This document has been digitized by the Oil Sands Research and Information Network, University of Alberta, with the permission of Syncrude Canada Ltd.

ENVIRONMENTAL RESEARCH MONOGRAPH 1984-2

A Public Service of

Syncrude Canada Ltd.

A STUDY OF METALLIC EMISSIONS FROM THE MAIN STACK AT SYNCRUDE'S MILDRED LAKE PLANT

Concord Scientific Corporation Downsview, Ontario

FOREWORD

The following report describes a study conducted on SCL's main stack. The purpose of the study was to determine the emission rate of selected metallic elements and to estimate their deposition on the surrounding lands.

Syncrude's Environmental Research Monographs are published verbatim from final reports of professional environmental consultants. Only proprietary technical or budget-related information is withheld. Because Syncrude does not necessarily base decisions on just one consultant's opinion, recommendations found in the text should not be construed as commitments to action by Syncrude.

Syncrude Canada Ltd. welcomes public and scientific interest in its environmental activities. Please address any questions or comments to Environmental Affairs, Syncrude Canada Ltd., 10030 - 107 Street, EDMONTON, Alberta, T5J 3E5.

A Study of Metallic Emissions from the Main Stack at Syncrude's Mildred Lake Plant Volume I

CSC 110.J449

Prepared for

Syncrude Canada Ltd.

bу

Concord Scientific Corporation
2 Tippett Road
Downsview, Ontario
M3H 2V2

August, 1984

TABLE OF CONTENTS

:			Page
		of Figures and Tables	iii V
		EXECUTIVE SUMMARY	ix
1.		INTRODUCTION	1.1
2.	2.1	STUDY PROCEDURES Sampling Methods Field Testing Procedures 2.2.1 Description of Reference Protocols 2.2.1.1 Determination of Particle Size Distribution 2.2.1.2 Determination of Particulate Matter (Metals) and Vapour-Phase Arsenic, Selenium and	2.1 2.1 2.2 2.2 2.3
		Mercury	2.4 2.5 2.6
	2.3	· · · · · · · · · · · · · · · · · · ·	2.8 2.9 2.16
	2.4	Modelling	2.23 2.23 2.25 2.31
3.	3.1	RESULTS	3.1 3.1
	3.2	Representativeness	3.1 3.6 3.9 3.9 3.14
		3.2.3 Inter-Sample Comparisons	3.17

TABLE OF CONTENTS (Cont'd)

			Page
	3.3	Emission Rates	3.18
	3.4	Modelling Results	3.21
		3.4.1 Concentrations of Total Particulate Matter and	
		Metals	3.27
		3.4.2 Fluxes of Total Particulate Matter and Metals .	2.32
4.		DISCUSSION	4.1
	4.1	Representativeness of Results	4.1
	4.2	Comparisons with Emissions from Similar Plants	4.4
	4.3	Comparison of Concentration and Deposition Estimates	
		with Available Data	4.6
		4.3.1 NAPS and NASN Data for Populated Areas	4.7
	٠	4.3.2 AOSERP Data	4.7
		4.3.3 Total Deposition Estimates	4.13
5.		CONCLUSIONS	5.1
		REFERENCES	

Volume II

Appendix I	- Tables	and Figures
------------	----------	-------------

Appendix II - Stack Sampling Results

Appendix III - Log of Sampling Events

Appendix IV - Miscellaneous Background Documentation

LIST OF FIGURES AND TABLES

			Page
Figure	2.1	Concentration Contour Plot for the Dispersion of 0.1 μm Particles Based on 1 g s^1 Particulate Emission Rate Edmonton Climatological Data Numbers on Contours are in Units of $10^{-4}~\mu g~m^{-3}$	2.33
Figure	2.2	Flux Contour Plot for the Deposition of 10 μm Particles Based on 1 g s^-1 Emission Rate Edmonton Climatological Data Numbers on Contours are in Units of μg m^{-2} yr^{-1}	2.34
Figure	3.1	Variation of Sector Independent Concentrations for 0.1 μm and 10 μm Particles as a Function of Downwind Distance	3.23
Figure	3.2	Variation of the Concentrations and Fluxes of 0.1 μm Particles with Distance for the Sector (105-145°) with the Highest Concentrations and Flux	3.25
Figure	3.3	Generic Concentration Contour Plot for 0.1 μm Particles Edmonton Climatological Data	3.28
Figure	3.4	Generic Concentration Contour Plot for The Dispersion of 0.1 μm Particles Fort Smith Climatological Data	3.29
Figure	3.5A	Generic Flux Contour Plot for the Deposition of 10 µm Particles (0-20 km) Edmonton Climatological Data	3.33
Figure	3.5B	Generic Flux Contour Plot for the Deposition of 10 µm Particles (0-100 km) Edmonton Climatological Data	3.34

LIST OF FIGURES AND TABLES (Cont'd)

		<u>Page</u>
Figure 3.6A	Generic Flux Contour Plot for the Deposition of 10 μm Particles (0-20 km) Fort Smith Climatological Data	3.35
Figure 3.6B	Generic Flux Contour Plot for the Deposition of 10 μm Particles (0-100 km) Fort Smith Climatological Data	3.36
Table 2.1	Model Inputs	2.26
Table 2.2	Summary of Test Values Used For Sensitvity Analysis .	2.36
Table 3.1	Average Recoveries Based on NBS-SRM 1648	3.10
Table 3.2	Filter Analysis	3.15
Table 3.3	Metal Emission Rates	3.20
Table 3.4	Key to Concentration Contour Plots	3.30
Table 3.5	Key to Flux Contour Plots (0-100 km)	3.37
Table 3.6	Key to Flux Contour Plots (0-20 km)	3.38
Table 4.1	Particulate Metal Composition from Syncrude's Main Stack, and Fly Ashes from Related Plants	4.5
Table 4.2	Coarse/Fine Particulate and Selected Trace Metal Data - 7 Canadian Cities 1980	4.8
Table 4.3	NAPS Air Quality Data for TSP and Lead (1978-1981) for Selected Canadian Cities	4.9
Table 4.4	U.S. Air Quality Data for Metals	4.10
Table 4.5	Atmospheric Concentration (ng/m ³) of Various Elements in Suspended Particles at Mildred Lake and Birch Mountain	4.12

$\label{eq:APPENDIX I: List of Figures and Tables} \end{substitute}$

		Page
Figure 1	Comparison of Impactor Wall Losses	A1.1
Figure 2	Flow Sensor Particle Sizer Sampling Train	A1.2
Figure 3	Particulate and Vapour Metal Sampling Train	A1.3
Figure 4	Sensitivity Analysis of Flux Due to Variation of Stack Exit Temperature T, Stack Gas Exit Velocity V_s , and Roughness Length z_0	A1.4
Figure 5	Sensitivity Analysis of Flux due to Variation of Deposition Velocity Values by Factors of 0.2, 1.0 and 5	A1.5
Figure 6	Concentration Contour Plot for the Dispersion of 0.1 μm Particles Based on 1 g s $^{-1}$ Particulate Emission Edmonton Climatological Data Numbers on Contours are in Units of $10^{-4}~\mu g~m^{-3}$	A1.6
Figure 7	Concentration Contour Plot for the Dispersion of 10 μm Particles Based on 1 g s $^{-1}$ Particulate Emission Edmonton Climatological Data Numbers on Contours are in Units of 10 $^{-4}$ μg m $^{-3}$	A1.7
Figure 8	Concentration Contour Plot for the Dispersion of 0.1 μm Particles Based on 1 g s $^{-1}$ Particulate Emission Fort Smith Climatological Data Numbers on Contours are in Units of $10^{-4}~\mu g~m^{-3}$	A1.8
Figure 9	Concentration Contour Plot for the Dispersion of 10 μm Particles Based on 1 g s $^{-1}$ Particulate Emission Fort Smith Climatological Data Numbers on Contours are in Units of 10 $^{-4}$ μg m $^{-3}$	A1.9

APPENDIX I: List of Figures and Tables (Cont'd)

		<u>Page</u>
Figure 10A	Flux Contour Plot (0-20 km) for the Deposition of 0.1 $$ μm Particles Based on 1 g s^-1 Particulate Emission Rate	. *
	Edmonton Climatological Data Numbers on Contours are in Units of $\mu g \ m^{-2} \ yr^{-1} \ \dots$	A1.10
Figure 10B	Flux Contour Plot (0-100 km) for the Deposition of 0.1 μm Particles Based on 1 g s $^{-1}$ Particulate Emission Rate Edmonton Climatological Data	200
		A1.11
Figure 11A	Flux Contour Plot (0-20 km) for the Deposition of 10 μ m Particles Based on 1 g s ⁻¹ Particulate Emission Rate	
	Edmonton Climatological Data Numbers on Contours are in Units of $\mu g \ m^{-2} \ yr^{-1} \ \dots$	A1.12
Figure 11B	Flux Contour Plot (0-100 km) for the Deposition of 10 μm Particles Based on 1 g s $^{-1}$ Particulate Emission Rate	
· .	Edmonton Climatological Data Numbers on Contours are in Units of $\mu g \ m^{-2} \ yr^{-1}$	A1.13
Figure 12A	Flux Contour Plot (0-20 km) for the Deposition of 0.1 μm Particles Based on 1 g s $^{-1}$ Particulate Emission Rate	
	Fort Smith Climatological Data Numbers on Contours are in Units of $\mu g \ m^{-2} \ yr^{-1} \ \dots$	A1.14
Figure 12B	Flux Contour Plot (0-100 km) for the Deposition of 0.1 μm Particles Based on 1 g s^-1 Particulate Emission Rate	
	Fort Smith Climatological Data Numbers on Contours are in Units of $\mu g \ m^{-2} \ yr^{-1} \ \dots$	A1.15

APPENDIX I: List of Figures and Tables (Cont'd)

		Page
Figure 13A	Flux Contour Plot (0-20 km) for the Deposition of 10 μm Particles Based on 1 g s $^{-1}$ Particulate Emission Rate	
	Fort Smith Climatological Data Numbers on Contours are in Units of $\mu g \ m^{-2} \ yr^{-1} \ \dots$	A1.16
Figure 13B	Flux Contour Plot (0-100 km) for the Deposition of 10 μm Particles Based on 1 g s $^{-1}$ Particulate Emission Rate	
	Fort Smith Climatological Data Numbers on Contours are in Units of $\mu g \ m^{-2} \ yr^{-1} \ \dots$	A1.17
Table 1	Particulate Matter Sampling Results	A1.18
Table 2	Sampling Information Summary	A1.19
Table 3	Analytical Results Train 2A	A1.20
Table 4	Analytical Results Train 2B	
Table 5	Analytical Results Train 4A	A1.22
Table 6	Analytical Results Train 4B	A1.23
Table 7	Analytical Results Train 5A	A1.24
Table 8	Analytical Results Train 5B	A1.25
Table 9	Analytical Results Flow Sensor Train (ORF)	A1.26
Table 10	Laboratory Intercomparison - NBS-SRM 1648	A1.27

APPENDIX I: List of Figures and Tables (Cont'd)

		Page
Table 11	Laboratory Intercomparison - Solution Standards (ppm)	A1.28
Table 12	Sample Composition Comparison	A1.29
Table 13	Analytical Detection Limits	A1.31
Table 14	Annual Mean Concentration (x 10^{-4} µg/m³) by Sector at Different Distances	A1.32
Table 15	Annual Mean Concentration (x $10^{-4} \mu g/m^3$) by Sector at Different Distances	A1.33
Table 16	Annual Mean Concentration (x 10^{-4} µg/m³) by Sector at Different Distances	A1.34
Table 17	Annual Mean Concentration (x 10^{-4} µg/m³) by Sector at Different Distances	A1.35
Table 18	Annual Deposition Flux ($\mu g \ m^{-2} \ yr^{-1}$) by Sector at Different Distances	A1.36
Table 19	Annual Deposition Flux ($\mu g \ m^{-2} \ yr^{-1}$) by Sector at Different Distances	A1.37
Table 20	Annual Deposition Flux ($\mu g \ m^{-2} \ yr^{-1}$) by Sector at Different Distances	A1.38
Table 21	Annual Deposition Flux ($\mu g \ m^{-2} \ yr^{-1}$) by Sector at Different Distances	A1.39

EXECUTIVE SUMMARY

Concord Scientific Corporation has conducted a study of emissions from the main stack at Syncrude Canada Limited's Mildred Lake plant.

The terms of reference for this study were:

- To carry out a field stack sampling program and associated chemical analyses to determine selected metallic elements and related substances emitted in particulate and vapour form from Syncrude's main plant stack and the emission rates and the size distribution of the particles.
- To model the dispersion of these emissions to estimate the annual concentrations and deposition within 50 to 100 km from the stack, primarily to estimate the loadings on surrounding lands.

The field stack sampling programme was carried out between June 13 and June 19, 1984, during which one preliminary test and three valid compliance tests were completed.

The samples from these tests (130 in total) were analyzed for 26 elements by three independent analytical laboratories: Ontario

Research Foundation, Barringer Magenta Limited and Diagnostic Research Laboratories Limited.

The emission rates of total particulate matter and of individual metals both particle bound and in vapour form were calculated from the stack measurements and chemical analysis. These emissions were modelled using an existing, conventional dispersion model to estimate ground level concentrations and deposition patterns of these substances up to 100 kilometers from the Syncrude stack.

The concentration and deposition patterns were determined as annual averages by direction from the stack, based on input to the model of climatological data from Edmonton and Fort Smith, the nearest upper air stations providing the required data.

This report includes the details of the field sampling and chemical analysis protocols and of the modelling methods used, and presents the results and a disussion of the data.

The salient features of the results are summarized below.

The measured average emission rate of total particulate matter from Syncrude's main process stack is about 35 ± 7 grams per second (3020 ± 600 kg/day). This result converts to 0.053 grams/kilogram of stack gas and is well below the Alberta standard of 0.2 grams/kilogram of stack gas.

- The uncertainty in the emission data at the 90 % confidence level is \pm 14 g s⁻¹ (2 standard deviations) calculated from the particulate emissions rate. Additional uncertainty caused by potential bias in the sampling due to increases or decreases in emission rate (i.e. sample representativeness) would increase this by a factor of 1.4. The overall uncertainty therefore would be \pm 26 g s⁻¹ or the emission rate would vary between 61 and 9 g s⁻¹ or 0.092 and 0.014 g/kg of stack gas for a 90 % confidence interval.
- The range of emission rates for individual metallic constituents of the stack gas (including both particulate and vapourphase forms) ranged from 320 milligrams per second (27.6 kg/day) for iron to 6 micrograms per second (0.0005 kg/day) for beryllium.
- Emissions for lead, cadmium, selenium, arsenic, mercury and beryllium are very low.
- The corresponding ground level concentrations of particulate matter and metals in the area around the stack, as determined by the model calculations, were found to reach a maximum at three to five kilometers from the stack. The maximum ground level concentration (annual average) at this distance is estimated at 0.06 micrograms per cubic meter for total particulate

matter. The corresponding range for metals was from 540 picograms per cubic meter for iron to 0.01 picograms per cubic meter for beryllium.

- The model output also included dry deposition fluxes of total particulate matter and metals. The maximum deposition also occurs at a distance of three to five kilometers from the stack. The annual average deposition for total particulate matter (assumed to be 10 µm diameter) at this distance is 3.5 x 10⁴ micrograms per square meter per year. Similarly for individual metals, the annual deposition ranges from 314 micrograms per square meter per year for iron to 0.006 micrograms per square meter per year for beryllium.
- These concentrations and deposition estimates are those attributable to the Syncrude stack, since other influences were not evaluated (i.e., other stacks, emission sources or wind blown dust).
- The compass sector into which maximum concentrations and deposition occur is to the southeast of the stack. The next greatest concentration and deposition amounts occur in the sector northwest of the stack.

1. INTRODUCTION

Study Terms of Reference and Scope

Concord Scientific Corporation has undertaken a study on behalf of Syncrude Canada Limited to determine the emission rates and deposition patterns of certain metallic elements emitted from the main process stack at its Mildred Lake upgrading plant.

Some preliminary data on the chemical composition of the stack emissions of particulate matter had been obtained during previous studies, but neither source testing to compliance test standards for particulate and vapour-phase metallic constituents nor mathematical modelling estimates of the deposition field for these emissions had been carried out. The results of the latter activity are essential in assessing the potential environmental impact of Syncrude's emissions.

The following were the study's terms of reference in conducting the investigation:

To carry out a comprehensive programme of sampling particulate and vapour-phase emissions of specified metallic elements from the main process stack.

- To develop and execute the sampling protocol under the most rigorous compliance testing requirements of the Alberta and Canada Source Testing Codes.
- To determine the particle size distribution of particulate emissions and the particulate and vapour-phase components of specified elements by an optimized sampling method.
- To analyze the collected material according to an optimized protocol for 26 specified elements (primarily metals) in three independent laboratories.
- To apply a conventional atmospheric dispersion model to the emission rates of the individual elements determined in the foregoing steps, using currently available meteorological data, to estimate annual average deposition fluxes and concentrations of these elements in the environs of the plant.

The scope of this study was defined by the number of sets of valid source test samples to be collected under the conditions of compliance testing of normal plant operations - that is, three sets under current Alberta and Canada Source Testing Codes - and the number and type of elements to be determined in each sample.

Stack sampling and chemical analysis were to be carried out by recognized, standard methods. In addition, the sampling programme would be carried out in co-ordination with plant process operations, so that daily information exchange during the field sampling programme would allow immediate assessment respecting sample representativeness.

The three independent analytical laboratories were to follow the analytical and quality assurance protocols specified by Concord Scientific for each element, so that results would be directly comparable and analytical uncertainty would be well documented.

Measurements of meteorological parameters were not to be made during the field programme, since annual deposition patterns were desired, requiring long-term meteorological data. Preliminary estimates of annual average air concentration and deposition patterns only were required; therefore, a conventional, readily available dispersion model was to be used. That is, development of a site-specific, advanced deposition model was not within the scope of this work.

Chapter 2 of this report discusses study procedures and methods for sampling and processing of samples. Details of the MIX model used to calculate concentrations and fluxes are also described in this chapter. Chapter 3 describes the results of the analytical programme and outlines how emission estimates were calculated. The chapter also describes the modelling results for deposition and

concentrations of metals around the Mildred Lake Plant. Chapter 4 provides a discussion on uncertainties in the data and compares the estimated concentration and deposition estimates with studies already conducted in the area and with other data available for remote rural and urban areas for some corresponding metallic elements. Data from stack measurements and process information and sample analysis are provided in some detail in Volume II, Appendices I, II, III and IV.

2. STUDY PROCEDURES

2.1 Sampling Methods

Source sampling for determining compliance with emission regulations requires that testing meet the following conditions:

- sampling must be performed under process conditions representative of normal production rates and processes, excluding process upsets;
- sampling results must truly represent the emissions from the source;
- the equipment and methods for sampling must meet the specifications of the Code; and
- 4. a minimum of three valid tests must be completed after satisfactory completion of a preliminary test.

The sampling of stack particulate matter for metallic elements as well as the vapour-phase components of the more volatile metals was required in this study. In addition, information about the particle size distribution of the emissions was also required. To satisfy these objectives, three separate sampling trains: an isokinetic sampling

train for sampling total particulate matter as well as vapour-phase lead and cadmium, an isokinetic sampling train for sampling total particulate matter as well as vapour-phase arsenic, selenium and mercury and a multi-cyclone train to determine the particle size distribution were used. All containers, impingers, connectors and miscellaneous glassware employed in the study were cleaned by a rigorous procedure prior to Final aliquots of rinse solutions were kept for proofing sampling. purposes. Sampling protocols were executed in accordance with the Government of Canada stack sampling code, since this was more stringent than the Alberta Government code applicable. Samples were kept locked in containers at all times after sampling and hand delivered to the analytical laboratories by a Concord employee. Process conditions monitored to assure representativeness of the samples are summarized in Appendix III.

2.2 <u>Field Testing Procedures</u>

2.2.1 Description of Reference Protocols

The reference source testing method for measurement of particulate matter from stationary sources is the Environment Canada Code: EPS 1-AP-74-1. Equipment and apparatus used had specifications equivalent to those required by the Code. Slight changes to the sample recovery procedure were made in view of the specialized sampling

requirements. Any modifications to the sampling protocols were within acceptable limits as prescribed by the stack sampling code.

There are no applicable codes for size-selective sampling or for vapour-phase metals, although reference methods exist for collection of mercury vapour from chlor-alkali plants, EPS 3-EC-81-4 (Mercury: Methods for Sampling, Preservation and Analysis), lead from secondary lead smelters, EPS 1-AP-78-31 (Measurement of Emissions of Particulate Matter and Lead from Secondary Lead Smelters) and Arsenic from Gold Roasting Operations (EPS 1-AP-79-1). These methods are cited in Appendix IV. The individual methods used are presented below, including a discussion of variances from published procedures.

2.2.1.1 Determination of Particle Size Distribution

A Flow Sensor particle sizer sampling train was used in-stack to collect particles in a series of five cyclones and a back-up glass fiber filter. Cyclone ${\rm D}_{50}$ values were 6.0, 2.6, 1.9, 0.7 and 0.4 microns using the isokinetic sampling rate selected. The apparatus is shown in Appendix I, Figure 2. The back up filter was a Gelman type AE glass fiber filter. The Flow Sensor was selected because of the very low wall loss characteristics (Appendix I, Figure 1) and the ability to collect a large amount of particulate matter in each stage without carry over to adjacent stages. A cold box was used in series with the Flow

Sensor train to determine the moisture content of the stack gas as a cross-check on the two other sampling trains.

2.2.1.2 Determination of Particulate Matter (Metals) and Vapour-Phase Arsenic, Selenium and Mercury

The sampling train designated Train A is shown in Appendix I, Figure 3. A Teflon-lined probe was used, followed by a filter holder with a tared Gelman AE filter, followed by seven impingers. The impingers contained the following solutions:

Impinger 1 - 100 mL DI water

- 2 blank
- 3 100 mL DI water
- 4 100 mL DI water
- 5 100 mL 2 % w/v $KMnO_4$ in 10 % v/v H_2SO_4
- 6 blank
- 7 silica gel

The first blank impinger was incorporated to collect liquid carry over from the first impinger as moisture was condensed from the stack gas during the test. After two traverses, the first two impingers were emptied (contents combined) and re-charged to prevent carry over and therefore contamination of the third impinger. Samples from

impingers 1, 3 and 4 were kept separate. The silica gel was also recharged after the first two traverses.

2.2.1.3 Determination of Particulate Matter (Metals) and Vapour-Phase Lead and Cadmium

This sampling train designated Train B is shown in Appendix I, Figure 3. The train was essentially identical to Train A except for the use of six impingers and different collection solutions. The impingers contained the following:

Impinger 1 - 100 mL 5 % v/v aqua regia

2 - blank

3 - 100 mL 5 % v/v aqua regia

4 - 100 mL DI water

5 - blank

6 - silica gel

The blank impinger #2 was incorporated to trap the condensation overflow from impinger #1 and thus maintain a discrete sample. At the end of two traverses, impingers 1, 2 and 6 were re-charged.

2.2.2 Description of Sampling Events

Sampling started on June 13 and ended on June 19. The sampling produced a total of five sets of samples, one preliminary test and 4 compliance tests, one of which (#3) was invalidated due to a process upset. A brief description of sampling events is presented below, while a more detailed summary is presented in Appendix III.

Preliminary Test - June 13

Only two traverses on Trains A and B were performed. Considerable moisture was collected, indicating the first two impingers would have to be re-charged after two traverses during the sampling.

The size-selective sampling train was used on two ports, sampling for two hours on each port. Since very little particulate matter was collected from either sample, the sampling period for the testing was extended from four hours, recommended as a minimum in the stack sampling code, to eight hours. Sampling in subsequent tests was therefore conducted for two hours at each of four ports at a point of equivalent stack gas velocity.

Test 2 - June 14

Test 2 was the first compliance test. Pressure tests were conducted on the CO boiler which delayed sampling until 1150 hours. After two traverses were completed, a fire in the extraction plant and a problem with the utility boiler were reported which further delayed the start of sampling for traverses 3 and 4 until ~1930 hours.

Test 3 - June 17

Test 3 was performed after a 2 day delay. The Electrostatic Precipitators (ESP's) were not functioning on June 15, while on June 16, a fire at the feed pump for the fluid coker and a main air blower problem resulted in a reduced bitumen feed rate until 1600 hours. Sampling was not conducted on either of these 2 days.

On June 17, the sampling test ran smoothly, however notification of a load switch with the three utility boilers was not given until late in the sampling interval, and the test was therefore invalidated.

Test 4 - June 18

There were no problems that affected the process or the sampling, except for a brief interruption of sampling due to a report of a

problem with the cokers. This was found to be erroneous, however, and a valid test was completed.

Test 5 - June 19

Sampling started at 1225 hours, however the sampling was stopped a short time later due to a power interruption which stopped a feed pump. Sampling was reinitiated at 1415 hours. A valid test was completed.

Tests 2, 4 and 5 together comprised the three compliance tests. Details of process and sampling events for these tests is provided in Volume II, Appendix III. The data demonstrate that the sampling on these three days met the main objective of compliance testing i.e., that tests be conducted during normal operating conditions as defined by the design criteria for process operation and not under "upset" conditions. That the samples obtained were representative of the stack gas under normal conditions was therefore documented and confirmed.

2.3 <u>Sample Distribution and Analysis</u>

Sampling trains were taken apart in the field in a trailer located near the stack. The collected particles from the probes, cyclones and the filters and the impinger solutions were transferred to

containers which had been prelabeled and washed by the rigorous procedures required by the appropriate codes. These samples were capped and placed in individual plastic bags to prevent contact between samples during shipment and placed in containers for shipment. During shipment samples were kept locked with the keys held by the field coordinator. Shipping containers were transported from the site to the Concord Scientific (CSC) Environmental Laboratory, by truck to the airport in Fort McMurray and then by airplane to Toronto. The field coordinator travelled in the same vehicles and examined the sample containers at all transfer points and confirmed the integrity of the containers.

At the CSC laboratory the coordinator unlocked the containers and supervised the handling. The samples were first catalogued and then grouped by test number. Tests I and III were archived since I was a preliminary test and III was obtained under upset plant conditions. Samples from tests II, IV and V were processed according to the following protocol:

2.3.1 Sample Preparation

1) Flow Sensor Samples

Particles collected in each cyclone had been transferred to tared plastic containers in the field. They were placed in a desiccator for a 24 hour period, and then containers plus sample were weighed again to obtain the weight of sample collected. Cyclone water rinse samples in glass vessels were dried slowly under mild heat and then scraped into the plastic containers containing the appropriate cyclone catch. The containers were then re-weighed to determine the total cyclone catch.

Filters from the Flow Sensor train were placed in a desiccator for 24 hours and weighed. The particle catch was determined by difference from the initial filter weight obtained on the same analytical balance. One blank filter was carried through the sample handling procedure for each test.

Sample containers were then labelled with a CSC Laboratory number. Because the particle catches were small, in spite of the extended sampling periods, the whole sample was sent for analysis to the Ontario Research Foundation, Metals Laboratory. Results are outlined in Appendix I, Table 9.

2) Train A and Train B Particle Catches

Filters from Train A and Train B and comparably prepared blank filters were placed in a desiccator for a minimum period of 24 hours and weighed. The particle catch was determined by

difference from weighings performed prior to transport to the field. The filters were then placed in a plexiglass apparatus machined to divide the filters into 12 equal sections. Sections 1, 5 and 9; 2, 6 and 10; 3, 7 and 11 and 4, 8 and 12 from each filter were grouped and placed in separate petri dishes. This procedure was performed to minimize problems with uneven distribution of particles on the filters, since the filters were held vertically during the stack sampling. The petri dishes were labeled with sequential laboratory numbers and one dish from each sample was sent to each of the three analytical laboratories.* In addition, the fourth set was submitted to one of the laboratories as a separate sample, labeled with a different number. This procedure provided data on precision of analysis. Acetone and water rinses of the probes were used after sampling to recover the particles trapped in the probe. These samples were dried under mild heat in beakers and the contents were transfered to pre-weighed plastic containers. Much less than a gram of particles was collected. These samples were not split, therefore, and were analyzed only by the ORF laboratory. Results are presented in Appendix I, Tables 3 to 8.

^{*} ORF, Ontario Research Foundation

 ^{*} BML, Barringer Magenta Ltd.

DRL, Diagnostic Research Laboratories

3) Impinger Samples

Impinger samples from Train A were used to obtain measurements of vapour phase arsenic and selenium in the water impingers and vapour phase mercury in the impinger charged with the $\mathsf{KMnO}_\mathtt{A}$ solution. Since the $\mathsf{KMnO}_\mathtt{A}$ impinger followed the water impingers, the water impingers were also analyzed for mercury. The total contents of impingers 1 and 2 were combined and an aliquot was removed and preserved in the field with 1 mL of 2% $\rm K_2Cr_2O_7$ and 1 mL of 50% $\rm H_2SO_4$ per 100 mL of sample for the mercury analysis. A similar procedure was followed with impingers 3 and 4. In the laboratory, the impinger contents were weighed on a triple beam balance to obtain total volumes to the nearest 0.5 mL and divided into 3 aliquots. The $KMnO_A$ impinger contents were also weighed and divided into 3 aliquots. Train B, aqua regia-filled impingers for collection of vapour phase lead and cadmium, were treated in the same manner, i.e., the contents of impingers 1 and 2 and those of 3 and 4 were combined, weighed and divided into 3 aliquots. One aliquot from each sample was submitted to each laboratory for analysis. Results are outlined in Appendix I, Tables 3 to 8.

4) Blanks, Proofing Solutions and Wash Solutions

Solutions were obtained for confirmation of reagent blank levels and for determining background levels in the sampling train components (i.e., the probes, filter holders, and impingers) prior to each sampling test. These solutions were also analyzed by the same procedures. Solution quantities were between 50 and 100 mL. Because of the low volumes and concentrations expected (and found), these were not divided but sent to either ORF or BML for analysis.

5) QA/QC Samples

Several types of quality assurance and quality control samples were submitted blind to each laboratory. The QA/QC solution samples were prepared prior to submission of the field test samples and sent for analysis as part of the complement of samples to each laboratory. Particulate reference materials certified for metals matching this type of source were unavailable. NBS Standard Reference Material (SRM), number 1648, urban particulate matter, certified for metals was therefore selected as an approriate check sample. These samples were quite different in concentrations of individual elements when compared with the stack samples, but provided checks of recovery efficiency, calibration accuracy and

precision. The laboratories each identified these check samples as being unique and quite different in metals composition when compared with the stack samples. Results are presented in Appendix I, Table 10. Not all metals determined have certified values.

The aqua regia digestion used for this study is not a total digestion and recoveries of some elements such as Si, Al, Fe, Ti, Cr and Zn were known to be low for particulate matter matrices. It should be noted that this extraction procedure was selected on the basis of several constraints. Firstly, only glass fibre type filters are rugged enough to withstand the rigors of stack sampling conditions, e.g., temperature. Teflon filters provide advantages in terms of significantly reduced background levels for Si, Na, Ca and trace elements but are not suitable for this application. Secondly, two types of elements were identified to be of interst to this study. Those were the elements such as Si, Al, Fe, Ca, and Mg which form the major metallic components of the stack particulate matter, but data were already available from other studies for these elements. The second group of elements were those for which little or no data were available from past studies. These included Pb, Cd, As, Se, and Hg. Information on particulate and vapour phase concentration of these elements was the primary emphasis of the study. Since these elements were present in very low concentrations in the filter catches, filter background levels could easily have masked trace elements released from particles in a total digestion procedure such as digestion using HF. The efficiency of extraction for airborne particulate matter for the latter metals by the aqua regia method, however, was known to be high (Appendix I, Table 12). This technique was proposed, therefore, as the best approach available to obtain valid data for the latter set of elements while still providing data for comparison with previous results for the former element set. ORF provided additional results for the metals on the NBS-SRM 1648 samples using an HF digestion, which shows enhanced recoveries of some elements.

Solution samples were also submitted which contained known amounts of metals. These were prepared by dissolution of known quantities of metal (analytical grade) using methods prescribed in the APHA's "Standard Methods of Analysis For the Examination of Water and Waste Water", 15th Edition. Further assessment of the overall variability of the data can be obtained from analyses of the filter replicate data, the inter-laboratory comparisons, the duplicate samples and the interday sampling results. A summary of the solution standard data is presented in Appendix I, Table 11.

In addition to these measures, the laboratories carried out internal quality control procedures. These included analysis of internal duplicate samples, reagent blanks, spiked samples and recovery checks.

2.3.2 Sample Analysis Methods

Analytical procedures to be used by each of the laboratories were specified prior to initiation of analysis. The factor most affecting the accuracy and precision of analysis was the digestion of particulate matter samples and filters. For these, an aqua regia digestion was specified to obtain a leachable quantity for the metals in sample particulate matter. Mercury extraction was performed on a separate portion of the filter by a different procedure. An extractive (i.e., aqua regia) rather than total digestion method was selected because of the potential contamination problems from the filter matrix when the filters are processed by a total digestion method as discussed in section 2.3.1, particularly for metals present in trace quantities such as lead, cadmium, arsenic, selenium and mercury. However, for many metals, an aqua regia digestion yields equivalent results to a total fusion of the sample. Data for a comparision of recoveries on the NBS-SRM 1648 by a total digestion method and by the aqua regia method are presented in Appendix I, Table 10.

Sample analysis methods for solids, filters and impingers are outlined in the following sections.

1) Analysis of Filter Samples

Mercury

A weighed portion of each filter was digested with sulfuric, nitric and hydrochloric acids as well as potassium permanganate and potassium persulfate (60°C, 16 hr). The resulting solutions were reduced with hydroxylamine hydrochloride and diluted to volume. An aliquot of each solution was removed and further reduced with stannous chloride immediately prior to analysis by cold vapour atomic absorption spectrophotometry.

"Other Metals"

This includes Al, Ba, Ca, Co, Cr, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, Sn, Si, Ti, Be, V, and Zn, which were analyzed by DC plasma emission spectrophotometry (ORF, DRL) or inductively coupled plasma emission spectrophotometry at (BML) and Pb, Cd, and Ag, which were done by flame atomic absorption spectrophotometry.

Weighed portions of filter material were placed into erlenmeyer flasks. Aqua regia was added and the samples were evaporated to a low volume. The aqua regia treatment was repeated two more times before the solutions were diluted with hot deionized water, filtered, and diluted to volume for analysis.

Arsenic and Selenium

Aliquots of the above filtered solutions were removed. Nitric acid (5 mL) and concentrated sulfuric acid (2 mL) were added and the solutions were evaporated to fumes of SO_3 . Deionized water (~5 mL) and hydrochloric acid (5 mL) were added and the solutions were heated to boiling. After cooling, the samples were diluted to volume for analysis by hydride generation and atomic absorption spectrophotometry.

Solids Analysis

These procedures were employed for:

- A. Cyclone samples where weighable portions were available.
- B. Other solid samples such as coke dust, hopper samples and soils.

The procedures used for sample preparation and analysis were identical to those employed for the filter analysis except that these samples were allowed to settle prior to analysis instead of being filtered. In addition, the hopper samples and the coke sample were

reanalyzed for all metals except arsenic, selenium and mercury using an alternate preparation procedure outlined below.

Alternate Sample Preparation Procedure

A weighed portion of each sample was initally digested with nitric acid. Perchloric acid was added and the samples were carefully evaporated to fumes of percholoric acid. (Additional nitric acid was added as necessary to prevent an uncontrolled reaction). Water and nitric acid were added to the cooled samples prior to filtering and dilution to volume for analysis. The residual filter paper and particles were ashed in a platinum crucible and the insoluble residue was fused with sodium carbonate. The cooled melt was dissolved in hydrochloric and hydrofluoric acids and diluted to volume for analysis. The results for the original solution and the fused residue were combined.

Impinger Solutions

Mercury, Permanganate Impingers

The entire impinger solution for each sample was initially reduced with a solution of hydroxylamine hydrochloride. The clear solutions were diluted to volume and an aliquot from each was removed and

further reduced with stannous chloride immediately prior to analysis by cold vapour atomic absorption spectrophotometry.

NOTE: Three samples containing permanganate were clear, indicating that insufficient permanganate was initially present to overcome the reducing power of the stack gas sample. Additional permanganate was added during sampling but the solutions were still clear at the end of the sampling period. This is a serious shortcoming of the acid permanganate mercury sampling method, since SO₂ present in the stack gas reduces the concentration of permanganate. Acidic hydrogen peroxide has been used to remove SO₂ prior to the acid permanganate (McQuaker and Sandberg, 1982) to maintain the oxidation potential of the acid permanganate These researchers sampled stack gas containing ~15,000 ppm solution. ${\rm SO}_2$ at 10--12 LPM for 1--2 hours and demonstrated high collection efficiency for mercury. Little information on the collection efficiency of mercury at low or no permanganate levels exist; however, the authors cited work of Caban and Chapman (1972) who determined that at a permanganate concentration of 0.5% w/v, collection efficiency dropped from 100% to 75% in the first impinger (50 mL of 10% permanganate in $\rm H_2SO_4$). However, only 2 impingers were used and mercury-spiked air was sampled. Since the absorbing solution was clear, it is evident that the collection efficiency for mercury vapour would be affected. the incorporation of a peroxide pre-scrubber in the As, Se, Hg

train would have affected the collection efficiency of As and Se. The state-of-the-art for the simultaneous collection of several metallic vapours has not been fully validated at this time.

Water Impingers, Mercury

To the entire solution additional potassium dichromate and nitric acid were added 72 hrs prior to analysis to overcome the reducing power of the solution. An aliquot of the impinger solution was then digested at 90°C for 3 hrs with potassium permanganate, potassium persulphate, nitric and sulphuric acids and then reduced with hydroxylamine hydrochloride. The clear solution was diluted to volume and reduced with stannous chloride just prior to analysis by cold vapour atomic absorption spectrophotometry.

Arsenic and Selenium

Aliquots (25 mL) of these solutions were transferred to erlenmeyer flasks. Nitric acid (5 mL) was added and the samples were heated on a hot plate. After cooling, 2 mL of concentrated sulfuric acid were added and the solutions were evaporated to fumes of SO_3 . Deionized water (\sim 5 mL) was added to the cooled samples along with 5.0 mL of hydrochloric acid. The solutions were brought to a gentle boil to ensure complete dissolution of selenium. The cooled solutions were diluted to 25 mL for analysis of arsenic and selenium by hydride gener-

ation atomic absorption spectrophotometry using sodium borohydride as a reducing agent.

Lead and Cadmium

Aliquots (25 - 100 mL depending on sample availablity) were transferred to beakers with covers. Aqua regia (8 mL) was added, and the solutions were slowly evaporated to 3 mL on a hot plate. Nitric acid (1 mL) was added and the samples were digested for a few more minutes prior to cooling and diluting to volume for analysis of lead and cadmium by flame atomic absorption spectrophotometry. (D_2 arc background corrected).

Remaining samples (ORF only)

These samples consisted of cyclones from which weighable subsamples were not available, probe wash solutions, proofing rinses etc. Samples were transferred to erlenmeyer flasks and aqua regia was added to the original polystyrene or polyethylene bottles. The bottles were shaken and the acid was transferred to the digestion flask. The resulting solutions were evaporated to 2-3 mL and fresh aqua regia was added. The acid treatment was repeated twice. The solutions were allowed to cool and were transferred to volumetric flasks. Aliquots of the digestate were immediately removed and processed as for aqua regia impingers for mercury, arsenic and selenium analyses. The remaining solution was

used for metal analysis by plasma emission and atomic absorption for appropriate metals as indicated.

2.4 Modelling

The Mixed Layer Statistics Dispersion Model (MIX) developed by the Atmospheric Environment Service, Environment Canada (Matthias, 1981) was selected for modelling the dispersion of emissions from the Syncrude stack. The model is briefly described in Section 2.4.1. The rationale for the selection of various model inputs is given in the following section. A brief outline of the available validation information on the model and a summary of the sensitivity of the model to the input parameters are given in section 2.4.3. The model outputs, which are based on unit emission rates, are described in section 2.4.4. The description of the methods used to obtain estimates of elemental concentrations in air and of deposition fluxes based on measured elemental emissions appears in section 2.4.4.

2.4.1 Model Description

To estimate ground level pollutant concentration and deposition fluxes resulting from the emission and dispersion of pollutants from Syncrude's elevated stack, a Mixed Layer Statistical Dispersion Model (MIX) was used. MIX (Matthias, 1981) is a Gaussian point source model which uses statistical or climatological input data and includes

depletion of the plume pollutants by dry deposition and first order chemical decay. Wet deposition is not considered by this model.

The MIX model includes various submodels for the following:

- plume rise calculation (using the Briggs formulation)
- diurnal variation of surface heat flux (assumed to be sinusoidal during the day and decreasing at night)
- surface shear stress
- mixing heights (daytime and nighttime)
- turbulence intensity
- atmospheric stability class.

The climatological data for the mixed layer consists of seasonal joint frequency distributions of maximum mixing height and mean wind speed. The mean nocturnal inversion gradient, mean ambient temperature, regional albedo and the wind direction frequency distribution are also included.

The model first calculates, for any specified downwind distance, the distribution (in 50 concentration ranges) of ground level concentrations. For these calculations, it is assumed that the wind direction within each of nine 40° sectors is distributed randomly over a period of a season or a year. It was further assumed that the emission is uniformly distributed in the horizontal within the sector. The mean

of these ground level concentrations \bar{C}_i , for season i, is then calculated and, using the wind direction frequency, the seasonal mean ground level concentration \bar{C}_{n_i} is calculated for each sector. The seasonal deposition flux \bar{F}_{n_i} in sector n, , is then the product of the seasonal deposition velocity, V_{d_i} and \bar{C}_{n_i} . Note here that i represents each season and n represents each wind direction sector.

The annual deposition flux \mathbf{F}_{n_T} , is determined by summing seasonal deposition fluxes, \mathbf{F}_{n_i} .

2.4.2 Model Inputs

The model inputs are comprised of stack parameters, meteorological parameters and data, together with pollutant parameters. These input parameters and the values used in the modelling are given in Table 2.1. The bases for the selection of these values are described below.

a) Physical Stack Parameters

The latitude, stack height and stack top diameter are data supplied by Syncrude. The stack gas exit temperature and velocity are measured values (this study) and are close to the design values (data supplied by Syncrude). During the field sampling program of June 1984,

TABLE 2.1

Model Inputs

	Values				
Location (latitude)	57.04° N				
Stack height	183.0 m				
Stack top diameter	7.9 m				
Stack gas exit velocity	21.6 m s ⁻¹				
Stack gas exit temperature	230.5 C				
Roughness length	0.03 m				
Location of upper air station	Fort Smith (YSM), Edmonton (YEG)				
	• *				
Metallic element emission rate	$1 g s^{-1}$				
Downwind distance	1, 3, 10, 15, 20, 30, 50, 100 km				
Chemical reaction rate	0				
Deposition Velocity					
0.1 μm particles					
Winter and spring	0.003 m s^{-1}				
Summer and fall	0.013 m s^{-1}				
10 μm particles					
Winter and spring	0.014 m s^{-1}				
Summer and fall	0.022 m s^{-1}				

the values of these parameters ranged from 21.6 - 23.2 m s⁻¹ for the exit velocity and 230.5 to 237.1°C for the exit temperature. Historical data for these parameters indicate the selection of these values reflects typical and representative conditions for the stack. These stack parameters are required in the calculation of the plume rise. The impacts of the variation of the stack parameters (exit velocity and exit temperature) on the predicted concentrations are given in section 2.4.3.

b) Meteorological Parameters

The roughness length value used is the recommended value for the terrain in the vicinity of the plant. The terrain is generally muskeg and is equivalent to low grass, steppe (1-4 cm) or fallow fields (2-3 cm). The surface roughness lengths recommended for use in the model are based on data summarized by Simiu and Scanlan (1978). A value of 3 cm (0.03 m) was selected. The influence of roughness length on the model output (concentration at specified downwind distances) is given in section 2.4.4.

The other meteorological input data are climatological information for the first order meteorological station closest to the stack.

The climatological data required by the model are derived from percentage joint frequency distribution (JFD) tables of daily mixed

layer, wind speed, wind direction and maximum mixing height. These mixed layer data have been generated for the four year period 1965 to 1969 over a sparse network of radiosonde stations in Canada and northern U.S. (Portelli, 1977). The mixed layer properties do not vary strongly with surface characteristics since they are more strongly linked to geostrophic flow.

The Syncrude stack is nearly equidistant from the two closest radiosonde stations at Fort Smith and Edmonton. The climatological data for these stations are different (See section 2.4.3) hence model outputs describing emissions from the Syncrude stack were obtained using data for both stations.

c) Emission Rate

A unit emission rate (1 g s⁻¹) was selected in order to simplify the analysis. For individual elements, the measured emission rates were used to scale the calculated unit emission rates, thereby providing the appropriate concentration and flux estimates. For example, if the estimated concentration of element X at a distance of 10 km from the stack were 300 pg m⁻³ based on the unit emission rate, then for an actual emission rate of 0.230 g s⁻¹ (230,000 μ g s⁻¹) for element X, the actual concentration at 10 km would be 300 x 0.23 = 64 pg m⁻³.

d) Downwind Distance

Downwind distances of 1, 3, 5, 10, 15, 20, 30, 50 and 100 km were selected for the estimation of concentration and flux.

e) Chemical Reaction Rate

The particulate species measured in the field program are not expected to undergo any chemical reaction that would change their phase, i.e., conversion to vapour or liquid phase. It is also assumed that size changes, particle aggolomeration or disintegration are negligible. The chemical reaction rate was therefore taken to be zero.

In the case of vapour phase species (Pb, Hg, As, Se and Cd), it was also assumed that no phase changes occurred as a result of chemical reaction. The chemical reaction rate for these species was also taken to be zero.

f) Deposition Velocity

The original formulation of the MIX model was modified to allow the seasonal dependency of the deposition velocity to be included. The seasonal variation of $V_{\rm d}$ arises because of the difference of surface cover in the seasons (snow in winter and spring, tall grass/muskeg in summer and fall).

Deposition velocity is also a function of particle size. A recent literature review (CSC, 1983) of dry deposition velocity data for particulate matter indicated that two particle sizes are adequate to describe $V_{\rm d}$ for particles. Theoretical studies (Slinn, 1977; Sehmel and Hodgson, 1978) indicate that $V_{\rm d}$ passes through a minimum at 0.1-1.0 μm , hence significant differences in $V_{\rm d}$ with particle size occur for ~0.1 μm and ~10 μm particles. The model was therefore run using two sets of values for the deposition velocities that correspond to 0.10 μm and 10 μm diameter particles. The sensitivity of the modelled concentration to variation in $V_{\rm d}$ is indicated in section 2.4.3. It should be noted however that the flux will be directly proportional to the value of $V_{\rm d}$.

It is also assumed that the deposition velocities for the vapour phase species (Pb, Se, Cd, As and Hg) are similar to the deposition velocity for 0.1 μ m particles. Measured values for the deposition velocities for gases such as I $_2$ (.0002 to 0.26 m s $^{-1}$) and Thorium B (0.0008 to 0.026 m s $^{-1}$) are in a similar range (Sehmel, 1980) to that used for 0.1 μ m particles. The deposition velocities for I $_2$ and Thorium B are also similar to those for particulate sulphate or ammonium which have mass median diameters close to 1 μ m (for example Pierson et al. 1980; Heard and Wiffen 1969).

The formulation of the MIX model does not include wet deposition. The effect of omitting wet deposition on the long-term deposition estimates is not known precisely since the total

percentage of time each year that precipitation occurs is small in this region. Long-term statistics indicate precipitation occurs on an average of 30% of days but the duration of the events on these days will result in a much smaller percentage of total time that precipitation occurs. Barrie (1980) found that the latter was about 2 % during the field study period and his paper provides estimates of the total deposition in the Tar Sands area. This point is discussed in sections 3.4 and 4.3.

2.4.3 Model Outputs

The model output provides the following information based on unit (1 g/s) emission rate for each specified downwind distance:

- The frequency distribution of concentrations that occurs in a downwind sector. This distribution of concentrations arises from the statistical variation of climatological conditions.
- The long-term average concentrations in each of the nine 40° sectors. The frequency distribution of wind direction is taken into account.
- The average annual deposition flux of particles in each sector.

Downwind distances of 1, 3, 5, 10, 15, 20, 30, 50 and 100 km were used. At each distance, the model was run using climatological

data for Fort Smith and Edmonton and also using deposition velocities appropriate for 0.1 μ m and 10 μ m diameter particles. The average annual sector concentrations and fluxes at each downwind distance are given in Appendix I, Tables 14 to 21.

The spatial variation of the concentration and the flux are illustrated by means of contour plots. A complete set of contour plots based on unit emission rates is given in Appendix 1, Figures 6 through 13. Typical examples of these plots are presented in Figures 2.1 and 2.2. In these figures, concentric circles are drawn to represent the distance from the stack. The contour lines show concentrations in units of $10^{-4} \, \mu g \, m^{-3}$ (Figure 2.1) or fluxes in units of $\mu g \, m^{-2} \, yr^{-1}$ (Figure 2.2).

The concentration and flux for individual elements (using the actual elemental rates rather than unit emission rates) are presented in section 3.4.

The MIX model is a Gaussian dispersion model. Gaussian formulations have been tested extensively by the air quality community and are now an accepted tool for air quality assessment purposes and are considered to be accurate within a factor of two. Although the MIX model has not been validated directly against experimented data, it has been compared to existing validated models. An assessment using the MIX model was carried out in 1980 by Environment Canada and the Ontario

Figure 2.1

 $\frac{\text{Concentration Contour Plot for the Dispersion of 0.1 }_{\mu\text{m}} \text{ Particles Based}}{\text{on 1 g s}^{-1} \text{ Particulate Emission Rate}}$

Edmonton Climatological Data

Numbers on Contours are in Units of 10⁻⁴ µg m⁻³

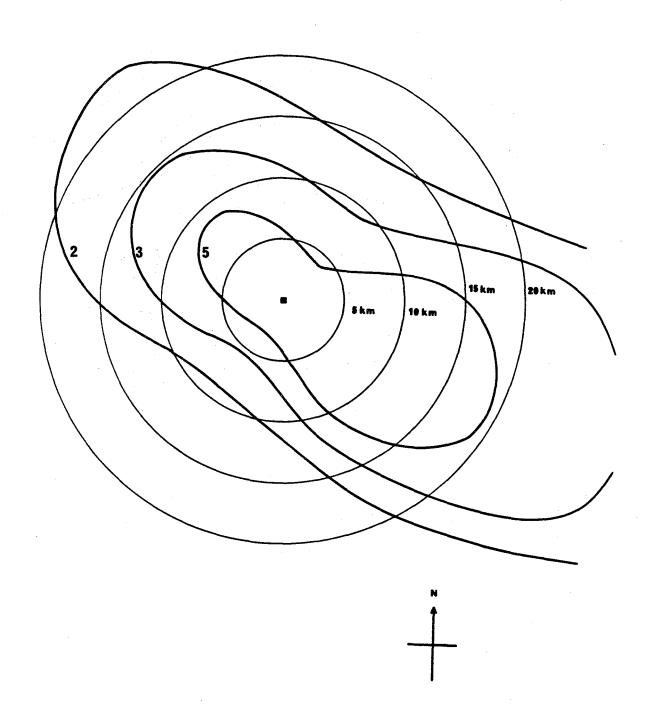
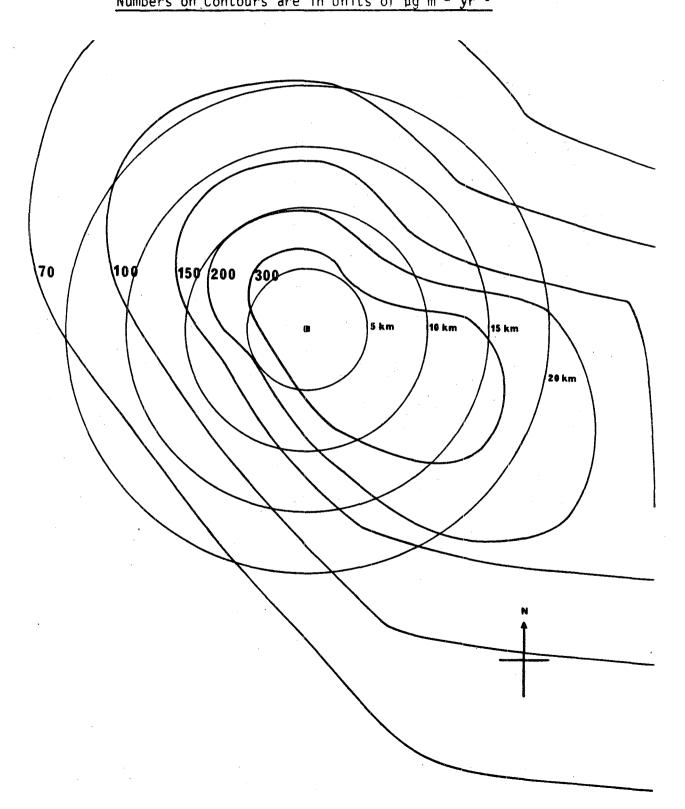



Figure 2.2

Flux Contour Plot for the Deposition of 10 µm Particles Based on 1 g s⁻¹ Emission Rate Edmonton Climatological Data Numbers on Contours are in Units of µg m⁻² yr⁻¹

Ministry of the Environment on the air quality impacts of the Atikokan power plant in Ontario, which had become a Canada - U.S. environmental issue. The U.S. EPA reviewed the model methodology, and concurred with its elegant approach. The results of the MIX model were found to be very similar to those produced by EPA's RAM model (a UNAMAP model) which had undergone considerable evaluation. The MIX model results thus were found to be an accepted basis for evaluation of air quality impacts in an international forum.

The sensitivity of the model outputs to selected non-process input parameters, namely, deposition velocity, roughness length and meteorological station (hence climatological data), was also examined. Table 2.2 summarizes the test values used and those selected for modelling this dispersion from the Syncrude stack.

The results of the sensitivity analyses performed using various values for the stack exit temperature, stack gas exit velocity and the roughness length is summarized in Appendix 1, Figure 4. Similarly, the sensitivity of the model output to changes in deposition velocity is illustrated in Appendix I, Figure 5.

The deposition velocity values selected for use as model inputs correspond to 0.10 and 10 μm diameter particles. Field measurements of stack particle size distributions indicate a bimodal distribution with predominance of particles with 0.30 μm and 6.0 μm 50 % cut-

TABLE 2.2

Summary of Test Values Used For Sensitivity Analysis

Parameter	Test values			Values selected	
Stack gas exit velocity (m s ⁻¹)	27.4*	21.6	23.3	21.6	
Stack gas exit temperature (°C)	232*	231	237	230	
Roughness length (m)		0.006	0.030	0.030	
Upper air meteorological station	Fort	Smith, Ed	monton	Fort Smith and Edmonton	
Deposition velocity 0.10 um particles		;			
Winter and spring $(m s^{-1})$	0.003	0.015	0.0006	0.003	
Summer and fall $(m s^{-1})$	0.013	0.065	0.0026	0.013	
10 µm particles	·				
Winter and spring $(m s^{-1})$	0.014	0.070	0.0028	0.014	
Summer and fall $(m s^{-1})$	0.022	0.110	0.0044	0.022	

^{*} Design values

points. Since the deposition velocities of particles are at a minimum in the 0.1 to 1 μ m size range, the deposition velocity for the 0-1 μ m particles will be appropriate for modelling the behaviour of the smaller group of particles from the stack (those with ~0.3 μ m cut points). Similarly, the deposition of the group of larger particles emitted from the stack can be modelled by using V_d for 10 μ m particles.

The roughness length selected was 0.030 m. This value, which is acceptable for the type of terrain in the study area, yields greater concentration and flux estimates than the choice of the other value tested (0.006 m).

The model was run using climatological data for both Edmonton and Fort Smith since a clear choice between these stations is not feasible. The Syncrude stack is equidistant from Edmonton and Fort Smith, so the usual criteria on which a choice can be made are inappropriate. The optimal approach, that of creating a data set for Mildred Lake by interpolation of the climatological data (Matthias, 1984), was not feasible within the scope of this preliminary study. The outputs from both stations were compared and the set leading to greater estimates of local deposition chosen.

2.4.4 Conversion Method to Obtain Predicted Concentration and Flux Data From Stack Sampling

The model outputs are based on unit (1 g/s) stack emissions. Chemical analyses of stack samples provide actual emission rates for each of twenty-six elements. The concentration and flux contours indicated for the unit emission rate are simply multiplied by the actual emission rate for each element to yield concentration and flux contours for each element.

3. RESULTS

3.1 Sampling Program Evaluation

3.1.1 Process Observations and Sample Representativeness

Process parameters were monitored during the test intervals to ensure that all contributing processes were operational and that abnormal or upset conditions did not exist. Prior to each test, the plant process co-ordinator was contacted to provide a status update of all operations. During the tests, process status updates were reported to the sampling crew on a regular basis. Documentation of process conditions consisted of plotting selected process trends for immediate review subsequent to test completion. If the trends indicated that process parameters were within the normal range of operation, the test was acceptable from the point of view of the representativeness criterion.

The process trends examined immediately after test completion included:

- (1) Assignable trends produced by 10 minute "slices" of data points.
- (2) Assignable trends produced by hourly average data points.

- (3) Operators' process logs.
- (4) Manually logged electrostatic precipitator rectifier panel readings.

All process data were stored in the plant's DAP computer system. Upon completion of the test program, average values of pertinent process parameters were calculated for the actual test intervals.

The three tests for compliance were conducted on June 14, 18 and 19. The assignable trends and process summary sheets illustrate that the process operation was consistent with normal and stable operating levels of the plant. The summaries of assignable trends are contained in Appendix III.

Process observations as documented by the test crew and process data reports indicate several individual process variations along with pertinent comments. The process fluctuations displayed in the assignable trends are considered to be within the boundaries of typical and representative operation.

Process Review and Comments

As noted from the precipitator logs, Electrostatic Precipitator Rectifier Sections A2 and A4 were out of service on process line

8-1 for the course of the survey. As a result, emissions were marginally higher during the survey compared with emissions when all sections were operational. A log of all electrostatic precipitator hopper temperatures was acquired throughout the survey. With the exception of one hopper (TAG 82TAll) which gave significantly lower temperature readings, all hoppers appeared to be functioning without problems.

June 14, 1984

On June 14th, high temperatures caused rectifier B6 (8-2) to stop functioning at 11:30 and rectifier A6 (8-2) to stop functioning at 12:30. These outages were reported immediately by the process coordinator. B6 was placed back in service within an hour; however, temperature problems disabled the A6 section until 17:30. Readings indicate that only a minimal impact on opacity occurred during this time interval. An elutriator was taken out of service on 8-2 at 13:05 to 16:20 for silo repair. Again minimal influence on optical emissions was recorded. When the elutriator was out of service, problems with the blower were noted; however, stack sampling did not overlap with this period which occurred at 14:30. Sampling for determination of particle sizes was initiated just as this problem came under control.

Two bitumen extraction trains were in service during this test day. Soot blowing was initiated at 14:15 on CO boiler #1 and at 16:38 on both CO boilers. This was part of the standard operating procedure

for the boilers. Conditions for this test were considered to be representative of normal operations and the test was, therefore acceptable for assessing emissions.

June 18, 1984

During the day, continual problems were encountered with the sour water stripper system (Plant 16). NH_3 flow to the CO boiler was highly variable until 17:33 when the flow appeared to stabilize, but at a somewhat lower rate than during the June 14 run. Concurrently at 17:33, a 2 - 3% increase in opacity was indicated, although at this time, a slight increase in steam output at boilers 101, 201 and 301 was noted.

Soot blowing was conducted on CO boiler No. 1 from 13:40 to 14:56 and on CO boiler No. 2 from 16:33 to 17:20. This was part of the standard operating procedure for the boilers. Two extractions trains were on line in the plant during the test intervals.

A report of bad data accumulation on the computer monitoring system was received at 14:38, although no irregularities were evident from the assignable trends. Conditions for this test were considered to be representative of normal operations and the test was, therefore acceptable for assessing emissions.

June 19, 1984

On June 19, three bitumen extraction trains were functioning in the plant compared with two trains for June 14 and June 18. Between 12:40 and 12:50, power problems were experienced and the G-6 unit stopped functioning. Sampling was not conducted during this period however.

Computer logged data was off line from 12:39 to 12:54 due to a plant power surge. Computer logging difficulties were also reported between 10:15 to 10:25 and 10:58 to 11:07.

Soot blowing occurred on CO boiler No. 1 between 13:52 and 15:12, and on CO boiler No. 2 between 16:25 and 17:12. This was part of the standard operating procedure for the boilers.

Process conditions for this test were considered to be representative of normal operations and the test was, therefore acceptable for assessing emissions.

Because of the intensive plant monitoring and reporting effort conducted during the study, there can be no doubt regarding representativeness of the sampling during each of the three test days. Detailed documentation of the process parameters is provided in the Appendix III.

3.1.2 Sampling Results

Sampling was carried out using rigorous stack sampling procedures with each of the three stack sampling trains, i.e. the Flow Sensor Train, Train A and Train B on each of three test days. Sampling results are summarized in Appendix I, Tables 1 and 2. It is evident that in spite of the extended sampling hours the particle catches were low indicating efficient operation of the stack gas recovery systems such as the electrostatic precipitators and other systems. With such low loadings, irreproducibility of sampling and analytical results can be considerable. Appendix I, Table 2, for example, shows that for Train A and Train B, the total particle catch was approximately 600 mg for tests II and IV whereas for Test V, the mean catch was only 400 mg, even though an additional extraction train was in service. In each of the three tests, the total mass collected on the Flow Sensor Train was substantially lower than that on the isokinetic sampling trains, for reasons which are set forth below.

The in-stack cyclone sampler was developed by the Southern Research Institute (SRI) to allow in-situ determination of the particle size distribution and to provide sufficient sample size for chemical analysis. It was not developed as an alternative to the EPA Method 5 or absolute filter sampling methods specified by sampling codes, for sampling of stack particulate matter. The manufacturer (Flow Sensor, a division of Andersen Samplers Inc.) has no data comparing the total catch of the cyclone sampler and a total particulate sampler. Some data exist at SRI; however, the data are not collated into a report on the

sampler's performance in the field. SRI's experience with the sampler is extensive and several illustrations of the sampler's performance were given by Dr. J. McCain of SRI (personal communication August, 1984). Dr. McCain stressed the following points regarding the sampler's operating characteristics:

- Although in principle, the total particulate catch in the cyclones should be equal to that collected by the EPA Methods or comparable total particulate matter sampling trains for stacks, since both are desiged to sample isokinetically, the cyclone sampler operates at a set flow rate which is related to the size cuts selected for sampling and the stack gas velocity and is therefore susceptible to variations in stack gas velocity.
- Comparisons of the cyclone sampler to an in-stack absolute filter (EPA method 17) has been found to be good; however, the cyclone sampler always gives lower particulate values when compared to the EPA Method 5 train or other extra-stack filter methods as specified for this study. The difference between the two is related to the amount of condensibles in the stack gas and the source characteristics. For example, stack gas temperatures considerably greater than 250°F, the temperature at which "particulate matter" is collected and defined in EPA method 5, (Syncrude's stack was at 450°F), causes condensible compounds to pass through the cyclone sampler which would be

collected by an EPA Method 5 or comparable sampling train. The higher the temperature and the amount of condensibles, the greater the discrepancy. Differences of as much as a factor of 10 have been observed in side by side sampling studies.

For purposes of this assessment, therefore, the emission factors calculated will be based on the particle catches of Trains A and B. The particle size analytical data are used to confirm the analytical estimates from the other sampling trains and to provide data relevant to the modelling of concentration and deposition fields of the metallic elements to the environs of the Syncrude plant. The Flow Sensor Train data for the particle size distribution assists in selection of the appropriate deposition velocities for the modelling of deposition and concentration fields.

The particle size distribution on all three test days demonstrated a bimodal distribution with 50 to 70% of the mass in size fractions with a 6 μ m cut point while much of the remainder was in the size fraction less than 1 μ m. The test II data contained 57% of the mass in cyclone I and 40% on the filter, while in runs 4 and 5 more of the mass was distributed among cyclones 2 to 5. The differences in distribution among the the different tests were within acceptable ranges. Histograms of particle sizes from each test are presented in Appendix II. Differences in process parameters for these tests were not observed.

3.2 Analytical Results

3.2.1 QA/QC Sample Results

Two types of standards were distributed to check accuracy and precision of analysis. National Bureau of Standards Standard Reference Material 1648 (NBS-SRM 1648) for urban particulate matter was submitted in duplicate containers in 1.0 gram quantities to each laboratory. Certified values are provided for Zn, Fe, Cu, Al, V, Ni, Cr, Na, Cd, Pb, As and Se. Additional concentrations (uncertified) are also given for Co, Mn, Mg, Ba, Ti and Ag. Each laboratory provided data for the full range of elements including P, Be, Si, Ca, Mo, Zr, Sn and Hg. The main purpose of this sample was to assess the recovery efficiency of the aqua regia digestion and to assess laboratory reproducibility and comparability. Results are summarized in Appendix I, Table 10. Also provided in this table are data on the total fusion digestion provided by ORF. A summary of recovery efficiencies for this standard is given in Table 3.1.

Important features of these data are described here.

 Cobalt and beryllium recoveries were approximately 50% low for BML, however these elements were present in very low amounts;

TABLE 3.1

Average Recoveries Based on NBS-SRM 1648

	 	h		 	<u> </u>
Element	BML	DRL	ORF	Mean	ORF
-	(%)	(%)	Aqua Regia (%)	Recovery (%)	Total Digestion (%)
	01	00	01	87 ± 10	99
Fe	81	98	81	1	li de la companya de
Al	39	39	36	38 ± 2	90
Si*	1	0.1	16	6 ± 9	-
Ca	100	88	91	93 ± 6	<u>-</u>
Na	47	40	73	53 ± 18	75
V	62	66	74	67 ± 6	72
Mg	74	79	77	77 ± 2	95
Ti	14	23	30	22 ± 8	92
Mn	81	104	85	90 ± 12	91
P *	105	95	98	99 ± 5	-
Ni	76	93	62	77 ± 16	65
Zn	96	95	92	94 ± 2	91
Pb	102	98	80	93 ± 12	88
Cr	18	26	28	24 ± 5	69
Cu	94	94	92	93 ± 1	103
Ba	21	35	68	41 ± 24	96
Cd	89	97	103	96 ± 7	93
Mo*	29	52	49	43 ± 12	_
Со	53	111	114	92 ± 34	111
Se	79	130	62	90 ± 35	
Zr*	. 3	2	8	4 ± 3	
Sn*	121	75	127	108 ± 28	_
As	154	113	97	108 ± 28	_
	100	133	112	115 ± 17	_
Ag	100	133	112	112 = 1/	_
Hg	47	-	100	70 . 00	-
Be*	47	89	100	79 ± 28	-

^{*} Relative to total digestion performed by ORF, since no certified values are quoted.

- Fe recoveries were low for BML and ORF by approximately 19%;
- Silicon recoveries were uniformly poor however this was expected because of the digestion procedure specified;
- Magnesium recoveries were low by 26 to 21%;
- Al recoveries were low by a factor of 2.5 in the three laboratories:
- V and Ni data also demonstrated low recoveries except for DRL where a Ni recovery factor of 93% was found;
- Cr and Ti values were approximately three to four times lower than certified values;
- BML reported low recoveries on Cd by AA but acceptable results using ICAP emission spectrometry (the latter were the results reported);
- BML also reported high recoveries for As;
- BML and ORF reported low recoveries of Se;

The low recoveries on the Fe, Cu, Al, Cr and Ti were expected because these elements are usually found in non-extractable forms in particulate matter. Recovery is usually 100% efficient only by a fusion extraction method. This method would have been unsuitable for use with the glass fiber filter, however since large amounts of contaminants would have been released from the filter matrix to interfere with quantitation of elements present in low amounts. Some information on filter composition is contained in Appendix IV.

The total digestion method using HF and Na_2CO_3 fusion conducted by ORF, markedly improved recoveries for Si, Fe, Mg, Al, Mo, Cr, Ba, Ti and Zr and had a negligible effect on recoveries of other elements (Appendix I, Table 10).

On the basis of this one sample, it was not justifiable to adjust the data for the recoveries found. The reasons for this are two-fold. Firstly, this standard sample is a composite of urban particulate matter which contains a variety of matrices and particle types ranging from particles from combustion sources to particles from wind-blown dust. These do not accurately reflect the composition of one source such as the Syncrude stack. Secondly, Table 4.4 shows that data for most metallic elements from previous studies of Syncrude emissions, except for Si, are comparable with current data, indicating adjustments were not warranted.

On the whole, data were quite comparable for the three laboratories for the elements reported. Reproducibility among laboratories on extraction and analysis ranged from \pm 35% for Se to \pm 1% for Cu. Significant biases were evident for Se, with ORF and BML giving lower results; BML gave higher values for As and lower values for Ti, Ba and Cr.

Data for solution standards submitted as impinger solutions are presented in Appendix I, Table 11. All laboratories reported less than the detection limit for all parameters for the blank samples and therefore indicated laboratory processing procedures were free of contamination. A significant positive bias was noted for Se in sample 2 in The fact that all the laboratories reported higher all laboratories. values and that the variability for this parameter was quite high, 1.40 to 0.78 ppm, suggests the possibility of contamination of this sample. For BML, mercury was reported as 20% low and lead values were 10 to 20% low compared with expected values. Nickel data were 10 to 30% low in all the laboratories. Sodium demonstrated the highest degree of vari ability in the solution standards. Other elements were analyzed with a high degree of accuracy and precision, especially considering the low concentration levels in the standards.

3.2.2 Duplicates and Inter-Lab Comparisons

Duplicate filter samples, particle samples and SRM 1648 were analyzed with good reproducibility in general. Poor precision was observed for elements such as P and Si since filter background values were high and also highly variable. Fe, Cr, and Ti also showed poor within-laboratory precision, but this can generally be attributed to the aqua regia extraction method which does not reproducibly extract these elements from complex particulate matrices. BML also demonstrated a consistent pattern of under-recovery on the Test 5B duplicate sample indicating potential under-recovery of metals during extraction. Insufficient data were available to perform a detailed statistical analysis of precision of analysis within the laboratories, since only a few replicates of each type of analysis were conducted in each laboratory.

Results for each of the laboratories are presented in Appendix I, Tables 3 to 12. A summary of the analytical precision achieved for each element for each sample is given in Table 3.2. These data are derived from analysis of filter samples which were submitted to each of the laboratories and are based on four comparisons for each test. It should be pointed out that the filters were lightly loaded in spite of the extended sampling times. This was indicative of the low emission rates for particulate matter and for vapour phase metallic species. This however, resulted in very small sample sizes and therefore challenged the analytical sensitivity of the methods. Each of laboratories

TABLE 3.2

Filter Analysis
(Between Laboratory Precision [µg])

	Run 2A	Run 2B	Run 4A	Run 4B	Run 5A	Run 5B
-	x ± SD	x ± SD	x ± SD	x ± SD	x ± SD	x ± SD
Fe	4800 ± 260	3690 ± 1000	1290 ± 120	1660 ± 270	1070 ± 200	1200 ± 270
Al	BDL -	BDL -	BDL -	BDL -	BDL -	BDL -
Si		. - . : . -	-	· 📆		
Ca	BDL -	BDL -	BDL -	BDL -	BDL -	BDL -
Na	BDL -	BDL -	BDL -	BDL -	BDL -	BDL -
V	400 ± 27	300 ± 85	114 ± 17	168 ± 46	106 ± 19	124 ± 28
Mg	BDL -	BDL -	BDL -	BDL -	BDL -	BDL -
Ti	330 ± 16	232 ± 80	77 ± 10	104 ± 24	72 ± 13	79 ± 18
Mn	128 ± 7	99 ± 21	33 ± 7	47 ± 5.8	31 ± 6.4	32 ± 7.6
Р	70 ± 10*	95 ± 38*	50 ± 27*	83 ± 21*	BDL -	BDL -
Ni	140 ± 7.9	87 ± 32	24 ± 18	66 ± 13	39 ± 10	63 ± 9.3
Zn	BDL	BDL -	BDL -	BDL -	BDL -	BDL -
Pb	BDL -	BDL -	BDL -	BDL -	BDL -	BDL -
Cr	10 ± 5.5	5.8 ± 3.2	3.6 ± 1.2	BDL -	BDL -	BDL -
Cu	3.2 ± 1*	2.5 ± 1*	2.5 ± 1*	BDL -	BDL -	BDL -
Ba	BDL -	BDL -	BDL -	BDL -	BDL -	BDL -
Cd	BDL -	BDL -	BDL -	BDL -	BDL -	BDL -
Мо	22 ± 8*	17 ± 9.4*	BDL -	BDL -	BDL -	BDL -
Co	8 ± 4.7	4.2 ± 1.5	BDL -	BDL -	BDL -	BDL -
Se	5.6 ± 2.3	6.9 ± 2.3	7.0 ± 2.3	5.8 ± 2.4	4.5 ± 2.6	3.2 ± 2.0
Zr	7.8 ± 4	3.2 ± 2.6	BDL -	BDL -	BDL -	BDL -
Sn	BDL -	BDL -	BDL -	BDL -	BDL -	BDL -
As	3.1 ± 1	3.0 ± 1.4	1.5 ± .4	1.6 ± 0.7	1.5 ± .3	1.3 ± 0.4
Ag	BDL -	BDL -	BDL -	BDL -	BDL -	BDL -
Hg	BDL -	BDL -	BDL -	BDL -	BDL -	BDL -
Be	BDL -	BDL -	BDL -	BDL -	BDL -	BDL -

^{*}Some laboratories reported results at or below the blank value. The blank value was therefore used for comparison.

identified very low concentrations on the filters for Co, Zn, Be, Cu, P, Ba, Sn, Cd, Pb, Ag and Hg. High and variable background values were observed on the filters for Si, Al, Ca, Mg and Na. The reproducibility (Table 3.2) for other selected elements ranged from:

- ±6 to ±21 μg for a mean quantity of 62 μg for manganese;
- ± 120 to $\pm 1000~\mu g$ for a mean quantity of 2285 μg for iron;
- ± 17 to $\pm 85~\mu g$ for a mean quantity of 202 μg for vanadium;
- ± 7.9 to ± 32 for a mean quantity of 70 μ g for nickel;
- ± 10 to ± 80 for a mean quantity of $110 \mu g$ for titanium;
- \pm .3 to ± 1 for a mean quantity of 2 μg for arsenic and
- ±2 to ±2.4 for a mean quantity of 5.5 μg for selenium.

Results of impingers were uniformly low and also near the detection limits of the analytical methods; the agreement among the laboratories was quite consistent. Comparison of results for soil samples, coke dust and electrostatic precipitator (ESP) hoppers was also performed. These data are outlined in Appendix I, Table 12. Poor comparisons were particularly evident for Si and Na. For other elements, the precision of analysis was similar to other reported data.

ESP hopper samples are also compared with results of the cyclone catch analyses. The profile of elements for the two types of samples is significantly different. In particular Si, Mn, Cu, Na, Ti

and Zr are enriched in the cyclone samples suggesting that these elements are found in higher concentrations on the fine particulate matter, i.e., the material emitted from the stack rather than on the coarser material removed efficiently by the ESP's.

3.2.3 Inter-Sample Comparisons

For most elements, the elemental composition was similar between samples. Most elements were present at very low levels, or near the detection limits of the analytical methods. Particle catches varied from day to day and sample to sample, having a mean value of 530 ± 110 mg when the same type of sampling train is compared, i.e. Trains A and B (Appendix I, Table 1).

One sampling anomaly detected was the consistent enhancement of concentrations of Ni in Train B particle probe catches but not on the corresponding filter. The sampling probe was re-checked for possible cracks or other problems, but nothing was found. Additional washes of the probe Teflon liners with water and aqua regia were analyzed; however, no Ni or contamination from other metals was detected. Proofing solutions obtained prior to the sampling programme indicated very low levels of concentrations of metals in the probes. However, proofing solutions obtained from washes prior to sampling for Tests IV and V showed enhanced Ni levels. Analytical contamination has been ruled out since samples were analyzed in one batch. One possible source of this

contamination could result from taking apart of the probes after each test. This could have dislodged metal from the Train B probe fittings, resulting in Ni contamination from stainless steel particles.

Since data for Train B was significantly higher for Ba, Cu, Cr, Cd and Pb, these data only were used to calculate emissions for these elements. The Ni data from the Flow Sensor, Train A and from the ESP hoppers form a consistent set. Data from Train B for Ni is significantly different and inconsistent with other components of this set. As a result, only Train A data was used to calculate emission rates for this parameter.

3.3 Emission Rates

The total emission of particlate matter $(35 \pm 7 \text{ g/s})$ and emission rates for each parameter were calculated on the basis of the mean values of six measurements obtained for each of three test days. For the data flagged by an asterisk in Table 3.1, the Train B results only were averaged, since these were consistently higher, and therefore provide more conservative (i.e., positively biased) estimates for these metals. Train A data only were used for Ni for reasons outlined above.

The sampling information was obtained from instruments calibrated before and after the execution of the sampling program. Total stack gas emissions estimates were also based on accurate measurements of the stack diameter, velocity and composition.

Emissions for all elements except for Fe, Al, Mg, Ca, Si were very low. In general, the emission rates for other elements e.g., Be, Cr, As, and Hg were less than 1.0 mg/s (0.09 kg/day), except for Se, Cd and Pb which were 1.1, 1.6 and 3.8 mg/s, respectively. The factors contributing to the emission rate and the variability in this rate are the variability in the composition of the raw materials used in the process, variations in the process controls including emission control devices such as the electrostatic precipitators. The estimation of the accurate emission rates includes these sources of variation in addition to the the variation contributed by the measurement process, i.e., the sampling, extraction and analytical protocols. The emission rates determined are quoted in Table 3.3 along with an estimate of precision (Std. Dev.) of these data. An additional source of variation which is more difficult to assess in the context of this study is the representativeness of these emission estimates for process operations when upset conditions exist or other non-routine events occur. The three sets of tests described by these emission data were obtained under compliance test conditions and therefore will not reflect the latter operating conditions. The overall variation (where the variation includes the contributions of the measurement variables) in the estimates for the emission rates ranges from = 122% (one standard deviation) for Mg to \pm 22% (one standard deviation) for Al. The combined effects of low particulate matter emission rates and low concentration of these elements in the particles on concentration and deposition in the environs of the Mildred Lake Plant are discussed in the following section on modelling.

TABLE 3.3 $\frac{\text{Metal Emission Rates}}{\mu g/s}$

Element	Flow Sensor Run 2	Run 2A	Run 2B	Flow Sensor Run 4	Run 4A	Run 4B	Flow Sensor Run 5	Run 5A	Run 5B	Mean	Std. Dev.	Mean (kg/day)	Std. Dev. (kg/day)
Particle Total (g/s) Fe Al Si Ca Na V Mg Ti Mn P Ni** Zn Pb* Cr* Cu* Ba Cd* Mo Co Se Zr Sn As Ag Hg Be	(18.1) 290,000 182,000 225,000 32,100 380,000 27,500 13,800 39,800 11,600 3,340 11,700 1,640 390 2,400 2,100 1,230 <60 2,100 1,000 1	40.6 489,000 114,000 95,400 26,600 29,200 44,800 9,700 39,500 15,400 6,290 15,600 3,110 390 840 390 400 40 910 550 1,300 190 240 40 10	33.3 580,000 150,000 231,000 231,000 279,000 57,300 48,400 48,700 58,000 23,200 15,100 208,000 14,500 6,400 8,200 2,100 1,510 1,910 1,970 1,700 660 790 460 320 <70 7 30	(13.5) 151,000 130,000 137,000 28,400 270,000 18,600 10,500 23,000 8,900 1,800 7,800 2,600 <170 2,400 1,000 830 <60 2,211 6660 140 760 540 170 <2000 4 <100	42,5 219,000 126,000 74,000 30,900 121,000 25,200 100,000 23,400 7,060 3,560 7,500 2,560 390 600 400 870 30 940 400 690 460 270 190 40 30 <66	40.7 260,000 105,000 87,400 95,400 28,900 33,000 11,400 9,410 7,660 19,600 292,000 2,550 2,220 1,340 2,080 2,020 1,610 940 600 740 310 270 260 <40 30 <6	(17.5) 342,000 169,000 166,000 31,400 241,000 22,400 12,700 26,000 53,700 2,200 35,000 2,000 690 38,200 4,600 1,000 <140 1,500 1,300 1,500 530 140 <200 3 <70	24.1 160,000 71,400 55,700 12,200 30,600 18,300 5,030 16,300 4,350 1,090 4,900 1,220 200 540 270 750 <60 610 200 660 200 200 170 <60 10 <60 <60 <60 <60 <60 <60 <60 <60 <60 <6	30.9 197,000 111,000 110,000 79,700 25,900 24,200 9,500 22,100 5,240 12,800 190,000 1,630 2,590 880 1,090 3,680 1,090 3,680 1,020 820 480 180 90 88 <66	35.4 318,000 112,900 109,000 87,300 48,800 32,300 30,700 28,100 10,500 9,740 9,300 4,260 3,750 3,500 1,760 1,540 1,510 1,030 650 570 570 290 230 28 20 6	7.2 174,000 25,800 62,600 99,400 37,200 12,100 37,500 17,700 7,400 7,200 5,600 5,060 2,310 4,100 4,100 4,100 450 480 540 230 410 100 58 35 10 11	3060 27 9.8 9.4 7.5 4.2 2.8 2.6 2.4 0.90 0.84 0.8 0.40 0.32 0.3 0.15 0.13 0.13 0.09 0.06 0.05 0.05 0.02 0.02 0.002 0.002	622 15 2.2 5.4 8.6 3.2 1.0 3.2 1.5 0.64 0.62 0.5 0.40 0.20 0.35 0.05 0.10 0.04 0.04 0.04 0.05 0.02 0.05 0.00
Vapour Se Pb Cd Hg As Total	- - - - - - - - - - - - - - - - - - -	630 - - 20 20	<60 20 -		500 - 10 <5	<60 10 - -	- - - - - -	440 - - 20 <5	<60 110	520 <60 50 20 6	97 Ø 56 6 11	0.045 <0.005 0.004 0.002 0.0005	0.008 0.000 0.005 0.0005 0.001
Pb Cd Se As Hg	: : :	1,180 260 30	6,460 1,930 - -	- - - -	1,190 190 40	2,280 1,620 - - -	- - - -	1,100 170 30	2,650 1,130 - - -	3,800 1,560 1,160 210 40	2,310 400 49 47 6	0.330 0.13 0.10 0.02 0.003	0.200 0.03 0.004 0.004 0.0006

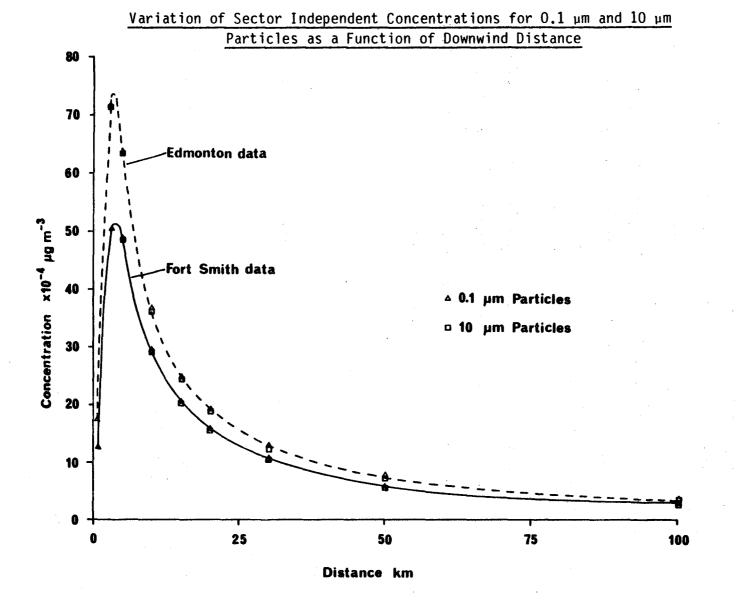
 $[\]star$ Run 2B, 4B and 5B values only were used to calculate mean emission rates. $\star\star$ Run 2A, 4A and 5A values only were used to calculate emission rates

3.4 Modelling Results

All modelling results describing the annual mean concentration and flux estimates based on unit emission rates are tabulated in Appendix I, Tables 14 to 21. The tables contain the concentration or flux values at specified distances downwind of the stack in each of nine sectors. For each climatological station (Edmonton or Fort Smith) there are four tables which tabulate the flux or concentration data for each of two particle sizes (0.1 μ m or 10 μ m).

The vapour phase species (Pb, Se Cd, As and Hg) may be treated as being similar to 0.1 μ m particles since the deposition velocities are expected to be similar (see section 2.4).

These data are illustrated in twelve contour plots. There are four basic types of plots, namely concentration contours and flux contours for each of the two particle sizes. The contour plots extend to ~100 km from the stack. These four types of plots are provided for each of the two stations used as a source of climatological data. In order to illustrate the behaviour of the flux contours close to the stack, additional plots with contours up to ~25 km from the stack were prepared. Consequently a total of twelve plots are provided. Figures 6 to 9 in Appendix I, show the concentration contours while Figures 10 to 13 show the flux contours. In all cases, unit emission rates have been assumed.


The major features of the concentration and flux data are discussed in the following two subsections. These features include:

- a) The influence of the selection of the climatological station on the model results.
- b) The distance from the stack at which maximum concentrations or fluxes occur.
- c) The downwind directions where the greatest impacts occur.
- d) The effect of particle size.
- e) The most cautious estimates of potential impact of plant emissions.

General features of modelling results

The effect of the selection of Fort Smith or Edmonton as the site for which climatological data are used can be determined from examination of the concentrations independent of wind direction sector, and also by examining the sector with the highest concentrations and fluxes.

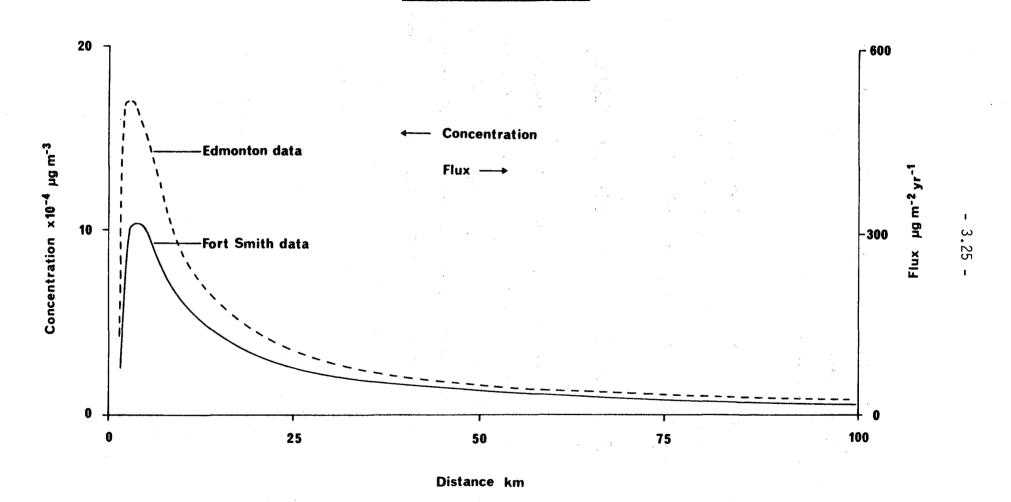
Figure 3.1 shows the sector-independent concentrations as a function of downwind distance, when climatological data for Edmonton and Fort Smith are used for modelling the dispersion from the Syncrude stack. These sector-independent concentrations correspond to the hypothetical case in which the wind direction is constant, i.e., the

3.23

wind blows from only one sector all the time. The plot shows that the use of the Edmonton data results in higher concentrations at all distances. In Figure 3.1, the concentrations for the 0.1 and 10 μm particles are similar (but not identical). The spacing of the downwind distances at which the concentrations were calculated did not allow precise determination of the distance at which the maximum concentrations of the two sizes of particles occur.

Figure 3.2 shows modelling results for the sector (105-145°) with the highest concentration and flux for 0.1 μm particles. This sector lies to the southeast of the Syncrude stack. Again the higher values result when the Edmonton data are used.

In view of this, the model predictions obtained through use of Edmonton climatological data should be emphasized to avoid underestimating impact, since they will yield the greater estimates of concentrations and fluxes.


Figures 3.1 and 3.2 also show that the highest concentrations occur between 3 and 5 km from the stack.

In general, similar directional dispersion patterns of the dispersion from the Syncrude stack are shown regardless of the climatological data set used (viz., Fort Smith or Edmonton). This pattern shows that:

Variation of the Concentrations and Fluxes of 0.1 µm Particles with

Distance for the Sector (105-145°) with the Highest

Concentrations and Flux

- a) The sector lying between 105 and 145° and the adjacent sectors (approximately south east of the Syncrude stack) has the highest concentrations and fluxes.
- b) The direction with the second highest concentration and flux levels occurs in the sector between 305-345° and adjacent sectors or approximately northwest of the Syncrude stack.

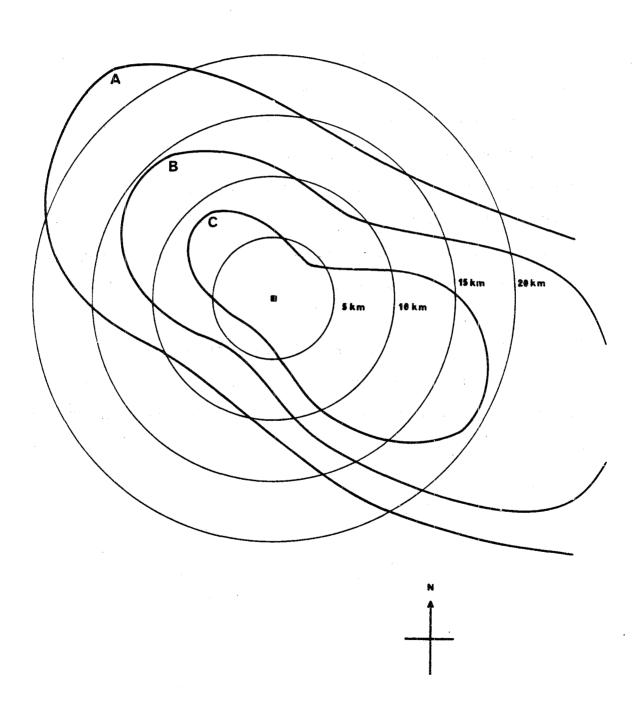
Effects of particle size on concentration and flux.

The smaller particles, which have the lower deposition velocities, have concentrations that are slightly higher than those for the larger particles in the study area, especially at downwind distances of 5 km or more. At increasingly greater distances, the difference between the modelled concentrations for the 0.10 μm and 10 μm particles increases. This is to be expected since the heavier particles are deposited more rapidly and are depleted from the plume to a greater extent.

In the case of the flux, the 10 μm diameter particles have the higher flux. The difference in the deposition velocities of the 0.1 and 10 μm particles result in a flux for 10 μm particles of about twice the magnitude of the flux for 0.1 μm particles.

3.4.1 Concentrations of Total Particulate Matter and Metals

In the following discussion, the modelling results which reflect the higher estimates of concentration and flux—are used to illustrate the total suspended particulate concentration and the concentrations of specific elements. Since the use of data characteristic of 0.10 μm particles yields the higher estimates for the concentration of particulate matter, these data are used. The mean total stack emission rate measured in the field sampling program was 35.4 g s $^{-1}$. The maximum concentration of total particulate matter (assuming 0.1 μm particles) is about 0.06 μg m $^{-3}$ at a distance of 3-5 km in the sector lying between 105 and 145° (southeast of the plant).


The total emission rates for elements were presented in Table 3.3. The emission rates result in the highest concentrations in the sector $105-145^{\circ}$ ranging from 540 pg m⁻³ for iron to 0.010 pg m⁻³ for Be.

The concentration contour plots for each element are illustrated in Figures 3.3 and 3.4 in conjunction with Table 3.4. The concentration contour plots are generically labelled and refer to model results for 0.1 μ m particles using climatological data from Edmonton,

Figure 3.3

Generic Concentration Contour Plot for 0.1 µm Particles

Edmonton Climatological Data

Generic Concentration Contour Plot for The Dispersion of 0.1 μm $\frac{Particles}{Fort\ Smith\ Climatological\ Data}$

Figure 3.4

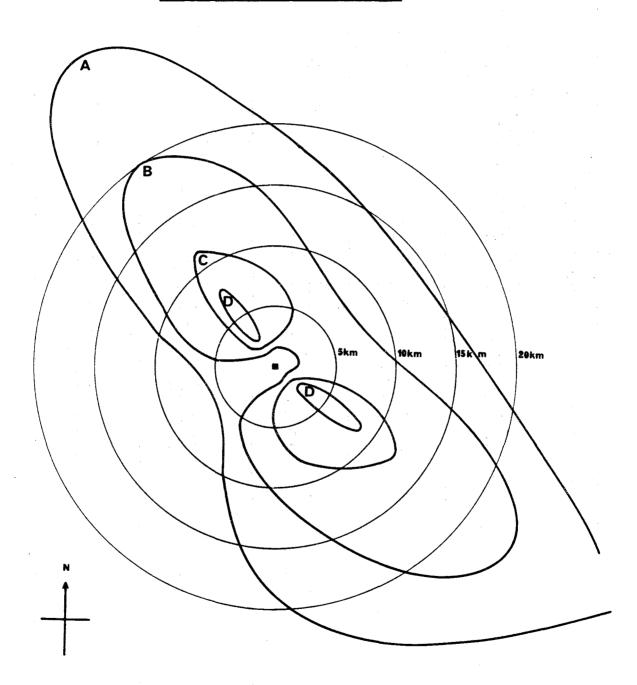


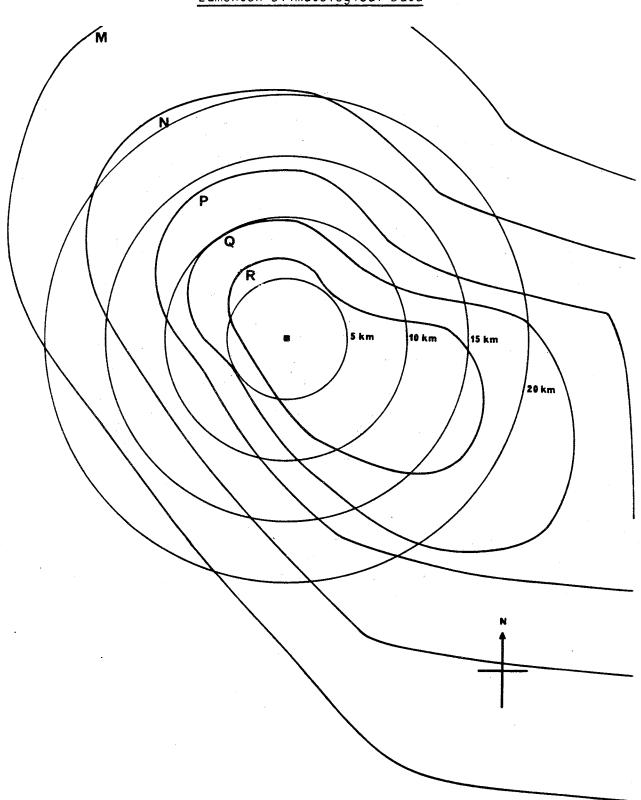
TABLE 3.4 Key to Concentration Contour Plots

Emission Rat	e Va	lue for Conto	our Label in p	g m ⁻³
μg s ⁻¹	А	В	С	D
X1* 1 X2** 35 Fe 318,000 Al 112,900 Si 109,000 Ca 87,300 Na 48,800 V 32,300 Mg 30,700 Ti 28,100 Mn 10,500 P 9,740 Ni 9,300 Zn 4,260 Pb 3,750 Cr 3,500 Cu 1,760 Ba 1,540 Cd 1,510 Mo 1,030 Co 650 Se 570 Zr 570 Sn 290 As 230 Ag 28 Hg 20 Be 6	.4# 7,080 63.6 22.6 21.80 17.5 9.76 6.46 6.14 5.62 2.10 1.95 1.86 0.85 0.75 0.70 0.35 0.31 0.30 0.21 0.13 0.11 0.06 0.05 0.006 0.05 0.006 0.05 0.006 0.05 0.006	300 10,620 95.4 33.9 32.7 26.2 14.6 9.69 9.21 8.43 3.15 2.92 2.79 1.28 1.13 1.05 0.53 0.46 0.45 0.31 0.20 0.17 0.09 0.07 0.01 0.006 0.002	500 17,700 159 56.4 54.5 43.6 24.4 16.2 15.4 14.0 5.25 4.87 4.65 2.13 1.88 1.75 0.88 0.77 0.76 0.52 0.32 0.28 0.14 0.12 0.01 0.001 0.003	700 24,700 223 79.0 76.3 61.1 34.2 22.6 21.5 19.7 7.35 6.82 6.51 2.98 2.63 2.45 1.23 1.08 1.06 0.72 0.46 0.40 0.40 0.20 0.16 0.02 0.014 0.0042
Vapour Se 520 Pb <60 Cd 50 Hg 20 As 6	0.004	0.156 <0.02 0.02 0.006 0.0018	0.260 <0.03 0.02 0.010 0.0030	0.364 <0.04 0.04 0.014 0.0042
Total Pb 3,800 Cd 1,560 Se 1,160 As 210 Hg 40	0.76 0.31 0.232 0.042 0.008	1.14 0.47 0.348 0.063 0.012	1.90 0.78 0.580 0.105 0.020	2.66 1.09 0.812 0.147 0.028

^{*} Unit emission rate
** Total particle emission rate
‡ Units of g s⁻¹

(Figure 3.3) and Fort Smith (Figure 3.4). These figures must be used in conjunction with Table 3.4 which shows the numerical values of concentrations which are applicable to the contours.

Barrie (1980) reported ambient concentrations of several elements in the vicinity of an oil sands plant. The measured concentrations included contributions from anthropogenic (the GCOS main stack), wind blown, and background sources. Sulphur and vanadium were the only elements considered to be primarily anthropogenic in origin. Vanadium concentrations measured some 10 km from the source were 110 ng $\rm m^{-3}$. After correction for background and windblown dust contributions, the anthropogenic component (80%) contributed about 80 ng m $^{-3}$ of vanadium. The vanadium emission rate was 7.8 g s^{-1} (27 tonne/day particulates with 2.5% vanadium content) and is 240 times greater than that of the Syncrude stack reported in this study (see Table 3.4). The model estimate from the current study for the sector with the highest annual mean vanadium concentration is 0.02 ng m^{-3} based on measured vanadium stack emission rates, corresonding to 0.5 ng m^{-3} based on a unit emission rate for vanadium. For a stack emission rate of 7.8 g s⁻¹ of vanadium. the model estimate for the sector with the highest annual mean concentration would therefore be 4.7 ng m^{-3} , some 17 times lower than thatmeasured by Barrie. It should be noted, however, that there are differences in stack parameters and that Barrie's measurements refer to an averaging time of three days (June 19-22, 1977) and took place at periods during which the monitoring site was known to be downwind of the source. An averaging time of one year may be expected to be about four times lower than that for three days (Stern, 1968), so the values reported by Barrie are of the same order of magnitude as those predicted by the model.


3.4.2 Fluxes of Total Particulate Matter and Metals

The most conservative modelling results (i.e., biased toward over-predicting) for fluxes are obtained by considering 10 μ m particles. The maximum flux of total particulate matter would therefore be about 3.5 x 10^4 μ g m⁻² yr⁻¹ at 3-5 km from the stack in the sector lying between 105 and 145°.

The fluxes for total particulate matter and for individual elements are summarised in Figures 3.5A to 3.6B and in Tables 3.5 and 3.6. The contour plots for the fluxes refer to $10~\mu m$ particles. These plots are also generically labelled with the information in Figures 3.5A and 3.5B referring respectively, to model estimates of the dispersion up to 20 and 100 km from the Syncrude stack derived using Edmonton climatological data. Similarly, Figures 3.6A and 3.6B refer to Fort Smith climatological data. In conjunction with these plots, Tables 3.5 and 3.6 respectively show the numerical values to be attached to the contours for both total particulate matter and for individual metals.

Figure 3.5A

Generic Flux Contour Plot for the Deposition of 10 μm Particles (0-20 km) Edmonton Climatological Data

Generic Flux Contour Plot for the Deposition of 10 μm Particles (0-100 km)

Figure 3.5B

Edmonton Climatological Data

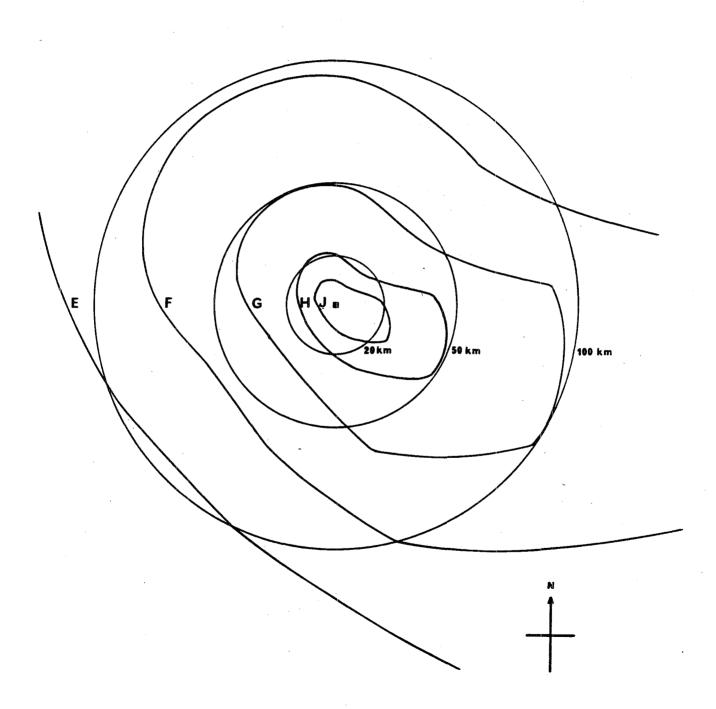


Figure 3.6A

Generic Flux Contour Plot for the Deposition of 10 μm $\frac{Particles~(0-20~km)}{Smith~Climatological~Data}$

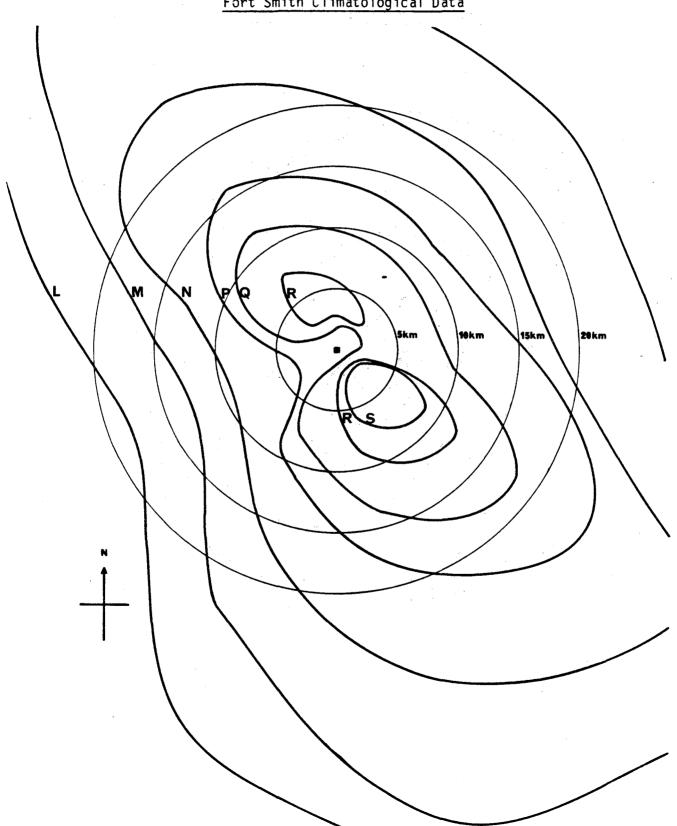
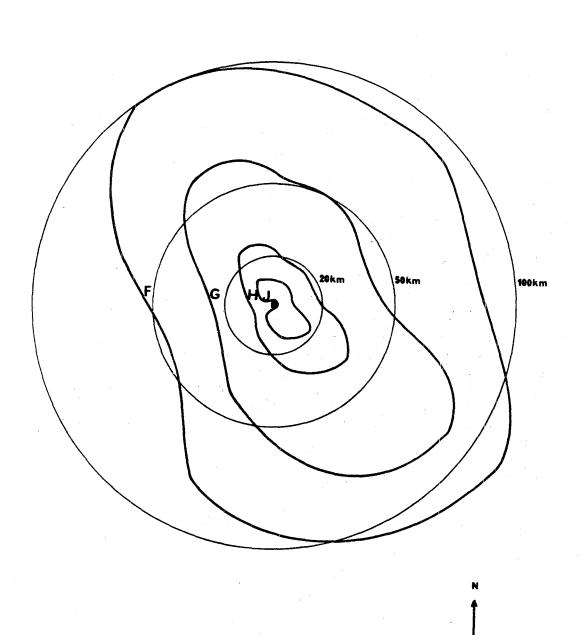



Figure 3.6B

Generic Flux Contour Plot for the Deposition of 10 μm

Particles (0-100 km)
Fort Smith Climatological Data

- 3.37 -TABLE 3.5 Key to Flux Contpur Plots (0-100 km)

	sion Rate		Value f	or Flux Contou	rs Label in ng	m ⁻² yr ⁻¹
		E .	F	G	Н	J
X1*	1#	10,000	20,000	40,000	100,000	200,000
X2**	35.4=	354,000	708,000	1,420,000	3,540,000	7,080,000
Fe	318,000	3,180	6,360	12,700	31,800	63,600
A1	112,900	1,130	2,258	4,520	11,300	22,600
Si	109,000	1,090	2,180	4,360	10,900	21,800
Ca	87,300	873	1,750	3,492	8,730	17,500
Na	48,800	488	976	1,952	4,880	9,760
V	32,300	323	646	1,292	3,230	6,460
Mg	30,700	307	614	1,230	3,070	6,140
Ti	28,100	281	562	1,120	2,810	5,620
Mn	10,500	105	210	420	1,050	2,100
P	9,740	97.4	195	390	974	1,950
Ni	9,300	93	186	372	930	1,860
Zn	4,260	42.6	85.2	170	426	852
Pb	3,750	37.5	75.0	150	375	7 50
Cr	3,500	35.0	70.0	140	350	700
Cu	1,760	17.6	35.2	70.4	176	3 52
Ba	1,540	15.4	30.8	61.6	154	308
Cd	1,510	15.1	30.2	60.4	151	302
Mo	1,030	10.3	20.6	41.2	103	206
Co	650	6.5	13.0	26.0	65.0	130
Se	570	5.7	11.4	22.8	57.0	114
Zr,	570	5.7	11.4	22.8	57.0	114
Sn.	290	2.9	5.8	11.6	29.0	58.0
As	230	2.0	4.6	9.2	23.0	46.0
Ag	28	0.28	0.56	1.12	2.8	5.6
Hg	20	0.20	0.40	0.80	2.0	4.0
Be	. 6	0.06	0.12	0.24	0.6	1.2
Vapou						
Se	520	5.2	10.4	20.8	52.0	104
Pb	<60	<0.6	<0.60	<2.4	<6.0	<12.0
Cd	50	0.50	1.0	2.0	5.0	10
Hg	20	0.20	0.40	0.80	2.0	4.0
As	6	0.06	0.12	0.24	0.60	1.2
Total						
Pb	3,800	38	76	152	380	760
Cd	1,560	15.6	31.2	62.4	156	312
Se	1,160	11.6	23.2	46.4	116	232
As	210	2.1	4.2	8.4	21	42
Hq	40	0.4	0.8	1.6	4.0	8.0
ــــــــــــــــــــــــــــــــــــــ		L	L	L		

^{*} Unit emission rate
** Total particle emission rate
‡ Units of g s⁻¹

TABLE 3.6 Key to Flux Contour Plots (0-20 km)

	sion Rate ug s ⁻¹			Value for	Flux Label in	ng m ⁻² yr ⁻¹		
	ug s -	L	М	N	P	Q	R	S
X1*	1#	50,000	70,000	100,000	150,000	200,000	300,000	400,000
X2**	35.4+	1,770,000	2,480,000	3,540,000	5,310,000	7,080,000	10,620,000	14,160,000
Fe	318,000	15,900	22,260	31,800	47,700	63,600	95,400	127,000
Al	112,900	5,650	7,900	11,300	16,900	22,600	33,900	45,200
Si	109,000	5,450	7,630	10,900	16,340	21,800	32,700	43,600
Ca	87,300	4,370	6,110	8,730	13,100	17,500	26,200	34,900
Na	48,800	2,440	3,420	4,880	7,320	9,760	14,600	19,500
V	32,300	1,620	2,260	3,230	4,850	6,460	9,690	12,900
Mg	30,700	1,540	2,150	3,070	4,610	6,140	9,210	12,300
Ti	28,100	1,410	1,970	2,810	4,220	5,620	8,430	11,200
Mn	10,500	525	735	1,050	1,580	2,100	3,150	4,200
P	9,740	487	682	974	1,460	1,950	2,920	3,900
Ni	9,300	465	651	930	1,400	1,860	2,790	3,720
Zn	4,260	213	298	426	639	852	1,280	1,700
Pb	3,750	188	263	375	562	750	1,130	1,500
Cr	3,500	175	245	350	525	700	1,050	1,400
Cu	1,760	88	123	176	264	352	528	704
Ba	1,540	77.0	108	154	231	308	462	616
Cd	1,510	75.5	106	151	226	302	453	604
Mo	1,030	51.5	72.1	103	. 154	206	309	412
Co	650	32.5	45.5	65.0	97.5	130	195	260
Se	570	28.5	39.9	57.0	85.5	114	171	228
Zr	570	28.5	39.9	57.0	85.5	114	171	228
Sn	290	14.5	20.3	29.0	43.5	58.0	87.0	116
As	230	11.5	16.1	23.0	34.5	46.0	69.0	92.0
Ag	28	1.4	2.0	2.8	4.2	5.6	8.4	11.2
Hg	20	1.0	1.4	2.0	3.0	4.0	6.0	8.0
Be	6	0.3	0.4	0.6	0.9	1.2	1.8	2.4
Vapou	r .							1
Se	520	26.0	36.4	52.0	78.0	104	156	208
Pb	<60	<3.0	<4.2	<6.0	<9.0	<12	<18	<24
Cd	50	2.5	3.5	5.0	7.5	10	15	20
Hg	20	1.0	1.4	2.0	3.0	4.0	6.0	8.0
As	6	0.3	0.4	0.6	0.9	1.2	1.8	2.4
Total								
Pb	3,800	190	266	380	570	760	1,140	1,520
Cd	1,560	78	109	156	234	312	468	624
Se	1,360	58	81	116	174	232	348	464
As	210	10.5	14.7	21.0	31.5	42.0	63.0	84.0
Hq	40	2.0	2.8	4.0	6.0	8.0	12.0	16.0
''9		2.0	٠.٥	4.0	0.0	0.0	12.0	10.0

^{*} Unit emission rate

** Total particle emission rate

‡ Units of g s⁻¹

As indicated previously, the model only considers dry deposition. Previous studies at a tar sands plant (Barrie, 1980; Fanaki et al., 1979) suggest that wet deposition may be important in removing particulates especially in winter. An upper estimate of the total (wet and dry) deposition from the Syncrude stack may be obtained in a scenario in which all the stack emissions are deposited in only two sectors within 25 km from the stack. The sectors to the southeast (105-145°) and northwest (305-345°) receive fluxes in approximately 2.4:1 ratio (see for example, Table 19, Appendix I). If all particulate emissions were deposited in these sectors in this ratio, and within 25 km, the fluxes would be 45 mg m $^{-2}$ yr $^{-1}$ in the southeast sector and 19 mg m $^{-2}$ yr $^{-1}$ in the northwest. This represents the maximum amount of deposition attributable to the Syncrude stack.

4. DISCUSSION

This chapter is intended to place the results of the study in context with respect to the overall confidence that can be placed in the representativeness of the data and with respect to the comparability of results from this study with data from other relevant studies and surveys.

That is, the following sections address the question of whether the sampling and modelling results reported here are reasonable and meaningful in light of what is currently known about air quality impacts of industrial emission, especially in the Tar Sands area.

4.1 Representativeness of Results

The process parameters related to particulate emission from the main stack showed little variability during each of the three days of valid tests (see Appendix III - Process Information). These control parameters varied by at most a few percent during the course of a day and from day to day. The monitoring parameter most directly related to the measurements of stack gas particle loading, the stack opacity reading, showed the most appreciable daily and day-to-day trends and, therefore, may provide the best estimator of the variability, hence representativeness, of the measured loadings.

The relationship between any of the process control parameters and the detailed chemical composition of stack particulate matter cannot be determined with any certainty, because of the complexity of the processes contributing to the main stack gases.

It is suggested that the best benchmark for the current measurements, then, is the continuously measured stack gas opacity. This parameter is sensitive to changes in the stack gas particle loading and has a well-documented historical record against which to assess whether the current measurements are consistent with normal operations.

The relationship between the measured stack gas opacity (by transmissometer) and particle loading is of the form:

Loading (g/kg flue gas) = 0.436 ln
$$[\frac{1}{1-A}]$$
 - 0.001

where A = opacity as a fraction. The permitted emission is 0.20 g of particulate/kg flue gas (Alberta emission standard), corresponding to A = 0.37 (37% opacity). This means that the loading varies as the logarithm of the opacity, or approximately linearly up to opacity values of about 30%.

During the current tests, when monitored process variables indicated stable, normal operations, the extreme values for the stack opacity were;

And the second of the second of the second of the second

June 14, 1984: 35% (max.) - 13% (min.);

June 18, 1984: 30% (max.) - 12% (min.);

June 19, 1984: 30% (max.) - 15% (min.).

The mean value of the opacity during this study was about 20%, which is close to the historical, therefore expected, value. The variability of the opacity during sampling test periods was not as great as the extreme values cited above, viz.:

Mean (June 14, 18, 19): 19.7%

Std. dev.: 4.4%

Extremes: 27.8% (max.) - 14.1% (min.)

The measured mean particle loadings during the valid tests, therefore, represent averages of excursions that could vary by 40% about the mean. If all sampling had taken place during periods when the higher particulate loadings prevailed as indicated by opacity, then the measured values might have been a factor of about 1.4 higher, at most. This is a reasonable estimate of the possible bias in representativeness of the test loadings compared with process excursions, short of upset.

4.2 Comparisons with Emissions from Similar Plants

A comparison between emissions from Syncrude's main stack and other plants provides a means to put Syncrude's emissions into perspective. However, the uniqueness of the Syncrude facility limits its comparison with a similar plant. Therefore, data from an allied industrial sector, namely, the coal-fired electrical utility sector, has been chosen as representative of emissions from similar plants. Historical Syncrude data will also be used for comparative purposes.

There are eight coal-fired power plants in Alberta, all of which are subject to the particulate emission standard of 0.2 g/kg flue gas. There are no standards to regulate emissions of metals from these plants. Alberta Environment has not conducted particulate emission tests on these plants. Data exist from tests conducted by the plants themselves, however this information is not available to Concord. Since these data are not available and only limited GCOS data are accessible, the following comparison is made of the elemental composition of the main stack particulate matter with the elemental composition of fly ash from other sources.

Table 4.1 lists a comparison between the metal composition of the Syncrude fly ash particles versus various coal-fired fly ashes and limited data from the GCOS power plant. Due to differences in the time

TABLE 4.1

Particulate Metal Composition from Syncrude's Main Stack, and

Fly Ashes from Related Plants

			COAL-FIRED FLY ASH (µg/g)						
	Concord Syncrud Particu µg/g	de ulate	Ontario Hydro Post-Precipitati Fly Ash Curtis 1977	Kronberg et al. 1981 on Western Canadian Coals (Ash 3-11%)	Boyd 1981 South Saskatchewan Coal	Wangen 1981 U.S. subbituminous (22 % ash)	Evans et al. 1979 U.S. bituminous (12 % ash)	Shelfentook 1978 Power Plant flyash (n=3)	
			1				i i		
Fe	9,115	± 4,990	69,900 (10)	· •	1,865 - 3,940	25,600 ± 2,300	-	46,000 ± 2,000	
Al	3,280	± 740	103,000 (15)	- ·		139,000 ± 6,400	-	116,000 ± 6,000	
Sf	3,125	± 1,790	-	•	· -	-	-	-	
Ca	2,500	± 2,850	20,700 (20)	1	*	17,400 ± 400	-	19,000 ± 5,000	
Na	1,400	± 1,070	3,410 (25%	•	-	12,700 ± 300	-	-	
٧	925	± 360	239 (15)	10 - 150	130 - 160	94 ± 6	220	25,000 ± 2,000	
Mg	880	± 1,075	4,380 (40)	-	•	9,900 ± 2,500	-	8,000 ± 800	
Ti	800	± 500	5,850 (15)) -	2,470 - 4,410	6,000 ± 800	-	17,000 ± 3,000	
Mn	300	± 210	254 (15%	-	520 - 770	149 ± 4	350	900 ± 60	
P	280	± 210	-	-	-	-	-	-	
Ni	270	± 160	193 (30%	5 - 450	18 - 32	•	90	10,000 ± 1,000	
Zn	120	± 145	375 (15%	3 - 400	160 - 240	80	280	•	
Pb	108	± 67	158 (25%	<2 - 150	22 - 50	-	60	-	
Cr	100	± 120	216 (25)	0.3 - 15	24 - 40	28.5 ± 2.7	170	-	
Cu	50	± 16	142 (10)	60 - 180	50 - 70	65 ± 10	130	-	
Ва	45	± 35	1,540 (25%	200 - 2,000	100 - 650	1,130 ± 40	890	-	
Cđ	45	± 15	4.3 (20%	0 - 0.3	5 - 6.8		0.7	-	
Мо	30	± 14	_	3 - 30	15 - 26		20	2,300 ± 200	
Со	19	± 16	36 (15)	3 - 130	18 - 23	9.6 ± 0.7	70	-	
Se	16	± 7	261 (50%	0.03 - 0.3	0.7 - 1.2	6 ± 1.6	15	-	
Zr	16	± 12	-	60 - 200	-	•	_	-	
Sn	8	± 3	-	<1 - 10	-	-		-	
As	7	± 2	233 (307	0.5 - 2	70 - 90	15.4 ± 1.5	165	-	
Ag	0.8	± 0.6	7.5 (60%	0.1 - 0.3		- 4	-	-	
Hg	0.6	± 0.3	0.5 (55%	1	0.2	-	0.8	-	
Be	0.2	± 0.3	10 (359	-	3.9 - 4.2	-	15	_	
			(uncertainty)				`		

frame involved, in sampling and analytical techniques, pollution control equipment and fuel type, it is meant for comparative purposes only. Although the data are limited, it is evident that the particles emitted from Syncrude are not significantly different than typical coal fly ash, but appear dissimilar to the GCOS power plant fly ash.

4.3 <u>Comparison of Concentration and Deposition Estimates with</u> Available Data

In order to put the estimates provided in Section 3.4 in context, several sets of multi-element concentration and deposition data are summarized in the following. These data are:

- annual National Air Pollution Surveillance network (NAPS) data from 1978-81 for total suspended particulate matter (TSP) and lead for selected Canadian cities;
- recent air quality data for metals in U.S. urban and non-urban areas from the National Air Surveillance Network (NASN);

- fine and coarse inhalable particulate and metals data from the NAPS dichotomous sampler network;
- AOSERP study data.

4.3.1 NAPS and NASN Data for Populated Areas

Tables 4.2 and 4.3 summarize some related NAPS concentrations data and Table 4.4, some related NASN concentration data. The estimated contribution (i.e., increment above background) of the Syncrude emissions to downwind ambient concentrations of both total particulate matter and individual metals is about 1000 times lower than corresponding concentrations in populated areas of Canada and the U.S.

4.3.2 AOSERP Data

Table 4.5 illustrates particulate metals concentrations measured 10 km downwind (predominantly) and 80 km upwind of the GCOS plant in 1976 and 1977 (prior to start-up of the Syncrude plant). The upwind concentrations (at Birch Mountain) under the conditions of measurement represent clean, background levels. The estimated increment contributed by the Syncrude emissions is about 10 percent of these background levels. That is, the Syncrude emissions are estimated to increase the background levels by about 10 percent.

TABLE 4.2

Coarse/Fine Partiuclate and Selected Trace Metal Data - 7 Canadian Cities 1980

		Edmonton (10255-104th St.)	(N.S. Tech. Coll.)	Montreal (Peel & deMaisoneuve)	Ottawa (88 Slater)	Toronto (67 College)	Winnipeg (65 Ellen)	Vancouver (2294 W 10th Ave.)
Mass	μg/m³	,		·				
	Coarse*	43.8 ± 33.6	17.7 ± 6.4	29.1 ± 18.0	17.4 ± 8.9	21.7 ± 9.7	30.4 ± 15.6	48.8 ± 33.6
	Fine**	24.9 ± 11.6	21.7 ± 8.9	28.6 ± 19.3	20.7 ± 11.6	22.4 ± 11.8	17.2 ± 8.8	24.9 ± 11.6
	Total	73.6 ± 36.1	39.3 ± 13.4	57.5 ± 24.2	38.1 ± 17.4	44.0 ± 17.6	47.6 ± 18.6	46.7 ± 20.7
Metals	ng/m³	· · · · · · · · · · · · · · · · · · ·		·				
Arsenic	Coarse	4.3 ± 1.4	6.3 ± 2.0	4.2 ± 1.9	3.1 ± 1.7	3.0 ± 1.5	13.7 ± 37.8	4.5 ± 2.2
	Fine	3.5 ± 1.1	6.1 ± 2.4	5.5 ± 2.3	5.1 ± 3.1	5.8 ± 2.4	5.4 ± 4.0	6.0 ± 2.9
	Total	7.7 ± 1.0	12.4 ± 3.7	9.6 ± 3.9	8.2 ± 3.7	8.8 ± 3.5	19.1 ± 41.5	10.5 ± 3.3
Chromium	Coarse	12.6 ± 8.6	3.9 ± 3.3	9.9 ± 10.2	4.4 ± 2.3	7.3 ± 5.0	6.6 ± 8.0	5.7 ± 4.1
	Fine	11.3 ± 9.6	6.2 ± 4.8	13.6 ± 11.9	5.6 ± 4.0	7.6 ± 4.7	8.3 ± 11.6	18.6 ± 17.4
	Total	23.9 ± 17.0	10.1 ± 5.5	23.5 ± 20.8	9.0 ± 5.1	14.9 ± 8.0	14.9 ± 11.9	24.4 ± 16.4
Lead	Coarse	189 ± 76	66.7 ± 30.1	189 ± 99.1	138 ± 84.9	87.1 ± 71.5	149 ± 87.3	184 ± 95.4
	Fine	556 ± 290	174 ± 81.3	676 ± 235	402 ± 157	290 ± 134	315 ± 172	693 ± 365
	Total	745 ± 356	241 ± 91.8	865 ± 270	538 ± 188	377 ± 145	478 ± 249	877 ± 446

Source: Concord Scientific Corporation report 110.27/110.30. Determination of Concentrations of Selected Fine Particulate Air Contaminants in Seven Canadian Cities, for EPS, March 1981. All stations are NAPS stations.

TABLE 4.3

NAPS Air Quality Data for TSP and Lead (1978-1981) for Selected Canadian Cities

	1978	1979	1980	1981
	TSP ^a Lead ^b	TSP ^a Lead ^b	†SPā Leadb	↑Spā Lead ^b
Edmonton 127 St. & 133 Ave. 146 St. & 92 Ave. 175 St. & 105 Ave.	65 (2.0) 0.26 (2.35) 41 (1.6) 0.21 (2.20) 59 (2.4) 0.20 (2.41)	81 (1.9) NA NA NA 73 (2.2) NA	82 (1.7) NA NA NA 72 (2.1) NA	64 (1.6) NA NA NA 66 (1.8) NA
Calgary Bonny Brk & 18A St. S.E. 39 St. & 29 Ave. N.W.	96 (1.5) 0.24 (2.54) 49 (1.7) 0.11 (3.31)	139 (1.8) NA 56 (1.6) NA	152 (1.7) NA 70 (2.0) NA	136 (1.7) NA 65 (1.7) NA
Red Deer 4747 50th St.	53 (2.1) 0.21 (2.36)	61 (2.1) NA	70 (2.2) NA	61 (1.8) NA
Vancouver 250 West 70th Ave* 970 Buyard+	82 (1.5) 0.75 (2.10) 67 (1.5) 0.80 (1.60)	86 (1.6) 0.72 (2.17) 62 (1.6) 0.75 (1.77)	72 (1.6) 0.56 (2.10) 70 (1.5) 0.73 (2.30)	NA NA 66 (1.6) 0.88 (1.71)
Toronto Sherbourn & Wilton* Evans & Arnold+	140 (1.7) NA 71 (1.5) 0.99 (2.87)	129 (1.7) 0.88 (1.94) 84 (1.4) 0.75 (1.85)	131 (1.6) 0.60 (2.39) 91 (1.5) 0.87 (1.97)	113 (1.7) 0.56 (1.78) 96 (1.5) 1.1 (1.86)

^{*} generally, higher TSP readings occur at these stations for the respective city

⁺ for lead
Alberta stations are representative

a - TSP, μg/m³ annual geometric mean (and geometric deviation)

b - lead, $\mu g/m^3$ annual geometric mean (and geometric deviation) NA - Not available or insufficient data (1979, 1980 & 1981 Alberta lead not reported) National Air Quality Objective for TSP = 60 $\mu g/m^3$ annual geometric mean (acceptable = 70 $\mu g/m^3$)

U.S. Air Quality Data for Metals

pg/m³*

	* .1	1977		L 9 78	1979		
Urban					<u>-</u>		
Be	45.1	(70.2)	74.9	(89.5)	53.8	(75.8)	
Ba	31.6	(63.1)	26.5	(82.7)	4.8	(68.1)	
Cd	2.2	(7.3)	2.4	(8.3)	1.9	(5.1)	
Cu	208	(242)	201	(211)	259	(179)	
Fe	1,308	(1,191)	1,273	(1,272)	1,018	(1,049)	
Pb	889	(759)	765	(688)	584	(560)	
Mn	43	(68)	42	(52)	38	(62)	
Мо	2.2	(5.6)	2.1	(4.9)	1.5	(6.5)	
Ni	10.0	(20.9)	11.0	(23.2)	9.6	(12.8)	
٧	16.5	(27.4)	19.1	(33.5)	20.8	(35.2)	
Zn	161	(260)	164	(303)	26.3	(238)	
					•		
Non Urban							
Be	38.9	(38.7)	47.4	(37.9)	38.6	(19.9)	
Ba	8.9	(9.4)	5.7	(11.8)	11.8	(70.0)	
Cd	0.8	(1.6)	0.8	(1.0)	0.8	(5.1)	
Cu	193	(219)	266	(290)	142	(290)	
Fe	218	(326)	307	(433)	162	(230)	
Pb	92.0	(104)	84.3	(110)	84.2	(102)	
Mn	22	(13)	21	(5)	21	(3)	
Мо	1.1	(1.1)	1.1	(1.3)	0.8	(0.4)	
Ni	4.8	(14.3)	3.9	(3.5)	3.2	(1.9)	
V	6.9	(8.2)	8.5	(10.4)	7.9	(8.5)	
Zn	46.6	(232)	42.4	(110)	13.4	(46.2)	

^{*} arithmetic mean (and S.D.)

Urban: n = 4,648 for 1977, 3,614 for 1978, 2,507 for 1979 where n = #of valid 24 hour samples.

Non Urban: n = 709 for 1977, 458 for 1978, 235 for 1979

ICAP analysis

Source: EPA-600/S4-83-053

Air Quality Data for Metals: 1977 Through 1979 from the

National Air Surveillance Network, USEPA 1984.

The impact of the Syncrude emissions relative to the concentrations measured downwind of the GCOS plant can be assessed by comparing:

- relative emission source strengths (at the time of measurement);
- relative release (stack) height;
- time-averaging basis.

According to Barrie (1980), the GCOS parameters were 27 tonnes per day total particulate emission at a stack height of 107 m, compared with the Syncrude values of 3 tonnes per day at a height of 183 m. The measurements at Mildred Lake in Table 4.5 are three-day average concentration at sites which were directly impacted by the GCOS plume (samples A and B); whereas, the estimates of the Syncrude plume's impact are annual averages.

A rule of thumb for converting 24-hour average concentrations at a sampling site to annual average values at that site, taking into account wind statistics, is to divide the 24-hour value by about a factor of between 10 and 20. The difference in emission source strength and stack height would lead to a factor of about 150 to 200 times lower concentration contributions at a given ground level point for the

Atmospheric Concentration (ng/m³) of Various Elements in Suspended Particles at Mildred Lake and Birch Mountain

Element*	June	1977 - Mildre	d Lake	March 1976 - Birch Mountain				
	A(16th-19th)	Period B(19th-22nd)	C(22nd-25th)	1(3rd-7th)	Period 2(7th-13th)	3(13th-17th)		
Al	1,500	2,300	1,500	41	56	70		
As	0.7	0.9	0.4	0.4	1.1	0.4		
Ва	-	38	-	-	-	-		
Ca	2,200	2,800	2,700	19	41	40		
Fe	3,000	2,400	890	-	***	-		
Mg	260	870	780	31	23	26		
Mn	28	49	38	0.7	0.9	7.0		
Na		_	-	130	76	67		
Ti	110	210	82		6.7	7.9		
٧	80	110	4.2	0.5	4.5	4.7		
Zn	-	23	-	_	~6	-		

Note: Samples taken at Birch Moutain were true background (no wind-blown dust or anthropogenic component from GCOS).

Samples taken at Mildred Lake, A and B contain a larger proportion of anthropogenic particles since they were directly affected by GCOS emissions.

* INAA analysis

Source: Barrie (1980)

Syncrude stack relative to the 1976/77 GCOS situation. Applying these factors to the AOSERP/GCOS data yields comparable annual average concentrations to the estimates based on the Syncrude emissions provided in this report, namely, concentrations of less than 100 mg m^{-3} total particulate at the point of maximum concentration and less than 1 mg m^{-3} for the most concentrated elements.

That is, the current estimates for Syncrude emissions are consistent with previous measurements in the Oil Sands area.

4.3.3 Total Deposition Estimates

The relative importance of dry and wet deposition processes is unclear. Since only a few studies have been performed in this region, the predominant mechanisms for deposition of material from the stack to the environs have not been established. It has been suggested that wet deposition processes may be relatively more efficient near a point source and same indication of this has been reported by Barrie (1980) in the Oil Sands area. Barrie, however, also indicated that precipitation occurred only for 2 % of the time during his field studies. The relative importance of all deposition in the area can therefore be assessed by evaluating a total deposition scenario in a limited area around the Syncrude stack. This will provide an upper limit to the deposition and will therefore be indicative of worst case conditions. According to the

total deposition estimate scenario developed in Section 3, a reasonable upper limit estimate of deposition of the Syncrude emissions into the predominant southeast sector (105-145°) within 25 km of the stack, is 45 mg m $^{-2}$ yr $^{-1}$ for total particulate matter and proportionately less for individual elements.

A comparison of data provided by Barrie (1980) in a study conducted in 1977 can also be made using vanadium as an elemental tracer for a tar sands plant and normalizing the data to compensate for the different emission source strengths.

Barrie (1980) reported that 58% (i.e. 28.4 tonnes) of the vanadium released over a 70 day period (49 \pm 7 tonnes) was deposited within 25 km of the stack. This corresponds to an average of 75 mg m⁻²yr⁻¹. If all the vanadium particulate emissions from the Syncrude stack were deposited in a 25 km radius from the stack, the vanadium flux would be only 513 μ g m⁻²yr⁻¹. The model estimates of the present study indicate that the highest flux of vanadium would be 10 μ g m⁻²yr⁻¹ for 0.1 μ m particles, or 19 μ g m⁻²yr⁻¹ for 10 μ m particles. It should be noted that the stack emissions of vanadium that gave rise to the fluxes derived from Barrie's data were ~250 times greater than those measured in this study: in contrast, the vanadium fluxes within 25 km radius from the stack as measured by Barrie are ~150 times greater than those estimated by the model.

Measured deposition rates (Fanaki et al., 1979) for vanadium at fifteen stations in the vicinity of the GCOS stack ranged from 600 to 8100 μg m⁻²yr⁻¹. These values may be compared with the current model estimates for the sector with the highest fluxes in which the values ranged from ~600 μg m⁻²yr⁻¹ at 3-5 km to 30 μg m⁻³yr⁻¹ at 100 km from the stack. Again the lower vanadium emission rates of the Syncrude stack (by a factor of ~250) as well as other differences such as stack height, temperature etc. must be borne in mind.

The above data provide some measure of the relative and absolute amounts of emissions from the Syncrude stack. It should be reiterated that the selection of vanadium as the basis for comparison is due to the fact that this element (as well as sulphur) was shown to be predominantly anthropogenic in origin and clearly associated with tar sands processing plant emissions.

CONCLUSIONS

Concord Scientific Corporation has conducted a preliminary study of emissions of particulate and vapour-phase metals from the main stack at Syncrude Canada Limited's Mildred Lake plant.

The field stack sampling programme was carried out between June 13 and June 19, 1984, during which one preliminary test and three valid compliance tests were completed. The samples from these tests (130 in total) were analyzed for 26 elements by three independent analytical laboratories.

The emission rates of total particulate matter and of individual metals both on particles and in vapour form were calculated from the stack measurements and chemical analysis results. These emissions were modelled using an existing, conventional dispersion model to estimate ground level concentrations and deposition patterns of these substances up to 100 kilometers from the Syncrude stack.

The concentration and deposition patterns were determined as annual averages by direction from the stack, based on input to the model of climatological data from Edmonton and Fort Smith, the nearest stations providing the required data. Alternate meteorological scenarios were also examined and discussed.

Important findings of the study are that:

- The measured average emission rate of total particulate matter from Syncrude's main process stack is about 35 ± 7 grams per seconds (3020 ± 600 kg/day). This result converts to 0.053 g/kg of stack gas and is well below the Alberta standard of 0.2 g/kg of stack gas.
- The uncertainty in the emission data at the 90 % confidence level is ± 14 g s⁻¹ (2 standard deviations) calculated from the particulate emissions rate. Additional uncertainty caused by potential bias in the sampling due to increases or decreases in emission rate (i.e. sample representativeness) would increase this by a factor of 1.4. The overall uncertainty therefore would be ± 26 g s⁻¹ or the emission rate would vary between 61 and 9 g s⁻¹ or 0.092 and 0.014 g/kg of stack gas for a 90 % confidence interval.
- Emissions for lead, cadmium, selenium, arsenic, mercury and beryllium are very low.
- The range of emission rates for individual metallic constituents of the stack gas (including both particulate and vapour-phase forms) ranged from 320 milligrams per second

(27.6 kg/day) for iron to 6 micrograms per second (0.0005 kg/day) for beryllium.

- The ground level concentrations of particulate matter and metals in the area around the stack, as determined by the model calculations, were found to reach a maximum at three to five kilometers from the stack. The maximum ground level concentration (annual average) at this distance is estimated at 0.06 micrograms per cubic meter for total particulate matter. The corresponding range for metals was from 540 picograms per cubic meter for iron to 0.01 picograms per cubic meter for beryllium.
- The model outputs found that the maximum dry deposition also occurs at a distance of three to five kilometers from the stack. The annual average dry deposition for total particulate matter (assumed to be 10 µm diameter) at this distance is 35 milligrams per square meter per year. Similarly for individual metals, the annual deposition ranges from 314 micrograms per square meter per year for iron to 5.9 nanograms per square meter per year for beryllium.
- These concentrations and deposition estimates are those attributable to the Syncrude stack since other influences were not evaluated (i.e., other stacks, emission sources or wind blown

- dust). Chapter 4 describes same comparative data from a variety of sources.
- The compass sector into which maximum concentrations and deposition occurs is to the southeast of the stack.
- The next greatest concentration and deposition amounts occur in the sector northwest of the stack.

Information describing the level of confidence in the estimates and other important data is described in Volume I of this report. Detailed data on all measurements is contained in Volume II of this report.

REFERENCES

- Barrie, L.A. 1980. "The fate of particulate emissions from an isoloated power plant in the oil sands area of western Canada", Annals. New York Academy of Sciences, Volume 338, 434.
- Boyd, J.T. Co. Ltd. 1981. "Preliminary EIS for Mining at Rockglen and Fife Lake", A Report for Saskatchewan Power Corporation, Regina.
- Caban, R., and Chapman, T.W. 1972. "Losses of mercury from chlorine plants: a review of a pollution problem", Am. Inst. Chem. Eng. 13:892.
- Concord Scientific Corporation, 1983. "Determination of Representative Particulate and SO₂ Deposition Velocities to Regions Around Sampling Stations in the CAPMON", CSC Report No. 110.J201. Prepared for Atmospheric Environment Service, Environment Canada, March 1983.
- Curtis, K.E. 1977. "Trace Element Emissions From the Coal-fired Generating Stations of Ontario Hydro", Ontario Hydro Research Division, Report No. 77-156-K, April.
- Denison, P.J., McMahon, T.A., and Kramer, J.R. 1979. Literature Review on Pollutant Deposition Processes. Syncrude Canada Ltd. Professional Paper 1979-5.
- Environmental Protection Service 1981. "National Air Pollution Surveilance, Annual Summary", Environment Canada, Surveillance Report EPS 5-AP-82-13, November.
- Evans, D.W., Wiener, J.G. and Horton, J.H. 1980. "Trace Element Inputs from a Coal Burning Power Plant to Adjacent Terrestrial and Aquatic Environments", JAPCA 30(5), May.

- Evans, E.G., Evans G.F., Ray, D.B., Risher, T., Wheeler, V.A., Cummings, S.L., Frazer, J.E., Harper, S.L., Hinners, T.A., Loseke, W.A., Pranger, L.J., and Puzak, J.C. 1984. "Air Quality Data for Metals 1977 through 1979 from The National Air Surveillance Networks", United States Environmental Protection Agency, Research and Development, EPA-600/S4-83-053, January.
- Fanaki, F., et al. 1979. "Air System Summer Field Study in the AOSERP Study Area, June 1977". Prepared for AOSERP by Environment Canada, Atmospheric Environment Service. AOSERP Report 68. 248 pp.
- Heard, M.J., and Whiffen, R.D. 1969. "Electron microscopy of natural aerosols and the identification of ammonium sulphate", Atmospheic Environment, 3, 337.
- Jacobs F.S. and Filby, R.H. "Trace Element Composition of Athabasca Tar Sands and Extracted Bitumens", Conference Syncrude Canada.
- Klein, D.H., et al. 1975. "Pathways of Thirty-seven Trace Elements Through Coal-Fired Power Plant", Environmental Science and Technology, $\underline{9}(10)$:973-979.
- Kronberg, B.I. et al. 1981. "Distribution of Trace Elements in Western Canadian Coal Ashes", IN Fuel (accepted for publication).
- Landheer, F., Dibbs, H. and Labuda, J. 1982. "Trace Elements in Canadian Coals", Engineering Assessment Branch, Air Pollution Control Directorate, Report EPS 3-AP-82-6, August.
- Matthias, C. 1981. "Mixed Layer Statistics Dispersion Model", Paper presented at the Canadian Meteorological and Oceanographic Society May 1981.
- Matthias, C. 1984. Atmospheric Environment Service, Downsview, Ontario, Personal communication, July, 1984.

- McQuaker, N.R., and Sandberg, D.K. 1982. "The Determination of Mercury Source Emission in the Presence of High Levels of SO_2 ", Journal of the Air Pollution Control Association 32(6), June.
- Pierson, W.R., Barachaczek, W.W., Truex, T.J., Butler, J.W., and Korniski, T.J. 1980. "Ambient sulfate measurements on Allegheny Mountain and the question of atmospheric sulfate in the northeastern United States", Annals. New York Academy of Sciences, Volume 338, 145.
- Portelli, R.V. 1977. "Data on Mixing Heights, Wind Speeds, and Ventilation Coefficients for Canada", Climatological Studies No. 31., Atmospheric Environment Service, Department of the Environment, Canada.
- Sehmel, G.A., and Hodgson, W.J. 1978. "A Model for Predicting Dry Deposition of Particles and Gases to Environmental Surfaces", PNL-SA-6721, Battelle, Pacific Northwest Laboratory, Richland WA.
- Sehmel, G.A. 1980. "Particle and Gas Dry Deposition: A Review", Atmospheric Environment 14, 983.
- Simiu, E., and Scanlan, R.H. 1978. "Wind Effects on Structures: An Introduction to Wind Engineering", J.Wiley and Sons, N.Y.
- Slinn, W.G.N. 1977. "Some approximations for wet and dry removal of particles and gases from the atmosphere", Water, Air and Soil Pollution 7(4):513.
- Stern, A.C., 1968. "Air Pollution", Second Edition, Academic Press, New York.

A Study of Metallic Emissions from the Main Stack at Syncrude's Mildred Lake Plant Volume II

CSC 110.J449

Prepared for

Syncrude Canada Ltd.

bу

Concord Scientific Corporation 2 Tippett Road Downsview, Ontario M3H 2V2

August, 1984

TABLE OF CONTENTS

Appendix I Tables and Figures

Appendix II Stack Sampling Results

Appendix III Log of Sampling Events

Appendix IV Miscellaneous Background Documentation

APPENDIX I

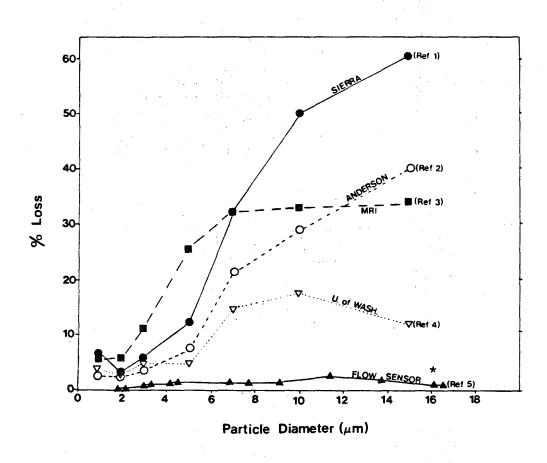
Tables and Figures

APPENDIX I: List of Figures and Tables

		Page
Figure 1	Comparison of Impactor Wall Losses	A1.1
Figure 2	Flow Sensor Particle Sizer Sampling Train	A1.2
Figure 3	Particulate and Vapour Metal Sampling Train	A1.3
Figure 4	Sensitivity Analysis of Flux Due to Variation of Stack Exit Temperature T, Stack Gas Exit Velocity V_s , and Roughness Length z_0	A1.4
Figure 5	Sensitivity Analysis of Flux due to Variation of Deposition Velocity Values by Factors of 0.2, 1.0 and 5	A1.5
Figure 6	Concentration Contour Plot for the Dispersion of 0.1 μm Particles Based on 1 g s $^{-1}$ Particulate Emission Edmonton Climatological Data Numbers on Contours are in Units of $10^{-4}~\mu g~m^{-3}$	A1.6
Figure 7	Concentration Contour Plot for the Dispersion of 10 μ m Particles Based on 1 g s ⁻¹ Particulate Emission Edmonton Climatological Data Numbers on Contours are in Units of 10 ⁻⁴ μ g m ⁻³	A1.7
Figure 8	Concentration Contour Plot for the Dispersion of 0.1 μm Particles Based on 1 g s $^{-1}$ Particulate Emission Fort Smith Climatological Data Numbers on Contours are in Units of $10^{-4}~\mu g~m^{-3}$	A1.8
Figure 9	Concentration Contour Plot for the Dispersion of 10 μ m Particles Based on 1 g s ⁻¹ Particulate Emission Fort Smith Climatological Data Numbers on Contours are in Units of $10^{-4}~\mu g~m^{-3}$	A1.9

APPENDIX I: List of Figures and Tables (Cont'd)

		Page
Figure 10A	Flux Contour Plot (0-20 km) for the Deposition of 0.1 μ m Particles Based on 1 g s ⁻¹ Particulate Emission Rate Edmonton Climatological Data Numbers on Contours are in Units of μ g m ⁻² yr ⁻¹	A1.10
Figure 10B	Flux Contour Plot (0-100 km) for the Deposition of 0.1 μm Particles Based on 1 g s $^{-1}$ Particulate Emission Rate Edmonton Climatological Data Numbers on Contours are in Units of $\mu g \ m^{-2} \ yr^{-1}$	A1.11
Figure 11A	Flux Contour Plot (0-20 km) for the Deposition of 10 μm Particles Based on 1 g s^1 Particulate Emission Rate Edmonton Climatological Data Numbers on Contours are in Units of $\mu g\ m^{-2}\ yr^{-1}$	A1.12
Figure 11B	Flux Contour Plot (0-100 km) for the Deposition of 10 μm Particles Based on 1 g s $^{-1}$ Particulate Emission Rate Edmonton Climatological Data Numbers on Contours are in Units of $\mu g\ m^{-2}\ yr^{-1}$	A1.13
Figure 12A	Flux Contour Plot (0-20 km) for the Deposition of 0.1 μ m Particles Based on 1 g s ⁻¹ Particulate Emission Rate Fort Smith Climatological Data Numbers on Contours are in Units of μ g m ⁻² yr ⁻¹	A1.14
Figure 12B	Flux Contour Plot (0-100 km) for the Deposition of 0.1 µm Particles Based on 1 g s ⁻¹ Particulate Emission Rate Fort Smith Climatological Data Numbers on Contours are in Units of up m ⁻² yr ⁻¹	Δ1 15

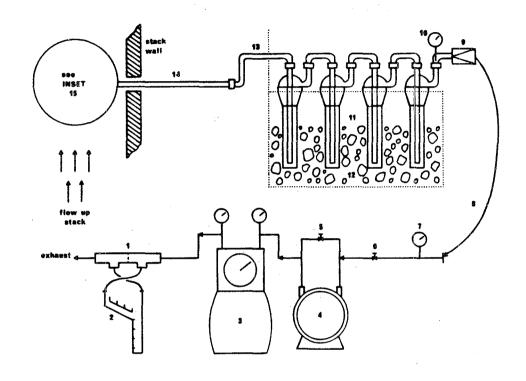

APPENDIX I: List of Figures and Tables (Cont'd)

		<u>Page</u>
Figure 13A	Flux Contour Plot (0-20 km) for the Deposition of 10 μ m Particles Based on 1 g s ⁻¹ Particulate Emission Rate Fort Smith Climatological Data	
	Numbers on Contours are in Units of $\mu g m^{-2} yr^{-1}$	A1.16
Figure 13B	Flux Contour Plot (0-100 km) for the Deposition of 10 μ m Particles Based on 1 g s ⁻¹ Particulate Emission Rate	
	Fort Smith Climatological Data Numbers on Contours are in Units of $\mu g m^{-2} yr^{-1}$	A1.17
Táble 1	Particulate Matter Sampling Results	Al.18
Table 2	Sampling Information Summary	A1.19
Table 3	Analytical Results Train 2A	A1.20
Table 4	Analytical Results Train 2B	A1.21
Table 5	Analytical Results Train 4A	A1.22
Table 6	Analytical Results Train 4B	A1.23
Table 7	Analytical Results Train 5A	A1.24
Table 8	Analytical Results Train 5B	A1.25
Table 9	Analytical Results Flow Sensor Train (ORF)	A1.26
Table 10	Laboratory Intercomparison - NBS-SRM1648	A1.27

APPENDIX I: List of Figures and Tables (Cont'd)

		<u>Page</u>
Table 11	Laboratory Intercomparison - Solution Standards (ppm)	A1.28
Table 12	Sample Composition Comparison	A1.29
Table 13	Analytical Detection Limits	A1.31
Table 14	Annual Mean Concentration (x $10^{-4}~\mu g/m^3$) by Sector at Different Distances	A1.32
Table 15	Annual Mean Concentration (x $10^{-4} \mu g/m^3$) by Sector at Different Distances	A1.33
Table 16	Annual Mean Concentration (x $10^{-4} \mu g/m^3$) by Sector at Different Distances	A1.34
Table 17	Annual Mean Concentration (x 10^{-4} µg/m³) by Sector at Different Distances	A1.35
Table 18	Annual Deposition Flux ($\mu g \ m^{-2} \ yr^{-1}$) by Sector at Different Distances	A1.36
Table 19	Annual Deposition Flux ($\mu g \ m^{-2} \ yr^{-1}$) by Sector at Different Distances	A1.37
Table 20	Annual Deposition Flux ($\mu g \ m^{-2} \ yr^{-1}$) by Sector at Different Distances	A1.38
Table 21	Annual Deposition Flux ($\mu g \ m^{-2} \ yr^{-1}$) by Sector at Different Distances	A1.39

Figure 1
Comparison of Impactor Wall Losses



* Unit that will be used for the study.

REFERENCES

- ENV. PROT. TECH. SERIES, EPA 600/2 76-280. OCT. 1976; Particulate sizing techniques for control device evaluation Cascade impactor calibration, p 26
- 2. IBID ,p 22
- 3. MBID ,p 25
- 4. IBID ,p.28
- 5. McFarland, A.R.; COLL. STATION, TX. TEST DATA CALIBRATED 1979 & 1981

Figure 2
Flow Sensor Particle Sizer Sampling Train

KEY

- ORIFICE
- MANOMETER
- DRY TEST METER
- AIR-TIGHT PUMP
- BY-PASS VALVE
- MAIN VALVE
- VACUUM GAUGE
- 1 VACUUM LINE
- Note: A back-up filter would be used but is not shown on this particular diagram. (refer to item 13, Figure 3)

- O CHECK VALVE
- 10 THERMOMETER
- MPINGERS
- 12 ICE BATH (ie: COLD BOX)
- B FLEXIBLE SAMPLE LINE
- PROBE
- SRI S-STAGE CYCLONE PARTICLE SIZER

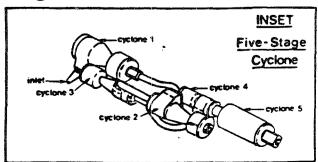
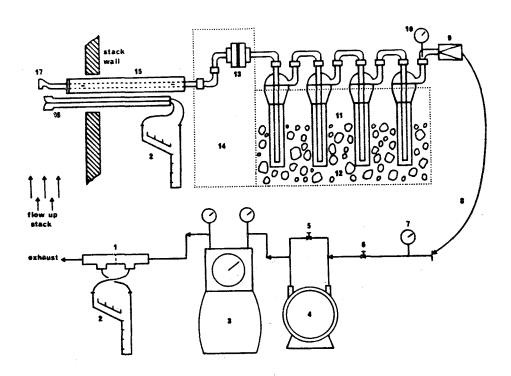



Figure 3

Particulate and Vapour Metal Sampling Train

KEY

- ORIFICE
- MANOMETER
- 3 DRY TEST METER
- AIR-TIGHT PUMP
- BY-PASS VALVE
- 6 MAIN VALVE
- **7** VACUUM GAUGE
- B VACUUM LINE

- 9 CHECK VALVE
- 1 THERMOMETER
- 1 MPINGERS Note: more than 4 will be used.
- 12 ICE BATH (ie: COLD BGX)
- FILTER HOLDER
- OVEN (in: HOT BOX)
- 1 PROBE (Teflon lined)
- REVERSE-TYPE PITOT
- 1 NOZZLE

Train A - for As, Se, Hg & total particulate matter Train B - for Pb, Cd & total particulate matter

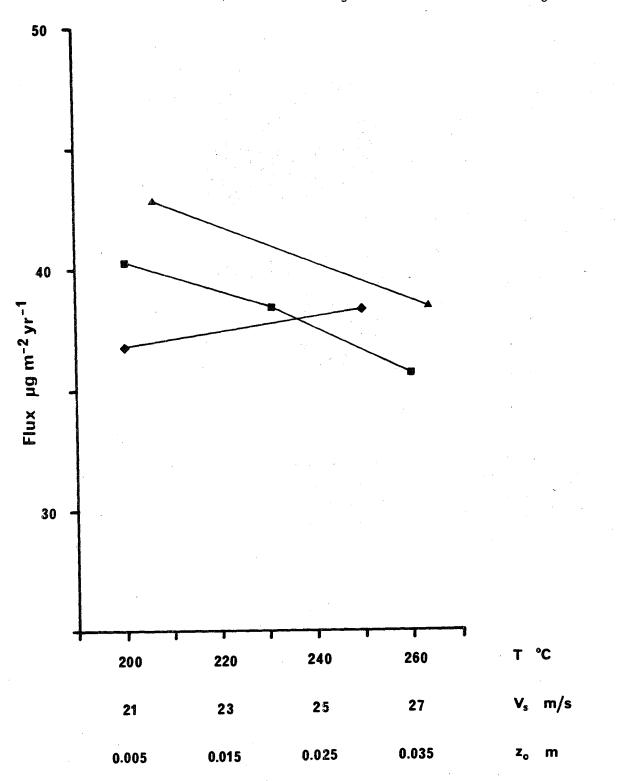


Figure 5

Sensitivity Analysis of Flux due to Variation of Deposition Velocity

Values by Factors of 0.2, 1.0 and 5

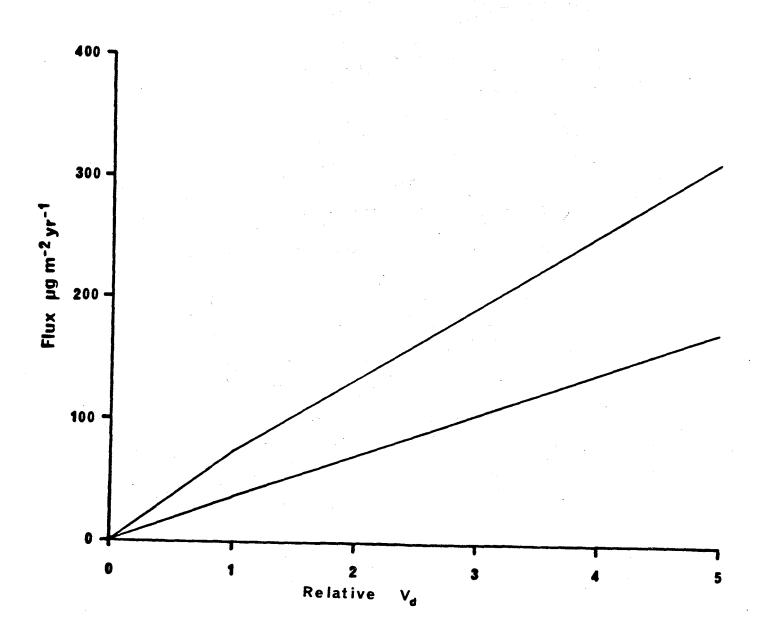


Figure 6

Concentration Contour Plot for the Dispersion of 0.1 μm Particles Based on 1 g s⁻¹ Particulate Emission Edmonton Climatological Data Numbers on Contours are in Units of 10^{-4} μg m⁻³

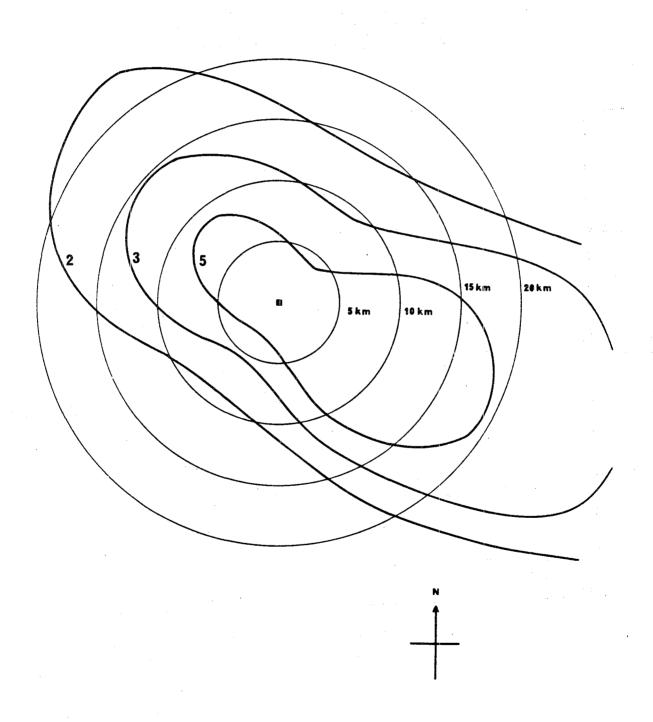


Figure 7

$\frac{\text{Concentration Contour Plot for the Dispersion of 10 }_{\text{um Particles Based}}{\frac{\text{on 1 g s}^{-1} \text{ Particulate Emission}}{\text{Edmonton Climatological Data}}$

Numbers on Contours are in Units of 10⁻⁴ µg m⁻³

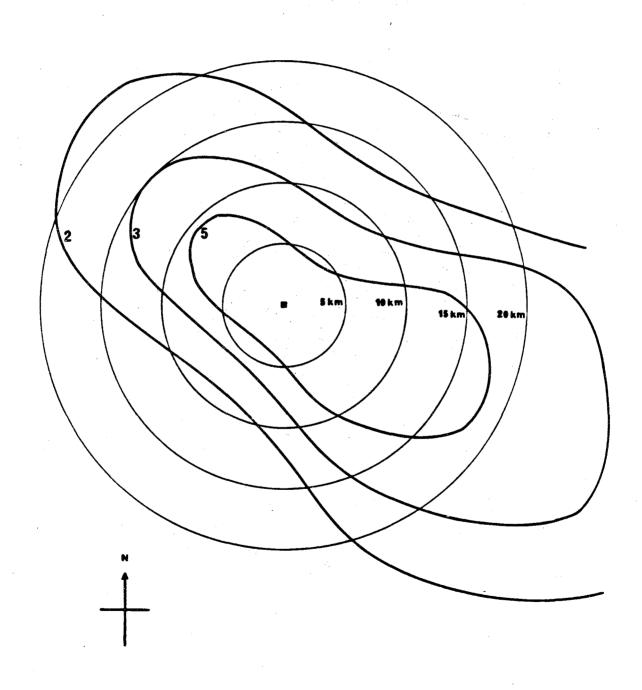


Figure 8

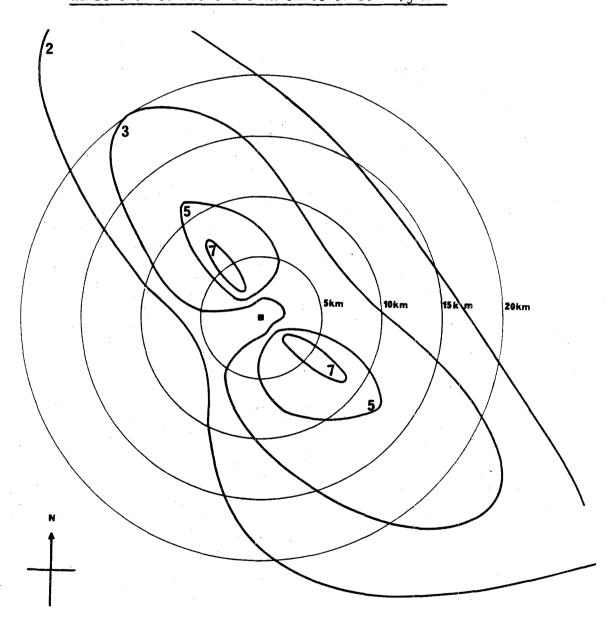


Figure 9

 $\frac{\text{Concentration Contour Plot for the Dispersion of 10 }_{\text{}\mu\text{m}}\text{ Particles Based}}{\frac{\text{on 1 g s}^{-1}\text{ Particulate Emission}}{\text{Fort Smith Climatological Data}}}$ Numbers on Contours are in Units of 10^{-4} $_{\text{}\mu\text{g}}$ m⁻³

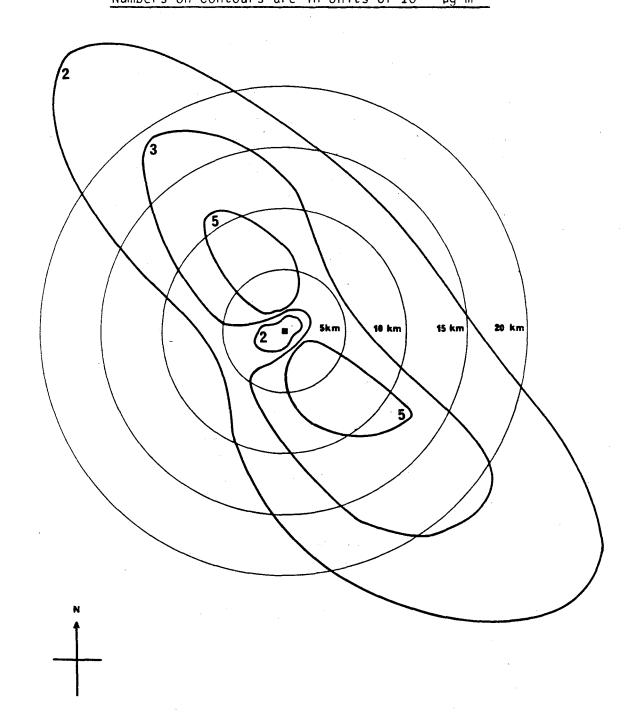


Figure 10A

Flux Contour Plot (0-20 km) for the Deposition of 0.1 μ m Particles Based on 1 g s⁻¹ Particulate Emission Rate Edmonton Climatological Data Numbers on Contours are in Units of μ g m⁻² yr⁻¹

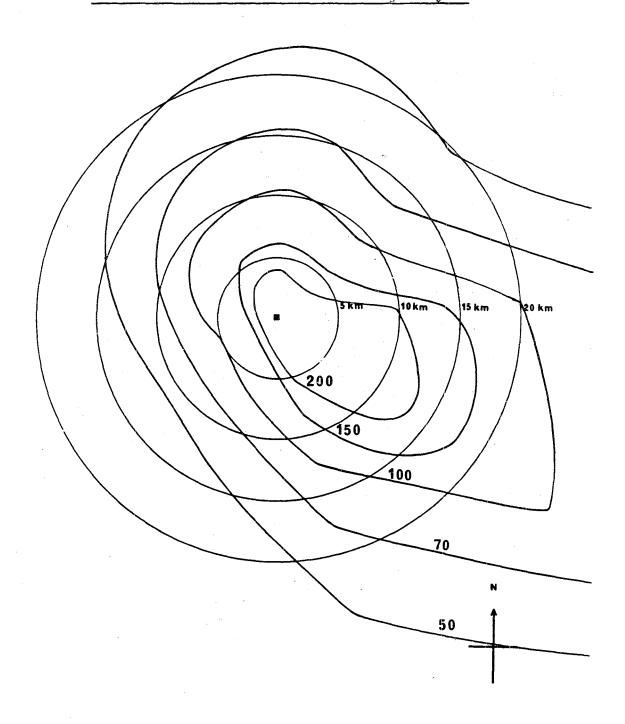


Figure 10B

Flux Contour Plot (0-100 km) for the Deposition of 0.1 μ m Particles Based on 1 g s⁻¹ Particulate Emission Rate Edmonton Climatological Data Numbers on Contours are in Units of μ g m⁻² yr⁻¹

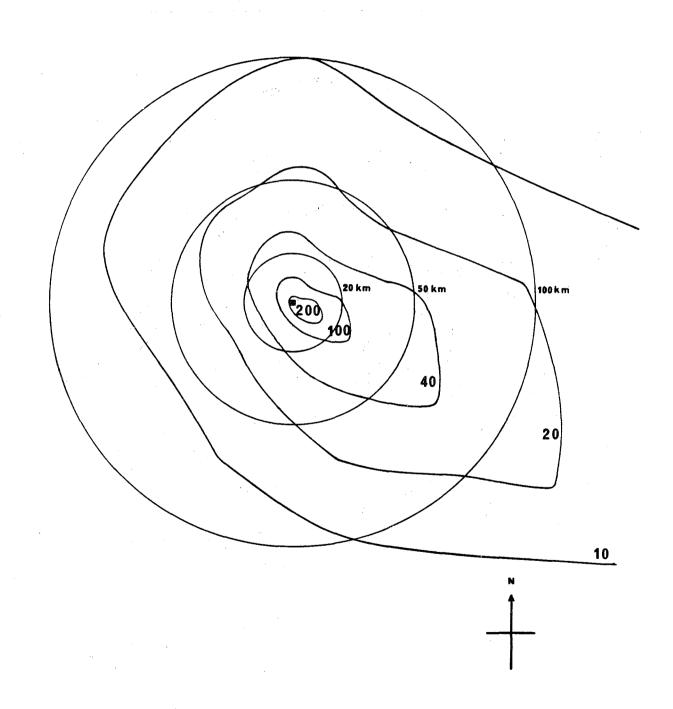


Figure 11A

Flux Contour Plot (0-20 km) for the Deposition of 10 µm Particles Based on 1 g s^{-1} Particulate Emission Rate Edmonton Climatological Data

Numbers on Contours are in Units of $\mu g m^{-2} yr^{-1}$

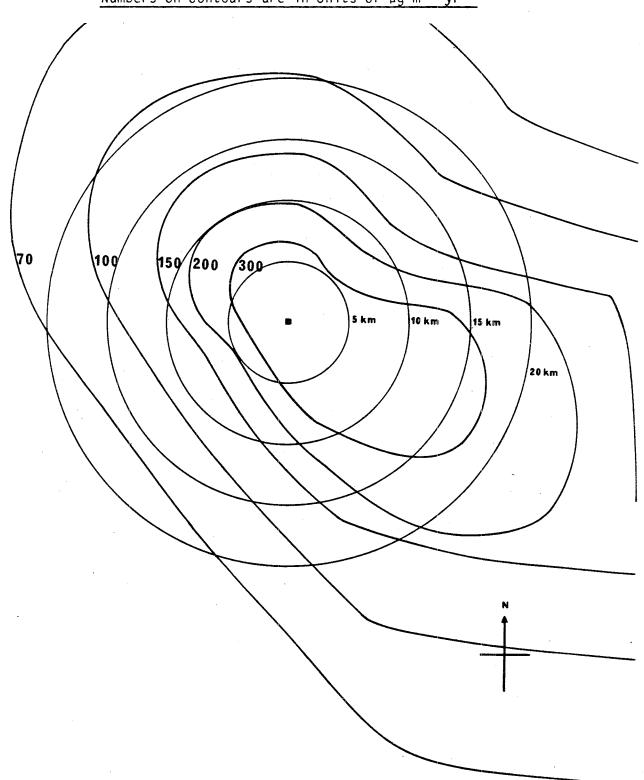


Figure 11B

Flux Contour Plot (0-100 km) for the Deposition of 10 μm Particles Based on 1 g s⁻¹ Particulate Emission Rate

Edmonton Climatological Data

Numbers on Contours are in Units of μg m⁻² yr⁻¹

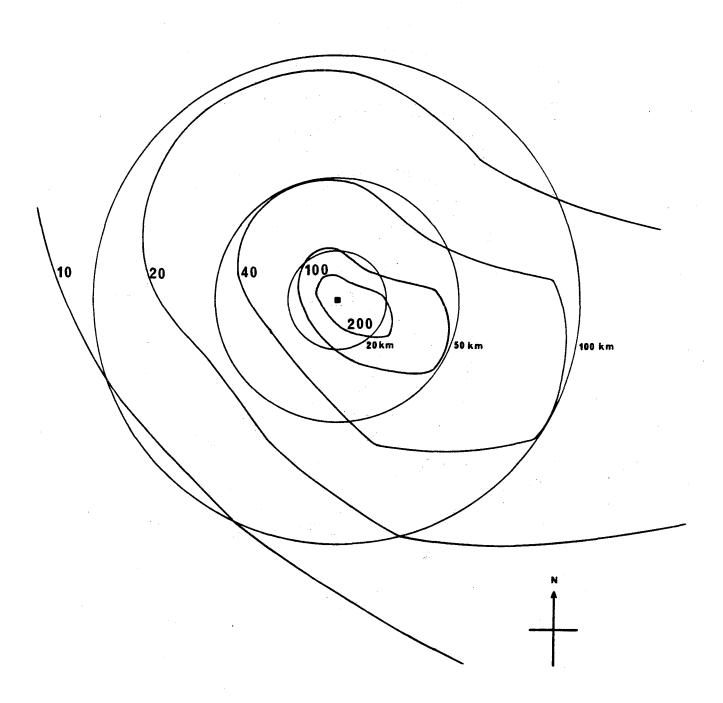


Figure 12A

Flux Contour Plot (0-20 km) for the Deposition of 0.1 μm Particles Based on 1 g s⁻¹ Particulate Emission Rate

Fort Smith Climatological Data

Numbers on Contours are in Units of μg m⁻² yr⁻¹

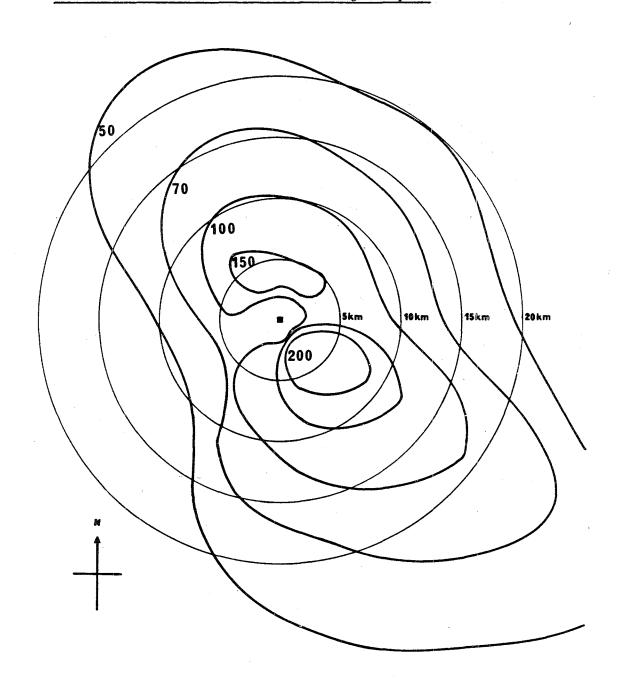


Figure 12B

Flux Contour Plot (0-100 km) for the Deposition of 0.1 μ m Particles

Based on 1 g s⁻¹ Particulate Emission Rate

Fort Smith Climatological Data

Numbers on Contours are in Units of μ g m⁻² yr⁻¹

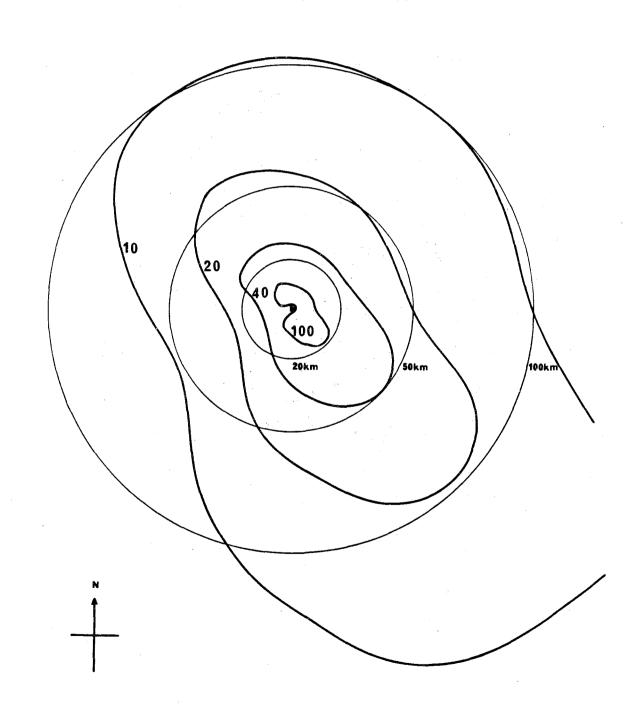


Figure 13A

Flux Contour Plot (0-20 km) for the Deposition of 10 μm Particles Based on 1 g s⁻¹ Particulate Emission Rate

Fort Smith Climatological Data

Numbers on Contours are in Units of μg m⁻² yr⁻¹

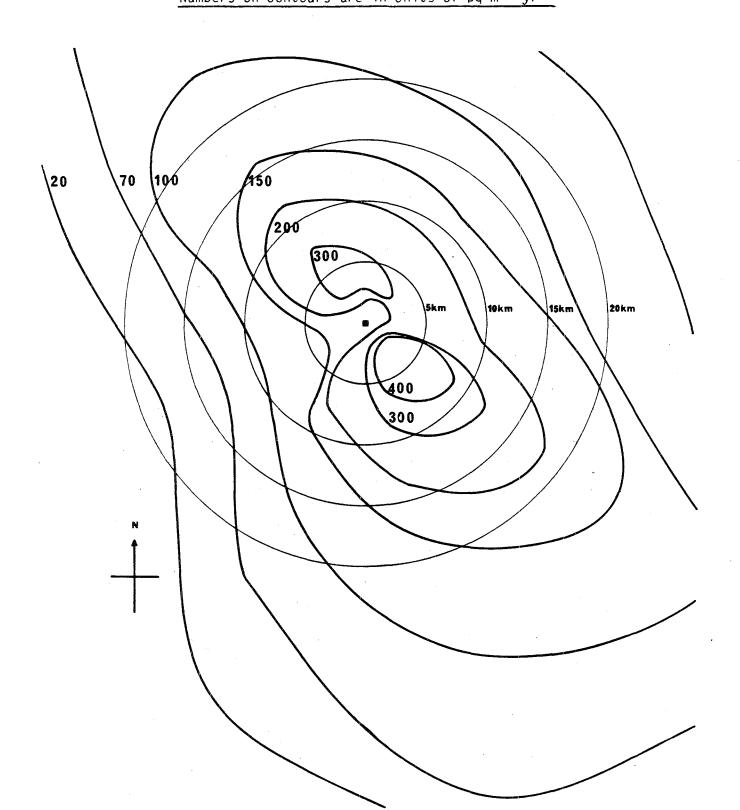


Figure 13B

Flux Contour Plot (0-100 km) for the Deposition of 10 μ m Particles Based on 1 g s⁻¹ Particulate Emission Rate Fort Smith Climatological Data

Numbers on Contours are in Units of µg m⁻² yr⁻¹

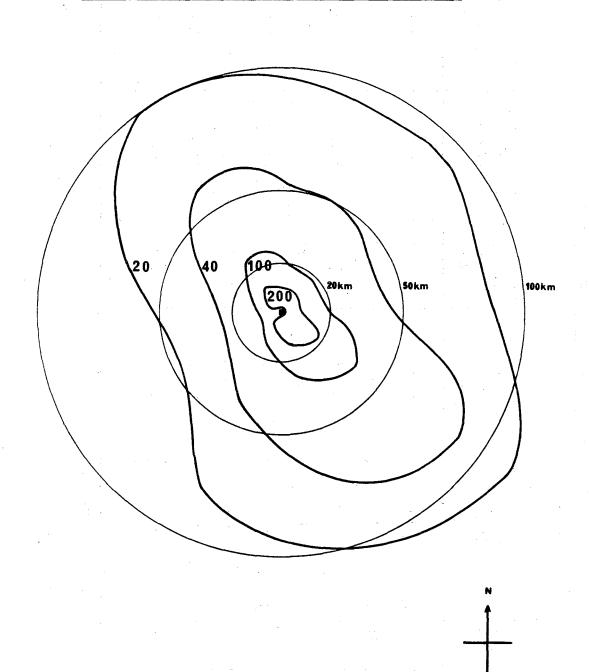


TABLE 1

Particulate Matter Sampling Results

Test	Probe Catch (mg)	Filter Catch (mg)	Total Particle Catch (mg)	Sample Volume Nm ³	Concentration mg/Nm ³ *	Total Stack Gas Volume Nm ³ /s	Emission Rate g/s
2A	323.6	302.0	625.6	7.87	79.5	510	40.6
2B	265.1	240.9	506.0	7.23	70.0	476	33.3
4A	504.4	127.3	631.7	7.74	81.6	520	42.5
4B	418.4	187.3	605.7	7.47	81.1	502	40.7
5A	175.1	179.6	354.7	7.67	46.2	522	24.1
. 5B	259.9	194.9	454.8	7.34	62.0	500	30.9
Mean	324.4	205.3	529.7	7.55	70.1	505	35.4**
Standard Deviation	108.9	54.4	111.5	0.25	14.0	17	7.2

 $[\]rm *Nm^3$ conditions are 25°C and 760 mm Hg

^{**}Corresponds to 3,060 kg/day

TABLE 2
Sampling Information Summary

Test	Sampling Train	No. of Points Sampled	s Sampling	Volume Cato	Probe Catch (mg)	· ·					Total Particle Catch (mg)	Impinger Volumes (ml)			
		Sampred	Time (man)	(''')	(""9)							1	2	3	
Test II June 14/84	Flow Sensor	4	480	9.864	N/A	205.3	6.12	6.80	1.87	2.44	140.6	363.1	N/A	N/A	N/A
	Train A	48	240	7.87	323.6	301.8				625.4	1237	547	238		
	Train B	48	240	7.23	265.1	240.8				505.9	1388	309	N/A		
Test IV June 18/84	Flow Sensor	4	480	9.864	N/A	144.7	24.37	7.54	4.20	1.14	73.61	255.6	N/A	N/A	N/A
	Train A	48	240	7.74	504.4	127.4				631.8	1333	303	135		
	Train B	48	240	7.47	418.4	187.2				605.6	1301	309	N/A		
Test V June 19/84	Flow Sensor	4	480	9.853	N/A	178.8	41.73	14.80	7.40	4.57	89.67	336.9	N/A	N/A	N/A
	Train A	48	240	7.67	175.1	179.7				354.8	1252	301	137		
	Train B	48	240	7.34	259.9	194.9			454.9	1314	280				

TABLE 3

Train 2A

Date June 14, 1984

Weight of Probe Wash Sample 323.6 mg

Weight of Filter Sample 301.8 mg

Volume of Impinger 1 & 2; 1237.5 ml.

Volume of Impinger 3 & 4; 547 ml.

Volume of Impinger 5 & 6; 238.5 ml.

BDL = Below Blank Level; All data are blank corrected

Parameter		ORF (ug)		BML (ug)	DRL (ug)
Filter	Probe Wash	Filter or Impinger	Total	Filter or Impinger	Filter or Impinger
Co Zn P Be Si Fe Mn Ca Mg Cu Al V Mo Ni Cr Na Ba Ti Zr Sn Cd Pb Ag As Se Hg	8 48 27 0.2 1470 2820 120 410 150 6 1760 260 14 110 13 450 6 270 6 3 0.7 6.0 0.6 0.79 1.12 0.16	BDL BDL 70 BDL - 4720 117 BDL BDL BDL BDL 131 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	8 48 97 0.2 1470 7540 237 410 150 6 1760 691 14 241 13 450 6 609 20 3 0.7 6.0 0.6 3.79 8.52 0.16	5 BDL BDL 5130 129 BDL BDL BDL 419 BDL 131 9 BDL 131 9 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	12/12 BDL/BDL BDL/BDL BDL/BDL 4580/4610 132/132 BDL/BDL BDL/BDL 5/2 BDL/BDL 373/385 23/23 141/147 15/15 BDL/BDL BDL/BDL 310/334 6/6 BDL/BDL
Impingers 1 & 2 As 3 & 4 As Total As		BDL 0.30 0.30		4.9 1.6 6.5	BDL BDL BDL
Impingers 1 & 2 Se 3 & 4 Se Total Se		7.2 2.5 9.7		BDL 0.45 0.45	2.4 BDL 2.4
Impingers 1 & 2 Hg 3 & 4 Hg 5 & 6 Hg Total Hg		0.17 0.10 0.03 0.30		BDL BDL 0.06 0.06	0.34 0.03 0.11 0.48
Total Particle & Vapour Metals As Se Hg			4.1 18.2 .46	11.2 8.5 0.06	2.4 6.0 0.48

TABLE 4

Train 2R
Date June 14, 1984
Weight of Probe Wash Sample 265.1 mg
Weight of Filter Sample 240.8 mq
Volume of Impinger 1 & 2; 1387.9 ml.
Volume of Impinger 3 & 4; 309 ml.
BDL = Below Blank Level; All data are blank corrected

Parameter		ORF (µg)		BML (µg)	DRL (μg)
Filter	Probe Wash	Filter or Impinger	Total	Filter or Impinger	Filter or .Impinger
Co Zn P Be Si Fe Mn Ca Mg Cu AI V Mo Ni Cr Na Ba Ti Zr Sn Cd Pb As Se Hg	26 220 110 0.4 3510 5450 260 4240 740 32 2280 460 30 3100 125 870 23 670 12 7 29 98 BDL 1.89 1.94 0.10	BDL/BDL BDL/BDL 93/148 BDL/BDL -/- 3610/3140 99/85 BDL/BDL BDL/BDL BDL/BDL 290/263 BDL/BDL 71/57 BDL/BDL	26 220 230 0.4 3510 8820 352 4240 740 32 2280 736 30 3164 125 870 23 880 12 7 29 98 BDL 4.89 10.0 0.10	5 BDL	6 BDL BDL - 2873 84 BDL BDL 1 BDL 223 17 90 5 BDL BDL 166 6 BDL
Impingers 1 & 2 Pb 3 & 5 Pb Total Pb		BDL BDL BDL		BDL BDL BDL	BDL BDL BDL
Impingers 1 & 2 Cd 3 & 5 Cd Total Cd		BDL 0.3 0.3		BDL BDL BDL	BDL BDL BDL
Total Particle & Vapour Metals Pb Cd			98 29	BDL BDL	BDL BDL

Train 4A

Date June 18, 1984

Weight of Probe Wash Sample 504.4 mg

Weight of Filter Sample 127.4 mg

Volume of Impinger 1 & 2; 1332 ml.

Volume of Impinger 3 & 4; 303.5 ml.

Volume of Impinger 5 & 6; 135.5 ml.

BDL = Below Blank Level; All data are blank corrected

Parameter		O RF (νg)		BML (ug)	DRL (ug)
Filter	Probe Wash	Filter or Impinger	Total	Filter or Impinger	Filter or Impinger
Со	6	BDL/BDL	6	BDL	BDL
Zn .	3 8	BDL/BDL	38	BDL	BDL
P	31	44/BDL	53	BDL	BDL
Be	BDL	BDL/BDL	BDL	BDL	BDL
Si	1100	-/-	1100	<u>-</u>	-
Fe	2030	1280/1180	3260	1454	1253
Mn	78	27/27	105	41	36
Ca	460	BDL/BDL	460	BDL	BDL
Mg	1480	BDL/BDL	1480	BDL	BDL
Cu	6	BDL/BDL	6	BDL	1
Al	1870	BDL/BDL	1870	BDL	BDL
V	270	116/91	374	132	115
Mo	14	BDL/BDL	14	BDL	BDL
Ni	97	14/14	111	BDL	45
Cr '	9	BDL/BDL	9	5	BDL
Na	1800	BDL/BDL	1800	BDL	BDL
Ba	13	BDL/BDL	13	BDL	BDL
Ti	280	7 0/67	348	88	82
Zr	7	BDL/BDL	7	BDL	BDL
Sn	4	BDL/BDL	4	BDL	BDL
Cd	0.4	BDL/BDL	0.4	BDL	BDL
Pb	5.0	1.7/BDL	5.8	BDL	BDL
Ag	0.6	BDL/BDL	0.6	BDL	BDL
As	1.21	2.0/1.3	2.86	1.6	1.2
Se	2.04	7.7/8.7	10.2	8.0	3.6
Hg	0.48	BDL/BDL	0.48	BDL	BDL
Impingers			1		
l & 2 As		BDL	1	4.0	BDL
3 & 4 As		BDL]	0.56	BDL
otal As		BDL		4.56	BDL
Impingers					
l & 2 Se		6.3	ŀ	1.2	1.6
8 & 4 Se	1	1.1	f 1	BDL	0.36
otal Se		7.4		1.2	1.96
[mpingers					
& 2 Hg		0.16		BDL	1.3
8 4 Hg		BDL		BDL	1:3
& 6 Hg		BDL	Ì	BDL	BDL
otal Hg		0.16		. BDL	2.6
atal Dautiala					
otal Particle					1
Vapour					
letals			2 22		
S			2.85	6.2	1.2
e			17.6	9.2	5.56
lg i			.64	BDL	2.6

TABLE 6

Train 4B
Date June 18, 1984
Weight of Probe Wash Sample 418.4 mg
Weight of Filter Sample 187.2 mg
Volume of Impinger 1 & 2; 1301, ml.
Volume of Impinger 3 & 4; 303.5 ml.
BDL = Below Blank Level; All data are blank corrected

Parameter		ORF (µg)	· · · · · · · · · · · · · · · · · · ·	BML (ug)	DRL (ug)
Filter	Probe Wash	Filter or Impinger	Total	Filter or Impinger	Filter or Impinger
Co Zn P Be Si Fe Mn Ca Mg Cu Al V Mo Ni Cr Na Ba Ti Zr Sn Cd Pb Ag As Se Hg	9 38 180 BDL 1300 1800 60 1420 170 31 1560 250 14 4270 20 430 30 BDL 5 4 24 33 BDL 1.06 1.86 0.43	BDL BDL 111 BDL - 2050 54 BDL BDL BDL BDL 80 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	9 38 291 BDL 1300 3850 114 1420 170 31 1560 490 14 4350 20 430 30 140 5 4 24 33 BDL 3.8 11.0 .43	BDL/BDL BDL/BDL BDL/BDL -/- 1650/1470 45/40 BDL/BDL BDL/BDL BDL/BDL 154/142 BDL/BDL 64/49 BDL/BDL BDL/BDL BDL/BDL BDL/BDL BDL/BDL BDL/BDL 100/84 BDL/BDL	BDL BDL BDL 1490 48 BDL BDL 139 BDL 69 BDL
Impingers 1 & 2 Pb 3 & 5 Pb Total Pb		BDL BDL BDL		BDL BDL BDL	BDL BDL BDL
Impingers 1 & 2 Cd 3 & 5 Cd Total Cd		BDL 0.21 0.21		BDL BDL BDL	BDL BDL BDL
Total Particle & Vapour Metals Pb Cd			33 24.2	BDL BDL	BDL BDL

TABLE 7

Train 5A Date June 19, 1984

Weight of Probe Wash Sample 175.1 mg

Weight of Filter Sample 179.7 mg

Volume of Impinger 1 & 2; 1252.ml.
Volume of Impinger 3 & 4; 301 ml.
Volume of Impinger 5 & 6; 137 ml.
BDL = Below Blank Level; All data are blank corrected

				·	
Parameter		ORF (µg)		BML (µg)	DRL (µg)
Filter	Probe Wash	Filter or Impinger	Total	Filter or Impinger	Filter or Impinger
Co Zn P Be Si Fe Mn Ca Mg Cu Al V Mo Ni Cr Na Ba Ti Zr Sn Cd Pb Ag As Se Hg	3 18 16 BDL 820 1070 36 180 74 4 1050 140 9 44 8 450 11 150 3 BDL 3 BDL 0.68 1.94 0.19	BDL BDL BDL 28 BDL BDL BDL 129 BDL 28 BDL	3 18 16 BDL 820 2350 64 180 74 4 1050 269 9 72 8 450 11 239 3 3 BDL 3 BDL 2.48 9.74 .19	BDL	BDL/6 BDL/BDL BDL/BDL - 1070/1130 36/36 BDL/BDL BDL/BDL 2/1 BDL/BDL 103/109 BDL/BDL 45/45 BDL/BDL BDL/BDL 70/70 BDL/BDL
Impingers 1 & 2 As 3 & 5 As Total As		BDL BDL BDL		3.7 0.55 4.25	BDL BDL BDL
Impingers 1 & 2 Se 3 & 5 Se Total Se	No. 10	5.7 0.8 6.5		BDL BDL BDL	1.5 BDL 1.5
Impingers 1 & 2 Hg 3 & 4 Hg 5 & 6 Hg Total Hg		0.34 BDL 0.002 0.34		BDL BDL 0.011 0.011	0.38 0.45 0.053 0.88
Total Particle & Vapour Metals As Se Hg			2.48 16.2 .53	6.0 5.4 0.11	1.2 3.9 0.88

TABLE 8

Train 5B
Date June 19, 1984
Weight of Probe Wash Sample 259.1 mg
Weight of Filter Sample 194.9 mg
Volume of Impinger 1 & 2; 1314.5 ml.
Volume of Impinger 3 & 4; 280 ml.
BDL = Below Blank Level; All data are blank corrected

Parameter		ORF (µg)		BML (ug)	DRL (µg)
Filter	Probe Wash	Filter or Impinger	Total	Filter or Impinger	Filter or Impinger
Co Zn P Be Si Fe Mn Ca Mg Cu Al V Mo Ni Cr Na Ba Ti Zr Sn Cd Pb As Se Hg	7 24 140 BDL 1610 1600 48 1170 140 16 1630 220 12 2740 13 380 54 240 5 5 15 38 1 0.90 1.69 0.11	BDL BDL 48 BDL - 1300 29 BDL BDL BDL 135 BDL 52 BDL	7 24 188 BDL 1610 2900 77 1170 140 16 1630 355 12 2788 13 380 54 324 5 5 15 38 11 2.7 1.69 0.11	BDL/BDL BDL/BDL BDL/BDL -/- 1400/789 39/22 BDL/BDL BDL/BDL BDL/BDL BDL/BDL 67/BDL BDL/BDL	6 BDL BDL BDL 1250 36 BDL BDL 127 BDL 127 BDL 69 BDL
Impingers 1 & 2 Pb 3 & 5 Pb Total Pb		BDL BDL BDL		BDL BDL BDL	BDL BDL BDL
Impingers 1 & 2 Cd 3 & 5 Cd Total Cd		1.2 0.46 1.66		BDL BDL BDL	BDL BDL BDL
Total Particle & Vapour Metals Pb Cd			38 16.6	BDL BDL	BDL BDL

TABLE 9

Analytical Results Flow Sensor Train (ORF)
(ug)

PARAMETER			Test	II, Ju	ne 14,	1984			•	Test I	V, Jun	e 18,	1984			To	est V,	June	19, 19	84	
Sample Volume				9.864	Nm³						9.864	Nm ³					9	.853 N	m ³		
Size Fraction (··)	6.05	2.55	1.89	0.70	0.36	Filter	Total	6.05	2.55	1.89	0.70	0.36	Filter	Total	6.00	2.52	1.86	0.69	0.36	Filter	Total
wt collected (mg)	205.3	6.12	6.80	1.87	2.44	140.6	363	144.7	24.37	7.54	4.20	1.14	73.61	256	178.75	41.73	14.80	7.40	4.57	89.67	336
Со	14.6	<4.3	<1	<1	<1	<3.35	19.9	7.2	<4.9	<1	<1	1	<3.35	12.8	12.5	8.8	<1	<1	1	<3.35	25.0
Zn	18.7	5.2	1	<1	2	<10.8	32.8	23.2	19.5	<1	2	<1	<10.8	50.1	19.7	10.4	1	<1	1	<10.8	38.0
Р	39.0	<24.5	<5	<5	<5	<16	66.8	<14.5	<24.4	<5	<5	6	<16	35.6	21.4	<12.5	<5	<5	<5	<16	43.2
Be	.45	<1.2	<0.2	<.3	<0.3	<.97	<1.2	<.72	<1.46	<.3	<.3	0.05	<.97	<1.9	<.72	<.83	0.05	<0.05	0.05	<.97	<1,.37
Si	3860	104	340	140	9	<93	4500	1590	560	330	120	5	<93	2650	1640	876	510	120	<5	<93	3200
Fe	4886	239	370	160	15	122	5790	1580	755	300	180	24	83.5	2920	3910	1960	480	100	1	146	6606
Mn .	205	6.1	11	6	<1	4.5	233	48	48.7	30	16	<1	28.6	172	804	208	14	3	<1	13.8	1040
Ca	524	<24.5	38	13	<5	<105	642	289	112	35	19	<5	<105	510	350	117	74	13	<1	<105	610
Mg	224	9.8	17	7	<1	<34	275	116	46.3	15	7	<1	<34	202	139	55.9	27	6	<1	<34	245
Cu	22.2	<4.3	5	3	1	8.6	41.9	8.7	<4.9	3	3	<1	<3.1	19.3	30.4	50.5	2	1	<1	4.7	89.1
Al	3100	171	250	100	4	<35	3640	1610	582	210	95	2	<35	2510	1910	818	420	86	<1	<35	3260
V	489	21.4	27	11	<1	<3.1	550	258	68.2	22	10	<1	<3.1	360	286	96	39	8	<1	<3.1	432
Mo	26.7	<12.2	<3	<3	<3	<9.6	42.1	17.4	17.0	<3	<3	<1	<9.6	42.7	<8.9	18.8	<1	<1	<1	<9.6	29.6
Ni	181	12.8	13	10	1	16.4	234	83.9	31.7	13	15	3	3.8	150	340	308	18	6	<1	10.6	683
Cr	28.7	<4.3	3	4	2	7.4	47	13.0	7.3	7	11	4	3.8	46.1	500	216	8	2	<1	10.6	737
Na	595	<220	<50	<50	<50	6820	7600	362	~292	<50	<50	<50	4480	5200	536	292	60	<50	<50	3720	4660
Ba	20.5	<1.22	1.5	0.6	<0.3	<3.18	24.6	9.1	3.2	1.4	0.6	<0.3	<3.18	16.0	10.7	4.2	2.4	0.5	<0.3	<3.2	19.5
Ti	731	33.7	6.5	23	0.8	.78	796	263	110	50	18	0.6	.31	442	268	153	77	15	0.3	.46	513
Zr	19.5	1.8	1	<0.3	<0.3	<.84	23	8.4	4.6	1.0	<0.3	<0.3	<.84	14.7	10.0	17.1	1.5	<0.3	<0.3	1.71	29.8
Sn .	<3.1	<4.3	2	2	<1	<3.2	7.8	<2.9	<4.9	2	2	1.0	<3.2	10.5	<3.6	~3.8	2	2	1	<3.2	10.3
Cd	<.82	<1.2	<0.3	<0.3	<0.3	<1.0	<1.2	<.72	<1.2	<0.3	<0.3	<0.3	<1.0	<1.2	<.89	2.5	<0.3	<0.3	<0.3	<1.0	<2.6
Pb	<3.0	<4.3	<1	<1	<1	2.6	7.8	<2.9	<4.9	<1	<1	<1	<3.2	<3.2	<3.6	7.9	1	<1	<1	<3.15	13.3
Ag	2.7	<2.4	<0.5	<0.5	<0.5	<2.6	6.0	<1.4	<2.4	<0.5	<0.5	<0.5	<2.6	<3.9	<1.8	0.83	<0.5	<0.5	<0.5	<2.6	<3.8
As	1.5	.16	0.11	0.05	<0.03	1.65	3.5	0.82			0.06	<0.03	.62	1.37	1.1				0.03	.65	2.72
, Se	2.6	.34	<.05	<.05	<0.05		3.5		0.73	<0.05	<.05	<.05	.36	2.64	1.5		0.12		<0.05	<.27	2.01
Hg	0.16	.009			<0.007	<.010	.18		0.03	<.007					.038	<.012			<.007	<.0065	

TABLE 10 Laboratory Intercomparison - NBS-SRM1648 μg/g

		BN	1L	OF	{F**	OF	RF(²)	DI	RL
Certif	fied Values µg/g	#2747	#2748	#2743	#2744	#2743	#2744	#2745	#2746
Со	18	9	10	21	20	20	20	20	20
*Zn	4,760 + 140	4,360	4,770	4,500	4,220	4,310	4,370	4,480	4,560
Р		7,830	7,860	7,700	6,990	7,450	7,500	7,120	7,100
Be	·	1.06	1.07	2.3	2.2	2.3	2.2	2	2
Si		673	656	17,500∆	17,100∆	140,000	107,000	<100	<100
*Fe	39,100 ± 1,000	31,500	31,800	32,700	30,500	38,800	38,500	38,800	38,000
Mn	860	669	722	740	720	780	790	889	900
Ca	, ,	58,000	61,600	57,700	50,600	60,200	59,100	52,200	53,400
Mg	8,000	5,710	6,110	6,500	5,890	7,420	7,720	6,380	6,220
*Cu	609 ± 27	570	580	560	560	620	630	572	572
*A1	34,200 ± 1,100	12,900	13,900	12,400∆	12,100△	30,000	31,300	13,400	13,100
* V	140 ± 3	86.7	85.5	104	104	101	102	92	92
Мо	· · · · · · · · · · · · · · · · · · ·	20	<20	35∆	33∆	69	69	36	36
*Ni	82 ± 3	60	64	51	50	54	53	78	74
*Cr	403 ± 12	75	74	101∆	121∆	260	300	106	104
*Na	4,250 ± 20	2,000	2,000	3,030	3,180	3,380	2,990	1,720	1,720
Ba	737	139	165	408	590	706	711	260	252
Ti	4,000	532	565	1,340∆	1,070Δ	3,720	3,640	990	848
Zr		5	5	14∆	13∆	163	180	4	2
Sn		127	140	150	130	108	113	80	86
*Cd	75 ± 7		53+ (67)	81	73	62	77	74	72
*Pb	6,550 ± 80	6,800	6,600	5,180	5,310	5,780	5,810	6,440	6,380
Ag	6	6+ (2.4)	6^{+} (2.1)	7.0	6.5	No Result	No Result	8	8
*As	115 ± 10	173	181	110	113	No Result	No Result	130	130
*Se	27 ± 1	21.4	21.4	16.5	17.0	No Result	No Result	34	36
Hg		1.42	1.52	1.3	1.2	No Result	No Result	1.1	0.99

NOTES: Δ for ORF, HF digestion has used on a separate sample and these elements showed significantly great recovery.

+ by AA where noted (when performed by 2 methods).

certified values.** Total digestion method results

- A1.28

TABLE 11
Laboratory Intercomparison - Solution Standards (ppm)

	STANDARD 1 (Blank Solution)			Blank Solution) STANDARD 2				STANDARD 3				STANDARD 4				
	Theoretical				Theoretical	·····			Theoretical				Theoretical			
Element	Value	BML	ORF	DRL	Value	BML	ORF	DRL	Value	BML	ORF.	DRL	Value	BML.	ORF	DRL
ΑÌ	ŀ	<0.01	<0.01	<0.015	-	<0.01	0.04	<0.015	2.00	2.06	1.80	1.60	0.50	0.51	0.50	0.41
Ва		<0.005	<0.003	<0.006	-	<0.005	<0.003	<0.006	0.50	0.496	0.42	0.40	0.12	0.121	0.11	0.10
Ca		<0.01	<0.05	<0.015	-	0.03	<0.05	<0.015	2.00	2.09	1.70	1.40	0.50	0.49	0.46	0.57
Cr	ļ	<0.01	0.01	0.003	-	<0.01	<0.01	<0.003	0.50	0.51	0.40	0.50	0.12	0.12	0.09	0.13
Fe		<0.01	<0.01	<0.006	-	<0.01	0.03	0.006	4.00	4.64	3.56	3.60	1.00	1.11	0.95	0.93
Hg		0.004	<0.00007	<0.0002	0.50	0.40	0.504	0.48	-	<0.0005	<0.00007	0.0028	-	0.0005	<0.00007	<0.0002
Mg	i	<0.01	<0.01	0.005	-	0.02	<0.01	<0.005	1.50	1.48	1.23	1.10	0.38	0.38	0.33	0.32
Mn		<0.01	<0.01	<0.015	-	<0.01	<0.01	<0.015	0.50	0.53	0.45	0.46	0.12	0.13	0.12	0.12
Na		<1	<0.50	<0.40	1.50	2	1.70	1.60	6.00	23.0	20.0	<0.4	1.50	6	5.70	4.80
Ni ·		<0.05	<0.01	<0.02		<0.05	0.01	<0.02	1.00	0.89	0.69	0.87	0.25	0.22	0.17	0.23
Pb]	<0.05	0.03	<0.03	0.50	0.40	0.51	0.49	0.50	0.45	0.49	0.49	0.12	<0.05	0.12	0.13
Se		<0.001	<0.0005	<0.003	0.50	1.40	1.12	0.78	-	<0.001	<0.0005	<0.003	-	<0.001	0.0007	<0.003
Si		<0.05	0.27	0.015	-	<0.05	0.44	0.025	1.00	10.1	0.66	7.50	0.25	.238	0.23	.20
Sn		<0.01	0.01	<0.025		<0.01	0.01	<0.025	0.50	<0.01	0.48	0.49	0.12	<0.01	0.14	0.08
٧		<0.005	<0.01	0.005	0.50	0.47	0.45	0.47	1.00	1.02	0.85	0.87	0.25	0.222	0.23	0.23
Zn		<0.05	0.01	0.013	-	<0.05	<0.01	<0.013	2.00	2.20	1.75	1.80	0.50	0.51	0.47	0.49

TABLE 12 $\frac{\text{Sample Composition Comparison}}{\left(\mu\,g/g\right)}$

		:	Soil Sample	e - June 1	2/84 (Vici	nity of Tr	ailer)					Coke	e Dust on (Ground - J	une 12/84			
	OR #2644	RF #2645	DI #2646	RL #2647	#2648	ML #2649	- x	± S.[o.	#2650	RF #2651	#2652	RL #2653	#2654	¶L #2655	×	± S.[).
20	3.4	3.7	4	2	<5	<5	3.8	±	1,1	2.4	2.3	2	3	<5	<5	3.3	±	1.4
n l	28	27	28	64	57	50	42	±	17	65	54	63	32	80	68	60	±	16
Р	110	150	110	110	220	150	140	±	43	38	37	40	40	<50	<50	42	±	6
3e	0.3	0.4	0.2	0.4	0.1	0.1	0.2	±	0.1	0.3	0.3	<0.2	<0.2	<0.05	<0.05	0.2	±	0.1
S1	1,430	1,890	<100	160	233	225	670	±	780	260	430	130	170	90	92	200	±	130
e			11,000	9,270	16,500	10,900	11,100	±	3,000	8,050	7,090	8,850	9,270	11,500	8,190	8,800	±	1,500
fn	140	146	134	97	242	154	150	±	50	78	85	89	153	93	70	95	±	30
a	14,200	18,900	10,800	11,700	11,200	13,700	13,000	±	3,000	2,260	2,912	2,490	2,890	1,790	2,290	2,400	±	420
1g ∫	3,210	6,190	3,370	4,320	3,650	3,570	4,050	±	1,100	660	720	678	728	409	540	620	±	120
ù	13	13	6	7	10	8	9.6	±	2.9	10	- 8	9	8	14	- 8	9.5	±	2.3
11	1,560	1,630	1,790	1,920	2,370	2,130	1,900	±	300	760	660	720	750	690	770	720	±	43
<i>!</i>	28	27	32	29	34	30	30	±	2.6	30	38	46	43 .	41	45	40	±	5.9
10	9	8	8	8	<20	<20	12	±	6.1	4	4	6	8	<20	<20	10	±	7.6
ii	11	12	17	22	23	19	17	±	5.0	11	13	22	18	26	21	18	±	5.7
r	8	8	12	16	13	15	12	±	3.4	9	5	12	12	13	9	10	±	3.0
la (410	430	130	140	200	200	250	±	130	170	190	70	60	100	100	120	±	53
3a	22	24	23	22	32	21	24	±	4.0	6	7	7	7	8	6	6.8	±	. 0.8
Γi	87	83	110	108	65	71	87	±	18	39	41	42	53	31	35	40	±	7.5
<u>'</u> r	3	3	3	3	<5	<5	3.7	±	1.0	2	2	2	.±. 2	. <5	<5	3	±	1.5
Sn [5	7	<2	<2	<10	<10	6	±	3.6	2	2	<2	<2	<10	<10	4.7	±	4.1
Cd	0.2	0.4	<2	<2	<1	<1	1.1	±	0.8	0.2	0.3	<2	<2	<1	<1	1.1	±	0.8
b	10	10	20 ′	10	15	10	12	±	4.2	5	7	10	20	<5	<5	8.7	±	5.9
\g	<0.5	<0.5	<1	<1	<0.5	<0.5	<1	±	- [<0.5	<0.5	<1	<1	<0.5	<0.5	0.7	±	0.2
۱s	1.8	2.6	1.2	1.2	2.4	1.9	1.8	±	0.6	1.7	1.5	1.0	1.2	1.5	1.1	1.3	±	0.3
Se	0.2	0.2	<0.2	0.2	0.3	0.3	0.2	±	0.05	0.1	0.1	<0.2	<0.2	0,3	0.3	0.2	±	0.09
lg	0.03	0.02	0.02	0.02	0.14	<0.02	0.04	±	0.05	<0.004	0.004	<0.005	0.010	<0.02	<0.02	0.01	±	0.008

 $\frac{\text{Sample Composition Comparison}}{(\nu g/g)}$

TABLE 12 (Cont'd)

		E.S.P. I	Hopper A2 B	7 - June 17/	84			Combined Cy	clone Catch	es (ORF on	ly)	
	0RF #2656	DRL #2657	BML #2658	x ±	s.().	Test #2	Test #4	Test #5	×	± S	.D.
Со	24	32	25	27	±	4	55	50	74	60	±	13
Zn	22	29	40	30	±	9	90	196	113	133	±	56
Р	126	120	110	119	±	8	184	139	128	150	±	30
Be	0.7	0.6	<0.05	0.4	±	0.35	<3	<7	<4	<5	±	2
Si	460	<100	380	314	±	189	12,400	10,400	9,500	10,760	±	1,490
Fe	7,200	9,270	9,880	8,780	±	1,400	16,000	11,400	19,600	15,700	±	4,100
Mn	220	290	265	258	±	35	640	672	3,080	1,460	±	1,400
Ca	1,290	1,390	1,870	1,510	±	314	1,770	2,000	1,800	1,860	±	122
Mg	500	680	756	647	±	132	760	790	730	758	±	31
Cu	14	16	13	14.3	±	1.5	120	76	260	152	±	99
A1	8,190	11,400	11,100	10,230	±	1,770	10,000	9,830	9,660	9,840	±	185
٧	1,570	1,840	1,790	1,730	±	144	1,520	1,410	1,280	1,400	±	116
Mo	113	115	110	113	±	2.5	120	170	88	124	±	40
Ni	400	557	504	487	±	80	640	590	2,030	1,090	±	815
Cr	10	21	18	16.3	±	5.8	130	180	2,190	832	±	1,170
Na	1,430	1,450	1,300	1,390	±	81	20,900	20,400	13,800	18,400	±	3,950
Ba	47	52	60	52.9	±	6.4	68	63	58	63	±	5
Ti	360	518	470	451	±	82	2,190	1,730	1,520	1,820	±	340
Zr .	16	10	20	15	±	5	63	58	88	70	±	16
Sn	4.9	<2	<10	~5.6	±	4	22	41	31	31	±	. 10
Cd	0.9	<2	<1	~1.3	±	0.6	<3.3	<5	· <8	<5	±	2
Pb	18	24	10	17.2	±	7.0	22	<12	39	<24	±	13
Ag	,. <1	<1	<0.5	~0.8	±	0.3	16	<16	<11	<14	±	3
As	2.5	2.0	3.3	2,6	±	0.66	10	5	8	8.	±	2
Se	2.3	5.0	2.6	3.3	±	1.5	10	10	6	. 9	ŕ	- 2
Hg	<0.01	0.005	<0.02	~0.012	±	0.008	0.5	0.3	<0.2	0.3	±	0.

TABLE 13

Analytical Detection Limits

1						
		Solutions µg/ml			Filters ** ilter (total lank value	al)
	ORF	BML	DRL	ORF∆	BML	DRL
Co Zn Pe Si Fe Mn Ca Mg Cu Al V Mo Ni Cr Na Ba Ti Zr Sn Cd Pb	0.01 0.05 0.0005 0.0005 0.01 0.01 0.01 0	0.02 0.03 0.30 0.0003 0.005 0.005 0.01 0.005 0.002 0.01 0.003 0.10 0.03 0.005 0.005 0.003 0.003 0.003 0.003	0.01 0.013 0.13 0.003 0.006 0.015 0.015 0.005 0.003 0.015 0.02 0.003 0.40 0.006 0.003 0.015 0.025 0.02	11 49 60 3 460 80 11 6,640 2,760 11 33 11 11 22,400 50 3 4 11 3 11	8 80 80 .7 160 66 2 4,700 1,990 6.3 2,380 0.8 30 19 7.7 18,100 42 0.8 8 50 2	6 42 60 1.2 1,010 127 6 11,200 4,460 2.6 4,900 5 6 28,800 80 2.6 6 12 12 12 22
Ag As Se Hg	0.005 0.0003 0.0005 0.00007	0.003 0.001 0.001 0.00004	0.015 0.003 0.001 0.0002	6 .3 1.2 .03	0.8 0.2 0.2 0.06	6 1.2 1.2 .06

 $[\]Delta$ Based on 2 samples from test 2

^{*} Based on 1st cyclone samples only

^{**} Based on average of 6 blank filter values for each element

TABLE 14 Annual Mean Concentration (x $10^{-4}~\mu g/m^3$) by Sector at Different Distances

Based on Unit Emission Rates Climatological Station - Edmonton Particle Size - 0.10 μm

Distance (km) Sector	1	3	5	10	15	20	30	50	100
Sector									
185° - 275° 225° - 265° 265° - 305°	0.86 0.96 1.79	3.49 3.87 7.18	3.05 3.43 6.36	1.75 1.97 3.65	1.20 1.35 2.51	0.92 1.04 1.92	0.62 0.70 1.29	0.37 0.41 0.76	0.17 0.20 0.36
305° - 345° 345° - 25° 25° - 65° 65° - 105° 105° - 145°	2.09 1.50 1.30 3.20 4.28	8.30 6.03 5.24 1.28 17.00	7.44 5.34 4.64 11.40 15.30	4.27 3.07 2.67 6.53 8.76	2.93 2.11 1.83 4.49 6.02	2.24 1.61 1.40 3.43 4.60	1.51 1.08 0.94 2.3 3.09	0.89 0.64 0.56 1.36 1.82	0.42 0.30 0.27 0.65
105 - 145 145° - 185° Total*	1.86	7.46 71.85	6.61	3.80	2.01	1.99	1.34	7.60	0.87 0.38 3.62

^{*} Sector independent values

TABLE 15 Annual Mean Concentration (x $10^{-4}~\mu g/m^3$) by Sector at Different Distances

Based on Unit Emission Rates Climatological Station - Edmonton Particle Size - 10 µm

Distance (km)	1	2	5	10	1.5	20	20	F0	100
Sector		3	3	10	15	20	30	50	100
185° - 275°	0.86	3.43	3.03	1.71	1.17	0.89	0.59	0.34	0.15
225° - 265° 265° - 305° 305° - 345°	0.96 1.78 2.09	3.86 7.15 8.37	3.41 6.32 7.39	1.93 3.57 4.18	1.32 2.44 2.85	1.00 1.85 2.16	0.66 1.22 1.43	0.38 0.70 0.82	0.17 0.31 0.36
345° - 25° 25° - 65°	1.50 1.30	6.01 5.22	5.30 4.61	3.00 2.61	2.05 1.78	1.55 1.35	1.03 0.89	0.59 0.51	0.26 0.22
65° - 105° 105° - 145° 145° - 185°	3.19 4.28 1.86	12.80 17.20 7.44	11.30 15.20 6.57	6.39 8.57 3.71	4.36 5.85 2.54	3.31 4.44 1.92	2.19 2.93 1.27	1.25 1.67 0.73	0.55 0.73 0.32
Total*	17.73	71.48	63.13	35.67	24.36	18.47	12.21	6.99	3.07

^{*} Sector independent values

Based on Unit Emission Rates Climatological Station - Fort Smith Particle Size - 0.10 um

Distance (km)									
Sector	1	3	5	10	15	20	30	50	100
									,
185° - 275°	0.86	3.43	3.34	2.03	1.42	1.09	0.75	0.45	0.22
225° - 265°	0.54	2.14	2.08	1.27	0.88	0.68	0.46	0.28	0.13
265° - 305°	0.86	3.43	3.34	2.03	1.42	1.09	0.75	0.45	0.22
305° - 345°	2.31	9.24	9.01	5.48	3.82	2.99	2.01	1.21	0.58
345° - 25°	1.42	5.66	5.52	3.36	2.34	1.80	1.23	0.74	0.36
25° - 65°	1.06	4.22	4.12	2.51	1.74	1.35	0.92	0.55	0.27
65° - 105°	1.19	4.77	4.65	2.83	1.97	1.52	1.04	0.62	0.30
105° - 145°	2.54	10.10	9.88	6.01	4.18	3.23	2.20	1.32	0.64
145° - 185°	1.67	6.66	6.49	3.95	2.75	2.12	1.45	0.87	0.42
Total*	12,45	49.65	48.43	29.47	20.52	15.87	10.81	6.49	3.12

^{*} Sector independent values

TABLE 17 Annual Mean Concentration (x $10^{-4}~\mu g/m^3$) by Sector at Different Distances

Based on Unit Emission Rates Climatological Station - Fort Smith Particle Size - $10~\mu m$

Distance (km) Sector	1	3	5	10	15	20	30	50	100
185° - 275° 225° - 265° 265° - 305° 305° - 345° 345° - 25° 25° - 65° 65° - 105° 105° - 145° 145° - 185°	0.85 0.54 0.86 2.31 1.42 1.06 1.19 2.54 1.67	3.42 2.13 3.42 9.22 5.65 4.21 4.76 10.10 6.64	3.32 2.07 3.32 8.94 5.48 4.09 4.61 9.80 6.44	2.00 1.25 2.00 5.39 3.30 2.46 2.78 5.91 3.88	1.38 0.86 1.38 3.72 2.28 1.70 1.92 4.08 2.68	1.05 0.66 1.05 2.84 1.74 1.30 1.47 3.11 2.05	0.71 0.44 0.71 1.90 1.16 0.87 0.98 2.08 1.37	0.41 0.25 0.41 1.10 0.67 0.50 0.57 1.21 0.79	0.18 0.11 0.18 0.48 0.30 0.22 0.25 0.53 0.35
Total*	12.44	49.55	48.07	29.97	20.00	15.27	10.22	5.91	2.50

^{*} Sector independent values

Based on Unit Emission Rates Climatological Station - Edmonton Particle Size - 0.10 μm

Distance (km) Sector	1	3	5	10	15	20	30	50	100
185° - 275° 225° - 265° 265° - 305° 305° - 345° 345° - 25° 25° - 65° 65° - 105° 105° - 145° 145° - 185°	33.3 28.2 36.5 43.5 52.8 44.9 96.8 123 59.3	136 114 145 175 214 182 392 499 242	114 96.8 126 158 164 157 340 439 208	63.4 54.5 71.5 92.5 104 89.9 194 254 118	43.5 37.4 49.1 63.4 71.5 61.6 133 174 81.1	33.1 28.5 37.4 48.4 54.4 46.9 101 133 61.7	22.1 19.0 25.0 32.4 36.3 31.3 67.8 88.6 41.2	19.0 21.2 18.3 39.6	6.01 5.22 6.92 8.98 9.90 8.52 18.5 24.3 11.3

Based on Unit Emission Rates Climatological Station - Edmonton Particle Size - 10 µm

Sector	Dis	tance (km)	1	3	5	10	15	20	30	50	100
·											
185°		275°	64.5	264	223	123	84.1	63.6	41.9	23.9	10.4
225°	-	265°	38.2	233	201	112	76.7	58.1	38.3	21.8	9.54
.265°	_	305°	82.7	319	284	161	110	83.2	55.0	31.4	13.8
305°	-	345°	97.3	387	353	203	139	105	69.6	39.7	17.4
345°	_	25°	101	408	353	198	135	102	67.3	38.3	16.6
25°		65°	84.1	336	293	165	113	85.3	56.1	31.8	13.8
65°		105°	193	773	677	382	261	198	130	74.1	32.3
105°	-	145°	246	988	877	499	340	258	170	96.8	42.2
145°	-	185°	118	482	418	235	161	122	803	45.7	19.9
								1	:		÷

A1.37

Based on Unit Emission Rates Climatological Station - Fort Smith Particle Size - 0.10 μm

Distance (km) Sector	1	3	5	10	15	20	30	50	100
185° - 275° 225° - 265° 265° - 305° 305° - 345° 345° - 25° 25° - 65° 65° - 105° 105° - 145° 145° - 185°	32.9	140	131	79.0	55.0	42.1	28.5	17.0	7.97
	18.1	76.4	72.2	43.6	30.3	23.2	15.8	9.39	4.42
	25.8	107	102	61.3	42.7	32.7	22.1	13.2	6.20
	43.9	170	170	104	72.6	55.8	38.0	22.7	10.8
	39.8	161	157	96.0	66.9	31.4	35.0	20.9	9.88
	37.6	157	150	90.4	63.0	48.3	32.7	19.5	9.16
	35.0	141	138	84.7	59.1	45.4	30.9	18.4	8.72
	71.9	297	284	172	120	92.1	62.5	37.3	17.6
	53.0	223	211	127	88.8	68.1	46.2	27.5	13.0

- A1.39

Based on Unit Emission Rates Climatological Station - Fort Smith Particle Size - 10 μm

Distance (km) Sector	1	3	5	10	15	20	30	50	100
185° - 275° 225° - 265° 265° - 305° 305° - 345° 345° - 25° 25° - 65° 65° - 105° 105° - 145° 145° - 185°	62.5 35.6 51.1 100 80.0 71.6 68.9 148 107	262 147 204 371 318 294 273 593 444	246 139 196 375 311 280 268 572 422	147 83.6 117 227 188 168 153 344 254	102 57.8 81.0 156 130 116 113 238 176	i i	41.0 79.6 66.5 59.0	29.8 17.0 23.6 45.9 38.4 34.0 33.2 69.9 51.7	13.0 7.42 10.3 21.0 16.8 14.8 14.5 30.6 22.7

APPENDIX II

Stack Sampling Results

PARTICULATE EMISSION REPORT

CONCORD/SYNCRUDE REF. No. : 1085

DATE: 14/06/84

RUN : 2A

CONCENTRATION & 12% CO2 & ACT CO2	112.2 mg/Nm3 79.5 mg/Nm3 44.2 mg/Am3	0.0491 o/Sct 0.0347 c/Sct 0.0193 g/Acf
EMISSION RATE	40.59 g/s	322.17 lb/nr
SAMPLING VOLUME	7.87 Nm3	277.72 Sof
AVERAGE ISOKINETICITY	104.7 %	

FLUE GAS CHARACTERISTICS

MOISTURE	18.74	9/ /2-		
TEMPERATURE	237.1	deg C	458.8	dec F
FLOW .	1837880 4064230		1 08 1740 2392130	
VELOCITY	23.11	m/s	4549.2	f pm

GAS ANALYSIS

02 3.50 % C022 8.50 % C0 0.02 % MOL. WT. 29.5 g/g MOLE (DRY)

*STANDARD CONDITIONS : METRIC 0 deg C. 101.325 kPa IMPERIAL 77 deg F. 29.92 in. Hg PARTICULATE EMISSION REPORT

CONCORD/SYNCRUDE

REF. No. : 1085

DATE : 14/06/84

RUN : 28

CONCENTRATION 8 12% CO2 98.7 mg/Nm3

0.0432 a/Scf

a ACT CO2 69.9 mg/Nm3 39.1 mg/Am3

0.0306 c/Scf 0.0171 a/Acf

EMISSION RATE

33.29 g/s

264.17 lb/hr

SAMPLING VOLUME

7.23 Nm3

255.37 Scf

AVERAGE ISOKINETICITY 102.4 %

FLUE GAS CHARACTERISTICS

MOISTURE

19.38 %

TEMPERATURE

236.8 dea C 458.2 dea F

FLOW

1713070 Nm3/hr

1008280 Scim

3796940 m3/hr

2234810 Acfm

VELOCITY

21.59 m/s

4250.0 fpm

GAS ANALYSIS

02

3.50 %

002

8.50 %

0.02 %

MOL. WT. 29.5 g/g MOLE (DRV)

*STANDARD CONDITIONS : METRIC O deg C. 101.325 kPa IMPERIAL 77 deg F. 29.92 in. Ho

PARTICULATE EMISSSSION REPORT CONCORD/SYNCRUDE REF. No. : 1085

DATE : 18/06/84 RUN : 4A

CONCENTRATION		2 81.7		0.0476 0.0357 0.0201	g/Sef
EMISSION RATE		42,52	ç/s	337.46	lb/hr
SAMPLING VOLU	ME	7.74	Nm3	273.17	Sef
. AVERAGE ISOKI	VETICITY	101.0	ey A		•
FLUE GAS CHAR	ACTERISTI	CS	•		
MOISTURE		18.64	ay An		
TEMPERATURE		234.2	deg C	453.6	deg F
FLOW			Nm3/hr m3/hr	1103190 2409960	
VELOCITY	:_	23.28	m/5 -	4583.1	fpm
GAS ANALYSIS	,				
	02 C02	4.00 9.00			
•	CO	0.02		(ADV)	·
•	1.15√2 # 44 i n	£₹.₽	AND DATE	NAMES TO F	

*STANDARD CONDITIONS : METRIC O deg C. 101.325 kPa IMPERIAL 77 deg F. 29.92 in. Ho

PARTICULATE EMISSION REPORT

CONCORD/SYNCRUDE

REF. No.: 1085

DATE: 18/06/84

RUN : 4B

CONCENTRATION & 12% CO2 108.1 mg/Nm3 a ACT CO2 81.1 mg/Nm3

0.5473 o/Sof

0.0354 g/Scf

47.3 mo/Am3

0.0207 o/Acf

EMISSION RATE

40.72 d/s

323.17 lb/hr

SAMPLING VOLUME

7.47 Nm3

263.64 Sof

AVERAGE ISOKINETICITY 100.2 %

FLUE GAS CHARACTERISTICS

MOISTURE

19.04 %

TEMPERATURE

233.2 deg C

451.8 dea F

FLOW

1807290 Nm3/hr *3826230 m3/hr

1043740 Scfm 2252050 Acfm

VELOCITY

21.76 m/s

4282.8 ipm

GAS ANALYSIS

02

4,00 %

002

9.00 %

00 :

0.02 %

MOL. WT. 29.6 g/g MOLE (DRY)

IMPERIAL 77 deg F. 29.92 in, Hg PARTICULATE EMISSION REPORT CONCORD/SYNCRUDE

REF. No. : 1085

DATE : 19/06/84 RUN : 5A

CONCENTRATION a 12% CO2 61.7 mg/Nm3 0.0270 s/Scf a ACT CO2 46.3 mg/Nm3 0.0202 g/Scf 26.2 mg/Am3 0.0115 s/Acf

EMISSION RATE 24.14 g/s 191.60 lb/hr

SAMPLING VOLUME 7.67 Nm3 270.77 Sof

AVVERAGE ISOKINETICITY 99.9 %

FLUE GAS CHARACTERISTICS

MOISTURE 18.88 %

TEMPERATURE 231.9 deg C 449.5 deg F

FLOW 1878400 Nm3/hr 1105590 Scfm 4082660 m3/hr 2402980 Acim

VELOCITY 23.21 m/s 4569.8 fpm

GAS ANALYSIS

02 4.00 % C02 9.00 % C0 0.02 %

MOL. WT. 29.6 g/g MOLE (DRY)

*STANDARD CONDITIONS : METRIC 0 deg C, 181.325 kPa IMPERIAL 77 deg F. 29.92 in. Ho

PARTICULATE EMISSION REPORT

CONCORD/SYNCRUDE

REF. No. : 1085

DATE : 19/06/84

RUN : 58

CONCENTRATION & 12% CO2 & ACT CO2	**	0.0361 g/Scf 0.0271 g/Scf 0.0154 g/Acf
EMISSION RATE	30.96 ¢/s	245.73 lb/nr
SAMPLING VOLUME	7.34 Nm3	259,25 Sef
AVERAGE ISOKINETICITY	99.0 %	

FLUE GAS CHARACTERISTICS

MOISTURE

19.87 %

TEMPERATURE

230.7 deg C

447.2 dea F

FLOW

1799390 Nm3/hr 3949360 m3/hr 1059090 Scfm 2324520 Acfm

VELOCITY

22.46 m/s

4420.6 ipm.

GAS ANALYSIS

02 4.00 % C02 7.00 % C0 0.02 %

MOL. WT. 29.6 g/a MOLE (DRY)

*STANDARD CONDITIONS : METRIC 0 deg C. 101.325 kPa IMPERIAL 77 deg F. 29.92 in. Ho CLIENT : SYNCRUDE

CITY AND PROVENCE : FORT MOMERRAY ALBERTA DATE : JUNE 14 1984

SAMPLING LOCATION : MAIN STACK RUN-TEST NUMBER : 14-1(RUN 2:

TIME OF START : 11:50

TOTAL SAMPLE VOLUME:

348.30 DSCF 9.864 NM3

AVERAGE SAMPLING RATE (STACK CONDITIONS): 1.627 ACFM 0.046 AM3/MIN

TOTAL IMPINGER CATCH:

1751.1 ML.

AVERAGE STACK TEMPERATURE:

460.5 DEG.F 238.1 DEG.C

AVERAGE 180KINETIC:

102.1%

STACK GAS ANALYSIS

CONSTITUENT	WET BASIS MOLE PERCENT	DRY BASIS MOLE PERCEN	
CO2	6. 8 5	8.50	
02	2.82	3.50	
CO	0.02	0.02	
N2(BY DIFFERENCE)	70.88	87.98	
H20	19.44	00.0	
TOTAL	100.00	100.00	

VISCOSITY OF STACK GAS: 245.120 MICROPOISE

CYCLONE STAGE NUMBER	NET PARTICULATE WEIGHT (GRAMS)	PERCENTAGE OF TOTAL PARTICULATE WEIGHT	CUMULATIVE PERCENTAGE
1	0.2053	56.52	100.00
2	0.0061	1.69	43.48
3 .	0.0068	1.87	41.79
4	. 0.0019	0.51	39.92
5	0.0024	0.67	39.40
FILTER	. 0.1407	38.73	38.73

CUMULATIVE PERCENTAGE LESS THAN STATED DSD DIAMETER	DSO PARTICLE DIAMETER (UM)
43.48	6.05
41.79	2,55
39.92	1.87
39,40	0.70
38. 73 °	0.36

TOTAL PARTICULATE WEIGHT : 0.3632 GRAMS

PARTICULATE CONCENTRATION

0.01641 6/AM3 0.00717 GRAINS/CF

FIVE STAGE SERIES CYCLONE PARTICLE SIZE TEST DATA

CITY AND PROVINCE : FORT MCMURRAY ALBERTA DATE : JUNE 18 1984 CLIENT : SYNCRUDE

TIME OF START : 12:02 SAMPLING LOCATION : MAIN STACK RUN-TEST NUMBER : 18-1 (RUN 4)

348.31 DSCF 9.864 NM3 TOTAL SAMPLE VOLUME:

AVERAGE SAMPLING RATE (STACK CONDITIONS): 1.607 ACFM 0.046 AM3/MIN

TOTAL IMPINGER CATCH: 1781.4 ML.

AVERAGE STACK TEMPERATURE: 454.5 DEG.F 234.7 DEG.C

100.6 % AVERAGE ISOKINETIC:

STACK GAS ANALYSIS

WET BASIS DRY BASIS MOLE PERCENT MOLE PERCENT 002 9.80 02 3.21 4.00 0.02 0.82 86.98 N2(BY DIFFERENCE) 69.84 H20 19.71 0.00 100.00 TOTAL

VISCOSITY OF STACK GAS: 243.817 MICROPOISE

CYCLONE STAGE NUMBER	NET PARTICULATE WEIGHT (GRAMS)	PERCENTAGE OF TOTAL PARTICULATE WEIGHT	CUMULATIVE PERCENTAGE	CUMULATIVE PERCENTAGE LESS THAN STATED DSD DIAMETER	DSD PARTICLE DIAMETER (UM)
i	0.1447	56.62	100.00	43.30	6.03
2 .	0.0244	9.54	43.38	33.64	2.55
3	0.0075	2.95	33.84	30.89	1.89
4	0.0042	1.64	30.89	29.2 5	0.70
5	0.0011	9.45	29.25	28.80	9.36
FILTER	0.0736	28.80	28.80		

TOTAL PARTICULATE WEIGHT: 0.2556 GRANS

PARTICULATE CONCENTRATION

0.01169 G/AM3 0.00511 GRAINS/CF

FIVE STAGE SERIES CYCLONE PARTICLE SIZE TEST DATA

CLIENT : SYNCRUDE

CITY AND PROVINCE : FORT MCMURRAY ALBERTA

- DATE : 30ME 19 1984

SAMPLING LOCATION : MAIN STACK RUN-TEST NUMBER : 19-1 (RUN 5)

TIME OF START : 10:32

TOTAL SAMPLE VOLUME:

347.93 DSCF 9.353 NM3

AVERAGE SAMPLING RATE (STACK CONDITIONS): 1.610 ACFM 0.046 AM3/MIN

TOTAL IMPINSER CATCH:

1847.1 ML.

AVERAGE STACK TEMPERATURE:

450.0 DEG.F 232.2 DEG.C

AVERAGE ISOKINETIC:

100.3 %

STACK GAS ANALYSIS

CONSTITUENT	WET BASIS MOLE PERCENT	DRY BASIS MOLE PERCENT
C 02	7.17	4.DO
02	3.19	4.00
00	0.02	0.02
N2(BY DIFFERENCE)	69.32	86.98
H20	20.31	0.00
TOTAL	100.00	100.00

VISCOSITY OF STACK GAS: 242.433 MICROPOISE

CYCLONE STAGE NUMBER	NET PARTICULATE WEIGHT (GRAMS)	PERCENTAGE OF TOTAL PARTICULATE WEIGHT	CUMULATIVE PERCENTAGE	3	CUMULATIVE PERCENTAGE LESS THAN STATED DSD DIAMETER	DSC PARTICLE DIAMETER (UM)
1	0.1788	47.28	100.00		52.72	4,55
2	0.0417	11.04	52.72		41.68	2,51
3	0.0148	3.91	41.68		37.76	1,82
4	0.0074	1.96	37.76		35.61	0.69
5	0.0457	12.09	35.81		23.72	0.36
FILTER	0.0697	23.72	23.72			

TOTAL PARTICULATÉ WEIGHT : 0.3781 GRAMS

PARTICULATE CONCENTRATION

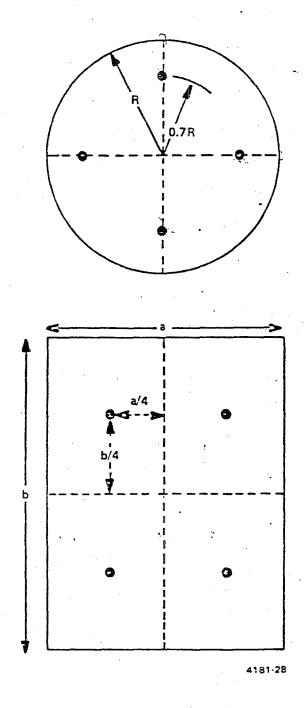
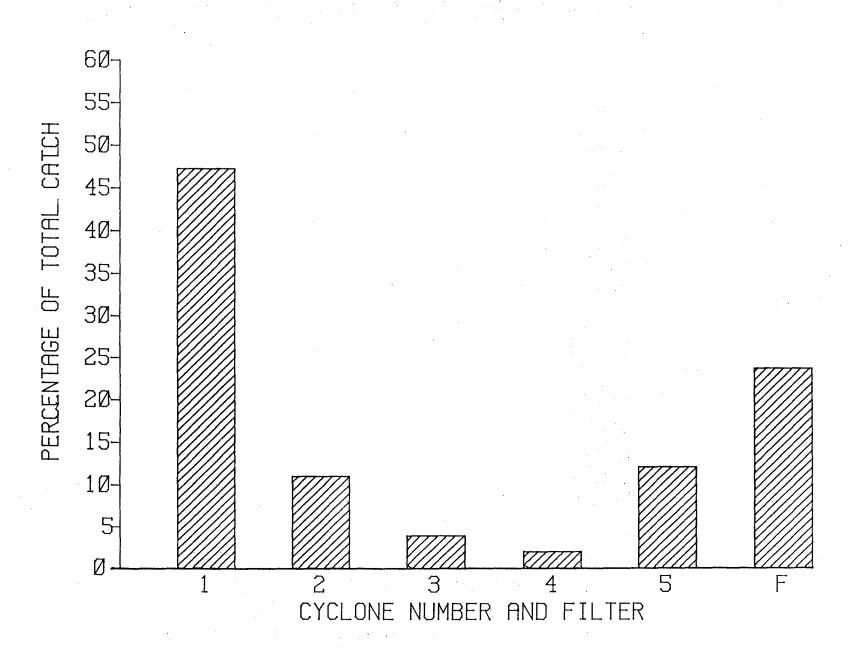
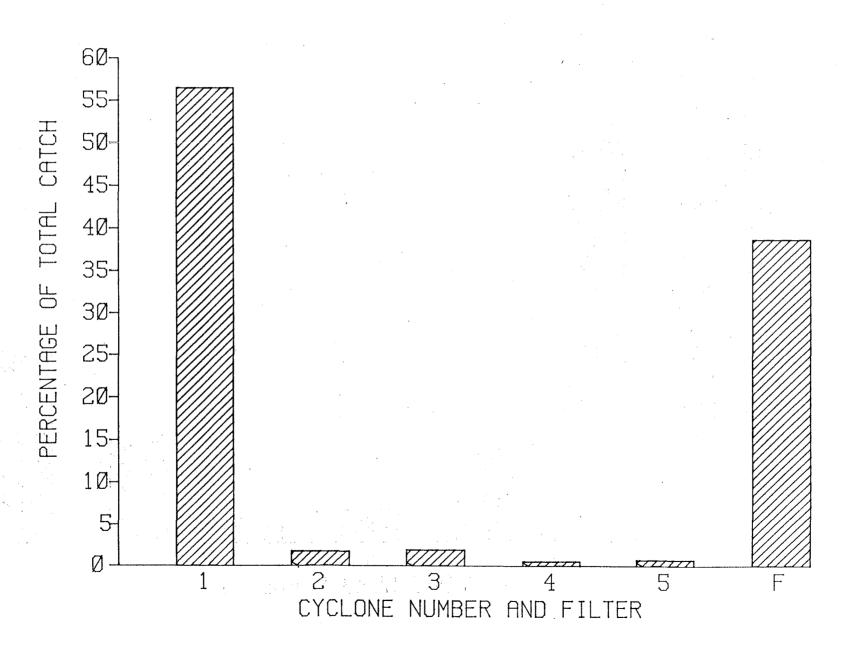
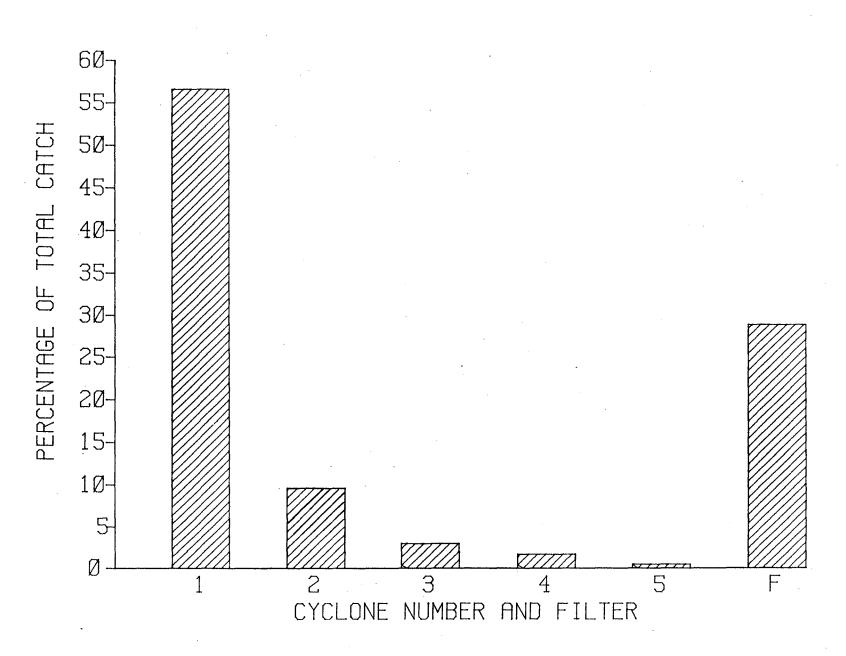




Figure 4. Recommended sampling points for circular and square or rectangular ducts.


RUN #5 PARTICLE SIZE DISTRIBUTION

RUN #2 PARTICLE SIZE DISTRIBUTION

RUN #4 PARTICLE SIZE DISTRIBUTION

APPENDIX III

Process Documentation and Assignable Trend Summary

Appendix III contain proprietary process and technical data and has therefore been withheld.

APPENDIX IV

Miscellaneous Background Documentation

47-20118-84-165

Analysis of Source Samples Provided by Concord Scientific

for

Concord Scientific 2 Tippett Road Downsview, Ontario M3H 2V2

Attention: Mr. P. Fellin

A.R. Kean Associate Research Scientist Environmental and Chemical Engineering Division

July 17th, 1984

SHERIDAN PARK RESEARCH COMMUNITY

MISSISSAUGA, ONTARIO, CANADA L5K 1B3 * (416) 822-4111 * TELEX 06-982311

WE. THE ONTARIO RESEARCH FOUNDATION STIPULATE THAT THIS DOCUMENT IS SUBJECT TO THE FOLLOWING TERMS AND CONDITIONS

ANY PROPOSAL CONTAINED HEREIN WAS PREPARED FOR THE CONSIDERATION OF THE ADDRESSEE ONLY ITS CONTENTS MAY NOT BE USED BY NOR DISCLOSED TO

ANY OTHER PARTY WITHOUT OUR PRIOR WRITTEN CONSENT
ANY TESTING, INSPECTION OR INVESTIGATION PERFORMED BY US WILL BE CONDUCTED IN ACCORDANCE WITH NORMAL PROFESSIONAL STANDARDS NEITHER WE NOR OUR EMPLOYEES SHALL BE RESPONSIBLE FOR ANY LOSS OR DAMAGE RESULTING DIRECTLY OR INDIRECTLY FROM ANY DEFAULT, ERROR OR OMISSION

ANY REPORT, PROPOSAL OR QUOTATION PREPARED BY US REFERS ONLY TO THE PARTICULAR MATERIAL, INSTRUMENT OR OTHER SUBJECT REFERRED TO IN IT NO ANY REPORT, PROPOSAL OR QUOTATION PREPARED BY US REFERS ONLY TO THE TANGOLD MATERIAL STATES OF THE REPRESENTATION IS MADE THAT SIMILAR ARTICLES WILL BE OF LIKE QUALITY

4 NO REPORT ISSUED BY US SHALL BE PUBLISHED IN WHOLE OR IN PART WITHOUT OUR PRIOR WRITTEN CONSENT

5 OUP NAME SHALL NOT BE USED IN ANY WAY IN CONNECTION WITH THE SALE OFFER OR ADVERTISEMENT OF ANY ARTICLE, PROCESS OR SERVICE.

6 WE RESERVE THE RIGHT NOT TO COMMENCE AND OR CONTINUE ANY WORK UNTIL PAYMENT ARRANGEMENTS SATISFACTORY TO US ARE ESTABLISHED.

TABLE I
Mercury Analysis of Permanganate Impingers

Method of Analysis	ORF #	Client Identification	Concentration ug/Bottle
Cold Vapour	84-1270	02543	0.0084
Atomic Absorption	84-1271	02544	0.065
Spectrophotometry	84-1272	02545	0.011
	84-1273	02546	0.054
	84-1274	02547	0.018
	84-1275	02548	0.20
	84-1276	02559	0.033
·	84-1277	02609 ¹	0.013
	84- 1278	02612 1	0.0053
	84-1279	02615 1	0.0042

¹⁻ Solutions were clear - i.e., no KMnO₄ excess

no $K_2Cr_2O_7$ preservative

TABLE II
Mercury Analysis of Solution

Method of Analysis	ORF #	Client Indentification	Concentration µg/mL
Cold Vapour	84-1280	02538	<0.00002
Atomic Absorption	84-1281	02539	<0.00002
Spectrophotometry	84-1282	02540	0.00006
	84-1283	02541	0.00035
	84-1284	02542	0.00006
	84-1285	02549	0.00003
	84-1286	02560	0.00005
	84-1287	02618	0.00014
	84-1288	02621	0.00019
	84-1289	02624	0.00013
	84-1290	02627	<0.00004
	84-1291	02630	0.00028
	84-1292	02633	<0.00005

Insufficient $K_2Cr_2O_7$ added to overcome reducing power of solution. 1 mL 10% $K_2Cr_2O_7$, 1 mL HNO $_3$ added to all bottles in this series. 72 hr. wait prior to sampling.

TABLE III
Arsenic, and Selenium Analysis of Solutions

Method of Analysis	ORF #	Client Identification	Concentration P 9/mL		
			As	Se	
Hydride	84-1293	02533	<0.0005	0.001	
Generation Atomic	84-1294	02534	<0.0005	<0.001	
Atomic Absorption	84-1295	02535	<0.0005	0.0042	
Spectrophotometry	84-1296	02536	<0.0005	<0.001	
	84-1297	02537	<0.0005	<0.001	
	84-1280	02538	<0.0005	0.0047	
	84-1298	02558	<0.0005	0.0011	
	84-1299	02586	<0.0005	0.0059	
•	84-1300	02590	0.0006	.0.0049	
	84-1301	02593	0.0006	0.0047	
	84-1302	02594	<0.0005	0.0048	
	84-1303	02598	<0.0005	0.0049	
	84-1304	02602	<0.0005	0.0054	
**************************************	84-1305	02603	<0.0005	0.0040	
	84-1306	02606	<0.0005	0.0041	

Sample contained dichromate - Solution also analysed for Hg

TABLE IV
Lead, and Cadmium Analysis of Solutions

Method of Analysis	ORF #	Client Identification	Concent ug/m	tration
			PБ	Cd
Flame	84-1307	02550	<0.01	0.001
Atomic Absorption	84-1308	02551	<0.01	0.001
Spectrophotometry	84-1309	02552	<0.01	0.001
	84-1310	02553	<0.01	<0.001
4 4 4	84-1311	02554	<0.01	0.001
	84-1312	02555	<0.01	0.001
	84-1313	02557	<0.01	0.001
•	84-1314	02561	<0.01	<0.001
	84-1315	02564	<0.01	<0.001
	84-1316	02565	<0.01	0.001
	84-1317	02569	<0.01	<0.001
	84-1318	02573	<0.02	0.001
	84-1319	02577	<0.01	0.003
	84-1320	02580	<0.02	0.001
•	84-1321	02581	<0.01	0.001
	84-1322	02585	<0.01	0.001

TABLE V

PULTIELEMENT ANALYSIS OF FILTERS AND SOLIDS (MEIGMABLE)

METHOL	Γ	···			EONCEN	T P A T I D	¥ 10/0			
Di ANALYSIS	ELEMENT	OUR #84-1323	QUR #84-1324	QUE #84-1325	OUR #84-1326	OUR PE	1-1327	OUR #04-1328	GUR #84-1329	SUR #84-1330
		tour #02644	Your #02645	Your #02650	Your #02651	Your A)2656(e)	Your #02659	Vour #0266()	Your #02664
DCP(a)	Co	3.4	3.7	.2.4	2.3	24	35	71	₹70 0	50
	Zn	- 26	27	65	54	22	28	91	850	160
	P	110	150	38	37	126	161	190	< 4,000	< 100
	Se .	0.3	0.4	0.3	0.3	0.7	0.9	2.2	< 20 0	< 5
	51	1,430	1,890	260	430	460	16,500	18,800	17,000	11,000
	fe	7,660	10,500	8,050	7,090	7,200	10,500	23,800	39,000	10,900
	Mr.	140 14,200	146 18.900	78	85	220	309	1,000	1,000	330
	6	•	1	2,260	2,912	1,280 500	2,220	2,550	<4,000	2,000
	Mg	3,210 13	6,190 13	9.9	720	13.6	850	1,090	1,600	800
	Cu Al	1,560	1,630	760	8.4 660	8.190	22 13,280	106	< 700	60 11,100
	7	28	27	30	38	1,570	2,610	15,180 2,380	28,000	
İ	No.	9.2	7.7	3:9	4.0	113	180	130	3,500 < 2.000	1,780 120
l	Ri	11	12	11	13	400	870	200	2,100	\$80
	Cr	8		9	5	9.8	48	140	< 700	90
[100	410	430	170	190	1,430	1.660	2,900	26.000	2.500
	Ba	22	24	6.3	6.9	47	76	100	< 200	63
	71	. 87	83	39	41	360	2.370	3,560	5,500	1,820
!	27	2.9	3.0	1.8	1.7	16	100	95		
	Sn	5	,	2.1	2.3	4.9	8.7	415	300	58
FAA(b)	Cat	0.2	0.4	0.2	0.3	0.9	< 5	4	< 700 < 200	€20 €5
	Po	10	10	5.0	7.0	17.5	-20	415	< 700	
	Ag	≪0.5	< 0.5	< 0.5	< 0.5	< 1		13	< 400	<20 <10
MGAA(c)	As	1.82	2.62	1.74	1.52	2.5		7.3	27	5.7
[Se	0.16	0.16	0.11	0.13	2.3		12.8	56	14
CAW(G)	149	0.029	0.024	<0.004	0.004	< 0.01		0.77	3.5	0.29
METHOD										
	1				CORLER	TRATIO	N <u>wa/g</u>			
ANALYSIS	ELEMENT	QUR +64-1331	OUR #84-1332	OUR #84-1333	OUR +84-1334	OUR #84	-1335	OUR #64-1336		05R =84-1338
	ELEMENT	QUR +84-1331 Your +02665	OUR #84-1332 Your #02669	OUR #84-1333 Your #02670			-1335	OUR =84-1336 Your #02703	QUR #84-1337 Your #02707	06R =64-1338 Your #02711
	ELEMENT				OUR +84-1334	OUR #84	-1335			
ANALYSIS		Your +02665	Your +02669	Your #02670	OUR +84-1334 Your =02695	OUR #84 Your #0	-1335	Your /02703	Your #02707	Your #02711
ANALYSIS	So .	Your +02665	Your +02669 70	Your #02670 210	OUR +84-1334 Your =02695	OUR #84 Your #0 <10	-1335	Your /02703	*Our #02707 <10	Your #02711
ANALYSIS	Co Zn	Your =02665 <200 800	Yaur +02669 70 110	Your #02670 210 250	OUR +84-1334 Your =02695 <10 40	0UR #64 Your #0 <10 40	-1335	*10 \$0	¥9ur #02707 <10 \$0	Your #02711 <10 \$0
ANALYSIS	Co Zn P	**Tour =02665 <200 800 <1,000	70 70 110 120	70ur #02670 210 250 <300	OUR +84 - 1334 Your =02695 <10 40 <50	0UR #64 Your #0 «10 40 «50	-1335	<10	**************************************	Your #02711 <16 50 60
ANALYSIS	Co 2n P Be	Your #02665 <200 800 <1,000 < 60	70 110 120 < 4	210 250 <300 < 20	OUR +84 - 1334 Your +02695 <10 40 <50 < 3	0UR 104 Your st <10 40 <50 < 3	-1335	<pre></pre>	**************************************	<pre>Your #02711 <10 50 60 < 3</pre>
ANALYSIS	Co Zn P Be Si	Your =02665 <200 800 <1,000 < 60 23,000	70 110 120 < 4 9,200	210 250 <300 < 20 21,000 47,100 5,000	OUR +84-1334 Your =02695 <10 40 <50 < 3 650 80 <10	OUR #84 Your #0 <10 40 <50 < 3 \$90 70	-1335	*10	Vour 902707 <10 50 <50 < 3 <60 60 <10	<pre>Your #02711 <10 50 60 < 3 130 70 <10</pre>
ANALYSIS	Co Zn P Be Si Fe	Your *02665 <200 800 <1,000 < 60 23,000 31,000	70 70 110 120 4 4 9,200 21,900 4,500 1,960	210 250 <300 < 20 21,000 47,100 5,000 2,800	OUR +84-1334 Your =02695 <10 40 <50 < 3 650 80 <10 6,680	OUR #84 Your #0 <10 40 <50 < 3 \$90 70 <10	-1335	Veur #02703 <10	**************************************	Your #02711 <10 50 60 < 3 130 70 <10 6,200
ANALYSIS	Co 2n P Be Si Fe Hn Ca	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900	70	210 250 <300 < 20 21,000 47,100 5,000 2,800 1,340	OUR +84-1334 Your =02695 <10 40 <50 < 3 650 80 <10 6,680 2,810	OUR #84 Your #0 <10 40 <50 < 3 \$90 70 <10 \$,400 2,300	-1335	Year #02703 <10	Vour 902707 <10 \$0 <50 <3 <60 80 <10 \$,900 2,300	Your #02711 <10 50 60 < 3 130 70 <10 5,200 2,450
ANALYSIS	Co Zn P Be Si Fe Hn Ca Ng	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200	700 +02669 70 110 120 < 4 9,200 21,900 4,500 1,950 780 170	210 250 <300 < 20 21,000 47,100 5,000 2,800 1,340	OUR +84-1334 Your =02695 <10 40 <50 < 3 650 80 <10 6,680 2,810 <10	CUR #84 Your #0 <10 40 <50 < 3 \$90 70 <10 \$,400 2,300 <10	-1335	Year #02703 <10 \$0 <\$0 <\$3 460 70 <10 5,900 2,600 <10	Vour 902707 <10 \$0 <50 <3 <60 80 <10 \$,900 2,300 <10	Your #02711 <10 50 60 < 3 130 70 <10 5.200 2.450 <10
ANALYSIS	Co Zn P Be Si Fe Hn Ca Hg Cu	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900	700 +02669 70 110 120 < 4 9,200 21,900 4,500 1,950 780 170 10,700	210 250 <300 < 20 21,000 47,100 5,000 2,800 1,340 1,210	OUR +84-1334 Your =02695 <10 40 <50 < 3 650 80 <10 6,680 2,810 <10 3,430	OUR #84 Your #1 40 40 450 4 3 890 70 410 5,400 2,300 410 2,840	-1335	Year #02703 <10	Vour 902707 <10 \$0 <50 <3 <60 80 <10 \$,900 2,300 <10 2,360	Vour #02711 <10 50 60 < 3 130 70 <10 5,200 2,450 <10 2,450
ANALYSIS	Co Zn P Be Si Fe Hn Ca Hg Cu	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800	700	210 250 <300 < 20 21,000 47,100 5,000 2,800 1,340 1,210 19,600 2,300	OUR +84-1334 Your =02695 <10 40 <50 < 3 650 80 <10 6,680 2,810 <10 3,430 <10	OUR #84 Your #1 40 450 43 890 70 410 5,400 2,300 410 2,840	-1335	Year #92703 <10	Vour 902707 <10	Your #02711 <10 50 60 < 3 130 70 <10 5,200 2,450 <10 2,450 -10
ANALYSIS	Co Zn P Be Si Fe Mn Ca Mg Cu Al V	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800 700	700	210 250 <300 < 20 21,900 47,100 5,000 2,800 1,340 1,210 19,600 2,300 450	OUR +84-1334 Your =02695 <10 40 <50 < 3 650 80 <10 6.680 2.810 <10 3.430 <10 <20	OUR #84 Your #1 40 450 43 990 70 410 5,400 2,300 410 2,840 610	-1335	Year #02703 -10 -50 -50 - 3 -460 -70 -10 -5,900 -2,600 -10 -3,320 -10 -30	Vour 902707 <10	Your #02711 <10 50 60 < 3 130 70 <10 6,200 2,450 <10 2,450 <10 -30
ANALYSIS	Co Zn P Be Si Fe thn Ca Hg Cu Al V	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800 700 1,300	700	210 250 300 20 21,900 47,100 5,000 2,800 1,340 1,210 19,600 2,300 450 7,370	OUR +84-1334 Your =02695 <10 40 <50 < 3 650 80 <10 6,680 2,810 <10 3,430 <10 <20 <10	QUR #84 Your #1 40 40 450 43 \$90 70 410 5,400 2,300 410 2,840 410 430 410	-1335	Year #02703 -10 -50 -50 - 3 -460 -7010 -5,900 -2,60010 -3,320103010	Vour 902707 <10 \$0 <50 <3 <60 80 <10 \$,900 2,300 <10 2,360 <10 <30 <10	Your #02711 <10 50 60 < 3 130 70 <10 6,200 2,450 <10 2,450 <10 30 <10
ANALYSIS	Co 2n P Be Si Fe thn Ca Mg Gu Al V Mb	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800 700 1,300 300	700	210 250 <300 < 20 21,000 47,100 5,000 2,800 1,210 19,600 2,300 450 7,370 5,190	OUR +84-1334 Your =02695 <10 40 <50 < 3 650 80 <10 6,680 2,810 <10 3,430 <10 <20 <10 <10 <10 <10	QUR #84 Your #1 40 40 40 40 43 890 70 410 5,400 2,300 410 410 430 410	-1335	Year #02703 -10 -50 -(50 -(3) -480 -70 -(10 -5,900 -2,600 -(10 -3,320 -(10 -(30 -(10 -(10) -(10	Vour 902707 <10 \$0 <50 <3 <60 80 <10 \$,900 2,300 <10 2,350 <10 <30 <10 <10 <10 <10 <10 <1	Your #02711 <10 50 60 < 3 130 70 <10 6,200 2,450 <10 2,450 <10 <30 <10 <10 <10
ANALYSIS	Co 2n P Be Si Fe Mn Ca Mg Cu Al V Mb Hi Cr Na	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800 700 1,300 300 -12,000	700	210 250 300 20 21,000 47,100 5,000 2,800 1,340 1,210 19,600 2,300 450 7,370 5,190	OUR +84-1334 Your =02695 <10 40 450 < 3 650 80 <10 6,680 2,810 <10 3,430 <10 <20 <10 <10 <22,000	0UR #84 Your #1 40 40 40 40 40 70 410 5,400 2,300 410 410 430 410 410 410 410 410 410 410 41	-1335	Year #02703 -10 -50 -50 -50 -70 -10 -5,900 -10 -3,320 -10 -10 -10 -10 -21,000	Vour 902707 <10	Your #02711 <10 50 60 < 3 130 70 <10 5,200 2,450 <10 2,450 «10 <10 <10 110
ANALYSIS	Co Zn P Be Si Fe Mn Co Mg Cu Al V Mb Bi Cr Ra Ba	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800 700 1,300 300 -12,000 130	700	210 250 300 20 21,000 47,100 5,000 2,800 1,340 1,210 19,600 2,300 450 7,370 6,190 7,000	OUR +84-1334 Your =02695 <10 40 <50 <3 650 80 <10 6,680 2,810 <10 3,430 <10 <10 <10 22,000 51	0UR #84 Your #1 40 40 450 43 \$90 70 410 2,300 410 2,840 610 610 610 610 610 610 610 61	-1335	Year #02703 <10	Vour 902707 <10	Your #02711 <10 50 60 < 3 130 70 <10 \$,200 2,450 <10 2,450 <10 <10 <10 <10 19,000 44
ANALYSIS	Co Zn P Be Si Fe Mn Co Mg Cu Al V Mb Cr Ra Ba Ti	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800 700 1,300 300 -12,000 130 4,500	Your +02669 70 110 120 < 4 9,200 21,900 4,500 1,960 780 170 10,700 1,600 < 50 1,980 2,800 3,880 50 1,500	70ur 902670 210 250 <300 < 20 21,000 47,100 5,000 2,800 1,340 1,210 19,600 2,300 450 7,370 5,190 7,000 100 3,660	OUR +84-1334 Your =02695 <10 40 <50 <3 650 80 <10 6,680 2,810 <10 3,430 <10 <20 <10 <10 <21 <10 <21 <22,000 51 <3	0UR #84 Your #1 40 40 450 43 890 70 410 5,400 2,300 410 430 410 410 410 410 410 410 410 41	-1335	Year #92703 <10	Vour 902707 <10 50 <50 <3 <60 80 <10 5,900 2,300 <10 2,360 <10 <30 <10 <10 <10 <10 <10 <1	Your #02711 <10 50 60 < 3 130 70 <10 5,200 2,450 <10 2,450 <10 -2,450 <10 -10 -30 <10 19,000 44 3.3
ANALYSIS	Co Zn P Be Si Fe Hn Co Ng Cu Al V No Ri In In In In In In In In In In In In In	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800 700 1,300 300 -12,000 130 4,500 190	700	70ur 902670 210 250 <300 < 20 21,000 47,100 5,000 2,800 1,340 1,210 19,600 2,300 450 7,370 5,190 7,000 100 3,660 410	OUR +84-1334 Your =02695 <10 40 <50 <3 650 80 <10 6,680 2,810 <10 3,430 <10 <20 <10 <10 <20 51 <3 5	OUR #84 Your #1 40 450 43 890 70 410 5,400 2,300 410 40 410 410 410 410 410 41	-1335	Year #02703 -10 -50 -50 -<-3 -480 -70 -10 -5,900 -2,600 -10 -3,320 -10 -20 -10 -10 -21,000 -46 -<-3 -<-3 -<-3	Vour 902707 <10 \$0 <50 <3 <60 80 <10 5,900 2,300 <10 2,360 <10 <30 <10 <40 <40 <40 <40 <40 <40 <4	Your #02711 <10 50 60 < 3 130 70 <10 5,200 2,450 <10 2,450 «10 <30 «10 <30 «10 <30 «10 <30 «10 <30 «10 <30 «10 <30 «10 «10 30 «10 «10 30 «10 «10 30 «10 «10 30 «10 «10 30 »
AMALTSIS DCP(a)	Co Zn P Be Si Fe Hn Ca Mg Cu All V Ho Sti Cr Na Be Ts Zr Sn	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800 700 1,300 300 -12,000 130 4,500 190 <200	700	70ur 902670 210 250 <300 < 20 21,000 47,100 5,000 2,800 1,340 1,210 79,600 2,300 450 7,370 5,190 7,900 100 3,660 410 - 90	OUR +84-1334 Your =02695 <10 40 <50 <3 650 80 <10 6,680 2,810 <10 3,430 <10 <20 <10 22,000 51 <3 5 <10	OUR #84 Your #1 40 450 43 890 70 410 5,400 2,300 410 410 410 410 410 410 410 4	-1335	Year #02703 -10 -50 -503 -460 -7010 -5,900 -2,60010 -3,32010301010 -21,000463333310	Vour 902707 <10 \$0 <50 <3 <60 80 <10 \$,900 2,300 <10 2,360 <10 <10 <10 <10 <10 <10 <10 <	Your #02711 <10 50 60 < 3 130 70 <10 5.200 2,450 <10 2,450 <10 <30 <10 <10 19,000 44 3.3 <3 <10
ANALYSIS	Co Zn P Be Si Fe thn Co Mg Cu All V Mo Si Cr Ja Be Ti Zr Sn Cd	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800 700 1,300 300 -12,000 130 4,500 190 <200 <50	700	70ur 902670 210 250 <300 < 20 21,000 47,100 5,000 2,000 1,340 1,210 19,600 2,300 450 7,370 6,190 7,000 100 3,660 410 - 80 60	OUR +84-1334 Your =02695 <10 40 <50 <3 650 80 <10 6,680 2,810 <10 <30 <10 <20 <10 <10 <20 <10 <10 <20 <10 <10 <20 <10 <20 <10 <20 <10 <20 <10 <20 <10 <20 <3 <40 <40 <40 <40 <40 <40 <40 <40 <40 <40	OUR #84 Your #1 40 450 43 590 70 410 5,400 2,300 410 430 410 430 410 430 430 430 430 430 430 430 43	-1335	Year #02703 -10 -50 -503 -460 -7010 -5,900 -2,600103010101021,00046333	Vour 902707 <10 50 <50 <3 <60 80 <10 \$,900 2,300 <10 2,360 <10 <30 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	Your #02711 <10 50 60 < 3 130 70 <10 6,200 2,450 <10 2,450 <10 <30 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1
AMALTSIS DCP(a)	Co Zn P Be Si Fe thn Ca Mg Cu All V Mo Hi Cr Ita Be Ti Zr Sn Cd Pb	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800 700 1,300 300 -12,000 1,900 4,500 190 <200 <200 <50 <200 <50 <200	Your #02669 70 110 120 < 4 9,200 21,900 4,500 1,960 780 170 10,700 1,600 <\$0 1,800 2,800 3,080 \$0 1,500 \$6 <20 < 5 <20	70ur 902670 210 250 <300 < 20 21,900 47,100 5,000 2,800 1,210 19,600 2,300 450 7,370 5,190 7,900 100 3,660 410 - 90 60 190	OUR +84-1334 Your =02695 <10 40 <50 < 3 650 80 <10 6,680 2,810 <10 <3,430 <10 <10 <20 <10 <10 <10 <20 <10 <10 <10 <21 <20 <10 <10 <21 <20 <10 <10 <20 <10 <10 <21 <20 <10 <10 <21 <20 <10 <10 <21 <20 <10 <10 <21 <20 <10 <10 <21 <20 <10 <10 <21 <20 <10 <10 <21 <21 <20 <10 <10 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21	QUR #84 Your #1 40 450 43 \$90 70 <10 \$,400 2,300 <10 <10 <10 <10 <10 <10 <10 <	- 1335 2699	Year #02703 -10 -50 -505010 -5,90010101010101010 -	Vour 902707 <10 50 <50 <3 <60 80 <10 5,900 2,300 <10 2,360 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	Your #02711 <10 50 60 < 3 130 70 <10 6,200 2,450 <10 2,450 <10 <30 <10 <10 19,000 44 3.3 <3 <10 <3 10.6
EMALTSIS DCP(a) FAA(b)	Co Zn P Be Si Fe Hn Ca Hg Cu All V Ho Hi Cr Na Ba Ti Zr Sn Cd Pb Ag	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 -200 23,900 2,800 700 1,300 300 -12,000 130 4,500 190 <200 <50 <200 <100	700	70ur 902670 210 250 <300 < 20 21,000 47,100 5,000 2,800 1,210 10,500 2,300 450 7,370 5,190 7,800 100 3,660 410 - 90 60 190 < 20	OUR +84-1334 Your =02695 <10 40 <50 < 3 650 80 <10 6,680 2,810 <10 3,430 <10 <10 22,000 51 < 3 5 <10 < 3 410 < 5	QUR #84 Your #6 40 450 43 \$90 70 <10 \$,400 2,300 <10 <10 <10 <10 <10 <10 <10 <	- 1335 2699	Year #02703 -10 -50 -505010 -5,90010101010101010 -	Vour 902707 <10 50 <50 <3 -60 80 <10 5,900 2,300 <10 2,350 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	Your #02711 <10 50 60 < 3 130 70 <10 6,200 2,450 <10 2,450 <10 <10 <10 19,000 44 3,3 <10 <3 10,6 <5
AMALTSIS DCP(a)	Co Zn P Be Si Fe thn Ca Mg Cu All V Mo Hi Cr Ita Be Ti Zr Sn Cd Pb	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800 700 1,300 300 -12,000 1,900 4,500 190 <200 <200 <50 <200 <50 <200	700	70ur 902670 210 250 <300 < 20 21,900 47,100 5,000 2,800 1,210 19,600 2,300 450 7,370 5,190 7,900 100 3,660 410 - 90 60 190	OUR +84-1334 Your =02695 <10 40 <50 < 3 650 80 <10 6,680 2,810 <10 3,430 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	OUR #84 Your #0 40 40 450 43 \$900 70 410 \$,400 2,300 410 430 410 430 410 430 410 450 460 3 410 470 460 470 470 480 480 480 480 480 48	-1335 2699	Year #02703 -10 -50 -(50 -(3) -400 -70 -(10 -5,900 -2,600 -(10 -3,320 -(10 -(30 -(10 -(10 -(30 -(30 -(30 -(30 -(30 -(30 -(30 -(3	Vour 902707 <10 50 <50 <3 60 80 <10 5,900 2,300 <10 2,360 <10 <10 <10 <10 <10 <10 <10 <	Your #02711 <10
EMALTSIS DCP(a) FAA(b)	Co Zn P Be Si Fe thn Ca Mg Gu All V Mb Ri Cr Ra Ba Ti Zr Sn Gd Pb Ag As	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800 700 1,300 300 -12,000 130 4,500 190 <200 <100 12.5	700	70ur 902670 210 250 <300 < 20 21,000 47,100 5,000 2,800 1,340 1,210 19,600 2,300 450 7,370 5,190 7,000 100 3,660 410 - 90 60 190 <20 19	OUR +84-1334 Your =02695 <10 40 <50 < 3 650 80 <10 6,680 2,810 <10 3,430 <10 <10 22,000 51 < 3 5 <10 < 3 410 < 5	OUR #84 Your #0 <10 <50 <3 \$90 70 <10 \$,400 2,300 <10 <30 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	-1335 2699	Year #02703 -10 -50 -50 -50 -70 -10 -5,900 -2,600 -10 -3,320 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1	Vour 902707 <10 50 <50 <3 <60 80 <10 \$,900 2,300 <10 2,360 <10 <10 <10 <10 <10 <10 <10 <	Your #02711 <10
FAA(b)	Co Zn P Be Si Fe Mn Co Mg Cu Al V Mb Cr Na Ba Ti Zr Sn Cd Pb Ag As Se	Vour *02665 <200 800 <1,000 < 60 23,000 31,000 2,000 4,600 1,900 <200 23,900 2,800 700 1,300 300 -12,000 130 4,500 190 <200 <50 <200 <100 12.5	700	Your #02670 210 250 <300 < 20 21,000 47,100 5,000 2,800 1,340 1,210 19,600 2,300 450 7,370 5,190 7,000 100 3,660 410 - 90 60 190 <20 19 5	OUR +84-1334 Your =02695 <10 40 <50 <3 650 80 <10 6,680 2,810 <10 3,430 <10 <20 <10 <10 22,000 51 <3 5 <10 <10 <21 00 <10 <10 <10 <10 <10 <10 <10 <10 <10	OUR #84 Your #0 40 40 450 43 \$900 70 410 \$,400 2,300 410 430 410 430 410 430 410 450 460 3 410 470 460 470 470 480 480 480 480 480 48	-1335 2699	Year #02703 -10 -50 -(50 -(3) -400 -70 -(10 -5,900 -2,600 -(10 -3,320 -(10 -(30 -(10 -(10 -(30 -(30 -(30 -(30 -(30 -(30 -(30 -(3	Vour 902707 <10 50 <50 <3 60 80 <10 5,900 2,300 <10 2,360 <10 <10 <10 <10 <10 <10 <10 <	Your #02711 <10

⁽a) DC plasms emission spectrophotometry

⁽b) Flame atomic absorption spectrophotometry

⁽c) Hydride generation atomic absorption spectrophotometry

⁽d) Cold vapour atomic absorption spectraphotometry

⁽e) 1 mormal digestion

² special digestion

TABLE V (Con't)
MULTIELEMENT ANALYSIS OF FILTERS AND SOLIDS (WEIGHABLE)

ME THOS	1			(ONCENTRA	710N µg/g			
OF ANALYSIS	ELEMEN"	OUR #84-1339 Your #02715	OUR #84-1340 Your #02719	DUR #84-1341 Your #02722	OUR #84-1342 Your #02723	OUR #84-1343 Your #02727	OUR #84-1344 Your #02731	OUR #84-1345 Your #02735	OUR #64-1346 Your #92734
DCF(A)	Co	<10	<10	<10	<10	<10	<10	<10	<10
	Zn	30	50	40	20	40	50	30	30
		<50	- 110	150	: 130	80	80	80	<50
	Be .	<3	جع ح	<3	<3	<3	<3	<3	<3
	Sı	550	50	400	580	50	37 0	230	130
	Fe	60	2,690	2,350	1,640	3,370	1,070	1,040	990
	Mri	<10	80	70	50	90	30	30	! 30
	Ca	5,400	2,900	2,900	1,240	2,200	1,500	1,100	1,300
	Mg	2.330	1,090	1,340	480	890	570	.410	480
	C.	<10	<10	<10	<10	<10	<10	<10	<10
	A1	2,990	2,640	2,730	1,850	3,210	1,390	1,310	1,180
	l v	<10	220	200	190	310	100	110	80
	Mo	<30	<30	<30	<30	<30	<30	<30	<30
	100	<10	60	50	70	80	20	40	20
	Cr	<10	<10	<10	<10	<10	∢10	<10	<10
	100	20,000	17.000	17,000	15,000	16,300	17,600	15,300	16,800
	B4	45	33	37	42	39	26	26	22
	Ti	-3	170	140	110	240	57	66	5 5
	2+	7	8.2	7.7	8.1	13	خ ا	· <5	<5
	Sn	<10	<10	<10	<10	<10	<10	<10	<10
FAL, E)	Ca	- 3	3	دع	ા	હ	હ	હ	<3
,-,	Pc	<10	e10	<10	<10	<10	10	<10	<10
	Ag	6	6	6	<5	6	6	<5	<5
Hida (c)	As	0.3	2.4	2.4	2.3	2.3	1.8	1.6	1.3
	Se	0.95	6.3	7.2	7.9	6.0	7.0	6.4	7.8
CVAA: d)	Mg	€0.03	€0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
•									

Ot .		7					T 1 0 ₩ μg/g	1	T
Ue≟. ▼S1S	ELEMENT	OUR #84-1347 Your #02739	OUR #84- Your #02		OUR #84-1 Your #027	349 744 (e) 2	OUR #84-1350 Your #02761	OUR #84-1351 Your #02762	OUR #84-1352 Your #02763
XF.e;	Co	<10	21	20	20	20	<10	<10	<10
	2n	30	4,500	4,310	4,220	4,370	20	30	50
	P	<50	7,700	7,450	6,990	7,500	<50	<50	<50
	Be	<3	2.3	2.3	2.2	2.2	٠3	<3	ं उ
	51	50	17,500	104,000	17,100	107,000	70	180	330
	Fe	1,040	32,700	38,800	30,500	38,500	30	40	50
	Ran	30	740	780	720	790	<10	<10	<10
	Ca	2,800	57,700	60,200	50,600	59,100	82 0	1,600	1,300
	Ng	1,100	6,500	7,420	5,890	7,720	360	-640	470
		<10	560	620	560	630	<10	<10	-10
	į At	2,140	12,400	30,000	12,100	31,300	370	\$000	. 450
	' v	100	104	101	104	102	<10	<10	<10
	1 100	430	35	69	33	69	<30	70	-30
•	an .	30	51	54	50	53	<10	<10	e10
	(F	<10	101	260	121	300	₹10	•10	e10
		16,500	3.030	3,380	3,140	2,990	13,000	13,600	14,000
	Se .	37	408	706	590	711	35	22	20
	Ts	71	1.340	3,720	1.070	3,640	ડ	ų v	+3
	2-	5	14	163	13	180	-3	43	-5
	! Se	-10	150	108	130	113	<10	•10	410
w,:	Ce	<3	81	62	73	77	-3		1 43
	Pb .	<10	5.180	5.780	5.310	5.810	₹10	410	<10
	44	-5	7.0	-	6.5		-5	-3	- 5
۽ علي	As	1.6	110		113	-	0 33	0.5	0.3
	' Se	6.9	16.5	1 .	17.0		15	0.8	1.4
ء سا	. ~5	₹0.02	1.3	1 .	1.2	-	0.04	≪ 0 02	0.04

TABLE V (Con't)

MULTIELEMENT ANALYSIS OF FILTERS AND SOLIDS (WEIGHABLE)

METHOD OF		CONCEN	TRATION ug	1/0	
ANALYSIS	ELEMENT	OUR # 84-1353 Your #2764	OUR # 84-1354 Your # 2765	OUR # 84-1355 Your # 2766	OUR # 84-1356 Your # 2767
DCP(a)	Co	<10	<10	<10	<10
	Zn	40	20	20	30
	P	<50	<50	<50	<50
	Be	<3	<3	<3	<3
	Si	<50	240	<50	<50
	Fe	350	110	30 0	480
	Mn .	20	10	100	50
	Ca	380	330	30 0	320
	Mg	120	100	110	100
	Cu	37	<10	<10	22
	IA .	110	100	120	90
	V	<10	<10	<10	<10
	Mo	< 30	<30	<30	<30
	Ni	60	10	20	40
	Cr	30	10	20	40
	Na	20.700	21,000	24,700	21,300
	Ba	<3	<3	6	<3
	Ti	4	<3	3.3	3.6
	Zr	4	4	3	8
	Sn.	<10	· <10	<10	<10
FAA(b)	Cd	<3	<3	<3	<3
	Pb	<10	15	<10	<10
	Aç	8	<5	<5	<5
HGAA(c)	As	2.9	2.9	2.3	2.3
	Se	2.4	1.0	2.1	1.0
CVAA(d)	Ħş	0.06	<0.02	<0.02	<0.02

TABLE VI BULLTIELEMENT ANALYSIS OF SOLUTIONS AND SOLIDS (NON-MEIGHABLE)

METHOT				CONCE	HTRATION	ug/bottle			
WAT A212	ELEMEN"	DUK #84-1357 Your #02522	OUR #84-1358 Your #02523	OUR #84-1359 Your #02524	OUR #84-1360 Your #02525	OUR #84-1361 Your #02526	OUR #84-1362 Your #02527	OUR #84-1363 Your #02528	OUR #84-1364 Your #02529
DCP(a)	Co.	11	14	2	3	2	3	2	2
	Zn	6	17	3	5	6	6	4	4
	•	12	25	ત	6	5	. 6	6	6
	Se .	€0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	S1.	160	530	48	24	52	49	\$5	43
	Fe	970	2,070	220	450	240	70	2	5
	Mn .	260	1,020	310	190	47	21	्र	1 <1
	د م	77	230	. 54	69	10	140	14	16
	Mg	24	80		•	1	6	c 1	1
	Cu	110	79	. 39	7	•	1	<1	<1
	Al	.200	950	18	51	12	13	3	4
	٧	22	120	,	4	ंदी	त	- 4 1	<1
	Mo	10	22	<3	<3	43	<3	(<3	<3
	Mi	550	580	50	58	36	41	el el	<1
	Cr	130	240	18	78	34	70	جا	c 1
	1 100	110	210	<50	<50	<50	<50	<50	<50
*	Ba .	0.8	5.0	0.10	0.79	<0.3	1.4	<0.3	≪0.3
	Ti	33	240	1.5	6.0	1.0	0.6	0.5	0.7
	2r	8.7	12	0.4	0.8	1.6	€0.3	€0.3	<0.3
	Sn	5		<1	1 1	<1	<1	<1	ব
FAA(b)	Ca	1.1	1.4	<0.3	<0.3	2.2	€0.3	<0.3	<0.3
	PS	3	5	41	1	4	1	दी	<1
	Ag	0.9	1.0	1.1	40 .5	<0.5	≈0.5	40 .5	<0.5
MGAA(c)	As	0.28	8.49	0.05	0.05	0.05	0.03	<0.03	≪0.0 3
• - •	Se	0.17	0.77	<0.05	<0.05	≪0.0 5	<0.05	≪0.0 5	<0.05
EVAA(d)	Mg	0.043	9.072	0.016	<0.007	≪9.007	<0.007	- - 2.80 7	<0.007

METHOD OF	<u></u>			CONCE	RTRATION	ve/bottle			
AMALYSIS:	ELEMENT	QUR #84-1365 Your #02530	OUR #84-1366 Your #02531	OUR #84-1367 Your #02532	OUR #84-1368 Your #02556	OUR #84-1369 Your #02636	GUR #84-1370 Your #G2661	OUR #84-1371 Your #02662	OUR #84-1372 Your #02663
DCP(a)	Co	2	2	2	2	3	< 1	< 1	< 1
	Zn	7	2	4		2	1	< 1	2
	P	17	9	5	5	7	< 5	- < 5	< 5
	Be	<0.3	≪0.3	<0.3	₹0.3	€0.3	< 0.3	< 0.3	< 0.3
	Si	72	50	44	33	10	340	- 140	9
	Fe	46	11	50	<1	2	370	160	15
i	Min	1	् व	2	41	<1	111	6	< 1
	Ca .	200	21	130	13	.23	38	13	€ 5
	Mg		2		<1	ব	17	7	< 1
	Cu	<1.	্ব] 1	13	ব	5	3	1
	A1	14	7	14	1	<u><1</u>	250	100	4
	Y	1	41	1	۹ .	ব	27	- 11	< 1
	Mo	. <3	<3	<3	<3	<3	<3	<3	< 3
	Mi	390	1	\$60	<1	्र ।	13	- 10	1
	Cr	4	1	6	41 .	ব	3	4	2
	14	54	50	<\$0	<50	<50	<\$0	< \$ 0	450
	•	0.5	₹0.3	0.7	<0.3	. < 0.3	1.5	0.6	< 0.3
	Ti	1.9	1.1	2.2	0.9	< 0.3	65	23	0.8
	2r	0.5	<0.3	<0.3	₹0.3	< 0.3	1 1	₹ •0.3	< 0.3
	Sn	e) .	<1	1	<1	4	2	2	<1
FAA(b)	Cd	2.3	≪0.3	2.1	≪0.3	₹0.3	€.3	♥.3	< 0.3
	Po	2	<1	ব	ব	1		ंब	< 1
	Ag	<0.5	₹0.5	0.6	<0.5	€0.5	€0.5	♥.5	< 0.5
HGAA (c)	As	<0.03	<0.03	₹0.03	<0.03	<0.03	0.11	0.05	< 0.03
	Se	<0.05	<0.05	<0.05	<0.05	<0.05	≪0.05	₹0.05	< 0.05 \
CVAA(a)	Mg	<0.007	<0.007	46.00 7	40.007	40.007	40.007	<9.007	< 0.007

⁽a) DC plasms emission spectrophotometry

⁽b) Flame atomic absorption spectrophotometry

⁽c) Hydride generation atomic absorption spectrophotometry

⁽d) Cold vapor atomic absorption spectrophotemetry

TABLE VI (Con't)
MULTIFLEMENT ANALYSIS OF SOLUTIONS AND SOLIDS (NON-WEIGHABLE)

ETHO:					TRATION				
1515	ELEMEN:	OUR #84-1373 Your #02666	OUR #84-1374	OUR #84-1375 Your #02668	OUR #84-1376 Your #02671	OUR #84-1377 Your #02672	OUR #84-1378 Your #02673	OUR #84-1379 Your #02689	OUR #84-1350 Your #02690
D(P(a)	Co	.1	٠,	1	را	ا ہ	1	8	26
,	2n	٠1	2	-1	1	(< 1	1	48	220
	٠. ا	٠.5	< 5	6	4.5	~ 5	< 5	27	110
	ne l	< 0.3	< 0.3	0.05	0.05	< 0.05	0.05	0.15	0.4
	51	330	120	5	510	120	< 5	1,470	3,510
	i ie	300	180	24	480	100	1	2,820	5,450
	Man I	30	16	«1	14	3	< 1	120	260
	G	35	19	< 5	74	13	<1	410	4,240
	R _C	15	,	4.1	27	6	<1	150	740
	1	3) 3	c. 1	2	1	< 1	6	32
	41	210	95	2	420	86	د ۱	1,760	2,280
		22	10	«1	39	8	<1	260	460
	Pic	. 3	3	.1	- 1	તી	<1	14	30
	, a,	13	15	3	18	6	<3	110	3,100
	Cr	7	111	4	8	2	<1	13	125
	Be	-5 0	450	< 50	60	< 50	< 50	450	870
		1.4	0.6	< 0.3	2.4	0.5	. ≪ 0.3	6.2	23
	7,	50	18	0.6	77	15	0.3	270	670
	2,	1.0	< 0.3	< 0.3	1.5	< 0.3	< 0.3	6.2	12
	Sr.	2	2	1.0	2	2	1 1	3	,
FAA(b)	Ca	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.7	29
		1	<1	• 1	1	< 1	<1	6	98
	Ac	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5
MSAA(c)	As I	0.08	0.06	0.03	0.10	0.05	0.03	0.79	1.89
	Se Se	< 0.05	< 0.05	< 0.05	0.12	< 0.05	< 0.05	1,12	1.94
(5A4 (d)	MG	< 0.007	< 0.007	« 0.007	< 0.007	0.010	< 0.007	0.16	0.10

OF THE	İ			CONCER	TRATION	g/bottle			
AMALYSIS	ELEMENT	OUR #84-1381 Your #02691	OUR #84-1382 Your #02692	OUR #84-1383 Your #02693	OUR #84-1384 Your #02694	OUR #84-1385 Your #02749	OUR #84-1386 Your #02752	OUR #84-1387 Your #02755	OUR #84-1388 Your #02758
U(P(a)	ဖ	6.	9	3	7	1	< 1	< ì	< 1
	Zn	38	36	18	24	1	<1	175	47
	P	31	180	16	140	5	< 5	< 5	< 5
	Be	< 0.3	< 0.3	< 0.3	₹ 0.3	0.05	< 0.05	< 0.05	< 0.05
	S1	1,100	1,300	820	1,610	27	44	6 50	230
	Fe	2,030	1,800	1,070	1,600	ا ۽ ا	3-	356	95
	A9n	78	60	36	48	< 1	<1	45	12
	Ca	460	1,420	180	1,170	< 5	<5	מיוו (46
	Mg	1,480	170	74	140	ر ۽	<1	123	33
	Cu	6	31	4	16	ر 1	<1	< 1	< 1
	A1	1,870	1,560	1,050	1,630		4	180	5 0
	٧	270	250	140	220	ر ا	45	65	23
	₩o.	14	14	9	12	. 3	<3	< 3	< 3
	#Ri	97	4,270	44	2,730	٦ - ١	<1	69	17
	Cr	. 9	20	8	13	1	<1	40	9
	No.	1,800	430	450	380	<50	170	2,000	570
	Ba	13	30	11	54	<0.3	<0.3	42	11
	Ti	280	240	150	240	0.4	0.4	0.4	0.6
	2r	6.8	4.6	3.0	5.2	<0.3	<0.3	<0.3	< 0.3
	\$n	4	4	3	5	1	1	48	14
FAA(b)	6	0.4	24	<0.3	15	<0.3	<0.3	<0.3	< 0.3
	Po	5	33	3	38	3	51	49	12
	Ag	0.6	< 0.5	<0.5	1.3	<0.5	<0.5	<0.5	< 0.5
MGAA(c)	As	1.21	1.06	0.68	0.90	< 0.03	0.03	0.03	< 0.03
	Se	2.04	1.86	1.94	1.69	₹0.05	112	₹0.05	0.07
CVAR(d)	₩g	0.48	0.43	0.19	0.11	<0.007	50.4	<0.007	< 0.007

REPORT ON THE ANALYSIS OF FILTER MEDIA, SOLIDS AND SOLUTION SAMPLES (REFERENCE C.S.C. FILE NO. 110.J449)

Prepared for:
Concord Scientific Corporation
2 Tippet Road
Downsview, Ontario
M3H 2V2

Prepared by:
Barringer Magenta Limited
304 Carlingview Drive
Rexdale, Ontario
M9W 5G2

TABLE 1

Details of Analytical Procedures Employed

Sample Type	Parameter	Sample Volume Taken	Final Digestate Volume	Conversion*Factor	Final <u>Units</u>
Impinger Solutions	Pb, Cđ	50 ml	10 m1	0.2	ug/mL
Impinger Solutions	As, Se	10 ml	10 ml	1.0	ug/mL
Impinger Solutions	Нд	25 ml	25 ml	1.0	ug/ml
Acetone Washes	Full Metals	Entire Sample	50 ml	0.53 (#2503)	ug/ml
				0.43 (#2520)	
				0.42 (#2642)	
·				0.31 (#2643)	
Filters	Hg	1 Section (1/12)	25 ml	300	ug/filter
Filters	Other Metals	2 Sections (1/6)	25 ml	150	ug/filter
Solids	Hg	0.250 g	25 ml	100	ug/g
Solids	Other Metals	0.250 g	25 ml	100	ug/g
Probe Rinses	Full Metals	N/A	N/A	1	ug/ml

^{*} Factor by which the digestate solution concentration, in ug/ml, must be multiplied to get result in "final units".

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

(416) 675-3870

3750 - 19TH STREET SUITE 105 CALGARY, ALBERTA T2E 6V2 (403) 276-9701

FILE: T4\$0398A DATE: 12/07/84 MATRIX: SULNS.

CONCORD SCIENTIFIC (P. FELLIN) IMPINGER SOLUTIONS - PB & CD

NO NO: 84-0398

FAGE:

SAMPLE	PR	CD
II	UG/ML	UG/ML
SAMPLE #2489	<.01	<.002
SAMPLE #2517	<.01	<.002
SAMPLE #2563	<.01	<.002
SAMPLE #2563	<.01	<.002
SAMPLE #2567	<.01	<.002
SAMPLE #2571	<.01	<.002
SAMPLE #2571	<.01	<.002
SAMPLE #2575	<.01	<.002
SAMPLE #2576	<.01	<.002
SAMPLE #2579	<.01	<.002
SAMPLE #2583	<.01	<.002
SAMPLE #2583	<.01	<.002
SAMPLE #2641	<.01	<.002
BLANK	<.01	<.002
ERA STD.	.10	.120
ERA (CERT.)	.16	.159
NBS #1643A	.03	.008
NBS (CERT.)	.03	.010
REPT. #2563	<.01	<.002

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

(416) 675-3870

3750 - 19TH STREET SUITE 105 CALGARY, ALBERTA T2E 6V2 (403) 276-9701

FILE: T4\$0398B DATE: 12/07/84 MATRIX: SOLNS.

CONCORD SCIENTI	TFIC (P. F	ELLIN) IMPIN	NGER SÓLUTIONS - A	S & SE	שט סש	84-0398	 FAGE:	1
SAMPLE ID	AS UG/ML	SE UG/ML						
SAMPLE #2484 SAMPLE #2500 SAMPLE #2502 SAMPLE #2513 SAMPLE #2514	<.001 .001 <.001 .001 .002	<.001 .001 <.001 <.001 .001						
SAMPLE #2515 SAMPLE #2588 SAMPLE #2588 SAMPLE #2589 SAMPLE #2589	<.001 .003 .004 .004	<.001 <.001 <.001 <.001 <.001					:	
SAMPLE #2592 SAMPLE #2596 SAMPLE #2596 SAMPLE #2600 SAMPLE #2600	.003 .003 .003 .003	.001 <.001 .001 <.001 <.001						
SAMPLE #2601 SAMPLE #2601 SAMPLE #2605 SAMPLE #2608 SAMPLE #2637	.003 .003 .002 .002 <.001	<.001 <.001 <.001 <.001 <.001						
SAMPLE #2638 SAMPLE #2640 BLANK REPT. #2601 EFA STD.	.002 <.001 <.001 .004 .095	.001 <.001 .001 <.001 .067						
FRA (CERT.) MBS #1643A NBS (CERT.)	.071 .010 .011	.077 .083 .076						

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

(416) 675-3870

3750 - 19TH STREET SUITE 105 CALGARY, ALBERTA T2E 6V2 (403) 276-9701

FILE: T4\$0398C DATE: 12/07/84 MATRIX: SOLNS.

CONCORD SCIENTIFIC (P. FELLIN) IMPINGER SOLUTIONS - HG

WO NO: 84-0398

PAGE:

SAMPLE	HG
ID	UG/ML
SAMPLE #2505	.00024
SAMPLE #2509	.00024
SAMPLE #2611	.00028
SAMPLE #2614 SAMPLE #2617	.00016
SAMPLE #2623	<.00004
SAMPLE #2623	<.00004
SAMPLE #2626	<.00004
SAMPLE #2629	<.00004
SAMPLE #2632	<.00004
SAMPLE #2635	<.00004
SAMPLE #2639	.00004
BLANK	<.00004
HLANK + SPK.	.00040
#7611 + SPK.	.00068

.00044

#2632 + SPK.

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

(418) 675-3870

3750 - 19TH STREET SUITE 105 CALGARY, ALBERTA T2E 6V2 (403) 276-9701

FILE: T4\$0398D DATE: 12/07/84 MATRIX: SOLNS.

CONCORD SCIENTIFIC (P. FELLIN) IMPINGER SOLUTIONS - VOLUMES

WO NO: 84-0398

PAGE:

SAMPLE	VOLUME
ID	ML
SAMPLE #2484	41.5
SAMPLE #2489	101.0
SAMPLE #2500	96.0
SAMPLE #2502	37.0
SAMPLE #2503	95.0
SAMPLE #2505 -	22.0
SAMPLE #2509	33.5
SAMPLE #2513	48.0
SAMPLE #2514	138.0
SAMPLE #2515	75.0
SAMPLE #2517	95.0
SAMPLE #2520	115.0
SAMPLE #2637	90.0
SAMPLE #2638	116.0
SAMPLE #2639	45.0
SAMPLE #2640	93.0
SAMPLE #2641	100.0
SAMPLE #2642	120.0
SAMPLE #2643	160.0

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

(416) 675-3870

3750 - 19TH STREET SUITE 105 CALGARY, ALBERTA T2E 6V2 (403) 276-9701

FILE: T4\$0398E DATE: 12/07/84 MATRIX: SOLNS.

CONCORD SCIENT	IFIC (P. F	ELLIN) ACE	TONE RINSE	SOLNS	FULL METAL	SCAN		MO M	3: 84-0398		F	AGE:	1
SAMPLE ID	AG UG/ML	AG(AA) UG/ML	AL UG/ML	AS UG/ML	E UG/ML	RA UG/ML	RE UG/ML	CA UG/ML	CD UG/ML	CD(AA) UG/ML	CO UG/ML		
SAMPLE #2503 SAMPLE #2520 SAMPLE #2642 SAMPLE #2643 BLANK	<.003 <.003 <.003 <.003 <.005	<.005 <.005 <.005 <.005 <.005	<.005<.004<.009<.003<.01	<.001 <.001 <.001 <.001 <.001	<.002 <.002 .004 <.001 <.004	<.003 <.003 <.003 <.003 <.005	<.0003 <.0003 <.0003 <.0003 <.0005	.026 .024 .071 .023 <.01	<.005 <.005 <.005 <.005 <.01	<.005 <.005 <.005 <.005 <.005	<.03 <.02 <.02 <.02 <.05		
REPT. #2503	<.003	<.005	<.005	<.001	<.002	<.003	<.0003	.008	<.005	<.005	<.03		
	4				* ****		•						
SAMPLE ID	CR UG/ML	CU UG/ML	FE UG/ML	HG UG/ML	UG/ML	MG UG/ML	MN UG/ML	MO UG/ML	NA UG/ML	NI UG/ML	F UG/ML	•	
SAMPLE #2503 SAMPLE #2520 SAMPLE #2642 SAMPLE #2643 BLANK	<.005 <.004 .007 .004 <.01	<.004 <.003 <.003 <.002 .035	.016 .017 .061 .021 <.01	.0015 .0033 .0012 .0048 <.0005	<.5 <.5 <.5 <.1	<.005 <.005 .014 .004 <.01	<.005 <.005 <.005 <.005 <.01	<.10 <.10 <.10 <.2	6.2 <.5 7.1 .6 <1	<.03 <.03 <.03 <.03 <.05	<.3 <.3 <.3 <.5		
REPT. #2503	<.005	<.004	<.005	.0008	<∙.5	<.005	<.005	<.1	6.0	<.03	<.3		
						*		14.5	÷				
				•	e Marine de la companya de la compan	* 4 * **							
SAMPLE II	₽B UG/ML	SE UG/ML	SI UG/ML	SN - UG/ML	SR UG/ML	TH UG/ML	TI UG/ML	UG/ML	ZN UG/ML	ZR UG/ML			
SAMPLE #2503 SAMPLE #2520 SAMPLE #2642 SAMPLE #2643 BLANK	<.03 <.03 <.03 <.03 <.03	<.001 <.001 <.001 <.001 <.001	.06 <.03 <.03 <.05	<.5 <.5 <.5 <.5 <.5	<.0005 <.0005 <.0005 <.0005 <.001	<.03 <.03 <.03 <.03 <.03 <.05	<.003 <.003 <.003 <.003 <.005	<.003 <.003 <.003 <.003 <.005	<.03 <.03 <.03 <.03 <.03 <.14	<.03 <.02 <.02 <.02 <.05			
REPT. #2503	<.03	<.001	<.03	<∙5	.0008	<.03	<.003	<.003	<.03	<.03			

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

(416) 675-3870

3750 - 19TH STREET SUITE 105 CALGARY, ALBERTA T2E 6V2 (403) 276-9701

FILE: T4\$0398F DATE: 12/07/84 MATRIX: FILTERS

CONCORI) SCIEN	TIFIC (P.	FELLIN) FI	LTER SAMPL	ES - FULL	METAL SCAN			MO	NO: 84-039	8		AGE:	1
 SAMPLE II		AG UG/FILT.	AG(AA) UG/FILT.	AL UG/FILT.	AS UG/FILT.	B UG/FILT.	BA UG/FILT.	RE UG/FILT.	CA UG/FILT.	CD UG/FILT.	CD(AA) UG/FILT.	CO UG/FILT.		
SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	\$2700 \$2704 \$2708	<.8 <.8 <.8 <.8	<2 <2 <2 <2 <2 <2	2320 3030 2020 1160 2900	·2 ·2 ·2 ·2 ·2	71200 96100 59500 34300 88100	37.7 52.1 36.6 21.9 52.4	<.07 <.07 <.07 <.07 <.07	4500 5990 3950 2350 5840	<2 <2 <2 <2 <2 <2	₹2 ₹2 ₹2 ₹2 ₹2	<8 <8 <8 <8		
SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	\$2720 \$2724 \$2726	<.8 <.8 <.8 <.8	<2 <2 <2 <2 <2 <2	2860 3960 2630 1710 4240	2.3 1.6 1.4 4.9	96100 47600 30900 14800 8240	50.7 49.1 45.3 34.7 54.8	<.07 <.08 <.07 <.07 <.07	5840 3040 2250 1240 2200	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2	<8 <8 <8 <8 13	· .	
SAMPLE SAMPLE SAMPLE SAMPLE	#2736 #2738	<.8 <.8 <.8 <.8	<2 <2 <2 <2 <2	1930 2090 1400 1420	1.8 1.4 1.1 2.0	15900 9450 19100 10600	42.6 49.4 31.8 37.1	<.07 <.07 <.07 <.07	1460 1660 1280 1430	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	<8 <8 <8 <8	:	
SAMPLE ID		CR UG/FILT.	CU UG/FILT.	FE UG/FILT.	HG UG/FILT.	UG/FILT.	MG UG/FILT.	MN UG/FILT.	MO UG/FILT.	UG/FILT.	UG/FILT.	UG/FILT.		
SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	\$2700 \$2704 \$2708	6 8 8 7 9	5 6 6 13 4	62 86 53 53 79	.39 1.56 .06 <.01 .41	1000 1400 900 500 1400	1970 2520 1690 1040 2370	2 2 2 2 2 2 3	<30 <30 <30 <30 <30	16600 21900 15700 11200 21500	17 8 18 43 13	<80 <80 <80 <80 <80		
SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	#2720 #2724 #2726	8 11 11 9 17	13 3 2 4	64 2910 1720 1540 5200	.95 1.04 .18 .34	1400 1000 800 500 1200	2350 1370 943 436 904	2 79 47 42 131	<30 <30 <30 <30 <30	21600 20400 22100 17800 21700	16 89 83 68 150	<80 <80 <80 90 <80		
SAMPLE SAMPLE SAMPLE SAMPLE	\$2736 \$2738	13 10 6 7	2 3 4 2	1520 1470 855 878	.84 .20 .39 .21	700 800 300 600	538 594 485 502	43 41 24 25	<30 <30 <30 <30	23800 21900 15400 13800	56 86 42 43	<80 <80 <80 <80		

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

(416) 675-3870

3750 - 19TH STREET SUITE 105 CALGARY, ALBERTA T2E 6V2 (403) 276-9701

FILE: T4\$0398F DATE: 12/07/84 MATRIX: FILTERS

PAGE:

CONCORD SCIEN	TIFIC (P.	FELLIN) FI	LTER SAMPL	ES - FULL	METAL SCAN			WO	ND: 84-039	8
SAMPLE ID	PB UG/FILT.	SE UG/FILT.	SI UG/FILT.	SN UG/FILT.	SR UG/FILT.	TH UG/FILT.	TI UG/FILT.	V UG/FILT.	ZN UG/FILT.	ZR UG/FILT.
SAMPLE #2696 SAMPLE #2700 SAMPLE #2704 SAMPLE #2708 SAMPLE #2712	<10 <10 <10 <10 <10	.2 .4 .2 .2 .2	167 170 160 105 197	<50 <50 <50 <50 <50	4.3 5.4 3.4 2.2 5.0	<8 <8 <8 <8	<.8 <.8 <.8 <.8 1.1	<.8 <.8 <.8 <.8	47 55 89 106 93	<8 <8 <8 <8 <8
SAMPLE #2716 SAMPLE #2720 SAMPLE #2724 SAMPLE #2726 SAMPLE #2728	<10 <10 <10 <10 <10	9.7 6.3 4.7 8.2	188 1210 543 268 437	<50 <50 <50 <50 <50	5.1 17.4 13.9 11.9 25.5	<8 <8 <8 8	<.8 198 101 85.0 347	<.8 232 155 143 420	81 72 78 55 91	<8 11 <8 <8 13
SAMPLE #2732 SAMPLE #2736 SAMPLE #2738 SAMPLE #2740	30 <10 <10 <10	8.2 4.0 4.0 5.6	330 346 310 224	<50 <50 <50 <50	11.6 13.2 8.7 8.3	<8 10 <8 <8	88.8 97.7 55.2 59.4	133 149 83.9 83.8	77 75 52 58	<8 <8 <8

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

(416) 675-3870

3750 - 19TH STREET SUITE 105 CALGARY, ALBERTA T2E 6V2 (403) 276-9701

FILE: T4\$0398G DATE: 12/07/84 MATRIX: AQ-REG

CONCORD SCIENTI	FIC (P. F	FELLIN) SOL	ID SAMPLES	- FÜLL MET	AL SCAN			מא סש	84-0398	1	PAC	GE: 1
SAMPLE III	AG PPM	AG(AA) PPM	AL PPM	AS FPM	B PPM	BA PPM	RE PPM	CA PPM	CD PPM	CD(AA) PPM	CO FFM	
SAMPLE #2648 SAMPLE #2649 SAMPLE #2654 SAMPLE #2655 SAMPLE #2658	<.5 <.5 <.5 <.5 <.5	<1 <1 <1 <1 <1 <1 <1 <1 <1	2370 2130 691 766 11100	2.4 1.9 1.5 1.1 3.3	3020 2030 2030 2240 2630	32.1 21.3 8.4 6.5 59.7	.12 .06 <.05 <.05 <.05	11200 13700 1790 2290 1870	<1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1	<5 <5 <5 <5 25	
SAMPLE #2747 SAMPLE #2748 BLANK REPT. #2648 SY-2	2.4 2.1 <.8 <.5 <.5	6 <1 <1 <1	12900 13400 32 2010 4000	173 181 <.2 1.5 18.1	7000 7500 2770 1940 5710	139 165 <.8 21.8 30.1	1.06 1.07 <.07 .05 10.9	58000 61600 37 8570 35600	66 67 <2 <1 <1	52 53 <1 <1 <1	9 10 <8 <5 30	:
SY-2 SY-2 (CERT.) NBS #1645 NBS (CERT.) MESS-1	<.5 == ==	<1 	4980 64100 	18.1 18.0	5810 85.0 	38.4 460 	12.3 23.0 	38900 57000 	<1 == ==	<1 	28 11 	·
MESS (CERT.)					***		•••	8444 6444-				

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

(418) 675-3870

3750 - 19TH STREET SUITE 105 CALGARY, ALBERTA T2E 6V2 (403) 276-9701

FILE: T4\$0398G DATE: 12/07/84 MATRIX: AQ-REG

CONCORD SCIENTI	FIC (P. FE	LLIN) SOL)	(D SAMPLES	- FULL ME1	TAL SCAN			HO NO	84-0398		FA	GE: 2
SAMPLE ID	CR PPM	CU PPM	FE FPM	HG PPM	K PPM	MG PPM	MN FFM	MO PPM	NA PPM	NI PPM	F PPM	
SAMPLE #2648 SAMFLE #2649 SAMPLE #2654 SAMPLE #2655 SAMPLE #2658	13 15 13 9 18	10.1 7.9 13.5 7.5 13.3	16500 10900 11500 8190 9880	.14 <.02 <.02 <.02 <.02	300 300 100 200 1300	3650 3570 409 541 756	242 154 93 70 265	<20 <20 <20 <20 110	200 200 100 100 1300	23 19 26 21 504	220 150 <50 <50 110	
SAMPLE #2747 SAMPLE #2748 BLANK REPT. #2648 SY-2	75 74 7 42 7	570 580 <1.2 28.4 5.8	31500 31800 25 7180 23700	1.42 1.52 <.02 .06	4200 4300 <200 200 2000	5710 6110 6 2750 9800	669 722 <2 89 1320	20 <20 <30 <20 30	2000 2000 200 300 3200	60 64 <8 14 12	7830 7860 <80 180 1800	
SY-2 SY-2 (CERT.) NBS \$1645 NBS (CERT.) MESS-1	7 12 	5.3 5.0 	26300 43900 	.96 1.10 .19	2700 37200 	10600 16300 	1480 2480 	<20 <20 == ==	3800 32200 	9 10 	1810 1880 	· .
MESS (CERT.)				•17			****	·				

MESS (CERT.)

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

(416) 675-3870

3750 - 19TH STREET SUITE 105 CALGARY, ALBERTA T2E 6V2 (403) 276-9701

FILE: T4\$0398G DATE: 12/07/84 MATRIX: AQ-REG

CONCORD SCIENTI	FIC (P. FE	LLIN) SOL:	(D SAMPLES	- FULL MET	AL SCAN			NO NO	: 84-0398		FAGE: 3
SAMPLE ID	PB PPM	SE PPM	SI FPM	SN PPM	SR PFM	TH PPM	TI PPM	V PPM	ZN PPM	ZR PPM	
SAMPLE #2648 SAMPLE #2649 SAMPLE #2654 SAMPLE #2655 SAMPLE #2658	15 10 <5 <5 10	.3 .3 .3 .3 2.6	233 225 90 92 382	<10 <10 <10 <10 <10	16.7 14.4 4.9 5.6 81.5	<5 <5 <5 <5	65.2 71.3 31.3 35.3 474	34.2 29.5 40.7 45.1 1790	57 50 80 68 40	<5 <5 <5 <5 <20	
SAMPLE #2747 SAMPLE #2748 BLANK REPT. #2648 SY-2	6800 6600 <5 15 85	21.4 21.4 <.2 .3 <.2	673 656 49 176 731	127 140 <10 <10 <10	143 148 <.1 68.5 41.5	<5 <5 <8 <5 408	532 565 <.8 77.0 750	86.7 85.5 <.8 28.8 34.5	4360 4770 29 682 172	5 5 <8 <5 153	:
SY-2 SY-2 (CERT.) NBS #1645 NBS (CERT.) MESS-1	85 80 	<.2 	337 281000 	<10 -4 	45.1 275 	405 380 	782 839 	35.5 52.0 	176 250 	177 280 	

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

(416) 675-3870

3750...19TH STREET SUITE 105 CALGARY, ALBERTA T2E 6V2 (403) 276-9701

FILE: T4\$0398H DATE: 12/07/84 MATRIX: SOLNS.

CONCORD SCIENT	IFIC (P. I	FELLIN) FRO	BE RINSE S	SOLNS FUL	L METAL S	CAN		MO N	D: 84-0398		F:A	GE:	1
SAMPLE ID	AG UG/ML	AG(AA) UG/ML	AL UG/ML	AS UG/ML	£ Ug∕ml	BA UG/ML	RE UG/ML	CA UG/ML	CD UG/ML	CD(AA) UG/ML	CO UG/ML		
SAMPLE #2751 SAMPLE #2754 SAMPLE #2757 SAMPLE #2760 RLANK	<.005 <.005 <.005 <.005 <.005 <.005	<.01 <.01 <.01 <.01 <.01	<.01 <.01 2.06 .51 <.01	<.001 <.001 <.001 <.001 <.001	<.004 <.004 .005 <.004 <.004	<.005 <.005 496 .121 <.005	<.0005 <.0005 <.0005 <.0005 <.0005	<.01 .03 2.09 .49 .01	<.01 <.01 <.01 <.01 <.01	<.01 <.01 <.01 <.01 <.01	<.05 <.05 <.05 <.05 <.05		
ERA STD ERA (CERT.)	<.005 	<.01 	•52 •51	.095 .071	.326 .214	.159 .120	.168 .175	•12	.16 .16	•12 •16	.17 .19		
SAMPLE ID	CR UG/ML	CU UG/ML	FE UG/ML	HG UG/ML	K UG/ML	MG UG/ML	MN UG/ML	MO UG/ML	NA UG/ML	NI UG/ML	P UG/ML		
SAMPLE #2751 SAMPLE #2754 SAMPLE #2757 SAMPLE #2760 BLANK	<.01 <.01 .51 .12 <.01	<.008 <.008 <.008 <.008 <.008	<.01 <.01 4.64 1.11 <.01	.0040 .400 <.0005 .0005 <.0005	<1 <1 4 <1 <1	<.01 .02 1.48 .38 .03	<.01 <.01 .53 .13 <.01	<.2 <.2 <.2 <.2 <.2 <.2	<1 2 23 6 <1	<.05 <.05 .89 .22 <.05	<.55 <.55 <5 <5		
ERA STD ERA (CERT.)	.14 .15	.362 .352	•30 •26	2.09 2.20	<u><1</u>	.03	•23. •24:	•2 •3	<u><1</u>	•23 •26	<.5 		
SAMPLE ID	PB UG/ML	SE UG/ML	SI UG/ML	SN UG/ML	SR UG/ML	TH UG/ML	TI UG/ML	V UG/ML	ZN UG/ML	ZR UG/ML			
SAMPLE #2751 SAMPLE #2754 SAMPLE #2757 SAMPLE #2760 BLANK	<.05 .40 .45 <.05 <.05	<.001 1.40 <.001 <.001 <.001	<.05 <.05 10.1 2.38 <.05	<.01 <.01 .01 <.01 <.01	<.001 <.001 .001 <.001 <.001	<.05 <.05 <.05 <.05 <.05	<.005 <.005 <.005 <.005 <.005	<.005 .470 1.02 .222 <.005	<.05 <.05 2.20 .51 <.05	<.05 <.05 <.05 <.05 <.05			
ERA STD ERA (CERT.)	.10 .16	.067 .077	.10	•19 •22	<.001	<.05	• 254 • 269	•353 •356	.25 .16	<.05			

304 CARLINGVIEW DRIVE REXDALE, ONTARIO M9W 5G2

(416) 675-3870

3750 - 19TH STREET SUITE 105 CALGARY, ALBERTA T2E 6V2 (403) 276-9701

FILE: T4-0461 DATE: 25/07/84 MATRIX: AB

												,
CONCORD SCIEN	TIFIC (P.FEL	LIN)						111 J.	\$ 94-0461		FacE!	i
SAMPLE IU	AG MG/L	AL MG/L	B MG/L	BA MG/L	FE MG/L	CA MG/L	CD MG/L	CO MG/L	CR MG/L			
#1 H2O #2 H2O H2O BLK #1 AQ-REG #2 AQ-REG	<.005 <.005 <.005 <.005 <.005	<.01 <.01 <.01 <.01 .02	<.004 <.004 <.004 .221 .218	<.005 <.005 <.005 <.005 <.005	<.0005 <.0005 <.0005 <.0005 <.0005	.47 .36 <,01 .25 .14	4.01 4.01 4.01 4.01	4.05 4.05 1.05 4.05 4.05	0.01 0.01 0.01 0.01 0.01			
AQ-REG BLK	<.005	.01	.213	<.005	<.0005	.05	<.01	<.05	<.01			
				įŧ	4 1			:	e de la companya de l			
								*.				
SAMPLE ID	CU MG/E	FE MG/L	MOZE MOZE	MG MG/L	, MN MG/L	MO/L	⊢ NA MG/L	MG/L NI	F MG/L		:	
№1 H20 №2 H20 R20 BUK №1 AQ-REG ₩2 AQ-REG	<.008 <.008 <.008 <.023	<.01 <.01 <.01 .11 .15	<1 <1 <1 <1 <1 <1	.08 .05 0.01 .02 0.01	<.01 <.01 <.01 <.01 <.01 <.01	0.000000 0.000000000000000000000000000	(1 (1 (1 (1 (1 (1	<.05 <.05 <.05 <.05 <.05				
AG-REG BLK	<.009	.01	<1	<.01	<.01	< ; 2	<1	<+05	<.5			•
			1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -			: :						
SAMPLE ID	FB MG/L	SI MOZL	SR MOZL	TH MG/L	TI MG/L	MG/L	MG/L	ZR MG/L		*		
#1 H20 #2 H20 H20 BLK #1 AQ-PEG -*2 AQ-VEG	<.05 <.05 <.05 <.05 <.05	.08 .11 <.05 <.05 1,47	.004 .001 <.001 .003 <.001	<.05 <.05 <.05 <.05 <.05	<.005 <.005 <.005 -010 -031	.005 <.005 <.005 <.005 <.005	4.05 4.05 4.05 4.05 4.05	1.05 9.05 1.05 1.05 1.05	*) 			
AQ-REG FLX	<.05	1.44	<.001	C 05	005	<.005	5.40%	√y05	1 A			

DIAGNOSTIC RESEARCH LABORATORIES

1885 LESLIE STREET, DON MILLS, ONTARIO, CANADA M3B 3J4
TELEPHONE (416) 445-5809

TELEX 06-986947

CERTIFICATE OF ANALYSIS

TO: Concord Scientific Corporation 2 Tippett Road Downsview, Ontario M3H 2V2

Attn: P. Fellin

DATE SUBMITTED: June 26, 1984

REPORT #: 254

RE YOUR REF. #:

REF. FILE #: 248

SAMPLES SUBMITTED TO US FOR ANALYSIS SHOW RESULTS AS FOLLOW:

(see attached report)

DIAGNOSTIC RESEARCH LABORATORIES

CERTIFIED BY

ROY G. SMITH

DATE: July 13, 1984

STADFE	CD NG/ML	PB NG/ML
02562	<10	<20
02566	<10	<20
02568	<10	< 20
02570	<10	<20
02572	<10	<20
02574	<10	<20
02578	<10	<20
U25R2	<10	<20
02584	<10	<20
02750	<30	<30
02753	<30	490
02750	<30	490
J2759	<30	130

DIAGNOSTIC RESEARCH LABORATORIES 18-JUL-84 REPORT 254 REF. FILE 248 PAGE

SAMPLE	CD UG/G	PB UG/G
02646	<2	20
02647	<2	10
02652	<2	10
02653	< 2	20
02657	<2	24
02745	74	6440
02746	72	6380

SAMPLE	CO UG/TF	PB UG/TF
02697	<12	24
02701	<12	24
02705	<12	24
02709	<12	12
02713	<12	24
02717	<12	24
02721	<12	24
02725	<12	1.2
027 29	<12	24
02730	<12	24
02733	<12	12
02737	<12	12
02741	<12	24
02742	<12	12

DIATHOSTIC PESCARCH LABORATORIES, 18-JUL-84 REPORT 254 REF. FILE 248 PAGE

SAMPLE	AS NG/ML	SE NG/ML	NA NG/ML	SN NG/M	'L HG NG/ME	
02587	<1.0	2.5				
02591	<1.0	<1.0				
0 25 95	<1.0	1.5				
02596	<1.0	1.5				
02597	<1.0	1.0	 :			
0259 8	<1.0	1.5				
02599	<1.0	1.5				
02604	<1.0	1.5				
02607	< 1 • 0	1 • C				
02510					0.51	*
د 2013					0.41	
02616					20 • 4 ¢.	
J2019					C • 27	
J2622					0.07	
J 2 625					1.00	
92 628	·				1.73	
ე 2ა 31					0.31	
02634					1.52	
027 50	<3.0	<3.0	<400	<25	<c.20< td=""><td></td></c.20<>	
02753	<3.0	780.	1600	<25	48C.	
02756	<3.0	<3.0	<400	490	2.30	
J 27 59	<3.0	<3.0	4890	80	<c.20< td=""><td></td></c.20<>	

DIAGNOSTIC RESEARCH LAUDRATORIES 18-JUL-84 REPORT 254 REF. FILE 248 PAGE

SAMPLE	AS UG/G	SE UG/G	NA UG/C	SN UG/G	HG NG/5 -
02645	1.2	<0.2	130	<2	25.0
02647	1 • 2	0 • 2	14C	<2	25.0
02652	1.0	<0.2	7 0	<2	<5. 30
02653	1 • 2	<0.2	60	<2	10.0
02657	2.0	5.0	1450	< 2	5.00
02745	130.	34.0	1720	8.0	1100.
02746	130.	36.0	1720	8.5	990.

DIAGNOSTIC RESEARCH LABORATORIES 18-JUL-84 REPORT 254 REF. FILE 248 PACE A S

SAMPLE	AS UG/TF	SE UG/TF	NA UG/TF	SN UG/	TF HG NG/TF
U2697	<1.2	<1.2	27600	<12	<60.00
02701	<1.2	<1.2	2820C	<12	<60.00
02705	<1.2	<1.2	33000	<12	<60.00 °°
G2709	<1.2	<1.2	24603	<12	<60.00 °°
02713	<1.2	<1.2	31800	<12	<60.00
02717	<1.2	<1.2	27600	<12	<6C.00
02721	2 • 4	4 • 8	2460C	<12	<60.00
02725	2.4	4.8	21600	<12	<60.00
C 27 29	3.6	4.8	24600	<12	<60.0L
0273 <i>)</i>	3.6	4.3	22200	<12	<60.00
02733	2 • 4	4.8	21600	<12	<60. 00
Ú2737	2 • 4	6.0	22200	<12	<60.00
02741	2 • 4	3.6	25800	· <12	<60. 00
32742	2-4	3.5	23400	<12	<60.00

DIAGNOSTIC RESEARCH LABORATORIES 18-JUL-84 REPORT 254 REF. FILE 248 PAGE

SAMPLE	BE NG/ML	V NG/ML	ME NG/ML	CR NG/ML	MN NGZAL .
02750	5.0	5.0	<15	3.0	<15
027 53	<3.0	470.	<15	<3.0	<15
02756 02759	<3.0 <3.0	870. 230.	<15 <15	500. 130.	460 120

SAMPLE	FE NG/ML	CO NG/ML	NI NG/ML	CU NG/ML	ZN NG/mL	
02750	< 6	<10	<20	<3.0	13	-
02753	6	<10	<20	<3.0	<13	
02 7 50	3600	<10	870	<3.0	1630	
02759	930 -	<10	230	<3.0	49C	

SAMPLE	ZR	NG/ML	AG NG/ML	BA NG/ML	AL NG/ML	CA NG/ML	
02750		 <15	<15	<6.0	<15	<15	
02753		<15	<15	<6.0	<15	<15	
02756		<15	<15	400.	1600	1400 .	
02759		<15	<15	100.	41C	5 7 0	9.4

DIAGNOSTIC RESEARCH LABURATORIES 18-JUL-84 REPORT 254 REF. FILE 248 PAGE

SAMPLE	MG NG/ML	P NG/ML	ST NG/PL	TI NG/ML
02750	5	<130	15	<3
02753	< 5	<130	25	· <3
02756	1100	<130	7 500	5
02759	320	<130	2000	3

DIAGNOSTIC RESEARCH LABORATORIES 18-JUL-84 REPORT 254 REF. FILE 248 PAGE

SAMPLE	₿Ē UG/G	V UG/G	MD UG/G	CR UG/S	MN-UG/G
02646	0.2	32.C	8	12.0	134
02647	0 • 4	29.0	8	16.0	97
02652	0.2	46.0	6	12.0	89
02653	<0.2	43.0	8	12.0	153
02657	0.6	1840.	115	21.0	290
02745	2.0	92.0	36	106.	880
02746	2.0	92.0	36	104.	900

DIAGNOSTIC PESEARCH LABORATORIES 18-JUL-84 REPORT 254 REF. FILE 248 PAGE

SAMPLE	 Fë UG/G	CO UG/G	NI UG/G	CU UG/G	ZN UG/G
02640	11000	4,	17	6.4	28
02047	9270	2	22	7.4	54
02652	3850	2	22	8.6	63
02653	7270	3	1 3	8.4	32
02657	9270	32	557	16.0	2 7
02745	38800	20	7 â	572.	448C
02740	38000	20	74	572.	45 00

SAMPLE	ZR UG/G	AG UG/G	BA UG/G	AL UG/G	CA 06/6
02646	3	<1	23.0	1790	10600
02647	3	<1	22.C	1920	11700
02652	2	<1	7.0	715	2490
02653	· 2	<1	7.4	753	2 890
02657	10	<1	52.C	11400	1390
02745	4	3	260.	13400	52200
02746	2	8	252.	13100	53400

DIAGNOSTIC RESEARCH LABORATORIES 18-JUL-84 REPORT 254 REF. FILE 248 PAGE 14

SAMPLE	MG UG/S	P UG/G	SI UG/G	T1 UG/G	
02646	3370	11.0	<100	110	
02647	43 20	100	160	108	
02652	678	40	130	42	
02653	728	40	170	53	
02657	684	120	<100	518	
02745	6380	7120	<100	990	
02745	6220	7100	<100	843	

SAMPLE	BE UG/TF	V UG/TF	MO UG/TF	CR UG/TF	MN US/TE
02697	<1.2	7.2	<6	6.0	6
02701	<1.2	4.8	6	7.2	5
02705 02709	<1.2 <1.2	3.6 4.3	12 <6	6.0 4.8	6 6
02713	<1.2	6.0	6	4.8	t
02717	<1.2	3.6	< 6	5.0	6
J2721	<1.2	228.	24	10.8	9 0
02725	<1.2	144.	12	7.2	54
02729	<1.2	378.	30	20.4	138
02730	<1.2	390.	30	20.4	138
02733	<1.2	120.	12	4 • 8	42
02737	<1.2	132.	12	6.0	42
J2741	<1.2	108.	12	7 . 2	42
02742	<1.2	114.	12	8 . 4	42

DIAGNOSTIC RESEARCH LABORATORIES 18-JUL-84 REPORT 254 REF. FILE 248 PAGE 16

SAMPLE	FE UG/TF	CO UG/TF	NI UG/TF	CU UG/TF	ZN UG/TF	
02697	162	< 6	< 9°	2.4	42	-
02701	120	<6	< 9	2.4	42	
02705	126	< 6	9	2 • 4	4 8	
02709	102	6	9	2.4	3 6	
02713	132	<6	< 9	2.4	42	
02717	114	6	9	3.6	54	
02721	3000	12	99	3.6	60	
02725	1620	6	7 8	3.6	36	
02729	4710	18	150	7.2	4 8	
J2730	4740	18	156	4.8	48	
02733	1380	6	54	3.6	3 ∪	
32737	1330	12	7.6	3.6	36	
02741	1200	6	54	4 • 8	4 2	
02742	1260	12	54	3.6	42	

SAMPLE	ZR UG/TF	AG UG/TI	BA UG/TF	AL UG/TF	CA UG/TF	
02697	< 6	< 6	78.0	47 90	10600	
32701	< 6	< 6	78.0	4790	10600	
02705	< 5	< 6	90.0	5620	13000	
02709	< 6	<6	66.0	4120	9400	
02713	· <6	< 6	84.0	5720	12500	
02717	< 5	< 6	78.0	4630	10800	
02721	12	< 6	72.0	3760	5270	
02725	6	< 6	50.0	2390	3150	
02729	12	< 6	72.0	4540	45 56	
02730	12	< 6	60.0	4130	3470	
02733	<₽	< 6	42.0	2000	2350	
02737	6	< 6	60.0	2410	3160	
02741	6	< 6	72.0	3280	56 60	
02742	<6	< 6	56.0	2970	4880	

SAMPLE	MG:UG/TF.	P UG/TF	SI UG/TF	TI UG/TF
02697	4250	<60	1070	24
02701	4330	<60	1100	24
02705	51 00	< 60	1010	24
02709	3760	< 60	7 50	24
02713	497 0	<6 0	1210	36
02717	4300	<60	930	24
02721	2090	60	82C	192
02725	1300	<60	1710	120
02729	1840	60	1520	3 36
02730	1400	<6 0	1340	360
02733	940	<60	1450	103
J2737	1250	60	1160	108
02741	2270	<60	1450	96
02742	1960	<60	1100	96

Type A Glass Fiber Filters

■ High tensile strength. ■ Excellent handling characteristics. • Good wetting properties. • Minimum of 99.9% retention for particles of .3 µm as determined by DOP tests. . Binder free.

This is the original glass fiber filter pioneered by Gelman Instrument Company over 15 years ago. It continues to be widely used for high volume sampling. Since zinc is one of the raw materials incorporated in the glass fibers, Type A Filters have a variable zinc content. Another component of the filter, sulfuric acid, is used as a dispersion medium, making the sheets unsuitable for measurement

Type A Glass Fiber Filters are less likely to develop static charge or tear than other glass fiber media types. They are used extensively in applications where zinc and iron content is not important, or where sulfate content is not being

Size	37 mm	47 mm	102 mm	8"x10"
Product No.	61715	61694	61696	61701
Filters/Pkg.	500	100	100	100

TYPE A GLASS FIBER FILTER **SPECIFICATION REPORT**

The following physical/chemical properties represent typical, average values obtained in accordance with accepted test methods. They are subject to normal manufacturing variations and are supplied as a technical service. The analysis has been made in accordance with EPA procedures (micrograms/8" x 10" sheet).

ELEMENTS:

Antimon 20	Manager 2000
Antimony30	Manganese200
Arsenic	Mercury100
Beryllium1	Molybdenum 10
Bismuth10	Nickel10
Cadmium	Selenium
Chromium10	Tin10
Cobalt	Titanium170
Copper	Vanadium10
Iron	Zinc5000
Lead20	to 25,000
OTHER PH	YSICALS:
BSO522	Flow Resistance (Max.)
*pH	@ 320 cm/min 80 mm
DOP @320/cm/min	Flow Rate (air)
(ASTM Method 298699.9%	Ipm/cm ² @ 70 cm Hg50
	Max. Use Temp
Tensile Strength	
(Fed. Spec. UUP31B)750 gr	Static PropertiesLow
Weight,	Ability to
8"x10" sheet	FoldExcellen

WATER EXTRACTABLE IONS:

Sulfate100	Chloride	1500
Nitrate50		
Ammonia20		

*pH-Gelman Procedure:

A. 500 ml distilled water.

Add 15 drops saturated KCl solution
 Shred one 8"x10" sheet and soak in prepared water for

D. Run pH at ambient temperature

Type A/E Glass Fiber Filters

 Low trace metals.
 Medium Handling characteristics. Available in all sizes.
Minimum of 99.9% retention for particles of .3 µm as determined by DOP tests. ■ Bind-

Type A/E Glass Fiber Filters are composed of low acid soluble glass fiber. They contain low levels of both zinc and iron. The filters do react with atmospheric sulfur dioxide; and therefore, when high levels of sulfur are expected, corrections for this reaction should be accounted for.

Type A/E Glass Fiber Filters are binder free and ideal for gravimetric analysis of air pollutants. This pure, organic free filter is the basis for procedures widely used in determining municipal and industrial air polluting substances.

Size	25 mm	37 rnm	47 mm	102 mm	8"x10"
Product No.	61630	61652	61631	61633	61638
Filters/Pkg.	500	500	100	,100	100

TYPE A/E GLASS FIBER FILIER SPECIFICATION REPORT

The following physical/chemical properties represent typical, average values obtained in accordance with accepted test methods. They are subject to normal manufacturing variations and are supplied as a technical service. The analysis has been made in accordance with EPA procedures (micrograms 8" x 10" sheet).

ELEMENTS:				
Antimony	Manganese2			
Arsenic20	Mercury80			
Beryllium1	Molybdenum			
Bismuth	Nickel10			
Cadmium	Selenium			
Chromium10	Tin10			
Cobalt	Titanium			
Copper	Vanadium10			
Iron100-1800	Zinc			
Lead10	•			
OTHER PH	IYSICALS:			
BSO522	Flow Resistance (Max.)			
*pH	@ 320 cm/min 80 mm			
DOP @320/cm/min	Flow Rate (air)			
ASTM Methods 2986)99.9%	Ipm/cm ² @ 70 cm Hg60			
Tensile Strength	Max. Use Temp 400°C			
(Fed. Spec. UUP31B)600 gr.	Static Properties Medium			
Weight	Ability to			
B"x10"sheet4.0±.3 gr.	FoldGood			
WATER EXTRA	CTABLE IONS:			
Sulfate600	Chloride			
Nitrate	Fluoride			
Ammonia				
*pHGelman Procedure:				

Add 15 drops saturated KCI solution

A. 500 ml distilled water.

National Bureau of Standards

National Bureau of Standards Certificate of Analysis

Standard Reference Material 1648 Urban Particulate Matter

This Standard Reference Material (SRM) is intended for use in the calibration of apparatus and evaluation of methods used in the analysis of atmospheric particulate matter and materials with a similar matrix.

<u>Certified Values of Constituent Elements:</u> The certified values for the constituent elements are shown in Table 1. The analytical techniques used in the certification are shown in Table 3. The certified values are based on measurements of 6 to 30 samples by each of the analytical techniques indicated. Noncertified values are given for information only in Table 2.

Notice and Warnings to Users: This material is a naturally occuring urban dust to be used for analytical purposes only. It may contain a number of chemicals of unknown toxicities, therefore, the utmost caution and care must be exercised in its

Expiration of Certification: This certification is invalid after 5 years from date of purchase. Should it be shown to be invalid prior to that time, users will be notified by NBS.

Stability: This material should be kept in its original bottle and stored at temperatures between 10-30 °C. It should not be exposed to intense source of radiation, including ultraviolet lamps or sunlight. Ideally, the bottle should be kept in a desiccator at the recommended temperature.

<u>Use:</u> A minimum of 100 mg of the dried material (See Drying Instructions) should be used for any analytical determination to be related to the certified values of this certificate.

Source and Preparation of Material: This SRM was prepared from urban particulate matter collected in the St. Louis, Missouri, area in a baghouse specially designed for this purpose. The material was removed from the filter bags and combined in a single lot. This product was screened through a fine-mesh sieve to remove extraneous materials and thoroughly blended in a V-blender. The material was then bottled and sequentially numbered. The material was collected over a period in excess of 12 months and, therefore, is a time-integrated sample. While not represented to be typical of the area in which it was collected, its use should typify the analytical problems of atmospheric samples obtained from industrialized urban areas.

Homogeneity Assessment: Randomly selected bottles were used for the analytical measurements. Each analyst examined at least 6 bottles, some of them measuring replicates from each bottle. No correlation was found between measured values and the bottling sequence. Also, the results of measurements of samples from different bottles were not significantly different than the measurements of replicate samples from single bottles. Accordingly, all bottles of this SRM have been assigned the same certified values of constituent elements.

Instructions for Drying: This material should be dried at 105 °C for 8 hours before use. Because the certified concentrations are reported on a "dry-weight" basis, the concentrations determined on undried samples should be adjusted for the moisture content of the samples.

The overall direction and coordination of the technical measurements leading to certification were performed under the chairmanship of J.K. Taylor.

The technical and support aspects involved in the preparation, current and previous certification, and issuance of this Standard Reference Materials were coordinated through the Office of Standard Reference Materials by T.E. Gills and W.P. Reed.

Washington, D.C. 20234 May 11, 1982 (Revision of Certificate dated 11-16-78) George A. Uriano, Chief Office of Standard Reference Materials

Table 1. Certified Values of Constituent Elements

Major Constituents		Minor Constituents			
	Content ^a		Content ^a		
Element	Wt. Percent	<u>Element</u>	Wt. Percent		
A luminum ^b	3.42 ± 0.11	Lead	0.655 ± 0.008		
Iron	3.91 ± 0.10	$Sodium^b$	0.425 ± 0.002		
Potassium ^b	1.05 ± 0.01	Zinc	0.476 ± 0.014		

Trace Constituents

Element		ontent ^a ug/g	Element		ntent ^a g/g
Arsenic	115	± 10	Nickel	82	±3
Cadmium	75	± 7	Selenium ^b	27	±1
Chromium	403	± 12	Uranium	5.5	±0.1
Copper	609	± 27	Vanadium ^b	140	±3

[&]quot;The uncertainties shown for the elements except those noted by superscripts include errors associated with both measurement and material variability. They represent the 95 percent tolerance limits for individual subsamples, i.e., 95 percent of the subsamples from a single unit of this SRM would be expected to have a composition within the indicated range of values 95 percent of the time.

Table 2. Noncertified Values for Constituent Elements

Note: The following values are not certified because they are not based on the results of either a reference method or two or more independent methods. These values are included for information only.

Major Constituents

Minor Constituents

Wajor Constituents		Willion C	Willor Constituents			
Element	Content Wt. Percent	Element	Content Wt. Percent			
Sulfur	(5.0)	Chlorine	(0.45)			
Magnesium	(0.8)	Titanium	(0.40)			
	Trace C	Constituents				
	Content		Content			
Element	<u>μg/g</u>	Element	$\mu g/g$			
Antimony	(45)	Lanthanum	(42)			
Barium	(737)	Rubidium	(52)			
Bromine	(500)	Manganese	(860)			
Cerium	(55)	Samarium	(4.4)			
Cesium	(3)	Scandium	(7)			
Cobalt	(18)	Silver	(6)			
Europium	(0.8)	Thorium	(7.4)			
Hafnium	(4.4)	Tungsten	(4.8)			
Indium	(1.0)					
lodine	(20)					

^bThese elements were recently certified as a part of the NBS update certification program. The values for the indicated constituent are the "best value" based on all measurement methods used and the associated uncertainty is expressed as the standard error considering variability within and between analytical methods.

Supplemental Information

The values listed below are based on measurements made in a single laboratory and are given for information only. While no reason exists to suspect systematic bias in these numbers, no attempt was made to evaluate such bias attributable to either the method or the laboratory. The method used for each set of measurements is also listed. The uncertainties indicated are two times the standard deviation of the means.

Constituent		Content Wt. Percent
Nitrogen (NO ₃)		(1.07 ± 0.06)
Nitrogen (NH ₄)		(2.01 ± 0.08)
Sulfate	~~	(15.42 ± 0.14)
SiO ₂		(26.8 ± 0.38)
Freon Soluble		(1.19 ± 0.47)

Methods Used:

Nitrate - Extraction with water and measurement by ASTM Method D992

Ammonia - NaOH addition followed by steam distillation and titration

Sulfate - Extraction with water and measurement by ASTM D516

SiO₂ - Solution and measurement by ASTM Method E350

Freon Soluble - Extraction with Freon 113, using the Method described in "Standard Methods in Examination of Water and Waste Water," 14th Edition, p. 518, American Public Health Association, Washington, D.C.

Analysts

Inorganic Analytical Chemistry Division

I. C. G. Blundell	9. J. W. Gramlich
2. R. W. Burke	10. R. R. Greenberg
3. T. A. Butler	11. L. A. Machlan
4. E. R. Deardorff	12. E. J. Maienthal
5. B. I. Diamondstone	13. T. J. Murphy
6. M. S. Epstein	14. L. P. Powell
7. M. Gallorini	15. T. C. Rains
8. E. L. Garner	16. T. A. Rush

.. Table 3 Methods and Analysis

Method, Element	A	В	С	D	E	F	G	н	1
Ag			•						
Al			•					•	
As			•		•				
Ва			•						
Br			•	1					
Cd	•	•	•	•					
Се			•						
Cl							•		
Со			•						
Cr		•	•						
Cs			•						
Cu	•	•			•				
Eu			•						
Fe	•	•	•		•				
Hf			•						
1			•			•			
ln			•						
K	•		•						
La			•						
Mg			•						
Mn	•		•						•
Na	9		•						•
Ni	•	•		•					
Pb	•	•		•					
Rb			•						
S							•		
Sb			•						
Sc			•						
Se	• 1		•						•
Sm			•						
Th			•						
Ti			•						
. U		•							
v	•		•						
W			•						
Zn	•	•	•	•					

Analytical Methods

- A. Atomic Absorption Spectrometry
- B. Isotope Dilution Mass Spectrometry
- C. Neutron Activation Analysis
- D. Polarography
- E. Spectrophotometry
- F. Photon Activation Analysis
- G. Ion Chromatography
- H. D.C. Plasma Atomic Emission Spectrometry
- I. Flame Emission Spectrometry

EVALUATION OF WALL LOSSES

IN FLOW SENSOR SOURCE TEST IMPACTOR

Prepared by:

Andrew R. McFarland, Ph.D., P.E. 2910 River Oaks Circle Bryan, Texas 77801

Prepared for:

Flow Sensor A Division of Flow General Inc. 7655 Old Springhouse Road McLean, Virginia 22102

EXECUTIVE SUMMARY

Inadvertent loss of particulate matter on the walls of an inertial impactor is a factor which influences the quality of data acquired in field applications of such a device. The Flow Sensor impactor was designed to reduce wall losses through the use of a high degree of flow venting on each impaction stage and the avoidance of small sharply turning passages between stages.

To quantify the losses of the Flow Sensor system, a set of laboratory experiments was conducted in which the impactor was used to sample monodisperse oleic acid aerosols over the size range of 1.9 to 16.5 µm. A fluorescent analytical tracer, which was added to the oleic acid, was washed from the impactor walls and the relative mass compared with the total mass sampled by the system. Peak wall losses were 3.5 percent over the range of sizes employed in the experiments.

INTRODUCTION

With the advent of the means to reliably generate monodisperse aerosols from materials for which there are sensitive analytical measurement techniques, it has become possible to characterize the design limitations of particle fractionation systems. One of these limitations, the wall losses, can have a significant impact on the value of the field data. For example, an inertial impactor was used in the National Air Sampling Network (NASN) for acquisition of size distribution data on aerosols in the ambient atmosphere. Test results subsequent to its useage showed that wall losses were 50 percent for 4 µm diameter particles and 95 percent for 10 µm carticles (1). An original version of the dichotomous sampler, the cascade centripeter (2) had wall losses of 40 percent at the cutpoint sizes; however, in later designs these losses were reduced to approximately 6 percent (3). Particle size data from devices which have high wall losses must be subject to question.

An evaluation of wall losses for several commercially available source test impactors was performed by Cushing et al (4) who operated the units in the horizontal position and sampled solid ammonium fluorescein aerosols.

For true wall losses it would appear to be preferable to use liquid aerosols whereby those particles which strike a wall will adhere to that surface.

For the experiments performed herein, an oil droplet aerosol formed from pleic acid tagged with sodium fluorescein, was employed. The impactor was operated in the horizontal position with a straight inlet nozzle of the same diameter as the acceleration jet of the internal pre-impactor, 1.07 cm.

Flow rate through the system was 14.2 L/min (0.5 cfm) for all tests. Wall losses were determined by eluting the fluorescent tag from all components of the system, the metal parts and the after-filters.

METHODOLOGY

Aerosol was generated with a vibrating jet atomizer (5) from a solution of ethanol and oleic acid with the tag of sodium fluorescein. Freshly formed mist was passed by a 10 mCi Kr-85 radioactive source to neutralize electrical charge. Upon evaporation of the ethanol there results a uniformly sized aerosol of oleic acid droplets containing 10 percent (m/v) of sodium fluorescein.

The aerosols were sized sized by first collecting samples on glass slides that were made oil-phobic by treatment with 3M Co. Chemical FC-721. A Cassella impactor was used for collection of these samples. The size of the droplets on a treated slide was measured with the aid of a calibrated Filar eyepiece in a light microscope. Due to the interfacial and surface tension, the droplets assume the shape of a plano-convex lens on the slide. Calculation of equivalent spherical droplet diameter from the size of the droplet observed under the microscope can be made through use of the "flattening coefficient" of Olan-Figueroa (6). Aerodynamic size was then calculated from the equivalent spherical diameter assuming that the particle density was that of pure oleic acid, 0.895 g/mL.

Prior to a test, in an analysis laboratory all components of the impactor were washed in a detergent solution, rinsed with distilled water and dried with filtered air. The unit was assembled using stainless steel

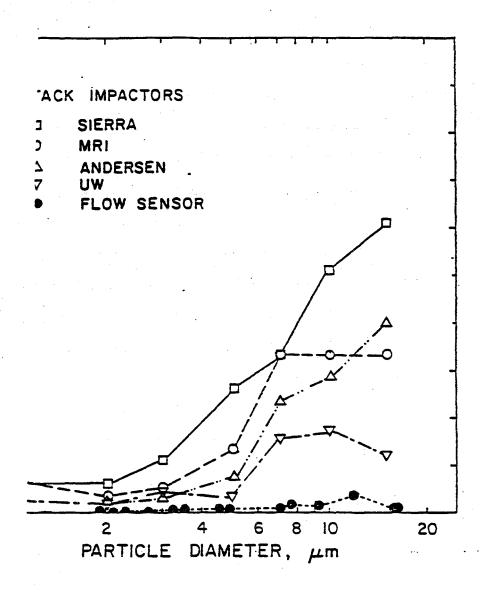
impaction substrates for the collection stages and a glass fiber afterfilter. The impactor was encased in a shroud of polyethylene film,
brought into the test laboratory, and mounted external to a 15 cm diameter
aerosol test duct. During operation, aerosol from the generator was
passed through the test duct where a sample was diverted to the impactor
while the excess aerosol was passed through an absolute filter and the
air discharged back into the laboratory. The impactor was operated at
the set flow rate of 14.2 L/min for sufficient time to collect adequate
fluorescein for analysis.

The sampler was then removed to the analysis laboratory where it was disassembled and the components immersed in ethanol (EtOH) to extract the fluorescein. The metal impactor components were totally submerged in EtOH and mildly agitated for a period of at least one minute whereas the after-filter was soaked in EtOH for at least an hour, also with periodic mild agitation. Subsequently, the solutions from both the components with which wall losses are associated (jet plates, housing, etc.) and those associated with normal collection (impaction substrates, pre-impactor and after filter) were diluted with measured amounts of water and 4 ml aliquots were removed for analysis. One drop of 1 N NaOH was added to each aliquot to stabilize fluorescence. Concentration of fluorescein was determined with a Turner Model 111 Fluorometer. Wall losses, WL, are defined as material deposited on any internal surface other than the pre-impactor and collection substrates compared with the total material sampled:

$$WL = \frac{M_{w1}}{M_{cs} + M_{w1}} \tag{1}$$

where M_{wl} = mass of particulate matter on extraneous surfaces

M_{cs} = mass of particulate matter on collection surfaces


RESULTS

A total of 14 wall loss tests were conducted encompassing the range of particle sizes from 1.9 to 16.5 μ m aerodynamic diameter. Resulting data are shown in Figure 1 wherein the total wall losses are given as a function of aerodynamic size. It may be noted that the peak losses are 3.6 percent and that these are associated with a size of 11.7 μ m. Wall losses were less than 1 percent for all sizes less than 7.5 μ m.

Shown for comparative purposes in Figure 1 are the wall loss data of Cushing et al (4) for other source test impactors.

DISCUSSION OF RESULTS

All inertial impactors exhibit some wall losses. Rao and Whitby (7) used oleic acid aerosols from a vibrating jet atomizer to characterize the wall losses of a Lundgren impactor and an Andersen 1-cfm ambient sampler. They noted the Lundgren impactor had losses of 5 percent for 7 μ m particles and 15 percent for 16 μ m particles. For the Andersen impactor, their data show wall losses of 10 and 52 percent for sizes of 7 and 15 μ m, respectively. On the other hand, using methodology similar to that of Rao and Whitby, the present study shows the Flow Sensor stack impactor to have

GURE 1. Wall Losses of Source Test Cascade Impactors. Flow Sensor Data from Present Study, Other Data from Cushing et al (4).

losses of less than one percent at both 7 and 16 μm .

Data from the study of Cushing et al (4) cannot be directly compared with the present data because of their use of dry ammonium fluorescein aerosols. There is a potential that dry particle wall loss data could be either lower or higher than liquid particle data. Dry particles which strike a wall, rebound, and are eventually deposited on a collection surface tend to cause lower apparent wall loss values. Particles which rebound from a collection surface and are deposited on a wall will increase the apparent losses. In the work of Cushing et al, greased collection substrates were used with the MRI, and UW impactors and glass fiber collection substrates were used with the Sierra and Andersen impactors. Both of those substrates, but particularly the grease coatings, tend to reduce particle rebound from the collection surfaces. In spite of the limitations on comparisons dictated by the differences in methodologies, it may be noted from Figure 1, the wall losses for the Flow Sensor impactor are considerably lower than those of other impactors.

REFERENCES

- 1. McFarland, A.R., C.A. Ortiz and C.E. Rodes. Evaluation of the NASN Cascade Impactor Ambient Air Monitor. Texas A&M University, College Station, Tx. Air Quality Laboratory Publication 3565/07/78/ARM. (1979)
- 2. Hounam, R.E. and R.J. Sherwood. The Cascade Centripeter: A Device for Determining the Size Distribution and Concentration of Aerosols. Ind. Hyg. 26:122-31 (1965)
- McFarland, A.R. and G.R. Rost. Design and Evaluation of an Automated Aerosol Sampler. Texas A&M University, College Station, Tx. Air Quality Laboratory Report 3397/01/79/ARM. (1979)

- 4. Cushing, K.M., J.D. McCain and W.B. Smith. Experimental Determination of Sizing Parameters and Wall Losses of Five Source-Test Cascade Impactors. Environ. Sci. & Technol. 13:726-31 (1979)
- 5. Berglund, R.N. and B.Y.H. Liu. Generation of Monodisperse Aerosol Standards. Environ. Sci. & Technol. 7:147-53 (1973)
- 6. Olan-Figueroa, E. Flattening Coefficient of Aerosols Collected on Treated Glass Slides. M.S. Thesis. Texas A&M University, College Station, Tx. (1981)
- 7. Rao, A.K. and K.T. Whitby. Non-ideal Collection Characteristics of Inertial Impactor 11. Cascade Impactors. Aerosol Sci. 9:87-100 (1978)

Conditions of Use

Concord Scientific Corporation, 1984. A study of metallic emissions from the main stack at Syncrude's Mildred Lake plant. Syncrude Canada Ltd., Edmonton, Alberta. Environmental Research Monograph 1984-2. Various pagings.

Permission for non-commercial use, publication or presentation of excerpts or figures is granted, provided appropriate attribution (as above) is cited. Commercial reproduction, in whole or in part, is not permitted without prior written consent.

The use of these materials by the end user is done without any affiliation with or endorsement by Syncrude Canada Ltd. Reliance upon the end user's use of these materials is at the sole risk of the end user.