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Introduction

• Forced aligners determine phone
boundaries in audio
◦ E.g., location of [k], [æ], [t] in
recording of cat

• Most previous forced aligners hidden
Markov model (HMM) based [4][6]

• Deep neural net (DNN) systems
outperform HMM ones for general
speech recognition [3]

Research question: DNNs → better forced
alignment?

Prediction: DNN systems will outperform
HMM ones
• Unclear if raw audio or engineered
features better [5]

Data and Networks

• Trained on TIMIT speech corpus [1]
• One net uses raw audio, the other uses
Mel-frequency cepstral coefficients
(MFCCs)
◦ Window length of 25 ms, taken at 1
ms intervals

◦ For MFCCs, used 12 coefficients and
energy term, plus delta and delta-
delta coefficients

• Architecture kept same for both networks
(Figure 1)

• All layers except output had ReLU
activation

Figure 3. Sample phone alignment from aligners for “she had your.” From top to bottom: ground truth, raw
audio network, MFCC network, Montreal Forced Aligner. Closer to ground truth is better.

Results and Discussion

• Network output decoded for boundaries
(Figure 2)

• Also evaluated Montreal Forced Aligner
(MFA) for recent HMM system
comparison

Table 1. Evaluation metrics for trained networks and
MFA. Framewise alignment accuracy, framewise test
accuracy, and median absolute error (MAE) of boundary
timestamps. Test accuracy not available for MFA

Figure 2. Example of decoding process for a 3 label (rows), 4 time-step (columns) output. Neural network
output is N, and output label matrix is O. Labels determined by backtracking and following the most probable
previous steps through O (illustrated by the red arrows). Boundaries are taken as the point where the labels
transition.

Figure 1. Network architecture and training procedure.

• Raw audio system outperforms other
tested systems

• Test accuracies not yet competitive with
existing systems [2][5]

• Something wrong with MFCC network
• Raw audio alignment shows promise
(Figure 3)

• Improving frame identification accuracy
may improve alignment results

• Decoding algorithm may benefit from
minimum durations
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