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Abstract— In order to maximize utilitarianism and fairness in 

allocating energy to electric vehicles (EVs) during outages, this 

study proposes an optimization method based on modified divi-

sion rules. The idea of essential energy demand is introduced in 

this paper to maximize the number of EVs that are served during 

power contingencies. For EVs carrying out the time-critical 

task(s), the essential energy demand is defined as the amount of 

energy required by EVs to accomplish their upcoming task(s). For 

EVs carrying out delay-tolerant tasks, it is defined as the amount 

of energy required by EVs to travel to a nearby healthy charging 

station. To this end, an EV ranking mechanism is devised con-

sidering the full and essential energy demands along with the 

urgency of EVs. Subsequently, EVs with higher ranks are priori-

tized during energy allocation. The performance of the proposed 

method is compared with four existing division rules, i.e., pro-

portional, constrained equal awards, constrained equal losses, and 

sequential priority rules. A utilitarianism index is proposed to 

analyze the performance of these methods and fairness is evalu-

ated using existing indices, such as Jain’s fairness index and cost 

of fairness index. The proposed method has outperformed existing 

division rules in both utilitarianism and fairness for the essential 

energy demand. Finally, a sensitivity analysis of uncertain pa-

rameters such as EV fleet size, available/required energy, and 

weight factors is carried out to analyze the performance of the 

proposed method under various conditions.   
 

Index Terms— Division rules, electric vehicles, energy alloca-

tion, fairness, power outage, resilience, utilitarianism. 

I. INTRODUCTION 

ODERN power systems are known to be reliable due to 

their ability to provide electricity to consumers during 

normal conditions and reliability-oriented events (planned or 

unplanned but small-scale outages). However, they still lack 

the resilience features, defined as their ability to sustain the 

major outages, which are commonly known as low-probability, 

high-impact events [1]. There has been a record increase in the 

number of resilience-oriented events (natural disasters, cyber- 

attacks, and extreme weather events) over the last few decades 

and the severity of these events has also increased. For exam-

ple, among the ten major storms of the last 40 years, seven have 

occurred in the last 10 years [2]. The 2021 Texas outage is a 

recent example of an extreme weather event, which has caused 

the largest forced blackout in U.S history [3]. The increase in 

intensity and severity of extreme weather events is mainly due 

to climate change [4].   

Meanwhile, the penetration of electric vehicles (EVs) is in-

creasing in the transportation sector due to the reduction in the 

cost of batteries and related technologies [5]. EVs are a viable 

option to reduce the dependence of the transportation sector on 

fossil fuels, which is otherwise one of the major sources of 

global carbon footprint. However, transportation electrification 

will increase the interdependence of the transportation and 

power sectors. This interdependence can bring opportunities, 

on the one hand, to sustain the penetration of renewables. But it 

brings challenges, on the other hand, especially during power 

outages [6], [7]. EVs are projected to be the major source of 

transportation in the near future and they will be used for di-

verse purposes ranging from personal usage to emergency 

response. During resilience-oriented events, the locally availa-

ble energy may not be sufficient to fulfill the needs of all EVs 

due to disconnection with the utility grid. The resilient opera-

tion of EVs is a crucial requirement and is a relatively new and 

less explored area. The literature describes several studies on 

enhancing the resilience of power systems, where EVs are used 

as resilience resources [8]–[10]. Studies on enhancing the re-

silience of EVs themselves are limited. 

Due to the limited number of studies on energy allocation to 

EVs during outages, two of the closely related areas and their 

key differences are discussed. The first related area is load 

shedding in microgrids during power outages. The fundamental 

problem in both areas is to allocate limited energy to several 

claimants with diverse utilizations. Allocation of limited en-

ergy among different loads during outages is a nontrivial task 

and it arises fairness and utility-related issues. Several studies 

are conducted on the fair allocation of energy among different 

claimants (loads) during outages [11]–[14]. Division rules, also 

known as bankruptcy rules, are widely used in the allocation of 

limited resources among different claimants, such as solving 

water conflicts among territories [15], [16], allocating limited 

bandwidth in communication networks [17], and CO2 emission 

permits allocation [18]. Recently, these rules have been applied 

to power systems as well, such as load shedding in microgrids 

[11], [13] and energy allocation to EVs during system overload 

[19]. However, there are some fundamental differences in al-

locating limited energy to EVs and load shedding in mi-
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crogrids. In the case of load shedding, any amount of energy 

allocated to claimants could be acceptable, but in the case of 

EVs, if the allocated energy is not sufficient to reach the des-

tination, it may not be acceptable. Therefore, the existing divi-

sion rules cannot be used directly in allocating energy to EVs.  

The second closely related area is power/energy allocation to 

EVs during system overload. In both these areas, the net load of 

all EVs cannot exceed a certain threshold, i.e., the system ca-

pacity is shared by several EVs. Several studies have been 

conducted on prioritization and allocation of energy to EVs 

during system overload [19]–[22]. The impact of different 

priority criteria on the chargeability of EVs is analyzed in [19] 

and the weighted sum approach is suggested as the most suita-

ble option. In [20], the least laxity first approach is proposed 

and demonstrated that proportional fairness can be achieved 

during system overload. Charging coordination among EVs 

within different charging stations is proposed in [21] to max-

imize the utilization of the deployed chargers. In [22], an 

adaptive neuro-fuzzy inference system is used to generate pri-

ority for EVs considering different factors such as energy level 

and departure time to avoid system overload. However, the 

methods devised for allocating system capacity to EVs during 

overload cannot be applied during outages due to the following 

reasons. First, the system overload intervals are usually a few 

hours and are known in advance, thus EVs can charge ahead of 

time or can be charged with a time delay. In case of outages, 

some of the EVs may not be recharged at all during the event 

time due to the scarcity of available resources. In addition, the 

occurrence of power outages (cyber-attacks, man-made events, 

natural disasters, etc.) cannot be precisely predicted. Second, 

during system overload intervals, EV owners tend to fully 

charge the EVs due to connection with the grid. However, 

during emergencies, the main objective is to survive the 

maximum number of EVs by allocating the amount of energy 

required for accomplishing critical tasks.  

Therefore, during outages, EVs also need to be prioritized 

and allocate energy to vehicles that have greater value to soci-

ety. Energy allocation to EVs during outages is relatively new 

but important research area for the adoption of EVs. A very 

limited number of studies have been conducted to date on this 

area. Different classes of EVs are considered in [23] and a 

priority factor is included in the utility function of each EV. The 

problem is modeled based on the non-cooperative game theory, 

and the demand fulfillment of higher priority EVs is ensured 

first. In [24], the prioritization of EVs is carried out considering 

the social welfare, community well-being, and individual sat-

isfaction gained by allocating energy to EVs during outages. A 

two-level optimization model is developed in [25] to prioritize 

EVs and schedule power to them according to their priorities. 

The deviation between the actual and required energy of EVs is 

minimized and the emergency mode has also been considered.  

This type of energy allocation mechanism can be beneficial 

for clustered EV charging stations where several EVs with 

different usage purposes share the same parking space. Few 

examples could be a muti-unit residential apartment building, a 

hospital building, or a college/university building with shared 

parking space. Automation in clustered EV supply equipment 

(EVSE) has been proposed by the International Renewable 

Energy Agency (IRENA) in the 2019 Innovation Outlook re-

port on smart charging for electric vehicles [26]. Similarly, the 

EV energy management system (EVEMS) is suggested for 

multi-unit residential buildings in Canada in a report [27] on 

guidelines for charging demand management in the residential 

sector. In addition, several studies have recently considered the 

deployment of renewables and energy storage system in 

charging stations [28]–[30].  The EVEMS and the automated 

EVSE can also be used during power outages to allocate the 

locally available energy (energy storage and renewables) to 

EVs during outages. It is worth noting that during normal op-

eration, the main focus is on cost minimization, but during 

emergencies, service reliability is prioritized above  cost [31]. 

Especially, if the available resource is not sufficient to fulfill 

the needs of all claimants.       

The two primary challenges in the allocation of the limited 

resource among different claimants are utilitarianism and 

fairness, none of these aspects is considered by any of these 

studies [23]–[25]. These aspects are more crucial during out-

ages due to the use of EVs for diverse purposes and the scarcity 

of energy resources. This fairness in allocations of scarce re-

sources is required to gain long-term commitments from the 

users with the network. In addition, all these studies have pri-

oritized EVs based on the total required energy by EVs. This 

may result in demand fulfillment of a limited number of EVs, 

raising issues of both fairness and utilitarianism. This is due to 

the direct application of division rules, for example, sequential 

priority rule is used in all these studies. Instead, modification of 

these rules is required to maximize the number of EVs with 

their essential energy demand fulfilled. Therefore, techniques 

are required to rank EVs and allocate energy in such a way that 

can increase utilitarianism and fairness during outages. 

To address the challenges mentioned in the previous para-

graphs, an energy allocation method for EVs during power 

contingency is proposed in this study. The proposed method 

can enhance utilitarianism and fairness among EVs during 

outages. Fairness is defined as the amount of energy received 

by an EV relative to the amount of energy required by that EV. 

The required energy could be the total energy demand or the 

essential energy demand depending on the nature of the EV 

(critical service or non-critical service EV). Similarly, utilitar-

ianism is defined as the number of EVs that have their energy 

demands (total or essential) fulfilled relative to the total number 

of EVs that require a recharge during the same period. The 

main contributions of this study in comparison to existing 

studies are as follows. 

• In contrast to most studies, where energy allocation to EVs 

during system overload is considered [19]–[22], power 

allocation during outages is considered in this study. 

Power allocation during outages is more crucial due to the 

absence of connection with the grid and is more dynamic. 

•   Compared to existing studies on energy allocation during 

outages, where only total demand is considered for priori-

tizing EVs [23]–[25], the concept of essential energy de-

mand is introduced in this study. Consideration of essential 

energy demand can enhance utilitarianism and fairness in 
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power allocation to EVs during outages.  

• The performance of the proposed method is compared with 

four existing division rules, including proportional (PR), 

constrained equal awards (CEA), constrained equal losses 

(CEL), and sequential priority (SP) rules.  

• An index is proposed to analyze the utilitarianism of dif-

ferent allocation methods, including the proposed method. 

In addition, different existing indices are used to analyze 

the performance of all methods, such as Jain’s fairness 

index and cost of fairness index for analyzing fairness.  

In addition, a sensitivity analysis of different uncertain factors, 

such as the number of EVs, available and required energy, and 

weight parameters, is carried out. 

The organization of the remainder of the paper is as follows. 

The proposed energy allocation scheme along with the over-

view of division rules is presented in Section II. The formulated 

optimization model is discussed in Section III and Section IV 

discusses the indices used for the performance evaluation of the 

proposed and existing methods. Simulation results are pre-

sented in Section V, and sensitivity analysis of uncertain pa-

rameters is presented in Section VI. Finally, conclusions and 

future research directions are summarized in Section VII. 

II. ENERGY ALLOCATION TO EVS DURING CONTINGENCIES  

During contingencies, the available energy needs to be allo-

cated among the EVs to enhance utilitarianism and fairness. In 

this section, the preliminaries of the proposed method are dis-

cussed, which include the charging management system, 

framework for implementation of the proposed method, con-

ventional division rules, and essential energy demand modeling 

of EVs. The proposed utilitarianism-oriented model is dis-

cussed in the next section.   

A. Proposed Charging Station Management System   

A charging management system is required to optimize the 

operation of charging stations during normal and emergency 

operations. The configuration of the proposed charging station 

management system is shown in Fig. 1. It comprises the energy 

allocation module, the energy and demand adjustment module, 

and the database module. The database module contains the 

information of EVs registered with the charging station and 

other charging stations in the vicinity. The load profile of EVs 

can be estimated by using the historical data related to the 

arrival and departure times of EVs. The charging station is in 

islanded mode (when grid-connection is lost) and only locally 

available energy can be allocated to EVs, i.e., grid-to-vehicle 

(G2V) mode is considered for charging EVs. 

The charging station contains renewables and battery energy 

storage systems (BESS), which can provide energy to EVs 

during emergencies. The load profile of some of the EVs can be 

shifted (demand response, DR) to better utilize the renewables. 

Similarly, BESS can be used to store excess energy from re-

newables and used to charge EVs during deficit intervals. In-

formation about available energy, EV demand (full and essen-

tial), and EV information are provided to the energy allocation 

algorithm during each interval. The energy allocation algorithm 

allocates energy to EVs based on the proposed optimization 

model, which is discussed in the next section.    

B. Framework for Implementation   

To implement the proposed energy allocation scheme in au-

tomated clustered EV charging stations, the following infra-

structure/services are required. The infrastructure discussed 

below can also be used to manage the power/energy of the 

charging station under normal conditions. However, the focus 

of this study is on energy allocation during outages; therefore, it 

is discussed with reference to outage scenarios.  

• A charging station management system (CSMS) to receive 

EV information, locally available energy information, and 

execute the proposed energy allocation scheme. 

• EVSE with communication capabilities to receive com-

mands from the CSMS and execute them. 

• A mobile application/website to communicate between EV 

owners and the CSMS. 

• A contract (smart contract) between the charging station 

managers and the EV owners on categorization of EVs 

(critical service or non-critical service), pricing mechanism 

during outages, and energy allocation policy during power 

outages.   

    During outages, EV owners that require recharge will choose 

a destination/direction of travel for the upcoming trip, using the 

mobile application/website. The application will determine the 

essential energy demand using the information of a healthy 

charging station in the vicinity (based on the chosen destination 

/direction of the next trip). Then, a number will be assigned (by 

the application) to the EV based on the location of the nearest 

healthy charging station, the total energy demand of the EV 

(based on the current state-of-charge: SoC), and nature of the 

EV (critical service or non-critical service). The discussion of 

these factors and the ranking mechanism is presented in Section 

III. Then, the aggregated number will be sent to the CSMS 

using the mobile application /website. Due to the aggregation 

of different factors, the private information (destination of the 

next trip, current SoC, etc.,) will be masked and not visible to 

the CSMS. There is a possibility that EV owners may not be 
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Fig. 1. Configuration of the proposed charging management system. 
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truthful when selecting the direction/destination of the up-

coming trip to gain favorable outcomes. There are two possi-

bilities (1) Changing the destination to a farther location to gain 

a higher amount of energy. Since the EV owners are aware of 

the power allocation mechanism (smart contract) that higher 

demand EVs will be ranked lower, this option will not be 

chosen. (2) Changing destination to a closer location to gain 

higher rank in the system. It is also less likely since the allo-

cated energy will not be sufficient to reach the actual destina-

tion. Therefore, they will be naturally forced to report the cor-

rect destination, since cheating in either way is not beneficial. 

The SoC will be read directly by the application from the EV or 

by using a screenshot of the dashboard. In addition, the nature 

of EV is pre-settled between the EV owner and the CSMS 

(smart contract). Therefore, there is no room for misrepresen-

tation in these two aspects.       

C. Overview of Division Rules   

Division rules have been used since ancient times to allocate 

scarce resources among different claimants in a fair way [32] 

and are applied in several fields. For example, water resource 

allocation [8], bandwidth allocation [17], CO2 emission permits 

[18], load shedding in microgrids [33], resource allocation in 

microgrids during outages [14], and energy allocation to EVs 

during system overload [19]. The three most widely used divi-

sion rules are the PR rule, CEA rule, and CEL rule. The allo-

cation in these three rules, grouped as Young rules [32], is 

based on the amount claimed by the claimant.  Another cate-

gory of commonly used division rules is SP rules, where the 

allocation is based on the priority of claimants, irrespective of 

their claims. The performance of the proposed method is 

compared with these four division rules in the simulation sec-

tion; therefore, an overview of these rules is presented here. In a 

classical division problem, there are N claimants (N≥2) with 

individual claims nc . The total resource, known as endowment 

( E ), is less than the total claimed amount ( C ) and is allocated 

to claimants.   

 1)  PR Rule: This rule, where awards are proportional to 

claims [32], is generally quoted as being proposed by Aristotle. 

Mathematically, it can be written as in (1), where  is the total 

available energy to total required energy ratio and pro
nx  is the 

amount of energy allocated to the nth EV using the proportional 

rule. The allocations based on this rule are generally considered 

fair in many disciplines due to the absence of bias for small/ 

large claimants.  

 2)  CEA Rule: In this rule, all claimants are awarded an equal 

amount of share, but they cannot receive more than their 

claims. It can be mathematically modeled as (2), where 

/E N = . However, E and N need to be updated after each 

allocation, if  > nc . cea
nx is the amount of energy allocated to 

the nth EV using the CEA rule. This rule is generally known to 

be more favorable for claimants with lower claims. 

3)  CEL Rule: In this rule, the loss (C-E) is equally shared 

among all claimants, but the loss cannot be negative. It can be 

mathematically modeled as (3), where ( ) /C E N = − . Similar 

to CEL, C, E, and N need to be updated after each allocation, if 

0nc −  . cel
nx is the amount of energy allocated to the nth EV 

using the CEL rule. This rule is generally known to be more 

favorable for claimants with higher claims. 

4)  SP Rule: In this rule, the claimant with the highest priority 

is served fully first. It is then followed by the second and so on. 

It can be mathematically modeled as (4), where m n implies 

that claimant m has priority over claimant n. sp
nx is the amount 

of energy allocated to the nth EV using the sequential priority 

rule. This rule may not be considered fair in normal circum-

stances, but during emergencies, allocations based on this rule 

are perceived as reasonable. 

D. Essential Energy Demand Modeling   

In contrast to existing studies [23]–[25], where the fulfill-

ment of the total demand is considered, the concept of essential 

energy demand is introduced in this study. During major out-

ages, it may not be possible to fulfill the total demand of all 

EVs. Therefore, the objective of this study is to maximize the 

number of EVs fulfilling their essential energy demand during 

large-scale outages. The essential energy demand will be equal 

to the amount of energy required to fulfill the upcoming task(s) 

for EVs carrying out time-critical tasks. However, in the case of 

EVs with flexibility in time, the essential energy demand is 

defined as the amount of energy required for traveling to a 

healthy charging station in the vicinity. Healthy charging sta-

tions refer to stations that operate normally, i.e., their connec-

tion with the grid is alive and they can buy power from the grid.  

To compute the essential energy demand, the amount of en-

ergy remaining in any EV ( rem
ne ) is required, which can be 

computed using (5). It has been noted in [34] that the daily 

mileage of vehicles follows a lognormal distribution. There-

fore, in this study also, the distance covered by EVs is assumed 

to follow a lognormal distribution with a mean of n and a 

standard deviation of n . The energy consumption of EVs can 

be computed using the traveled distance (computed using the 

lognormal distribution) and the efficiency (energy consumption 

per km) of EVs ( pkm
ne ). Finally, st

ne  represents the amount of 

energy available in the nth EV at the beginning of the day. It is 

worth noting that the remaining energy is computed at the time 

of the occurrence of the event, i.e., data of travelled distances 

before the occurrence of the event are used. In addition, resil-

ience events can be categorized as disasters (natural disasters, 

extreme weather events, accidental events, and terrorist attacks 

on the grid), cyber-attacks, and man-made cascaded events 

[35], [36]. Except for natural disasters and extreme weather 

events, the travel pattern of public generally does not change 

significantly, i.e., evacuation is not required [37].    

 .  where /pro
n nx c E C = =  (1) 

    min ,  where min ,cea
n n n

n N

x c c E 


= =  (2) 

    max 0,  where max 0,cel
n n n

n N

x c c E 


= − − =  (3) 

:

 min ,max{ ,0}   sp
n n m

m N m n

x c E c


 
= − 

 
  (4) 
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The distance between the location of the charging station of 

the nth EV and the nearby healthy charging stations is taken as a 

random variable, similar to [6]. The random variable follows a 

lognormal distribution function and data of gas stations is used 

to compute the statistical parameters, due to the absence of the 

widespread deployment of charging stations until now. The 

amount of energy required to travel to the nearest healthy sta-

tion ( h
ne ) can be computed using (6), where hcs

nd is the distance 

to the nearest healthy charging station (km) and pkm
ne is the EV 

efficiency.  Finally, the essential energy demand of the nth EV is 

calculated using (7), considering the amount of energy required 

and available for the EV.  

2( , ).rem st pkm
n n n n ne e random e = −  (5) 

.h hcs pkm
n n ne d e=  (6) 

    

0                 

h rem h rem
n n n n

n

e e if e e
e

else

 − 
= 


 (7) 

  

III.  UTILITARIANISM-ORIENTED OPTIMIZATION MODELING 

A. EV Ranking 

To maximize the utilitarianism of EV owners during outages, 

a ranking of EVs is required. In this study, three factors are 

considered to rank the EVs and allocate the available energy 

based on the ranking of EVs. The step-by-step process of EV 

ranking and energy allocation is shown in Algorithm I. 

 The first factor considered for the ranking of EVs is the claim 

factor ( cl
nf ), where EVs with higher claims are ranked lower 

and vice versa. The total required energy ( nc ) is reported to the 

application/website and all other EVs also report their required 

energy amount. The identities of EVs are not visible to other 

EV owners, the total amount of all EVs is visible as an accu-

mulated energy amount. Based on the relative demand of all 

EVs, the application computes the claim factor for the EV, as 

shown in (8). The second factor is the essential energy demand 

factor ( en
nf ), and EVs with higher essential energy demand are 

ranked lower and vice versa. EV owners select a destination or 

direction of travel for the next trip from the map, populated in 

the mobile application. The value of the essential energy de-

mand ( ne ) is determined by the application using (5)-(7). An 

aggregated value of the total essential energy demand of other 

EVs is also visible to all EVs. Then the value of this factor 

( en
nf ) is determined using (9).  The objective of these two 

factors is to maximize the number of EVs with their demands 

fulfilled. For example, allocating 5kWh of energy to four EVs 

will be preferred over allocating 20kWh of energy to one EV. 

The third factor is the urgency factor ( ur
nf ), which signifies the 

priority of EVs. In (10), nu is the urgency identifier. This factor 

( ur
nf ) takes positive values for EVs which are responsible for 

carrying out critical tasks, such as fire departments, ambu-

lances, first responders, etc. It takes a value of zero for all other 

EVs. The decision about categorization of EVs as critical ser-

vice EVs and their relative importance is pre-agreed, contract 

between CSMS and EV owners. The application in each EV 

aggregates all three factors and determines final factor ( tot
nf ), 

as given by (11). The weight factors ( , ,   ) can be chosen by 

the charging station operators based on the significance of each 

factor and are accessible for the mobile application. Based on 

the values of the weight factors, the outcome of the optimiza-

tion problem may change, i.e., Pareto optimal points. However, 

due to the consideration of power allocation to EVs during 

outages (in this study), the relationship among these weights 

will be in this order:     . 

B. EV Modeling 

The battery size and charging efficiency of different EVs is 

not the same and so is the rating of chargers. Therefore, EVs are 

modeled using equations (12)-(16). Equation (12) implies that 

the amount of charging power of nth EV in time interval t ( ,
ec

t nP ) 

is restricted by the SoC of the EV battery in the previous in-

terval t-1 ( 1,t nSoC − ), capacity ( cap
nP ), and charging efficiency 

( ec
n ). Similarly, the charging power is constrained by the 

power rating of the charger connected to the nth EV ( cha
nP ), as 

given by (12). Finally, EVs can only be charged during the 

parking period ( ), i.e., t  , as shown in (13). The SoC of 

the nth EV can be updated at each interval t using (14) and the 

SoC at arrival time ( at ) can be computed using remaining 

energy ( ,
rem
t ne ) as given by (15). The estimation of the remaining 

energy is discussed in Section II-D. Finally, the SoC of EVs 

must be within the specified upper ( max
nSoC ) and lower 

( min
nSoC ) bounds, as given by (16). These constraints need to 

be met while allocating energy to EVs, which is discussed in 

the following section. 

Algorithm I Interval-wise EV ranking and energy allocation. 

1:  Get input data (required energy, urgency level, available energy,     

     and essential energy demand)    

2:  Compute ranking factors for EV: Equations (8)-(10)          

3:  Compute the final ranking factor (11) and inform CSMS   

4:  Sort EVs in descending order based on the final rank (CSMS) 
5:  In case a, n = nc and in case b, n = ne (refer to Fig.2 for cases) 

5:  for all n N   do  

6:     If nE  then  

7:        Allocate energy to EV n: n nx =  

8:        Update remaining energy: nE E  −  

9:     else    

10:     Allocate energy to EV n: n Ex =  

11:     Update remaining energy: 0E =  

12:   end if 

13: end for 

1cl
n n n

n N

f c c


 
= −  

 
  (8) 

1en
n n n

n N

f e e


 
= −  

 
  (9) 

1ur
n n n

n N

f u u


 
= −  

 
  (10) 

( ).( 1)

cl en ur
tot n n n

n

f f f
f

N

  

  

 +  + 
=

+ + −
 (11) 
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( ), 1,

1
0 1ec cap

t n n t n ec
n

P P SoC


−   −   (12) 

,
ec cha

t n nP P , , 0  ec
t nP t =    (13) 

( ), 1, ,

1 ec ec
t n t n t n ncap

n

SoC SoC P
P

−= +    
(14) 

, ,
rem cap

t n t n nSoC e P=

 

at t =  (15) 

min max
,n t n nSoC SoC SoC   (16) 

 

 At each interval, the SoC of arriving EVs is estimated first 

and then the amount of power required to reach the upper SoC 

limit ( max
nSoC ) is estimated. The charging power for each EV 

during each interval is determined considering the rating of the 

converter and SoC of the EV battery. EVs are charged until 

they reach the upper SoC limit or until their departure time, 

whichever comes earlier. Then, the charging power of all EVs 

is accumulated for each interval t to determine the net load of 

the charging station for that interval (t). Details of the EV load 

estimation can be found in [6]. 

C. Problem Formulation   

 The objective of the proposed optimization model is to meet 

the energy demand of the maximum number of EVs based on 

the normalized rank factor developed in the previous section. In 

the objective function (17), 
opt

nx is the decision variable, which 

is the optimal amount of energy allocated to the nth EV by the 

proposed method. The rank factor ( tot

nf ) is an input parameter 

to the optimization problem and it does not contain any deci-

sion variable. Therefore, the formulated model is a linear 

problem, and thus the convexity of the problem is guaranteed. 

Constraint (18) imposes efficiency [38], the sum of energy 

allocated to all EVs must be equal to the available energy, i.e., 

no energy remains unallocated. Constraint (19) implies that the 

energy allocated to EVs cannot be negative and it should not 

exceed the required energy, i.e., individual rationality. Equa-

tion (20) is a feasibility constraint, and it implies that any in-

dividual allocation cannot exceed the available energy. It is 

worth noting that constraint (20) is complimentary and, due to 

the physical significance of this constraint, it is generally men-

tioned in division rules [15], [16]. In (21), a slack variable 

(
slack

nx ) is introduced to keep the solution feasible if the 

available energy is less than the essential energy demand. It can 

be seen from (22) that the slack variable will take a value of 

zero if the available energy is greater than or equal to the es-

sential energy demand. 

    The step-by-step process for ranking and allocation of en-

ergy to EVs during the outage period is shown in Fig. 2. After 

estimating the full and essential energy demands, the load and 

energy profiles are adjusted using DR and BESS, where pos-

sible. EVs can voluntarily delay their charging time, thus re-

ducing charging demand, i.e., load profile adjustment via DR. 

Similarly, during renewable excess intervals, BESS can store 

the excess energy amount, i.e., energy profile adjustment via 

BESS. It is worth noting that the objective of this study is to 

allocate the energy available to EVs that require recharge dur-

ing outages. Therefore, the available energy in the BESS is 

estimated at the beginning of each interval and is taken as input 

for the energy allocation algorithm. The management of re-

newable power and charging/discharging of BESS can be car-

ried out by using existing algorithms such as [39]. Then, the 

essential energy demand of EVs is fulfilled first and the re-

maining energy is updated according to (23). The remaining 

energy is allocated to EVs based on their rank, according to 

Algorithm I (case a). This contrasts with the sequential priority 

rule, where the full demand of EVs is fulfilled considering their 

rank/priority. If the available energy is smaller than the essen-

tial energy demand, the essential energy demand is allocated 

according to the EV rank, Algorithm I (case b).   

IV. PERFORMANCE EVALUATION INDICES 

A. Fairness Evaluation Index   

In contrast to normal operation, where cost minimization or 

profit maximization is focused, service reliability is focused 

during emergencies. Fairness is one of the major issues in al-

locating scarce resources among different claimants during 

outages. It is essential for charging station operators to ensure 

fairness during emergencies to attract more consumers and 

max  opt tot

n n

n N

x f


  
(17) 

       Subject to  
opt

n

n N

x E


=  
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0
opt

n nx c   (19) 

opt
nx E  (20) 

opt slack
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0  slack
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ifx e E
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Fig. 2. Flowchart of power allocation to EVs during outage period. 
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make them feel treated fairly, which will ultimately increase 

their revenue. It is also necessary to have a contract and agree 

on some rules for prioritization during emergencies. In addi-

tion, the perception of fairness varies with the prevailing con-

ditions. For example, equal allocation of power to all EV could 

be considered fair during normal conditions, but prioritization 

of critical service EVs will be perceived as fair during emer-

gencies. Similar studies are conducted in the fields of commu-

nication [40] and medicine [41]. To quantify the fairness of 

different algorithms, a unified index is required. The desired 

properties of any fairness index are [42]: a) population size 

independence, b) scale and metric independence, c) bounded-

ness, and d) continuity. Jain’s fairness index [42] has all the 

desired properties. It measures the equality of allocation among 

different claimants. It was originally proposed to evaluate 

fairness in congested communication networks, but it is being 

widely used in different fields, including power systems [13], 

[20], [43]. It is used in [13] to evaluate the fairness in power 

allocation to loads during outages and in [20] to evaluate the 

fairness in allocating energy to EVs during overload. Similarly, 

fairness in quality of service for prosumers in networked mi-

crogrids is evaluated in [43] using Jain’s fairness index. Due to 

the desired traits and usage in similar problems, Jain’s fairness 

index is used in this study to evaluate the fairness in energy 

allocation to EVs during outages. Jain’s fairness index for the 

full claim ( J ) is formulated in (24), where the fulfilled service 

ratio (
nxr ) is used as a fairness measurement criterion, equa-

tion (25). Similarly, the Jains fairness index for the essential 

energy demand ( J  ) is formulated in (26) and the essential 

energy demand fulfillment ratio (
ner ) is defined in (27). These 

indices are continuous; thus any slight change in the service 

ratio will change the indices. They are bounded in the range of 

[0,1] and take the value of 1 only when all users get the same 

service ratio. With an increase in the disparity, their values 

decrease.   

2

2 n n

n N n N

J xr N xr
 

 
=  

 
   (24) 

n n nxr x c=  (25) 
2

2 n n

n N n N

J er N er
 

 
 =  

 
   (26) 

 ,n n n ner min x e e=  (27) 

B. Price of Fairness and Utilitarianism Indices  

Price of fairness and utilitarianism are also important aspects 

in allocating limited resources, especially during emergencies 

[44]. An allocation may be perceived as fair under normal 

circumstances, but the perception may change during emer-

gencies [45]. A fair allocation does not necessarily enhance 

utilitarianism, and during emergencies, utilitarianism is pre-

ferred over fairness. To analyze the relative system efficiency 

loss under different allocation schemes, this study adopts the 

price of fairness index proposed in [46]. The price of fairness 

index ( P ) evaluates the relative reduction in utility under dif-

ferent allocation rules compared to the utilitarian-oriented 

schemes (proposed method), as given by (28). Where OptN is 

the number of EVs that survived under the utilitarianism - 

oriented scheme and sN  is the number of EVs that survived 

under another allocation scheme s. 

During outages, optimal utilization of available resources is 

required to maximize utility, i.e., utilitarianism enhancement. 

The objective is to maximize the service reliability to EV 

owners during outage periods (under a scarce resource). To 

quantify utilitarianism, an index (U ) is proposed to analyze the 

performance of different allocation schemes, as shown in (29). 

This index evaluates the ratio of EVs survived by different 

allocation schemes ( sN ) compared to the total number of EVs 

that require recharge ( N ) at that interval. The range of both 

these indices is [0,1] and is continuous. 

( ) 1- s OptP N N=  (28) 

( ) 1- ( )sU N N N= −  (29) 

V. FAIRNESS AND UTILITARIANISM ANALYSIS: COMPARISON 

BETWEEN PROPOSED METHOD AND EXISTING DIVISION RULES   

In this study, a single charging station is considered where 

EVs can communicate with the charging management system 

through a mobile application. A scheduling horizon of 24-hours 

with a time step of 1-hour is considered. Simulations are per-

formed in the Java NetBeans environment with the integration 

of the optimization tool CPLEX 12.7. The performance of the 

proposed method is compared with the four division rules, i.e., 

the PR, CEA, CEL and SP rules, in terms of utilitarianism and 

fairness in allocating energy to EVs. 

 As stated in the introduction section, energy allocation to 

EVs during outages is not a well-explored area, and a limited 

number of studies are available in the literature. In the existing 

literature, only the sequential priority rule has been applied to 

the EV energy allocation problem during outages [23], [24]. 

The remaining three division rules have been applied to the two 

closely related areas (EV energy allocation during system 

overload and load shedding in microgrids), discussed in the 

introduction. For example, the proportional rule has been used 

in [19] for energy allocation to EVs. Similarly, the CEA and 

CEL rules have been used in [11] for the allocation of the 

load-shedding amount in microgrids during outages. Therefore, 

in this section, the performance of all four rules is analyzed. 

A. Input Data 

    To estimate the load of EVs, driving pattern data and EV- 

related data are required. The data related to the vehicle travel 

pattern is taken from [6] and the data of EVs is taken from [47]. 

In addition, similar to [48], vehicles are categorized into three 

groups, i.e., private vehicles used by the working class, com-

mercial vehicles, and private vehicles used by the non-working 

class. A residential parking lot is considered for the study, and 

the proportion of vehicles arriving at home during different 

hours of the day is shown in Fig. 3a. Similarly, the total number 

of EVs present at the charging station at different times of the 

day t is shown in Fig. 3b. In each interval, 20% of EVs are 

assumed to be critical service EVs. For the sake of visualiza-
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tion, the number of EVs considered in [6] is scaled down in this 

section. However, in the next section, the performance of the 

proposed method is analyzed for different penetration levels of 

EVs.  

The charging station contains renewables and BESS to pro-

vide energy to EVs during outages, as shown in Fig. 1. To 

analyze the impact of DR and BESS, two cases are considered 

in this study. The first case is without BESS and DR, where 

adjustments to load and energy profiles are not possible. The 

original load and available energy profiles are shown in Fig. 4a. 

In the second case, the adjustment of load and renewable en-

ergy is possible due to the presence of DR and BESS. 5% of the 

load is assumed to be shiftable (EVs’ participation in the DR 

program) for the load profile adjustment. A price signal is 

generated for each interval based on the difference between net 

EV demand and available energy, similar to [49]. Similarly, 

1.3MWh of battery is considered to absorb excess energy from 

renewables (for energy profile adjustment). It can be observed 

from Fig. 4a and 4b that excess energy is absorbed by the BESS 

during intervals 1-12 and it is discharged during intervals 

13-21. A total of 1.02MWh of energy was charged during low 

load intervals and 0.92MWh of energy (excluding battery 

losses) was provided during peak load intervals. It can also be 

observed from these figures that the peak load is reduced during 

the intervals 17-19 (peak load intervals). A total of 108kWh of 

load is shifted from these intervals to the last two intervals (23 

and 24), which is about 5% of the total load.   

 

The essential energy demand is computed using the distance 

data of nearby charging stations, similar to [6]. The urgency 

factor is set to zero for non-critical service EVs and it takes a 

positive value (> 0) for critical service EVs in each interval. In 

the following sections, adjusted profiles are focused on during 

energy deficit intervals. Relevant information (interval-wise 

essential energy demand, full energy demand, and available 

energy for the adjusted case) is shown in Table I. 

B. Utilitarianism Analysis 

The utilitarianism comparison of the four division rules and 

the proposed method is carried out for both (before adjustment 

and after adjustment) available energy and demand cases. The 

demand and available energy profiles are the same as in Fig. 4, 

and the number of EVs at the charging station during different 

intervals of the day is the same as in Fig. 3b. The utilitarianism 

index formulated in equation (29) is used to compute the es-

sential energy demand fulfillment ratio in all cases for all rules/ 

methods. The range of this index is between 0 and 1, and higher 

values refer to better utilitarianism and vice versa. 

It can be observed from Fig. 4a that the available energy is 

higher than the load demand during intervals 1-12, 23, and 24. 

Therefore, during those intervals, utilitarianism is the maxi-

mum (one) for all rules. However, as a residential charging 

station, most EVs start returning home in the afternoon and the 

maximum number of EVs return in the evening hours. There-

fore, during intervals 13-22, the amount of available energy is 

smaller than the energy demand (Fig. 4a). It can be observed 

from Fig. 5 that the proposed method has outperformed all four 

division rules, i.e., utilitarianism is higher during all these in-

tervals (13-22). Utilitarianism has even reduced to zero for the 

PR and CEA rules during most of the intervals, i.e., none of the 

EVs has received its essential energy demand. This is due to the 

allocation based on the claimed amount in the case of division 

rules. The SP rule has performed better in comparison with the 

 
Fig. 5. Utilitarianism comparison before load and power adjustment. 

 

 
Fig. 6. Utilitarianism comparison after load and power adjustment. 

 

  
Fig. 3. Hourly data of EVs returning home: a) proportion; b) total number. 

 

  
Fig. 4. Hourly EV demand and available energy profiles: 

 a) before adjustment; b) after adjustment. 

 
TABLE I 

INPUT PARAMETERS OF ADJUSTED PROFILES IN KWH.  

Interval 
Available 

energy  

Total energy 

demand  

Essential energy 

demand  

14 168.4 186.7 77.5 

15 165.1 207.4 99 

16 143.65 207.4 105.5 

17 148.6 237.9 105.5 

18 138.7 279.7 129.5 

19 135.4 270.3 123 

20 151.9 207.4 103.5 

21 122 145.2 71 

22 66.2 72.6 43.5 
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other three division rules, which is in line with the idea of pri-

ority-based sharing during emergencies [45]. However, the 

performance of the SP rule is still inferior to that of the pro-

posed method due to consideration of the full claim only.  

Fig. 6 shows a similar trend where the available energy 

amount is smaller than the required demand during intervals 

14-22. Due to demand and load adjustment, the performance of 

all rules has improved. However, the proposed method has 

outperformed all four rules in this case as well and maximum 

utilitarianism is achieved throughout the day (one). This im-

plies that all EVs have received at least the essential energy 

demand throughout the day. In the case of the other division 

rules, the utilitarianism index is as low as 0.36 for the PR and 

CEL rules.    

C.  Fairness Analysis   

The division rules allocate energy based on the full energy 

demand, while the proposed method considers both full and 

essential energy demands. Therefore, the fairness of all meth-

ods is analyzed for both the full and the essential energy de-

mands. In this section, Jain’s fairness indices defined in equa-

tions (24)-(27) are used to analyze fairness for the case of ad-

justed energy and demand (Fig. 4b).  

It can be observed from Fig. 7 that the full energy fairness 

index is highest for the PR rule during energy deficiency in-

tervals (13-22), as expected. The PR rule allocates energy to 

EVs relative to their full demand without consideration of 

utilitarianism. It can be argued that this increase in fairness is at 

the cost of utilitarianism. Analysis of the cost of fairness is 

discussed in the next section. Even in the case of full energy 

demand fairness, the proposed method has performed better 

than the CEL and SP rules during most of the energy deficit 

intervals. 

Fig. 8 shows that in the case of the essential energy demand 

fairness, the proposed method has outperformed all other rules. 

The unity fairness index is achieved throughout the day, which 

implies that all EVs have received at least their essential energy 

demand. The fairness results validate the utilitarianism results 

discussed in the previous section. In terms of fairness, the SP 

rule has the worst performance due to the allocation of most of 

the available energy to a few top-ranked EVs while allocating 

no energy to low-ranked EVs.  

D. Price of Fairness    

In this section, the price of fairness of each division rule is 

computed by using the index formulated in equation (28). The 

price of the fairness index for only the energy deficit intervals 

(14-22) of the adjusted case is shown in Table II. However, the 

last row shows the average index for the entire day (24 hours). 

The price of fairness must be analyzed together with the fair-

ness index to fully evaluate any division rule. Some rules might 

provide fair divisions at the cost of utility reductions. 

It can be observed from Table II (left half) that the average 

price of fairness is the highest for the PR and CEL rules. The 

price of fairness of these rules is one (1) for the entire energy 

deficit period, which implies that none of the EVs has received 

its full demand. It can be observed from Fig. 7 that the fairness 

index of these two rules is relatively higher for the same case 

(full energy demand). This proves our argument that the in-

crease in fairness in these rules is at the cost of utilitarianism.  

The right half of Table II shows the price of fairness for the 

essential energy demand case. It can be observed that the cor-

responding index values are lower compared to the full demand 

values, which implies that some EVs are getting their essential 

energy demand. However, the positive average values for all 

rules imply that the utilitarianism of all these methods is lower 

compared to the proposed method. The price of fairness is zero 

for the proposed method, since 
sN is the same as  

OptN  in 

(28). It can be observed from Table II and Fig. 8 that the per-

formance of CEA is better than the other three division rules, 

i.e., it can be ranked as second (after the proposed method).  

VI. SENSITIVITY ANALYSIS 

There are some uncertain factors and decision parameters 

involved in the formulation of the proposed method. These 

factors include the available energy (renewable and BESS 

state-of-charge) and the energy demand of EVs. Similarly, the 

decision parameters include the number of EVs registered with 

the charging station and the weight parameters used for dif-

ferent ranking factors. In this section, a sensitivity analysis of 

these uncertain factors and decision parameters is carried out to 

analyze the performance of the proposed method. For the sake 

 
Fig. 7. Fairness comparison in full energy demand (claim). 

 

 
Fig. 8. Fairness comparison in essential energy demand. 

 

TABLE II 

PRICE OF FAIRNESS IN DIVISION RULES.  

Time 

interval 

Full energy demand Essential energy demand 

PR CEA CEL SP PR CEA CEL SP 

14 1.00 0.08 1.00 0.08 0.13 0.00 0.20 0.00 

15 1.00 0.08 1.00 0.25 0.22 0.00 0.33 0.11 

16 1.00 0.42 1.00 0.25 0.21 0.00 0.42 0.16 

17 1.00 0.42 1.00 0.33 0.35 0.00 0.55 0.20 

18 1.00 0.00 1.00 2.20 0.64 0.36 0.64 0.36 

19 1.00 0.00 1.00 3.67 0.38 0.50 0.58 0.38 

20 1.00 0.17 1.00 0.50 0.14 0.09 0.18 0.18 

21 1.00 0.20 1.00 0.20 0.15 0.00 0.31 0.08 

22 1.00 0.25 1.00 0.50 0.38 0.13 0.38 0.25 

Average 0.38 0.07 0.38 0.33 0.11 0.04 0.15 0.07 
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of visualization, only one interval is analyzed in the following 

sections.     

A. Size of EV Fleet 

 In this section, the size of the EV fleet is varied from 25 to 

250 and six cases are devised while keeping the available en-

ergy the same (550kWh). The weight parameter values for the 

three ranking factors (full energy demand, essential energy 

demand, and urgency) are also kept the same for all cases, i.e., 

α=1, β=2, and γ=3. The number of survived EVs is computed in 

percent for each case by multiplying the utilitarianism index 

formulated in equation (29) by 100.  

The essential and full energy demands for different EV fleet 

sizes are shown in Table III. It can be observed from Fig. 9 that 

in the first case (EVs=25), all EVs get their essential and full 

energy demands fulfilled (100% of EVs served) due to lower 

full demand compared to available energy. In the second and 

third cases (50 and 100), the served EVs for essential demand 

are 100% while the served EVs for full demand decrease. This 

is because in these cases, the available energy is higher than the 

essential energy demand, but lower than the full energy de-

mand. Therefore, after fulfilling the essential energy demand of 

all EVs, the remaining energy is allocated to EVs based on their 

rank. In the last three cases, the available energy amount is 

lower than the essential energy demand of the entire fleet. 

Therefore, none of the EVs has full energy while the essential 

energy demand is allocated according to the EV rank. This 

analysis shows that the proposed method can allocate energy to 

EVs in a meaningful way with any number of EVs. 

To analyze the scalability and computation complexity of the 

proposed method, the computation time is analyzed for dif-

ferent EV fleet sizes, as shown in Fig. 10. It can be observed 

that the proposed method has a polynomial running time. In 

addition, the computation time was around 1.1 seconds even for 

250 EVs. This is due to the linear and convex nature of the 

problem, as discussed in Section III-C.   

B. Uncertainty in Energy Gap 

The uncertainty in available energy could arise due to un-

certainty in renewables and errors in the estimation of the BESS 

state-of-charge. Similarly, the estimated EV load is also un-

certain due to the uncertainty in the arrival and departure times 

of the EVs. Therefore, the difference in available energy and 

estimated EV load is named energy gap and nine cases are 

simulated by varying this energy gap in the range of ±40%. A 

total of 100 EVs are considered for this case (essential energy 

483 kWh and full energy 1537 kWh) and the available energy 

corresponding to the 0% case is taken as 550 kWh.  

It can be observed from Fig. 11 that with an increase in the 

uncertainty in the negative direction (0% case as reference), the 

percentage of survived EVs for full energy decreases due to the 

reduction in the available energy. In the last three cases (-20% 

to -40%), the percentage of survived EVs for essential energy 

demand is also below 100% due to the lower energy availabil-

ity. On the contrary, with an increase in the uncertainty in the 

positive direction, 100% of the essential energy demand is 

fulfilled, and the percentage of EVs with full energy demand 

being fulfilled also increases. It can be observed from this 

analysis that the proposed method allocates the available en-

ergy to EVs in the desired fashion, i.e., the essential energy 

demand is met first, and then the remaining energy is allocated 

based on the EV rank.  

C. Sensitivity to Weight Parameters 

The factors used for the ranking of EVs are multiplied by 

user-defined coefficients to define the precedence of different 

parameters. In this section, the impact of these parameters on 

the outcome of the proposed method is analyzed. In particular, 

interval 22 is analyzed where the total number of EVs is 8, with 

a full demand of 73 kWh and an essential energy demand of 

44 kWh. The energy available for this interval is 66 kWh. 

Different cases are analyzed and only those cases where the 

outcome has changed are shown in Table IV.   

Fig. 12 shows the EVs with full energy demand that are ful-

filled, the essential energy demand of all EVs is fulfilled; 

TABLE III 

ESSENTIAL AND FULL ENERGY DEMAND FOR EACH CASE.  

No of Evs 25 50 100 150 200 250 

Essential energy  115 250 474 756 964 1214 

Full energy  388 780 1501 2290 3048 3781 

 

 
Fig. 9.  Energy allocation results with different EV fleet sizes. 

 

 
Fig. 10. Computation time under different EV fleet sizes. 

 
Fig. 11. Energy allocation results under uncertain energy gap. 
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therefore, it is not shown in this section. It can be observed from 

Table V that with an increase in the value of α, the energy from 

EV5 is reduced (case b). In case b, more energy is allocated to 

EV8 and EV8 receives full energy demand, as shown in Fig. 12. 

This is due to the change in the rank of EVs, i.e., it changed 

from [0.086, 0.085] in case a to [0.096, 0.097] in case b. Sim-

ilarly, in case c, the energy from EV2 is reduced and more 

energy is allocated to EV1, EV4, EV5, and EV8. On the con-

trary, in case e, with an increase in the value of β, the energy 

from EV7 is reduced and more energy is allocated to EV5. The 

original ranks of EV7 and 5 were [0.128, 0.086], which 

changed to [0.121, 0.129] in case e. Similarly, in case f, the 

energy from EV 7 is further reduced and allocated to EV5 and 

EV8. The outcome has remained the same with an increase in 

the value of γ. This is due to the higher rank of EVs with posi-

tive γ, i.e., critical service EVs. This is desirable, since critical 

service EVs need to be served first. In all cases, the essential 

energy demand of all EVs was met. It implies that the proposed 

method successfully allocates essential energy to all EVs first, 

and the remaining energy is allocated to EVs based on their 

rank. The ranks can be controlled by policymakers through the 

values of α, β, and γ, considering their local situation.  

VII. CONCLUSION 

     In this study, an energy allocation method for EVs is pro-

posed, which enhances utilitarianism and fairness (in case of 

essential energy demand) among EV users during major out-

ages. Three factors are considered to rank the EVs and a unified 

normalized factor is formulated to allocate energy during con-

tingencies. The performance of the proposed method is com-

pared with four existing division rules in terms of utilitarianism 

and fairness in allocating energy to EVs. The proposed method 

has outperformed all the rules in terms of utilitarianism by 

maximizing the number of electric vehicles with their essential 

and full energy demands being met. In addition, fairness has 

also improved in allocating essential energy demand to EVs, 

i.e., more vehicles receive energy close to their essential energy 

demand. In some of the division rules, the fairness in full en-

ergy demand increased at the cost of a reduction in utilitarian-

ism, which is not desired, especially during emergencies. Sen-

sitivity analysis has confirmed that the proposed method can 

successfully allocate energy to EVs under different EV pene-

tration levels and supply/demand ratios in a reasonable way. In 

all cases, the essential energy demand was fulfilled first and the 

remaining energy was allocated to EVs based on their rank, 

which is the desired performance during emergencies. Finally, 

scalability and computational complexity analysis have shown 

that the proposed method has a polynomial running time, thus it 

can be easily applied to large fleets of electric vehicles. 

    The focus of this study is on energy allocation in a single 

charging station in islanded mode. The application of the pro-

posed method to multiple charging stations in outage areas 

while considering grid constraints and power transfer among 

different charging stations will be a valuable extension of this 

study. This will also make it possible to utilize electric vehicles 

for supporting grid/homes (vehicle-to-grid), where possible. 

Similarly, acquisition and processing of more granulated data 

from electric vehicle owners during contingencies while en-

suring privacy preservation and truthfulness in data reporting 

(through incentive mechanisms) could further enhance the 

useability of the proposed method.  
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