis, the HJM model is utilized to 

capture the stochastic interest rate behaviour and quantify the insurance risk associated 

with interest rate.  

2.5. Application of quantile hedging on equity-linked life insurance 

2.5.1 Financial settings 

Let ( )( )0
, , ,t t

F P
≥

Ω F  be a standard stochastic basis, where the filtration 

( )
0t t

F
≥

satisfies the usual conditions and represents a flow of available information. We 

assume that all processes are adapted to this filtration. We work in a financial market 

which contains two risky assets 
1S and 

2S , where ( ) [ ]0,

i i

t
t T

S S
∈

= satisfy the following 

two factor jump-diffusion model: 

                ( )i i

t t i i t i tdS S dt dW dµ σ ν−= + − Π , 1,2i = ,              (2.20)                                             

where
iµ ,

iσ and
iν are all constants, T is a finite time horizon. 

i Rµ ∈  are the 

instantaneous rate of return; 0iσ > are the instantaneous volatility of the risky assets; 

1iν <  represent the jump size for the price process of risky asset. 
tW is a standard 

Wiener process under measure P , and tΠ is a Poisson process with a constant 

intensity 0λ > . We assume the first asset
1S is more risky than the second one

2S . 

Equivalently, we have 1 2σ σ> . In addition, all trades are assumed to be taken place in a 

frictionless market, i.e. no transaction costs or taxes.  

Information flows affect interest rates continuously in small amounts, best described 

by diffusion processes. Yet, on the rare occasion, surprise information events have large 

economic impact, causing interest rates to have jumps. Therefore, the choice of 
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jump-diffusion processes to describe the movements in interest rates trajectories is natural. 

As in Chiarella & Sklibosios (2003), we consider a default-free bond market where 

arbitrary maturity bonds are traded continuously within a finite time horizon [ ]0,T . 

( ),f t T  represents the instantaneous forward rate at time t  for instantaneous 

borrowing at time ( )T t≥ . Let ( ),P t T be the price of a default-free discount 

zero-coupon bond at time t with maturityT , which pays $1 at maturity time, i.e. 

( ), 1P T T = . By the definition of forward rate ( ),f t T , ( ),P t T is given by: 

                    ( ) ( )( ). exp ,
T

t
P t T f t s ds= −∫                      (2.21) 

The spot interest rate ( ){ }
t T

r t
≤

at time t is also defined by the instantaneous forward 

rate ( ),f t T  as: 

                            ( ) ( ),r t f t t=                            (2.22) 

We define an accumulation factor by ( )( )0
exp

t

tB r s ds= ∫ , which is a money 

market account starting with a dollar investment at time 0. Besides, tB also satisfies the 

following dynamics: 

                       ( )t tdB B r t dt
−

=                           (2.23) 

Following the extended HJM framework, the stochastic differential equation for the 

instantaneous forward rate ( ),f t T is given by: 

           ( ) ( ) ( ) [ ], , , t tdf t T t T dt t T dW d dtα σ β λ= + + Π −             (2.24) 

where [ ]: 0,T Rα +→  is the drift function, [ ]: 0,T Rσ +→ is the volatility function, 

λ is the constant intensity for the Poisson process TΠ , β is the constant jump size for 

the forward rate process. 

Based on (2.24), the forward rate ( ),f t T can also be expressed as: 
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     ( ) ( ) ( ) ( ) [ ]
0 0 0

, 0, , ,
t t t

s sf t T f T s T ds s T dW d dsα σ β λ= + + + Π −∫ ∫ ∫     (2.25)  

where ( )0,f T is the given initial forward rate curve. 

Substituting T t=  into (2.25), we arrive at the stochastic integral equation for the 

instantaneous spot rate ( )r t as: 

      ( ) ( ) ( ) ( ) [ ]
0 0 0

0, , ,
t t t

s sr t f t s t ds s t dW d dsα σ β λ= + + + Π −∫ ∫ ∫        (2.26)  

By Ito’s lemma, we obtain the dynamics for zero-coupon bond price ( ),P t T as 

following: 

    
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) }

2
* *

*

1
, , , ,

2

, 1
T t

t t

dP t T P t T r t t T T t t T dt

t T dW e d
β

α β λ σ

σ

−

− −

  = − + − +    

− + − Π

    (2.27) 

where ( ) ( )* , ,
T

t
t T t s dsα α= ∫ , ( ) ( )* , ,

T

t
t T t s dsσ σ= ∫ . 

For a security market under consideration, one can determine conditions under 

which a unique equivalent martingale measure 
*P does exist. Following the techniques 

in According to Melnikov et al. (2002), there exits the unique martingale 

measure
*P under the conditions:  

       
( )( ) ( )( )1 2 2 1

2 1 1 2

0
r t r tµ σ µ σ

σ ν σ ν

− − −
>

−
,  given 2 1 1 2 0σ ν σ ν− ≠ .       (2.28) 

By Girsanov’s theorem, under the measure
*P , 

*

0

t

t t sW W dsφ= − ∫ is a standard 

Wiener process, tΠ is a Poisson process associated with new intensity
*

tλ , and the 

processes 
*

tW and tΠ are independent. The process tφ  can be interpreted as the market 

price of the diffusion risk, while 
*

tλ  represents the market price of jump risk generated 

by the Poisson process. 

The risk-neutral measure
*P has a local density with expression as: (presented in 

Shirakawa (1991), Melnikov & Skornyakova (2005)) 
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 ( ) ( )
*

2 * *

0 0 0

1
exp ln ln

2

t t t

t s s s s t t

t

dP
Z dW ds ds

dP
φ φ λ λ λ λ = = − + − + − Π 

 ∫ ∫ ∫      (2.29) 

where the pair ( )*,t tφ λ satisfies the following equations 

                    
( )
( )

*

1 1 1

*

2 2 2

0

0

t t

t t

r t

r t

µ φσ ν λ
µ φσ ν λ

 − + − =


− + − =
                      (2.30) 

Solving the above equations, we get 

                 
( )( ) ( )( )1 2 2 1

2 1 1 2

t

r t r tµ ν µ ν
φ

σ ν σ ν

− − −
=

−
                    (2.31) 

                
( )( ) ( )( )1 2 2 1*

2 1 1 2

t

r t r tµ σ µ σ
λ

σ ν σ ν

− − −
=

−
                    (2.32)  

Under the risk-neutral measure
*P , we can calculate the dynamics of the forward 

interest rate ( ),f t T  and the spot interest rate ( )r t and obtain:  

    
( ) ( ) ( ) ( ) ( )

( )

* *

0 0

* *

0 0

, 0, , , ,

1

t t

s

t tT s

s s s

f t T f t s T s T ds s T dW

e ds d ds
β

σ σ σ

βλ β λ− −

= + +

   + − + Π −  

∫ ∫

∫ ∫
         (2.33) 

    
( ) ( ) ( ) ( ) ( )

( )

* *

0 0

* *

0 0

0, , , ,

1

t t

s

t tt s

s s s

r t f t s t s t ds s t dW

e ds d ds
β

σ σ σ

βλ β λ− −

= + +

   + − + Π −  

∫ ∫

∫ ∫
              (2.34) 

where the forward rate drift function ( ),t Tα in (2.24) satisfes the following condition: 

       ( ) ( ) ( ) ( )*, , ,
T T t

t t
t

t T t T t s ds e
βα σ φ σ β λ λ− −   = − + − −   ∫           (2.35) 

In this circumstances, the evolutions of risky asset price
i

tS , 1,2i = , can be rewritten 

as: 

      ( ) ( )2*

0
0

1
exp ln 1

2

t
i i

t i t i i i s t iS S W t dsσ µ σ σ φ ν
  = + − + +Π −    

∫       (2.36) 

which is the solution of the stochastic differential equation (2.20). 
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2.5.2 Insurance setting 

In this section, we work on a single premium equity-linked life insurance contract, 

which is also called “pure endowment”. We assume the insured does not receive any 

economic compensation for accepting mortality risk, which means the insured receives 

the payoff of the contract provided that he/she is alive at the contract maturity. The 

benefit of the contract is linked with both the financial performance of risky assets
1S , 

2S and the insured’s life. The risky asset 
1S is responsible for the maximal size of future 

profits, while the risky asset 
2S provides a stochastic guarantee to the insured.  

Let xT be a nonnegative random variable defined on another probability 

space ( ), ,F PΩɶ ɶ ɶ . This random variable xT represents the remaining life time of a 

policyholder with current age x -year old. ( )T x xp P T T= >ɶ is called the survival 

probability which denotes the probability of a life aged x surviving T more years. We 

take a natural assumption as in Bacinello and Persson (2002) that the financial market 

risk and the insurance risk reflected by the insured mortality have no effect on each other. 

Therefore, 
xT is independent of all processes reflecting financial quantities. We use

TH to 

denote the benefit of the contract paid at timeT , which depends on the market value of 

1

TS and on the guaranteed value
2

TS  at the maturity, i.e. 

                          ( )1 2max ,T T TH S S=                         (2.37) 

Considering the mortality risk, we are interested in the benefit { }T xH I T T⋅ > . Under the 

independence assumption for the financial and mortality risk, the premium 0X for the 

contract with payoff (2.37) can be calculated as following; 



 

23 

                  

{ }{ }
{ }

* 1

0

* 1

* 1

T T x

T T x

T T T x

X E E H B I T T

E H B E I T T

E H B p

−

−

−

 = > 

 = >   

 = ⋅ 

ɶ

ɶ                     (2.38) 

where {}I ⋅ is the indicator function. 

 Because of 0 1T xp< < , formula (2.38) implies that 

                      ( )* 1

0 0 T TX H E H B −< =                         (2.39) 

It is noticed that the mortality risk makes it impossible for the insurance company to 

hedge the payoff of equity-linked life insurance contract with probability 1. Moreover, 

the mortality risk can not be eliminated by trading directly. Therefore, the insurance 

market can be considered as an incomplete market. (2.39) can also be treated as a initial 

budget constraint for insurance company to achieve the perfect hedging. The initial 

amount 0X collected by insurance company from selling the contracts is less than the 

initial amount 0H needed to hedge the contract perfectly.  

2.5.3 Application of quantile hedging on equity-linked life insurance contract 

In the situation of an initial budget constraint (2.39) which is short of initial capital 

for the perfect hedging, quantile hedging technique can be utilized to provide the optimal 

hedging outcomes. In this section, we can extend the previous study on discussion of 

quantifying the insurance risk and developing the corresponding risk management 

strategies by taking quantile hedging strategy for the insurance company.  

The premium of the contract 0X is less than the amount 0H for the perfect hedging, 

which is similar as the given constraint for quantile hedging in (2.6). The Insurance 

company aims to construct a strategy which can maximize the probability of successful 

hedging with a smaller amount 0X . According to Follmer and Leukert (1999), the initial 
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amount 0X is also the cost of the constructed optimal strategy
*π (the quantile hedge). 

Meanwhile, the quantile strategy
*π can perfectly hedge the modified contingent 

claim *T T A
H H I= ⋅ɶ , where

*A (denoted as Aɶ in Section 2.3) is the maximal set of 

successful hedging which is in the form 0f
* * 1

* T T

dP
A a H B

dP

− = ≥ ⋅ 
 

. 
*a is a constant 

which can be determined from initial budget constraint (2.39). Compared with (2.38), the 

premium 0X can also be calculated from using the perfect hedging on modified 

payoff THɶ : 

                        ( )* 1

0 T TX E H B−= ɶ                        (2.40) 

Taken (2.38) into consideration, we can obtain the following equalities for the 

premium 0X : 

                   ( )* 1 * 1

0 T T T T T xX E H B E H B p− − = = ⋅ 
ɶ                (2.41) 

Therefore, the implied survival probability T xp is obtained from (2.41) as: 

                        
( )* 1

0

* 1
0

T T

T x

T T

E H B X
p

HE H B

−

−
= =

  

ɶ

.                    (2.42) 

 Equation (2.42) is called the key balance equation. It is essential to risk management 

analysis of quantile hedging on equity-linked life insurance contract, as the quantitative 

connection between the financial and insurance risk components are given in one formula. 

This connection can allow the insurance company to evaluate the bearing risks accurately 

and to implement specific risk management strategies for controlling the corresponding 

risks. Besides the mortality risk reflected by clients’ survival probability
T xp , insurance 

company also faces a default financial riskε which measures the probability that the 

quantile hedging fails. The firm issues the equity-linked life insurance contracts to the 

clients while collecting the premium 0X . Then 0X is invested as the initial cost into 
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quantile hedging to maintain the maximum probability of the successful hedging1 ε− . 

Alternatively, insurance company can determine some acceptable level of default 

financial riskε first, and then they can determine the survival probability T xp for the 

potential clients. In the end, based on available mortality life tables, the ages of the 

corresponding clients can be obtained. 

Equation (2.42) provides a guidance for insurance company to quantify the mortality 

risk. In order to obtain the survival probability T xp for the contract policy holders, we 

present explicit formula for the premium 0X of equity-linked life insurance contract in the 

following theorem: 

Theorem 2.1: We consider a financial market model (2.20) with a HJM framework (2.17) 

and (2.19).  A single premium equity-linked life insurance contract has the payoff 

( )1 2max ,T T TH S S= at maturity. The Brennan-Schwartz price for contract from quantile 

hedging is 

         

( ) ( )

( ) ( )

*
1

0

*
2

0

* 1 2

0 , 1 0 1 2 1 2

0

2 2

2 0 1 2 1 2

1 , ; , ,

1 , ; , ,

T

t

T

t

v dt n

n T

n

v dt n

X p e v S

e v S

λ

λ

ρ δ δ

ρ δ δ

∞

=

 ∫= − Ψ Γ Γ


∫+ − Ψ Γ Γ 


∑

ɶ ɶɶ ɶ ɶ

              (2.43) 

where 
1

0S ,
2

0S are the initial risky assets prices; 
( )*

0

*

0*

,
!

T

t

n
T

tdt

n T

dt

p e
n

λ
λ

−∫=
∫

are the 

probabilities of a non-homogeneous Poisson distribution with intensity 
*

tλ ; ( )2 ,Ψ ⋅ ⋅ are 

the two-dimensional cumulative normal distribution function with 

correlation ρ and ρɶ separately. The other parameters are shown as following: 

   
( ) ( )

1 1

0 2 1

1 1
0

1
ln

2

n

Tn T

sn

a S
ds

λ
δ λ λ

λ

⋅
Γ = − − − −∫ ,         ( )22

1 1
0

T

s dsδ φ σ= +∫ , 

( )
( )

( )
1

0 1 * 2

2 2 1 22 0
0 2

1 1
ln

21

n
T

sn

S v
v v ds

S v
λ δ

−
Γ = − − +

−
∫ ,        ( )22

2 2 1 Tδ σ σ= − , 
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( ) ( )

2 2

0 2 2

1 1
0

1
ln

2

n

Tn T

sn

a S
ds

λ
δ λ λ

λ

⋅
Γ = − − − −∫ɶɶ ,         ( )22

1 2
0

T

s dsδ φ σ= +∫ɶ , 

( )
( )

( )
2

0 2 * 2

2 1 2 21 0
0 1

1 1
ln

21

n
T

sn

S v
v v ds

S v
λ δ

−
Γ = − − +

−
∫ ɶɶ ,        ( )22

2 2 1 Tδ σ σ= −ɶ , 

( )1 *

11t t vλ λ= − , ( )2 *

21t t vλ λ= − . 

Proof: Follow the approach of Amin & Jarrow (1992), we can first rewrite the explicit 

representations of tB  and 
i

tS  in terms of the parameters of the system by Ito’s formula: 

      
( )

( )( ) ( )

( ) ( ) }

2
* *

0 0

* *

0 0

1 1
exp , 1

0, 2

,

t t T s

t s

t t

s s

B s T ds e ds
P t

s T dW T s d

βσ λ

σ β

− −  = + −  

+ − − Π

∫ ∫

∫ ∫
          (2.44) 

   ( )* * 2

0
0

1
exp ln 1

2

t
i i

t t i t t i i s iS S B W dsσ ν ν λ σ
  = +Π − + −  

  
∫ , 1,2i =        (2.45) 

Conditioning on each set { }T nΠ = , 1, 2,...n = , we can decompose the initial 

price 0X into two parts 
1 2

0 0,X X : 

   { }* 1 *

0 T TX E H B I A− =    

      
( ) ( )1 2 1 2

*
max , max ,

1
T T T T

n T

T T

S S S S
E I a Z

B B

    = ≥ 
    

 

         { } { }1 21 2 1 2

1 2
* *

1 1

1 2

0 0

T TT T T T
n T n T

T T

T T

S SS S S S
a Z a ZT TB B

S S
E I I E I I

B B

X X

   > ≤   ≥ ≥   
      

   
   = ⋅ + ⋅
   
   

= +

        (2.46) 

Then, we can use similar approach to calculate
1 2

0 0,X X separately. 

Part 1: Calculation of
1

0X . 



 

27 

{ }1 1 2

1
1 *

0
1 T T T

n T
T

T

S S S
a ZT B

S
X E I I

B   > 
> 

  

 
 = ⋅
 
 

, where , , i

T T TZ B S satisfy the dynamics (2.29), (2.44), 

(2.45). 

  By the change of measure approach, we can define another measure 1Q such that 

       1

*

TF

dQ

dP
= ( )* * 2

1 1 1 1
0

1
exp ln 1

2

T

T T sW v v dsσ λ σ
  +Π − + −  

  
∫           (2.47) 

Under the new measure 1Q , 
1 *

1t tW W Tσ= −
⌢

is another Wiener process, and tΠ is the 

Poisson process with the corresponding new intensity ( )1 *

11t t vλ λ= − . 

Therefore, on each set{ }T nΠ = , 1,2,...n = , we calculate 

( )

( )

( ) ( )

1

*
1 1 1 2 *

0 0 1
0 0 0 0

1 1 2 * 2

0 1 1 1 1 1
0

1
1 * 20

2 1 2 2 2 1 22 0
0

1
1 exp ln

2

1
exp ln 1

2

1
exp ln 1

2

T T T T
Q T

n s s s s s

T

T s

T

T s

X S E I a dW ds ds ds n

S W T n v v ds

S
I W n v v ds T

S

λ
φ φ σ φ λ λ

λ

σ σ λ σ

σ σ λ σ σ σ

   = > + + + − +   
  

  ⋅ + + − + −   
  

  ⋅ > − + − + − + 
 

∫ ∫ ∫ ∫

∫

∫

⌢

⌢

⌢

( )2 * 2

1 1 1 1
0

1
ln 1

2

T

sT n v v dsσ λ σ


 


  − − − − −   
   

∫

( ) ( ) ( ){11 1 1 1

0 0 1
0

ln ln ln
T

Q

n s s TS E I a S dW nφ σ λ λ= − ⋅ ≥ + + − ∫
⌢

 

( ) ( )

( ) ( ) ( )

2 1

1
0

1
21 *0 2

2 1 2 1 2 12 0
0 1

1

2

1 1
ln ln

1 2

T

s s

T

T s

ds

S v
I W n v v ds

S v

φ σ λ λ

σ σ λ σ σ

 + + + −    

   −  × > − + + − − −    −      

∫

∫
⌢

      

(2.48) 

Let us define two new random variables ( ) 1

1 1
0

T

s sy dWφ σ= +∫
⌢

and 

( ) 1

2 2 1 Ty Wσ σ= −
⌢

. It is obvious that 1 2,y y follow normal distribution under 
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measure 1Q : ( )2

1 1~ 0,y % δ , ( )2

2 2~ 0,y % δ , where ( )22

1 1
0

T

s dsδ φ σ= +∫ , 

( )22

2 2 1 Tδ σ σ= − . For any constants 1 2, 0k k ≠ , the linear combination of 1 2,y y  is  

         
( ) ( )

( )

1 1

1 1 2 2 1 1 2 2 1
0

1

1 1 2 1 2 2
0

T

s s T

T

s s

k y k y k dW k W

k k k k dW

φ σ σ σ

φ σ σ

+ = + + −

 = + − + 

∫

∫

⌢ ⌢

⌢
               (2.49) 

Clearly, the above linear combination is still a normal random variable. So the 

random vector ( )1 2,
T

y y is normally distributed with mean equals ( )0,0
T

, and the 

correlation between 1 2,y y  is ( ) ( )1 2 1
0

T

s dsρ φ σ σ σ= + −∫ . Following (2.48), we 

obtain: 

( ) ( )

( )
( )

( )

1

1 1

01 1 2 1

0 0 1 1
0

1

0 1 * 2

2 2 1 22 0
0 2

1
ln

2

1 1
ln

21

n

Tn TQ

sn

n
T

sn

a S
X S E I y ds

S v
I y v v ds

S v

λ
δ λ λ

λ

λ δ

  ⋅  = ≤ − − − −    

 − 
< − − + 

−  

∫

∫

 

               
( ) ( )

1 1

01 2 1

0 1 1 1
0

1
ln

2

n

Tn T

sn

a S
S Q y ds

λ
δ λ λ

λ

 ⋅= ≤ − − − −



∫ , 

               

( )
( )

( )

( )

1

0 1 * 2

2 2 1 22 0
0 2

1 2

0 1 2 1 2

1 1
ln

21

, ; , ,

n
T

sn

S v
y v v ds

S v

S

λ δ

ρ δ δ

−
< − − +
− 

= Ψ Γ Γ

∫
         (2.50)  

where ( )2 ,Ψ ⋅ ⋅ is the two-dimensional cumulative normal distribution function. 

We can also get the maximal set of successful hedging
*A : 

          
( ) ( )

1 1

0* 2 1

1 1
0

1
ln

2

n

Tn T

sn

a S
A y ds

λ
δ λ λ

λ

 ⋅ 
= ≤ − − − − 
  

∫             (2.51) 

Part 2: Calculation of
2

0X . 
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The calculation of
2

0X can be treated in the similar way. We can define another new 

measure 2Q : 

     2

*

TF

dQ

dP
= ( ) * 2

2 2 2 2
0

1
exp ln 1

2

T

T T sW v v dsσ λ σ
  +Π − + −  

  
∫ɶ            (2.52) 

where 
2 *

2t tW W Tσ= −
⌢

is a Wiener process under the measure 2Q , and tΠ is a Poisson 

process with new intensity ( )2 *

21t t vλ λ= − . 

On each set { }T nΠ = , 0,1, 2...n = , we can rewrite
2

0X as 

  

( ) ( ) ( ){
( ) ( )

( ) ( ) ( )

22 2 2 2 2

0 0 0 2
0

2 2

2
0

2
22 *0 1

1 2 1 2 2 11 0
0 2

ln ln ln

1

2

1 1
ln ln

1 2

T
Q

n s s T

T

s s

T

T s

X S E I a S dW n

ds

S v
I W n v v ds

S v

φ σ λ λ

φ σ λ λ

σ σ λ σ σ

= − ⋅ ≥ + + −

 + + + −    

   −  ⋅ ≥ − + + − − −    −      

∫

∫

∫

⌢

⌢

   

(2.53) 

Let us define new normal random variables ( ) 2

1 2
0

T

s sy dWφ σ= +∫
⌢

ɶ , ( ) 2

2 1 2 Ty Wσ σ= −
⌢

ɶ , 

where ( )2

1 1~ 0,y % δɶɶ , ( )22

1 2
0

T

s dsδ φ σ= +∫ɶ ; ( )2

2 2~ 0,y % δɶɶ , ( )22

2 2 1 Tδ σ σ= −ɶ . The 

random vector ( )'

1 2,y yɶ ɶ is still normally distributed with mean equals to ( )0,0
T

, and 

correlation ( )( )2 1 2
0

T

s dsρ φ σ σ σ= + −∫ɶ , by checking the linear combination of 

1 2,y yɶ ɶ similar as the calculation for part I.  

Then, we arrive to  
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( )
( ) ( )

( )
( )

( )

( )

2 2

02 2 2

2 0 2 1 1
0

2

0 2 * 2

2 1 2 21 0
0 1

2

0 1 2 1 2

1
0 ln

2

1 1
ln

21

, ; , ,

n

Tn T

sn

n
T

sn

a S
H S Q y ds

S v
y v v ds

S v

S

λ
δ λ λ

λ

λ δ

ρ δ δ

 ⋅
= ≤ − − − −



−
< − − +
− 

= Ψ Γ Γ

∫

∫

ɶɶ

ɶɶ

ɶ ɶɶ ɶ ɶ

           (2.54)  

In addition, the maximal set of successful hedging
*A has the expression:   

        
( ) ( )

2 2

0* 2 2

1 1
0

1
ln

2

n

Tn T

sn

a S
A y ds

λ
δ λ λ

λ

 ⋅ 
= ≤ − − − − 
  

∫ɶɶ              (2.55) 

Finally, we combine the results (2.50) and (2.55), and obtain the expression of 0X as: 

     
1 2

0 0 0X X X= +  

            
( )

( )
1

0

1

0 1

0 1 2 1 2

0

, ; , ,
!

T

t

n
T

tdt

n

dt

e S
n

λ
λ

ρ δ δ
∞ −

=

∫= Ψ Γ Γ
∫

∑  

           
( )

( )
2

0

2

0 2

0 1 2 1 2

0

, ; , ,
!

T

t

n
T

tdt

n

dt

e S
n

λ
λ

ρ δ δ
∞ −

=

∫+ Ψ Γ Γ
∫

∑ ɶ ɶɶ ɶ ɶ  

          

( ) ( )

( ) ( )

*
1

0

*
2

0

* 1

, 1 0 1 2 1 2

0

2

2 0 1 2 1 2

1 , ; , ,

1 , ; , ,

T

t

T

t

v dt n

n T

n

v dt n

p e v S

e v S

λ

λ

ρ δ δ

ρ δ δ

∞

=

 ∫= − Ψ Γ Γ


∫+ − Ψ Γ Γ 


∑

ɶ ɶɶ ɶ ɶ

                    (2.56) 

where 0,1,2...n = ,
( )*

0

*

0*

,
!

T

t

n
T

tdt

n T

dt

p e
n

λ
λ

−∫=
∫

are the probabilities of a non-homogeneous 

Poisson distribution with intensity
*

tλ . 

Remark 2.1: In order to obtain the premium of the contract 0X , we can also apply the 

“Multi-Asset Theorem” in Melnikov & Romaniuk (2008) for the calculation. It is found 

that the calculation by Multi-Asset Theorem leads to the same result as one in Theorem 
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2.1. The detailed proof using Multi-Asset Theorem is shown in Appendix 1. 

Remark 2.2: The payoff of the equity-linked life insurance contract with flexible 

guarantee TH can be decomposed into the payoff of an European exchange option plus a 

pure equity-linked life insurance contract: { } ( )1 2 1 2 2max ,T t t t t tH S S S S S
+

= = − + . It 

gives a possibility to reduce the valuation of the initial contract to the embedded 

exchange option ( )1 2

T TS S
+

− , and construct the maximal successful hedging set
*A for it 

(see Melnikov & Skornyakova (2005)). 

 Following the result in Theorem 2.1, we can derive the expression for the survival 

probability
T xp formulated in Theorem 2.2: 

Theorem 2.2: Suppose that the insurance company sells an equity-linked life insurance 

contract to the clients and decides to apply quantile hedging to maximize the probability 

of successful hedging. The survival probability of a potential insured is given by:   

   

( ) ( )

( ) ( )

* 2 2

, 1 2 1 2 1 2 1 2

0

* 1 2
,

0 1 2 1 2

, ; , , , ; , ,n T n n

n
T x

n T n n

n

p p q

p
d d

p p q
T T

ρ δ δ ρ δ δ

σ σ σ σ

∞

=

∞

=

 Ψ Γ Γ + Ψ Γ Γ 
=

    
Φ + Φ       − −     

∑

∑

ɶ ɶɶ ɶ ɶ

        (2.57) 

where the notations
*

,n Tp and ( )2 ,Ψ ⋅ ⋅ , 1 2 1 2, , , ,δ δΓ Γ ρ , 1 2 1 2, , ,δ δΓ Γ ɶ ɶɶ ɶ , ρɶ are the same as in 

Theorem2.1, Φ  denotes the cumulative distribution function of the standard normal 

distribution, and other parameters 1 2, , ,n nd d p q are: 

( )
( )

( )
1

0 1 * 2

1 2 1 22 0
0 2

1 1
ln

21

n
T

sn

S v
d v v ds

S v
λ δ

−
= − − +

− ∫ ,    ( )
*

1
0 1

1 01

T

tv dt n

np e v S
λ∫= −  , 

( )
( )

( )
2

0 2 * 2

2 1 2 21 0
0 1

1 1
ln

21

n
T

sn

S v
d v v ds

S v
λ δ

−
= − − +

− ∫ ɶ ,   ( )
*

2
0 2

2 01

T

tv dt n

nq e v S
λ∫= −  . 

Proof: We know from key balance equation (2.42) that the survival probability 

T xp admits the following representation: 
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( )* 1

0

* 1
0

T T

T x

T T

E H B X
p

HE H B

−

−
= =

  

ɶ

  

Since the numerator 0X is given in Theorem 2.1, we only need to compute the 

denominator 0H to get the result.  

Let us first decompose 
* 1

T TE H B −   into two parts: { }1 2

1
*

1
T T

T

S S
T

S
E I

B >

 
∆ = ⋅ 

 
, and 

{ }1 2

2
*

2
T T

T

S S
T

S
E I

B ≤

 
∆ = ⋅ 

 
. As in the proof of Theorem 2.1, we can calculate ( )1 0∆ as: 

         

( ) { }

( )

( ) ( )
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*

1

1
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T
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T

Q
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T
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B
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>

 
∆ = ⋅ 

 

    −
= > − +Π  

−   

 + − − −    
∫

⌢
          (2.58) 

Conditioning on each set{ }T nΠ =  , 0,1, 2...n = , we can obtain: 

( ) ( )

( ) ( )
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    −
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−   
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−  

∫

∫

⌢

⌢

        

          
( )

1 1
0

1 2

d
S

Tσ σ

 
= Φ  

−  
                                     (2.59) 

where 
( )
( )

( )
1

0 1 * 2

1 2 1 22 0
0 2

1 1
ln

21

n
T

sn

S v
d v v ds

S v
λ δ

−
= − − +

− ∫  . 

We can treat ( )2 0∆ in the same way: 
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Therefore, we combine the expression of ( ) ( )1 20 0∆ ∆ and obtain 
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∑      (2.61) 

which leads to the expression (2.57).                                                                

2.5.4 .umerical Illustration 

In this section, we give a numerical example to illustrate how insurance company 

can use quantile hedging technique to deal with initial budget constraint situation. 

Assume that the insurance company will select some acceptable level of financial 

riskε first, then figure out the corresponding risk management strategy by quantifying the 

mortality risk reflected by survival probabilities T xp .  
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For illustration purpose, we consider a simplified stochastic interest rate model 

without its jump component: one factor Vasicek-Hull-White model. We set the drift 

function ( ),t Tα for forward rate ( ),f t T as ( ) ( ), ,
T

t
t T t s dsσ σ∫ . ( ),t Tα can also be 

explained as the mean rate of return for the long term interest rate. In addition, we also 

assume the volatility structure ( ),t Tσ  satisfies ( ) ( )( ), expt T T tσ β α= − − , 

where 0, 0α β> > . This expression leads to one factor Vasicek-Hull-White model so 

that the dynamics of the instantaneous spot rate tr is  

                      ( )( )t t tdr m t r dt dWα β= − +                     (2.62) 

where ( ) ( )
2

2

0 2
1

2

tm t f t e αη β
η

α α
−= + + + − by setting ( ) 00,f t f tη= + . We 

assume 0 0.01f =  and 0η = so that initial term structure is flat. The values of 

parametersα and β are also assumed to be constant and selected as 0.32α = , 0.06β = . 

For the two-factor jump-diffusion model of risky asset, we apply the approach in 

Mancini (2004) to estimate the corresponding parameters. There is one Poisson process in 

our model which determines jumps appeared in two risky assets’ price process. However, 

in Mancini’s paper, the Poisson process specifies jumps for only one asset. So we modify 

the estimator for the number of jumps in Mancini’s approach slightly. We consider 

financial index Russell 2000 (RUT-I) as risky asset
1S , and S&P 500 as risky asset

2S . As 

Russell 2000 measures the performance of small US companies while S&P 500 is the 

index of the prices of 500 large-cap common stocks traded in US, it is naturally supposed 

that RUT-I is more risky than S&P 500. Therefore, it is reasonable to consider S&P 500 

as the flexible guarantee
2S  for the contract. Using monthly observations of prices over 

23 years from September 1987 to September 2010 (Data source: Yahoo! Finance), we can 

estimate the parameters of the two-factor jump diffusion model with values: 
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                  1 0.2763µ = , 1 0.19σ = , 1 0.27ν = − ,                 (2.63) 

                2 0.2898µ = , 2 0.15σ = , 2 0.2ν = − , 0.17λ =             (2.64) 

The initial indices of Russell 2000 and S&P 500 are 167.44 and 329.81. In order to 

make the initial values of two assets
1S , 

2S the same, we change the value of 
1S as 

1329.81

167.44
tS . For the following calculations, we select

1 2

0 0 1000S S= = . 

According to proof of Theorem 2.1, we can see that the maximal set of successful 

hedging 
* 1 T

n T

T

H
A a Z

B

 
= > 
 

admits two types of expression: If 1 2∆ > ∆ , 

{ }* *

1A Y= < ∆ , otherwise { }* *

2A Y= < ∆ , where variable 
*Y  follows the standard 

normal distribution and  
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⋅
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∫ɶ

ɶ
            (2.66) 

A sequence of constant na can be determined by firstly fixing the probability of the 

set of successful hedging which is also related with default financial risk ε  as 

( ) ( )* 1T iP A nπ ε= = − = Φ ∆ , 1,2i = , and then using the log-normality of this 

conditional distribution to estimate the values. 

We work on a single premium equity-linked life insurance contracts with maturity 

1,3,5,10,15, 20T = years separately. Formula (2.57) from Theorem 2.2 can be utilized to 

calculate the quantile hedging ratio in financial market which also reflects the survival 

probability
T xp by choosing different acceptable levels of financial risk for insurance 

company where 0.01,0.025,0.05ε = . The results are displayed in Table 2.1. 
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Table 2.1 Hedging ratios with stochastic guarantee 

T ε=0.01 ε=0.025 ε=0.05 

1 0.9885 0.9718 0.9447 

3 0.9878 0.9705 0.9426 

5 0.9874 0.9697 0.9413 

10 0.9867 0.9684 0.9391 

15 0.9859 0.9667 0.9364 

20 0.9853 0.9656 0.9345 

We also calculate the corresponding potential clients’ ages based on the 

well-accepted 2005 United States life Table listed in Arias, Rostron & Tejada-Vera (2010). 

The ages are presented in Table 2.2. 

 

Table 2.2 Age of insured with stochastic guarantee 

T ε=0.01 ε=0.025 ε=0.05 

1 62 73 79 

3 49 59 68 

5 41 52 61 

10 31 41 50 

15 22 34 42 

20 12 28 36 

 

In order to compare with the results in Melnikov and Skornyakova (2005) which 

assumed a zero interest rate, we also use the same life table in Boers, et.al (1997) to 

calculate the ages of the clients shown in Table 2.3. 

 

Table 2.3 Age of insured with stochastic guarantee 

T ε=0.01 ε=0.025 ε=0.05 

1 58 69 78 

3 45 55 63 

5 39 48 56 

10 23 39 46 
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15 12 31 39 

20 6 24 33 

 

Compared with Table 2.2 and 2.3, we observe that using the different mortality 

tables is relevant to the results of potential client ages. The ages obtained from year 2005 

Table turns out to be elder than ones calculated from Table in Boers, et.al (1997). 

From all the results in Tables 2.1-2.3, it is noted that as the insurance company’s 

financial risk level ε increases (or the probability of successful hedging 1 ε−  

decreases), the survival probability T xp shows a decreasing trend, while the clients’ age 

increases during the same period. We can conclude that the insurance company should 

attract elder group of clients in order to compensate for the increasing financial risk. The 

conclusion is consist with one obtained in Melnikov & Skornyakova (2005).  

Furthermore, the results also imply that the survival probability
T xp is decreasing 

over time as the contract maturity termT is getting longer. Meanwhile, the clients’ age 

also appears a decreasing pattern. Because of mortality risk, the insurance company 

should attract younger group of clients for the contract with long maturities. However, 

although the clients’ age is still decreasing in the paper by Melnikov and Skornyakova 

(2005), the survival probability T xp shows an increasing trend for longer maturity 

T instead. The difference could be explained by the effect of the stochastic interest 

rate ( )r t in risky assets’ model, which leads to a significant change on mortality risk 

associated with risk management strategies for insurance company.  
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3. Efficient hedging on equity-linked life insurance contracts in 

stochastic interest rate environment 

3.1. Description of problem 

 Besides quantile hedging, another well-accepted partial hedging approach is efficient 

hedging developed by Follmer & Leukert (2000). Efficient hedging is a more general 

imperfect hedging approach compared with quantile hedging which maximizes the 

probability of successful hedging under the insufficient initial capital ( 0 0X H< ). Under 

the same initial budget constraint, efficient hedging focuses on minimizing the expected 

size of shortfall risk weighted by some loss functions. It also takes into account the 

investor’s risk preferences towards hedging.  

 Efficient hedging has been applied on hedging equity-linked life insurance contracts 

since the first paper Melnikov (2004b). The author obtained the premium of the contract 

in a diffusion setting. Then, Kirch & Melnikov (2005) extended the valuation work in a 

jump-diffusion framework. Later on, Melnikov & Romaniuk (2008) made the 

contribution on this topic by considering the contracts whose payoff depends on the 

performance of n risky-assets, 2n > . Recently, Melnikov & Skornyakova (2011) 

improved the application of efficient hedging by studying the contracts with stochastic 

guarantee and they measured the shortfall risk with a special power loss function. In 

those papers, the interest rate was all assumed either constant or deterministic throughout 

the entire life of the insurance contract. As far as we know, the issue of valuing 

equity-linked life insurance contract via efficient hedging in a stochastic interest rate 

framework has not been studied very much. In this section, we will investigate the effect 

of stochastic interest rate on efficient hedging and develop the strategies to manage 

financial and insurance risks inherent in equity-linked life insurance contracts.  
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 In Section 3.2, we introduce the efficient hedging technique. In Section 3.3 and 3.4, 

we formulate our problem and present the main theoretical results. We consider the 

diffusion dynamics for both risky assets and interest rates. Section 3.3 focuses on the case 

that all the financial processes are generated by the same Wiener process. While Section 

3.4 considers more advanced models where the financial processes are driven by two 

correlated Wiener processes.  

3.2. Efficient hedging  

 In this section, we employ the same notations as in Section 2.3 whenever possible. 

Suppose that the investor is unwilling or unable to put up the initial amount of capital for 

a perfect hedge, and he is ready to accept some risk. Quantile hedging in Follmer & 

Leukert (1999) only focuses on the probability of successful hedging. However, the 

efficient hedging in Follmer & Leukert (2000) takes into account not only the size of the 

shortfall but also the investor’s attitude towards the shortfall risk. The shortfall risk is 

defined as the expectation of loss from the hedging strategy with expression 

as ( )( )( )T TE l H V
+

− , where ( )l x is a loss function defined on [ )0,∞ and ( )( )E l x < ∞ . 

This loss function ( )l x can represent the investor’s risk preference. In Follmer & Leukert 

(2000), they considered a power loss function as ( ) pl x x= . Three types of risk 

preferences are analyzed based on different values of power p : 

(1) when 1p > : the investor is risk-aversion, which means the larger the loss is, the 

less willing the investor wants to take. 

(2) when 0 1p< < : the investor is risk –taking, such as the addictive gamblers type. 

(3) when 1p = : the investor is risk-neutral.  

Efficient hedging aims to construct an admissible hedging strategy ( )0 , tVπ ξ= which 
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can minimize the short fall risk ( )( )( )T TE l H V
+

− under the initial budget 

constraint
00 0V V H≤ ≤ɶ . Follmer and Leukert obtained the solution of the above 

optimization problem based on Neyman-Pearson lemma and similar hypothesis testing 

techniques used to construct quantile hedging. In their paper, first, they prove there exists 

a unique optimal randomized test ϕɶ which can solve the equivalent optimization 

problem ( )( )( )1E l Hϕ− under the initial budget constraint ( )*

0E H Vϕ ≤ ɶ  . Then, they 

define the corresponding success ratio as ( ) { } { }0 , T
T T T T T

T

V
V I V H I V H

H
ϕ ξ = ≥ + <  

for any admissible strategy ( )0 , tV ξ . It is shown in Theorem 3.2 in Follmer & Leukert 

(2000) that the perfect hedging strategy ( )0 , tV ξɶɶ for the modified contingent claim 

T TH Hϕ=ɶ ɶ can solve the proposed optimization problem, and the corresponding success 

ratio ( )0 , TVϕ ξɶɶ coincides with the optimal randomized testϕɶ .  

Based on Neyman-Pearson lemma, the structure of the success ratioϕ is also 

obtained for the power loss function ( ) pl x x= with 1p > , 

0 1p< < and 1p = respectively, which will be discussed in more detail in the following 

Sections. It is noted that the requirement to construct such optimal hedging strategy is on 

set{ }0TH > . In our case, we work on a single premium equity-linked life insurance 

contract with a stochastic guarantee, where the benefit at contract maturity equals to the 

larger value of two risky assets. Therefore, the payoff at maturity
TH is always positive 

which fulfills the condition{ }0TH > . Next, we will discuss how to apply the efficient 

hedging technique on equity-linked life insurance. 
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3.3. Application of efficient hedging on equity-linked insurance: models 

with one source of randomness 

3.3.1 Financial setting 

Let ( )( )0
, , ,t t

F P
≥

Ω F be a standard stochastic basis as described in Section 2.5.1. 

We consider a continuous time economy with the complete and frictionless financial 

market. The market is consist of a non-risky asset ( ) [ ]0,t t T
B

∈
(bank account), and two risky 

assets ( ) [ ]
1

0,t t T
S

∈
and ( ) [ ]

2

0,t t T
S

∈
(stocks), which satisfy the following dynamics: 

                         
t t tdB r B dt=                              (3.1) 

                 ( )i i

t t i i tdS S dt dWµ σ= + , 1,2i =                    (3.2) 

where 
tW is a Wiener process under measure P , constants

i Rµ ∈ , 0iσ > are return and 

volatility of the risky asset
i

tS , respectively. We also assume 1 2σ σ> , which means
1S is 

more risky than
2S . Noted that in Section 3.3, we only restrict our attention to the case 

where the evolutions of two risky assets’ price processes are generated by the same 

Wiener process
tW . It is a special case ( 1ρ = ) of models driven by two different Wiener 

processes with some correlation coefficient ρ , which will be discussed in Section 3.4. As 

the benefit of equity-linked life insurance contracts are mostly related with high positive 

correlated traditional equities such as traded indices and mutual funds, the restriction 

of 1ρ = is suitable and convenient. In addition, the case of 1ρ = may not follow the 

results of the case 0 1ρ< < and should demand a special consideration. 

 According to Girsanov Theorem, we can define a martingale measure
*P under 

which the risky-asset
i

tS , 1,2i = , satisfies the following risk-neutral dynamics: 
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                    ( )*i i

t t t i tdS S r dt dWσ= + , 1,2i = ,                    (3.3) 

where
*

tW is a Wiener process with respect to
*P .  

For stochastic interest rate models, we place ourselves in the HJM 

framework. ( ),f t T denotes the forward rate at maturity time ( )T t≥ for instantaneous 

borrowing at time t , which satisfies the following dynamics under the martingale 

measure
*P : 

            ( ) ( ) ( ) ( )* *, , , , tdf t T t T t T dt t T dWσ σ σ= +               (3.4) 

and the dynamic of spot interest rate tr is given by: 

            ( ) ( ) ( ) ( ) ( )* *, , , , tdr t df t t t t t t dt t t dWσ σ σ= = +               (3.5) 

where ( ) ( )* , ,
T

t
t T t u duσ σ= ∫ . 

We also consider a zero-coupon bond which pays 1 unit of currency at maturityT , 

i.e. ( ), 1P T T = . The bond price ( ),P t T at time t is defined as 

                ( ) ( ), exp( , )
T

t
P t T f t u du= −∫                       (3.6) 

Since ( )0,f t for 0 t T≤ ≤ is a given constant, the bond price at time zero ( )0,P T can 

also be considered as a constant.  

Denote ( )
0

1
exp( )

t

t

t

D r u du
B

= = −∫ , then the discounted bond price ( ),tD P t T  

admits the following risk-neutral dynamics:  

             ( )( ) ( ) ( )* *, , ,t t td D P t T D P t T t T dWσ= −                (3.7) 

3.3.2 Bond numeraire and forward measure Pɶ  

A numeraire is the unit of account in which other assets are denominated. Sometimes 

one might change the numeraire to significantly simplify the computation, especially the 
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calculation associated with stochastic interest rate. In principle, we can take any 

positively priced asset as a numeraire and denominate all other assets in terms of the 

chosen numeraire. In this section, we will select zero-coupon bond price ( ),P t T as the 

numeraire to calculate the premium of the contract.  

Let us define the forward measure Pɶ which satisfies:                         

          ( )
( )

*1

0,
T

A
P A D dP

P T
= ∫ɶ , for all A∈F                    (3.8) 

This measure has a local density
( )

( )*

,

0,
t

t

t

F

D P t TdP
Z

dP P T
= =
ɶ

ɶ , which is a martingale 

under
*P . We can also construct a new Wiener process ( )* *

0
,

t

t tW W u T duσ= + ∫ɶ with 

respect to measure Pɶ . 

A self-financing strategy is given by an initial capital 0 0X > , and a predictable 

process ( )1 2, ,t t t tξ β ξ ξ= such that the value process tX is well-defined. Also tX admits 

the following expression: 

       ( )1 1 2 2

0
0 0 0

,
t t t

t u u u u uX X dS dS dP u Tξ ξ β= + + +∫ ∫ ∫                  (3.9) 

where ( )1 2, ,t t t tξ β ξ ξ= is the number of units invested into bonds and stocks 

respectively. If the corresponding value process 
tX satisfies  

                  ( )0 0, , . .tX t T P a s≥ ∀ ∈ −                      (3.10) 

Then the trading strategy ( )0 , tX ξ  is called admissible.  

By Ito’s formula, it is easy to obtain that: 

           
( ) ( )

( )( )* ,
, ,

i i

t t
i t

S S
d t T dW

P t T P t T
σ σ= + ɶ , 1,2i =               (3.11) 

Denote ( )
( ),

t
X

X
V t

P t T
= , we can get: 
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 ( ) ( )
( ) ( )

1 2
1 2

0 0
0

, ,

t t
u u

X X u u

S S
V t V d d

P u T P u T
ξ ξ= + +∫ ∫            (3.12) 

3.3.3 Applying efficient hedging on equity-linked life insurance 

 In this section, we follow the same insurance setting as in Chapter 2. Given the 

constraint on the initial capital available for hedging the 

payoff ( )1 2max ,T T TH S S= in 0 0X H< , the insurance company needs to seek for some 

appropriate imperfect hedging techniques which could optimize the hedging outcomes. 

Efficient hedging can be applied in this situation. Before we introduce our theoretical 

results of applying efficient hedging on equity-linked life insurance, we modify the 

original technique discussed in Follmer & Leukert (2000) to make it better suited for the 

purpose of our analysis with stochastic interest rate. Under our financial setting, we 

consider the following modified efficient hedging problem: 

                   ( )( )*min T T T TE l H D X D
+ −

 
                     (3.13) 

Under the constraint:     ( ) ( )00XV V E H≤ < ɶ                  (3.14) 

where ( )l x is the loss function defined on[ )0,∞ with ( )0 0l = .  

Let us introduce the modified contingent claim
T TH Hϕ=ɶ ɶ , where ϕ∈ℜɶ  is the 

solution of the following problem  

( )( )*min 1 TE l HD
ϕ

ϕ
∈ℜ

 −                     (3.15) 

Under the constraint:         ( ) 0E H Vϕ ≤ɶ ɶ                     (3.16) 

where [ ]{ }: 0,1 TF measurableϕ ϕℜ = Ω→ − is the class of “randomized tests”. 

For the modified contingent claim THɶ , we can find an admissible 

strategy ( )( )1 20 , ,XV ξ ξɶ ɶɶ , such that  
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( ) ( ) ( )
( ) ( )

1 2
1 2

0 0
0

, ,

t t
u u

X T t X u u

S S
V t E H F V d d

P u T P u T
ξ ξ= = + +∫ ∫ɶ ɶɶ ɶ ɶ ɶ , [ ]0,t T∀ ∈ (3.17) 

As a result, we obtain the following proposition:  

Proposition 3.1: The admissible strategy ( )( )1 20 , ,XV ξ ξɶ ɶɶ of the modified contingent 

claim 
T TH Hϕ=ɶ ɶ  solves the optimization problem (3.13), (3.14), and the success ratio 

ϕ  is defined as 

             ( ){ } ( ) ( ){ }1 1X

X T X T

T

V T
V T H V T H

H
ϕ = ≥ + <

ɶ
ɶ ɶ                (3.18) 

And ϕ coincides with ϕɶ  
* . .P a s−  

Proof: According to Theorem 3.2 in Follmer & Leukert (2000), the success ratioϕ for any 

admissible strategy ( )( )1 20 , ,XV ξ ξ  with ( ) 00XV V≤ can be defined as 

             ( ){ } ( ) ( ){ }1 1X

X T X T

T

V T
V T H V T H

H
ϕ = ≥ + <                (3.19) 

Since ( )T X TH V T Hϕ = ∧ , the shortfall takes the form 

             ( )( ) ( ) ( )1T X T X T TH V T H V T H Hϕ
+

− = − ∧ = −             (3.20) 

Under the forward measure Pɶ , the value process ( )XV t is a martingale, so we obtain 

          
( )

( ) ( )( ) ( ) 00
,
T

T X X

H
E E H E V T V V

P T T

ϕ
ϕ

 
= ≤ = ≤  

 
ɶ ɶ ɶ            (3.21) 

which shows the success ratioϕ satisfies the initial capital constraint (3.14).  

Asϕɶ is the solution for the problem (3.15), (3.16), we can get 

                

( )( )( )
( )( )
( )( )

*

*

*

1

1

T T T X

T T

T T

E l D H D V T

E l H D

E l H D

ϕ

ϕ

+ −  

 = − 

 ≥ − ɶ

                     (3.22) 

On the other hand, due to (3.22), ( )( )1 20 , ,XV ξ ξɶ ɶɶ has success 



 

46 

ratio ( )( )1 20 , ,XVϕ ξ ξɶ ɶɶ  which satisfies 

  ( )( ) ( )1 20 , ,X T X T TV H V T H Hϕ ξ ξ ϕ= ∧ ≥ɶ ɶɶ ɶ ɶ , 
* . .P a s−  on { }0TH >       (3.23) 

Without loss of generality, we assume that 1ϕ =ɶ on{ }0TH = , so we obtain: 

( )( )1 20 , ,X T TV H Hϕ ξ ξ ϕ=ɶ ɶɶ ɶ ,  on{ }0TH =               (3.24) 

Therefore the success ratioϕ coincides
* . .P a s− withϕɶ . In particular, we get: 

( )( ) ( )1T T T X T TD H D V T H Dϕ
+

− = − ɶ                   (3.25) 

So the strategy ( )( )1 20 , ,XV ξ ξɶ ɶɶ solves the optimization problem defined by (3.13), 

(3.14). 

 

To solve the optimization problem, we need to obtain a perfect hedge 

( )( )1 20 , ,XV ξ ξɶ ɶɶ for the modified contingent claim T TH Hϕ=ɶ ɶ . We work with a power 

loss function ( ) pl x x= . Based on the analysis in Follmer & Leukert (2000), ϕɶ is unique 

on set { }0TH > , for 1p > , 0 1p< < , and the special case 1p = . The value of 

power p also represents three types of investors: 1p = denotes the risk-neutral investor; 

0 1p< < denotes the risk-taker; 1p > denotes the risk-averse investor. Neyman-Pearson 

lemma can be used to find out the structures of ϕɶ  in three different cases. Applying the 

same technique, if we rewrite the optimal test which is simple hypothesis P against the 

simple alternative 
*P in terms of 

*P and Pɶ , we can obtain the structures ofϕɶ similar as 

in Follmer & Leukert (2000) as following: 

          
( )

1 1
p TI c Z

H
ϕ

 
 = − ∧
 
 

ɶ

ɶ ,     for 1p >                     (3.26) 

          { }11 1 p

p Tc H Zϕ −= > ɶɶ ,      for 0 1p< <                  (3.27) 
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          { }1 1 p Tc Zϕ = > ɶɶ ,        for 1p =                       (3.28) 

where {}I ⋅ is the inverse of the derivative of the loss function ( )l x , {}1 ⋅ is the indicator 

function, pc is the constant determined from the condition ( ) ( )0T XE H Vϕ= =ɶ ɶɶ . 

In the following, we will apply the efficient hedging approach on equity-linked life 

insurance contract with a stochastic guarantee. As discussed in Section 2.5.2, the initial 

cost of hedging equity-linked life insurance contract 0X is given by: 

               
( ){ }( )

( ) ( )

*

0
ˆ 1

0,

T T

T T x

X E E H D T x T
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From (3.29), it is obvious that 
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Applying the efficient hedging, we also obtain that: 
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Hence, we obtain the key balance equation similar as quantile hedging: 
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The main theoretical results are contained in the following theorems: 

Theorem 3.1: Consider an insurance company that sells a single equity-linked life 

insurance contract with payoff
1 2max( , )T T TH S S= , and the firm’s risk preference is 

risk-aversion with a power loss function ( ) pl x x= , 1.p > Then 

(i) The initial price of the contract is 
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where 
1

0S and 
2

0S are the initial assets’ prices, ( )2Ψ ⋅  denotes the two-dimensional 
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cumulative normal distribution function with 

( )

( )

1
20

1 22

0
1

1 2

1
ln

2

S
T

S
Y

T

σ σ

σ σ

+ −
=

−
, 

( )

( )

2
20

1 21

0
3

1 2

1
ln

2

S
T

S
Y

T

σ σ

σ σ

+ −
=

−
, 

        
( ) ( )

( )( ) ( )
1 2

2
* *0 1

1
0

2

1

ln , ,
2 1 2 10,

TS p p
u T u T du

p pkP T
Y

σ
σ σ σ

δ

 
+ + + 

− − =
∫ɶ

, 

        
( ) ( )

( )( ) ( )
2 2

2
* *0 2

2
0

4

2

ln , ,
2 1 2 10,

TS p p
u T u T du

p pkP T
Y

σ
σ σ σ

δ

 
+ + + 

− − 
∫ɶ

, 

( ) ( ) ( )

( )

1
2 2 *0
2 1 1 22 0

0
5

1 2

1
ln ,

2 1

T

u

S p
T u T du

S p
Y

T

σ σ σ σ σ

σ σ

+ − + −
−

=
−

∫
, 

( ) ( )
( )( ) ( )

1 22
2

* *0 1
120

6

1

ln , ,
2 10, 2 1

TS p p p
u T u T du

pkP T p
Y

σ
σ σ σ

δ

 +
+ − − + 

−−  =
∫ɶ

, 

( ) ( ) ( )

( )

1

2
2 2 *0

2 1 21 0
0

7

1 2

1
ln ,

2 1

TS p
T u T du

S p
Y

T

σ σ σ σ σ

σ σ

+ − + −
−

=
−

∫
, 

( ) ( )
( )( ) ( )

2 22
2

* *0 2
220

8

2

ln , ,
2 10, 2 1

TS p p p
u T u T du

pkP T p
Y

σ
σ σ σ

δ

 +
+ − − + 

−−  =
∫ɶ

, 

( )
2

2 *

1 1
0

,
1

T p
u T du

p
δ σ σ

 
= + − 
∫ ,   ( )

2

2 *

2 2
0

,
1

T p
u T du

p
δ σ σ

 
= + − 
∫  

( )
( )( )2

*

2 0
exp ,

2 1

Tp
M k u T du

p
σ

 
=  

 − 
∫ɶ , 

1

1p
pc

k
p

− 
=   
 

ɶ , 

and the correlations are 
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(ii) The survival probability T xp is given by 
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where ( )Ψ ⋅  is the cumulative distribution function of standard normal distribution. 

Proof: (i) The success ratio ϕɶ  for risk-aversion case is given by (3.26), so we can 

simplify the modified contingent claim Hɶ as 
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The indicator functions in (3.36) can be simplified as following: 
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We substitute (3.37) and (3.39) into the expression of ( )0XVɶ in (3.36) and obtain: 
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 “Multi-Asset Theorem” (see details in Melnikov & Romaniuk (2008)) can be 

applied to evaluate the expectation (3.41) for 2n = . First, the necessary correlations are 

calculated as 
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 Then, we apply the theorem with the above parameters and get: 
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with 1Y  and 2Y given in Theorem 3.1. 
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From (3.38) and (3.40), this term can be simplified as: 
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We apply the Multi-Asset Theorem again, and the expectation in (3.43) becomes: 
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 We can repeat the similar calculations for the other two expectation in (3.36), and 

obtain the results: 
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  Combining (3.42), (3.44) ~ (3.46), the expression of ( )0XVɶ becomes 
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Finally, we arrive at the result (3.33). 

(ii) According to the key formula (3.32), we only need to calculate the expectation ( )E Hɶ . 

First, it is easily to observe that 
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The first expectation in (3.48) can be calculated as: 
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The second expectation in (3.48) can be treated in a similarly way: 
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Substitute (3.49), (3.50), we get 
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Therefore, the survival probability is given by 
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Theorem 3.2: Suppose that an insurance company sells a single equity-linked life 

insurance contract with payoff
1 2max( , )T T TH S S= , and the firm decides to use efficient 

hedging to minimize the shortfall risk. It’s risk preference is risk-taking with a power loss 
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p p u T duδ σ σ = − − ∫ɶ , 
( )

1
2

0
2

0,

p

p

S
k c

P T

−
 

=   
 

ɶ  
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The correlations are 

( ) ( )( )
1 1

*

1
0

1

1 ,
T

s s

p p u T du

T

σ σ
ρ

δ
=

− +∫
ɶ ɶ

, 
( ) ( )( )

2 2

*

2
0

2

1 ,
T

s s

p p u T du

T

σ σ
ρ

δ
=

− −∫
ɶ ɶ

. 

(ii). The survival probability
T xp is in the form 

                 
( ) ( )

( ) ( )
1 1 2 2

1 2 2 2

0 1 2 0 3 4

1 2

0 1 0 3

, ; , ;s s s s

T x

S Y Y S Y Y
p

S Y S Y

ρ ρΨ + Ψ
=

Ψ + Ψ
ɶ ɶ

ɶ ɶ

          (3.54) 

where ( )Ψ ⋅  is the cumulative distribution function of standard normal distribution. 

Proof: (i) When 0 1p< < , recall that the success ratio ϕɶ  has the form 

                           { }11 1 p

p T Tc H Zϕ −= > ɶɶ                      (3.55) 

Then, we can rewrite the expression of ( )0XVɶ  : 

                 

( ) ( )

{ } { }{ }( )
{ } ( ){ }( )
{ } ( ){ }( )

1
1 2 1 2

1
1 1 2 1

1
2 1 2 2

0

max , 1 1 max ,

1 1 1

1 1 1

X T

p

T T p T T T

p

T T T p T T

p

T T T p T T

V E H

E S S c S S Z

E S S S c Z S

E S S S c Z S

ϕ
−

−

−

=

= >

= ⋅ ≥ <

+ ⋅ < <

ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

         (3.56) 

 Here we only show the calculation for { } ( ){ }( )1
1 1 2 11 1 1

p

T T T p T T
E S S S c Z S

−
⋅ ≥ <ɶ ɶ , the 

calculation for { } ( ){ }( )1
2 1 2 21 1 1

p

T T T p T T
E S S S c Z S

−
⋅ < <ɶ ɶ  is symmetric. 

The set ( ){ }1
1 1

p

p T Tc Z S
−
<ɶ is simplified as: 

         

( ){ }
( ) ( ){

( )( ) ( ) ( )

{ }

1
1

*

1
0

2
* 2 *

1 1 1
0

1 1

1

1 ,

1
ln , 1 ,

2 2

p

p T T

T

u

T

c Z S

p p u T dW

p p
k u T p u T du

s

σ σ

σ σ σ σ

−
<

 = − − < 

−  − + − − − −  
  

= < ∆

∫

∫

ɶ

ɶ

ɶ

ɶɶ

 (3.57) 
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where 
( )

1
1

0
1

0,

p

p

S
k c

P T

−
 

=   
 

ɶ , ( ) ( )
2

2 *

1 1
0

1 ,
T

p p u T duδ σ σ = − − ∫ɶ , 

( ) ( )
( )

*

1
0

1

1

1 ,
~ 0,1

T

up p u T dW
s %

σ σ

δ

 − − = ∫
ɶ

ɶ
ɶ

,  

( )( ) ( ) ( ) ( )( )2
* 2 *

1 1 1
0

1

1

1
ln , 1 2 1 ,

2

T

k p u T p p u T duσ σ σ σ

δ

− + − + − + −
∆ =

∫ɶ

ɶ
ɶ

. 

So the first term in (3.56) becomes 

 

{ } ( )

( )

( )( )
{ } { }( )

2
*

1

0 1

1
1 1 2 1 1

,1

0 2
1 1 1 1

1 1 1

1 1
0,

T

p
T T T p T T

u T
du

z

E S S S c Z S

S
e E e s s

P T

σ σ

−

+
− −

  
⋅ ≥ <  

  

∫= ⋅ < ∆ ≤ ∆

ɶ ɶ

ɶ ɶɶ

     (3.58) 

Based on Multi-Asset Theorem, we take the corresponding correlations as 

( ) ( )( )
1 1

*

1
0

1

1 ,
T

s s

p p u T du

T

σ σ
ρ

δ
=

− +∫
ɶ ɶ

, 
( )( )

1 1

*

1
0

1

,
T

s z

u T du

T

σ σ
ρ

ζ
=

+∫
 

( ) ( ) ( ) ( )( )
1 1

2
2 * *

1 1
0

1 1

1 2 1 , ,
T

s z

p p u T p u T duσ σ σ σ
ρ

δ ζ=

 − + − +  ∫
ɶ ɶ

, 

and obtain  

                   

{ } ( )

( ) ( )
1 1

1
1 1 2 1 1

1
20

1 2

1 1 1

, ;
0,

p
T T T p T T

s s

E S S S c Z S

S
Y Y

P T
ρ

−
  

⋅ ≥ <  
  

= Ψ
ɶ

ɶ ɶ

ɶ

             (3.59) 

where 2Yɶ is given in Theorem 3.1. 

 Through similar computations, we have  

                  

{ } ( )

( ) ( )
2 2

1
2 1 2 2 1

2
20

3 4

1 1 1

, ;
0,

p
T T T p T T

s s

E S S S c Z S

S
Y Y

P T
ρ

−
  

⋅ < <  
  

= Ψ
ɶ

ɶ ɶ

ɶ

              (3.60) 
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With 4Yɶ ,
2 2s sρ
ɶ

are shown in Theorem 3.2. 

Therefore, (3.59) and (3.60) lead to the expression of  

       ( )
( ) ( ) ( ) ( )

1 1 2 2

1 2
2 20 0

1 2 3 40 , ; , ;
0, 0,

X s s s s

S S
V Y Y Y Y

P T P T
ρ ρ= Ψ + Ψ
ɶ ɶ

ɶ ɶ ɶ ɶ ɶ         (3.61) 

So we find ( ) ( )
1 1 2 2

1 2 2 2

0 0 1 2 0 3 4, ; , ;s s s sX S Y Y S Y Yρ ρ= Ψ + Ψ
ɶ ɶ

ɶ ɶ . 

(ii) According to the key formula 
( )
( )

T

T x

T

E H
p

E H

ϕ
=
ɶ ɶ

ɶ
 and the calculation of T xp  in 

Theorem 3.1, we get the formula for T xp in (3.54). 

Theorem 3.3: Consider an insurance company that sells a single equity-linked life 

insurance contract with payoff 
1 2max( , )T T TH S S= , and the firm’s risk preference is 

risk-indifference with a power loss function ( ) pl x x= , 1.p = Then 

(i)  The initial price of the contract is 

      ( ) ( )
1 1 2 1

1 2 2 2

ˆ ˆ0 0 1 2 0 3 4
ˆ ˆ, ; , ;s s s sX S Y Y S Y Yρ ρ= Ψ + Ψ            (3.62) 

where
1

0S and 
2

0S are the initial assets’ prices, ( )2Ψ ⋅  denotes the two-dimensional 

cumulative normal distribution function with 
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T
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1 1
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=
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2 1

*

0
ˆ

1

,

ˆ

T

s s
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T

σ
ρ

δ
=

−∫
. 

(ii)  The survival probability T xp has the form 
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( ) ( )

( ) ( )
1 1 2 1

1 2 2 2

ˆ ˆ0 1 2 0 3 4

1 2

0 1 0 3

ˆ ˆ, ; , ;s s s s

T x

S Y Y S Y Y
p

S Y S Y

ρ ρΨ + Ψ
=

Ψ + Ψ
               (3.63) 

where ( )Ψ ⋅  is the cumulative distribution function of standard normal distribution. 

Proof: (i) If 1p = , the structure of success ratio is { }1 1 p Tc Zϕ = > ɶɶ ,  

so we rewrite 

     
( ) ( )

{ } { }( ) { } { }( )1 1 2 2 1 2
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1 1 1 1 1 1

X T

T T T p T T T T p T

V E H

E S S S c Z E S S S c Z
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ɶ ɶ ɶ

ɶ ɶ ɶ ɶ
     (3.64) 

Simplify the indicator function { }1 1 p Tc Z> ɶ , we obtain: 

{ }1 1 p Tc Z> ɶ  
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where 
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u T duδ σ= ∫ . 

We calculate the first term in (3.64) and get: 
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where the correlations are  
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( )( ) ( )
1 1

* *

1
0

ˆ

1 1

, ,

ˆ

T

s z

u T u T duσ σ σ
ρ

δ ζ
=

+∫
. 

We can construct 

( )

( )1 1

1
20

1 22

0
1 1 1

1 2

1
ln

2
s z

S
T

S
Y

T

σ σ
ζ ρ

σ σ

+ −
= ∆ + ⋅ =

−
 

               

( )( ) ( )
1 1

2
* *

1
0

ˆ2 1 1

1

1
ln , ,

2ˆ ˆ
ˆ

T

p

s z

c u T u T du

Y

σ σ σ
ζ ρ

δ

 − + +  = ∆ + ⋅ =
∫

 

and by Multi-Asset Theorem, (3.66) becomes 
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               (3.67) 

For the second term in (3.64), we can follow the similar steps and get the expression 

as: 
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where 
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Therefore, we obtain: 

( )
( ) ( ) ( ) ( )

1 1 2 1

1 2
2 20 0

ˆ ˆ1 2 3 4
ˆ ˆ0 , ; , ;

0, 0,
X s s s s

S S
V Y Y Y Y

P T P T
ρ ρ= Ψ + Ψɶ     (3.69) 

which leads to the expression (3.62) for 0X in risk-neutral case. 

(ii) Using (3.69), (3.51) and performing calculations in the key formula (3.32), we can 

derive the expression for survival probability in (3.63). 
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3.3.4 .umerical results 

In this section, we will investigate the characteristics of efficient hedging on risk 

management of equity-linked life insurance contracts with stochastic interest rate from 

some numerical examples. We consider the insurance company’s attitude is risk-taking, 

i.e., loss function with 0 1p< < . For illustrative purpose, we focus on the extreme case 

as in Melnikov & Skornyakova (2011), i.e. 0p → .  

 Based on the discussion in Follmer & Luekert (2000), we have the following 

expression of shortfall risk: 

  

( )( )

( )

{ }11
1 p

T

p

T X

pp

T

p

T cH Z

E H V T

E H H

E H

ϕ

−<

 −
 

 = − 

 = ⋅  ɶ

ɶ                     (3.70) 

As the value of contingent claim H should be bounded, we can take the limit of (3.70) 

when 0p → , then apply the dominated convergence theorem. Thus we obtain: 

{ } { } ( )1 11 0
1 1 1p

T TT T

p

T T TcH ZcH Z p
E H E P cH Z− << →

 ⋅ → = <   ɶɶ
ɶ        (3.71) 

We can fix the probability of failing to hedge payoff TH at maturity time T as 

( )1 T TP cH Z ε< =ɶ , whereε also quantifies the insurance company’s financial risk level. 

With a fixed financial risk level ε , we can estimate the constant c . 

To estimate the parameters in risky assets’ model (3.2), we use daily stock prices of 

Russell-2000 (RUT-I) and S&P 500 from August 1, 2006 till July 31, 2011. Based on the 

discussion in Section 2.5.4, it is reasonable to choose RUT-I as the first risky asset 
1

tS  

and S&P 500 as the second risky asset
2

tS . We also assume to have 252 days during each 

business year. 
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The estimated parameters are: 

1 0.067µ = , 1 0.2909σ = , 2 0.0312µ = , 2 0.2362σ =     (3.72) 

In order to correct the large difference between two risky assets, the initial prices of two 

assets can be chosen as ( )1

0 1278.53 / 900.02 900.02S = ⋅ ,
2

0 1278.53S = . 

For simplicity, all the results obtained in this section are under the assumption of a 

constant volatility structure in HJM model (3.4) (3.5), i.e. ( ),t Tσ σ=  for all t andT . 

Without loss of generality, we select 0.06σ = .  

With very small p ( )0.01< , the initial value of a single equity-linked life insurance 

contract is chosen as 0 1000S = . To study the effect of the stochastic interest rate on 

applying efficient hedging to equity-linked life insurance contract, we calculate the 

survival probabilities
T xp with maturity terms 1 ~ 20T =  years in three different 

specifications for the initial term structure (0, )f t , i.e. 

Scenario I: flat initial term structure ( ) 00,f t r= . 

Scenario II: linearly increasing initial term structure ( ) 00, 0.002f t r t= + ⋅ . 

Scenario III: linearly decreasing initial term structure ( ) 00, 0.002f t r t= − ⋅ .  

In case of 0 0.033r = , the survival probabilities T xp which is reflected by the efficient 

hedging ratios in the financial market at different financial risk levelε are shown in 

Figure 3.1, 3.2, 3.3 respectively. 
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Figure 3.1 Hedging ratios (survival probabilities
T xp ) at different financial 

riskε with ( ) 00, 0.033f t r= = . 

 

 

Figure 3.2 Hedging ratios (survival probabilities T xp ) at different financial 

riskε with ( ) 00, 0.002f t r t= + ⋅ . 



 

63 

 

Figure 3.3 Hedging ratios (survival probabilities
T xp ) at different financial 

riskε with ( ) 00, 0.002f t r t= − ⋅ . 

We also obtain the ages of clients corresponding to those survival probabilities based 

on 2005 United States life table listed in Arias, Rostron & Tejada-Vera (2010). The results 

are shown in Figure 3.3, 3.4, 3.5. 

 

Figure 3.4 Age of clients with flat initial term structure ( ) 00, 0.033f t r= = . 
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Figure 3.5 Age of clients with linearly increasing initial term 

structure ( ) 00, 0.002f t r t= + ⋅ . 

 
Figure 3.6 Age of clients with linearly decreasing initial term 

structure ( ) 00, 0.002f t r t= − ⋅ . 

According to Figures 3.1~3.3, regardless of the patterns of the initial term 

structure (0, )f t , the survival probabilities T xp show the same trend of changes. The 

corresponding ages of the clients also appear the same trend as the survival probabilities, 

as shown in Figure 3.4~3.6.  

In Figures 3.1~3.3, the survival probability T xp decreases as the insurance 

company’s financial riskε increases at any fixed point of maturity termT . In addition, 

Figures 3.4~3.6 shows that the recommended clients’ age increases at any fixed 
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T whenε increases. Therefore, it indicates an offset between financial and mortality risks. 

As a result, the insurance company may attract elder clients to compensate for the 

increasing financial risk.  

However, at any specific financial risk levelε , survival probability
T xp is concaved 

up with increased maturity time T . This pattern in survival probability shows 

dissimilarity with the constant interest rate case discussed in Melnikov & Skornyakova 

(2011). When a constant interest rate is considered, the survival probability T xp keeps 

decreasing all the time. It is noted that in Melnikov & Skornyakova (2011), the successful 

hedging set only admits one expression{ }1 2/T TS S c< . However, in this section, the 

success set is in the form of either{ }1

T Tc S Z≥ ɶ  or{ }2

T Tc S Z≥ ɶ . If
i

T TS Zɶ  is considered as 

a function of maturity timeT , then there exists a critical valueTɶ which may lead to 

different expressions for the successful hedging set. Therefore, the survival 

probability T xp shows opposite trends before and after critical yearTɶ . In our case, this 

critical time Tɶ is calculated to be 10 years.  

From the above observations, the stochastic interest rate tr  shows a strong 

influence on the risk-management for risk-taking companies. At the beginning of an 

insurance period, the insurance company may attract old group of clients. In our case, it is 

recommended that the ages between 67 and 87 for different financial risksε may be 

selected. However, the company may attract younger group of clients for a longer 

maturity termT  because of the increasing mortality risk.  

In addition, we also investigate the sensitivity of survival probability T xp with 

respect to three different initial term structure at certain financial risk level 0.01ε =  as 

shown in Figure.3.7. The differences of T xp in three patterns are relatively small within 

first 3 years. After that period, the patterns of initial term structure have larger impact on 



 

66 

survival probability T xp  over time T . Survival probability obtained from linearly 

increasing pattern is lower than the one from flat pattern. The Survival probability 

generated from linearly decreasing pattern is the highest among them.  

 

Figure 3.7 Sensitivity of survival probability w.r.t. different ( )0,f t at 0.01ε = . 

 

Figure.3.8 shows the change of survival probability T xp with different values of the 

initial spot rate 0r in flat term structure over 20 years. The rate 0r varies between 0.01 

and 0.09 with incremental step 0.02 in this example. It can be seen that the initial spot 

rate 0r  has a greater effect on survival probability T xp , especially during the years from 

5~20. Survival probability T xp becomes smaller at any fixed timeT with an increased 

initial spot rate 0r . This implies that the insurance company should span its clients to an 

elder group of clients with a larger initial spot rate.  
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Figure 3.8 Sensitivity of survival probability w.r.t. different 0r at 0.01ε = , initial term 

structure is flat. 

3.4. Application of efficient hedging on insurance: models with different 

sources of randomness 

In this section, we reconsider the same issue of efficient hedging on equity-linked life 

insurance with stochastic guarantee in the stochastic interest rate environment. Section 

3.3 restricts the financial models restricted to the special case that all the financial 

processes are generated by the same Wiener process ( 1ρ = ). In Section 3.4, a more 

general model will be used in the financial settings. We assume that the return processes 

of two underlying risky assets are driven by different correlated Wiener processes 

separately with 0 1ρ< < . Therefore, the HJM framework utilized in this section contains 

two sources of randomness: The first Wiener process can be interpreted as a “long-run” 

factor, while the second one can be interpreted as the spread between a “short” and 

“long-term” by choosing appropriate volatility function.  

3.4.1 Financial settings 

As in previous Section, we consider a continuous time economy with the frictionless 



 

68 

and complete financial market. For simplicity, we work in a risk-neutral world directly. 

Let ( ) [ ]( )*

0,
, , ,t t T

F P
∈

Ω F be a standard stochastic basis. Without loss of generality, we 

assume
*P is the risk-neutral probability measure. ( ) [ ]

1

0,t t T
S

∈
, ( ) [ ]

2

0,t t T
S

∈
are two risky 

assets, with prices’ evolutions as: 

                  ( )*

,

i i

t t t i t idS S r dt dWσ= + , 1,2i =                  (3.73) 

where tr is the randomly evolving spot interest rate with constant volatility 0iσ > of the 

risky asset 
i

tS , ( ) [ ]
*

,1 0,t t T
W

∈
, ( ) [ ]

*

,2 0,t t T
W

∈
are two different Wiener processes under 

*P with 
* *

1, 2,t tdW dW dtρ= . ρ is the correlation between the two Wiener processes and 

assumed to be 0 1ρ< < , which means the risks can not be perfectly correlated. We 

assume 
1

tS is more risky than
2

tS , i.e. 1 2σ σ> .  

 For HJM framework, the forward rate ( ),f t T satisfies the following dynamic: 

         ( ) ( ) ( ) ( )1 * 2 *

,1 ,2, , , ,t tdf t T A t T dt t T dW t T dWσ σ= + +             (3.74) 

and the spot interest rate ( )r t is defined by the following expression: 

              ( ) ( ) ( ) ( )1 * 2 *

,1 ,2, , ,t tdr t A t t dt t t dW t t dWσ σ= + +             (3.75) 

where ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 2 * 2 1 *

1 2, , , , , , ,A t T t T t T t T t T t T t Tσ ρσ σ σ ρσ σ= + + + ,  

( ) ( )* , ,
T

i

i
t

t T t u duσ σ= ∫ , 1,2i = , and ( ),iσ ⋅ ⋅  are deterministic functions. 

We also consider a zero-coupon bond followed the same definition of 

price ( ),P t T as in (3.6), and the bond price at time zero ( )0,P T can be considered as 

constant. 

3.4.2 Bond numeraire and forward measure Pɶ  

Similarly as in Section 3.3, we select the price of zero-coupon bond ( ),P t T as the 
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numeraire to simplify the computation in the following Sections. Let us define the 

forward measure Pɶ which satisfies:                               

           ( )
( )

*1

0,
T

A
P A D dP

P T
= ∫ɶ , for all A∈F                  (3.76) 

where ( )
0

exp( )
t

tD r u du= −∫ .  

This measure has the local density
( )

( )*

,

0,
t

t

t

F

D P t TdP
Z

dP P T
= =
ɶ

ɶ , which is a martingale 

under
*P . 

 By Ito’s formula, we obtain the discounted price of 
1

tS and 
2

tS  as follows: 

( ) ( )
( )( ) ( ){

( )( ) ( ) ( )( ) ( )( )

1 1
* *0

1 1 ,1 2 ,2
0 0

2 2
* * * *

1 1 2 1 1 2
0

exp , ,
, 0,

1
, 2 , , ,

2

t t
t

u u

t

S S
u T dW u T dW

P t T P T

u T u T u T u T du

σ σ σ

σ σ ρσ σ σ σ

= + +

 − + + + +    

∫ ∫

∫

ɶ ɶ

 

(3.77) 

( ) ( )
( )( ) ( ){

( )( ) ( ) ( )( ) ( )( )

2 2
* *0

2 2 ,2 1 ,1
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2 2
* * * *

2 2 1 2 2 1
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exp , ,
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1
, 2 , , ,

2

t t
t

u u

t

S S
u T dW u T dW

P t T P T

u T u T u T u T du

σ σ σ

σ σ ρσ σ σ σ

= + +

 − + + + +    

∫ ∫

∫

ɶ ɶ

 

(3.78) 

where ,1tWɶ and ,2tWɶ are new Wiener processes under forward measure Pɶ , which satisfy: 

( ) ( )( )* * *

,1 ,1 1 2
0

, ,
t

t tW W u T u T duσ ρσ= + +∫ɶ , 

( ) ( )( )* * *

,2 ,2 2 1
0

, ,
t

t tW W u T u T duσ ρσ= + +∫ɶ . 

A self-financing strategy is given by an initial capital 0 0X > , and a predictable 

process ( )1 2, ,t t t tξ β ξ ξ= such that the value process tX is well defined. Also tX admits 

the following expression: 

           ( ) 1 1 2 2

0
0 0 0

,
t t t

t u u u u uX X dB u T dS dSβ ξ ξ= + + +∫ ∫ ∫             (3.79) 
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where ( )1 2, ,t t t tξ β ξ ξ= is the number of units invested to bonds and stocks respectively. 

 Following Geman, Karoui & Rochet (1995), we know that the self-financing 

portfolios will remain be the self-financing after a numeraire change. By the Ito formula, 

we obtain that 

        ( )
( )

( )
( ) ( )

1 2
1 2

0 0
0

, , ,

t t
t u u

X X u u

X S S
V t V d d

P t T P u T P u T
ξ ξ= = + +∫ ∫         (3.80) 

As a result, ( )( )1 20 , ,XV ξ ξ is a self-financing strategy under the forward measure Pɶ . 

3.4.3 Applying efficient hedging to life insurance contracts 

 We keep working on the same single premium equity-linked life insurance contract 

with payoff 
1 2max( , )T T TH S S= . The modified efficient hedging technique discussed in 

Section 3.3.3 will be utilized here to value the contract first and then to imply the survival 

probabilities which reflect the mortality risk. The main theoretical results are formulated 

in the following three Theorems devoted to the case 1p > , 

0 1p< < and 1p = correspondently. 

Theorem 3.4 Consider an insurance company that sells a single equity-linked life 

insurance contract with payoff 
1 2max( , )T T TH S S= , and the firm’s risk preference is 

risk-aversion with a power loss function ( ) pl x x= , 1.p > Then 

(i) The initial price of the contract is 

            
( ) ( )

( ) ( ) ( )
1 3 2 4

1 3 2 4

1 2 ' ' 2 2 ' '

0 0 1 3 0 2 4

2 2

1 3 2 4

, , , ,

0, , , , ,

s s s s

s s s s

X S S

P T M

ρ ρ

ρ ρ

= Ψ ∆ ∆ + Ψ ∆ ∆

 − Ψ ∆ ∆ +Ψ ∆ ∆ 
ɶ ɶ ɶ ɶ

            (3.81) 

where
1

0S and
2

0S are the initial prices for risky assets, ( )0,P T is the initial price of a 

zero-coupon bond, ( )2Ψ ⋅  denotes the two-dimensional cumulative normal distribution 

function with  
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p

 
= Π 
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( ) ( )( ) ( ) ( ) ( )( )2 2
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1 2 1 2, , 2 , , ,t T t T t T t T t Tσ ρσ σ σΠ = + + . 

(ii)  The survival probability
T xp is given by 
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where ( )Ψ ⋅  is the cumulative distribution function of standard normal distribution, and 
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Proof: (i) The success ratio ϕɶ  for risk-aversion case is given by (3.26), so we can 

simplify the modified contingent claim THɶ as 

       

( )

( ) ( )
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1 11
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           (3.83) 

where 
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k
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− 
=   
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ɶ . The expression for ( )0XVɶ can be decomposed into: 
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The indicator functions in (3.84) can be simplified as follows: 
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Consider the first expectation in the expression of ( )0XVɶ (3.84), (3.85) and (3.87) 

can lead to obtain: 
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. 

 Similarly as the proof of the Theorems in Section 3.3, “Multi-Asset Theorem” is 

applied again to evaluate the expectation in (3.89). First, the necessary correlations are 

given by: 
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Then, applying the theorem with the above parameters, we get 
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1∆  and 
'

3∆ are given in Theorem 3.4. 

Now let us turn to the second expectation { } ( )
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in (3.84). From (3.86) and (3.88), this expectation can be simplified to: 

           

{ } ( )

( )
{ } { }( )2

1
2 1 2 21

2
20
2 2 2 4 4

1 1

1
exp 1 1

0, 2

p
T T T T T

z

E S S S k Z S

S
E e s s

P T
ζ

−

−

  
⋅ < <     

 = − ≤ ∆ < ∆ 
 

ɶɶ ɶ

ɶ

          (3.91) 

where ( )( ) ( ) ( )* * 2

2 2 2 ,2 1 ,1 2
0 0

, , ~ 0,
T T

u uz u T dW u T dW %σ σ σ ζ= − + −∫ ∫ɶ ɶ ,  

( )( ) ( ) ( )( ) ( )( )2 2
2 * * * *

2 2 2 1 2 2 1
0

, 2 , , ,
T

u T u T u T u T duζ σ σ ρσ σ σ σ = + + + +  ∫ , 

( ) ( )( ) ( ) ( )
2

2 2 * *0
1 2 1 1 2 2 1 21 0

0
2

1
ln , ,

2

TS
T u T u T du

S

T

σ σ σ σ ρσ σ ρσ σ

σ

 + − + − + − 
∆ =

∫
ɶ

, 

( ) ( )
( ) ( ) ( )( )

2
* *0

2 2 2 1
0

4

2

1
ln , 2 , 2 ,

2 10,

TS p
u T u T u T

pkP T
σ σ σ ρσ

δ

 
− Π + + + − ∆ =
∫ɶ

. 

with the correlations 

( ) ( ) ( ) ( )
2 4

* *

2 1 2 2 1 2 1
0

2

, ,
1 1

T

s s

p p
u T u T du

p p

T

σ σ ρ σ σ σ σ ρ σ

ρ
σδ

=

  
− + + −  − −  

∫
ɶ

, 

( )( )( ) ( )( )
2 2

* *

2 2 2 1 1 2 1
0

2

, ,
T

s z

u T u T du

T

σ σ σ σ ρ σ σ ρ σ
ρ

σζ
=

 + − + − ∫
ɶ

, 
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( )( ) ( ) ( )

( ) ( ) ( )

4 2

* * *

2 2 2 2 1
0

2 2

* * *

1 2 2 1
0

2 2

, , ,
1 1

, , ,
1 1

T

s z

T

p p
u T u T u T du

p p

p p
u T u T u T du

p p

σ σ σ σ ρσ
ρ

δ ζ

σ ρσ ρσ σ

δ ζ

=

 
+ + + − − 

 
+ + − − +

∫

∫
. 

From Multi-Asset Theorem, the expectation in (3.91) becomes 

    { } ( ) ( ) ( )
2 4

1 2
2 1 2 2 2 ' '01

2 41 1 , ,
0,

p
T T T T T s s

S
E S S S k Z S

P T
ρ−

  
⋅ < < = Ψ ∆ ∆     

ɶɶ ɶ      (3.92) 

 We can follow the similar steps for the other two expectations in (3.84), and get the 

results: 

   ( ) { } ( )
1 3

1 1
1 2 1 21 1

1 31 1 , ,p p
T T T T T s sE k Z S S k Z S M ρ− −

  
 ⋅ ≥ < = Ψ ∆ ∆       

ɶ ɶɶ ɶ ɶ ɶ ɶ       (3.93) 

  ( ) { } ( )
2 4

1 1
1 2 2 21 1

2 41 1 , ,p p
T T T T T s sE k Z S S k Z S M ρ− −

  
 ⋅ < < = Ψ ∆ ∆       

ɶ ɶɶ ɶ ɶ ɶ ɶ       (3.94) 

where 
( )

( )2 0
exp ,

2 1

Tp
M k u T du

p

 
= Π 

 − 
∫ɶ . 

 Using (3.90), (3.92) ~ (3.94), the expression of ( )0XVɶ becomes 

    
( )

( ) ( ) ( ) ( )

( ) ( )

1 3 2 4

1 3 2 4

1 2
2 ' ' 2 ' '0 0

1 3 2 4

2 2

1 3 2 4

0 , , , ,
0, 0,

, , , ,

X s s s s

s s s s

S S
V

P T P T

M

ρ ρ

ρ ρ

= Ψ ∆ ∆ + Ψ ∆ ∆

 − Ψ ∆ ∆ +Ψ ∆ ∆ 

ɶ

ɶ ɶ ɶ ɶ

         (3.95) 

which leads to the result of (3.81). 

(ii) According to the key balance equation, we only need focus on expectation ( )E Hɶ . 

Based on (3.48), we can compute the first expectation as: 

   

{ }( ) ( )
{ }( )

( )
( )

2
1

1

11
1 1 2 0 2

1 1

1

0
1

1 1
0,

0,

z

T T T

S
E S S S e E e s

P T

S
d

P T

ζ− −⋅ ≥ = ⋅ ≤ ∆

= ⋅Ψ

ɶ ɶ

           (3.96) 
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where 

( )
1

2 20
2 1 2 12

0
1

1
ln 2

2

S
T

S
d

T

σ ρσ σ σ

σ

+ − +
=

ɶ
. 

The second expectation in (3.48) can be treated in a similarly way so that we get 

           ( )
( )

( )
( )

( )
1 2

0 0
1 2

0, 0,
T

S S
E H d d

B T B T
= ⋅Ψ + Ψɶ                   (3.97) 

where 

( )
2

2 20
1 2 1 21

0
2

1
ln 2

2

S
T

S
d

T

σ σ σ σ ρ

σ

+ + −
=

ɶ
. 

Therefore, the survival probability is given by 

( )
( )

( ) ( )
( ) ( )

( ) ( )( )
( ) ( )

1 3 2 41 3 2 4

2 21 2 ' ' 2 2 ' '
1 3 2 40 1 3 0 2 4

1 2 1 2

0 1 0 2 0 1 0 2

, , , ,, , , ,

T

T x

T

s s s ss s s s

E H
P

E H

MS S

S d S d S d S d

ϕ

ρ ρρ ρ

=

Ψ ∆ ∆ +Ψ ∆ ∆Ψ ∆ ∆ + Ψ ∆ ∆
= −

Ψ + Ψ Ψ + Ψ

ɶ ɶ

ɶ

ɶ ɶ ɶ ɶ

      (3.98) 

Theorem 3.5 Suppose that an insurance company sells a single equity-linked life 

insurance contract with payoff 
1 2max( , )T T TH S S= , and the firm decides to use efficient 

hedging to minimize the shortfall risk. It’s risk preference is risk-taking with a power loss 

function ( ) pl x x= , 0 1p< < . Then we have: 

(i).The initial price of the contract is 

           ( ) ( )
1 1 2 2

1 2 ' ' 2 2 ' '

0 0 1 1 0 2 2, , , ,s s s sX S Sρ ρ= Ψ ∆ Λ + Ψ ∆ Λ
ɶ ɶ

               (3.99) 

where 
1

0S and 
2

0S are the initial assets’ prices, ( )2Ψ ⋅  denotes the two-dimensional 

cumulative normal distribution function with 

( ) ( )( ) ( )* * 2

1 1 1 2 1
0

'

1

1

1
ln , , ,

2 2

T p p
k p u T u T u T duσ σ ρσ σ

δ

− − + + − + Π 
 Λ =

∫ɶ

ɶ
, 
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( ) ( )( ) ( )* * 2

2 2 2 1 2
0

'

2

2

1
ln , , ,

2 2

T p p
k p u T u T u T duσ σ ρσ σ

δ

− − + + − + Π 
 Λ =

∫ɶ

ɶ
, 

( ) ( ) ( ) ( ) ( )( )( )2 * *

1 1 1 1 2
0

, 1 1 2 , 2 ,
T

p u T p p p u T p u T duδ σ σ σ ρσ= Π + − − − −∫ɶ ,  

( ) ( ) ( ) ( ) ( )( )( )2 * *

2 2 2 2 1
0

, 1 1 2 , 2 ,
T

p u T p p p u T p u T duδ σ σ σ ρσ= Π + − − − −∫ɶ , 

( )

1
1

0
1

0,

p

p

S
k c

P T

−
 

=   
 

ɶ , 
( )

1
2

0
2

0,

p

p

S
k c

P T

−
 

=   
 

ɶ , 

( ) ( ) ( )( ) ( )( )
1 1

* *

1 2 1 1 2 1 2
0

1

, 1 ,
T

s s

p u T p p u T du

T

σ ρσ σ σ σ σ ρ σ
ρ

σδ
=

 − − − + −  ∫
ɶ ɶɶ

, 

( ) ( ) ( )( ) ( )( )
2 2

* *

2 1 2 2 1 2 1
0

2

, 1 ,
T

s s

p u T p p u T du

T

σ ρσ σ σ σ σ ρ σ
ρ

σδ

 − − − + −  =
∫

ɶ ɶɶ
. 

(ii). The survival probability 
T xp  is in the form 

            
( ) ( )

( ) ( )
1 1 2 2

1 2 ' ' 2 2 ' '

0 1 1 0 2 2

1 2

0 1 0 2

, , , ,s s s s

T x

S S
P

S d S d

ρ ρΨ ∆ Λ + Ψ ∆ Λ
=

⋅Ψ + Ψ
ɶ ɶ

            (3.100) 

where ( )Ψ ⋅  is the cumulative distribution function of standard normal distribution. 

Proof:  (i). When 0 1p< < , recall that the success ratio ϕɶ  has the form (3.27) from 

which we can rewrite ( )0XVɶ as: 

      

( ) ( ) { } ( ){ }( )
{ } ( ){ }( )

1
1 1 2 1

1
2 1 2 2

0 1 1 1

1 1 1

p

X T T T T p T T

p

T T T p T T

V E H E S S S c Z S

E S S S c Z S

ϕ
−

−

= = ⋅ ≥ <

+ ⋅ < <

ɶ ɶ ɶ ɶɶ

ɶ ɶ

         (3.101) 

The calculation for { } ( ){ }( )1
1 1 2 11 1 1

p

T T T p T TE S S S c Z S
−

⋅ ≥ <ɶ ɶ is shown in this proof, 

and the expression for { } ( ){ }( )1
2 1 2 21 1 1

p

T T T p T TE S S S c Z S
−

⋅ < <ɶ ɶ can be obtained in a 

similarly way. 

The set ( ){ }1
1 1

p

p T Tc Z S
−
<ɶ is simplifies as: 
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                ( ){ } { }
1

1

1 11
p

p T Tc Z S s
−
< = Λ >ɶ ɶ                    (3.102) 

where 
( ) ( )( ) ( )

( )
* *

1 1 ,1 2 ,2
0 0

1

1

1 , ,
~ 0,1

T T

u up p u T dW p u T dW
s %

σ σ σ

δ

− − −
= ∫ ∫ɶ ɶ

ɶ
ɶ

 

( ) ( ) ( ) ( )* *1
1 1 1 2

0

1

1

ln , 1 , ,
2 2

T p
k u T p u T u T du

σ
σ σ ρσ

δ

  − − Π − − + +    Λ =
∫ɶ

ɶ
, 

( ) ( ) ( ) ( ) ( )( )2 * *

1 1 1 1 2
0

, 1 1 2 , 2 ,
T

p u T p p p u T p u T duδ σ σ σ ρσ = Π + − − − − ∫ɶ , 

( )

1
1

0
1

0,

p

p

S
k c

P T

−
 

=   
 

ɶ . 

So the first term in (3.101) becomes 

         

{ } ( )

( )
{ } { }( )1

1
1 1 2 1 1

1
20

1 1 1 1 1

1 1 1

1
exp 1 1

0, 2

p
T T T p T T

z

E S S S c Z S

S
E e s s

P T
ζ

−

−

  
⋅ ≥ <  

  

 = − ≤ ∆ < Λ 
 

ɶ ɶ

ɶ ɶ

            (3.103) 

Now we apply Multi-Asset Theorem and take the corresponding correlations as 

( ) ( ) ( )( ) ( ) ( )( )
1 1

* *

1 2 1 1 2 1 2
0

1

, 1 ,
T

s s

p u T p p u T du

T

σ ρσ σ σ σ σ ρ σ
ρ

σδ
=

− − − + −∫
ɶ ɶɶ

, 

( )( )( ) ( ) ( )
1 1

* *

1 1 1 2 2 1 2
0

1

, ,
T

s z

u T u T du

T

σ σ σ σ ρ σ σ ρ σ
ρ

σζ
=

 + − + − ∫
ɶ

 

( ) ( ) ( ) ( )( ) ( )
1 1

* * 2

1 1 2 1
0

1 1

, 2 1 , , 1
T

s z

p u T p u T u T pσ σ ρσ σ
ρ

δ ζ=

 Π + − + − − ∫
ɶ ɶ

. 

We obtain  

   { } ( ){ }( ) ( ) ( )
1 1

1
1

1 1 2 1 2 ' '0
1 11 1 1 , ,

0,

p

T T T p T T s s

S
E S S S c Z S

P T
ρ

−
⋅ ≥ < = Ψ ∆ Λ

ɶ
ɶ ɶ       (3.104) 

 After the similar calculations, we also have  

   { } ( ) ( ) ( )
2 2

21
2 1 2 2 2 ' '01

2 21 1 1 , ,
0,

p
T T T p T T s s

S
E S S S c Z S

P T
ρ−

  
⋅ < < = Ψ ∆ Λ  

  
ɶ

ɶ ɶ     (3.105) 



 

81 

Therefore, (3.104) and (3.105) lead to the expression of  

        ( )
( ) ( ) ( ) ( )

1 1 2 2

1 2
2 ' ' 2 ' '0 0

1 1 2 20 , , , ,
0, 0,

X s s s s

S S
V

P T P T
ρ ρ= Ψ ∆ Λ + Ψ ∆ Λ
ɶ ɶ

ɶ     (3.106) 

So that we find ( ) ( )
1 1 2 2

1 2 ' ' 2 2 ' '

0 0 1 1 0 1 2 2, , , ,s s s sX S S Mρ ρ= Ψ ∆ Λ + Ψ ∆ Λ
ɶ ɶ

. 

(ii). From the key formula 
( )
( )

T

T x

T

E H
p

E H

ϕ
=
ɶ ɶ

ɶ
 and the calculation of T xp in Theorem 3.4, 

we get the formula for T xp in (3.100). 

Theorem 3.6 Consider an insurance company that sells a single equity-linked life 

insurance contract with payoff 
1 2max( , )T T TH S S= , and the firm’s risk preference is 

risk-indifference with a power loss function ( ) pl x x= , 1.p = Then 

(i). The initial price of the contract is 

               ( ) ( )
1 1 2 1

1 2 ' ' 2 2 ' '

ˆ ˆ0 0 1 1 0 2 2, ; , ;s s s sX S Sρ ρ= Ψ ∆ Λ + Ψ ∆ Λ               (3.107) 

where 
1

0S and 
2

0S are the initial assets’ prices, ( )2Ψ ⋅  denotes the two-dimensional 

cumulative normal distribution function with 

( ) ( ) ( )( )* *

1 1 2
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1

1

1
ln , , ,

2
ˆ

T

pc u T u T u T duσ σ ρσ

δ

 − + Π + + 
Λ =

∫
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( ) ( ) ( )( )* *

2 1 2
0'

2

1

1
ln , , ,

2
ˆ

T

pc u T u T u T duσ ρσ σ

δ

 − + Π + + 
Λ =

∫
, 

( )( ) ( )( )
1 1

* *

1 1 2 2 1 2
0

ˆ

1

, ,

ˆ

T

s s

u T u T du

T

σ σ σ ρ σ σ ρ σ
ρ

σδ
=

 − + − ∫
ɶ

, ( )2

1
0

ˆ ,
T

u T duδ = Π∫ , 

( ) ( ) ( )( )
1 2

* *

1 2 1 2 2 1
0

ˆ

1

, ,

ˆ

T

s s

u T u T du

T

σ σ ρ σ σ σ σ ρ
ρ

σδ
=

 − + − ∫
ɶ

. 

(ii). The survival probability 
T xp  has the form 
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( ) ( )

( ) ( )
1 1 2 1

1 2 ' ' 2 2 ' '

ˆ ˆ0 1 1 0 2 2

1 2

0 1 0 2

, ; , ;s s s s

T x

S S
P

S d S d

ρ ρΨ ∆ Λ + Ψ ∆ Λ
=

⋅Ψ + Ψ
               (3.108) 

Proof: (i). If 1p = , the structure of success ratioϕɶ is given in (3.28),  

so we rewrite ( )0XVɶ as: 

    
( ) ( )

{ } { }( ) { } { }( )1 1 2 2 1 2

0

1 1 1 1 1 1

X T

T T T p T T T T p T

V E H

E S S S c Z E S S S c Z

ϕ=

= ⋅ ≥ > + ⋅ < >

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ
     (3.109) 

Simplify the indicator function { }1 1 p Tc Z> ɶ , we obtain: 

                  { }1 1 p Tc Z> ɶ { }1̂1 s= < Λ                          (3.110) 

where 
( ) ( )* *

1 ,1 2 ,2
0 0

1

1

, ,
ˆ ~ (0,1)

ˆ

T T

u uu T dW u T dW
s %

σ σ

δ

− −
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( )

0

1

1

1
ln ,

2
ˆ

T

pc u T du

δ

− − Π
Λ =

∫
, ( )2

1
0

ˆ ,
T

u T duδ = Π∫ . 

We calculate the first term in (3.109) 

           

{ } { }( )

( ) { } { }( )
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1
1

1 1 2
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0 2
1 1 1 1

1 1 1

ˆ1 1
0,

T T T p T
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E S S S c Z
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e E e s s
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= ⋅ < Λ ≤ ∆

ɶ ɶ

ɶ
              (3.111) 

where the correlations are  

( )( ) ( )( )
1 1
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1 1 2 2 1 2
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s s

u T u T du
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σ σ σ ρ σ σ ρ σ
ρ

σδ
=
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,  
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1 1 1 2 2 1 2
0

1

, ,
T

s z

u T u T du

T

σ σ σ σ ρ σ σ ρ σ
ρ

σζ
=

 + − + − ∫
ɶ

, 

( ) ( ) ( )( )
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1 1 2
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ˆ

1 1

, , ,

ˆ

T

s z

u T u T u T duσ σ ρσ
ρ

δ ζ
=

 Π + + ∫
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We can construct 
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1
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S
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S
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σ σ σ σ ρ

σ

+ + −
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ɶ
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( ) ( ) ( )( )* *

1 1 2
0'

1

1

1
ln , , ,

2
ˆ

T

pc u T u T u T duσ σ ρσ

δ

 − + Π + + 
Λ =

∫
 

and by two-asset theorem, (3.111) become 

     { } { }( ) ( ) ( )
1 1

1
1 1 2 2 ' '0

ˆ1 11 1 1 , ;
0,

T T T p T s s

S
E S S S c Z

P T
ρ⋅ ≥ > = Ψ ∆ Λɶ ɶ           (3.112) 

For the second term in (3.109), we can follow the similar steps and get the expression 

as: 

   { } { }( ) ( ) ( )
2 1

2
2 1 2 2 ' '0

ˆ2 21 1 1 , ;
0,

T T T p T s s

S
E S S S c Z

P T
ρ⋅ < > = Ψ ∆ Λɶ ɶ           (3.113) 

Therefore, we obtain: 

     ( )
( ) ( ) ( ) ( )

1 1 2 1

1 2
2 ' ' 2 ' '0 0

ˆ ˆ1 1 2 20 , ; , ;
0, 0,

X s s s s

S S
V

P T P T
ρ ρ= Ψ ∆ Λ + Ψ ∆ Λɶ        (3.114) 

which leads to final formula (3.107) for 0X in risk-neutral case. 

(ii). From (3.97) and key balance equation, we can derive the expression for survival 

probability in (3.108). 

3.4.4 .umerical Results 

In this section, we provide a numerical example to illustrate the effect of both 

stochastic interest rate and correlated Wiener processes on hedging equity-linked life 

insurance contracts by efficient hedging technique. For the purpose of comparison, we 

consider the same extreme case as in Section 3.3.4 that insurance company’s attitude is 

risk-taking and loss function with power 0p → .  

Based on the analysis in previous Sections, we can fix the probability of failing to 

hedge claim
TH at maturity as ( )1 TP cHZ ε< =ɶ .With the fixed financial risk level ε , 

constant c can be estimated from ( )1 TP cHZ ε< =ɶ . We use the same estimated 
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volatilities for risky assets as in Section 3.3.4 and estimate the correlation ρ as: 

          1 0.2909σ = , 2 0.2362σ = , 0.637ρ =                   (3.115) 

For simplicity, all the results obtained in this section are under the assumption of 

constant volatility structures in HJM model (3.74) (3.75), i.e. ( ),i it Tσ σ= , 1, 2,i =  for 

all t andT . Without loss of generality, we select
1 0.03σ = , 

2 0.02σ = .  

With small 0.01p < , we assume the initial value of a single equity-linked life 

insurance contract is 0 1000S = . We calculate the survival probabilities T xp  with 

maturity terms 1 ~ 20T =  years in the same specifications for the initial term 

structure (0, )f t as in Section 3, i.e. 

Scenario I: flat initial term structure ( ) 00,f t r= . 

Scenario II: linearly increasing initial term structure ( ) 00, 0.002f t r t= + ⋅ . 

Scenario III: linearly decreasing initial term structure ( ) 00, 0.002f t r t= − ⋅ .  

In case of 0 0.033r = , the survival probabilities T xp  at different financial risk 

level ε  are presented in Figure 3.9, 3.10, 3.11. The ages of clients corresponding to 

those survival probabilities are also obtained and graphically shown in Figure 3.12, 3.13, 

3.14. 
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Figure 3.9 Hedging ratios (survival probabilities T xp ) at different financial 

risk ε with ( ) 00, 0.033f t r= =  

 

Figure 3.10 Hedging ratios (survival probabilities
T xp ) at different financial 
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risk ε with ( ) 00, +0.002f t r t=  

 

 

 

Figure 3.11 Hedging ratios (survival probabilities T xp ) at different financial 

risk ε with ( ) 00, 0.002f t r t= −  
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Figure 3.12 Age of clients with flat initial term structure ( ) 00, 0.033f t r= = . 

 

 

Figure 3.13 Age of clients with linearly increasing initial term 

structure ( ) 00, +0.002f t r t= . 
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Figure 3.14 Age of clients with linearly decreasing initial term 

structure ( ) 00, 0.002f t r t= − . 

 

For three different term structures (0, )f t , we still can observe an offset between the 

financial risk and the mortality risk. When insurance company faces an increased 

financial riskε at fixed time T , the corresponding survival probability 
T xp appears a 

decreasing trend. Besides, the trend of the client age reveals that the more financial risk 

the insurance company is willing to carry the elder group of clients should be attracted to 

compensate for the increased financial risk. With longer contract maturities, the company 

is better to attract younger group of clients while maintaining the same financial risk 

exposure.  

 From Figures 3.9 to 3.11, the survival probability 
T xp  shows a slightly increasing 

trend after the year of 15, but the trend has an overall decreasing pattern over the time. 

Additionally, the decreasing rate of the survival probability becomes faster after year 
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5T = . This phenomenon can be well explained by the result in Miltersen & Persson 

(1999) which the stochastic interest rate can significantly affect the value of the contract 

only after a specific insurance period. However, from the results in Section 3.3.4 which 

the price processes of the risky assets are generated by the same Wiener process, the 

survival probability T xp is concaved up obviously as maturity time evolves. The 

difference in trends of 
T xp is caused by more source of randomness appearing in 

stochastic interest rate model which can make the insurance company facing increased 

financial risk. Therefore, the decreasing trend of survival probability T xp is observed in 

this section because of the offset between financial risk and mortality risk.  

As a result of different survival probability patterns, the trend of client age in Figures 

3.12 to 3.14 is concaved up during first 10 years, and then it begins to decrease gradually. 

This observation is noticeably different compared with the overall concave-down pattern 

derived from special case 1ρ = in Section 3.3.4. This comparison implies that when 

different Wiener processes are used for financial modeling, the insurance company does 

not have to attract wider age group of clients. Due to the uncontrollable factors of the 

volatility of the underlying risky assets and the fluctuations of interest, the insurance 

company may conservatively consider the elder group of clients (Age>60) to compensate 

the high potential risks. 

Figure 3.15 shows the sensitivity of survival probability T xp with respect to three 

different initial term structures at financial risk level 0.05ε = . The survival probabilities 

for the three ( )0,f t  are overlapped for the initial time periods (such as 3T = ). However, 

with the evolution of time, the difference in three survival probabilities becomes larger, 

and the survival probability with linearly decreasing ( )0,f t is significantly higher than 

the flat one. In addition, the survival probability for linearly increasing ( )0,f t  is always 

lower than the one for flat throughout the rest of the period. 
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Figure 3.15 Sensitivity of survival probability T xp w.r.t. different ( )0,f t at 0.05ε = . 

 

 Figure 3.16 shows the change of survival probability with respect to ρ at 

0.05ε = with flat ( )0,f t over 20 years. The correlation ρ varies between 0.15 and 

0.95 with increment value 0.2. One can notice that different parameter ρ can lead to 

significant change in survival probabilities. The difference in survival probabilities 

becomes longer for maturity time T ( 4T > ). At any fixed time T , the survival 

probability
T xp keeps increasing with an increased value of ρ . This observation suggests 

that the insurance company could consider a younger group of clients to compensate the 

increased risk by investing on more correlated risky assets in financial market.  
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Figure 3.16 Sensitivity of survival probability w.r.t different ρ at 0.05ε = , initial term 

structure is flat. 
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4. Application of quantile hedging on equity-linked life insurance 

with market restriction: transaction costs 

4.1. Literatures review of hedging inclusive transaction costs 

In Chapter 2 and 3, we have already reviewed many research papers which made 

significant contributions to the imperfect hedging techniques. In general, one important 

assumption in these literatures as well as in our financial settings in Chapter 2 and 3 is the 

frictionless market. This market does not consider transaction costs in the financial 

trading. However, transaction costs can not be negligible in the real trading world. 

Transaction costs with frequent trading and large size can considerably affect the 

financial and insurance companies to properly value their products. They also possibly 

lead to huge financial losses. As a result, there are substantial amount of theoretical work 

devoted to option pricing with transaction costs.  

Leland (1985) developed a hedging strategy to approximately replicate the European 

call option’s payoff inclusive of transaction costs. The idea is to offset the transaction 

costs by implementing a modified volatility during hedging. The modified volatility 

depends on both the rate of transaction costs and the length of the rebalance interval 

which is also called the revision period. Inspired by Leland’s contribution, Toft (1996) 

obtained the closed-form expressions for the expected transaction costs, hedging errors 

and variance of the cash flow from a time-based hedging strategy. Hodges & Neuberger 

(1989) initially developed a utility-based approach on option pricing with transaction 

costs. They also took into account the investor’s behaviour towards the risk during the 

valuation. Their work was extended by a number of researchers, for instance, Clewlow & 

Hodges (1997), Barles & Soner (1998), and Zakamouline (2006).  

Merton (1990) firstly examined the effects of transaction costs on derivative security 
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pricing by two-period version of the Cox-Ross-Rubinstein (CRR) binomial model. Later 

on, Boyle & Vorst (1992) introduced an exact replication procedure in the C-R-R 

binomial model with transaction costs. They also gave a discrete-time variant of Leland’s 

Theorem for the problem in the Black-Scholes market. Afterwards, Palmer (2001) 

removed Boyle and Vorst’s conditions for the replication of short position on options. 

More recently, Melnikov & Petrachenko (2005) extended the C-R-R binomial model to 

cover the case of proportional transaction costs for one risky asset which has different 

interest rates on bank credit and deposit. They also considered the contingent claims 

which are two-dimensional random variables. 

There also exist other approaches devoted to hedging and pricing options 

considering transaction costs, such as mean-variance hedging techniques, the abstract 

theory of cones. These techniques are introduced by papers Lamberton et. al. (1998), 

Reiss (1999), Stettner (1997), and Stettner (2000). 

Equity-linked life insurance contracts usually have long term maturities in insurance 

market. As a result, the insurance companies are necessary to rebalance the hedging 

portfolio several times within the contract maturity. There are a few theoretical works 

related with hedging insurance contracts with transaction costs. Boyle & Hardy (1997) 

worked on the segregated fund which is a popular type of equity-linked product in 

Canada. They estimated the total hedging costs associated with the corresponding 

transaction costs for hedging maturity guarantee from a simulation method. Hardy (2000) 

compared three methods of determining suitable provision for maturity guarantees for 

single premium segregated fund contracts with transaction costs. Nteukam T., et.al. (2011) 

analyzed the optimality of several available hedging strategies. This result allows the 

insurer to reduce the risk related to a portfolio of unit-linked life insurance contracts 

including transaction costs.  



 

94 

4.2. Description of problem 

To the best of our knowledge, although there are some researches considered 

hedging equity-linked type of insurance contract with transaction costs, few has been 

done on quantile hedging on insurance contract with transaction costs. The main focus of 

this Chapter is to discuss the valuation of equity-linked life insurance contracts by 

quantile hedging strategy in presence of transaction costs. For the sake of simplicity, we 

work on a single premium equity-linked life insurance contract and assume the guarantee 

at maturity is deterministic. However, we only consider the investments of the contract on 

risky asset which is attractive and has good financial performance. In Section 4.3, we 

calculate the quantile price of the contract without considering the transaction costs. In 

addition, the quantile hedging portfolio at the beginning of the contract term includes 

risk-free bonds and risky assets. The explicit expressions for the expected present value 

of total transaction costs and total hedging errors from a time-based replication strategy 

are obtained in Section 4.4. The expressions are based on the obtained quantile price 

formula. To compare with the analytical result obtained previously, a simulation method 

is introduced which contains the estimated expected present values of transaction costs, 

hedging errors and total quantile hedging costs, in Section 4.5. We also investigated the 

quantile hedging costs of maturity guarantee for equity-linked life insurance contract in 

this section.  

Leland’s transaction costs adjusted hedging volatilityσ is utilized in this approach, 

which is different from the underlying risky asset’s volatilityσ . We also investigate the 

performance of Leland’s adjusted volatilityσ in presence of transaction costs from some 

numerical examples. As a matter of fact, there are some studies questioned the 

performance of Leland’s adjusted transaction costs volatilityσ in asymptotic case. For 

example, Kabanov & Safarian (1997) pointed out a flaw in the proof of convergence in 

Leland’s main Theorem. Zhao & Ziemba (2007) numerically confirmed the findings from 

simulation results. It is noted that the constraint of Leland’s adjusted volatility exists only 
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when revision period is extremely small ( 0t∆ → ). However, this is the case beyond the 

consideration by insurance companies. From the practical point of view, insurance 

companies can not adjust the hedging positions frequently. Otherwise, the premium of the 

contract will be prohibitively expensive with the appearance of transaction costs. 

Therefore, Leland’s adjusted hedging volatilityσ can still be effectively considered in 

this study for practical purposes.  

4.3. Premium of equity-linked life insurance contract without transaction 

costs 

 In this section, we will discuss the application of quantile hedging to calculate the 

premium for the equity-linked life insurance contract without consideration of transaction 

costs. We assume that we have a typical Black-Scholes-Merton setting: a financial market 

with the bond price
tB  and the risky asset price 

tS , which satisfy the following 

dynamics: 

                 
t tdB rB dt=  � 0

rt

tB B e=                         (4.1) 

   ( )t t tdS S dt dWµ σ= +  � 

2

0 exp
2

t tS S dt dW
σ

µ σ
  

= − +  
  

       (4.2) 

where tW is a Wiener process defined on a complete probability 

space ( ) [ ]( )0,
, , ,t t T
F F P

∈
Ω , r is the constant risk-free interest rate, µ is the constant 

mean-rate of return on the risky asset, and σ is the constant risky asset’s volatility. We 

also assume the financial market is frictionless.  

By Girsanov Theorem, the equivalent martingale measure
*P is unique with the 

density given by 

             

* 2

exp
2

t

t t

F

dP
Z W t

dP

θ
θ

 
= = − − 

 
, 

rµ
θ

σ
−

=              (4.3) 

 We work on a single premium equity-linked life insurance contract with a maturity 
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guarantee K . Ekern & Persson (1996) introduced varieties types of maturity guarantees 

for the contract. Here we only consider K is either fixed or deterministic which can both 

be treated as non-stochastic terms in the later calculation. TH is defined to represent the 

payoff at maturityT as following:  

             ( ) { } { }max ,T T T T TH S K S I S K KI S K= = ≥ + <             (4.4) 

where {}I ⋅ is the indicator function. 

 Following the detailed analysis of quantile hedging in Chapter 2, we can apply 

quantile hedging to value the initial hedging costs for equity-linked life insurance 

contract given the initial budget constraint ( )*

0 0

rT

TX H E H e−< = . The initial 

amount 0X collected by the insurance company from selling the contract is strictly less 

than the amount 0H required for a perfect hedging. Remind that the quantile hedge
*π can 

maximize the probability of successful hedging and it coincides with the perfect hedge 

for a modified contingent claim { }* *

T TH H I A= . 
*A is the maximal set of successful 

hedging which satisfies { }* *1/ rT

T TA I Z a e H−= > , where
*a is a constant to be 

determined from the initial budget constraint with a nonzero interest rate r .  

We derive the explicit formula for the quantile premium of equity-linked life 

insurance contract.  

Theorem 4.1: Consider an insurance company that sells a single premium equity-linked 

life insurance contract with payoff at maturity as ( )max ,T TH S K= , the initial premium 

of the contract determined from quantile hedging is: 

    ( ) ( ) ( )( )0 0 2 2 1rT

K
X S T

e
σ= Ψ −Λ + Ψ Λ −Ψ Λ , 

2 0rµ σ− − > .        (4.5) 

where ( )Ψ ⋅ is the cumulative distribution function for standard normal distribution, and  
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( )2 *

1

1
ln

2
r T Ka

T

θ

θ

 − + 
 Λ = ,

2

0

2

ln
2

K
r T

S

T

σ

σ

 
+ − 
 Λ = . 

Proof: Using the evolution of tS under risk-neutral measure 
*P and the structure of the 

modified contingent claim
*

TH , we can calculate the initial premium 0X from quantile 

hedging as 

{ }

( ) ( )

* *

0

* *
max , max ,

1

T

rT

T T

TrT rT

H
X E I A

e

S K S K
E I a Z

e e

 =   

    = > 
    

 

{ } { }* * * *1 1T T
T T T TrT rT rT rT

S S K K
E I a Z I S K E I a Z I S K

e e e e

     = > ⋅ ≥ + > ⋅ <      
    

  (4.6) 

Then, we can simplify the indicator functions
*1 T

T rT

S
I a Z

e

 
> 

 
, { }TI S K≥  

and { }TI S K< .  

For 
2 0rµ σ− − > , we obtain the result: 

 { } { } { } { }* *

0 1 2 3 2
T

rT rT

SK
X E I y I y E I y I y

e e

  = > Λ ⋅ < Λ + > Λ ⋅ ≥ Λ     
 (4.7) 

where

*

TW
y

T
= is a standard normal random variable and 1Λ , 2Λ , 3Λ are given by 

( )2 *

1

1
ln

2
r T Ka

T

θ

θ

 − + 
 Λ = ,

2

0

2

ln
2

K
r T

S

T

σ

σ

 
+ − 
 Λ = ,

( ) ( )
( )

2 2 *

0

3

1
ln

2
T S a

T

θ σ

θ σ

− +
Λ =

−
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Next, we will compare 1Λ , 2Λ , 3Λ  

         

( ) ( )*

0

0
2 1

ln ln
2

K r
T a S

S

T

M

T

µ
θ θ σ σ

σθ

σθ

+
− − −

Λ −Λ =

=

             (4.8) 

 

( ) ( )

( )

*

0

0

2 3

ln ln
2

K r
T a S

S

T

µ
θ σ σ

σ θ σ

 +
− − − 

 Λ −Λ =
−

 

                     
( )

M

Tσ θ σ
=

−
,                                (4.9) 

              

( ) ( ) ( )
( )

( )

* *

0 0

1 3

ln ln
2

r
a S T a S

T

M

T

µ
θ σ θ

θ θ σ

θ θ σ

+ − − − 
 Λ −Λ =

−

=
−

.       (4.10) 

where ( ) ( ) ( )* *

0 0ln ln
2

r
M a S T a S

µ
θ σ θ

+ = − − − 
 

. If 0M > , we have 

               ( ) ( )2 2 *

0

0

ln ln
2

K r
r T a S

S

µ
µ σ σ

 +
− − − > 

 
             (4.11) 

Given
2 0rµ σ− − > , (4.11) can lead us to select the value of guarantee K as 

              
( )2 *

0

0 2

ln
exp

2

a Sr
K S T

r

σµ
µ σ

 +
 > +
 − − 

                 (4.12) 

Based on (4.8) ~ (4.10), we can get 2 1 3Λ > Λ > Λ . Thus, the premium 0X is reduced 

to 

        { } { }* *

0 2 2 1
T

rT rT

S K
X E I y E I y

e e

   = ≥ Λ + Λ > > Λ     
         (4.13) 

It is clearly that 
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             { } ( ) ( )( )*

2 1 2 1rT rT

K K
E I y

e e

 Λ > > Λ = Ψ Λ −Ψ Λ  
          (4.14) 

The first term in (4.13) is calculated directly: 

{ } { }

2 2

2

2

2

2
* * *0

2 2

1 1

2 2
0

1

2
0

exp
2

1

2

1

2

T
TrT rT

T x
T x

u

T

SS
E I y E r T W I y

e e

S e e e dx

S e du

σ σ

σ

σ
σ

π

π

+∞ − −⋅

Λ

+∞ −

Λ −

     
≥ Λ = − + ≥ Λ            

= ⋅ ⋅

=

∫

∫

 

                       ( )0 2S Tσ= Ψ −Λ                            (4.15) 

 From (4.14) and (4.15), we obtain the formula (4.5) for the contract premium 0X . 

Remark 4.1: In this chapter, we only focus on the condition
2 0rµ σ− − > , which 

implies that the expected return of the risky asset tS over the risk-free rate r is higher 

than the risk from the asset (volatility
2σ ). This condition also reveals that the insurance 

companies usually try to select the risky asset which is attractive and have a good 

investment performance.  

4.4. Quantile hedging on equity-linked life insurance contract with 

transaction costs 

4.4.1 Transaction costs adjusted hedging volatility 

In this section, we will investigate the impact of transaction costs on the premium of 

equity-linked life insurance contracts determined from quantile hedging. From intuition, 

the price inclusive of transaction costs could be higher than the price without transaction 

costs. The goal of insurance company is to maintain a portfolio that can replicates the 

payoff
TH . We assume that the replicating portfolio is rebalanced at discrete intervals and 
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trades can only be executed at a set of points in time{ }0 ,..., ,...,m Mt t t , where Mt T= is 

the maturity time for the contract. Hedging period t∆ is a constant from mt to 1mt + . At 

each revision point m , 0,1,..., 1m M= − , the stock price is given by 

             ( )
0 0

2

0

1
exp

2m mt t m t tS S t t Wµ σ σ −

  = − − +  
  

            (4.16) 

According to Toft (1996), while the risky asset’s volatility equals toσ , we assume 

the quantile price at each revision point for equity-linked life insurance contract use 

another hedging volatility σ in the presence of transaction costs and discrete trading. 

The selected hedging volatilityσ results in a hedging error, which can offset the 

transaction costs paid when the hedging strategy is revised. In this paper, we choose 

hedging volatility as 1 2 2 / /k tσ σ π σ= + ∆ , which is Leland’s transaction costs 

adjusted hedging volatility (1985). The parameter k  is the one-way transaction cost rate, 

which is proportional to the stock price.  

As we have noted in (4.5), for
2 0rµ σ− − > , the initial quantile price for 

equity-linked life insurance contract with hedging volatilityσ at 0t is given as: 
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      + −    − +           + Ψ −Ψ               

   (4.17) 

where 0 0MT t t= − , 
rµ

θ
σ
−

= . The price formula (4.17) implies the initial hedging 

portfolio consist of 
0t

∆ units in the risky asset and 
0t

B units of the bond which pays 
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value K at maturity T ,  

where 0
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. 

At each revision point mt , 1,..., 1m M= − , the weights 
0t

∆ and
0t

B are adjusted and 

the quantile price is defined as: 
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      + −    − +           + Ψ −Ψ               

 (4.18) 

where
m M mT t t= − . Over the hedging period t∆ (from

mt to 1mt + , 0,1,..., 1m M= − ), the 

pricing formula (4.18) indicates that the shares of risky asset in the hedge portfolio is 

defined as: 
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                (4.19) 

and the units of risk-free bond in the hedging portfolio is given by 
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   (4.20) 

Both the quantile price (4.18) and the weights of the hedging portfolio (4.19), (4.20) 

depend on the Leland’s adjusted hedging volatilityσ . 

4.4.2 Expected hedging error 

 Suppose at time 0t , the initial hedging portfolio includes 
0t

∆ shares of risky assets 

and 
0t

B units of risk-free bond. Given by (4.19) and (4.20), the hedging portfolio should 

consist of 
1t

∆ shares of risky assets and 
1t

B units of bond at the next rebalanced time 1t . 

Since the hedging position can not be self-adjusted, the hedging error
1t

H at time 1t  is 

defined as: 
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t t t t t t t

r t

t t t t

H e B S S Ke B

e B S X

−⋅∆

⋅∆

= + ∆ − ∆ −

= + ∆ −
                 (4.21) 

Similarly, the portfolio is rebalanced repeatedly at all mt , 0,1,..., 1m M= − , the hedging 

error is then shown as: 

                   
1 1 1m m m m m

r t

t t t t tH e B S X
+ + +

⋅∆= + ∆ −                      (4.22) 

 Following Toft (1996)’s derivation, we can get the one period expected hedging error 

and the expected present value of hedging error separately.  

Theorem 4.2: We assume the hedging errors are discounted at the risk-free interest rate r . 

If the quantile hedging strategy is rebalanced at all mt , 0,1,..., 1m M= − ,with a 

hedging volatilityσ , the one period expected hedging error at time 1mt + given
mt

S , 

0,1,..., 1m M= − ,is:  
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Proof: First, we can take conditional expectation on (4.22) and obtain 
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where y is a random variable satisfied the standard normal distribution.  

Let us calculate the conditional expectation 
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using Formula (49) in Toft (1996), and we have 
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With the help of formula (49), we can get 
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Similarly, we can calculate 
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Substitute (4.25)-(4.27) into (4.24), we obtain the expression of (4.23).  

Theorem 4.3: We assume the hedging errors are discounted at the risk-free interest rate r . 

If the quantile hedging strategy is rebalanced at all mt , 0,1,..., 1m M= − ,with a hedging 

volatilityσ , the expected present value of hedging error at time 1mt + given the information 

at time 0t is: 
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To prove Theorem 4.3, we have ( ) ( )( )1 0 1 0m m mt t t t tE H F E E H F F
+ +

= , and then we 

can substitute (4.29) into the above equation and apply formula (49) in Toft (1996) again 

to get (4.28). 

Theorem 4.2 can be used to analyze the expected hedging errors at the end of the 

first hedging period and also provides the size of the expected hedging error in each of 
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the subsequent hedging periods. Theorem 4.3 gives an expression for the expected 

present value of total hedging error, conditional on the information at time 0t . 

Subsequently, let us define the present value of the total expected hedging errors during 

the contract maturity as: 

               ( ) ( )1

0 1 0

1
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m

m

M
rt

t t t

m

E H F E H e F+

+

−
−

=

=∑                    (4.29) 

Providing the numerical values for different model parameters, we assume there are 

12 months, 24 biweekly or 48 business weeks in one year. We select the following 

parameters to calculate the expected present value of total hedging error for contracts 

with different maturitiesT , and same values are used for calculations through the rest 

part of Section 4: 

0.13µ = , 0.2σ = , 0.06r = , 0 100S = . 

We fix the financial risk for quantile hedging as 0.025ε = , and set the deterministic 

maturity guarantee for the contract as 0

gTK S e= , where the guarantee rate 0.1g = . 

 

Figure 4.1 The expected present value of total hedging errors (HE) from hedging 

volatilityσ with the one way transaction costs rate 0.25%k = . 
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Figure 4.2 The expected present value of total hedging errors (HE) from hedging 

volatilityσ with the one way transaction costs rate 0.5%k = . 

 

Figure 4.3 The expected present value of total hedging errors (HE) from hedging 

volatilityσ with transaction costs rate 1%k = . 

 

Figures 4.1~ 4.3 show that the expected present values of total hedging error (HE) 

obtained from Leland’s adjusted hedging volatilityσ with one way transaction cost 

rate 0.25%,0.5%,1%k =  respectively. It is observed that the total expected hedging 
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errors with Leland’s volatility are not negligible, and the errors turn out to be positive 

with different rebalancing frequency across different maturity time T . As rebalancing 

frequency and maturity time T increase, the discounted values of the expected hedging 

errors also increase significantly. The magnitude of the expected total hedging errors is 

evidently sensitive to the revision period t∆ , contract’s maturityT , and the transaction 

costs rate k . 

Remark 4.2: As discussed in Melnikov & Romaniuk (2006), two factors determine the 

selection of the contract’s maturity guarantee K : (i) the return on the stock investment; (ii) 

the short-term interest rates. The manager should set the guarantee K higher than the 

amount generated from risk-free interest rate r while less than the return from stock
TS . 

Otherwise, clients would invest in a more appealing money market and seek for products 

with less financial risks. For a contract with long term maturity, the manager can set a 

deterministic guarantee K with a rate g satisfying r g µ< < . 

4.4.3 Expected transaction costs 

Parameter k represents the one-way transaction cost rate, which is measured as the 

proportion of risky asset’s price. The dollar value of the transaction costs for trading at 

time 1mt +  is defined as: 

                       
1 1 1m m m mt t t tTC kS
+ + +
= ∆ −∆                       (4.31) 

We can obtain the expected present value of total transaction costs through the following 

two Theorems: 

Theorem 4.4: We assume the transaction costs are discounted at the risk-free interest 

rate r . If the quantile hedging strategy is rebalanced at all
mt , 0,1,..., 1m M= − , with a 

hedging volatilityσ , the expected one period transaction costs at time 1mt + given the 

information at time
mt is: 
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Proof: Let us take the conditional expectation on definition (4.31). We can obtain 

               

( )
( )

( )

1

1 1

21

2

1 2

m m

m m m m

m m

t t

t t t t

t
t y

t t

E TC F

kE S F

kS e E e Y Y F
µ σ

σ

+

+ +

  − ∆   ∆ ⋅  

= ∆ −∆

= −

                (4.33) 

where y is a standard normal distributed random variable, and  
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the conditional expectation (4.33) becomes 
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Using formula (50) in Toft (1996), we get expression (4.32). 

Theorem 4.5: We assume the transaction costs are discounted at the risk-free interest 

rate r . If the quantile hedging strategy is rebalanced at all mt , 0,1,..., 1m M= − , with a 

hedging volatilityσ , the expected one period transaction costs at time 1mt + given the 

information at time 0t is: 
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Proof: It is clearly that ( ) ( )( )1 0 1 0m m mt t t t tE TC F E E TC F F
+ +

= . Substitute (4.32) into the 

previous equation and with the help of formula (49), (51) and (52) in Toft (1996), we can 

get the closed form expression for expected present value of transaction costs in (4.35). 

 

 Theorem 4.5 allows the calculation of the expected present value of the transaction 

costs at each of the future rebalancing points conditional on the information at time 0t . 

These expected transaction costs subsequently are aggregated into a forward looking 

measure of the replication strategy’s total expected transaction costs. We define the 

following definition for the expected present value of total transaction costs as:  
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Figure 4.4 The expected present value of total transaction costs (TC) from hedging 

volatilityσ with the one way transaction costs rate 0.25%k = .  

 

Figure 4.5 The expected present value of total transaction costs (TC) from hedging 

volatilityσ with the one way transaction costs rate 0.5%k = . 
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Figure 4.6 The expected present value of total transaction costs (TC) from hedging 

volatilityσ with the one way transaction costs rate 1%k = . 

 

Figures 4.4~4.6 show the expected present value of total transaction costs (TC) 

calculated from Leland’s adjusted hedging volatilityσ  with one way transaction cost 

rate 0.25%,0.5%,1%k =  at different maturityT respectively. The base parameters for 

the calculations are the same as in Section 4.4.2. It is observed that transaction costs are 

significantly increased in values for more frequent rebalancing and longer maturity. 

Furthermore, the values almost increase proportionally with the increase of transaction 

rate k .  

4.4.4 Expected total hedging cost  

Based on the analysis in Section 4.4.1~4.4.3, the expected total quantile hedging 

costs for equity-linked life insurance contract is supposed to include two parts: one is the 

initial cost to set up the hedging portfolio, which is determined by quantile price for the 

contract; the other one is the difference between total expected hedging error and total 

expected transaction costs. We could obtain the expected total quantile hedging costs in 
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presence of transaction costs for different maturities and revision periods at transaction 

costs rate 0.5%k = . For comparison, the results are calculated based on hedging with the 

underlying asset’s volatilityσ and with Leland’s adjusted hedging volatilityσ separately. 

Table 4.1 shows the expected total quantile hedging costs with hedging volatilityσ , and 

Table 4.2 displays the expected total quantile hedging costs with the adjusted hedging 

volatilityσ .  

 

 

Table 4.1 The expected total quantile hedging costs with hedging volatilityσ . 

 

MaturityT  Revision Quantile HE TC HE-TC Total 

 Monthly 10.8478 0.2676 1.2518 -0.9842 11.8320 

5T =  Biweekly 10.8478 0.3200 1.7670 -1.4470 12.2948 

 Weekly 10.8478 0.3461 2.4984 -2.1523 13.0001 

 Monthly 12.1843 -0.0092 2.1068 -2.1160 14.3003 

10T =  Biweekly 12.1843 0.0761 2.9679 -2.8918 15.0761 

 Weekly 12.1843 0.1188 4.2954 -4.1766 16.3609 

 Monthly 12.6638 -0.1584 3.0300 -3.1884 15.8522 

15T =  Biweekly 12.6638 -0.0374 4.2954 -4.3328 16.9966 

 Weekly 12.6638 0.0230 6.0853 -6.0623 18.7261 

 Monthly 12.7852 -0.2770 4.1786 -4.4556 17.2468 

20T =  Biweekly 12.7852 -0.1149 5.9411 -6.0570 18.8422 

 Weekly 12.7852 -0.0339 8.4336 -8.4675 21.2527 
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Table 4.2 The expected total quantile hedging costs with Leland’s adjusted hedging 

volatilityσ . 

 

MaturityT  Revision Quantile HE TC HE-TC Total 

 Monthly 12.0760 1.5403 1.2073 0.3330 11.7430 

5T =  Biweekly 12.5655 2.1312 1.6811 0.4501 12.1097 

 Weekly 13.2397 3.1271 2.3339 0.7932 12.4465 

 Monthly 14.0748 2.1244 2.0329 0.0915 13.9833 

10T =  Biweekly 14.9821 3.1202 2.8254 0.2948 14.6855 

 Weekly 16.1473 4.4202 3.9166 0.5036 15.6437 

 Monthly 15.3602 3.0038 2.9247 0.0791 15.2811 

15T =  Biweekly 16.9264 4.2907 4.0922 0.1985 16.7279 

 Weekly 18.0399 6.0760 5.6975 0.3785 17.6554 

 Monthly 16.6769 4.0163 4.0268 -0.0105 16.6874 

20T =  Biweekly 18.2837 5.7285 5.6682 0.0603 18.2234 

 Weekly 20.2723 8.1092 7.9132 0.196 20.0763 

 

As expected, we observe that the initial costs (quantile prices) with the adjusted 

volatilityσ are higher than those obtained from volatilityσ . In fact, inclusive of positive 

transaction costs, the initial costs to set up the hedging portfolio can be higher than the 

ones without transaction costs. The total hedging errors from volatilityσ are relatively 

small, which shows an increasing trend with respect to rebalancing frequency for each 

contract’s maturity. However, it is encouraging to see that the expected total hedging 

errors implied by the adjusted volatility σ have greater values, which can approximately 

offset the corresponding total transaction costs. Furthermore, when the adjusted 

volatilityσ is greater than the underlying asset’s volatilityσ , the hedging errors in Table 

4.2 turn out to be positive. This observation is agreed with the conclusion in Toft (1996). 

The differences between the hedging errors and the transaction costs can be 
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considered as the cash flow from the quantile hedging strategy. Positive values imply to 

sell the asset, while negative values imply that extra asset is required to maintain the 

quantile hedge. In addition, the differences obtained from volatility σ reach a 

significantly higher than those calculated from the adjusted volatilityσ , especially under 

monthly rebalancing (see Table 4.1 and 4.2). One can see that the hedging errors 

generated from adjusted volatilityσ can almost offset the transaction costs during the 

trading. This observation results from the positive hedging errors along with the similar 

values of transaction costs.  

From Tables 4.1 and 4.2, the expected total costs obtained from adjusted volatility 

σ are slightly less than the costs from volatilityσ . However, the results also reveal that 

in the presence of transaction costs, the expected total costs for both cases are 

prohibitively expensive compared with ones without transaction costs. For longer 

maturity contract with more frequent revision periods, the expected total costs of quantile 

hedging can increase as high as 57% by considering transaction costs.   

 

4.5. Quantile hedging inclusive transaction costs based on simulation 

approach 

4.5.1 Quantile hedging costs for equity-linked life insurance contract 

In Boyle & Hardy (1997), a time-based simulation method is introduced to estimate 

the expected present value of total transaction costs and the total costs of hedging. The 

advantage of this method is that the entire distribution of the transaction costs can be 

estimated, and it is more flexible to handle the contracts with annual premium. In 

presence of transaction costs, they assume the replicating portfolio is adjusted at regular 

time intervals t∆ , the revision period. The sequence of transactions that take place will 

depend on the evolution of the stock price over the contract maturity[ ]0,T . So a series of 
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stock price values at each revision point { }0 ,..., ,...,m Mt t t are simulated first, 

where Mt T= , 0,1,..., 1m M= − . Then, given the definition of transaction costs at time 

1mt +  as 
1 1 1m m m mt t t tTC kS
+ + +
= ∆ −∆ , the expected discount values of transaction costs at 

time 0t are computed. The estimates of the expected total costs are the basic 

Black-Scholes price plus the expected transaction costs.  

Although Boyle & Hardy (1997) discussed the accuracy of the prescribed hedging 

strategies by tracking errors, they did not take them into account the expected total costs 

for hedging. In this paper, we use the same simulation method to estimate the expected 

present value of transaction costs. We also adopt Leland’s transaction cost adjusted 

hedging volatility σ in calculations. For comparing with the results in Section 4.4, we 

calculated the hedging error, which is the difference between the prices of the hedge 

portfolio before and after rebalancing. The cash flows are considered into the expected 

total hedging costs.  

 Table 4.3 and 4.4 illustrate that the estimated expected present values of total 

transaction costs and the percentiles of distribution at 0.5%k =  based on hedging 

volatility 0.2σ =  and adjusted volatilityσ separately respectively. It is shown that the 

estimated expected total transaction costs from σ are higher than the costs based on σ . 

However, the increment of transaction costs are only within $0.50. As rebalancing 

becomes more frequent, the estimated transaction costs of weekly rebalancing are almost 

doubled compared to the monthly case across different maturities. This observation is 

agreed with those comparisons between Table 4.1 and 4.2. Similarly, the percentiles 

estimated from volatilityσ are slightly increased compared with the percentiles obtained 

from adjusted volatilityσ . The expected transaction calculated from the simulation 

approach seems higher than the results obtained from the explicit formulas.  
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Table 4.3 Estimated expected present value of total transaction costs and percentiles of 

distribution at 0.5%k = , based on hedging volatilityσ . 

 

Maturity T  Revision TC 95th percentile 99th percentile 

 Monthly 1.4466 2.4343 2.7715 

5T =  Biweekly 2.0151 3.3984 3.7722 

 Weekly 2.8574 4.7432 5.2546 

 Monthly 2.3344 4.0007 4.5184 

10T =  Biweekly 3.2702 5.5777 6.2695 

 Weekly 4.6253 7.8955 8.7705 

 Monthly 3.2962 5.7103 6.4329 

15T =  Biweekly 4.6607 7.9965 9.0076 

 Weekly 6.5826 11.2347 12.6094 

 Monthly 4.4629 7.7854 8.8135 

20T =  Biweekly 6.2711 10.9339 12.4337 

 Weekly 8.8181 15.3950 17.3999 

 

Table 4.4 Estimated expected present value of total transaction costs and percentiles of 

distribution at 0.5%k = , based on Leland’s hedging volatilityσ . 

 

Maturity T  Revision TC 95th percentile 99th percentile 

 Monthly 1.3989 2.3188 2.6552 

5T =  Biweekly 1.9526 3.1920 3.5495 

 Weekly 2.6670 4.3163 4.7979 

 Monthly 2.2903 3.8294 4.2708 

10T =  Biweekly 3.1525 5.2365 5.8330 

 Weekly 4.3689 7.1449 7.9827 

 Monthly 3.1916 5.4440 6.1847 

15T =  Biweekly 4.4439 7.5071 8.4215 

 Weekly 6.1558 10.2783 11.5360 

 Monthly 4.3009 7.4111 8.4479 

20T =  Biweekly 6.0045 10.2435 11.4828 

 Weekly 8.3152 14.0624 15.7021 
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By using the same parameters as in Table 4.1 and 4.2, we calculated the expected 

total hedging costs of quantile hedging from simulation approach with hedging 

volatilityσ and adjusted volatilityσ separately. The results are shown in Table 4.5 and 

4.6. For hedging with the adjusted volatilityσ , the difference between hedging errors 

and transaction costs from simulation method is lower than the values obtained from 

explicit formulas overall. Although the values of the total costs from simulation method 

are slightly higher than the ones obtained from formulas, these values such as hedging 

errors, the difference of hedging errors and the transaction costs, and the total costs all 

have the similar trends across different maturities and revision periods for both 

approaches.  

 

Table 4.5 Expected total hedging costs at 0.5%k = , based on hedging with 

volatility 0.2σ = . 

 

Maturity T  Revision HE HE-TC Total Costs 

 Monthly 0.2214 -1.2252 12.0730 

5T =  Biweekly 0.3925 -1.6226 12.4704 

 Weekly 0.3208 -2.5366 13.3844 

 Monthly -0.0624 -2.3968 14.5811 

10T =  Biweekly 0.0327 -3.2375 15.4218 

 Weekly 0.1449 -4.4804 16.6647 

 Monthly -0.3394 -3.6356 16.2994 

15T =  Biweekly -0.0453 -4.7060 17.3698 

 Weekly 0.0250 -6.5576 19.2214 

 Monthly -0.3741 -4.8370 17.6222 

20T =  Biweekly -0.1918 -6.4629 19.2481 

 Weekly 0.0086 -8.8095 21.5947 
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Table 4.6 Expected total hedging costs at 0.5%k = , based on Leland’s adjusted 

volatilityσ . 

 

Maturity T  Revision      HE HE-TC Total Costs 

 Monthly 1.5884 0.1895 11.8865 

5T =  Biweekly 2.3383 0.3857 12.1798 

 Weekly 3.1288 0.4618 12.7779 

 Monthly 2.3246 0.0343 14.0405 

10T =  Biweekly 3.2582 0.1057 14.8764 

 Weekly 4.6603 0.2914 15.8559 

 Monthly 3.0132 -0.1784 15.5386 

15T =  Biweekly 4.4329 -0.0110 16.9374 

 Weekly 6.2072 0.0514 17.9885 

 Monthly 4.0375 -0.2634 16.9403 

20T =  Biweekly 5.9391 -0.0654 18.9377 

 Weekly 8.2594 -0.0558 20.3281 

4.5.2 Quantile hedging costs of maturity guarantees 

 To have a possibility to compare our findings with the results in Boyle & Hardy 

(1997), and Hardy (2000), we also discuss the costs of quantile hedging on European put 

option inclusive transaction costs.  

According to Brennan and Schwartz (1976), the benefit of a single premium 

equity-linked life insurance contract can alternatively be written as: 

                     ( )max ,0T T TH S K S= + −                       (4.37) 

(4.37) shows the benefit of the contract is the sum of the value of reference portfolio at 

maturity and the value of an European put option on the reference portfolio with the 

strike price as same as the contract’s guarantee K . Therefore, the maturity guarantee 

premium charged by the insurance company can be viewed in terms of the hedging costs 

on put options.  

As mentioned previously, we know that a financial insurance market is incomplete. 
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As a result, quantile hedging can be considered as one of the appropriate imperfect 

hedging techniques to price the guarantee. Next, we will introduce the quantile price for 

European put option without transaction costs.  

Theorem 4.6: Consider a European put option with strike price K and maturityT on risky 

asset tS from the model (4.2). If the underlying risky asset tS satisfies the 

condition
2 0rµ σ− − > , the quantile price for the put option is  
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Considering the case
2 0rµ σ− − > , 

*A can be written in the following form for 
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some constants b and d : 

              

{ }

{ }

*

2
*

0

*

:

: exp
2

:

T

T

T

A S d

S r T W d

W b

ω

σ
ω σ

ω

= >

      
= − + >    

     

= >

                (4.41) 

Therefore, the quantile price for the European put option can be calculated as 
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Remark 4.3: Solving the problem of quantile hedging, we can choose some acceptable 

financial risk levelε first. Then, we obtain constant b from the maximal probability of 

successful hedging: 
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 Following the simulation method introduced in Section 4.5.1, we estimate the 

expected transaction costs and the expected total costs for contracts maturity guarantee 
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from quantile hedging. Table 4.7 includes the estimated expected present value of total 

transaction costs and the percentiles of distribution at one way transaction rate 0.5%k = . 

They are calculated based on hedging volatility 0.2σ = and Leland’s adjusted hedging 

volatilityσ separately. The results in brackets are calculated from volatilityσ . We fix the 

financial risk 0.025ε =  and select a constant maturity guarantee 100K =  as an 

example. The estimated transaction costs and the corresponding percentiles shows the 

same changing patterns as the results in Boyle and Hardy (1997), especially on the same 

rebalancing basis. The expected transaction costs of hedging put options for 5 years are 

greater than the costs for 10 years. However, for both hedging volatility σ and σ , the 

expected transaction costs generated from quantile hedging appears less than the values 

in Boyle and Hardy (1997) which calculated from perfect hedging based on the 

Black-Scholes formula.  

 

Table 4.7 Estimated expected present value of total transaction costs and percentiles of 

distribution at 0.5%k = . 

Maturity T  

(Years) 

Revision 

Period 

Expected Total 

TC 

95th percentile 99th percentile 

 Monthly 
0.6407 

(0.6631) 

1.3573 

(1.4066) 

1.4828 

(1.5335) 

5T =  Biweekly 
0.8896 

(0.9145) 

1.8279 

(1.9247) 

2.0322 

(2.2370) 

 Weekly 
1.2446 

(1.2710) 

2.4086 

(2.6806) 

2.8184 

(3.0733) 

 Monthly 
0.5450 

(0.5929) 

1.3370 

(1.3552) 

1.4793 

(1.5332) 

10T =  Biweekly 
0.7246 

(0.7409) 

1.7519 

(1.8382) 

1.9824 

(2.2027) 

 Weekly 
0.9997 

(1.0162) 

2.2276 

(2.3736) 

2.6160 

(2.7720) 
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 The Black-Scholes Put option price are $5.6968 for 5T = and $4.1685 for 10.T =  

Table 4.8 shows the expected total hedging costs for maturity guarantee at 0.5%k = , 

based on hedging with volatility 0.2σ = . Table 4.9 shows expected total hedging costs of 

the maturity guarantee at k=0.5%, based on Leland’s hedging with volatilityσ . We 

observe that with more frequent hedging, the estimated total hedging errors show a 

decreasing trend in absolute values while the estimated transaction costs increase. This 

observation consists with the conclusions in Hardy (2000). As expected, the estimated 

total costs of quantile hedging calculated from bothσ andσ on contract’s maturity 

guarantee are less than the total costs in Boyle & Hardy (1997), because of existence of 

2.5% financial risk during quantile hedging. Although the cash flows from quantile 

hedging using adjusted volatility σ is slightly less than those from hedging with 

volatilityσ , the total costs based onσ is higher than the values based onσ . This is 

mainly caused by the relatively large difference between quantile prices shown in Table 

4.8 and 4.9. It is noted that quantile price calculated from volatilityσ in Table 4.8 is the 

price without transaction costs. However, the values obtained from adjusted volatility 

σ in Table 4.9 are inclusive of the transaction costs.  

 

Table 4.8 Expected total hedging costs of the maturity guarantee at 0.5%k = , based on 

hedging with volatilityσ . 

 

Maturity Revision Quantile HE HE-TC Total Costs 

 Monthly 2.0547 -2.8614 -3.5245 5.5792 

5T =  Biweekly 2.0547 -2.8003 -3.7148 5.7695 

 Weekly 2.0547 -2.7407 -4.0117 6.0664 

 Monthly 0.2378 -2.6927 -3.2856 3.5234 

10T =  Biweekly 0.2378 -1.8501 -2.5910 2.8288 

 Weekly 0.2378 -1.6186 -2.6348 2.8726 
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Table 4.9 Expected total hedging costs of the maturity guarantee at 0.5%k = , based on 

Leland’s adjusted hedging volatilityσ . 

 

Maturity Revision Quantile HE HE-TC Total Costs 

 Monthly 2.7792 -2.4843 -3.1250 5.9042 

5T =  Biweekly 3.0799 -2.2156 -3.1052 6.1851 

 Weekly 3.5038 -1.9547 -3.1993 6.7031 

 Monthly 0.6801 -1.2257 -1.7707 2.4508 

10T =  Biweekly 0.9019 -1.2070 -1.9316 2.8335 

 Weekly 1.2418 -1.1118 -2.1115 3.3533 
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5. Conclusions and future directions 

In this thesis, we analyzed the problem of valuation of imperfect hedging techniques 

on equity-linked life insurance contracts with market restrictions on interest rate and 

transaction costs. We mainly focused on quantile hedging and efficient hedging 

approaches.  

First, quantile hedging on equity-linked life insurance was discussed. We generalized 

the results in Melnikov & Skornyakova (2005) by assuming the interest rate is stochastic 

and follows the HJM framework. We found that the implied survival 

probability T xp obtained in a stochastic interest rate environment shows a decreasing 

trend with longer contract maturities, while the one with constant interest rate is 

increasing instead. Along with this result, the insurance company may have potential 

clients with different age levels. Furthermore, we examined the effect of a stochastic 

interest rate on efficient hedging of equity-linked life insurance. The price of a 

zero-coupon bond was selected as the numeraire to reduce the complicated calculation 

when using term-structure models. The risky assets models with the correlation of two 

Wiener processes 1ρ = and 1ρ < were considered separately. The numerical examples 

illustrate that the stochastic interest rate has great impact on overall patterns of survival 

probabilities across different financial risk levels. It is also implied that increasing 

sources of randomness in the valuation model can affect the trends of survival probability 

and clients’ age dramatically.  

Finally, it comes to the transaction costs factor. We consider the case of rebalancing 

the portfolio with less extreme trading frequencies, such as monthly, biweekly and 

weekly, which is practical for insurance companies. Our results of expected present value 

of total transaction costs, hedging errors are derived with Leland’s transaction costs 

adjusted hedging volatilityσ , which is used to construct the replicating portfolio. The 
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numerical examples illustrate that the hedging errors generated from Leland’s 

volatilityσ almost offset the transaction costs. Besides, the cash flow from hedging with 

adjusted volatilityσ at future rebalancing points is less than the one from hedging with 

volatilityσ . These findings are also confirmed by the estimated results obtained from a 

simulation approach.  

 For future studies, there are several interesting directions worth exploring. First, 

more general jump-diffusion models can be considered to capture the trajectories of risky 

assets. In this thesis, we use the two-factor jump-diffusion models, which assume the 

jump sizes in stock price are constants. There are some more general jump-diffusion 

models, which can better describe the characteristics of risky assets; for instance, a model 

with compound Poisson processes can be utilized to reflect the random jump sizes. Some 

theoretical results are obtained for quantile hedging based on models with compound 

Poisson processes in Tong & Melnikov (2013). However, more research work related 

with efficient hedging and mean-variance hedging could be considered as a future 

direction.  

 Another natural extension is to investigate other types of equity-linked life insurance 

products. In this thesis, we work with a single premium equity-linked life insurance 

contract, where the benefit is paid only as the insured can survive until maturity. Other 

more complicated and flexible equity-linked insurance products can be considered, for 

instance, segregated funds and variable annuities, which can provide not only minimum 

maturity benefit guarantee but also minimum death benefit guarantee. Sometimes, such 

contracts are usually combined with periodic premiums, which allow the policyholders to 

regularly pay a predetermined premium to the insurance company compared with single 

premium case. Such extensions would illustrate the use of quantile and efficient hedging 

in a more realistic setting appealing to the practitioners in insurance fields 
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Appendix 1: Proof of Theorem 2.1. 

We will now calculate 0X from Multi-Asset Theorem in Melnikov & Romaniuk 

(2008) to get the expression of 0X . Because we only have two risky assets in our setting, 

we will use the multi-asset theorem for 2n = indicators. Let us review the multi-asset 

theorem first with the same notations as in Melnikov & Romaniuk (2008).  

Multi-Asset Theorem: Let ( )2,i i ix % µ σ∼ , 1,...,i n= and ( )2,z zz % µ σ∼ be 

1n + normally distributed random variables with a variance-covariance matrix 1nR + given 

by 
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Similarly as the proof of Theorem 2.1, we can decompose 0X into
1

0X plus
2

0X . Let us 

calculate
1

0X first. On each set{ } , 1,2...T n nΠ = = ,
1

0X has the expression: 
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Let us define the random variables ( )1 1
0

T

s sx dWφ σ= +∫ ɶ , ( )2 2 1 Tx Wσ σ= − ɶ , and 
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distribution: 
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  We can also define random variables 1X , 2X  as  
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Applying Multi-Asset Theorem for 2n = , we can obtain 
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We treat 
2

0X in a similar way and define the random 
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We use the Multi-Asset Theorem again and obtain 
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(A1.6) and (A1.9) lead to the expression of 0X as 
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Appendix 2: Useful formulas 

 Here we list some formulas in Toft (1996) which are used to prove the Theorem 

4.2~4.5. In the following list of formulas, ( )Ψ ⋅ and ( ), ,Ψ ⋅ ⋅ ⋅ denote the univariate and 

bivariate standard normal distribution function respectively.  

Formula (49): For some constants , , , ,A B C D E , we have 
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Formula (50): For some constants , , , ,A B C D E , we have 
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Formula (51): For some constants , , , , , , ,A B C D E F G ρ , we have 
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In case of zero correlation, formula (51) turns to: 

Formula (52):  
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