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Well-defined nano- and atomic-sized heterogeneous catalysts with extremely high
catalytic activities and unique selectivities show promise in addressing the critical
energy- and environment-related challenges of this century. The exceptional
properties of these catalysts, such as their electronic and geometric structures and
the effective interactions between metals and supports, give rise to unprecedented
catalytic efficiency over that of conventional catalysts. The facile prospects for
tuning the active sites of these catalysts pave the way to optimizing their activities,
selectivities, and stabilities, thus offering extensive application possibilities in
significant industry-related catalytic reactions. A prerequisite for synthesizing
nano- and atomic-sized catalyst is to prepare extremely disperse nano- and
subnanoscale atoms on suitable supports. This book chapter summarizes various
synthesis methods employed to synthesize nano- and atomic-scale catalysts.

1. Introduction

Heterogeneous catalysis involving supported metal nanostructures is widely used in many
industrial processes, such as biomass conversion, water splitting, fuel-cell operation, ammonia
synthesis, and CO2 reduction (1). Downsizing the metal particles to the subnanometer regime allows
enhanced catalytic properties by improving the surface-to-volume ratio, facet-dependent activity,
and surface-atom coordination to the catalytically active regions. Materials with dimensions between
0.1 and 100 nm are referred to in the literature as nanoparticles, nanoclusters, or nanocrystals.
Generally, nanomaterials with diameters in the range of 2.0–100 nm are called nanoparticles (NPs),
and if the diameter falls below 10 nm, they are called nanodots. Quantum dots are a special class of
fluorescent nanodots consisting of tiny nanocrystals of semiconducting materials with diameters in
the range of 2–10 nm. Because of their small size, the electrons in these particles are confined, and the
radii of the semiconductor nanocrystals are smaller than the exciton Bohr radius with quantization
of the energy levels. Particles with sizes smaller than 2.0 nm are termed nanoclusters (NCs). On the
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other hand, tiny particles having core sizes of less than 1.0 nm can be distinguished as subnanometer
clusters (SNCs) (2). SNCs are composed of fewer than 50 atoms and have sizes of less than 1 nm,
which is comparable to the Fermi wavelength of the electron (3). Thus, SNCs are considered to be an
intermediate state between single atoms and metal NPs of greater than 1 nm (4). The tuning of bulk
materials into NPs, SNCs, and finally single metal atoms leads to increased unsaturated coordination,
which results in an increase in the surface free energy of the individual metal components. This
results in enhanced chemical interactions, so that the metal sites become highly catalytically active,
thus increasing the effective atom-utilization rate (5). This size effect of nanocatalysts is illustrated in
Figure 1.

Figure 1. Schematic of changes in surface free energy and specific activity per metal atom with metal particle
size and support effects on stabilizing single atoms. Reproduced with permission from reference (5).

Copyright 2013 American Chemical Society.

With advances in synthesis and characterization techniques and electronic technology, NPs with
core sizes even smaller than l.0 nm can be effectively captured and characterized. However, the
fabrication of such SNCs is a major challenge, as the undercoordination and electronic accessibility
of metal atoms in SNCs makes them highly reactive, which leads to thermodynamic instability. The
stabilization of SNCs can be achieved by protecting ligands in solution or by providing support to
the SNCs on solid organic or inorganic matrixes (1). At high temperatures, these SNCs become
more mobile and vulnerable to agglomeration, because of their higher surface energies (6). Several
methods such as soft-landing techniques, wet chemistry methods, and atomic dispersion of the metal
species on supports can be employed to synthesize these nanocatalysts (2, 7–9). This book chapter
intends to summarize recent advances in various traditional and new synthesis strategies applied to
the fabrication of nano- and atomic-sized catalysts.
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2. Synthesis Methods for Nano- and Atomic-Sized Catalysts

The size-controlled synthesis of nano- and atomic-sized catalysts is very challenging. Two
strategies are mainly used for the precisely controlled synthesis of NCs: bottom-up and top-down.
The bottom-up approach uses the reduction of the metal ion precursors by suitably weak or strong
reducing agents with the help of appropriate ligands, followed by nucleation of the reduced metal
atom. The nucleation process is controlled precisely by varying the quantities of reducing agents or
the amounts of protective ligands or by changing the solvents. In contrast, in the top-down approach,
NCs are synthesized from larger NPs by core-etching or size-reduction methods.

2.1. Bottom-Up Approaches

2.1.1. Brust–Schiffrin Synthesis

Brust–Schiffrin synthesis is a bottom-up synthesis method for fabricating Au NCs through the
biphasic (water/toluene) reduction of AuCl4– (10). This method is recognized as a simple approach
to the direct synthesis of surface-functionalized metallic clusters, specifically, the preparation of Au
NCs in an organic liquid. Here, the metal precursor was dissolved in water, and a phase-transfer
process was performed using a suitable phase-transfer catalyst such as tetraoctylammonium bromide
(6, 11). NCs containing 1–3-nm metal atoms were successfully prepared by adding the reducing
agent (sodium borohydride) and the protecting ligands (alkanethiol) to the organic layer. This
method is also known as the direct-synthesis method. The mechanism of formation of these NCs
was first explained by Perala and Kumar (12), who proposed that, if the synthesis environment is
unchanged, a continuous nucleation–growth–capping process occurs that results in the complete
capping of particles devoid of further growth at the same size. In contrast, new particles can start
growing continuously, causing highly monodisperse particles. A schematic representation of this
growth mechanism is provided in Figure 2.

Figure 2. Schematic of the proposed mechanism for Brust–Schiffrin synthesis. Reproduced with permission
from reference (12). Copyright 2013 American Chemical Society.

In 1995, Brust et al. modified the two-phase method into a one-phase method in which the
reaction was carried out in a polar solvent (methanol or tetrahydrofuran) (13). By means of these
methods, NCs of Au, Ag, Pt, Pd, and Cu with specific sizes have been easily prepared (14–22).
Among the metals, the noble metal gold has been studied systematically owing to its stability under
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ambient reaction conditions. The properties of the nanocrystals were controlled successfully by
modifying the reaction parameters such as the ligand-to-metal ratio, the protective ligands, the
concentrations of reactants, the use of weak or strong reducing agents, the temperature, the reaction
period, and the pH of the solvent used. Zhu et al. (23) synthesized one-sized Au25(SR)18 NCs
(where SR represents an alkyl- or arylthiol) by tuning the formation kinetics of the Au(I) intermediate
species through parameters such as the stirring rate and temperature. Likewise, Wu et al. (24)
presented a simple one-pot synthesis procedure for synthesizing Au25(SR)18 NCs using the
tetrahydrofuran method by a distinct size-focusing approach. Their study revealed that, at extended
reaction times, the initially formed polydisperse product was transformed entirely to a monodisperse
species. Goulet and Lennox proposed a revised mechanism for the Brust–Schiffrin method based
on a 1H NMR study and suggested that, for the one-phase reaction, gold(I) thiolate is the main
precursor, whereas for the two-phase method, a gold(I)–tetraoctylammonium halide complex is the
chief precursor prior to the reduction process (25). Later, Li et al. (26) also confirmed the former
mechanism with thorough studies using Raman and NMR analyses.

2.1.2. Phosphine-Capped Synthesis

Phosphine-stabilized NPs are considered to be potential precursors to other functionalized NP
building blocks containing well-defined metallic cores. Various reports on using amino-substituted
triarylphosphine ligands to synthesize Au NCs were published earlier (27, 28). This method received
much attention after the report by Hutchison’s group of a safer and more convenient synthesis of
phosphine-stabilized Au NPs (29). The two-step, scalable synthesis of phosphine-stabilized NPs was
achieved using sodium borohydride as a reducing agent. Initially, the hydrogen tetrachloroauric(III)
acid trihydrate (HAuCl4·3H2O) precursor was allowed to react with triphenylphosphine to yield
1 equiv each of AuCl(PPh3), triphenylphosphine, and triphenylphosphine oxide and 3 equiv of
HCl. Afterward, the mixture was reduced with NaBH4. Later, Wang’s group (30) reported the
PPh3-protected synthesis of Au20(PPh3)8 NCs using the above method. The synthesis involved the
dissolution of AuCl(PPh3) and tetraoctylammonium bromide in a toluene/water mixture, followed
by the slow addition of NaBH4 aqueous solution with continuous stirring. However, the resultant
clusters lacked a narrow size distribution (fewer than 12 Au atoms) and low yield. Diphosphine
ligands can be used to obtain metal NCs with a narrow size distribution. For example, Bertino et
al. (31) successfully synthesized monodisperse suspensions of ultrasmall tetrahedral Au20 clusters

AuN (N < 12) using the Au precursor Au(I)Cl(PPh3) and the bidentate phosphine ligand
P(Ph)2(CH2)MP(Ph)2. In their synthesis procedure, the Au precursor and ligands were first
dissolved in an organic solvent, and then the Au(I) was reduced by the slow addition of a borane–tert-
butylamine complex. Au11 clusters were obtained with the use of P(Ph)2(CH2)3P(Ph)2 ligands,
whereas P(Ph)2(CH2)MP(Ph)2 ligands with M = 5 and 6 yielded Au10 and Au8 clusters, respectively.
In another interesting work, Pettibone and Hudgens (32) synthesized monodisperse NCs of distinct
nuclearity by carefully controlling the ligand ratios (0 ≤ [ligand]/[PPh3] ≤ 18). In a typical synthesis,
AuCl(PPh3) and the ligand [1,6-bis(diphenylphosphino)hexane] were used as the Au precursor and
ligand, respectively. The reduction of the metal was achieved with NaBH4 in the 1:1 methanol/

chloroform solution. Huang et al. (33) synthesized atomically monodisperse [Au6(PPh3)6]2+ NCs
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in two distinct stages avoiding multistep conversions from [Au9(PPh3)8]3+ to [Au8(PPh3)8]2+ and

then from [Au8(PPh3)8]2+ to [Au6(PPh3)6]2+, as shown in Figure 3.

Figure 3. Schematic illustration of the synthesis of atomically monodisperse Au6 NCs using ammonia-
induced size convergence. Reproduced with permission from reference (33). Copyright 2018 American

Chemical Society.

Figure 4 shows the first kinetic reduction stage, which resulted in the formation of narrowly size-
distributed Aux (x = 6, 7, 8, 9, and 11) NCs. In the second stage, the NC mixture was size-converged
into atomically monodisperse Au6 NCs in the presence of aqueous ammonia. The uniqueness of this
synthesis route is that the method can be applied to many protecting ligands such as thiols, amines,
and even polymeric ligands. A simple, one-step synthesis of phosphine-stabilized Au NPs of narrow
size dispersion (1.2−2.8 nm in size) was reported by Shem et al. using the mild reducing agent 9-
borabicyclo[3.3.1]nonane (34). Au NPs of high purity were obtained depending on the reaction
conditions and the phosphine ligand used, as seen in Figure 4a. Phosphine-protected monodisperse
NCs of [Au13(dppm)6](BPh4)3, [Au18(dppm)6Br4](BPh4)2, and [Au20(dppm)6(CN)6] [where
dppm = bis(diphenylphosphino)methane] were successfully synthesized by the thiol and size-
focusing route (35). [Au18(dppm)6Br4](BPh4)2 was converted into [Au13(dppm)6](BPh4)3 and
[Au20(dppm)6(CN)6] by the surface engineering of the ligands under PPh3 or NaBH3CN, as shown
in Figure 4b.

Figure 4. (a) Synthesis pathway for phosphine-stabilized Au NPs. Abbreviations: 9-BBN, 9-
borabicyclo[3.3.1]nonane; RT, room temperature. Reproduced with permission from reference (34).

Copyright 2009 American Chemical Society. (b) Synthesis of atomically precise phosphine-capped gold
NCs (with more than 10 metal atoms). Reproduced with permission from reference (35). Copyright 2017

American Chemical Society.
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2.1.3. MOF-Derived Synthesis

This is a bottom-up method that uses metal–organic frameworks (MOFs) to synthesize high-
quality nanoscale catalysts. MOF‐derived materials are synthesized from MOF‐based precursors or
templates. Such syntheses include a series of post‐processing techniques such as thermal treatment,
chemical modification, and surface decoration. The synthesis of MOF‐derived materials basically
involves two major steps: preparation of the selective MOF precursor in the first step and deliberate
post‐treatments in the second step. MOFs are composed of metal-containing nodes and organic
linkers. Metals present in MOF nodes can be partly exchanged with further metals by the
coordination environment provided by the MOF linkers, which facilitates the creation of a desirable
spatial distance of metal sites. Through the selective removal of the doping atom and the aid of an
in situ reduction process, supported single atoms or their clusters distributed on porous matrixes
can be synthesized easily (36, 37). MOF-derived nanoscale catalysts have the advantage of precise
morphologies; ultrahigh porosities (up to 90% free volume); and huge internal surface areas,
extending beyond 6000 m2/g, as well as easy doping of heteroatoms, metal NPs, and metal oxide
NPs. They exhibit large surface areas and can provide large amounts of active sites, and thus, they
can be tuned as exceptional and robust heterogeneous catalysts, cocatalysts, or catalyst supports for
many catalytic reactions (38). Li and co-workers prepared an MOF-confined pyrolysis strategy for
the formation of highly concentrated Co isolated single atoms (ISAs) on a nitrogen-doped carbon
support (39). This strategy was based on the high-temperature pyrolysis of predesigned Zn/Co
bimetallic zeolitic imidazolate frameworks (ZIFs) to nitrogen-doped carbon (N-C). In this process,
the addition of Zn2+ replaced certain Co2+ sites, and the Zn2+ ions served as a fence for the spatial
separation of Co2+ ions. The lower-boiling-point Zn was selectively evaporated at a temperature
higher than 800 °C, whereas the Co was reduced by carbonized organic linkers. This resulted in Co
ISAs on the N-C support, establishing a new research regime on ISA materials on highly thermally
stable carbon supports with high metal loadings. Furthermore, the same group also reported that
the coordination number of single Co atoms could be tuned by varying the pyrolysis temperature
(40). In this case, three atomically dispersed Co catalysts with different Co–N coordination numbers
(Co–N4, Co–N3, and Co–N2) were selectively prepared at 800, 900, and 1000 °C, respectively.
Another interesting study used the host−guest methodology to synthesize a dual-metal-site
Fe1Co1/N-C catalyst (41). Here, the aforementioned Zn/Co BMOF was used as a host for
encapsulation by the double-solvent method, and separation of the FeCl3 precursor by molecular-
scale cages of ZIF was followed by pyrolysis to remove ligands and form nitrogen-doped porous
carbon (NPC) for stabilization of the cluster. Subsequently, a spatial isolation method was reported
for the fabrication of highly stable ISA Fe/NPC materials by a cage encapsulated-precursor and
pyrolysis strategy (42). During the synthesis, iron(III) acetylacetonate was encapsulated and became
trapped within the cages of ZIF-8. This resulted in suppression of the migration of Fe precursors, as
the pore diameter of ZIF-8 is much smaller than the molecular diameter of iron(III) acetylacetonate.
Thus, the successful confinement and spatial isolation of the active centers using an MOF as an
isolator enabled the formation of Fe ISAs. This strategy can be expanded by replacing the host,
as in the variously reported synthesis of series of M1/N-C materials by ZIF-8-derived strategies
(43, 44). These researchers also developed a ZIF-assisted strategy for the fabrication of atomically
dispersed single Ni atoms on the NPC through a synthesis based on ion exchange between Zn nodes
and adsorbed Ni ions within ZIF-8 cavities followed by pyrolysis at 1000 °C (45). Yang et al. (46)
reported the transformation of Ni NPs into Ni single atoms on the pyrolysis-treated ZIF-8 surface
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through a thermal diffusion mechanism. Here, the researchers proposed that Ni NPs could break
C–C bonds, leaving abundant pores, and diffuse into the N-defective carbon matrix. Exposure of Ni
NPs to N-rich defects results in strong coordination, leading to the atomization of the Ni NPs. In
addition to non-noble metals, Ji et al. (47) reported that single Ru atoms could be synthesized on
MOF-derived supports through the encapsulation of Ru3(CO)12 in molecular-scale cages of ZIFs
followed by pyrolysis at 800 °C. In another work, Li and co-workers (48) reported the conversion
of palladium particles embedded in N-C derived from ZIF-8 into single atoms at 900 °C under an
inert atmosphere for 3 h. From scanning transmission electron microscopy (STEM), morphological
studies of the nanocomposite were recorded at different heating stages. It was observed that, initially,
the Pd NPs grew larger in size, but subsequent heating led to continuous collisions and coordination
of surface Pd with N-C to form single atoms. Zhang et al. (49) also reported a unique spatial isolation
method for fabricating well-dispersed single Fe atoms on hierarchically structured porous carbon as
the carbon support. They took advantage of the π−π stacking within unsubstituted phthalocyanine/
iron phthalocyanine complexes to prevent the agglomeration of Fe species under high-temperature
pyrolysis conditions. Jiang and co-workers (50) used a porphyrinic MOF as the precursor based
on a mixed-ligand strategy to prepare high-loading single-atom Fe-implanted NPC by pyrolysis.
Zhang et al. (51) reported a core–shell strategy for synthesizing single metal atoms anchored on
N-C materials. This synthetic strategy included coating FeOOH nanorods with polymers such as
polydopamine, followed by high-temperature pyrolysis resulting in carbonization of the polymer
shell. In this process, the polydopamine layers were converted into a N-C shell, whereas the α-
FeOOH was reduced to Fe with strong interactions between the Fe and the N-C shell to form
Fe ISAs. The unstable ferric oxides in the core after pyrolysis were removed by acid etching to
obtain homogeneous Fe1/N-C. This method can be readily expanded by replacing the core FeOOH
with Co(OH)2, Ni(OH)2, and MnO2 for the fabrication of Co1/N-C, Ni1/N-C, and Mn1/N-C,
respectively. Chen et al. (52) developed a combined polymer and MOF confined pyrolysis strategy
to construct a functionalized nanostructured composite with a hollow interior by the Kirkendall
effect. Here, simultaneous electronic modulation of the Fe−Nx center (where x = 4) was achieved
through the long-range interaction of sulfur and phosphorus. A material with iron ISAs supported
on nitrogen, phosphorus, and sulfur codoped hollow carbon was synthesized and was found to
exhibit superior performance in the oxygen reduction reaction in alkaline media. Chen et al. (53)
also developed a tungsten single-atom catalyst anchored on MOF-derived N-C following a pyrolysis
strategy. Here, uncoordinated amine groups prevented the agglomeration of W species. Wang et
al. (54) reported a coordination-based strategy for the precise control of single ruthenium atoms
supported on an MOF (UiO-66). This synthesis was based on the utilization of strong interactions
between uncoordinated –NH2 groups and Ru3+ ions to immobilize Ru. Thus, atomically disperse
single Ru sites remain confined in the pores of the MOF without aggregation during high-
temperature pyrolysis. The mechanism of formation is shown in Figure 5.

Qu et al. (55) developed a gas-migration strategy to access single-atom catalysts (SACs) of
Cu, Co, and Ni in which no premixing of the metal precursor with the MOF was needed. This
strategy was based on direct thermal emission from the bulk metals and the trapping of metal atoms
by defects of MOF-derived nitrogen-rich carbon with the facilitation of NH3. This gas-migration
strategy avoids complex operating steps and is easy to scale up, being capable of producing different
atomic metals in a more scalable manner compared to the conventional method. With a similar
strategy, Sun and co-workers (56) demonstrated a simple metal–organic gaseous doping approach
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to generate high-density single Fe atoms embedded in a ZIF-derived doped-carbon support by
the thermal emission method. In this strategy, an iron compound, namely, evaporable ferrocene
(sublimed above 100 °C), was first vaporized and then trapped into ZIF-8 precursors, which were
subsequently pyrolyzed. At a pyrolysis temperature of 950 °C, the ZIF-8 was transformed into
a porous carbon nanoframe, and the adsorbed ferrocene was transformed into a single Fe atom
coordinated with N on the carbon skeleton.

Figure 5. Scheme of the proposed formation mechanisms for Ru SAs/N-C (top) and Ru NCs/C (bottom).
Reproduced with permission from reference (54). Copyright 2017 American Chemical Society.

2.1.4. Microwave-Assisted Method

Microwave- (MW-) assisted synthesis is a bottom-up approach that is well-known for its
sustainable, environmentally benign, and energy-efficient nature in synthesizing various NCs
(57–59). MW synthesis is generally used for particle size reduction and dissolution enhancement. In
comparison to other conventional heating methods, which involve conductive and convective heat
transfer, the MW method provides homogeneous heating by reducing the effects of thermal gradients
in the reactant solution. Therefore, MW methods favor the rapid homogenous nucleation and shorter
crystallization time of NCs to yield high-purity monodisperse NPs with average diameters in the
range of 1–2 nm and various shapes (60, 61). Size-selected metal NCs of high purity and stability
can be fabricated without further complex protective agents. This rapid synthesis method allows
much time-consuming organic synthesis to occur within a few minutes (62). Liu et al. reported the
synthesis of highly fluorescent Ag NCs in aqueous solution by a rapid MW-assisted method within
70 s; they obtained highly monodisperse and stable NCs with an average size 2 nm (63). Another
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interesting study was reported by Kawasaki et al. (64), who demonstrated a MW polyol method for
the synthesis of stable, highly blue fluorescent Cu NCs without the addition of any protective or
reducing reagents. Fei et al. reported a convenient, ultrafast, and generalized MW synthesis protocol
for the fabrication of atomic Co/Ni/Cu metal embedded nitrogen‐doped graphene (65). MW
heating of the reactant mixture of amine‐functionalized graphene oxide (GO) and the corresponding
metal precursors provided, within 2 s, highly monodisperse graphene-supported single atomic
transition metals, as shown in Figure 6.

Figure 6. Schematic illustration of the preparation of graphene-supported Co atoms by a MW-assisted
synthesis route. Abbreviations: AGO, amine‐functionalized graphene oxide; NG, nitrogen-doped

graphene. Reproduced with permission from reference (65). Copyright 2018 Wiley-VCH.

In this one-pot synthesis, MW heating induced a simultaneous reduction of GO to graphene
and nitrogen-doped graphene and the effective incorporation of the transition-metal atoms into the
graphene lattices. This reduced the metal aggregation and established a unique single-metal-atom
dispersion on graphene.

2.1.5. Photochemical Reduction

Photochemical reduction, which includes the absorption of photons and the creation of
electronically excited states, is a bottom-up technique and an effective tool for synthesizing NPs of
precise sizes (66). This synthesis methodology received significant consideration from the scientific
community after a report on the size-dependent fluorescence studies of Ag NCs by Peyser et al.
(67) Zheng and co-workers developed a room-temperature photochemical solid-phase reduction
method for fabricating a stable and highly concentrated Pd/TiO2 (1.5 wt %) material (68). First, the
Pd species were adsorbed on a support of two-atom-thick TiO2 nanosheets modified with ethylene
glycolate. The obtained H2PdCl4/TiO2 material was irradiated under UV light, which induced

ethylene glycolate radicals to remove Cl− ligands and form Pd single atoms (69). The highly stable
Pd/TiO2 catalyst exhibited high catalytic activity in hydrogenation of benzaldehyde. The Luo group
synthesized single Pt atoms embedded in nanosized anatase TiO2 present in (101) facets (70). Wei et
al. (71) developed an ultralow-temperature photochemical reaction method in which chloroplatinic
acid with an antifreeze solution (ethyl alcohol and water) was irradiated with UV light at −60 °C.
Atomically dispersed Pt metal with a size of 0.1 nm adsorbed in N-doped mesoporous carbon was
effectively prepared. Wang’s group reported a photochemical solid-phase reduction route for the
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synthesis of distinct isolated Pt atoms with a narrow size range (<0.4 nm) anchored on NPC (72). In
this synthesis, PtCl62– ions were reduced by UV light and then adsorbed on highly porous abundant
defect sites on the NPC surface without physical or chemical post-treatment. A schematic of this
synthesis method is shown in Figure 7.

Figure 7. Schematic illustration of the formation of Pt1/NPC catalyst: (A) NPC substrate, (B) PtCl62–

ions adsorbed on the NPC, and (C) Pt single atoms anchored on the NPC. Reproduced with permission
from reference (72). Copyright 2018 American Chemical Society.

The synthesized Pt-based catalyst showed good stability and outstanding electrocatalytic activity
for the oxygen reduction reaction and the hydrogen evolution reaction (HER). Considering the
UV-limited reducing capacity, the applicability of this approach for non-noble metal atoms is still
questionable (66).

Considering that the aggregation of metal atoms and NCs can be suppressed at low
temperatures, Wu and co-workers (73) demonstrated iced photochemical reduction using the UV
irradiation of a frozen chloroplatinic acid solution to generate atomically dispersed platinum atoms.
The single platinum atoms were deposited on various substrates, such as mesoporous carbon (MC),
multiwalled carbon nanotubes, graphene, TiO2 NPs, and ZnO nanowires. Of these, Pt1/MC
exhibited significant stability for the electrochemical HER reaction. The HER activity and catalyst
stability of Pt1/MC could be attributed to the unique electronic properties of Pt/MC and the
stronger Pt–MC substrate interaction, respectively, compared to other conventional Pt surfaces.
Photochemical reduction under iced conditions prevented the aggregation of atoms and other stable
single atoms; for example, gold and silver were also obtained.

2.1.6. Atomic Layer Deposition

Another effective method for obtaining subnanometer-scale catalysts with high atomic precision
is atomic layer deposition (ALD). This technique can be categorized as bottom-up fabrication. In
the ALD process, a substrate is exposed to vapors of different reactive precursors. A surface self-
limiting reaction occurs between the precursor and functional groups on the substrate. The reaction
continues until all of the available surface functional groups are consumed. Purging with inert gas is
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used to remove any volatile byproducts and unreacted precursor. This step is followed by reaction
with the next precursor. ALD is typically a thin-film growth technique that is a subset of chemical
vapor deposition and depends on self‐limiting binary reactions between gaseous reactant molecules
and a suitable substrate to deposit a uniform film in a layer‐by‐layer fashion (74–76). Lu and Stair
(77) reported a novel ALD method for synthesizing highly uniform ultrafine supported Pd metal NPs
with sizes in the range of 0.3–2.5 nm that included growing the protected metal NPs and new support
layers at the relatively low temperature of ~150 °C. A detailed schematic model of the ALD process is
provided in Figure 8.

Figure 8. Schematic model of ABC‐type ALD: (a) Initial support with nucleation sites. (b) Introduction of
volatile metal precursor A onto the surface to form metal NPs with part of the retained ligands (red curves).

(c) Introduction of the first reagent B onto the surface. (d) Introduction of the second reagent C onto the
surface to react with B and form a new support surface. (e) New support and metal NPs protected by

ligands formed on the initial support surface after multiple ABC cycles. (f) Removal of the protective ligands
to activate the metal NPs. Reproduced with permission from reference (77). Copyright 2010 Wiley-VCH.

105
 Sudarsanam and Singh; Advanced Heterogeneous Catalysts Volume 1: Applications at the Nano-Scale 

ACS Symposium Series; American Chemical Society: Washington, DC, 2020. 



Botton and co-workers (78) reported the synthesis of a mixture of isolated Pt atoms and Pt NCs
on a N-doped graphene surface using the ALD technique. Later, various reports on the synthesis
of bimetallic NP catalysts by the ALD method with precise control over both the particle size and
composition were published in the literature. Through control of the number and order of executed
cycles, the preferred sizes and structures of bimetallic catalysts were achieved. One developed
procedure can be applied as a generalized approach for the preparation of a variety of bimetallic
catalysts on any substrate at any quantity. Sun et al. (79) reported a practical synthesis of Pt ISAs,
SNCs, and NPs with average sizes of 0.5, 1–2, and 2–4 nm, respectively, corresponding to 50, 100,
and 100 cycles of uniform deposition on graphene using the ALD technique. Their study revealed
that the morphology, size, density, and loading of Pt on the graphene surface could be accurately
controlled by merely adjusting the number of ALD cycles. Yan et al. (80) successfully established the
ALD of atomically dispersed Pd on graphene by carefully controlling the oxygen functional groups
on the graphene surface. Owing to issues of scalability and high cost, commercial catalyst preparation
using this method is limited (81).

Figure 9. Schematic of the evolution of the copper cluster size with increasing α value. Reproduced with
permission from reference (87). Copyright 2009 American Chemical Society.

2.1.7. Microemulsion Technique

The microemulsion technique is a very flexible bottom-up synthesis approach that has great
potential in the fabrication of a variety of atomic, subnanoscale structures alone or in combination
with other techniques. It has many possibilities for applications to atomic, subnanoscale structures,
with the only limitation being researchers’ imagination (82). Microemulsions are transparent,
isotropic, and thermodynamically stable colloidal nanodispersions of water and oil ( water-in-oil or
oil-in-water) stabilized by a surfactant film. The surfactant-covered water pools can form a distinct
liquid core–shell structure at the subnanoscale level and, thus, can act as nanoreactors for the
performance of many chemical reactions, in particular the synthesis of nanomaterials (83). The
method involves the mixing of two microemulsions or of a microemulsion and an aqueous solution
containing the appropriate reactants to obtain NPs with diameters in the range between 5 and 50 nm
(84). Through careful control of the reaction parameters, these nanoreactors can yield subnanometer
custom-made products with predesigned properties. For example, this method was successfully
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employed to synthesize a series of atomic copper clusters with different core sizes. Specifically,
Qiu et al. (85) synthesized spherical Cu NPs in sodium dodecyl sulfate/isopentanol/cyclohexane/
water microemulsions using sodium borohydride as a reducing agent. The diameters of the Cu NPs
increased with increasing mole ratio of water to surfactant and concentration of Cu2+ solution within
the size range of 2.75–39 nm for water-to-surfactant mole ratios of 5–30 at a Cu2+ concentration of
0.1250 M and within the size range of 9.8–39.4 nm for Cu2+ concentrations of 0.1250–0.500 M at a
water-to-surfactant mole ratio of 10. Another interesting study on the synthesis of stable Agn clusters
(n ≤ 10) by kinetic control has also been reported (86). Later, Rivas and co-workers modified and
reported a successful synthesis of small atomic copper clusters (Cun) by precise control of the size
through fine-tuning of the amount of reducing agent used in the reaction mixture (87). A schematic
illustration of the evolution the Cu cluster size is shown in Figure 9. One of the disadvantages of this
technique is the high consumption of organic solvents during the synthesis of certain magnetic NPs
(88).

2.1.8. Dimethylformamide-Based Reduction Methods

Dimethylformamide- (DMF-) based reduction methods are bottom-up techniques. This type of
chemical reduction method, which is frequently used for the synthesis of subnanometer NPs, often
employs some protecting ligands to stabilize the tiny metal cores, and this results in the incomplete
reduction of the metal atoms. However, the use of DMF has been demonstrated to be a viable
solution to this problem. DMF can serve three roles in the synthesis of NPs, namely, as a solvent, as
a reductant, and also as a protectant, as shown in Figure 10.

Figure 10. Synthesis of metal NCs by the DMF-based reduction method.

Liu et al. prepared fluorescent Ag NCs by using DMF as a solvent as well as the reducing
agent (63). The resultant surfactant-free Ag NCs were found to exhibit bright fluorescence, and
their optical behavior could be easily tuned by additional functionalization and the use of capping
molecules. Later, Kawasaki et al. (89) modified the latter method and demonstrated the synthesis
of highly stable fluorescent DMF-protected Au NCs by a surfactant-free DMF reduction method.
The synthesis proceeded without the formation of gold NPs and any bulk metals as the byproducts.
The obtained Au NCs were a combination of various-sized Au NCs with fewer than 20 atoms per
cluster and core diameters of less than 2 nm, including at least Au8 and Au13. Further, the method
has been applied to the surfactant-free solution synthesis of fluorescent Pt NCs comprising four to six
Pt atoms (90). The obtained Pt NCs were very stable and readily dispersible in organic, aqueous, and
salt solutions. This synthesis approach has also been applied successfully to other platinum-group
metals (91).
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2.1.9. Radiolytic Approach

The radiolytic approach to synthesis is based on the interaction of matter with high-energy
ionizing radiation (92). Here, γ-rays are used to produce solvated electrons from an aqueous
solution. These solvated electrons further reduce the metal ions to metallic clusters. With this
method, the size of the metal NPs can be effectively controlled by changing the stabilizer, radiation
source, precursor concentration, and so on. This method uses no harsh reducing agents, and the
reaction occurs in an aqueous environment at ambient conditions. The large-scale synthesis of NCs
is the main advantage of this technique. Figure 11 explains the basic mechanism and the elementary
processes leading to the formation of metal and alloy NPs by this method.

Figure 11. (a) Synthesis of alloy and core–shell NPs using the radiolysis approach. (b) Elementary processes
and time scales governing the formation of metal and alloy NPs in colloidal suspensions of zeolite

nanocrystals. Reproduced with permission from reference (93). Copyright 2018 American Chemical
Society.

Ag NCs containing several atoms have been prepared in the presence of polyphosphate or
polyacrylate in aqueous solution with simple γ-ray irradiation (94, 95). Specifically, an aqueous
solution containing the silver salt (AgClO4) and the polymer (sodium polyphosphate or sodium
polyacrylate) was exposed to γ-ray irradiation. The solution also contained an alcohol, such as
methanol, tert-butyl alcohol, or 2-propanol, to scavenge the OH– radicals generated during the
radiolysis. Aggregation of NCs was a serious problem related to this synthesis. However, stabilizer-
free radiolysis of Ag NCs from deaerated aqueous AgClO4 solutions containing 0.2 M methanol
were also reported (96). The γ-ray irradiation created reducing species in the solutions, including
hydrated electrons, H atoms, and CH2OH radicals. The main drawback of this process is the inability
to capture the short-lived NCs, which limits the broad applicability of the synthesis.

2.1.10. Electrochemical Synthesis

This method is a frequently used bottom-up technique for preparing NCs. In this process, a
two-electrode system is used to produce size-selected NCs of high purity. This method is flexible
in nature; reaction parameters such as the electrolytic concentration can be used to directly modify
the particle size. The introduction of the electrochemical reduction process to the preparation of
subnanometric metals was first proposed by Reetz and Helbig (97), who synthesized Pd NPs with
sizes of 1–5 nm by varying the reaction parameters. In this process, surfactants are added to an
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electrolyte solution, a sacrificial anode serves as the metal source, and the metal ions produced
are reduced at the cathode. The main merits of this method are its low reaction temperature; high
yields; low costs; and easy tuning of NCs by controlling parameters such as the concentrations of
the electrolyte and stabilizing agent and the current and voltage used. Intriguingly, the synthesis
of fluorescent atomic Cu clusters with up to 14 atoms was achieved by a simple electrochemical
process in which tetrabutylammonium nitrate was used as the stabilizer (98). This method is easy to
scale up for the mass production of Cu clusters. By varying the current density of electrochemical
procedure, López-Quintela and co-workers synthesized Ag NPs with sizes ranging from 2 to 7 nm
(99). Rodríguez-Vázquez et al. (100) reported the synthesis of small atomic Aun clusters with n ≤ 11
atoms through the anodic dissolution of a Au electrode using tetrabutylammonium bromide as the
stabilizer and acetonitrile as the solvent. A recent report on the single-step electrochemical synthesis
of Co NCs embedded on dense graphite sheets was reported by Renjith and Lakshminarayanan.
(101). The method of electrodeposition provided a facile one-step route for the preparation of thin
NCs of cobalt under ambient-temperature conditions, as shown in Figure 12.

Figure 12. Schematic illustration of the electrodeposition of Co NCs onto a graphite sheet. Abbreviations:
DGS, dense graphite sheet; OER, oxygen evolution reaction. Reproduced with permission from reference

(101). Copyright 2020 American Chemical Society.

2.1.11. Template-Based Synthesis Methods

Template-based syntheses have been successfully applied for the preparation of highly
fluorescent subnanometer-sized metals. Generally, polymer, dendrimer, polyelectrolyte, protein,
and DNA templates have been used to prepare metal NCs of various configurations with preferred
morphologies and sizes. The uniqueness of this method is its ability to deliver a preset environment
for the formation of NCs with precise sizes and shapes. This synthesis methodology received much
scientific attention after a 1998 report on the preparation of stable Cu NCs using poly(amidoamine)
(PAMAM) dendrimer templates (102). Cu NCs ranging in size from 4 to 64 atoms were prepared by
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partitioning of Cu2+ ions into the interior of a PAMAM Starburst dendrimer and then performing a
chemical reduction. After the chemical reduction step, Cu2+-loaded fourth-generation dendrimers
with an ethylenediamine core resulted in the formation of Cu NCs with diameters of less than 2
nm. The cluster size could be controlled by changing the size of the PAMAM dendrimer, which
also served the role of a stabilizer for the NCs. This methodology is applicable to the preparation of
other transition-metal NCs as well. A dendrimer of polydentate ligands collects metal ions or salts
into its interior, permitting the formation of metal NPs. The dendrimer-encapsulated NPs exhibit
distinctive catalytic activities because of their size (103). The synthesis of a PAMAM dendrimer–Cu
metal nanocomposite was reported later the same year by Balogh and Tomalia (104). The core–shell
structure of the dendrimers is responsible for yielding and stabilizing the metal NCs. The internal
core structure of the dendrimer, which contains tertiary amines, can make coordination bonds with
the metallic ions, and the external shell can inhibit the aggregation of the as-synthesized clusters.
Further, Zheng and Dickson (105) fabricated stable, fluorescent Ag NCs with single nanodots
ranging in size from two to eight Ag atoms, within PAMAM dendrimer hosts in aqueous solutions. In
another report, Ag NCs were prepared using DNA templates by making use of the high affinity of Ag+

for DNA bases (106). Very small oligonucleotide-encapsulated Ag NCs were formed without the
formation of large NPs by cooling the solution of DNA and Ag+ to 0 °C and then adding NaBH4 with
vigorous shaking. Xie et al. (107) reported a simple, one-pot, green synthetic route for the synthesis
of Au NCs (Au25) at relatively low temperature (37 °C) using commonly available bovine serum
albumin (BSA) protein. Upon the addition of Au(III) ions to the aqueous BSA solution, the protein
molecules sequestered and entrapped the Au ions. In situ reduction of Au ions in the presence of BSA
occurred at pH ~12 to form Au NCs.

Kumacheva’s (108) group reported the successful synthesis of fluorescent Ag NCs through
photoreduction by employing hydrogel-microsphere (polymer-microgel) templates. In the
microgels, the concentrated carboxyl groups of the poly(acrylic acid) (PAA) moiety were critical for
the immobilization of Ag ions and the formation of stable Ag NCs. The same group also reported the
template-based synthesis of NPs, including metal, semiconductor, and magnetic NPs, in the interiors
of PAA (109). They demonstrated that NPs with predetermined properties could be synthesized
by tuning the reaction conditions, composition, structure, and NP concentration of the polymer
microgels. The NP polydispersity was reduced by the heat post-treatment of hybrid microgels,
resulting in controlled photoluminescence. Frey and co-workers (110) synthesized water-soluble
fluorescent Ag NCs by using star-shaped polyglycerol-block-poly(acrylic acid) (PG-b-PAA)
polymers as templates. The multiarm PG-b-PAA polymers were synthesized using atom-transfer
radical polymerization. These polymers had a core–shell structure in which the local density of
carboxyl groups decreased gradually from the core to the shell, resulting in a “cage effect”. This
effectively inhibited the formation of larger NPs, hence providing stability to metal NCs in the
same way as “molecular hydrogel”. Further taking advantage of the cage effect, Wei’s group (111)
reported the starlike polymers polyacrylate-graft-poly(acrylic acid) formed by the combination of
atom-transfer radical polymerization and “click chemistry”. These polymers were used as templates
for the synthesis of silver NCs with UV light as a mild reductant. Meanwhile, Tan’s (112) group
employed a facile chain-transfer radical polymerization method to prepare three polymer ligands
containing pentaerythritol tetrakis(3-mercaptopropionate) with poly(methyl methacrylate), poly(n-
butyl methacrylate), and poly(tert-butyl methacrylate). These polymer ligands were used to
synthesize blue Au NCs by a photoreduction method. These polymer ligands have amplified
electron-donating abilities compared to their monomer counterparts and promote fluorescence in
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the resulting Au NCs. In another work, Gao’s group (113) designed gold NPs coated with thiol
polystyrene macromolecules uniformly dispersed in a polystyrene matrix. This generated the
core–shell-structured hyperstar polymer through atom-transfer radical copolymerization of an
inimer with disulfide groups. These hyperstar polymers efficiently encapsulated presynthesized
Au25(SR)18 NCs through ligand exchange to give highly stable Au25(SR)18 nanocomposites. The
obtained Au nanocomposites showed a highly efficient catalytic reduction reaction of 4-nitrophenol.
Lennox and co-workers (114) demonstrated that blending of polymer-ligand-stabilized gold NPs
into a presynthesized polymer can generate stable nanocomposites in situ. The principal advantage
of this method resides in the full synthetic control it provides over both the NPs and the polymer
matrix. Figure 13 shows the application of different template-assisted syntheses of metal NCs.

Figure 13. (a) Schematic illustration of the step-by-step formation of Ag NCs using DNA templates.
Reproduced with permission from reference (117). Copyright 2020 American Chemical Society. (b)

Proposed primary metal coordination sites of DNA to gold and silver atoms. Reproduced with permission
from reference (118). Copyright 2018 American Chemical Society. (c) Synthesis of noble-metal NCs with
variable micellar templates. Reproduced with permission from reference (116). Copyright 2014 American

Chemical Society. (d) Schematic of the formation of Cu NCs on the BSA surface. Reproduced with
permission from reference (115). Copyright 2014 AIP Publishing.

2.1.12. Wet-Chemical Route

The wet-chemical synthesis route is a very simple bottom-up method for the large-scale
preparation of nanocatalysts. The common wet-chemical route involves impregnation and
coprecipitation. In wet-chemical routes for the preparation of SACs, the precursor materials are
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dispersed on suitable supports by means of a chemical reaction. The supports used should be capable
of offering enough anchoring sites for the metal atoms to prevent aggregation through
metal−support interactions (69). Qiao et al. (119) reported the synthesis of Pt ISAs anchored to the
surfaces of iron oxide nanocrystallite (Pt1/FeOx) catalysts (where x is the coordination number) by
the coprecipitation method followed by a post-treatment procedure. Afterward, a systematic study of
the synthesis by the coprecipitation method of a series of Ir/FeOx catalysts with different Ir loadings
was reported (120). Precipitation temperatures as low as 80 °C were used to confirm the complete
precipitation of H2IrCl6 in the solution followed by complete loading onto the FeOx support. In
addition, bimetallic uniformly distributed core–shell PtPd@Pt nanocrystals supported on reduced
graphene oxide (rGO) were successfully synthesized by a facile and green wet-chemical procedure
(121). Figure 14 illustrates the synthesis mechanism of PtPd@Pt nanocrystals on rGO.

Figure 14. Formation mechanism of bimetallic core–shell PtPd@Pt NCs supported on reduced graphene
oxide (PtPd@Pt NCs/rGO). Abbreviation: UPD, underpotential deposition. Reproduced with permission

from reference (121). Copyright 2016 Elsevier.

Initially, [PdCl4]2− was reduced by Pt atoms formed on the metallic Pd surface by

underpotential deposition. Subsequently, Pd atoms were produced by reduction of [PdCl4]2− with
formic acid. During the process, the Pd atoms covered the Pt surface, and the Pd atoms occupied
the Pt sites, thereby removing Pt atoms from the crystal lattice. Formic acid induced the formation
of PtPd nuclei, which resulted in the formation of PtPd alloy NPs through surface attachment,
self-aggregation, and assembly. The remaining [PtCl6]2− was successively reduced to Pt atoms and
further deposited on the surface of the PtPd alloy, finally resulting in the formation of core–shell
PtPd@Pt NCs on rGO through the overgrowth process. In this case, formic acid was used as the
reducing agent without the use of any additive such as a surfactant, polymer, seed, or template.
Hackett et al. reported the synthesis of Pd/Al2O3 catalysts with Pd loadings between 0.03 and 4.70
wt % by a wet-impregnation method (122). Zhang et al. synthesized a series of Au/ZrO2 catalysts
with different metal loadings ranging from 0.01 to 0.76 wt % by a deposition–precipitation wet-
chemical route (123). Another novel wet-chemical route is the galvanic replacement reaction used
by Li et al. (124) to synthesize Pt/MoS2 catalysts. In a typical synthesis method, K2PtCl6 solution
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was injected into a mixture containing water, ethanol, and MoS2 nanosheets by means of a syringe
pump where the Mo atoms in the MoS2 nanosheets were replaced by Pt. Another method involves
the impregnation technique in which the active-metal-containing reaction precursor is mixed with a
suitable catalyst support. The metal precursor is then allowed to anchor onto the support through ion
exchange and adsorption. Many noble metals supported on graphene and graphitic carbon nitride
have also been reported (125–128).

2.1.13. Solid-State Route

The solid-state route is a bottom-up technique for the synthesis of NCs in macroscopic
quantities. The solid-state synthesis method is generally used to synthesize inorganic materials
because of its advantages such as facile process, low-cost precursors, and large-scale synthesis of
materials. This method allows control of the size, shape, and composition of NCs. Often, its
application is limited because it requires extreme reaction conditions such as high temperatures or
pressures. However, in the case of the gram-scale synthesis of metal NCs, this approach is highly
preferred. In the solid-state process, individual reaction precursors are first mixed in stoichiometric
quantities and then ground well to obtain a homogeneous mixture. This grinding can be performed
by different methods such as mortar and pestle or ball milling. Annealing at elevated temperature
is usually performed to obtain a compact and improved thermal reactive powder. Pradeep and
coworkers reported the direct solid-state synthesis of subnanometer-sized Ag9 quantum clusters
consisting of a nine-atom core with mercaptosuccinic acid as a capping agent (129). In this method,
all reaction precursors were present in the solid state, resulting in controlled particle growth and
minimized diffusion of reactants. Gram quantities of highly stable NCs have been synthesized in
the solid state under inert atmospheres. Haruta and co-workers synthesized gold clusters deposited
on porous coordination polymers by a simple mortar grinding method (130). They found that Au
clusters supported on Al-MIL53 could catalyze the one-pot synthesis of secondary amines by
sequential oxidation and hydrogenation of primary amines. The same clusters could promote the N-
alkylation of aniline with benzyl alcohol to form the secondary amine under an inert atmosphere.
Sakurai’s group synthesized bimetallic gold–silver alloy NCs by a solid-state route (131). In this
method, sequential reduction occurred by simple solid grinding, with chitosan as the reducing and
stabilizing agent. These bimetallic clusters were found to exhibit good synergistic catalytic activity for
the reduction of 4-nitrophenol as the model reaction. Liu et al. (132) reported a milling-based solid
reduction technique for the preparation of ultrafine Au clusters. During the synthesis, solid grinding
was followed by in situ reduction of gold precursors by NaBH4 to give Au clusters on a Schiff base-
functionalized silica support. This solvent-free method restrained crystal nucleation to facilitate the
formation of a stable Au SNC. Deng and co-workers (133) demonstrated that the eggshell membrane
could be employed as an efficient solid synthetic platform for the generation of fluorescent gold and
silver NCs in monolithic form. These eggshell-membrane-based NCs displayed efficient control over
nucleation and growth and have a wide range of applications as recyclable catalysts, surface-enhanced
Raman scattering interfaces, fluorescent patterning materials, and anti-counterfeiting components.

2.2. Top-Down Approaches

In top-down approaches, the subnanometric particles and their clusters are synthesized from
larger-sized particles by decreasing the size or by core etching. In this case, the NPs are prepared
first and are then reacted with additional ligands or metal ions to form clusters. Gold NCs of Au8
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and Au25 with luminescent properties have been synthesized by this approach. Duan and Nie used
a polyethylenimine dendrimer to synthesize water-soluble, highly luminescent Au8 NCs from
dodecylamine-capped metal NPs by a ligand-induced etching process (134). Qian et al. (135)
reported the synthesis of highly monodisperse Au25 NCs from polydisperse Au NPs through a thiol
etching process. In this case, Au NPs were prepared by the NaBH4 reduction of a Au(III) salt in
the presence of triphenylphosphine. The synthesized NPs were used for the syntheses of both Au25
nanorods with a length of 1.1 nm and a diameter of 0.5 nm and Au25 nanospheres (~1 nm in
diameter), followed by thiol etching. A schematic illustration of the synthesis protocol is presented in
Figure 15.

Figure 15. Conversion of polydisperse Au NPs into atomically monodisperse Au25 nanorods and
nanospheres by (a) one-phase and (b) two-phase thiol etching. Abbreviations: GSH, glutathione; TOAB,

tetraoctylammonium bromide. Reproduced with permission from reference (135). Copyright 2009
American Chemical Society.

The size and shape of the NPs were effectively controlled by various thiol ligands in the second
phase of the thiol etching process (135). Another report described the synthesis of water-soluble
fluorescent gold NCs capped with dihydrolipoic acid, in which didodecyldimethylammonium
bromide was used for the stabilization of the NPs (136).

2.2.1. Ligand-Exchange Method

The ligand-exchange method is a top-down approach that generally consists of two steps:
synthesis of the precursor and then the ligand exchange with the target functional ligand. The
development of this method was based on the size-focusing process. A new ligand is added to a
solution of metal NCs that are already protected by an initial ligand. The interaction between the
two ligands results in the dynamic structural transformation of the original metal NCs, where the
original ligands are replaced by the new ligand (137, 138). NCs of gold, silver, and copper, as well
as their alloys, have been successfully synthesized by this technique. In a typical synthesis, NCs
are initially synthesized using a thiol route and subsequently etched by adding a different thiol in
excess to the reaction mixture. This additionally added thiol often exhibits a larger steric hindrance
than the originally added thiol, thereby resulting in a higher probability of NC formation. By using
4-tert-butylbenzenethiol (TBBT), the Jin group successfully prepared Au-based NCs such as
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Au28(TBBT)20 (139), Au36(TBBT)24 (140), Au20(TBBT)16 (141), Au133(TBBT)52 (142), and
Au92(TBBT)44 (144). The same group also used other thiol protecting groups to prepare additional

NCs based on noble metals, including Au24(SCH2Ph-tBu)20 (where SCH2Ph-tBu = 4-tert-
butylphenylmethanethiolate) (143) and [Pt1Ag28(S-Adm)18(PPh3)4]2+ (where S-Adm = 1-
adamantanethiolate) (145), and Xu et al. prepared the Au-based selenolate-protected NC
Au18(SeC6H5)14 (146). Another significant study involved the thiol-ligand-induced transformation
of Au38(SC2H4Ph)24 into Au36(TBBT)24 by Zeng et al. (147) They proposed a disproportionation
mechanism for the conversion of rodlike biicosahedral Au38(SC2H4Ph)24 into tetrahedral
Au36(TBBT)24 NCs. When the ligand exchange of Au38(SC2H4Ph)24 is done with the bulkier
TBBT, the latter causes structural collapse of the initially formed Au38(SC2H4Ph)24 structure, which
releases two Au atoms and transforms into the Au36(TBBT)24 structure. The released Au atoms
combine with Au38(SC2H4Ph)24, ultimately forming Au40(SC2H4Ph)26 in the presence of free
TBBT thiol. This study explored the use of real-time monitoring of the exchange kinetics process by
advanced mass spectrometric and optical spectroscopic analyses. This method was also effectively
used for the synthesis of alloy NCs such as Au24-xAgx(TBBM)20 (x ≈ 1) (where TBBM = tert-
butylbenzyl mercaptan) (148), Au36−xAgx(TBBT)24 (x = 1–8) (149), and Au38–xCux(2,4-
(CH3)2C6H3S)24 (x = 0–6) (150), as well as Au20Ag1(TBM)15, Au21–xAgx(TBM)15 (x = 4–8),
Au21–xCux(TBM)15 (x = 0, 1), and Au21–xCux(TBM)15 (x = 2–5) (where TBM = tert-butyl
mercaptan) (151). Ligand exchange of small-size, phosphine-protected Au NCs with PhSeH ligands
was successfully achieved by Song et al. (152) Rodlike Au25(PPh3)10(SePh)5Cl2 NCs with 1+ or
2+ valence states were obtained. These Se–Au25 clusters were synthesized by reacting Aum(PPh3)n
clusters with PhSeH ligands under different conditions. Specifically, ligand exchange of Aum(PPh3)n
at 28 °C in ethanol yielded Se–Au25 with a 1+ valence state, whereas ligand exchange at 0 °C in

CH2Cl2 resulted in Se–Au25 with a 2+ valence state. The oxidation of [Au25(PPh3)10(SePh)5Cl2]+

with H2O2 gave rise to the 2+ charged NC. The synthesis process and the determined structures
of NCs are illustrated in panels a and b, respectively, of Figure 16. A two-phase ligand-exchange
method for the preparation of water-soluble AuAg NCs protected by tiopronin from AuxAg44–x
alloy precursors was reported recently (153). In this case, the synthesis of AuAg alloy precursors
coprotected by alkyne and phosphine ligands was performed initially, followed by a two-phase
ligand-exchange process (see Figure 16c).

This method can be applied to various water-soluble ligands, such as tiopronin, captopril, N-
acetyl-l-cysteine, 4-mercaptobenzoic acid, glutathione, and mercaptosuccinic acid. According to
the studies, the driving forces for the structural transformation induced by ligand exchange was
found to be the alternation in coordination modes between metals and ligands (154). There are
some drawbacks that need to be addressed to improve the effectiveness of this method, including
controlling the reaction conditions to produce more new NCs and dictating the precise ligand-
exchange process through a stepwise ligand-by-ligand substitution mode.

2.2.2. Atom-Trapping Method

The atom-trapping method is a characteristic top-down method that requires a supply of mobile
atoms and a suitable support capable of binding the mobile species. Generally, atomic and nanoscale
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catalyst preparation is successful for limited metal-containing catalysts. Often, the metals adsorbed
on oxides undergo aggregation during the synthesis, particularly at high temperatures, resulting in
low catalytic activities because of the loss of surface area (155, 156). To overcome this issue, Carrillo
et al. proposed an atom-trapping strategy using PdO, which effectively trapped mobile PtO2 and
formed a Pt–Pd alloy by physical vapor deposition in air (157). Similarly, Jones et al. (158) made use
of mobile CeO2 to trap Pt atoms on its surface to form a sinter-resistant, atomically dispersed single-
atom platinum-on-ceria material. This strategy involves the supply of mobile atoms and a support
that can bind the mobile species. The defects on oxides trapped in PtO2 can migrate by means of
the gas phase, which plays a vital role in stabilizing the catalyst. Later, using this method, sinter-
resistant SACs based on Pd, Au, Ni, and Cu were reported by various research groups (46, 48, 55).
In contrast, the ceria support is unique in its ability to trap Pt species. Xiong et al. studied Pt–Sn/
CeO2 catalysts for propane dehydrogenation, where ceria supports showed a unique ability to trap
ionic platinum, providing exceptional stability for isolated single atoms of Pt (159). Under reducing
conditions, Pt atoms were found to be mobile and alloyed with the Sn, forming bimetallic NPs in the
working catalyst, as shown in Figure 17.

Figure 16. (a) Synthesis of rodlike Au25(PPh3)10(SePh)5Cl2 NCs with 1+ and 2+ valence states. (b)
Crystal structures of the Au25-I and Au25-II NCs (color labels: Au, yellow; P, red; Cl, green; and Se,
violet; C atoms are in wireframe for clarity). Panels a and b reproduced with permission from reference
(152). Copyright 2016 American Chemical Society. (c) Two-phase ligand-exchange method for the

preparation of water-soluble AuAg NCs. Reproduced with permission from reference (153). Copyright
2018 American Chemical Society.

Here, the Pt formed single-atom species, whereas the Sn remained in the form of SnO2 particles.
Conversely, the regeneration of the catalyst was observed under mild oxidative conditions. This
demonstrated the ease of ceria-supported catalysts in re-creating the single-atom species by
regeneration under mild oxidation conditions.
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Figure 17. (a) Schematic of the self‐assembly and regeneration processes of Pt–Sn NCs in propane
dehydrogenation at 680 °C. (b) STEM image of regenerated Pt–Sn/CeO2 catalyst (air, 580 °C). (c)

STEM image of spent Pt–Sn/CeO2 catalyst after propane dehydrogenation at 680 °C. Reproduced with
permission from reference (159). Copyright 2017 Wiley-VCH.

3. Conclusions

This chapter has summarized the latest research progress on the synthesis of atomic and
nanoscale catalysts. Various synthesis protocols have been developed in recent years. However,
economically scalable synthesis methods are essential for high-quality, large-scale preparation and
the application of monodisperse metal catalysts. The stability of nanostructured catalysts is a serious
issue that needs to be addressed. The development of well-defined subnanometer and single-atom
materials resulted in the formation of highly effective and selective heterogeneous catalysts. However,
many of these catalytic entities cannot retain atomic-level dispersion under harsh reaction
conditions, thus impeding the application of laboratory-bench discoveries to realistic large industrial-
scale processes. The identification of the true structure of the active site is essential for the
fundamental understanding and design of optimized and improved SACs. Supports also play a
crucial role in defining the catalytic performance of atomically dispersed SACs, as the binding of ISAs
with the support should be very strong to overcome aggregation. The construction of ISAs demands
a careful balance between metal–metal and metal–support bonding strengths, as it involves high-
energy bond breaking and re-forming. These activation energies may lead to the diffusion of single
metal atoms, which can coalesce to cause aggregation. Thus, atomic-scale information on single-
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atom diffusion on supports during reactions is essential in understanding sintering mechanisms and
designing high-performance catalytic systems. The aggregation can be avoided by lowering the metal
loading on the solid supports by the spatial distribution of metal precursors. However, ISA catalysts
with the low metal loadings are unsuitable for practical catalytic applications. Defect engineering can
potentially be explored so that single metal atoms can be preferentially exposed at surface sites. This
leads to additional doping sites for the metal as well as for heteroatoms and substantially enhances the
SAC’s catalytic efficiency. Alternatively, novel synthetic strategies that can minimize metal precursor
exposure to high-energy environmental conditions should be developed for economically scalable
synthesis at the large industrial scale. Overall, the enhancement, tuning, and mechanistic
understanding of metal–support interactions and the identification of preferential support sites for
metal anchoring are needed to achieve improved highly loaded, stable supported single-metal-atom
catalysts with enhanced activity and selectivity.
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