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Abstract 

Climate variability, climate change and human activities have impacted various components 

of the hydrologic cycle in many regions across the world.  In particular, changes to the global 

climate system can affect the magnitude and frequency of extreme hydrological events, thus 

altering the risk to critical infrastructure. Therefore, under the possible impact of climate change, 

the stationary assumption of the conventional frequency analysis is generally invalid. Assessing 

the validity of the stationarity assumption for Canadian hydroclimatic variables is important to 

justify the practice of conventional hydrologic frequency analysis in a changing climate. On the 

other hand, understanding how non-stationarity have affected the magnitude and frequency of 

hydrologic events in Canada, and developing new statistical techniques (or extensions of existing 

techniques) are important to address non-stationarity and to reduce uncertainties associated with 

frequency analysis. Alternatively, it will be beneficial to reliably predict future Canadian 

precipitation and streamflow under a changing climate and the impact of anthropogenic 

influences. Most past studies of Canadian hydroclimate change detection have focused on trends 

or slow varying changes in the mean precipitation and streamflow of Canada even though 

extreme precipitation and streamflow could cause more severe damage to human beings.  

The objectives of this dissertation are: 1) to understand the impact of changes in climatic 

and human factors to hydroclimatic processes over Canada, 2) to examine the nonstationary 

characteristics of the precipitation and streamflow under a changing climate, and 3) to assess the 

impacts of global changes in extreme climate on human and ecosystems.  
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Chapter 1 describes an analysis of the nonstationary behavior of extreme streamflow over 

Canada by identifying abrupt changes, monotonic temporal trends, non-stationary probability 

distributions and long-term persistence of Canadian annual maximum streamflow. The results 

show that nonstationary frequency analysis should be employed in the future, because of 

widespread non-stationarities of streamflow resulting from both climate change and human 

impacts have been detected across Canada. 

Chapter 2 relates changes in streamflow over Canadian watersheds to climate change and 

human impacts. From elasticities of streamflow for each watershed are analytically derived using 

the Budyko Framework, it is shown that climate change caused an increase in the mean annual 

streamflow (MAS), while human impacts a decrease in MAS and such impact tends to become 

more severe with time. 

Chapter 3 relates non-stationarities of heavy precipitation over Canada in terms of 

frequency and intensity to large-scale climate patterns, such as El Niño Southern Oscillation 

(ENSO), North Atlantic Oscillation (NAO), Pacific decadal oscillation (PDO) and North Pacific 

Oscillation. This analysis shows that large-scale climate anomalies have affected Canadian heavy 

precipitation which may trigger large floods. 

Chapter 4 used variants of the Mann-Kendall (MK) test to analyze effects of short-term 

persistence (STP), long-term persistence (LTP) and large-scale climate anomalies on detected 

trends of seasonal (SMP) and annual extreme precipitation (AMP). The presence of LTP would 

increase the chances of detecting trends in AMP and SMPs, and similarly STP would also 

influence the detection of trends, while large-scale climate anomalies mainly contributed to 

trends detected for winter SMPs.  
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Chapter 5 investigates the multifractality of Canadian daily precipitation and streamflow 

based on the universal multifractal model and the modified multiplicative cascade model. The 

differences in the multifractality of streamflow before and post dam operations are also analyzed 

to show the effects of human influences on the characteristics of streamflow of Canada. 

Chapter 6 shows significant interannual and interdecadal oscillations of Canadian extreme 

precipitation and their teleconnections to large-scale climate anomalies from applying variants of 

wavelet analysis methods and the composite analysis to 131 stations of climate data of Canada. 

Results show that both ENSO and PDO modulated the interannual variability, and PDO 

modulated the interdecadal variability, of extreme precipitation over Canada.  

Chapter 7 identifies projected time of emergence (ToE) in global extreme climate, when the 

signal of extreme climate change will exceed the natural climate variability. This timing for 

terrestrial and marine ecoregions is identified for hot-spot regions across the world where the 

ecosystem could be severely impacted by changes in the magnitude, frequency and severity of 

extreme temperature and precipitation that exceed the tolerance limit of respective ecosystems.  

The impacts of extreme climate change on human society are also examined.  

Conclusions and future work are provided in Chapter 8. 
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Preface 

This dissertation is organized in an article format. Each chapter is written as a standalone 

article for journal submission. As such, each chapter contains standalone introductions and 

conclusions. A general introduction section is provided at the beginning of the thesis (“General 

introduction”) and research conclusions are summarized in Chapter 8. An aggregated 

bibliography has been provided for the entire dissertation due to many overlapping references. 

Color figures and supplementary materials are available in online published papers. Figures and 

Tables indexed with “S” (e.g., Figure S1 and Table S1) are included in supplementary materials 

submitted to a journal. To shorten the dissertation, these supplementary figures and tables are not 

presented in this thesis, although they are cited in the text. 



vi 

 

Dedication 

This thesis is dedicated to my grandparents, parents, brothers, wife (Guofei Tu) and 

daughter (Tracy Tan), for their endless love, support and encouragement. 

 



vii 

 

Acknowledgments 

First I wish to express my sincere gratitude to my supervisor Professor Thian Yew Gan for 

all his continuous support of my PhD study and research, for his patience, motivation and 

guidance over the past four years we have known each other, without which I would not be 

where I am today. I could not have imagined having a better supervisor and mentor for my PhD 

study and research. His enthusiasm and love of learning has been a constant inspiration – thank 

you. I would like to thank my co-author Professor Daniel Horton for all his invaluable input. 

Finally, I would like to acknowledge the China Scholarship Council (CSC), the University of 

Alberta, Henry Kroeger Memorial Graduate Scholarship, and the Natural Sciences and 

Engineering Research Council of Canada (NSERC) for providing funding support. 

 



viii 

 

Table of Contents 

Abstract .......................................................................................................................................... ii 

Preface ............................................................................................................................................ v 

Dedication ..................................................................................................................................... vi 

Acknowledgments ....................................................................................................................... vii 

Table of Contents ....................................................................................................................... viii 

List of Tables ............................................................................................................................... xii 

List of Figures ............................................................................................................................. xiv 

General Introduction ....................................................................................................................... 1 

Chapter 1 Nonstationary analysis of annual maximum streamflow of Canada .............................. 8 

1.1 Introduction ................................................................................................................. 8 

1.2 Data............................................................................................................................ 11 

1.3 Research methodology .............................................................................................. 12 

1.3.1 Change point analysis ......................................................................................... 12 

1.3.2 Temporal trend analysis ..................................................................................... 13 

1.3.3 Nonstationary extreme distribution analysis ...................................................... 14 

1.3.4 Long-term persistence (LTP) analysis ................................................................ 17 

1.4 Results ....................................................................................................................... 18 

1.4.1 Change point analysis ......................................................................................... 18 

1.4.2 Temporal trend analysis ..................................................................................... 19 

1.4.3 GAMLSS modeling of extreme distribution ...................................................... 23 

1.4.4 Long-term persistence (LTP) ............................................................................. 26 

1.5 Summary and conclusions ......................................................................................... 30 

Chapter 2 Contribution of human and climate change impacts to changes in streamflow of 

Canada ................................................................................................................................. 32 

2.1 Introduction ............................................................................................................... 32 



ix 

 

2.2 Results ....................................................................................................................... 33 

2.2.1 Hydroclimatic trends and change-points ............................................................ 33 

2.2.2 Elasticities of streamflow ................................................................................... 37 

2.2.3 Direct human impacts and climate change to streamflow change ..................... 39 

2.3 Discussion.................................................................................................................. 42 

2.4 Methods ..................................................................................................................... 47 

Chapter 3 Non-stationary analysis of the frequency and intensity of heavy precipitation over 

Canada and their relations to large-scale climate patterns .................................................. 52 

3.1 Introduction ............................................................................................................... 52 

3.2 Data and methods ...................................................................................................... 55 

3.2.1 Precipitation ........................................................................................................ 55 

3.2.2 Large-scale climate anomalies ........................................................................... 57 

3.2.3 Research methodology ....................................................................................... 58 

3.3 Discussion of results .................................................................................................. 60 

3.3.1 Extreme value distribution of Canadian precipitation ........................................ 60 

3.3.2 Modeling heavy precipitation clusters with Poisson regression ......................... 65 

3.3.3 GP distribution.................................................................................................... 68 

3.3.4 Composite circulation patterns ........................................................................... 69 

3.4 Summary and conclusions ......................................................................................... 74 

3.5 Appendix ................................................................................................................... 75 

Chapter 4 Effects of persistence and large-scale climate anomalies on trends and change points in 

extreme precipitation of Canada .......................................................................................... 79 

4.1 Introduction ............................................................................................................... 79 

4.2 Data............................................................................................................................ 81 

4.3 Research methodology .............................................................................................. 83 

4.4 Results ....................................................................................................................... 84 



x 

 

4.4.1 Trends at local scales .......................................................................................... 84 

4.4.2 Spatial distribution of trends .............................................................................. 88 

4.4.3 Field-significance of the trends .......................................................................... 88 

4.4.4 Effects of large-scale climate anomalies on trend detection .............................. 90 

4.4.5 Change point tests............................................................................................... 92 

4.5 Discussions of results ................................................................................................ 95 

4.5.1 Trend test for Canadian extreme precipitation ................................................... 95 

4.5.2 Change point test for Canadian extreme precipitation ....................................... 97 

4.6 Summary and conclusions ......................................................................................... 98 

Chapter 5 Multifractality of Canadian precipitation and streamflow ......................................... 100 

5.1 Introduction ............................................................................................................. 100 

5.2 Data.......................................................................................................................... 102 

5.3 Methodology............................................................................................................ 103 

5.3.1 Detrended fluctuation analysis (DFA).............................................................. 103 

5.3.2 Multifractal detrended fluctuation analysis (MFDFA)..................................... 105 

5.3.3 Other related multifractal formalisms .............................................................. 106 

5.4 Results and discussion ............................................................................................. 108 

5.4.1 Long-term persistence (LTP) ........................................................................... 108 

5.4.2 Multifractal characterization ............................................................................ 112 

5.4.3 Temporal changes of multifractal properties of precipitation .......................... 117 

5.4.4 Multifractal changes in streamflow data .......................................................... 118 

5.5 Summary and conclusions ....................................................................................... 120 

Chapter 6 Wavelet analysis of precipitation extremes over Canadian ecoregions and 

teleconnections to large-scale climate anomalies .............................................................. 122 

6.1 Introduction ............................................................................................................. 122 

6.2 Data.......................................................................................................................... 124 



xi 

 

6.3 Research methodology ............................................................................................ 126 

6.3.1 Wavelet analysis ............................................................................................... 126 

6.3.2 Wavelet empirical orthogonal function (WEOF) analysis ............................... 129 

6.3.3 Composite analysis ........................................................................................... 130 

6.4 Results and discussion ............................................................................................. 130 

6.4.1 Wavelet analysis of MMDP ............................................................................. 130 

6.4.2 Wavelet analysis of climate indices ................................................................. 133 

6.4.3 Wavelet coherence between MMDP and large-scale climate indices .............. 135 

6.4.4 Partial wavelet coherence ................................................................................. 138 

6.4.5 Correlations at multiple time scales ................................................................. 139 

6.4.6 Composite analysis ........................................................................................... 143 

6.5 Summary and conclusions ....................................................................................... 146 

Chapter 7 Projected timing of perceivable change in global extreme climate ........................... 148 

7.1 Introduction ............................................................................................................. 148 

7.2 Discussions of results .............................................................................................. 155 

7.3 Methods ................................................................................................................... 162 

Chapter 8 Conclusions and future work ...................................................................................... 165 

8.1 Conclusions ............................................................................................................. 165 

8.2 Future work ............................................................................................................. 168 

Bibliography .............................................................................................................................. 171 

 



xii 

 

List of Tables 

Table 1-1 Summary of the four two-parameter PDs (Rigby et al. 2014) considered in this study 

to model the Canadian AMS ............................................................................................... 16 

Table 1-2 Number of stations detected with statistically significant trend at the 10% significance 

level* ................................................................................................................................... 19 

Table 1-3 Numbers of stations fitted to the specific GAMLSS model in the absence and presence 

of a change point ................................................................................................................. 24 

Table 1-4 Numbers of stations whose Hurst exponents (H) are larger than 0.5 calculated from 

different estimators .............................................................................................................. 27 

Table 3-1 Percentages (%) of stations where incorporating each covariate showed statistically 

significant improvement in the extreme precipitation modeling, compared to the stationary 

extreme precipitation modeling. .......................................................................................... 62 

Table 4-1 Comparison of the number of stations showing both statistically significant lag-1 

autocorrelations at p≤0.10 and statistically significant trends in AMP and SMPs detected 

by the regMK, tfpwMK and modMK tests at p≤0.10 ........................................................ 86 

Table 4-2 Comparison of the number of stations showing both statistically significant LTP at p≤

0.10 and statistically significant trends in AMP and SMPs detected by the regMK and 

ltpMK tests at p≤0.10 ........................................................................................................ 86 

Table 4-3 Number of stations showing field-significant trends detected by the FDR approach at p

≤0.10 in AMP and SMPs detected by the regMK, tfpwMK, modMK and ltpMK tests, and 

the field-significance of local trends identified by the Walker test, for the period 1950-

2010. A significant Walker test at p≤0.10 is indicated by a ‘‘*” symbol and a 

nonsignificant test at p≤0.10 is indicated as “NS”. ........................................................... 91 

Table 4-4 The number of stations in each region detected with statistically significant local 

increasing (↑) and decreasing (↓) change points at p≤0.10; the number of stations 

showing the field-significance at p≤0.10 detected by the FDR approach; and the field-

significance of local trends identified by the Walker test, in which a significant test at p≤



xiii 

 

0.10 is indicated by a ‘‘*” symbol and a nonsignificant test at 10% level is indicated as 

‘‘NS”.................................................................................................................................... 94 

Table 6-1 Pearson’s correlations between the PC scores of band-passed MMDP and band-passed 

climate indices for selected scale bands. ........................................................................... 140 

Table 6-2 Years included in the composite analysis of SDMP for the extreme phases of ENSO 

(represented by SOI and NINO3), NAO and PDO patterns. ............................................. 143 

Table 6-3 Number of stations where composite differences in SMDPs are positively or 

negatively significant, or not significant in different seasons for four climate indices. .... 145 

Table 7-1 Extreme climate indices analyzed .............................................................................. 152 

Table 7-2 GCMs used in the analysis ......................................................................................... 153 

 



xiv 

 

List of Figures 

Figure 1 Schematic of thesis research flow………………………………………………...……..1 

Figure 1-1 A map showing selected non-RHBN and RHBN streamflow gauge stations over 

Canada, and the corresponding abrupt change points of annual maximum daily 

streamflows detected using the Pettitt test and 5% significance level. Six selected stations 

for GAMLSS modeling are: A) 05CC002, B) 05KJ001, C) 08NE049, D) 08JB002, E) 

08MH016 and F) 01AK001................................................................................................. 11 

Figure 1-2 Significant temporal trends of AMS of RHBN and non-RHBN at 10% significance 

level without considering the presence of change points, as well as the spatial distribution 

of trend magnitudes based on Pearson linear regression coefficients estimated. ................ 21 

Figure 1-3 Temporal trends in AMS series of RHBN and non-RHBN stations at 10% 

significance level for a) before, and b) after change points are detected. ........................... 21 

Figure 1-4 Worm plots for six representative stations showing the goodness-of-fit of 2-parameter 

PDs to their corresponding measured AMS. For a good fit, the data points should be 

aligned preferably along the grey solid curve but within the 95 percentile confidence 

interval represented by two grey dashed curves (van Buuren and Fredriks 2001). ............ 25 

Figure 1-5 Fitting of AMS series for six selected stations (locations shown in Figure 1) to five 

nonstationary and one stationary PDs, with solid dots representing measured AMS values 

scattered between five levels of percentiles (5
th

, 25
th

, 50
th

, 75
th

, and 95
th

).......................... 26 

Figure 1-6 Spatial distributions of the 2.5% quantile (a and d), the 50% quantile or mean (b and 

e) and the 97.5% quantile (c and f) of Hurst exponent (H) re-sampled by the bootstrap 

method applied to station (represented by dots) H values estimated from the R/S method (a, 

b and c) and the Peng's method, respectively. ..................................................................... 28 

Figure 1-7 Scatterplots between Hurst exponent (H) of Canadian AMS estimated using the R/S 

(a, b) and the Peng’s (c, d) method with basin area, and length of the AMS time series, 

respectively. ......................................................................................................................... 29 

Figure 2-1 Typical Budyko curve (red line, n=1) and the schematic of decomposition method. 

Assuming point A is the catchment water balance under the stationary condition of the pre-

change period (period-1), point B is under another stationary condition of the post-change 



xv 

 

period, and point C is a hypothetical point under a stationary condition which has the same 

catchment property as point A and the same climate condition (including precipitation and 

PET) as point B. .................................................................................................................. 34 

Figure 2-2 Geographic locations of the 96 studied drainage watersheds (polygons). The 15 

terrestrial ecozones for Canada’s landmass are also shown. The watershed number and the 

mean annual hydroclimatic variable values are shown in detail in the Tables S1 and S2. . 35 

Figure 2-3 Spatial coverage of exogenous information used as a validation of the landscape 

change impacts due to human activities on mean annual streamflow, a) population density, 

b) number of dams in each watershed, and c) land use and cover. ..................................... 35 

Figure 2-4 Change-points and trends of the annual precipitation (a), potential evaporation (b) and 

streamflow (c) in mm/year, and (d) change in landscape parameter n (d; Δn = n2 – n1) of 96 

selected watersheds across Canada. For figures 1 a-c, only change-points (in year) that are 

statistically significant at 10% significant level are presented. Blue (green) boundaries 

show RHBN (non-RHBN) watersheds selected. Light (deep) grey watersheds represent 

trends that are not (are) statistically significant. The magnitudes of trends are presented in 

terms of circle sizes, in which green (red) circles represent decreasing (increasing) trends.

 ............................................................................................................................................. 36 

Figure 2-5 Difference in (a) the dryness index and (b) the evaporation ratio between the period-1 

and period-2. Red (green) watersheds in (a) were getting drier (wetter) as the dryness index 

during period-2 was higher (lower) than that during period-1. Red (green) watersheds in 

(b) show an increase (decrease) in the evaporation ratio as the evaporation ratio during 

period-2 was higher (lower) than that during period-1. ...................................................... 37 

Figure 2-6 Distribution of the mean annual evaporation ratio (E/P) versus mean annual dryness 

index (E0/P) for selected RHBN (a), and non-RHBN (b) watersheds during the period-

1(blue dots) and period-2 (red dots). The Budyko curves calculated by Equation (2-2) are 

plotted as black solid lines. The watershed numbers shown in the figures are described in 

Supplementary Table S2 of Tan and Gan (2015b). ............................................................. 38 

Figure 2-7 Elasticity of streamflow of 96 watersheds of Canada to (a) precipitation εp, (b) 

potential evaporation (PET), εEp, and (c) the watershed landscape εn. ................................ 38 

Figure 2-8 Relative contributions of changes in precipitation (c),  PET (d) and landscape (e) to 

changes in the annual streamflow of selected Canadian RHBN (a) and non-RHBN (b) 



xvi 

 

watersheds, represented by blue, red and black bars, respectively. Descriptions of 

watersheds of # shown in Figure 2-8a are given in Supplementary Table S1 and in Figure 

2-8b are given in Supplementary Table S2 of Tan and Gan (2015b), respectively. ........... 40 

Figure 2-9 Comparison between the modeled and the observed streamflow change, the black 

solid line is a 1:1 straight line. ............................................................................................. 41 

Figure 2-10 Comparisons of the contribution of climate (a) and human activities (b) to the 

streamflow change for watersheds described in Table S1 (blue dots) and S2 (red dots) 

derived from the decomposition method and the elasticity method. The watershed numbers 

shown in the figures are described in Supplementary Table S2 of Tan and Gan (2015b). . 42 

Figure 2-11 Temporal Budyko analysis results of Contributions of climate (a) and human (b) to 

changes in MAS from the baseline 1931-1960 period at 10 year intervals for 30 watersheds 

estimated from the decomposition method based on the Budyko framework; and 

scatterplots between changes in MAS due to contributions of climate (red dots) and human 

(blue dots) averaged over 5 10-year periods, and changes in MAS based on 1980 as the 

assumed change-point for each watershed. The watershed numbers shown in the figures are 

described in Supplementary Table S2 of Tan and Gan (2015b). ........................................ 43 

Figure 2-12 Relationships between estimated human contributions to streamflow change in terms 

of selected, external validation data, namely, (a) population density, (b) number of dams, 

(c) percentage of cropland, (d) percentage of irrigated land and (e) trend magnitudes of 

NDVI. .................................................................................................................................. 44 

Figure 2-13 Trends of NDVI (a, year
-1

) and snow ratio (b, % year
-1

) over North America. Maps 

in Figure 2-13 were generated with licensed Matlab R2014a using public domain data, 

such as NDVI data of the Global Inventory Modeling and Mapping Studies (GIMMS) 

(http://staff.glcf.umd.edu/sns/branch/ htdocs.sns/data/gimms/) and snow ratio data of the 

North American Regional Reanalysis (NARR). 

(http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html)............................................... 45 

Figure 2-14 Same as Figure 2-6, but based on the snow ratio for selected RHBN (a) and non-

RHBN (b) watersheds during period-1 and period-2 (see Figure 2-6 about the period of 

data points).  The Budyko curves calculated by Equation (2-2) are plotted as black solid 

lines...................................................................................................................................... 45 



xvii 

 

Figure 2-15 The elasticity of streamflow dependent on (a) the dryness index (Ep/P) and (b) the 

landscape parameter (n). The lines represent the elasticity of runoff, and the blue and red 

circles or dots represent the non-RHBN and RHBN watersheds, respectively. .................. 48 

Figure 3-1 Location of the 463 Canadian precipitation stations used in this study, together with 

the threshold values used for the POT analyzes. ................................................................. 55 

Figure 3-2 Maps with the mean (a), mm day
-1

; variance (b), mm day
-1

; and dispersion coefficient 

(c) of the number of days exceeding corresponding 95
th

 percentile daily precipitation. The 

dispersion coefficient is defined as the ratio of variance to mean. ...................................... 59 

Figure 3-3 Maps of location (a), scale (b) and shape (c) parameters of the GEV distribution for 

AMP time series derived from the stationary analysis. ....................................................... 59 

Figure 3-4 Maps of AMP with the (a and d) 2-, (b and e) 20- and (c and f) 100-year return period 

derived from the stationary GEV (a-c) and GP (d-f) modeling. Spatial interpolation is 

performed by a simple Kriging method............................................................................... 59 

Figure 3-5 Maps showing the sign of difference (    0.95 0.95P p P p    ) in precipitation 

return levels of 20 year return period conditional on positive (  0.95P p  ) and negative (

 0.95P p  ) phases of covariates, i.e., the time and the five selected climate indices, for 

the GEV models of Canadian AMP with time-varying location and scale parameters (

x   and  log x  , x is a covariate). The red and magenta dots represent the 

higher AMP values in years with high values of a particular covariate (

   0.95 0.95P p P p    ) while the blue and green dots show the lower AMP values in 

years with high values of a particular covariate (    0.95 0.95P p P p    ). Blue and 

red dots indicate stations whose GEV modeling of AMP is significantly improved by 

implementing the covariates at the 5% level. ...................................................................... 60 

Figure 3-6 The spatial distributions of differences in precipitation return levels of 20-year return 

period predicted by GEV distributions based on parameters estimated from the maximum 

and the minimum historical values of a given covariate. The respective covariate used was 

year for (a), SOI for (b), Nino3 for (c), NAO for (d), PDO for (e), and NP for (f). The red 

(blue) grids means that the difference in AMP estimated from the GEV derived from the 

maximum covariate values are higher (lower) than that derived from the minimum 



xviii 

 

historical values of the covariate, and the gridded, difference in AMP values were 

interpolated from station AMP values by a simple Kriging method. The difference in AMP 

estimated from GEV distributions based on the maximum versus the minimum covariates 

such as El Niño or La Niña can exceed 20 mm. .................................................................. 61 

Figure 3-7 Results of the fitting of the counts of heavy precipitation with a Poisson regression 

model with rate of occurrence that depends linearly on time (via a logarithmic link 

function) without (a) and with (b) a change point detected using the segmented regression. 

All change points and trends showing with green circles, red and blue triangles or 

diamonds are statistically significant at the 5% significance level. The year when 

statistically significant change point occurred is numbered next to the station. ................. 66 

Figure 3-8 Map showing the stations for which the five selected climate indices are covariates in 

the Poisson regression model. The red and magenta (blue and green) dots represent the 

positive (negative) relations between the rate of heavy precipitation occurrence and 

particular climate indices. Blue and red dots indicate stations whose Poisson regression 

modeling of the rate of heavy precipitation occurrence is significantly improved by 

implementing the covariates at the 5% level. ...................................................................... 66 

Figure 3-9 Composite winter 500-hPa geopotential height (m; contour with numbers), 500-hPa 

wind field (m s
-1

; vectors) and vertically integrated precipitable-water-content (mm day
-1

; 

shaded) anomaly patterns for western Canada in winter days (Julian days 309-335) on 

which heavy precipitation most likely occurred, associated with (a) extreme El Niño (high 

NINO3), (b) extreme La Niña (low NINO3), (c) high PDO, (d) low PDO, (e) high NAO, 

(f) low NAO, (g) high NP and (h) low NP. ......................................................................... 70 

Figure 3-10 Same as Figure 3-9, but for western Canada in summer days (Julian days 184-227) 

on which heavy precipitation most likely occurred. ............................................................ 71 

Figure 4-1 Map of Canada showing the spatial distribution of precipitation stations analyzed over 

four regions. Canada west includes BC; Canada Centre includes AB, SK and MB; Canada 

North includes YT, NT and NU; and Canada East includes ON, QC, NL, NB, PE and NS.

 ............................................................................................................................................. 82 

Figure 4-2 Maps showing the spatial distribution of stations with statistically significant lag-1 

autocorrelations and LTP in AMP (a) and SMPs (b-e) of 1950-2010 at p ≤ 0.10. ............ 82 



xix 

 

Figure 4-3 Percentage of stations with positive and negative (shown along positive and negative 

y-axis, respectively) lag-1 autocorrelation coefficient (ρ1), along with percentage of 

stations showing ρ1 values that are significant at p ≤ 0.10 (red). The five columns for four 

time periods show the percentage of stations with ρ1 for the AMP, spring, summer, autumn 

and winter SMPs, respectively. ........................................................................................... 84 

Figure 4-4 Percentage of stations showing statistically significant, positive and negative trends 

(plotted along the positive and negative y-axis, respectively) in AMP (a) and SMPs (b-e) 

time series of 1950-2010 detected by the regMK, tfpwMK, modMK and ltpMK tests at p 

≤ 0.10. ................................................................................................................................ 87 

Figure 4-5 Maps showing trends in AMP (a) and SMPs (b-e) of 1950-2010 detected by the 

regMK test at p ≤ 0.10. The red upward-pointing triangles indicate statistically significant 

while the green downward-pointing triangles indicate statistically significant trends at p ≤ 

0.10, respectively. Grey and black dots indicate stations with non-significant trends, 

respectively. The shaded color represents spatially interpolated trend magnitude in mm 

year
-1

 for AMP (a) and SMPs (b-e). .................................................................................... 87 

Figure 4-6 Probability distributions of Pearson’s product moment cross-correlation (PPMCC, 

black color), Kendall’s rank cross-correlation (KRCC, red color) and Spearman’s rank 

cross-correlation (SRCC, blue color) of four regions over four periods, (a)-(d). The overall 

percentage of significant positive and negative cross-correlations obtained from all 

possible pairs of AMP and SMPs data are shown in each figure. ....................................... 89 

Figure 4-7 Maps showing change points of stations for AMP (a) and SMPs (b-e) of 1950-2010. 

The upward-pointing triangles represent increasing change points while downward- 

pointing triangles represent decreasing change points for various stations at p ≤ 0.10. The 

shaded color represents spatially interpolated timing (years) of both significant and non-

significant change points detected. ...................................................................................... 92 

Figure 4-8 Scatterplots between statistical significance (p-value) of trends in winter SMPs for 

stations with p ≤ 0.30 detected by the regMK test versus those detected by the partMK 

test with climate indices, SOI (a), NAO (b), PDO (c) and NP (d) as the covariates. The p-

values obtained are represented by black for the 1900-2010, red for 1930-2010, green for 

1950-2010 and blue for 1970-2010 periods, respectively. .................................................. 93 



xx 

 

Figure 4-9 Temporal distributions of the timing (years) of both significant and non-significant 

change points detected for the four periods. ........................................................................ 95 

Figure 5-1 A map of Canada showing precipitation and streamflow stations selected for this 

study. ................................................................................................................................. 107 

Figure 5-2 Fluctuation functions F2(s) versus timescale s obtained from a DFA2 analysis for four 

sets of representative precipitation (a) and streamflow records (b). ................................. 107 

Figure 5-3 The spatial distribution of generalized Hurst exponents h(2) for all 100 daily 

precipitation records (a) and  all 145 daily streamflow records (b and c). h(2) of streamflow 

data have been obtained from power law fits of fluctuation functions for (b) small (4 < s 

<300 days) and (c) large (400 < s < 12000 days) timescales, while h(2) of precipitation 

data were obtained for (a) time scales of 4 < s <12000 days. ........................................... 108 

Figure 5-4 Fluctuation functions of four sets of precipitation (a and b) and streamflow (c and d) 

records for different q-order moments. ............................................................................. 111 

Figure 5-5 Generalized Hurst exponents h(q) fitted to Equations (5-18) and (5-19), for 

representative precipitation (a) and streamflow (b) records. ............................................. 111 

Figure 5-6 Histograms of multifractal parameters, H  (a and g), 1C (b and h) and (c and i) for 

Equation (5-18), and a (d and j) and b (e and k) for Equation (5-19), and multifractal 

spectrum width (strength)  (f and l) for 100 daily precipitation records (a-f) and 145 

daily streamflow (g-l) records. .......................................................................................... 114 

Figure 5-7 Multifractal spectrum (f(α) ~ α) of representative precipitation (a) and streamflow (b) 

records. .............................................................................................................................. 115 

Figure 5-8 Spatial distributions of the multifractal spectrum width Δα of precipitation (a) and 

streamflow records (b and c). The same legends apply to figures (a), (b) and (c). ........... 116 

Figure 5-9 Distribution of trends of 30 parameters computed for the universal multifractal model 

(Equation 5-18) applied to 100 stations of precipitation time series, each divided into 30 

non-overlapping subseries. ................................................................................................ 116 

Figure 5-10 Differences in q-order Hurst exponent (hq) and multifractal spectrum (αmax−αmin) of 

the daily streamflow of the North Saskatchewan River at Edmonton (Station # 05DF001) 

between pre- and post-change point periods caused by the streamflow regulation that began 

in 1973. The top panel shows the observed 1911-2010 streamflow anomalies; and the 



xxi 

 

middle and the bottom panels show multifractal characteristics of the pre-change and post-

change subseries, respectively. .......................................................................................... 117 

Figure 5-11 Comparison of the multifractal parameters between the pre- and post-change point 

subseries of Canadian streamflow records detected with statistically significant abrupt 

change points. .................................................................................................................... 119 

Figure 6-1 Locations of 131 selected precipitation stations and nine ecoregions over Canada. The 

Provinces or Territories of Canada are: AB, Alberta; SK, Saskatchewan; MB, Manitoba; 

NL, Newfoundland & Labrador; PE, Prince Edward Island; NS, Nova Scotia; NT, 

Northwest Territories; NU, Nunavut; ON, Ontario; NB, New Brunswick; YT, Yukon 

Territory; British Columbia; and QC, Quebec. ................................................................. 125 

Figure 6-2 Continuous Morlet wavelet spectrum of MMDP and Global wavelet power spectrum 

(GWS) (solid line) with the 95% confidence level (dashed line) at Crowsnest and 

Aroostook are presented. The thick black contours depict the 95% confidence level of local 

power relative to a white noise background. The white dashed line is the cone of influence 

beyond which the energy is contaminated by the effect of zero padding. ........................ 127 

Figure 6-3 Time-longitude Power Hovmöller diagrams of the SAWP (a-c) and space-average of 

the SAWP power Hovmöller (d-f) for Canadian monthly maximum precipitation anomalies 

at the 131 stations: 1-3-year scale band (Figures 6-3a and 6-3d), 3-8-year scale band 

(Figures 6-3b and 6-3e), and 8-30-year scale band (Figures 6-3c and 6-3f). The grey 

contours are at a normalized power of 0.13, 0.035, and 0.015 for Figure 3a, Figure 3b and 

Figure 3c, respectively. The solid black contours enclose periods of statistically significant 

SAWP relative to a white noise process at the 5% significance level. .............................. 131 

Figure 6-4 In the four wavelet power spectra of monthly climate indices, the thick black contours 

represent significant local wavelet power at the 95% confidence level relative to a white 

noise background. The white contour of each plot is the cone of influence beyond which 

energy is contaminated by the effect of zero padding. ...................................................... 134 

Figure 6-5 In wavelet power spectra of MMDP PC1 of nine ecoregions, all features are the same 

as Figure 6-4. PM, Pacific Maritime; MC, Montane Cordillera; BC, Boreal Cordillera; CP, 

Canadian Prairies; BP, Boreal Plain; BS, Boreal Shield; TP, Taiga Plain; MP, Mixedwood 

Plains; AM, Atlantic Maritime. ......................................................................................... 134 



xxii 

 

Figure 6-6 In WTC spectra and phase difference between the MMDP PC2 of nine ecoregions 

and SOI, thick black contours enclose periods with statistically significant coherence 

relative to a red noise process at 5% significant level. The phase difference is plotted only 

for time periods and scales with a coherence over 0.7. Right (left) pointing arrows indicate 

that the two signals are in phase (antiphase); arrows pointing down mean that NINO3 leads 

MMDP PC2 by 90°; and arrows pointing up mean that MMDP PC1 leads NINO3 by 90° 

or that NINO3 leads MMDP PC2 by 270°. ....................................................................... 136 

Figure 6-7 PWC spectra and phase difference between the MMDP PC2 and SOI with the 

influence of PDO on MMDP PC2 eliminated. .................................................................. 138 

Figure 6-8 The 1930-2005 time series of normalized WPCs for the MMDP SAWP of Pacific 

Maritime (PM) region, and the corresponding normalized SAWP of NAO, PDO and 

NINO3. WPC1, WPC2 and WPC3 respectively explain 24.8%, 12.3% and 11.1% of the 

total variance of the 1-3-year scale; 35.9%, 23.5% and 13.3% of the variance of the 3-8-

year scale; and 52.1%, 24.5% and 11.6% of the variance of the 8-30-year scale, MMDP 

SAWP. ............................................................................................................................... 141 

Figure 6-9 Composite differences in the winter (Dec-Jan-Feb) maximum daily precipitation 

averaged over the 5 years with the lowest SOI (a), NINO3 (b), NAO (c) and PDO (d) 

values and the 5 years with the highest SOI (a), NINO3 (b), NAO (c) and PDO (d) values. 

Red and green dots respectively indicate stations whose winter extreme precipitation is 

significantly influenced by large climate anomalies positively and negatively, respectively, 

while black dots indicate that SMDP differences are not statistically significant. The size of 

the dots shows the absolute magnitude of the composite difference. ................................ 144 

Figure 7-1 . Illusion of the time of emergence (ToE).  An example of ToE estimated for the txx 

(annual maximum daily maximum temperature) of a grid box in the Atlantic Ocean (30˚W, 

30˚N). S is the trend represented by the slope of fitted lines for txx time series. N is the 

residual standard deviation of time series. ToE is the year when the trend estimated based 

on the normal distribution(green line) and the GEV distribution (brown line) exceeds the 

range of historical variability represented by n times (S/N) the residual standard deviation 

of the txx time series during 1971-2100, relative to the base year 2000 (n is a threshold of 

interest show in Table S1). The threshold of  S/N for ToE1 and ToE2 are 1 and 2, 

respectively. ....................................................................................................................... 154 



xxiii 

 

Figure 7-2 Global distributions of ToEs of different S/N thresholds under RCP8.5. ToE of 6 

representative extreme temperature (txx, tx90p and wsdi) and precipitation (rx1day, 

r20mm, and cdd) indices for high thresholds of S/N. For extreme precipitation indices, the 

blue/green (red/yellow) color shows ToEs exhibiting perceivable decreasing (increasing) 

change. Blank grids show the ToEs will not occur by 2100. ............................................ 154 

Figure 7-3 Time evolution of fraction of grids showing ToE. The fraction is the ratio of the 

number of cumulative grids where ToEs are not later than a year to the total number of 

grids where perceivable changes in extreme climate have occurred by 2100 under high 

thresholds of S/N (Table 7-1) for 6 representative extreme climate indices in each terrestrial 

biomes (left two columns) and marine realms (right two columns) under RCP8.5. The 

thresholds of S/N chosen for extreme climate indices, txx, tx90p and wsdi are 2, and for 

rx1day and r20mm are 1, and for cdd is 0.5, respectively. Definitions of these indices are 

given in Figure 7-2’s legends and in Table 7-1. Numbers in the top left frame are the total 

number of grids for each biome or realm. Numbers in the right show the percentage of 

grids where ToEs are later than 2100, with the same colors applied to evolution lines for 

indices. ............................................................................................................................... 158 

Figure 7-4 Same as Figure 7-3, but for marine realms. .............................................................. 159 

Figure 7-5 Exposure of human societies to ToEs of extreme climate change. Top two pannels 

show the time evolution of urban residents in 590 large cities exposed to ToE of various 

extreme climate indices, i.e., txx, tx90p, wsdi, rx1day, r20mm and cdd, while bottom two 

pannels show the scatterplots between the medium ToEs (in years) and the GDP per capita 

for 231 countries. Least-squares regression lines and confidence intervals (grey bands) are 

also shown in the scatterplots.  Left two pannels shows results under the high threshold of 

S/N while right two under the low threshold of S/N that are listed in Table 7-1. Definitions 

of these indices are given in Figure 7-2’s legends and in Table 7-1. ................................ 161 

 

 



1 

 

General Introduction 

Extreme hydroclimatic events are relatively rare but could incur disproportionate and 

costly damage on the infrastructure, environment, ecosystems, socio-economic and loss of 

human life. Since the pioneer work of Gumbel (1941), the incorporation of extreme value 

analysis, also called hydrologic frequency analysis, has been a standard practice in civil 

engineering design, water resources management and water-related, natural hazards. Typically, 

the objective of extreme value analyses is to estimate the return level or the magnitude of an 

extreme hydroclimatic event associated with a given return period, or to estimate the frequency 

or risk of an extreme hydroclimatic event associated with a given magnitude (Katz et al. 2002). 

The assumptions behind a traditional extreme value analysis are summarized by Gumbel:  

“In order to apply any theory we have to suppose that the data are 

homogeneous, i.e. that no systematical change of climate and no 

important change in the basin have occurred within the observation 

period and that no such changes will take place in the period for which 

extrapolations are made.” (Gumbel, 1941) 

This means that statistical properties of hdyroclimatic variables are time-invariant. 

However, in recent years this assumption may be undermined by climate change and human 

impact across basins that it will be crucial to consider non-stationarities of hydroclimatic data. 

Canada, a huge northern land mass located in high-latitude, has experienced an almost twice the 

rate of average global warming over the past several decades (Cohen et al. 2014; Hartmann et al. 

2013; IPCC 2013). Because of its size, the climate, landscape and ecosystems of Canada are very 

diverse (Figures 2-2 and 2-3c). Under the impact of global warming, various climate variables of 

Canada other than temperature may also have changed. Given characteristics of hydroclimatic 

extremes are important for hydrologic frequency analyses, the key objectives of this doctoral 

research are: 1) to detect nonstationary characteristics of Canadian precipitation and streamflow, 

2) to relate nonstationary hydroclimitc time series to some atmospheric circulation patterns and 

3) to attribute observed changes of streamflow to climate change and human impacts. Figure 1 

shows the schematic diagram of this thesis presented in seven chapters (Chapters 1-7) in which 

different hydroclimatic variables and their non-stationary properties are analyzed, underlying 

causes for hydroclimatic changes are identified. As streamflow results from both climate (e.g., 

precipitation, evapotranspiration, snow-melt, infiltration and discharge of groundwater) and 

human impacts (e.g., water impoundment, landscape change, irrigated agriculture and pasture), 
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changes in streamflow result from both changes in climatic and human factors. In this thesis, the 

characteristics of streamflow are examined in Chapters 1 and 2. Then, in Chapters 3-6, changes 

in streamflow were specifically related to changes in precipitation which is the primary source of 

water to streamflow. After devoting the first six chapters on the hydroclimate research of 

Canada, the last chapter (Chapter 7) expands to research in extreme climate change globally. An 

overall summary of all conclusions from Chapters 1-7 is presented in Chapter 8 which also 

includes limitations this research and suggestions to future work. Lastly, essential summary and 

findings of this research work based on abstracts of Chapters 1-7 are also presented. 

Figure 0-1 Schematic diagram of the research project 

 

Chapter 1 has been published in the Journal of Climate with the following citation: Tan, 

X., and T. Y. Gan, 2015: Nonstationary analysis of annual maximum streamflow of Canada. J 

Climate, 28, 1788-1805, doi: 10.1175/JCLI-D-14-00538.1. 

Both natural climate change and anthropogenic impacts may cause nonstationarities in 

hydrological extremes. In this study, long-term annual maximum streamflow (AMS) records 

from 145 stations over Canada were used to investigate the nonstationary characteristics of 

AMS, which include abrupt changes and monotonic temporal trends. Nonparameteric Pettitt test 

was applied to detect abrupt changes, while temporal monotonic trend analysis in AMS series 
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was conducted using the nonparameteric Mann-Kendall and Spearman tests, and parametric 

Pearson test. Nonstationary frequency analysis of the AMS series was done using a group of 

non-stationary probability distributions. The nonstationary characteristics of Canadian AMS 

were further investigated in terms of the Hurst exponent (H) which represents the long-term 

persistence (LTP) of streamflow data. Our results indicate that for Canadian AMS data, abrupt 

changes are detected more frequently than monotonic trends, partly because many rivers began 

to be regulated in the 20
th

 Century. Drainage basins which have experienced significant land-use 

changes are more likely to show temporal trends in AMS, compared to pristine basins with stable 

land-use conditions. The nonstationary characteristics of AMS were accounted for by fitting the 

data with probability distributions with time-varying parameters. Large H found in almost 2/3 of 

the Canadian AMS dataset indicates strong LTP, which may partly represent the presence of 

long-term memories in many Canadian river basins.  Further, H values of AMS data are 

positively correlated with the basin area of Canadian rivers. It seems that nonstationary 

frequency analysis, instead of the traditional, stationary hydrologic frequency analysis should be 

employed in future. 

Chapter 2 has been published in the Scientific Reports with the following citation: Tan, 

X., and T. Y. Gan, 2015: Contribution of human and climate change impacts to changes in 

streamflow of Canada. Scientific Reports, 5, 17767, doi: 10.1038/srep17767. 

Climate change exerts great influence on streamflow by changing precipitation, 

temperature, snowpack and potential evapotranspiration (PET), while human activities in a 

watershed can directly alter the runoff production and indirectly through affecting climatic 

variables. However, to separate contribution of anthropogenic and natural drivers to observed 

changes in streamflow is non-trivial. Here we estimated the direct influence of human activities 

and climate change effect to changes of the mean annual streamflow (MAS) of 96 Canadian 

watersheds based on the elasticity of streamflow in relation to precipitation, PET and human 

impacts such as land use and cover change. Elasticities of streamflow for each watershed are 

analytically derived using the Budyko Framework. We found that climate change generally 

caused an increase in MAS, while human impacts generally a decrease in MAS and such impact 

tends to become more severe with time, even though there are exceptions. Higher proportions of 

human contribution, compared to that of climate change contribution, resulted in generally 

decreased streamflow of Canada observed in recent decades. Furthermore, if without 
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contributions from retreating glaciers to streamflow, human impact would have resulted in a 

more severe decrease in Canadian streamflow. 

Chapter 3 has been published in the Climate Dynamics with the following citation: Tan, 

X., and T. Y. Gan, 2016: Non-stationary analysis of the frequency and intensity of heavy 

precipitation over Canada and their relations to large-scale climate patterns. Climate Dynamics, 

10.1007/s00382-016-3246-9. 

In recent years, because the frequency and severity of floods have increased across Canada, 

it is important to understand the characteristics of Canadian heavy precipitation. Long-term 

precipitation data of 463 gauging stations of Canada were analyzed using non-stationary 

generalized extreme value distribution (GEV), Poisson distribution and generalized Pareto (GP) 

distribution. Time-varying covariates that represent large-scale climate patterns such as El Niño 

Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific decadal oscillation 

(PDO) and North Pacific Oscillation (NP) were incorporated to parameters of GEV, Poisson and 

GP distributions. Results show that GEV distributions tend to under-estimate annual maximum 

daily precipitation (AMP) of western and eastern coastal regions of Canada, compared to GP 

distributions. Poisson regressions show that temporal clusters of heavy precipitation events in 

Canada are related to large-scale climate patterns. By modeling AMP time series with non-

stationary GEV and heavy precipitation with non-stationary GP distributions, it is evident that 

AMP and heavy precipitation of Canada show strong non-stationarities (abrupt and slowly 

varying changes) likely because of the influence of large-scale climate patterns. AMP in 

southwestern coastal regions, southern Canadian Prairies and the Great Lakes tend to be higher 

in El Niño than in La Niña years, while AMP of other regions of Canada tends to be lower in El 

Niño than in La Niña years. The influence of ENSO on heavy precipitation was spatially 

consistent but stronger than on AMP. The effect of PDO, NAO and NP on extreme precipitation 

is also statistically significant at some stations across Canada. 

Chapter 4: Slowly varying (trend) and abrupt (change points) changes in annual 

maximum daily precipitation (AMP) and seasonal maximum daily precipitation (SMP) data of 

223 stations of Canada divided into four regions for 1900-2010, 1930-2010, 1950-2010 and 

1970-2010, were analyzed, respectively. Several variants of the Mann-Kendall (MK) test that 

consider the influence of short-term persistence (STP), long-term persistence (LTP) and large-

scale climate anomalies on each time series were applied to detect trends, while the Pettitt test 
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was applied to detect change points in AMP and SMP time series. Both significant increasing 

and decreasing trends had been detected in Canadian AMP and SMPs. AMP of most regions in 

western and southern British Columbia, western Ontario and the Atlantic Maritime that show 

significant trends are positive, but significant trends detected in AMP of central Canada, eastern 

Ontario and western Quebec, and northwestern Canada are mostly negative. More stations 

experienced statistically significant increasing than decreasing trends in spring, summer and 

autumn SMPs, while statistically significant trends detected in winter SMPs are decreasing 

(increasing) trends over southern (northern) Canada. The presence of LTP would increase the 

chances of detecting trends in AMP and SMPs, and similarly STP would also influence the 

detection of trends, as shown by different results obtained from MK tests that consider and MK 

tests that do not consider the effects of STP. The results show that large-scale climate anomalies 

mainly contributed to trends detected for winter SMPs. More than 1/4 of stations analyzed show 

statistically significant change points in AMP and SMPs in around 1960-1990. Further, more 

stations showed significant change points than trends, and winter SMPs showed more trends and 

change points than SMPs of other three seasons. Trends and change points detected were field-

significant.  

Chapter 5: The detrended fluctuation analysis (DFA) and multifractal DFA (MFDFA), 

which can detect nonstationarities of time series with trends, were applied to study long-term 

persistence (LTP) and multifractal behavior of 100 stations of daily precipitation and 145 

stations of streamflow time series of Canada. All precipitation time series showed LTP at both 

small and large time scales, while streamflow time series generally showed nonstationary 

behavior at small time scales and LTP at large time scales. Widespread crossovers of fluctuation 

functions for streamflow data a time scale of about 120-250 days could be related to the cross-

over between rain-induced and snowmelt-induced streamflow cycles. In general, the multifractal 

strength of precipitation data was location dependent but not so for streamflow data. The 

multifractal behavior of Canadian precipitation and streamflow data can be accurately described 

by the universal multifractal model and also described, though less consistently, by the modified 

multiplicative cascade model. About a third of fitted parameters of the universal multifractal 

model for precipitation data show positive temporal trends, and about half of the stations whose 

streamflow data exhibited statistically significant abrupt change points showed a weakening in 

the multifractal strength moving in the post-change period. Differences in the multifractal 
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strength between Canadian precipitation and streamflow data suggest that the persistence of 

streamflow was not only because streamflow is more auto-correlated than precipitation, it is also 

more consistently affected by human activities. 

Chapter 6: To detect significant interannual and interdecadal oscillations and their 

teleconnections to large-scale climate anomalies such as El Niño Southern Oscillation (ENSO), 

Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO), monthly and seasonal 

maximum daily precipitation (MMDP and SMDP) from 131 stations across Canada were 

analyzed using variants of wavelet analysis. Interannual (1-8 years) oscillations were found to be 

more significant than interdecadal (8-30 years) oscillations for all selected stations, and the 

oscillations are both spatial and time-dependent. Similarly, the significant wavelet coherence and 

the phase difference between leading principal components of monthly precipitation extremes 

and climate indices were highly variable in time and in periodicity, and a single climate index 

explains less than 40% of the total variability. Partial wavelet coherence analysis shows that both 

ENSO and PDO modulated the interannual variability, and PDO modulated the interdecadal 

variability, of MMDP over Canada. NAO is correlated with the western MMDP at interdecadal, 

and the eastern MMDP at interannual scales. The composite analysis shows that precipitation 

extremes at about 3/4 of the stations have been significantly influenced by ENSO and PDO 

patterns, while about 1/2 of the stations by the NAO patterns. The magnitude of SMDP in 

extreme El Niño years, and extreme PDO event of positive phase, was mostly lower (higher) 

over the Canadian Prairies in summer and winter (spring and autumn) than in extreme La Niña 

years. Overall, the degree of influence of large-scale climate patterns on Canadian precipitation 

extremes varies by season and by region. 

Chapter 7: Since both natural and human systems can only tolerate certain degree of 

change from its existing level of climate variability, evaluation of the climate change impacts 

should consider the magnitude of change relative to natural climate variability. Whether and 

when the signal of extreme climate change (S) will exceed the natural climate variability (N) has 

yet to be globally examined. Here we investigate the timing of perceivable changes in the 

magnitude, frequency and severity of extreme temperature and precipitation when the signal-to-

noise ratio (S/N) exceeds certain thresholds for global terrestrial biomes, marine realms, 

countries and major cities. The results show that under RCP8.5, the projected global changes in 

the magnitude, frequency and severity of hot extremes are projected to exceed their twofold 
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variance (S/N >2) before 2100, while counterparts of extreme precipitation are projected to 

exceed one variance (S/N >1) before 2100. In contrast to perceivable changes in the magnitude 

(magnitude and frequency) of both hot and cold extremes (precipitation extremes) projected to 

occur early in low- and high-latitudes, the frequency (severity) of both hot and cold extremes 

(precipitation extremes) are projected to occur earlier in mid-latitudes instead of low- and high-

latitudes. As a result, tropical and subtropical forests (tropic Atlantic, Indo-Pacific, Tropical 

eastern Pacific) are projected to experience earlier perceivable changes in hot extremes than 

other terrestrial biomes (marine realms). Arctic tundra is projected to experience perceivable 

changes in the magnitude, frequency and severity of extreme precipitation before 2100, while 

biomes such as tropical and subtropical coniferous forests and Mediterranean forest are projected 

to experience earlier perceivable changes in severe droughts. All major urban residents (about 

1.4 billion) are projected to experience perceivable changes in the frequency and severity of hot 

extremes, and more are projected to experience severe droughts (0.86 billion) than wet climate 

(0.08 billion).  Lastly, early perceivable extreme climate change tends to occur in low-income 

than rich countries.  
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Chapter 1 Nonstationary analysis of annual maximum streamflow of Canada 

1.1 Introduction 

In recent years, climate variability and climate change have impacted various components 

of the hydrological cycle in many regions across the world. In particular, changes to the climate 

system can potentially affect the magnitude and frequency of extreme hydrological events, thus 

altering the risk to critical infrastructure (Burn et al. 2010; Ishak et al. 2013). Therefore, under 

the possible impact of climate change, the assumption of stationarity, the basis of conventional 

hydrologic frequency analysis, will no longer hold. Design storms or flood estimation for certain 

return periods derived from conventional frequency analysis for municipal infrastructure 

developments could be underestimated, and public safety standards could be compromised 

(Khaliq et al. 2006). Several recent major floods that occurred in some parts of the world 

highlight the necessity to address non-stationarity and possible changes to future occurrences of 

hydrological extremes which would affect water security, resources management and the 

operation of large dams (Jakob 2013; Milly et al. 2008).  

Several past studies have examined temporal trends in Canadian streamflow records. Even 

though Zhang et al. (2001b) reported that annual and monthly mean streamflow of Canada had 

generally decreased since 1947 to 1996, significant increase in the monthly mean streamflow 

was observed in March and April probably because of the earlier onset of spring snowmelt, and 

major regional differences and variability of streamflow trends are observed across Canada 

(Burn and Elnur 2002; Whitfield and Cannon 2000). For example, statistically significant 

increasing trends in the streamflow were detected in the Winnipeg River (St. George 2007) and 

the northern part of British Columbia (BC) (Whitfield 2001), even though nationally daily 

streamflow has generally undergone a broad scale decreasing pattern (Zhang et al. 2001b). On 

the other hand, Whitfield et al. (2003) found an increase in frequency of flooding in the Georgia 

Basin, BC. Although in Canada the magnitude of low flows could be more significantly affected 

by the impact of climate change than high flows (Burn et al. 2010; Cunderlik and Ouarda 2009; 

Déry et al. 2009a; Khaliq et al. 2008; Zhang et al. 2001b), possible changes to future annual 

maximum floods warrant more attention than the past. For example, based on simulations of 

some general circulation models in relation to climate change impact, it seems more extreme 



9 

 

events may occur across Canada due to an enhanced hydrologic cycle, e.g., Mailhot et al. (2012) 

and Whitfield et al. (2003). 

The cause of temporal trends in streamflow data can be ambiguous because floods could be 

caused by many complicating factors, such as natural and anthropogenic changes in atmospheric 

forcings and catchment characteristics, rising concentrations of greenhouse gases and landuse 

changes. Regulation of reservoirs further complicates the flow regimes of river basins of Canada. 

The downstream hydrological impact of dams (Assani et al. 2006), is an obvious cause leading to 

the change of annual maximum streamflow (AMS) Probability distributions (PDs) of many 

gauging stations globally. Similarly, the 20
th

 Century had been a time of profound land use 

changes due to activities such as agricultural practice, urbanization and forest management. 

Studies show that landuse changes have significant impacts on river basins of Canada (Buttle 

2011; Kerkhoven and Gan 2013) and USA (Villarini et al., 2009a, 2009b). 

In addition to nonstationarity and temporal changes, limitations in the amount, frequency 

and accuracy of observed hydrologic data and analysis procedures could affect PDs of AMS 

derived from streamflow databases of Environment Canada (EC) and provincial agencies. A 

majority of past studies for analyzing streamflow trends over Canada are based on data provided 

by the Reference Hydrometric Basin Network (RHBN) of EC. By 2010, the average record 

length of streamflow stations of RHBN is about 50 years. In view of the possible impact of 

climate change, climate variability and landuse change to the streamflow of Canada, the key 

objective of this study is to examine nonstationary changes to Canadian AMS based on some 

selected, long-term streamflow records of HYDAT, which includes data from RHBN. HYDAT 

is a database of Water Survey Canada (WSC) that contains streamflow data mainly computed 

from station rating curves and water levels, and sediment data of rivers. Annual maximum daily 

streamflow data from 145 WSC stations each with a record of at least 50 years were selected for 

this study. Drainage areas for all the selected stations range from 87.6 km
2
 (Pennask Creek near 

Quilchena, BC) to 347,000 km
2
 (Saskatchewan River at The Pas, Manitoba).  

Several major analyses conducted in this study include change point detection, possible 

effect of streamflow regulation, temporal trend analysis, nonstationary extreme flood PDs, 

nonstationary properties of the floods, and long-term persistence. According to Koutsoyiannis 

(2006), who examined stationarity and nonstationarity in hydrology, a hydrologic time series is 

usually regarded as stationary if the time series does not have trends, and without shifts in its 
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mean and variance. Conventionally, the stationary assumption is considered valid if there is no 

slowly varying trend or detected change point (abrupt changes in the mean and/or the variance of 

the PD of the variable of interest) in the time series. 

Trend analysis is applied to find historical changes of a time series, while change point 

analysis is to distinguish a shift from one regime to another where the status is likely to remain 

the same until a new regime shift occurs (Khaliq et al. 2009b; Villarini et al. 2009a). Streamflow 

trends in many Canadian watersheds have been studied, e.g., Burn et al. (2010) and Yue et al. 

(2003), but we have yet to come across the application of change point analysis to characterize 

the nonstationarity of streamflow records in Canada. Therefore, we performed both trend and 

change point analysis in this study, in which the former is done after the latter, but not vice versa. 

If a change point is detected, the AMS time series is first divided into two subseries (before and 

after the change point) and trend analysis is performed on both subseries separately.  

In addition to finding trends and detecting change points, the AMS data were also fitted to 

PDs and evaluated for nonstationary characteristics. Without considering spatial correlations 

between station streamflow data, we did the flood frequency analysis of observed AMS of 

stations individually by first estimating the location, scale and shape parameters of some selected 

PDs using the generalized additive model (GAMLSS) developed by Rigby and Stasinopoulos 

(2005b). GAMLSS was chosen for this study because it allows the choice of a wide range of PDs 

for best fitting a dataset of interest, and it can also estimate model parameters that are stationary, 

or parameters with trends that vary slowly over time, or parameters with abrupt changes. 

Koutsoyiannis (2006) suggested that properties such as nonstationarity, persistence and 

scaling should be analyzed jointly, regardless of whether a time series possesses long-term 

persistence (LTP) or not. On the other hand, a time series with LTP may be falsely diagnosed as 

a time series with a statistically significant trend, even though no trend is present (Cohn and Lins 

2005; Koutsoyiannis 2006; Koutsoyiannis and Montanari 2007). LTP, also referred to as the 

Hurst phenomenon, has been detected in many hydrologic time series particularly in river flows 

(e.g., Klemeš 1974; Potter 1976; Szolgayova et al. 2014). Although certain patterns observed in 

some hydrologic series could be better explained by LTP (Hurst 1951; Koutsoyiannis 2006), this 

phenomenon is often overlooked in the analysis of streamflow records. In this study, we 

investigated possible long-term persistent behavior of AMS of Canada. 
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This chapterer is organized as follows: Section 1.2 describes the AMS data of Canada; 

Section 1.3 explains basic aspects of the GAMLSS model, estimation of LTP in a time series, 

change point detection, and trend analysis; Section 1.4 presents the discussion of results, and 

Section 1.5 the summary and conclusions. 

1.2 Data 

A long-term dataset subjected to a sound quality control process is essential to achieve 

reliable change point and non-stationary analysis.  The AMS data used in this study were taken 

from the HYDAT Database of WSC up to 2013. The RHBN data included in HYDAT have been 

extensively used for climate change studies, since RHBN data are characterized by relatively 

pristine and stable land-use conditions (<5% of the surface modified) and have a minimum of 20 

years of record (Burn et al. 2010; Coulibaly and Burn 2004). 

 

Figure 1-1 A map showing selected non-RHBN and RHBN streamflow gauge stations over Canada, and the 

corresponding abrupt change points of annual maximum daily streamflows detected using the Pettitt test and 

5% significance level. Six selected stations for GAMLSS modeling are: A) 05CC002, B) 05KJ001, C) 

08NE049, D) 08JB002, E) 08MH016 and F) 01AK001. 

Out of over 200 active gauging stations in the RHBN network, 62 stations were selected in 

this study, each with a minimum record length of 50 years to ensure statistical validity of the 

study results. In addition, 83 non-RHBN stations from HYDAT (with a minimum record length 

of 70 years and a maximum total missing record of 4 years) are selected to provide data collected 

from a larger coverage of watersheds and a greater variety of geographic areas of Canada (Figure 
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1-1). River basins of non-RHBN stations had experienced anthropogenic influence such as land 

use changes, river regulations, agricultural production and other human activities. Missing AMS 

values at a station were gap filled with the mean AMS of that station. Average record lengths of 

RHBN and non-RHBN stations are 72 and 85 years, with a maximum record length of 102 and 

118 years, and an average drainage area of 9070 km
2
 and 31,403 km

2
, respectively. All station 

data ended either in 2010 or 2011. There is a lack of stations in Quebec and all the stations of 

Quebec only have data available until 2001 or earlier. As shown in Figure 1-1, selected stations 

are mainly located in southern Canada and the Rocky Mountain area in British Columbia. By 

analyzing AMS records from 145 stations selected across river basins of Canada, we should 

obtain a representative history the occurrences of statistically significant change points and 

trends of AMS records of Canada over the 20
th

 and early 21
st
 centuries. 

1.3 Research methodology 

To fully evaluate the stationarity and nonstationarity of the observed AMS over Canada, 

several popular tests and estimators were employed to analyze the change point, temporal trend, 

and Hurst exponents for each selected station, respectively. Parametric PDs of GAMLSS were 

also fitted to the AMS data. 

1.3.1 Change point analysis 

From comparing results of six tests applied for change point detections, we found that the 

Pettitt test (PETT) of Pettitt (1979), a non-parameteric rank-based test to detect the change point 

position (time) is the best for reasons given below.  These six tests are three non-parameteric 

tests, PETT (Pettitt 1979), cumulative sums test (Csörgö and Horváth 1997), and Wilcoxon rank 

sum test (Gibbons and Chakraborti 2011); and three parametric tests, structural change test in 

linear regressions (Zeileis et al. 2003), Bayesian change point test (Sarr et al. 2013), and spectral 

test using a wavelet approach (Islam 2008).  These tests have been developed primarily to detect 

changes in the mean, but they may not be able to effectively detect changes in the variance. 

Given changes in the variance of AMS data is possible, we did some limited tests on changes to 

AMS variance using the cumulative sums of squares test proposed by Inclán and Tiao (1994). 

Our focus is not to detect multiple change points but a single, “major” change point of AMS 

data of this study. We found that PETT consistently detected the change point that corresponds 

to the change point with the highest probability of occurrence identified by the Bayesian change 
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point and the spectral tests. Additionally, we analyzed AMS data of the Columbia River, where 

the year in which an abrupt change in the discharge resulted from starting the dam regulation 

(Environment Canada 1992; Lehner et al. 2011) was accepted as the change point, and PETT 

identified the change point that best agrees with the year the dam operation began. Villarini et al. 

(2009a) also found PETT tends to more accurately identify change points of annual flood peaks 

of USA. As a nonparametric, rank-based test, PETT is capable of detecting a change in the time 

series without having to assume its PD. It calculates p values of the Mann-Whitney test statistic 

using a limiting distribution of the Kolmogorov-Smirnov goodness-of-fit statistic for continuous 

variables to determine if two samples 1, , mY Y and 1, ,m nY Y come from the same population 

(Pettitt, 1979). 

1.3.2 Temporal trend analysis 

To identify if a time series has statistically significant trend, the non-parametric, Mann–

Kendall (Kendall 1975), the Spearman rank correlation (hereafter referred to Spearman) tests, 

and the parametric, least squares linear regression (hereafter referred to Pearson) test are 

commonly used (Khaliq et al. 2009b). After a change point is detected, these tests were applied 

to analyze trends of two subseries, one prior to and one after the detected change point in the 

original record. If no change point is detected, these tests will be applied to the whole record.  

The Mann–Kendall test determines whether a trend is statistically significant without specifying 

whether the trend is linear or nonlinear. It is the most widely adopted statistical test to detect 

temporal trends in discharge data (Khaliq et al. 2009b). It is based on the test statistic S defined 

as the proportion of concordant pairs minus the proportion of discordant pairs in the samples.  

  
1

1 1
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N N

j i

i j i

S Y Y

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                                                       (1-1) 
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                                                       (1-2) 

where N is the total number of data, iY and jY are the sequential data. A positive (negative) value 

of S indicates an upward (downward) trend. For N ≥ 8, the statistic S is approximately normally 

distributed with the mean of 0 and a variance related to the sample size. Where either there is 
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serial or cross correlation, the Mann–Kendall test will be affected and such correlations should 

be examined before conducting the test (Yue et al. 2003). We computed the lag-1 correlation of 

all selected AMS series and found all lag-1 correlation to be not significant statistically.  Next, 

the Spearman rank correlation test is based on the Spearman rho (Helsel and Hirsch 2002): 

 2 2

1

1 6 1
N

i

i

rho d N N


 
      

 
                                                (1-3) 

where i i id RT RY   is the difference between two rankings, such that iRT is the rank of the 

variable iT , iY  the observation series, and iRY its rank presented in the chronological order i. If 

there are ties, RT becomes the average rank. The null hypothesis is based on the test statistic: 

 
0.5

22 1T rho N rho                                                   (1-4) 

where T has a Student’s t-distribution with 2N   degrees of freedom. At a two-sided test 

based on the significance level, the time series has no trend if , 2 ,1 2t T t     . 

The Pearson’s r, a linear correlation between Y and T is the ratio of the covariance Cov(Y, 

T) over the standard deviations of Y and T. Since testing the significance of Pearson’s r is based 

on the Gaussian distribution, we need to transform skewed data into Gaussian distributed 

deviates, which was done using the normal quantile transformation. However, this 

transformation may distort trends in the original streamflow data (Villarini et al. 2009a). 

1.3.3 Nonstationary extreme distribution analysis 

In fitting a suitable PD to a stationary AMS seriesY , the parameters are usually assumed to 

remain constant with minimal change over the years. For nonstationary AMS series, parameters 

are expected to change with time and they can be expressed as a function of some explanatory 

variables (covariate). The simplest covariate is time such as years or seasons. Although other 

covariates, e.g., climate indices (Kwon et al. 2008) and socio-economic indices (Villarini et al. 

2009b) may be more interpretational to describe the nonstationarity of floods, we only chose 

time as the covariate to examine whether there is nonstationarity in selected AMS time series. 

The GAMLSS models provide a very flexible framework for estimating parameters of a 

wide range of PDs applicable to both stationary and nonstationary AMS. Compared with 

classical generalized additive models, GAMLSS is flexible and capable of using non-exponential 

distributions, such as highly skewed and/or kurtotic, continuous and discrete distributions with 
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heavy tails. It can model location, scale and shape parameters of a PD as linear and/or nonlinear, 

parametric, and/or additive non-parametric functions of covariates, and/or random effects. 

A more comprehensive description of GAMLSS can be found in Rigby and Stasinopoulos 

(2005a) and Stasinopoulos and Rigby (2007), and in the GAMLSS website 

(http://www.gamlss.org/). Villarini et al. (2009a, 2009b) applied this model to conduct the 

frequency analysis of nonstationary annual flood peaks. For GAMLSS models, it is assumed that 

independent observations iy , for 1, ,i n , have a cumulative PD function  ; i

Y iF y   with 

 1 , ,i i i

p   , a vector of p  parameters accounting for position, scale and shape of the PD. 

Usually p is less than or equal to four, since 1 to 4-parameter families provide enough flexibility 

for most applications to highly skewed and/or kurtotic continuous and discrete distributions. 

Given a n  vector of the variable  1,
T

ny y y , let  kg  , for 1, ,k p , be known monotonic 

link functions relating the distribution parameters to explanatory variables and random effects 

through an additive model given by: 

 
1
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k k k k k jk jk

j

g X Z   
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                                                    (1-5) 

where k and k are vectors of length n , e.g.,  1, ,T n

k k k   ,  1 , ,
k

T

k k J k   is a parameter 

vector of length kJ , kX is a known design matrix of order kn J , jkZ is a fixed known jkn q

design matrix and jk is a jkq random variable. Additive terms in Equation (1-5) represent 

smoothing terms that allow for flexibility in modeling the dependence of the parameters of the 

PD on the covariates. If we choose jk nZ I , where nI is a n n identity matrix, and

 jk jk jk jkh x  h for all combinations of j and k , we obtain a semi-parametric additive 

equation of GAMLSS: 

   
1

kJ

k k k k k jk jk

j

g X h x  


                                                  (1-6) 

where jkh is an unknown function of the covariate jkx and  jk jk jkh xh is the vector which 

represents the function jkh at jkx .  

 

http://www.gamlss.org/
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Table 1-1 Summary of the four two-parameter PDs (Rigby et al. 2014) considered in this study to model the 

Canadian AMS 

 Probability density function Distribution moments 
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In this study we considered four, widely used, 2-parameter PDs (Gumbel, gamma, 

lognormal and Weibull) (Table 1-1) to do the flood frequency analysis of selected Canadian 

AMS data (GREHYS 1996; Ouarda and El-Adlouni 2011; Ouarda et al. 2000). Given that some 

runoff data could be nonstationary, only 2-parameter PDs were chosen partly to avoid potential 

numerical round off problems when estimating the distribution parameters. For a 2-parameter 

PD, the parameters, 1  ( 2 ) related to the mean (variance), are based on a generalized additive 

model with time t as the covariate to account for nonstationary. Therefore, Equation (1-6) can be 

simplified to: 

    i i

k k k i k k ig t h t                                                      (1-7) 

A cubic spline smoothing technique was used to derive  h  for this additive model. Note 

that if we only consider the linear models in GAMLSS, then there is no additive term  k ih t

shown in Equation (1-7). Both temporal trend and change point could be taken into account in 
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this GAMLSS model to investigate the nonstationarity assumption of the flood frequency 

analysis.  

Selecting a particular PD is based on visual assessment of diagnostic plots and maximum 

likelihood values (L). Diagnostic plots of the residuals (van Buuren and Fredriks 2001) are 

visually inspected. The goodness-of-fit of PDs selected were assessed using the Akaike 

information criterion (AIC) (=2k – 2ln(L)), where L is penalized by the number of parameters 

(k). The PD with the minimum AIC value, and that best fit the Canadian AMS data, are selected. 

1.3.4 Long-term persistence (LTP) analysis 

The LTP characteristics of Canadian runoff data are estimated from the Hurst exponent H

(Hurst 1951). A H of 0.5 indicates a lack of LTP, but H larger than 0.5 indicates the presence of 

LTP, which increases with the H value. Several conceptual algorithms have been developed to 

detect LTP (Montanari et al. 1999). Among these, the most popular are the rescaled range 

statistic algorithm (R/S) developed by (Hurst 1951), the aggregated variance approach (Taqqu et 

al. 1995), and the detrended fluctuation analysis of Peng et al. (1994). 

The aggregated variance approach is presented as below: For a stationary process iy for a 

discrete time step i (years in this case) with a standard deviation , 

   1

k

i i i kY Y Y k                                                    (1-8) 

denotes the aggregated process at time scale k , with a standard deviation
 k

 (the notation 

implies that  1
i iY Y ). For a sufficiently large k ,  k

iY represents the aggregated hydroclimatic 

process; 30k  is often used to estimate H  in terms of an elementary scaling property, 

 
1

k

Hk





                                                              (1-9) 

This aggregated variance approach is vulnerable to trends, abrupt changes, periodicities, 

and other sources of nonstationarities in the data (Rust et al. 2008). Five methods, namely, 

aggregated variance, aggregated variance (Teverovsky and Taqqu 1997), aggregated absolute 

value (Montanari et al. 1999), R/S (Hurst 1951), and Peng’s (Peng et al. 1994) were used to 

derive H, since any single estimator for H is prone to draw false conclusions, as evident in Table 

1-4 which shows different estimators of H resulted in different numbers of stations showing 

LTP.  
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1.4 Results 

In this section, the nonstationary characteristics of AMS data of Canada will be illustrated 

based on results obtained from change point and temporal trend analysis, GAMLSS modeling, 

and the estimation of LTP. 

1.4.1 Change point analysis 

The presence of abrupt changes in the mean of annual maximum runoff records of Canada 

are examined using the PETT at a 5% significance level. The results show that 19 out of 62 

RHBN stations, and 40 out of 83 non-RHBN stations (Figure 1-1) exhibited a significant abrupt 

change in the mean. The occurrences of abrupt change in the mean clustered around the 1940s 

and 1970s. However, there was no change point detected in the variance of all the stations 

examined in this study. Spatially, stations that show significant abrupt change in the mean spread 

across Canada, with the first two clusters centered on the southwestern and central Canada where 

the time of change point occurred around 1970s, and the 3
rd

 cluster spread across southeastern 

Canada where the time of change point range from 1940s to 1990s. From applying wavelet 

analysis on 79 RHBN stations of runoff data, Coulibaly and Burn (2004) concluded that change 

points occurred around 1950 and 1970 in western and eastern Canada , which mainly agree with 

the time of change point (1970s) detected for the first two clusters of this study. 

Given RHBN stations are stations selected from pristine catchments with stable land-use 

conditions, the abrupt changes detected in these stations should be primarily attributed to past 

changes in their regional climate and variability. In contrast, the timing of abrupt change detected 

in non-RHBN stations could be related to anthropogenic changes, such as dam regulation and 

land-use change, or past changes in their regional climate, or both. Among stations with abrupt 

change, we found that two stations at the lower Columbia River selected in this study (08NE049, 

Birchbank, and 08NE058, International Boundary), the detected change point (1973) happened 

in the year when several dams began to regulate flow for power generation and irrigation (Naik 

and Jay 2011). For the station located at the upper Columbia River (08NA002, Nicholson), 

where flow has not been regulated, no significant change point was detected. However, another 

unregulated station (08NB005, Donald) located at the upper Columbia River also showed a 

significant change point. It seems that even for a regional river basin such as the Columbia River, 

the reason behind detected abrupt change of AMS at different stations can be either caused by 

change in the climate, or by streamflow regulations, or both. Naik and Jay (2011) also found that 
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both flow regulation and climate change had affected the peak flow change of the Columbia 

River basin.  

Among the 62 RHBN stations, only 1 out of 5 (18 out of 57) stations where streamflow has 

(has not) been regulated has detected change points in its AMS time series. Apparently the 

abrupt change of RHBN AMS was mostly linked to climatic than to human factors. For non-

RHBN stations, 5 out of 21 non-regulated stations have detected change points, and 35 out of 62 

regulated stations have detected change points. By comparing the detected change points of 22 

non-RHBN stations with the respective year dam operation began at each station (Environment 

Canada 1992; Lehner et al. 2011), we found that for 16 out of 22 stations, the year a change point 

was detected coincide with the year that streamflow regulation began. Therefore, river regulation 

plays a more significant role than climatic factors on the occurrence of abrupt change in the 

AMS data of non-RHBN stations. However, for regulated rivers, the possibility of detecting 

change points in the AMS series should also depend on the operating policy of the dam sluice 

dates, e.g., the degree of streamflow regulation. 

1.4.2 Temporal trend analysis 

In this section, long-term temporal trends, which can be another cause of nonstationarity to 

AMS data, are investigated below. As explained in Section 1.3.2, if a change point is detected, 

several tests (Mann-Kendall, Spearman and Pearson two-side tests) will be applied to do a trend 

analysis on two subseries, one prior to and the other after the detected change point in the 

original record. Next, whether a change point is detected or not, these tests will be repeated to the 

whole record. Further, since none of the AMS record shows any significant lag-one 

autocorrelation, the possible effect of serial correlation was not considered in the trend analysis 

of these AMS data. 

Table 1-2 Number of stations detected with statistically significant trend at the 10% significance level* 

 
Entire series  Before change point  After change point 

Non-RHBN RHBN  Non-RHBN RHBN  Non-RHBN RHBN 

Pearson 32 (20-, 12+) 14 (11-, 3+)  11(7-, 4+) 3 (3-, 0+)  9 (5-, 4+) 4 (1-, 3+) 

Mann-Kendall 37 (26-, 11+) 12 (7-, 1+)  8 (7-,1+) 4 (3-, 1+)  8 (4-, 4+) 3 (1-, 2+) 

Spearman 36 (23-, 13+) 14 (10-, 4+)  9 (7-,2+) 3 (3-, 0+)  8 (4-, 4+) 2 (1-, 1+) 

* The numerical values followed by sign “-” and “+” in brackets correspond to the number of stations that a 

significant negative (-) or positive (+) trend was detected on the basis of a Mann-Kendall test with the 10% 

significance level. 
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The results obtained differ marginally between the Mann-Kendall and Spearman tests, but 

not results from the Pearson test (Table 1-2), partly because the transformation of AMS data to 

normal quantiles required by the Pearson test might have distorted the trend. Without considering 

the presence of change point, about 50 out of 145 stations are detected with a significant trend at 

a 10% significance level. Again, more non-RHBN stations (37 out of 83) show a significant 

trend than RHBN stations (12 out of 62), which means that drainage basins which have 

experienced major land use changes are more likely to show temporal trends in their AMS data 

than pristine basins with stable land-use conditions. However, only 12 out of 59 stations with 

detected change points show significant temporal trends before and/or after the detected change 

point. Compared to subseries before change points, more subseries after change points showed 

increasing trends (Table 1-2 and Figure 1-3). 

It is noted that 26 out of 59 stations detected with change points show significant trends if 

change points were not considered, even though no significant trend may be detected in their 

corresponding subseries before or after change points. On the other hand, some subseries showed 

significant trends both before and after change points, yet the entire series did not show a 

significant trend. The above results obtained for the same stations, with and without considering 

change points, indicate the importance of identifying the change point (if a change point exists) 

for estimating the monotonic trends of streamflow or other hydroclimatic data (Villarini et al. 

2009a). However, in many past studies that estimated temporal trends of Canadian streamflow 

data, the detection of abrupt changes was mostly ignored, e.g., (Cunderlik and Ouarda 2009; 

Khaliq et al. 2009b; St. George 2007; Yue et al. 2003).  

Figure 1-2 shows stations with significant trends obtained from the Mann-Kendall test 

applied to the entire series, while Figure 1-3 shows significant trends for subseries before and 

after the detected change point. The spatial distributions of trend magnitudes for the entire series 

are also plotted in Figure 1-2. Most significant trends are negative, which generally agree with 

other past streamflow trend studies conducted in Canada, e.g., (Burn et al. 2010; Cunderlik and 

Ouarda 2009; Gan 1998; Zhang et al. 2001b).  
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Figure 1-2 Significant temporal trends of AMS of RHBN and non-RHBN at 10% significance level without 

considering the presence of change points, as well as the spatial distribution of trend magnitudes based on 

Pearson linear regression coefficients estimated. 

 

Figure 1-3 Temporal trends in AMS series of RHBN and non-RHBN stations at 10% significance level for a) 

before, and b) after change points are detected. 

In general, a significant decline in the AMS is predominantly found in the Canadian 

Prairies (CP), which include the three Prairie Provinces of Alberta, Saskatchewan and Manitoba 

(green area in Figure 1-2), and which generally agree with trend analysis results of annual mean 

flows of Gan (1998). Given Gan (1998) also showed that about 30% of monthly precipitation 

data of 37 stations of the CP experienced a significant decrease in 1949-1989, which with a 

 

a b 
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possible increase in the evaporation loss because of climatic warming, we would expect the 

AMS of CP to generally decrease. Moreover, Ripley (1986) also found declining trends in the 

summer precipitation of CP, which likely implies that CP has been slowly becoming drier in 

recent decades. Burn (2008) attributed the decrease of streamflow to a combination of reductions 

in snowfall and increases in temperatures during the winter months for snowmelt runoff 

generation. In contrast, the Winnipeg River basin had experienced increasing trends in its AMS 

(red area in Figure 1-2) likely because its summer and autumn precipitation had increased (St. 

George 2007).  

Agricultural practices can also affect regional hydrological regimes significantly. 

Compared to conventional tillage, soil infiltration and water seepage through soil layers of 

agriculture land subjected to conservation tillage will increase, and therefore, for the same 

amount of precipitation, surface runoff and peak streamflow will decrease (Shelton et al. 2000). 

Thus, the increasing use of conservation tillage in agricultural land of CP could be partly 

responsible for the decrease in the AMS over CP (Shelton et al. 2000). 

The diversion of water from rivers for irrigation and other consumptive usage will also 

decrease the streamflow. The areas of agricultural land in Canada has increased in recent 

decades, which generally resulted in a significant decrease in the AMS, especially in areas 

cultivated for intensive agricultural production (Environment Canada 2004). The agricultural 

lands of CP account for about 82% of the total land used for agriculture in Canada. Other human-

related land use practices such as deforestation (Lin and Wei 2008), afforestation (Buttle 2011), 

mining and petroleum production (Environment Canada 2004) may also play a major role in 

changes to flood regimes of Canada. 

Past studies of Canadian streamflow trends (e.g., (Burn 2008; Burn and Elnur 2002; Burn 

et al. 2010; Cunderlik and Ouarda 2009; Déry et al. 2009b; St. George 2007; Whitfield and 

Cannon 2000; Whitfield et al. 2003; Zhang et al. 2001b) usually assumed that streamflow was 

not affected by human activities but to climatic factors alone. St. Jacques et al. (2010), who 

analyzed unregulated, regulated and naturalized streamflow records of Southern Alberta, found 

that the declining streamflows are due to hydroclimatic changes (probably from global warming) 

and severe human impacts, which could be of the same order of magnitude, if not greater. 

Unfortunately, it is very difficult, if not impossible, to separate the impact of climatic and human 
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factors on the streamflow of a river basin because of the complex interactions between climate, 

human, and hydrologic processes. 

1.4.3 GAMLSS modeling of extreme distribution 

Since both long-term monotonic trends and abrupt changes have been detected in some 

AMS series, we further evaluate the nonstationarities of these streamflow data by fitting these 

data with several PDs designed to characterize data nonstationarities. 

If no statistically significant change point was detected in an AMS series, that dataset was 

fitted with four different two-parameter PDs (gamma, Weibull, Gumbel and lognormal) of 

GAMLSS. PDs for streamflow series with no significant change points include: (1) a PD with 

stationary 1 and 2 , (2) a PD with one time-varying parameter 1 , or both time-varying 

parameters, 1 and 2 modelled as a link function, g(θ), dependent on certain linear functions of 

time, (3) a PD with one, 1 , or two time-varying parameters, 1 and 2 , modelled as g(θ), 

dependent on certain additive functions of time such as a cubic splines function adopted in this 

study. If a significant change point is detected in the mean of AMS series, more complicated PDs 

of GAMLSS will be chosen to model both abrupt changes and a time varying, 1 based on certain 

piecewise linear functions of time that are discontinuous at the time the change point is detected. 

Due to numerical convergence problems encountered while applying piecewise linear functions 

of GAMLSS, only 1 may be modeled as a time varying parameter. The goodness-of-fit of all 

PDs, ranging from a PD with two stationary parameters to a PD with two nonstationary 

parameters was assessed in terms of bias and AIC scores. 

Table 1-3 shows that for 39 out of 85 stations without a detected change point, the AMS 

series were fitted with several stationary PDs and the PDs with the best goodness-of-fit statistics 

were selected.  For the remaining 46 stations without detected change points, it turns out that the 

data were better fitted using nonstationary PDs with time varying parameters based on either 

linear or nonlinear functions of time.  Out of 60 stations with detected change points, 

nonstationary PDs with the time-varying location parameter 1 based on certain piecewise 

functions of time evidently gave the best fit to 36 stations, nonstationary PDs with certain 

nonlinear descriptions of time-varying parameters gave the best fit to another 21 stations, and 

stationary PDs gave the best fit to the remaining 3 stations of the AMS. On a whole, the AMS of 
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103 out of 145 stations was better fitted with nonstationary PDs, which indicates that over 70% 

of the AMS records over Canada are nonstationary, and most of the AMS records are best fitted 

by either lognormal and gamma distributions. 

Table 1-3 Numbers of stations fitted to the specific GAMLSS model in the absence and presence of a change 

point 

Model # Type of GAMLSS model PD 
Numbers of stations 

No change point With change point 

1 

Stationary 

Weibull 4 0 

2 Gamma 15 1 

3 Gumbel 1 0 

4 Lognormal 19 2 

5 

Linear (Piecewise linear) 
a
 model 

of only location parameter 

Weibull 0 8 

6 Gamma 0 11 

7 Gumbel 0 0 

8 Lognormal 0 17 

9 
Linear (Piecewise linear) model of 

both location and shape 

parameters 

Weibull 3 -- 
b
 

10 Gamma 4 -- 

11 Gumbel 0 -- 

12 Lognormal 5 -- 

13 

Nonlinear model of only location 

parameter 

Weibull 5 3 

14 Gamma 4 7 

15 Gumbel 0 0 

16 Lognormal 13 5 

17 

Nonlinear model of both location 

and shape parameters 

Weibull 0 1 

18 Gamma 4 2 

19 Gumbel 0 0 

20 Lognormal 8 3 
a
 Linear models are used for series from stations without abrupt change point detected, while piecewise linear 

models are fitted for series from stations without abrupt change point. 
b
 Models are not fitted to the series due to the numerical problem present in the fitting. 

 

The effectiveness of five nonstationary and one stationary PDs applied to model the AMS 

series of six stations (see Figure 1-1) are further examined. These stations with their best fitted 

PDs are, respectively: 1) 05CC002, Red Deer River at Red Deer, a lognormal distribution with 

one location parameter based on a piecewise linear function of time, 2) 05KJ001, Saskatchewan 

River at The Pas, a gamma distribution with one location parameter based on a piecewise linear 

function of time, 3) 08NE049, Columbia River at Birchbank, a lognormal distribution with one 

location parameter based on a nonlinear function of time, 4) 08JB002, Stellako River at 

Glenannan, a lognormal distribution with both location and shape parameters based on a 

nonlinear function of time, 5) 08MH016, Chilliwack River at Outlet of Chilliwack Lake, a 
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lognormal distribution with both location and shape parameters based on a linear function of 

time, and 6) 01AK001, Shogomoc Stream near Trans Canada Highway, a stationary lognormal 

distribution. 

 

 
Figure 1-4 Worm plots for six representative stations showing the goodness-of-fit of 2-parameter PDs to their 

corresponding measured AMS. For a good fit, the data points should be aligned preferably along the grey 

solid curve but within the 95 percentile confidence interval represented by two grey dashed curves (van 

Buuren and Fredriks 2001). 

The first four stations had abrupt changes but not the latter two stations. The first three are 

non-RHBN stations while the latter three are RHBN stations. Worm plots of residuals (Figure 1-

4) for these six stations generally demonstrate good agreements between the fitted PDs with their 

observed AMS series, with the data points primarily aligned on the fitted red curves that 

generally fluctuate closely along the zero deviation line, and within the 95% confidence intervals 

(grey curves). Figure 1-5 shows that for Station 08MH016 with no significant abrupt change and 

trend detected, the percentiles of AMS with low probability of occurrences (5% and 25%) 

increased more significantly compared to other quantiles. Also, extreme annual maximum flood 

events (5
th

 percentiles) for Stations 05CC002, 05KJ001 and 08JB002 increased significantly 
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after 1980s, and at faster rates than other quantiles, which demonstrate generally larger increase 

to extreme events that occurred after 1980s, or chances of the occurrence of extreme events seem 

to be increasing, which likely implies that achieving reliable flood forecast in Canada will 

become more challenging in the future.  Different temporal variations of quantiles in the AMS 

series of these 6 stations probably confirm predominantly nonstationarities in the AMS series of 

Canada, which include observed changes in the mean, increased streamflow variability and 

severity of extreme events. 

 

Figure 1-5 Fitting of AMS series for six selected stations (locations shown in Figure 1) to five nonstationary 

and one stationary PDs, with solid dots representing measured AMS values scattered between five levels of 

percentiles (5
th

, 25
th

, 50
th

, 75
th

, and 95
th

). 

1.4.4 Long-term persistence (LTP) 

For natural processes such as streamflow, the range of cumulative departure from the mean 

normalized by the standard deviation generally follows a power law behavior (Hurst 1951; 
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Klemeš 1974; Potter 1976). If the exponent of this power law phenomenon is larger than 0.5, it is 

known as the Hurst phenomenon (Hurst 1951), which tends to strongly increase the large time 

scale variability or statistical uncertainty. Results of Hurst exponents (H) obtained in this study 

are used to suggest some plausible physical explanations to properties of the Canadian AMS 

data. Table 1-4 presents number of AMS series showing LTP, i.e., H larger than 0.5. 

Table 1-4 Numbers of stations whose Hurst exponents (H) are larger than 0.5 calculated from different 

estimators 

 
Aggregated 

variance 

Differenced 

aggregated variance 

Aggregated 

absolute value 

R/S rescaled 

range statistic 
Peng's  

Non-RHBN (83)* 30 71 50 58 63 

RHBN (62) 29 47 44 45 38 

* Values in the brackets are the total selected station to be analyzed. 

Given that H values calculated for the same station by different methods can differ widely, 

it seems that detecting the presence of LTP for AMS involves large uncertainties. For example, 

the number stations with H > 0.5 by the differenced aggregated variance method is more than 

double that estimated using the aggregated variance method. By comparing many H estimators, 

Teverovsky and Taqqu (1997) concluded that the aggregated variance method tends to produce 

large errors when trends or abrupt changes present. Therefore, results obtained by the aggregated 

variance method for stations with detected trends or abrupt changes are hence forth discarded. 

Out of 145 stations, both the R/S method and the Peng's method estimated slightly over 100 

stations with H larger than 0.5, while the aggregated absolute value method estimated slightly 

less than 100 stations showing LTP. 

The inconsistent results obtained from different methods may be partly caused by limited 

sample sizes. The reliability of results can also be affected by the nonstationarities of the time 

series. To estimate the uncertainty of H estimated with sample size, a bootstrapping resampling 

procedure (Davison and Hinkley 1997) was used to derive the PDs and confidence intervals of H 

using the R/S and the Peng's methods. The time series of each station was resampled with 

replacement for 10,000 times, and the H for each sample estimated.  Spatial distributions of the 

mean and the 95% confidence intervals of H values estimated by this bootstrapping approach are 

shown in Figure 1-6. The average H derived from the R/S method and Peng's method are 0.67 

and 0.58, with corresponding 95% confidence intervals of 0.46-0.89 and 0.35-0.74, respectively. 

Apparently the Peng's method estimated lower H values than the R/S method. At the lower 

confidence limit (2.5%), the R/S method estimated 46 and Peng’s method estimated 15 stations, 
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out of 145 stations, with H higher than 0.5, which suggest the strong (statistically significant) 

presence of LTP in the Canadian AMS series. The spatial patterns of H derived from the R/S and 

Peng’s methods are similar to each other (Figure 1-6). The above results show that stations 

located in southern Canada and in inland generally exhibit higher H than other parts of Canada, 

e.g., clusters of high H values are located in Southeastern BC, southwestern Manitoba and 

Southeastern Ontario. 

 

 
Figure 1-6 Spatial distributions of the 2.5% quantile (a and d), the 50% quantile or mean (b and e) and the 

97.5% quantile (c and f) of Hurst exponent (H) re-sampled by the bootstrap method applied to station 

(represented by dots) H values estimated from the R/S method (a, b and c) and the Peng's method, 

respectively. 

f

. 

b

. 

e

. 

(a) (d) 

(b) (e) 

(c) (f) 
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Bras and Rodriguez-Iturbe (1985) offered three possible physical explanations underlying 

the Hurst phenomenon. First, the Hurst phenomenon is transitory because our data are not long 

enough to test the steady-state behavior of R, the range of cumulative departures from the mean 

(Cohn and Lins 2005; Franzke 2012; Koutsoyiannis 2006). Second, it is due to nonstationarities 

in the mean of the process (Klemeš 1974; Potter 1976). And third, it is due to stationary 

processes with infinite memories (Mandelbrot and Wallis 1969). By showing strong positive 

correlation between H and the mean discharge, air temperature, and basin area of European 

rivers, Szolgayova et al. (2014) claimed to have found evidence to the 3
rd

 explanation. 

 
Figure 1-7 Scatterplots between Hurst exponent (H) of Canadian AMS estimated using the R/S (a, b) and the 

Peng’s (c, d) method with basin area, and length of the AMS time series, respectively. 

Figure 1-7, scatterplots of the mean H value derived from bootstrap re-sampling with basin 

drainage area and the length of time series, shows a modest positive correlation between H 

estimated by the R/S and Peng’s method and basin drainage area, with statistically significant 

Kendal’s S, 0.14 and 0.12, and Spearman’s rho, 0.21 and 0.18, respectively. It seems that the 

AMS of larger watersheds are more likely to show stronger LTP, possibly because of their larger 

capacity to store inundated flood water. However, Figure 1-7 also shows that H values do not 

depend on the length of time series but the result is inconclusive because in this study the AMS 

series are only limited to just over 100 years long. 
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Trends in environmental data can be attributed to stochastic or deterministic processes or 

both. Stochastic trends can exist in very simple stationary stochastic processes over long periods 

of time, as shown by Cohn and Lins (2005), Koutsoyiannis (2006) and Franzke (2012) who 

linked LTP to multidecadal oscillations in climate regimes or other internal climate variabilities.  

Deterministic trends driven by external forcings such as greenhouse gases and land use changes 

can also lead to high values of H (Potter 1976; Rust et al. 2008). Among the 46 (15) stations 

showing statistically significantly LTP in AMS data detected by the R/S (Peng’s) method, only 

16 (2) are RHBN stations while 30 (13) are non-RHBN stations. 

On the basis of these results, it seems that having human-induced nonstationarities in a 

time series can enhance the LTP represented by the H exponent. Furthermore, similar effect of 

nonstationarities on H was also found by Klemeš (1974), Potter (1976) and Rust et al. (2008) in 

their simulation studies on hydroclimatic time series. However, our results are not sufficient to 

conclude whether LTP detected in Canadian AMS series are the results of nonstationarities 

caused by stochastic and/or deterministic processes or both.  Moreover, a lack of additional 

information, limited sample sizes, the appropriateness of the estimation methods used in this 

study and some unknown external forcings that can possibly contribute to deterministic trends 

are unresolved issues that are beyond the scope of this study. 

1.5 Summary and conclusions 

Based on 145 RHBN and non-RHBN stations of Canada with long-term AMS series and 

hydrological observations, we investigated the nonstationary characteristics of AMS of Canada. 

The research results can be summarized as follows: 

1. Results from the PETT show that almost half of the stations, including non-RHBN 

stations, experienced an abrupt shift in the mean of the AMS. The timing of abrupt change points 

have been shown to be closely related to the years when the regulation of streamflow began.  

Given that only about 1/6 of the RHBN stations with minimal streamflow regulation and stable 

land-use conditions experienced abrupt changes, it seems that human interference of nature has 

been instrumental in causing an abrupt shift in the mean of AMS of Canada. However, in this 

study, no change point was detected in the variance of AMS of any station. 

2. Trend analysis on complete time series of AMS shows that about 50 out of 145 stations 

exhibit monotonic temporal (more negative than positive) trends, e.g., abrupt change points were 

not considered in the analysis. However, further trend analysis show that only about 12 out of 59 
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stations detected with abrupt change points showed significant monotonic trends in the time 

series before and/or after change points were detected. Thus, abrupt changes are more likely the 

cause of nonstationarities to AMS series over Canada than monotonic trends.  Similar to abrupt 

changes attributed to regulations of streamflow, drainage basins subjected to significant land use 

changes are more likely to show temporal trends in the AMS compared to pristine basins with 

stable land-use conditions. Climate change impact due to human activities could also contribute 

to monotonic trends, and possibly abrupt changes to AMS series of Canada. 

3. More than 2/3 of the AMS series could be accurately fitted with lognormal and gamma 

PDs. The nonstationarities of the AMS series which include monotonic trends, nonlinear 

fluctuations and abrupt changes were modeled using PDs with time varying parameters. Other 

factors such as climate anomalies and land use change descriptors will be necessary to more fully 

investigate physical explanations behind various types of nonstationarities found in the 

streamflow series. 

4. The LTP analysis using the R/S and the Peng’s methods reveals that almost 2/3 of the 

Canadian AMS series show significant LTP (high H). It seems that widespread LTP detected in 

the AMS of Canada should be primarily related to the predominant nonstationarities 

characteristics of AMS data attributed mainly to climatic changes, climate variability and 

landuse impacts of human activities. Further, the degree of LTP (H) is also found to be positively 

correlated with the areas of Canadian river basins. 

A possible future extension to this study is to explore changes of climate variables and 

evidence of human activities that contribute to abrupt changes, trends, and non-stationarity in the 

streamflow of Canada presented above. 
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Chapter 2 Contribution of human and climate change impacts to changes in streamflow of 

Canada 

2.1 Introduction 

Regional changes in precipitation (P) minus evapotranspiration (E), P – E, caused by 

changes in specific humidity, circulation, and moisture transports complicate impacts of climate 

change on changes to streamflow
 
(Seager and Vecchi 2010). Human activities such as river 

regulations (Assani et al. 2006; Destouni et al. 2013; Grill et al. 2015; Nilsson et al. 2005; Poff et 

al. 2007), land use change (Gordon et al. 2005; Sterling et al. 2012; Vörösmarty and Sahagian 

2000), deforestation (Zhang and Wei 2012), reforestation (Buttle 2011), and extraction or 

diversion from surface water and groundwater (Milly et al. 2005; Schindler and Donahue 2006; 

Vörösmarty and Sahagian 2000; Zhou et al. 2015) generally incur a direct change to streamflow. 

Most studies attributed changes in streamflow to climate change impact only, such as a shift 

from snowfall towards rainfall in USA (Berghuijs et al. 2014), increasing trends in annual total 

precipitation in Canada (Mekis and Vincent 2011), without considering possible impact of 

human activities which can alter the streamflow directly through influencing the runoff 

production and indirectly through affecting the climatic variables (Barnett et al. 2008; Milly et al. 

2008; Pall et al. 2011).  

It is a challenge to quantify human contribution to changes in streamflow (Gedney et al. 

2006) partly because human disturbances incur changes to many subsystems such as atmosphere, 

hydrosphere, cryosphere, land surface and biosphere (Pall et al. 2011). Instead of using 

deterministic rainfall-runoff models to assess the impacts of climate change or human activities 

on runoff for each watershed, in this study we used observed precipitation, streamflow and 

estimated PET data to separate direct impacts of human activities from impacts of climate 

change (even though the latter is related to human impacts) to changes in Canadian streamflow 

based on the Budyko Framework (Budyko 1961). The Budyko Framework assumes that the 

long-term water balance of a watershed based on the dryness index of actual evaporation to 

precipitation, E/P, is primarily a function of the atmospheric supply and demand of water, 

expressed as the ratio of PET to precipitation, Ep/P, i.e., E/P=f (Ep/P, n), where n is an empirical 

coefficient representing the combined watershed landscape properties that control water-energy 
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balances (Xu et al. 2013) (Figure 2-1). In other words, the Budyko Framework enables us to 

predict hydrologic responses of a watershed to a wide range of climatic conditions with respect 

to the characteristics of the watershed, such as land properties, terrain features and others.  

The long-term moving average water balance with a 20-year window, P = E + R (R is 

streamflow), of 96 Canadian watersheds (Figures 2-2 and 2-3, and see Supplementary Tables S1 

and S2 in Tan and Gan 2015b) was analyzed, but changes in water storages of watersheds are 

ignored in the analysis. The elasticity of streamflow, defined as the percentage change of 

streamflow from a 1% annual change in climate or land conditions and analytically derived from 

the Budyko Framework (Yang and Yang 2011), was used to estimate hydrological responses to 

climate change, land use and cover changes (LUCC) for each watershed. Hydroclimatic data was 

separated to two subseries for pre- and post-change periods (periods-1 and -2, respectively) from 

an abrupt change-point. Thus, the relative contribution of changes in precipitation and PET, and 

the relative contribution of human activities (LUCC) to streamflow change from periods-1 and -

2, can be obtained from the difference in precipitation, PET and n between periods-1 and -2, and 

the corresponding streamflow change based on its elasticity to the above changes. The separate 

results were further validated by a decomposition method (Wang and Hejazi 2011) that are also 

analytically derived from the Budyko Framework. Details of the above processes are described 

in Section 2.4 Methods. 

2.2 Results 

2.2.1 Hydroclimatic trends and change-points 

Change-point and trend analysis (Methods) of 96 selected watersheds are shown in Figure 

2-4. Out of 60 non-RHBN (Reference Hydrometric Basin Network) watersheds, the streamflow 

and PET of 41 watersheds and the precipitation of 45 watersheds show statistically significant 

change-points. However, for 36 RHBN watersheds, the corresponding number of watersheds 

decreases to 9 and 2 respectively, mainly because of pristine land-use conditions of RHBN 

watersheds. Change-points of streamflow data are mainly detected in 1929-1997 (mean 1969) 

and 1977-2004 (mean 1991) for non-RHBN and RHBN stations, respectively. Therefore, we 

adopt 1990 as the change point year for RHBN stations. However, for non-RHBN stations, 

because data begins no later than 1960, we adopt 1980 as the change point year to ensure 

sufficient length of data before and after change points. By adopting a common change point 
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year for non-RHBN and RHBN stations, we have a better basis to compare the attribution results 

between different non-RHBN and RHBN watersheds. 

From periods-1 to -2, the annual streamflow generally decreased (0-81 mm) along the 

Canadian Rockies (CR) which are Boreal and Montane Cordillera shown in Figure 2-2 but 

increased (0-58 mm) elsewhere, and 35 non-RHBN in mid- and eastern Canada, and 3 RHBN 

watersheds show statistically significant increasing trends between 1940s-2010 (Figure 2-4c). 

However, depending on the periods considered (30-, 40- and 50-year), some RHBN streamflow 

data in southern Canada showed significant decreasing trends (Zhang et al. 2001b), but most 

showed insignificant decreasing trends between 1970-2010. 

 

Figure 2-1 Typical Budyko curve (red line, n=1) and the schematic of decomposition method. Assuming point A is the 

catchment water balance under the stationary condition of the pre-change period (period-1), point B is under another 

stationary condition of the post-change period, and point C is a hypothetical point under a stationary condition which has 

the same catchment property as point A and the same climate condition (including precipitation and PET) as point B. 
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Figure 2-2 Geographic locations of the 96 studied drainage watersheds (polygons). The 15 terrestrial ecozones for 

Canada’s landmass are also shown. The watershed number and the mean annual hydroclimatic variable values are shown 

in detail in the Tables S1 and S2.  

 

 

 
Figure 2-3 Spatial coverage of exogenous information used as a validation of the landscape change impacts due to 

human activities on mean annual streamflow, a) population density, b) number of dams in each watershed, and c) land 

use and cover. 

(a) (b) 

(c) 
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Figure 2-4 Change-points and trends of the annual precipitation (a), potential evaporation (b) and streamflow 

(c) in mm/year, and (d) change in landscape parameter n (d; Δn = n2 – n1) of 96 selected watersheds across 

Canada. For figures 1 a-c, only change-points (in year) that are statistically significant at 10% significant 

level are presented. Blue (green) boundaries show RHBN (non-RHBN) watersheds selected. Light (deep) grey 

watersheds represent trends that are not (are) statistically significant. The magnitudes of trends are 

presented in terms of circle sizes, in which green (red) circles represent decreasing (increasing) trends. 

Change-points of annual precipitation (PET) occurred in about 1955 (1950) and 1992 

(1989) for non-RHBN and RHBN watersheds, respectively. Annual precipitation has increased 

5-35% in southern Canada over 1990-1998 (Zhang et al. 2000), and abrupt changes often 

happened earlier in western than in eastern watersheds (Figure 2-4a). For non-RHBN 

watersheds, differences in detected change-points between streamflow and climate data can be 

attributed to human activities. From periods-1 to -2, changes to the mean annual precipitation 

range from -44 to 158 mm, with a significant decrease in central CR and northern Canada but a 

significant increase in southern Canada. Most British Columbia (BC) and northern Canada 

showed an increase (0-30 mm) in the mean annual PET, but southern Canada generally a 

decrease (0-18mm) (Figure 2-4b), while n had generally increased in southern but some had 

decreased in northern watersheds of Canada (Figure 2-4d). 
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2.2.2 Elasticities of streamflow 

For RHBN and non-RHBN watersheds, n ranges 0.442-3.295 and 0.285-9.305, with a 

mean value of 1.279 and 2.218, respectively (see Supplementary Tables S1 and S2 in Tan and 

Gan 2015b). Higher n means higher E for a given P and Ep, and hence a lower runoff (R). For 

example, non-RHBN watersheds #4 and #13 have similar P (about 1000mm) and Ep (about 

700mm), but watershed #4 has high R (about 500mm) because of low n (1.525) while watershed 

#13 has low R (about 350mm) because of high n (2.712). From periods-1 to -2, most southern 

(northern) watersheds have become wetter (drier), as Ep/P in the south (north) decreases 

(increases). E/P tends to increase especially in CR but it also decreases elsewhere (Figure 2-5). 

E/P~Ep/P relationships for most watersheds in periods-1 and -2 do not follow the same Budyko 

curve (Figure 2-6), which likely implies that streamflow changes were induced by human 

impacts, especially when they change in an opposite manner.  

 

 

Figure 2-5 Difference in (a) the dryness index and (b) the evaporation ratio between the period-1 and period-

2. Red (green) watersheds in (a) were getting drier (wetter) as the dryness index during period-2 was higher 

(lower) than that during period-1. Red (green) watersheds in (b) show an increase (decrease) in the 

evaporation ratio as the evaporation ratio during period-2 was higher (lower) than that during period-1. 

 

(a) (b) 



38 

 

 

Figure 2-6 Distribution of the mean annual evaporation ratio (E/P) versus mean annual dryness index (E0/P) 

for selected RHBN (a), and non-RHBN (b) watersheds during the period-1(blue dots) and period-2 (red dots). 

The Budyko curves calculated by Equation (2-2) are plotted as black solid lines. The watershed numbers 

shown in the figures are described in Supplementary Table S2 of Tan and Gan (2015b). 

 

 
Figure 2-7 Elasticity of streamflow of 96 watersheds of Canada to (a) precipitation εp, (b) potential 

evaporation (PET), εEp, and (c) the watershed landscape εn.  

(a) (b) n=5 n=5 

n=3 

n=1 

n=0.5 

n=3 

n=1 

n=0.5 
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Figure 2-7 shows the spatial distribution of elasticity of streamflow to precipitation, εp, to 

PET, εEp and to LUCC, εn for Canada. The ranges of εp are 0.03-5.17, for εEp are -5.17-0.03, and 

for εn are -5.14-0.02. The mean εp, εEp and εn values are 2.38, -1.38 and -1.03 for non-RHBN 

watersheds, and 1.65, -0.65 and 0.61 for RHBN watersheds, respectively. The spatial pattern of 

εp is somewhat similar to that of ecozone, and land use/cover (Figures 2-2 and 2-3). As expected, 

streamflow of the semi-arid Canadian Prairies (CP), which comprises of Alberta (AB), 

Saskatchewan (SK), and Manitoba (MB), is highly sensitive to LUCC, but less sensitive to 

LUCC in CR and northern Canada, e.g., absolute values of εp, εEp and εn of southern CP are 

higher than other parts of Canada (Figure 2-7). 

2.2.3 Direct human impacts and climate change to streamflow change 

Streamflow change results from changes in precipitation, CPR , PET, PCER , and LUCC, 

lR  representing human impacts (Figure 2-8). The modeled streamflow change sR (

PCEs CP lR R R R     ) based on the elasticity method generally agrees well with the 

observed R (Figure 2-9), with an average absolute error and a Pearson correlation of 4.3 mm 

and 0.98, respectively. Since precipitation and LUCC exerts opposite influence on streamflow, 

the net effect might lead to a minimal change in streamflow of watersheds subjected to both 

climate and LUCC impacts. However, their relative contributions to streamflow change can be 

deciphered, e.g., RHBN (#1, #4) and non-RHBN (#9, #10, #57 and #64) watersheds showed 

significant increase in streamflow (26-88mm) due to increasing precipitation, but significant 

decrease in streamflow (28-87mm) due to increasing n, which results in minimal streamflow 

changes. Therefore, human activities represented by LUCC tend to decrease the streamflow, as 

already observed in Canadian streamflow, albeit precipitation over Canada has generally 

increased.  
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Figure 2-8 Relative contributions of changes in precipitation (c),  PET (d) and landscape (e) to changes in the 

annual streamflow of selected Canadian RHBN (a) and non-RHBN (b) watersheds, represented by blue, red 

and black bars, respectively. Descriptions of watersheds of # shown in Figure 2-8a are given in 

Supplementary Table S1 and in Figure 2-8b are given in Supplementary Table S2 of Tan and Gan (2015b), 

respectively. 
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Figure 2-9 Comparison between the modeled and the observed streamflow change, the black solid line is a 1:1 

straight line. 

In Canada, streamflow change is more controlled by changes in precipitation than PET 

(Figures 2-8a-b).  From periods-1 to -2, ranges of CPR , PCER  and lR are [-140.5, 41.9], [-8.2, 

7.5] and [-42.7, 63.8] mm for RHBN watersheds, and [-46.9, 137.4], [-15.4, 11.2] and [-123.6, 

66.2] mm for non-RHBN watersheds, respectively. Their corresponding mean values are 2.4, -

0.5 and -0.7mm for RHBN watersheds, and 17.3, -1.9 and -14.8mm for non-RHBN watersheds, 

respectively. As expected, human impacts have a significantly higher contribution to the 

decrease of streamflow in non-RHBN watersheds than RHBN watersheds. Spatial patterns of 

CPR , PCER  and lR  are shown in Figures 2-8c-e, which are similar to trend analysis of 

precipitation, PET and n (Figure 2-4). Precipitation (human impacts) generally contributed to an 

increase (decrease) in the streamflow of southern Canada, even though there are exceptions. 

We also used the decomposition method (Wang and Hejazi 2011) based on Budyko 

Framework (Figure 2-1 and Methods) to validate the relative contribution of human activities 

and climate change to streamflow change. Although the former merely attributes streamflow 

change to climate change and direct human impacts, without considering the contribution of 

precipitation and PET separately, the overall results are similar to that of the elasticity method 

from comparing the results derived from the decomposition and elasticity methods (Figure 2-10).  
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Figure 2-10 Comparisons of the contribution of climate (a) and human activities (b) to the streamflow change 

for watersheds described in Table S1 (blue dots) and S2 (red dots) derived from the decomposition method 

and the elasticity method. The watershed numbers shown in the figures are described in Supplementary 

Table S2 of Tan and Gan (2015b). 

2.3 Discussion 

 The elasticity and decomposition methods built on the Budyko framework involve 

uncertainties, such as separating relative contributions of climate change and human impacts on 

changes to streamflow, abrupt change and temporal trends of streamflow. For example, assuming 

1980 and 1990 to be the change-point year for non-RHBN and RHBN watersheds, respectively, 

and climatic regimes and human impacts remained relatively stable in both periods, etc., may not 

be true. Therefore, we further analyzed streamflow changes under five 10-year windows 

attributed to climate change and human impacts from 1961 to 2010, relative to the 1930-1960 

base period, for 30 (mostly non-RHBN) watersheds.  

From the 1960s onward, human activities generally lead to decreasing streamflow until 

2010 (Figure 2-11a), while climate change predominantly lead to increasing streamflow but the 

impact could be opposite for some watersheds until about the 1980s, when the reverse happened 

(Figure 2-11b). The range of standard deviations (mean) in climate and human contributions to 

streamflow change over the five 10-year windows of data analyzed for the 30 watersheds was 

8.5-75.3 mm (33.7mm) and 8.8-54.8 mm (29.4mm), respectively. It seems that the mean 

contributions of climate change and human activities to streamflow change of these 30 

watersheds obtained from the five 10-year window analysis for 1961-2010 agree well with the 

results obtained from using 1980 as the common change-point for the 30 watersheds (Figure 2-

11c).  

(a) (b) 
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Figure 2-11 Temporal Budyko analysis results of Contributions of climate (a) and human (b) to changes in 

MAS from the baseline 1931-1960 period at 10 year intervals for 30 watersheds estimated from the 

decomposition method based on the Budyko framework; and scatterplots between changes in MAS due to 

contributions of climate (red dots) and human (blue dots) averaged over 5 10-year periods, and changes in 

MAS based on 1980 as the assumed change-point for each watershed. The watershed numbers shown in the 

figures are described in Supplementary Table S2 of Tan and Gan (2015b). 

Human impacts on streamflow change of the 96 watersheds divided into 10 groups were 

further explored using a correlation analysis between streamflow change and human activities 

such as LUCC, increased municipal water consumption due to population increase and increased 

evaporation due to water impoundment behind dams. In each group all watersheds have 

comparable range of streamflow change and human activities categorized under population 

density, number of dams, percentage of cropland and rangeland.  
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Figure 2-12 Relationships between estimated human contributions to streamflow change in terms of selected, 

external validation data, namely, (a) population density, (b) number of dams, (c) percentage of cropland, (d) 

percentage of irrigated land and (e) trend magnitudes of NDVI. 

Because of a lack of long-term data related to human activities, we assume that streamflow 

to landscape changes detected for each watershed to be directly dependent on certain indicators 

collected in a particular year only. The relationships between “human” indicators and streamflow 

change for these 10 groups of watersheds are shown in Figure 2-12. The proportion of 

impervious areas of urban watersheds with large population density tends to grow over the years, 

resulting in decreased infiltration but increased surface runoff. Conversely, water impoundment 

by dams results in increased evaporation loss and so decreased streamflow. The expansion of 

cropland means converting perennial vegetation to seasonal cropping systems that reduces 
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annual evapotranspiration and increased streamflow during non-growing season. On the other 

hand, rangelands could have higher evapotranspiration than natural lands, resulting in less 

streamflow. However, streamflow could change in a manner opposite to above relationships, 

e.g., irrigated lands could have higher evapotranspiration than natural lands which resulted in 

less streamflow. Further, crop water consumption depends on crop types, and so streamflow 

could decrease with intensive cultivation of certain crop types. Therefore, human impacts on the 

streamflow change could depend on various combinations of physical and climatic factors. 

 

 

Figure 2-13 Trends of NDVI (a, year
-1

) and snow ratio (b, % year
-1

) over North America. Maps in Figure 2-13 

were generated with licensed Matlab R2014a using public domain data, such as NDVI data of the Global 

Inventory Modeling and Mapping Studies (GIMMS) (http://staff.glcf.umd.edu/sns/branch/ 

htdocs.sns/data/gimms/) and snow ratio data of the North American Regional Reanalysis (NARR). 

(http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html).    

 

 

Figure 2-14 Same as Figure 2-6, but based on the snow ratio for selected RHBN (a) and non-RHBN (b) 

watersheds during period-1 and period-2 (see Figure 2-6 about the period of data points).  The Budyko curves 

calculated by Equation (2-2) are plotted as black solid lines. 

 

(a) (b) 

(a) (b) 
n=5 

n=3 

n=1 

n=0.5 

n=5 
n=3 

n=1 

n=0.5 

http://staff.glcf.umd.edu/sns/branch/%20htdocs.sns/data/gimms/
http://staff.glcf.umd.edu/sns/branch/%20htdocs.sns/data/gimms/
http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
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In addition to the above human indicators, we have also considered trends of normalized 

difference vegetation index (NDVI), which is related to the percent of green cover, as a possible 

factor contributing to decreased streamflow in Canada. Figure 2-12e shows the negative 

correlation between NDVI trends for the first half of August over 1981-2011 and annual 

streamflow change of Canada. As most Canada landmass became greener (NDVI increase) in 

southern and Arctic regions (Figure 2-13a) over 1981-2011, annual evapotranspiration could 

increase because of increased NDVI even though there is no consistently positive trend detected 

in the evapotranspiration of Canada (Greve et al. 2014; Jung et al. 2010; Sterling et al. 2012; 

Zhang et al. 2009a).  Even though increased NDVI could be related to both the climate change 

and human contribution (Pouliot et al. 2009), it is difficult to separate their relative contributions 

to the increased NDVI. 

In high-latitude and mountainous regions of Canada, the widespread retreat of glaciers has 

contributed to increase in streamflow (Clarke et al. 2015; Immerzeel et al. 2013; Lutz et al. 2014; 

Wang et al. 2014c). Since this study does not account for impacts of climate change on retreat of 

glaciers, it underestimated the actual human contribution to decreased streamflow. Some studies 

show that potential impacts of a warmer climate do not significantly affect the availability of 

water in snow-dominated regions such as Canada (Barnett et al. 2008; Stewart et al. 2005). 

However, recent studies reported conflicting results on the sensitivity of streamflow to global 

warming impact, e.g., a general decrease in observed streamflow caused by a shift from snowfall 

to rainfall in USA (Berghuijs et al. 2014); and a projected increase (decrease) in streamflow of 

Canada (USA) under climatic change impact (Zhang et al. 2014b) which may be partly because 

hydrologic impacts of human activities are not considered in hydroclimatic models. More 

detailed analysis will be necessary to better estimate anthropogenic impacts such as landuse 

changes and streamflow regulations to watersheds studied.  

A limitation of Budyko-based methods for separating the relative contribution of human 

impacts and effects of climate change to the streamflow change in snow-dominated watersheds is 

that the change in snow ratio (SR, amount of snowfall to total precipitation) which is more 

related to the effect of climate change than direct human impact. Watersheds with a higher SR 

tend to have a lower E/P (Figure 2-14).  This means that under similar climatic conditions and 

landscape properties, streamflow will tend to be higher. This empirical relationship has been 

found in watersheds of USA (Berghuijs et al. 2014)
 
and China (Zhang et al. 2015), but its 
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mechanism is still unknown. The stationary assumption of SR in Budyko-based methods is 

violated in some watersheds given North American Regional Reanalysis (NARR) data show that 

SR has increased in southern Canada because of the increase in winter precipitation, but SR has 

decreased in northern Canada over 1979-2014 (Figure 2-13b), as also been observed in station 

climate data (Zhang et al. 2000).  Given that streamflow in southern Canada has decreased even 

though it should have increased because of increased SR, the contribution of human impact to 

decreased streamflow could have been higher. 

2.4 Methods 

From analyzing the 1961-2010 annual water balance of 370 watersheds using streamflow 

data of Water Survey Canada (WSC), Wang et al. (2014b) found that large spatial variabilities of 

basin-scale water budget over Canada, and some significant discrepancies in the water budget of 

some watersheds in northern Canada (above 60°N) were partly due to mass loss of glaciers. 

Given the Budyko framework is meant for the long-term (> 1 year) water balance analysis, 96 

Canadian watersheds with drainage area > 2,000 km
2
 and an annual water imbalance < 10% of 

the annual precipitation were selected for this study. 

Since available streamflow data is less complete than precipitation and temperature data, 

only watersheds with long-term streamflow data were selected in this study. The RHBN 

streamflow data of WSC have been extensively used for climate change studies, since RHBN 

data are characterized by relatively pristine and stable land-use conditions (< 5% of the land 

surface modified) with at least 20 years of record. A total of 36 RHBN watersheds with daily 

streamflow data of 1971-2010 were selected for this study.  Further, daily streamflow data of 60 

non-RHBN stations that began no later than 1960 were also selected for this study (Figures 2-2 

and 2-3, and see Supplementary Tables S1 and S2 in Tan and Gan 2015b). In this study, the total 

annual depth of streamflow was estimated for station drainage areas while the total annual values 

of other hydroclimatic variables were estimated for actual watershed areas. Next, the gridded, 

monthly precipitation dataset (McKenney et al. 2011), and the monthly PET dataset of CRU TS 

v. 3.22 (Harris et al. 2014) were also used under the Budyko framework. To estimate the change 

in SR over watersheds, we used the NARR (Mesinger et al. 2006) snowfall and precipitation data 

over 1979-2014. Abrupt changes in the mean hydroclimatic data due to climatic changes and/or 

anthropogenic effects were detected using the nonparameteric Pettitt test (Pettitt 1979), 

monotonic trends was investigated by the Mann-Kendall (MK) test (Kendall 1975), and 
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magnitudes of trend were estimated using the Theil–Sen approach (Sen 1968), at 10% 

significance level. 

Various significant hydroclimatic change-points for Canada, mainly between 1970-1990, 

have been detected (Tan and Gan 2015a). We first divided RHBN (non-RHBN) streamflow 

datasets into pre-1990 (pre-1980) and post-1990 (post-1980) parts, respectively. Hydroclimatic 

changes from periods-1 to -2 were estimated for the 96 watersheds. The contributions of human 

impacts to observed changes in MAS of Canada were assessed in terms of population density, 

dam distribution, and land uses (Figure 2-3) obtained from Natural Resources Canada 

(www.geogratis.cgdi.gc.ca/geogratis/DownloadDirectory?lang=en), and remotely sensed, 8-km 

resolution, NDVI data of the first half of August for 1981-2011 obtained from the Global 

Inventory Modeling and Mapping Studies (GIMMS) (Tucker et al. 2005).  

 

Figure 2-15 The elasticity of streamflow dependent on (a) the dryness index (Ep/P) and (b) the landscape 

parameter (n). The lines represent the elasticity of runoff, and the blue and red circles or dots represent the 

non-RHBN and RHBN watersheds, respectively.  

The Budyko framework simplifies the water-energy balance of large watersheds (>1,000 

km
2
) over long time periods (>1 year) by apportioning precipitation to actual evaporation (E) and 

streamflow (R). Since PET (EP) and precipitation (P) are measures of energy and water 

available, respectively, the Budyko framework, E/P=f (Ep/P, n), represents the water balance of a 

watershed in a stationary condition (Figures 2-1, 2-6, 2-14 and 2-15). Various climatic conditions 

represented by Ep/P fall on a Budyko curve that only depends on watershed properties 

represented by one or more parameters. In this study, the Budyko curve (Yang et al. 2008), 

Equation (2-1), was chosen because it is only described by one parameter n that is an empirical 

http://www.geogratis.cgdi.gc.ca/geogratis/DownloadDirectory?lang=en
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coefficient representing combined watershed landscape properties. A larger n value means more 

evaporation is partitioned from the precipitation and vice versa. 

1
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n n
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                                                            (2-1) 

The long-term moving average E with a 10-year window is derived by water balance, P = 

R + E, where variations of water storages were neglected: 
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P
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 



                                                            (2-2) 

Next, εp, εEp, and εn can be analytically derived and estimated from long-term P, EP and n 

data. Assuming P, EP and n are independent variables, thus Equation (2-2) can be interpreted as

 , ,pR f P E n  with the total differential, dR: 
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                                                      (2-3) 

The elasticity of streamflow to, precipitation, PET and watershed landscape can be defined 

as
P
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dR dn
n R
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  , respectively. Equation (2-3) can be 

rearranged as: 
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Using Equations (2-5)-(2-7), the elasticity of streamflow for a watershed can be estimated 

from its long-term data of P, EP and n. 

Figure 2-15 illustrates the relationship between εp and Ep/P for selected watersheds of 

Canada. As expected, εp increases with Ep/P, but, εEp decreases with Ep/P because streamflow 
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increases with precipitation but decreases with PET. The elasticity of streamflow is less 

dependent on Ep/P when climate is dry (Ep/P > 1.5), but less dependent on n when climate is 

extremely wet (Ep/P < 0.5). εp is close to 1.0 but εEp is close to 0.0 under extremely humid 

climate, and are almost independent of landscape conditions. On the other hand, n tends to affect 

the climate elasticity when Ep/P is between 0.5 and 1.5. Changes of the mean annual runoff of a 

watershed from period-1 (R1) to period-2 (R2), ΔR = R2 − R1, could be due to the combined effect 

of climate change ΔR
C
, and the watershed LUCC ΔR

L
, i.e., ΔR=ΔR

C
 + ΔR

l
, where ΔR

C
 =ΔR

CP
 + 

ΔR
CEP

, and ΔR
CP

 and ΔR
CEP

 are the streamflow change caused by changes in precipitation and 

PET, respectively. Therefore, 
CP

PR R P P    , p

p

CE

E p pR R E E     and 

l

nR R n n    , where ΔP=P2 - P1, ΔEP =EP2 - EP1 and Δn =n2 - n1, respectively.  

Since the elasticity method uses only a first-order approximation of streamflow change in 

Equation (2-4), an error analysis was conducted to test the validity of the elasticity method. 

Following Yang et al. (2014), Equation (2-2) was expanded by Taylor’s series to estimate errors 

associated with using a first-order approximation for estimating streamflow change. The results 

show that in 94 out of 96 watersheds, the relative error of approximating precipitation change to 

the streamflow change is less than 9%. Therefore, it is acceptable to apply the elasticity method 

in this study.  

The decomposition method (Wang and Hejazi 2011) offers another explanation to 

streamflow responding to effects of climate change and human activities based on the Budyko 

framework. This method also assumes no indirect human-induced streamflow change resulted 

from human influence on the climate change. Unlike the elasticity method which uses a first-

order approximation of the Budyko equation (Equation 2-3), the decomposition method 

considers that changes of Ep/P of a watershed along the horizontal direction in its Budyko curve 

only result from climate change impact, while changes of E/P along the vertical direction in its 

Budyko curve result from both climate change and direct human impacts (Wang and Hejazi 

2011)
 
(Figure 2-1). The streamflow change is divided into two parts, so that Budyko-based 

methods can separately account for direct human-induced and climate-induced streamflow 

changes due to changes in both precipitation and PET.  

Decomposition method: Because of both climate change and direct human interferences, a 

watershed could shift over time from points A at period-1 (Ep1/P1) to B at period-2 (Ep2/P2) in 
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Figure 2-1. However, based on the Budyko hypothesis, the watershed should evolve from A to C 

along the Budyko curve that represents the impact of climate change only. Given same climatic 

conditions between B and C but without impacts of human activities at C, the precipitation, 

evaporation, dryness and evaporation indices of C are also P2, E’2, Ep2/P2 and E’2/P2, 

respectively. Thus, the horizontal shift from Ep1/P1 to Ep2/P2 is due to the climate change, while 

the vertical shift from E1/P1 to E2/P2 is due to both climate change and direct human impacts. So 

the vertical shift can be decomposed to climate change effects from E1/P1 to E’2/P2 and direct 

human activity effects from E’2/P2 to E2/P2. This method first calibrates the Budyko curve to 

each watershed with data of period-1 to obtain n without the effect of human activities, and then 

the evaporation ratio of period-2 due to climate change only is E’2/P2, where the observed 

dryness index is Ep2/P2. Thus, the streamflow change caused by direct human impacts is 

ΔR
H
=ΔP – ΔE = P2(E’2/P2 – E2/P2) while that by climate change is ΔR

C
=ΔR – ΔR

H
 = P2(1–

E’2/P2) – R1. 
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Chapter 3 Non-stationary analysis of the frequency and intensity of heavy precipitation 

over Canada and their relations to large-scale climate patterns 

3.1 Introduction 

In recent decades, Canada has experienced extreme flood events such as the Saint John 

River flood in 2008 (Newton and Burrell 2015), the Red River Flood in 2009 (Wazney and Clark 

2015) and 2011 (Blais et al. 2015), the South Saskatchewan and Elk River flood in 2013 

(Pomeroy et al. 2015), the Assiniboine River flood in 2011 (Blais et al. 2015) and 2014 (Ahmari 

et al. 2015), the Richelieu River flood in 2011 (Saad et al. 2015), the southern Alberta flood in 

2013 (Milrad et al. 2015), and the Southeastern Canadian Prairies (CP, which consists of Alberta, 

Saskatchewan and Manitoba) flood in 2014 (Szeto et al. 2015). These extreme flood events have 

caused substantial damage to Canada, such as damage to infrastructure, financial losses, and 

even loss of human life. For instance, the total damage of the June, 2013 flood of southern 

Alberta is estimated at $5–6 billion, making it the costliest natural disaster in Canadian history 

(Environment Canada 2014; Government of Alberta 2014).  

For large river basins of Canada, floods are often associated with spring snowmelt, rain-on-

snow, or long-duration heavy precipitation with large areal coverage, even though the 

significance of heavy rainstorms and snowstorms that resulted in floods varies across the country 

(Buttle et al. 2016). Because Canada is seasonally covered with snow, floods related to spring 

snowmelt or rain-on-snow events are common in Canada. In southern Canada, convective and 

frontal systems can give rise to long-duration heavy, summer rainfall events that trigger floods in 

large river basins, or intensive, short-duration storms which can also trigger floods in small to 

medium river basins.  

Changes to Canadian extreme and heavy precipitation under the global warming impact 

can increase the risk of flooding. Climate warming due to increasing atmospheric greenhouse 

gasses can intensify the hydrologic cycle (Seager et al. 2012).  For example, according to the 

Clausius-Clapeyron equation, the water-holding capacity of the atmosphere increases at about 

7% per K temperature rise, and so warming will increase atmospheric moisture, and so severe 

storms become more intensive (Allan and Soden 2008). The potential cost associated with heavy 

precipitation (rainfall and snowfall) for Canadian society motivates us to assess whether the 
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frequency and intensity of extreme or heavy precipitation have changed over Canada. Therefore 

in this study, our specific objective is to detect possible changes in extreme and heavy 

precipitation over Canada: 1) temporal non-stationarities (abrupt and slowly varying changes); 2) 

Frequency analyses and upper tail properties of annual maximum daily precipitation (AMP); 3) 

Occurrences of heavy precipitation temporal clusters; and 4) Relationships between Canadian 

extreme and heavy precipitation and some large-scale climate patterns.  

For Canada, previous studies detected overall increasing trends in the annual total 

precipitation in the twentieth century mostly because of the increase in small to moderate 

precipitation events (Mekis and Vincent 2011; Vincent and Mekis 2006; Zhang et al. 2001a; 

Zhang et al. 2000), while winter total snowfall has mainly increased in the north but decreased in 

southwestern Canada since 1950 (Mekis and Vincent 2011; Vincent and Mekis 2006). In 

contrast, results of past studies on the trend analysis of heavy or extreme precipitation over 

Canada are inconsistent in the twentieth century possibly because of different datasets or 

methods used. Some studies found no statistically significant trend (Kunkel 2003; Kunkel and 

Andsager 1999; Vincent and Mekis 2006; Zhang et al. 2001a), while others detected statistically 

significant increasing trends (Alexander et al. 2006; Burn and Taleghani 2013; Peterson et al. 

2008) in either the frequency or intensity of extreme precipitation. Some regional climate 

modeling studies projected more intensive and frequent daily and multi-day precipitation events 

in a warmer future climate for most Canadian regions (Kuo et al. 2015; Mailhot et al. 2010; 

Mladjic et al. 2011). 

Extreme events are usually defined by the block maxima, peaks-over-threshold (POT) or 

point processes (Coles 2001; Khaliq et al. 2006). Compared to the block maxima approach that 

models extreme events using a generalized extreme value (GEV) distribution, the POT approach 

fits all events exceeding a specified threshold to a generalized Pareto (GP) distribution and the 

occurrence of an exceedance to a Poisson process. By accepting hydroclimatic processes as 

inherently probabilistic, a changing climate can be modeled using a non-stationary probability 

distribution. To avoid possible confusion about definitions regarding extremes, samples of 

maximum events for the block maxima method will be referred to as extreme events while events 

for the POT approach as heavy events.  

Temporal clustering of events contributes to the non-stationarity of a time series (Franzke 

2013; Mailier et al. 2006; Mallakpour and Villarini 2015; Pinto et al. 2013; Tramblay et al. 2013; 
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Villarini et al. 2013; Villarini et al. 2011), which is often overlooked in hydroclimatic frequency 

analysis. If heavy events are stationary, the number of occurrences of such events follows a 

homogeneous Poisson distribution. However, large-scale weather patterns or other factors can 

affect storm tracks responsible for the occurrence of heavy events in clusters, making the 

homogeneous assumption invalid.  

As the probability of occurrences of climate extremes can be strongly affected by large-

scale climate patterns, considerable progress has been made in deriving possible relationships 

between such climate patterns and extreme climate variables by modeling the latter with non-

stationary GEV and GP distributions using climate indices as time-varying covariates (Kenyon 

and Hegerl 2008). Zhang et al. (2010) fitted winter daily maximum precipitation over North 

America (NA) to a GEV distribution, using climate indices such as El Niño Southern Oscillation 

(ENSO), Pacific decadal oscillation (PDO), and North Atlantic Oscillation (NAO) as covariates 

for the location and/or scale parameters of the GEV distribution. They found that ENSO and 

PDO have spatially consistent and statistically significant influences on NA extreme winter 

precipitation. Sillmann et al. (2011) fitted the monthly minima of European winter 6-hourly 

minimum temperature to a GEV distribution with an indicator for atmospheric blocking 

conditions as a covariate to the location and scale parameters of the GEV distribution and 

detected the cooling effect of atmospheric blocking.  Min et al. (2013) conducted a non-

stationary GEV analysis of seasonal temperature and precipitation extremes over Australia, by 

specifying GEV parameters as linear functions of large-scale climate patterns such as ENSO, 

Indian Ocean Dipole, and Southern Annular Mode. Maraun et al. (2010) developed a generalized 

linear model to relate the influence of atmospheric circulations on extreme daily precipitation 

across the UK, by incorporating synoptic scale airflow strength, direction and vorticity to the 

location and scale parameters of the GEV distribution. Instead of modeling winter precipitation 

of multiple sites in California to a GEV model separately, Shang et al. (2011) jointly modeled the 

winter maximum daily precipitation of 192 sites of California with spatial, max-stable process 

models by incorporating the Southern Oscillation Index (SOI) as a co-variate to the marginal 

GEV distributions of this spatial model. All these are examples on modeling recent changes in 

the frequency and intensity of extreme climate and weather events using non-stationary 

distributions. Given that no study has been conducted to model possible changes to all of 

Canadian extreme and heavy precipitation using non-stationary probability distributions, several 
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non-stationary approaches were used to characterize the changing frequency and intensity of 

extreme and heavy precipitation over Canada and the possible influence of large-scale climate 

patterns on Canadian extreme and heavy precipitation. 

The remainder of this chapter is organized as follows: data description is given in Section 

3.2, methods applied to detect nonstationarities of Canadian heavy precipitation are given in 

Section 3.2.3, discussion of results in section 3.4, and summary and conclusions in Section 3.5. 

3.2 Data and methods 

3.2.1 Precipitation 

The daily precipitation measurements, including total precipitation, rainfall and snowfall 

data used in this study were obtained from the second generation, adjusted historical Canadian 

climate data (AHCCD) database, which contains 463 stations (Figure 3-1) of precipitation 

observations statistically adjusted for known measurement issues such as wind undercatch, 

evaporation and wetting loss for each type of rain-gauge, snow water equivalent from ruler 

measurements, trace observations and accumulated amounts from several days. More detailed 

information on this datasets is given in (Mekis and Vincent 2011). Because station closures and 

relocation were ongoing issues, observations from some nearby stations (a total of 12.3% of all 

stations) after 1990 were occasionally combined to create long-term precipitation time series for 

climate change studies.  

 
Figure 3-1 Location of the 463 Canadian precipitation stations used in this study, together with the threshold 

values used for the POT analyzes.  
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AHCCD is the most homogeneous long-term measured data currently available for 

Canadian daily precipitation. The length of the measured daily precipitation ranges 27 to 172 

years, with an average of 84 years. The year that precipitation measurements began at stations of 

northern Canada is much later than southern Canada, so stations with short precipitation 

measurements are usually located in northern Canada. Because our objective is to investigate 

extreme and heavy precipitation changes over the whole country, all the second generation 

precipitation data from AHCCD were included for this study. To check the uncertainties of non-

stationary analysis because of the inconsistent length of time series, we also analyzed data within 

four periods with the same non-stationary analysis. These four periods are: (1) 1900-2010 (111 

years for 41 stations), (2) 1930-2010 (81 years for 140 stations), (3) 1950-2010 (61 years for 201 

stations) and (4) 1970-2010 (41 years for 223 stations). However, we report results by analyzing 

all available data and stations, unless otherwise specified.  

Since we have no knowledge of the weather condition in days without precipitation 

records, precipitation of these days was first replaced with 0. The annual maximum daily 

precipitation (AMP) was extracted from the daily time series for each station. The missing AMPs 

(less than 3% of all the years of data for each station) were replaced with the mean value of that 

AMP time series excluding missing values. To extract heavy precipitation, Groisman et al. 

(1999) used a threshold of 25.4 mm (1 inch) in Canada, but Mekis and Hogg (1999) considered 

the largest 10% of daily precipitation events as heavy precipitation events to account for 

substantial variations in heavy precipitation across Canada, since the mean intensity of extreme 

events decreases rapidly in latitudes above 50°N. For every season of each station over Canada, 

Zhang et al. (2001a) defined the heavy precipitation by a threshold that is exceeded on an 

average three events per year.  

For the POT analysis of this study, the 95
th

 percentile of nonzero daily precipitation based 

on the precipitation empirical probability distribution is chosen as the threshold to define heavy 

precipitation of Canada, which was also used by Villarini et al. (2013) for distribution changes of 

heavy rainfall over the central United States. Across Canada, the magnitude of the 95
th

 percentile 

of nonzero daily precipitation decreases from south to north with relatively high values in 

southwestern and eastern coastal regions (Figure 3-1). Using the 95
th

 percentile criterion, 

threshold values chosen for Canada range from 2 to 70 mm. Based on the threshold value for 
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each station, the number (counts) of heavy precipitation in each year and the amount each heavy 

precipitation exceeded the threshold is noted.  

From the spatial distribution of AMP that had occurred in each month over Canada (Figure 

S1 in Tan and Gan 2016), it is clear that for the CP and northwestern Canada, AMP mainly 

occurred either during summer or early autumn (from June to September), more in mid-winter 

(January) for eastern and northern Canada (above 60°N), but almost year round in localized, 

southwestern and southeastern coastal areas (Figure S1 in Tan and Gan 2016). Thus, seasonal 

distributions of AMP are unimodal in southwestern Canada during summers but bimodal in 

northern and southeastern Canada with peaks during both summers and winters. However, heavy 

precipitation of Canada as defined above were more evenly distributed yearly than AMP, even 

though heavy precipitation events tend to occur more frequently during summer and early 

Autumn, and relatively infrequently during winters (Figure S2 in Tan and Gan 2016). 

3.2.2 Large-scale climate anomalies 

We selected five large-scale climate indices that have been linked to precipitation 

variability over Canada (Gan et al. 2007; Shabbar et al. 1997) or over NA (Ropelewski and 

Halpert 1986; Zhang et al. 2010). These five climate indices are SOI (Ropelewski and Jones 

1987), NINO3 (Rayner et al. 2003) which is a time series of equatorial Pacific (Niño 3 region) 

sea surface temperature (SST) anomalies, NAO (Hurrell and Loon 1997), PDO (Mantua et al. 

1997), and North Pacific (NP) (Trenberth and Hurrell 1994) Index which is the area-weighted 

sea level pressure anomalies over 30˚N-65˚N, 160˚E-140˚W. SOI and NINO3 represent the 

ENSO phenomenon. Because many high-frequent and small-scale phenomena in the atmosphere 

can influence the pressures at stations (Darwin and Tahiti) involved in forming the SOI but do 

not reflect the ENSO itself, we also use NINO3, which is more robust to identify El Niño and La 

Niña events (Trenberth 1997), to represent ENSO. Monthly time series of SOI, NINO3, NAO, 

PDO and NP were downloaded from the Global Climate Observing System Working Group on 

Surface Pressure website (www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/). Time series of yearly 

values were derived from averaging monthly values over the entire year. We also used National 

Centers for Environmental Prediction/National Centre for Atmospheric Research Reanalysis 1 

dataset (Kalnay et al. 1996) to estimate daily circulation patterns concerning geopotential 

heights, wind field and vertically integrated precipitable water content (PWC).  

http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/
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3.2.3 Research methodology 

The non-stationary frequency analysis of extreme or heavy events was conducted using the 

non-stationary block maxima and POT approaches (Coles 2001). Block maxima of extreme 

precipitation events were fitted with both stationary and non-stationary GEV distributions 

(Appendix I). The number of heavy precipitation events was fitted with a non-stationary Poisson 

distribution (Appendix II), and exceedances of precipitation events over a threshold defined as 

the 95
th

 percentile of non-zero precipitation were fitted to a non-stationary GP distribution 

(Appendix III) with time-varying parameters. Trends of the intensity of extreme precipitation 

were analyzed using time as a covariate to the parameters of GEV and GP distributions. Because 

most heavy precipitation of Canada shows an over-dispersion behavior (see Figure 3-2 and 

Section 3.3.2), trends and change points to the number of occurrences of heavy precipitation 

events were modeled by a Poisson regression and a segmented regression models (Muggeo 2003; 

Appendix II), respectively. We used annual time series of five climate indices, namely, SOI, 

NINO3, NAO, PDO and NP, as covariates of parameters of non-stationary GEV, Poisson and GP 

distributions to examine the influence of large-scale climate patterns on extreme and heavy 

precipitation over Canada. The likelihood-ratio test (Coles 2001; Appendix IV) was applied to 

test the significance of the relationship between parameters of distributions and covariates. 

We used composite methods to assess the impact of extreme phases of ENSO, PDO, NAO 

and NP on Canadian heavy precipitation. Represented by the geopotential height, wind field and 

PWC, composite circulation patterns associated with the 10 largest and 10 smallest values for 

each climate index during 1948-2010 were computed for the summer (somewhere between May 

and August) and winter (between October and February) when heavy precipitations are more 

likely to occur (Figure S2 in Tan and Gan 2016). A systematic comparison of the composite 

analysis of synoptic circulation patterns that gave rise to heavy precipitation was conducted for 

different regions by dividing Canada into western, central and eastern Canada (Figure 3-1), 

respectively. From the 35
th

 to 65
th

 percentile (30% interval) of the empirical cumulative 

distribution for Julian days on which heavy precipitation most likely occurred in the summer or 

winter of each region, we extracted large-scale anomalies (with respect to the long-term mean of 

1948-2010) of geopotential heights, wind field, and PWC for this 30% interval selected for each 

composite year. Composite anomalies are the mean of climate anomalies in years with extremely 

high and low climate indices, respectively. 



59 

 

 
Figure 3-2 Maps with the mean (a), mm day

-1
; variance (b), mm day

-1
; and dispersion coefficient (c) of the 

number of days exceeding corresponding 95
th

 percentile daily precipitation. The dispersion coefficient is 

defined as the ratio of variance to mean. 

 
Figure 3-3 Maps of location (a), scale (b) and shape (c) parameters of the GEV distribution for AMP time 

series derived from the stationary analysis. 

 

 
Figure 3-4 Maps of AMP with the (a and d) 2-, (b and e) 20- and (c and f) 100-year return period derived 

from the stationary GEV (a-c) and GP (d-f) modeling. Spatial interpolation is performed by a simple Kriging 

method. 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 

(d) (e) (f) 
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Figure 3-5 Maps showing the sign of difference (    0.95 0.95P p P p    ) in precipitation return 

levels of 20 year return period conditional on positive (  0.95P p  ) and negative (  0.95P p  ) phases 

of covariates, i.e., the time and the five selected climate indices, for the GEV models of Canadian AMP with 

time-varying location and scale parameters ( x   and  log x  , x is a covariate). The red and 

magenta dots represent the higher AMP values in years with high values of a particular covariate (

   0.95 0.95P p P p    ) while the blue and green dots show the lower AMP values in years with high 

values of a particular covariate (    0.95 0.95P p P p    ). Blue and red dots indicate stations whose 

GEV modeling of AMP is significantly improved by implementing the covariates at the 5% level. 

3.3 Discussion of results 

3.3.1 Extreme value distribution of Canadian precipitation 

The Kolmogorov-Smirnov and Anderson-Darling tests were used to assess the goodness-

of-fit of stationary GEV distributions applied to AMP series. Results of these two tests confirm 

the null hypothesis at 5% significance level that AMP time series are sampled from stationary 

GEV distributions for all stations, thus justifying the assumption that AMP time series can be 

modeled using GEV distributions. The spatial distribution of stationary GEV parameters is 

shown in Figure 3-3, and the spatial distribution of extreme precipitation of various return 

periods derived from these GEV distributions is shown in Figures 3-4a-c. Overall, the location 

and scale parameters increase from north to south and from inland to coastal regions of Canada, 

with highest location and scale parameters located in southwestern and southeastern coastal 

regions of Canada. However, there is no clear spatial pattern for the shape parameters. Most 

a. Time (year) b. SOI 
c. 

NINO3 

f. 

NP 

c. NINO3 

f. NP d. NAO e. PDO 
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stations have a non-zero shape parameter, which implies that most Canadian AMP series can be 

modeled by GEV Type II or Type III (Appendix I) distributions with heavy tail behavior. 

 

 
Figure 3-6 The spatial distributions of differences in precipitation return levels of 20-year return period 

predicted by GEV distributions based on parameters estimated from the maximum and the minimum 

historical values of a given covariate. The respective covariate used was year for (a), SOI for (b), Nino3 for 

(c), NAO for (d), PDO for (e), and NP for (f). The red (blue) grids means that the difference in AMP 

estimated from the GEV derived from the maximum covariate values are higher (lower) than that derived 

from the minimum historical values of the covariate, and the gridded, difference in AMP values were 

interpolated from station AMP values by a simple Kriging method. The difference in AMP estimated from 

GEV distributions based on the maximum versus the minimum covariates such as El Niño or La Niña can 

exceed 20 mm.  

Figure 3-5 shows stations at which the fitted GEV distribution is significantly improved 

statistically by incorporating climate indices as covariates for both location and scale parameters, 

and Table 3-1 lists the number of these stations. Figure 3-5 also shows the spatial distribution of 

signs (+ or -) of differences between AMPs of 20-year return period estimated from GEV 

distributions conditioned on positive and negative phases of selected climate patterns, while 

Figure 3-6 shows the spatial distributions of actual differences between AMPs of 20-year return 

period estimated from GEV distributions conditioned on the mean of five largest positive and the 

mean of five largest negative phases of a given climate pattern. By modeling AMP using non-

stationary GEV distributions with parameters based on time as the covariate, e.g., the first and 

the last 5-year of the study period for each station, which for the 1930-2010 period refers to 

1930-1934 and 2006-2010, respectively.  We have also shown the difference in AMP estimated 

between the last and the first 5-year of the study period for each station. Figures 3-5 and 3-6 

show that the influence of large-scale climate patterns on the spatial variations of Canadian AMP 

a. Time (year) b. SOI c. NINO3 

d. NAO e. PDO f. NP 
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differs between the climate patterns, while Figures 3-5a and 3-6a show temporal changes in 

AMP over the study period of each station. Even though there are minor differences between 

results derived from different periods, the overall significance of the relationships (Table 3-1, 

Figure 3-5, and Figures S4 and S6 in Tan and Gan 2016) and their spatial distributions (Figure 3-

6, and Figures S5 and S7 in Tan and Gan 2016) are consistent.  

Table 3-1 Percentages (%) of stations where incorporating each covariate showed statistically significant 

improvement in the extreme precipitation modeling, compared to the stationary extreme precipitation 

modeling. 

Period Distribution Parameter Time SOI NINO3 NAO PDO NP 

All 

data 

GEV Location 29.4 10.6 11.5 14.7 11.7 14.3 

GEV Location + Scale 33.9 15.8 16.4 19.7 16.2 13.6 

Poisson Rate of Occurrences 66.5 21.8 21.0 22.5 30.9 17.7 

 GP Scale 22.3 10.8 34.3 11.5 10.8 35.0 

1900-

2010 

GEV Location 34.1 12.2 14.8 19.5 9.8 16.8 

GEV Location + Scale 31.7 19.8 17.1 22.0 14.6 19.8 

Poisson Rate of Occurrences 78.5 22.2 19.8 31.7 22.0 21.0 

GP Scale 19.5 19.5 35.9 12.4 14.6 39.2 

1930-

2010 

GEV Location 19.3 15.0 15.0 17.9 10.0 13.4 

GEV Location + Scale 22.2 14.1 17.1 23.6 13.6 17.9 

Poisson Rate of Occurrences 67.8 17.9 22.9 22.9 24.3 27.1 

GP Scale 16.4 14.3 44.3 10.7 12.1 32.9 

1950-

2010 

GEV Location 27.9 11.9 12.9 15.9 12.9 13.4 

GEV Location + Scale 23.4 15.9 17.4 18.4 11.9 10.0 

Poisson Rate of Occurrences 45.0 20.4 19.4 30.8 35.3 35.3 

GP Scale 14.4 11.9 34.8 11.4 12.9 29.9 

1970-

2010 

GEV Location 17.9 15.7 16.1 14.3 10.8 13.9 

GEV Location + Scale 43.8 15.7 20.2 17.1 12.1 12.6 

Poisson Rate of Occurrences 55.1 17.1 17.1 26.5 20.2 21.5 

GP Scale 15.2 13.9 33.6 11.2 13.9 24.2 

 

Approximately 29.3% of the AMP time series fitted to GEV distributions show 

significantly better fit to GEV distributions if the time was used as a covariate for the location 

parameter of GEV distributions. The proportion of AMP time series that fitted well to GEV 

distributions increased to about 33.9% when the time was used as a covariate for both location 

and scale parameters for GEV distributions. Apparently, about 1/3 of AMP time series shows 

non-stationary characteristics. Stations that show significant increase in AMP of 20-year return 

period are mainly located in southwestern Canada, northern CP and Quebec (QC), 
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Newfoundland (NL), and southwestern ON, while stations in southern CP, southeastern ON and 

Arctic region show significant decrease in AMPs of 20-year return period (Figures 3-5a and 3-

6a). (Shook and Pomeroy 2012) also found that the single-day summer rainfalls had decreased at 

many locations in Southern CP over 1901–2000 and 1951–2000.   

The effects of ENSO represented by SOI and NINO3 on AMP time series are shown in 

Figures. 3-5b-c and 3-6b-c where SOI and NINO3 were covariates for the location and scale 

parameters of GEV distributions fitted to Canadian AMP. Although only about 10.6 and 11.5% 

(Table 3-1) of the GEV distributions fitted to AMP time series show significant improvement 

when SOI and NINO3 were used as covariates for the location parameter, respectively, 

according to results obtained from the Walker’s test and the false discovery rate (FDR) approach 

(Wilks 2006), the improvement is considered as field-significant across Canada. However, when 

SOI and NINO3 were incorporated as covariates to both the location and scale parameters of 

GEV distributions fitted to AMP time series, about 15.8 and 16.4% of the GEV distributions 

show significant improvement, respectively, and so their improvements are also considered to be 

field-significant.  

In Figure 3-6c, areas colored pink (light green) are areas where a high NINO3 index means 

a wetter (drier) climate than a low NINO3 index, and vice versa. Therefore, a high NINO3 index 

(when El Niño is active) means that Canada will tend to be dry. In contrast, when NINO3 is low 

(which means when La Niña is active), Canada tends to be wet. As expected, Figure 3-6b shows 

a more or less opposite pattern to Figure 3-6c because when the SOI index is positive (negative), 

La Niña (El Niño) is active. However, there are minor differences in AMPs of 20-year return 

period estimated from GEV distributions using either SOI or NINO3 as covariates to represent 

the effect of ENSO on the Canadian AMP (Figures 3-5b-c and 3-6b-c). The influence of ENSO 

on the Canadian AMP represented shows more spatially consistent effect if SOI instead of 

NINO3 is used as the ENSO index. 

The AMP of southwestern coastal areas, southern CP and the Great Lakes regions (light 

green area in Figure 3-6b for SOI and the pink area in Figure 3-6c for NINO3) tended to be 

higher in El Niño years than in La Niña years. Our results that AMP in the Great Lakes region 

during El Niño years tends to be high are consistent with that of Zhang et al. (2010) who found 

that extreme winter precipitation tends to be high during El Niño years. Because AMP in the 
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Great Lakes region can occur either in summer or winter, it seems the effects of ENSO on the 

extreme winter and summer precipitation of the Great Lakes region are similar to each other. 

The AMP in central CP tends to be lower in El Niño than in La Niña years, which was in 

agreement with the higher winter total precipitation in La Niña than in El Niño years found by 

Shabbar et al. (1997) and Gan et al. (2007) for the southwestern Canada, including the CP. 

However, Zhang et al. (2010) found high extreme winter precipitation associated with El Niño 

for the central CP. Most northern Canada experienced inconsistent changes to AMP in El Niño 

than in La Niña years (Figures 3-5b-c), which is different from the results of Zhang et al. (2010) 

who found that extreme winter precipitation in El Niño years was usually higher than that in the 

La Niña years. Differences between their results and ours are believed to be partly due to the 

much smaller number of stations used by Zhang et al. (2010) for representing northern Canada, 

and for comparing maximum winter precipitation instead of AMP since AMP can occur either in 

winter or summer in northern Canada.  

Compared to fitting AMP data to stationary GEV distributions (Table 3-1), more AMP 

time series show significantly better fit to GEV distributions if NAO was used as a covariate for 

the location parameter (14.7%) or both the location and shape parameters (19.7%) of GEV 

distributions. Such a level of improvements is field-significant which demonstrates the influence 

of NAO on some of the AMP of Canada. The spatial patterns of NAO effects are similar to those 

of ENSO. High AMP in BC (except its southwestern coastal region), central CP and eastern ON 

is related to the warm phase of NAO, in contrast to low AMP in most northern Canada, northern 

CP and western ON also during the warm phase of NAO (Figures 3-5d and 3-6d). However, 

based on composite analysis and GEV modeling, Zhang et al. (2010) suggested no field-

significant influence of NAO on the NA extreme winter precipitation. Bonsal and Shabbar 

(2008) also found the effect of NAO on the Canadian total precipitation to be modest and 

restricted to northeastern regions where the warm phase of NAO is related to negative winter 

precipitation anomalies. Again, since AMP of Canada tends to occur in the summer, the 

influence of NAO on the AMP of Canada is not expected to be similar to its influence on the 

winter precipitation. For example, Coulibaly and Burn (2005) and Coulibaly (2006) found 

significant differences in the relationships between NAO and spring, summer or autumn 

precipitation and streamflow of Canada. 
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The effect of PDO on Canadian AMP is also field-significant, as 11.6% (16.1%) of AMP 

series fitted to GEV distributions are significantly improved if PDO is used as a covariate for the 

location (both location and scale) parameters of GEV distributions. In northwest Canada (the 

light green region in Figure 3-6e), AMP tends to be high during the cold phase of PDO, but low 

during the warm phase of PDO. This agrees with the effects of PDO on the streamflow of 

northwest Canada found by (St. Jacques et al. 2010; St. Jacques et al. 2014). In contrast, the 

warm phase of PDO results in high AMP in ON, QC and western BC (pink region), but exerts 

both increasing and decreasing effects on the AMP of CP. Again, the relations between Canadian 

AMP and PDO are different from the relations between winter extreme precipitation and PDO, 

since Zhang et al. (2010) found that extreme winter precipitation of the CP and the Great Lakes 

tends to be lower during the cold phase than the warm phase of PDO. It is needed to further 

explore variations in seasonal relationships between extreme precipitation such as AMP and 

large-scale climate patterns.  

NP seems to have more influence marginally on the location than both the location and 

scale parameters of GEV, for the percentage of stations that shows better fit to GEV distributions 

is 14.3% if NP was only used to estimate the location parameter, compared to 13.6% of stations 

showing better fit to GEV if NP was used to estimate both location and scale parameters. In 

contrast to the effect of PDO, the warm phase of NP primarily resulted in high AMP in Canada 

except in some local areas of CP and ON. 

3.3.2 Modeling heavy precipitation clusters with Poisson regression 

Occurrences of heavy precipitation (larger than the 95
th

 percentile) presented in terms of 

the mean, variance and coefficient of dispersion (ratio between the variance and the mean) show 

a well-organized spatial pattern (Figure 3-2), similar to that shown in Figures 3-3 and 3-4. These 

three statistics decrease from north to south except in the southwestern coastal region where 

these values are very large. The CP has the lowest mean, variance and coefficient of dispersion, 

with a mean lower than 5 days, a variance lower than 3 days, and a coefficient of dispersion 

lower than 2.0, while northern Canada has the highest variance (> 4.0 days) and the coefficient 

of dispersion (> 2.5). For the mean counts of heavy precipitation, the spatial pattern in Northern 

Canada is less consistent since stations show a mix of high and low mean count values. 80.3% 

stations have a coefficient of dispersion statistically significantly greater than 1, except for some 

stations in the CP and the southern border of Canada. These over-dispersion characteristics 
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indicate that Canadian heavy precipitation exhibits temporal clustering or non-stationary 

behavior. 

 

Figure 3-7 Results of the fitting of the counts of heavy precipitation with a Poisson regression model with rate 

of occurrence that depends linearly on time (via a logarithmic link function) without (a) and with (b) a change 

point detected using the segmented regression. All change points and trends showing with green circles, red 

and blue triangles or diamonds are statistically significant at the 5% significance level. The year when 

statistically significant change point occurred is numbered next to the station. 

 
Figure 3-8 Map showing the stations for which the five selected climate indices are covariates in the Poisson 

regression model. The red and magenta (blue and green) dots represent the positive (negative) relations 

between the rate of heavy precipitation occurrence and particular climate indices. Blue and red dots indicate 

stations whose Poisson regression modeling of the rate of heavy precipitation occurrence is significantly 

improved by implementing the covariates at the 5% level. 

(a) Trend without considering change point (b) Trend before and after change point 

a. SOI b. NINO3 c. NAO 

d. PDO e. NP 
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Out of 463 stations (Figure 3-7b), only 32 stations show statistically significant change 

points in the occurrences of heavy precipitation. However, for these 32 stations, only 12 (1) 

stations show increasing (decreasing) trends before the change point and 2 (2) stations showed 

increasing (decreasing) trends after the change point occurred, while the remaining 18 stations 

show no trends either before or after the change point. The years the change point occurred are 

not spatially consistent. Given that change points were only detected in about 7% of stations (less 

than 9% of stations for the four periods studied), other than in southwestern Canada, abrupt 

changes to occurrences of heavy precipitation events in Canada are not field-significant. 

In contrast, slowly varying trends in the occurrence of heavy precipitation events are field-

significant across Canada as both the Walker’s test and FDR approach rejected the joint, 

multiple-site null hypothesis ( 1 0  ) to be statistically significant. In the Poisson regression 

analysis, for stations without detected change points, statistically significant decreasing trends 

dominate over increasing trends (45.5% vs. 21.0%), with trend magnitudes, 1  (years) ranging 

from -0.062 to 0.021. Most stations showing increasing trends are located in the southwestern, 

east coast, northern Arctic and northeastern CP, while decreasing trends are widespread in the 

CP, eastern and northern Canada (Figure 3-7a). Results obtained from all the four-period 

analysis consistently demonstrated changing characteristics of the frequency of heavy 

precipitation over Canada.  However, considerably fewer stations with short data record over 

1970-2010 (55.1%) and 1950-2010 (45.0%) were identified with significant trends than those 

with long data record over 1930-2010 (67.8%) and 1900-2010 (78.5%) (Table 3-1). By 

averaging counts of heavy events across Canada, e.g., no consideration of the spatial variability 

of occurrences of heavy events, Zhang et al. (2001a) found no monotonically increasing or 

decreasing trends in the annual counts of heavy precipitation events. However, they detected 

interdecadal variability in the heavy precipitation events of Canada. 

Spatial distributions of positive/negative relationships between occurrences of heavy 

precipitation and climate indices are shown in Figure 3-8. The influence of ENSO on 

occurrences of heavy precipitation (> 95 percentile) is more significant than on the AMP time 

series because the number of stations (21.8% for SOI and 21.0% for NINO3, respectively; Table 

3-1) with heavy precipitation significantly related to ENSO was almost 2 times of that of AMP.  

However, positive or negative influences of El Niño and La Niña on the occurrences of heavy 

precipitation are spatially consistent to that on AMP. For example, CP experiences more heavy 



68 

 

precipitation in La Niña years than in El Niño years. Spatially, PDO exerts similar but more 

significant positive or negative influences on occurrences of heavy precipitation than on AMP. 

NAO and NP also exert similar influences on occurrences of heavy precipitation and AMP 

across Canada. 

3.3.3 GP distribution 

As a comparison, spatially distributed precipitation return levels of corresponding return 

periods were also calculated using a stationary GP model (Figure 3-4d-f). Spatially, precipitation 

return levels increase in the north-south direction, and as expected, peaked in the southwestern 

and southeastern coastal regions of Canada, which is consistent with the location and scale 

parameters of GEV as shown in Figure 3-3. Differences between precipitation return levels of 2-, 

20- and 100-year return periods derived from GEV versus GP distributions are minor across 

Canada, except in the southwestern and eastern coastal areas, where GEV distributions estimate 

smaller extreme precipitation of the 2-, 20- and 100-year return period than GP distributions. For 

the above three return periods, overall GEV estimates precipitation return levels that are smaller 

than that of GP by about 8.0%, 1.4% and 3.7%, respectively. 

Figure S3 in Tan and Gan (2016) shows the spatial distribution of signs (+ or -) of 

differences between precipitation return levels of 20-year return period estimated from GP 

distributions conditioned on positive and negative phases of selected climate indices used as 

covariates for scale parameters of GP distributions. The spatial relationships between AMP and 

covariates such as the time, SOI, NAO and PDO derived from GP distributions are similar to that 

derived from GEV distributions (Figure 3-5).  However, the scale parameter of GP distributions 

of many stations or the magnitude of AMP is significantly correlated with NINO3 and NP 

indices, which is different from that derived from GEV distributions. Because a fixed threshold 

was used in GP distributions, only the scale parameter of GP varies with time-varying covariates 

(climate indices). However, under the impact of a changing climate, the threshold value of GP 

can change more significantly than its scale parameter (Kyselý et al. 2010; Sugahara et al. 2009). 

This is the reason that the GP distributions with only its scale parameter to be time-varying tends 

to estimate lower precipitation return levels of 20-year return period for some stations during the 

warm phase of NP than GEV distributions with both time-varying location and scale parameters. 

Further studies should be conducted to examine the threshold of GP distributions related to time-

varying climate indices. The high proportion of stations showing statistically significant 
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correlation between the GP scale parameter and time-varying climate indices is strong evidence 

that extreme Canadian daily precipitation is non-stationary. 

3.3.4 Composite circulation patterns 

Because composite winter circulation anomaly patterns associated with heavy precipitation 

for western and eastern Canada are similar and have similar composite days (Julian days 309-

335), only the winter patterns for western Canada are shown in Figure 3-9. Composite analysis 

has advantage over the non-stationary extreme value analysis because the former separately 

investigates the influence of large-scale climate patterns on extreme summer and winter 

precipitation of Canada, while the latter is based on annual climate indices in which seasonal 

differences of large-scale climate patterns have been averaged out, which could decrease the 

statistical significance of extreme precipitation response to such climate patterns. 

For total winter precipitation, Shabbar et al. (1997) found that strong El Niño episodes tend 

to associate with a deepened Aleutian low and an amplified western Canadian ridge which 

enhanced anticyclones and caused a northward shift of the mid-latitude jet stream, resulting in a 

drier southern Canada. On the other hand, La Niña winters are usually associated with an 

enhanced westerly flow, giving rise to more moisture in southern Canada. Wetter (drier) 

southern Canada in La Niña (El Niño) winters is also consistent with the positive (negative) 

PWC anomalies associated with La Niña (El Niño) (Figures 3-9a-b). However, in central 

Canada, positive PWC anomalies are also associated with El Niño (Figures 3-S8a-b in Tan and 

Gan 2016), and synoptic circulation patterns associated with heavy precipitation are likely more 

complicated than patterns associated with total winter precipitation found by Shabbar et al. 

(1997) because heavy precipitation involves higher spatiotemporal variabilities than total winter 

precipitation.  
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Figure 3-9 Composite winter 500-hPa geopotential height (m; contour with numbers), 500-hPa wind field (m 

s
-1

; vectors) and vertically integrated precipitable-water-content (mm day
-1

; shaded) anomaly patterns for 

western Canada in winter days (Julian days 309-335) on which heavy precipitation most likely occurred, 

associated with (a) extreme El Niño (high NINO3), (b) extreme La Niña (low NINO3), (c) high PDO, (d) low 

PDO, (e) high NAO, (f) low NAO, (g) high NP and (h) low NP. 
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Figure 3-10 Same as Figure 3-9, but for western Canada in summer days (Julian days 184-227) on which 

heavy precipitation most likely occurred. 
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In western Canada, heavy precipitation that occur during El Niño winters tend to be 

relatively moderate because the lower branch of Pacific jet streams described by Shabbar et al. 

(1997) and Higgins et al. (2002) shifts north, thus missing western Canada (Figure 3-9a), which 

is similar to circulation patterns giving rise to negative total winter precipitation anomaly in 

western Canada (Gan et al. 2007; Jiang et al. 2014; Shabbar et al. 1997). During La Niña winters, 

the subtropical Pacific jet stream Higgins et al. (2002) shift north, from southwestern (Figure 3-

9a) to the northwestern (Figure 3-9b) United States, thus bringing positive heavy precipitation 

anomalies to western and central Canada. Heavy winter precipitation that occurs in central 

Canada during La Niña winters associated with deepened and northward shifted Aleutian Low 

(Figure S8b in Tan and Gan 2016) tend to be lower than heavy winter precipitation that occurs 

during El Niño winters associated with a normal and southeastward shifted Aleutian Low, 

positive geopotential heights, and intense polar jet streams (Figure S8a in Tan and Gan 2016). 

The above mechanism is in direct contrast to the mechanism behind that of total winter 

precipitation described in the previous paragraph. 

In western Canada, summer days with heavy precipitation tend to be higher (lower) during 

El Niño (La Niña) years with positive (negative) moisture anomaly as shown in Figure 3-10a 

(Figure 3-10b), which agrees with the spatial pattern of AMP (see Figure 3-6c) but in contrast to 

what was found by Shabbar and Skinner (2004). This is due to abundant moisture brought by the 

northeastward, subtropical jet stream to the western and central NA in El Niño summers (Figure 

3-10a and Figure S9a in Tan and Gan 2016). In La Niña summers, the deepened and southward 

shifted Aleutian low leads to positive wind anomalies to western Canada but that does not result 

in positive PWC anomalies for western Canada likely because of low moisture content in the 

north Pacific atmosphere (Figure 3-10b). For eastern Canada, polar (North Atlantic) jet streams 

dominate El Niño (La Niña) summers (Figure 3-10 and Figures S9 and S10 in Tan and Gan 

2016), which result in negative (positive) PWC anomalies, which are consistent with low (high) 

AMP in eastern Canada during El Niño (La Niña) years (Figures 3-6b-c). 

The circulation patterns during active (inactive) PDO years are similar to those during El 

Niño (La Niña) years, but different in terms of the center location and strength of these 

circulation patterns, both during winters (Figure 3-9 and Figure S8 in Tan and Gan 2016) and 

summers (Figure 3-10 and Figures S9 and S10 in Tan and Gan 2016), e.g., when PDO is 

inactive, the Aleutian Low (Figures 9d and S8d) is shifted northward compared to when La Niña 
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is active (Figure 3-9b and Figure S8b in Tan and Gan 2016), which results in different spatial 

PWC anomalies between inactive PDO and La Niña winters. Bond and Harrison (2000) found 

that anomalously low (high) SST over the central North Pacific Ocean (west coast of Americas) 

typically occurs during active PDO winters. Active PDO leads to low pressure zones occurring 

over the North Pacific Ocean with enhanced anticlockwise winds, resulting in dry conditions in 

western Canada (Figure 3-9c). In contrast, inactive PDO typically leads to wet conditions in 

western Canada. The influence of PDO on the heavy winter precipitation is similar to its 

influence on the winter total precipitation, of western Canada (Gan et al. 2007; Jiang et al. 2014; 

Mantua and Hare 2002).  

Positive (negative) summer PWC anomalies (Figures 3-10e-f and Figures S9e-f and S10e-f 

in Tan and Gan 2016) in northern Canada are associated with low (high) NAO. This pattern is 

similar to that of AMP shown in Figure 3-6d, which is likely caused by a shift in the direction of 

jet streams from the southwest during high NAO to northwest during low NAO between Arctic 

and North Atlantic. However, there are no consistent winter circulation anomaly patterns for 

NAO composites. The shift of the axis of maximum winter moisture from southwest to northeast 

across the Atlantic Ocean mainly affects the winter precipitation of northern Europe instead of 

NA (Hurrell and Loon 1997). Therefore, the correlation between NAO and Canadian extreme 

precipitation derived from the non-stationary analysis may be misleading as NAO index is the 

difference of atmospheric pressure at sea level between the Icelandic low located near Iceland 

and the Azores high located south of Canada. 

A deepened and eastward shifted Aleutian Low during years of high NP index advects 

moist air towards the west coast of Canada, resulting in positive PWC anomalies (Figures 3-9g 

and 3-10g, and Figures S9g and S10g in Tan and Gan 2016) over western Canada. On the other 

hand, predominant wind patterns are in opposite directions during low NP years, resulting in 

typically negative PWC anomalies (Figures 3-9h and 3-10h, and Figures S9h and S10h in Tan 

and Gan 2016). These PWC anomalies derived from NP composite are consistent with composite 

differences of AMP shown in Figure 3-6f. The impact of circulation patterns associated with the 

NP index on the heavy precipitation of Canada is similar to that of ENSO, because the inter-

decadal variability of the northern Pacific described by the NP index are linked to the inter-

annual variability of ENSO (Trenberth and Hurrell 1994). Even though ENSO, PDO and NP are 

all associated with the heavy precipitation of Canada, there are also local-scale synoptic 
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processes that affect the heavy precipitation of Canada not accounted in our composite analysis 

of these climate anomalies. More detailed studies on circulation patterns associated with 

Canadian heavy and extreme precipitation should be conducted in the future. 

3.4 Summary and conclusions 

In this study, we have analyzed time series of AMP, POT and counts of extreme/heavy 

precipitation of 463 gauging stations of Canada using stationary and non-stationary GEV, GP 

distributions and Poisson regression, respectively. To create the non-stationary distributions, 

time-varying covariates that represent large-scale climate patterns such as ENSO, NAO, PDO 

and NP were incorporated to the location and scale parameters of GEV distributions, the rate of 

occurrence parameter of Poisson distributions and the scale parameter of GP distributions. To 

detect non-stationarities of Canadian extreme and heavy precipitation, we also used the time 

(year) as a covariate to estimate the parameters of non-stationary distributions. 

Location and scale parameters of stationary GEV distributions fitted to the AMP data 

increase from north to south, and from inland to coastal regions of Canada.  However, there was 

no clear spatial pattern for the shape parameters. Most stations had a non-zero shape parameter, 

which implies that most Canadian AMP series can be modeled by GEV Type II or Type III 

distributions with heavy tail behavior. Stationary GEV distributions estimated smaller extreme 

precipitation of the 2-, 20- and 100-year return period than stationary GP distributions by about 

8.0%, 1.4% and 3.7%, respectively.  In general, GEV distributions tend to under-estimate AMP 

of western and eastern coastal regions more than other regions of Canada. About 1/3 of the AMP 

time series shows non-stationary characteristics. Stations located in southwestern Canada, 

northern CP and QC, NL, and southwestern ON showed statistically significant increase in AMP, 

while AMP in southern CP, southeastern ON and Arctic region significantly decreased. 

By using time-varying, climate indices as covariates in Poisson regression distributions, the 

results show that clusters of heavy precipitation events in Canada are related to large-scale 

climate patterns. The strength of storm clusters decreases spatially from north to south, but trends 

and abrupt changes to occurrences of the heavy precipitation appear to be less spatially 

consistent. By modeling AMP time series with non-stationary GEV and heavy precipitation with 

non-stationary GP distributions, it is evident that AMP and heavy precipitation of Canada show 

strong non-stationarities which are likely related to the influence of large-scale climate patterns 

given strong correlations are found between extreme Canadian precipitations and climate indices. 
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AMP in southwestern coastal regions, southern CP and the Great Lakes regions tend to be higher 

in El Niño years than in La Niña years, while other regions of Canada showed a lower AMP in 

El Niño years than in La Niña years. The effect of other climate patterns such as PDO, NAO and 

NP on extreme precipitation is also significant at some stations across Canada. Given the 

influence of climate patterns on extreme precipitation of Canada is the primary focus of this 

study, future studies should focus on expected changes in Canadian extreme and heavy 

precipitation resulting from changes in large-scale climate patterns due to anthropogenic climate 

change. 

3.5 Appendix  

I. GEV distribution 

Let  1max , , nM Z Z  for large n , where 1 2, ,Z Z is a sequence of independent (or 

weakly dependent) identically distributed observations. In this study, tZ represents daily 

observed precipitation recorded at a particular station on day t, and M is the AMP. Asymptotic 

results state that under some regularity conditions, normalizing sequences na and 0nb  can be 

found such that (Coles 2001): 
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as n , for a non-degenerate distribution function, which is the GEV distribution with the 

cumulative distribution function: 
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where  1 0y     ,  , and are the location, scale, and shape parameters, respectively. 

The shape parameter determines the type of tail behavior. 0  , 0  and 0  correspond to 

the Weibull (Type III), Gumbel (Type I) and Fréchet (Type II) distributions, respectively.  

For a non-stationary process, the time-varying GEV parameters can be estimated by time-

varying covariates. For instance, the GEV location parameter is defined through a linear function 

of covariates: 



76 

 

0 1 1 m mX x x        
                                            (3-3) 

where  11, , , mX x x is a matrix of the time-varying covariate vectors 1, , mx x ,

 0 1, , m    is the parameter vector to be estimated, in which 0 is the intercept and

1, m   are the regression coefficients for the corresponding covariates; m is the number of 

covariates considered. The scale and shape parameters of the GEV distribution can be similarly 

expressed as Equation (3-3). 

II. Poisson regression 

The numbers of days (counts) of extreme values exceeding a threshold over a specified 

time interval (a year in this study) can be modeled by a Poisson distribution with an equal-

dispersion (the mean equals the variance). However, the variance of observed data tends to be 

larger than the mean, known as over-dispersion, which can partly be attributed to the effect of 

temporal clustering (Mallakpour and Villarini 2015; Pinto et al. 2013; Villarini et al. 2013; 

Villarini et al. 2011). The statistical significance of dispersion coefficients different from unity at 

5% significance level can be tested using the regression-based tests (Cameron and Trivedi 1990) 

for testing over-dispersion in a Poisson model. 

A Poisson regression models discrete data, in which the predictand follows a Poisson 

distribution. The counts in year i  as iN  have a conditional Poisson distribution with the rate of 

occurrence parameter i , given that: 
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where i is a non-negative random variable. In a Poisson regression model, i can be modeled as 

a function of predictors 1 2, , ,i i mix x x in a manner similar to parameters of a non-stationary GEV 

(see Equation 3-3): 

 0 1 1 2 2expi i i m mix x x        
                                        (3-5) 

where j is the coefficient for the j-th predictor (xji) estimated by the maximum likelihood 

method. If j estimated is non-zero at a 5% significance level, then there is a statistically 

significant relationship between the occurrence of extreme events and the predictor xj. By 

relating i to the time using an exponential function  0 1expi i    , changes in the mean 
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number of occurrences of heavy precipitation with time can be examined. If 1  is non-zero at the 

5% significance level, temporal changes in the mean number of extreme events are statistically 

significant (Villarini et al. 2011; 2012; 2013). The abrupt change points of the occurrences of 

extreme events can be further identified by a segmented regression in which the relation between 

the predictand and the predictor is piecewise linear. We used the function segmented in the R 

package ‘segmented’ (Muggeo 2003) to detect change points and to estimate 0  and 1  for the 

Poisson regression model.  

III. GP distribution 

The exceedance, Q Z u  (where Z is the observed precipitation and u  the threshold) can 

be modeled as a GP distribution (Coles 2001): 
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for 0q  and 1 0q   , σ > 0, where   and   are the scale and shape parameters of a GP 

distribution.  For 0  , GP reduces to an exponential distribution. The GP distribution can be set 

up to model non-stationary processes, usually by making the scale parameter   depend on 

particular covariate(s) (Coles 2001; Khaliq et al. 2006). The log of σ is regressed against 

covariates X,  log X  , as shown in Equations 3-3 and 3-5.  

The return level ly is exceeded on average l  times over a fixed period. Since there are on 

average peaks in the whole time series, the probability that an arbitrary peak exceeds ly equals

l  . Thus, ly is obtained by adding the threshold to the  1 l  quantile of the excess 

distribution (Coles 2001): 
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For presentation, it is often more convenient to give return levels on an annual scale, so 

that the N-year return level is the level expected to be exceeded once every N years.  

IV. The likelihood-ratio test 
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The likelihood-ratio test can compare results obtained from GEV and GP distributions of 

parameters expressed with covariates of various complexities, such that the base covariate (e.g., 

Mo) is a subset of a more complex covariate (e.g., M1).  The likelihood-ratio test can determine 

which sets of model parameters will lead to the overall best model performance for GEV and 

GP. Suppose a base model 0M is nested within a model 1M , and 0L ( 1L ) is the negative log-

likelihood value for 0M ( 1M ), then a deviance statistics is given by (Coles 2001): 

 1 02D L L  
                                                              (3-8) 

Large values of D indicate that 1M is more adequate for representing the data than its base 

counterpart 0M . The D statistic follows a chi-square distribution with degree of freedom, 

(difference between the number of parameters of the models 0M and 1M ). D is the (1  ) 

quantile of the chi-square distribution at the α significant level. The null hypothesis 0D  is 

rejected if D D . We used functions in the R package ‘extRemes’ (Gilleland and Katz 2011) 

for inferring the parameters of GEV and GP distributions and testing the significance of the 

relations between parameters and covariates. 
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Chapter 4 Effects of persistence and large-scale climate anomalies on trends and change 

points in extreme precipitation of Canada 

4.1 Introduction 

Impacts of climate variability and human activities can result in gradual (trend) or abrupt 

(shift) changes in the hydrologic cycle. A changing hydroclimate could result in under- or over-

designed civil engineering projects based on design tools developed from historical data (Forsee 

and Ahmad 2011; Jakob 2013; Kuo and Gan 2015; Kuo et al. 2015). Thus, in view of recently 

observed changes in the magnitude and frequency of various hydroclimatic variables, the 

fundamental assumption of stationarity for traditional frequency analysis may no longer apply 

(Milly et al. 2008; 2015), even though nonstationary analysis of hydroclimatic processes under 

anthropogenic climate change has been criticized because of additional uncertainties associated 

with nonstationary models (Montanari and Koutsoyiannis 2014; Serinaldi and Kilsby 2015). 

Furthermore, because of large sampling error in analyzing time series with long-term persistence 

(LTP), a stationary process could be mistaken to be nonstationary (Koutsoyiannis and Montanari 

2015; Montanari and Koutsoyiannis 2014). In this study, we have focused on detecting both 

slowly varying (trend) and abrupt (change points) changes in Canadian extreme precipitation, 

and the possible effects of persistence and climate anomalies in the precipitation trends. 

A stationary time series has a time-invariant probability distribution function that does not 

exhibit trends or change points (Brillinger 2001; Koutsoyiannis 2006). For Canada, several 

studies have examined the stationarity of annual or seasonal total precipitation time series by 

trend analysis and they found an increase in the annual total precipitation mostly due to an 

increase in the number of small to moderate precipitation events (Mekis and Vincent 2011; 

Vincent and Mekis 2006; Zhang et al. 2001a; Zhang et al. 2000), while statistically significant 

increase (decrease) in snowfall has been mainly detected in northern (southwestern) Canada 

(Mekis and Vincent 2011; Vincent and Mekis 2006). In contrast, past studies in trend analysis of 

observed heavy or extreme precipitation over Canada show inconsistent results on the detection 

of statistically significant trend (Alexander et al. 2006; Burn and Taleghani 2013; Kunkel 2003; 

Kunkel and Andsager 1999; Peterson et al. 2008; Vincent and Mekis 2006; Zhang et al. 2001a) 

in either the frequency or the intensity of extreme precipitation, partly because of different data 
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sets and techniques used in these studies. On the other hand, climate change scenarios of global 

climate models downscaled by regional climate models mostly project a more intense and 

frequent daily and multi-day precipitation events for most Canadian regions (Kuo et al. 2015; 

Mailhot et al. 2010; Mladjic et al. 2011). A comprehensive investigation on changes to historical 

extreme precipitation of Canada will address inconsistent results obtained in past studies, and 

also to gain some knowledge on the possible impact of climate change to such historical 

precipitation data of Canada. 

There have been limited studies on the change points in the probability distribution of 

precipitation, especially on extreme precipitation, such as Fu et al. (2015) who analyzed change 

points of precipitation over western Canada, given a shift could have significant impacts on the 

regime of extreme precipitation, as Villarini et al. (2009a; 2011; 2013) found in the continental 

US. Therefore, as a follow-up of Fu et al. (2015), we investigated both trends and change points 

in the time series of annual maximum daily precipitation (AMP) and seasonal maximum daily 

precipitation (SMP) for all regions of Canada. 

Next, recent trend analysis of extreme and heavy Canadian precipitation (e.g., Mekis and 

Vincent 2011; Vincent and Mekis 2006; Zhang et al. 2001a; Zhang et al. 2000) did not explicitly 

consider the possible influence of large-scale climate anomalies, even though extreme and heavy 

precipitation could be linked to large-scale climate anomalies over North America (Raible 2007; 

Yin and Branstator 2008; Yiou and Nogaj 2004; Zhang et al. 2010). St. Jacques et al. (2010; 

2014) found that trends in streamflow of watersheds in Northern Rocky Mountain and Canadian 

Prairie Provinces are partly due to the ~60-year cycle of the Pacific Decadal Oscillation (PDO). 

In the trend analysis of station precipitation data, the serial and inter-station correlations 

between stations of a regional domain are usually overlooked even though correlations between 

station streamflow data were widely considered in the trend analysis of Canadian streamflow 

data (e.g., Burn and Elnur 2002; Ehsanzadeh and Adamowski 2010; Khaliq and Gachon 2010; 

Khaliq et al. 2009a; 2009b; Yue et al. 2003; 2003). In this study, the trends of Canadian extreme 

precipitation were estimated with the serial correlation, inter-station correlation and impacts of 

large-scale climate anomalies removed. 

Hydroclimatic variables tend to exhibit temporal persistence in extremes such as floods 

and droughts. Short-term persistence (STP) is usually accounted for by an autoregressive-1 

model (Sagarika et al. 2014; Yue et al. 2003), while LTP, first detected by Hurst (1951), can 
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significantly influence trends estimated from conventional tests based on the independent 

assumption, such as the Mann-Kendall (MK) test (Cohn and Lins 2005; Kendall 1975). The MK 

test tends to over-estimate the significance of trends of data with LTP (Cohn and Lins 2005; 

Franzke 2010, 2012; Koutsoyiannis 2006; Koutsoyiannis and Montanari 2007; Sagarika et al. 

2014). The LTP of a hydroclimatic series is usually related to large-scale climate anomalies of 

interannual and/or interdecadal scales (Klemeš 1974; Potter 1976). The consideration of LTP can 

better explain certain nonstationary behaviors such as temporal trends in a time series 

(Koutsoyiannis 2006; Koutsoyiannis and Montanari 2007; Potter 1976). 

On the other hand, the presence of cross-correlation in a regional dataset could either 

“inflate” or “deflate” the actual number of significant trends in a region, and distort the outcome 

of certain statistical tests (Lettenmaier et al. 1994; Livezey and Chen 1983). Therefore, in this 

study, we used five variants of the MK tests to evaluate the effect of STP, LTP and large-scale 

climate anomalies on the trend identification of Canadian AMP and SMP, and then the field-

significance of each regional trend test was estimated. In addition, possible change points of 

Canadian AMP and SMP time series were also estimated using the nonparametric, Pettitt test 

(Pettitt 1979) to further investigate their nonstationary characteristics. All trends and change 

points estimated were tested for their field-significance using the Walker test and the false 

discovery rate (FDR) method (Wilks 2006). 

The chapter is organized as follows: Section 4.2 gives an overview of precipitation data 

used and large-scale climate anomalies in terms of climate indices; Section 4.3 describes the 

research methodology; Section 4.4 discusses the results and finally Section 4.5 the summary and 

conclusions. 

4.2 Data 

Given Canada is the second largest country in the world, its climate varies widely from the 

north (west) to south (east), and so to analyze changes to extreme Canadian precipitation can be 

challenging and has to be done on a regional basis. In this study, on the basis of provincial and 

geographical areas, we divided Canada into four regions (Figure 4-1), which are the Canada 

West, North, Centre and East. Then trends, change points and their field-significance were 

analyzed region by region. To investigate long-term changes in extreme precipitation, we 

analyzed precipitation data of AHCCD which is described in Section 3.2.1, using four different 

periods (the same as selected for study in Section 3.2.1) to assess uncertainties associated with  
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Figure 4-1 Map of Canada showing the spatial distribution of precipitation stations analyzed over four 

regions. Canada west includes BC; Canada Centre includes AB, SK and MB; Canada North includes YT, NT 

and NU; and Canada East includes ON, QC, NL, NB, PE and NS. 

 

 

 
Figure 4-2 Maps showing the spatial distribution of stations with statistically significant lag-1 

autocorrelations and LTP in AMP (a) and SMPs (b-e) of 1950-2010 at p ≤ 0.10. 

 

a. AMP b. Spring SMP c. Summer SMP 

d. Autumn SMP e. Winter SMP 
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trends and change points estimated with respect to the length of historical record. AMP and SMP 

time series of spring (March-May), summer (June-August), autumn (September-November) and 

winter (December-February) were extracted from daily time series for each station studied. Four 

climate indices including Southern Oscillation Index (SOI), the North Atlantic Oscillation 

(NAO) index, the PDO index and the North Pacific (NP) index are described in Section 3.2.2. 

4.3 Research methodology 

The MK test has been widely used to detect statistically significant trends in time series of 

hydroclimatic variables (e.g., Dinpashoh et al. 2014; Ehsanzadeh and Adamowski 2010; Hamed 

2008; Hamed and Rao 1998; Ishak et al. 2013; Khaliq et al. 2009a; 2009b; Sagarika et al. 2014; 

Yue et al. 2002; 2003), because it is non-parametric and it is robust to data that may contain 

outliers and non-linear trends. Five variants of the MK test, one change-point test and two field-

significance tests were used to assess trends and change points in Canadian extreme 

precipitation. The most popularly used (regular) MK test (Kendall 1975; hereinafter referred to 

as regMK) was applied to estimate trends of AMP and SMP time series. The magnitudes of 

trends were estimated using the Theil–Sen approach (TSA) (Sen 1968). To eliminate the effect 

of serial correlations, the trend-free pre-whitening (TFPW) method developed by Yue et al. 

(2002) was first applied to remove the lag-1 serial correlation before applying the MK test 

(tfpwMK) to the time series, while the modified MK test proposed by Hamed and Rao (1998) 

and Yue and Wang (2004) (modMK) was based on a test statistic computed from an effective 

(instead of the actual) sample size to account for the effect of serial correlation. The MK test of 

Hamed (2008) (ltpMK) considering the influence of LTP was also chosen. The partial MK 

(partMK) test (El-Shaarawi 1993; Libiseller and Grimvall 2002) was used to examine the 

influence of climate anomalies on trends of AMP and SMP data. The nonparametric, Pettitt test 

(Pettitt 1979) that has been widely used for the change point detection of hydroclimatic data was 

also chosen because it is robust against outliers and data of skewed probability distributions (Tan 

and Gan 2015a; Villarini et al. 2009a; Wijngaard et al. 2003). The field-significance of trends 

and change points detected for the four regions were further evaluated using the Walker test and 

the FDR approach (Wilks 2006). Detailed descriptions of these methods are given in the above 

literature. All significance tests are based on the 10% significant level. 
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4.4 Results 

4.4.1 Trends at local scales 

Figure 4-2 and Figure S1 show the spatial distribution of stations showing statistically 

significant lag-1 autocorrelation and LTP in the AMP and SMP time series for the four time 

frames, while Figure 4-3 shows the percentage of stations with positive and negative lag-1 

autocorrelation coefficient (ρ1) and the percentage of stations where ρ1 values are significant. 

There are more stations in southeastern and southwestern Canada showing significant lag-1 

autocorrelation and LTP than other regions, especially for time series of 61-year (Figure 4-2) 

than for time series of 81-year periods. It seems that maximum precipitation data of some 

stations in southeastern and southwestern Canada tend to be correlated to data of the previous or 

the following years, even though such interannual autocorrelations are not because of carryover 

processes in the atmospheric system. 

 
Figure 4-3 Percentage of stations with positive and negative (shown along positive and negative y-axis, 

respectively) lag-1 autocorrelation coefficient (ρ1), along with percentage of stations showing ρ1 values that 

are significant at p ≤ 0.10 (red). The five columns for four time periods show the percentage of stations with ρ1 

for the AMP, spring, summer, autumn and winter SMPs, respectively. 

 

The total (positive and negative) percentage of stations with significant ρ1 values decreases 

with the length of time series, as the mean percentage of stations for the 41-, 61-, 81- and 111-

year periods is 27.9, 24.4, 17.3 and 1.5%, respectively (Table 4-1). As expected, this implies that 

very few stations show consistent STP over extended periods. The percentage of stations 

showing significant positive ρ1 values is ~10% higher than that with the negative ρ1 values. This 

implies that marginally more stations exhibit consistent wet, dry or average climate longer than a 

year, which as mentioned above, depends on the length of each time series. However, the 
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percentages of stations showing significant LTP are similar in the four selected periods (Table 

S1). Seasonally, more winter SMP time series show significant LTP than other seasons, 

especially among time series of 81- and 111-year periods (Figure S1 and Table S1), while a 

similar percentage of stations shows significant ρ1 values in all four seasons. Moreover, winter 

SMP data tends to show both significant ρ1 values and LTP, while stations tend to show either a 

significant ρ1 value or a significant LTP for AMP and spring SMP data. More stations show both 

STP and LTP during winters than other seasons probably because winter precipitation tends to be 

more related to large-scale climate patterns (Vincent et al. 2015). 

Figure 4-4 and Figure S2 shows the percentages of stations that present positive and 

negative trends. Different regions (Figure S2) show different number of stations exhibiting 

trends estimated from various trend tests, which shows that the results of trend analysis are 

sensitive to the test adopted to eliminate the effect of serial correlation. The modMK test 

generally detected ~5% more percentage of stations showing significant trends in AMP and 

SMPs data than the regMK test for all periods studied, while the ltpMK test detected ~8% less 

percentage of stations than the regMK test. However, the difference in the percentage detected 

by the tfpwMK and regMK tests is minimal. The number of stations showing significant trends 

based on the four tests for stations showing significant lag-1 autocorrelation and LTP (Tables 4-1 

and 4-2) demonstrates that the regMK test tends to underestimate (overestimate) of the 

significance of trends in time series showing significant lag-1 autocorrelation (LTP), compared 

to the modMK (ltpMK) test.  

Without considering differences in results obtained from applying different tests, the 

percentage (average of the four tests) of stations showing significant trends increases with the 

length of periods studied (Figure 4-4), as the percentage varies from 16 to 42% for the 111-year 

period, 9 to 22% for the 41-year period partly because slow changes (trends) are more affected 

by climate fluctuations over short than extended periods probably because the effect of such 

fluctuations tend to be averaged out over extended periods. AMP, spring and autumn SMPs are 

dominated by positive trends that vary from 5 to 10% for the 41-year period, and 12 to 28% for 

the 111-year period. However, for summer and winter SMPs, there are large differences in the 

percentage of stations showing positive and negative trends between the four different periods. 

For example, winter SMP is dominated by positive trends for the 111-year period while negative 

trends for the other three periods studied. Summer SMP is dominated by positive trends for the 
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111- and 81-year periods while similar percentage of stations are detected with positive and 

negative trends for the 61- and 41-year periods. These inconsistent results with no clear spatial or 

seasonal patterns show that changes in maximum precipitation vary across Canada spatially and 

temporarily over a wide range of time scales, which are further compounded by uneven 

distributions of climate stations (predominantly in southern parts), different terrains, different 

study periods and diversified landuse covers across Canada. 

 

Table 4-1 Comparison of the number of stations showing both statistically significant lag-1 autocorrelations 

at p≤0.10 and statistically significant trends in AMP and SMPs detected by the regMK, tfpwMK and modMK 

tests at p≤0.10 

Time frames 1900-2010 1930-2010  

Test Total* regMK tfpwMK modMK Total regMK tfpwMK modMK 

Annual 1 1 1 1 34 10 12 12 

Spring 1 0 1 1 34 6 7 7 

Summer 1 1 1 1 27 6 5 8 

Autumn 4 2 1 1 38 14 11 15 

Winter 3 1 1 1 40 16 12 17 

 1950-2010 1970-2010 

Annual 81 16 18 22 114 19 15 28 

Spring 72 16 19 20 111 16 15 22 

Summer 70 10 10 16 110 18 16 31 

Autumn 83 15 16 20 114 13 11 19 

Winter 83 26 20 33 106 19 19 25 

* Total is the number of stations showing statistically significant lag-1 autocorrelations at p≤0.10. 

Table 4-2 Comparison of the number of stations showing both statistically significant LTP at p≤0.10 and 

statistically significant trends in AMP and SMPs detected by the regMK and ltpMK tests at p≤0.10 

Time frames 1900-2010 1930-2010 1950-2010 1970-2010 

Test Total regMK ltpMK Total regMK ltpMK Total regMK ltpMK Total regMK ltpMK 

Annual 7 6 3 20 11 5 34 12 1 39 16 1 

Spring 7 4 2 18 9 2 32 17 3 38 13 0 

Summer 3 2 0 17 11 2 22 7 1 23 9 1 

Autumn 6 4 1 21 11 4 25 10 2 27 9 0 

Winter 16 10 3 37 20 3 48 23 3 40 12 0 

* Total is the number of stations showing statistically significant lag-1 autocorrelations at p≤0.10. 
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Figure 4-4 Percentage of stations showing statistically significant, positive and negative trends (plotted along 

the positive and negative y-axis, respectively) in AMP (a) and SMPs (b-e) time series of 1950-2010 detected by 

the regMK, tfpwMK, modMK and ltpMK tests at p ≤ 0.10. 

 
Figure 4-5 Maps showing trends in AMP (a) and SMPs (b-e) of 1950-2010 detected by the regMK test at p ≤ 

0.10. The red upward-pointing triangles indicate statistically significant while the green downward-pointing 

triangles indicate statistically significant trends at p ≤ 0.10, respectively. Grey and black dots indicate stations 

with non-significant trends, respectively. The shaded color represents spatially interpolated trend magnitude 

in mm year
-1

 for AMP (a) and SMPs (b-e). 

a. AMP b. Spring SMP c. Summer SMP 

d. Autumn SMP e. Winter SMP 
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4.4.2 Spatial distribution of trends 

Figure 4-5 and Figure S3 show the spatial distribution of stations showing significant 

trends in the 1950-2010 (61-year) and 1930-2010 (81-year) periods, respectively. Color maps of 

both significant and insignificant trends are given in these two figures which show some spatial 

differences in the magnitude of trends estimated for these two periods. For example, in terms of 

trend magnitude and number of stations showing significantly decreasing trends, the decreasing 

trends in AMP, summer and winter SMPs in the 61-year period are stronger than those in the 81-

year period. However, the general spatial patterns of decreasing and increasing trends in AMP 

and SMPs are consistent between these two periods.    

AMP had increased in western and southern British Columbia (BC), western Ontario (ON) 

and the Atlantic Maritime, but had decreased in Central Canada, eastern ON and western 

(Quebec) QC, and northwestern Canada. These findings are consistent with previous studies 

(e.g., Mekis and Hogg 1999; Zhang et al. 2001a). However, as expected, AMP trends detected 

are different from general increasing trends of total precipitation (e.g., Mekis and Vincent 2011; 

Zhang et al. 2000). The magnitude of trends estimated by the TSA shows 0.22 (0.25) mm year
-1

 

of maximal increase (decrease) in AMP over the 61-year period. 

Spatially, there are major differences between trends of spring SMP and AMP, such that 

the former generally shows increasing trends while the latter a mixture of increasing and 

decreasing trends. The spatial patterns of AMP and summer SMP are generally similar, as AMP 

is dominated by the summer SMP, with upward trends in the North and eastern Canada, and 

downward trends in the Canadian Prairies. Clusters of significant increasing trends for autumn 

SMP are found in western BC, Canada East and Canada North, even though increasing trend 

magnitudes in autumn SMP are relatively small compared to spring and summer SMPs. In 

contrast, decreasing (increasing) trends in winter SMP are more widespread across southern 

(northern) Canada, which agree with total snowfall trends found by Mekis and Vincent (2011) 

and Vincent and Mekis (2006). This may partly be explained by the positive (negative) snowfall-

temperature relationship found by Davis et al. (1999) in northern (southern) Canada as warming 

occurs because increase in both winter precipitation and temperature tend to be more significant 

in northern than in southern Canada (Vincent et al. 2015). 

4.4.3 Field-significance of the trends 
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To assess the possible influence of cross-correlation of AMP and SMP data of the stations 

on the field-significance of results we obtained, we first analyzed the cross-correlations between 

station AMP and SMPs data. The Pearson’s product moment cross-correlation coefficient 

(PPMCC) (a parametric approach), the Kendall’s rank cross-correlation (KRCC) (a 

nonparametric approach) and the Spearman’s rank order cross-correlation coefficient (SRCC) (a 

nonparametric approach) were estimated considering all possible pairs of stations. The 

probability density distributions of the above coefficients are shown in Figure 4-6 for the four 

regions over the four periods studied. The PPMCC and SRCC coefficients are similar but higher 

than the KRCC coefficients. However, all three coefficients show that AMP and SMPs are 

dominated by positive cross-correlations represented by the probability distributions and the 

percentage of statistically significant cross-correlations, which indicate the necessity to use 

approaches such as the FDR approach and the Walker test that account for the effect of spatial 

correlation on the trend analysis results. 

 
Figure 4-6 Probability distributions of Pearson’s product moment cross-correlation (PPMCC, black color), 

Kendall’s rank cross-correlation (KRCC, red color) and Spearman’s rank cross-correlation (SRCC, blue 

color) of four regions over four periods, (a)-(d). The overall percentage of significant positive and negative 

cross-correlations obtained from all possible pairs of AMP and SMPs data are shown in each figure. 
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Table 4-3 shows results of trends with field-significance derived from the Walker test and 

the FDR approach for the 1950-2010 (61-year period), while Table S2 for 1930-2010 (81-year) 

and 1970-2010 (41-year). Similar results for the 1900-2010 (111-year) were not obtained 

because of the small number of stations involved. By the FDR approach, the trend result is 

considered to be of field-significance if at least one station shows field-significant trends. The 

FDR approach and the Walker test generally (>96%) declare consistent field-significance of 

trends in AMP and SMPs derived by the four tests conducted for four Canadian regions studied, 

which shows that the field-significance of trends detected by these four MK tests for these 

regions are not sensitive to the approach used for testing the field-significance.  

These two approaches agree that locally detected trends for the 81-year period are 

generally of field-significance, but not so for the 61- and 41-year periods. For various MK tests, 

the trends detected by the ltpMK test are generally not field-significant for the four study 

periods. More trends derived by the modMK test are field-significant than those derived by the 

regMK test. In general, AMP and spring SMP data in the West and Canada East show more 

field-significant trends than SMPs in other regions.    

4.4.4 Effects of large-scale climate anomalies on trend detection 

Figure 4-7 and Figure S4 are scatterplots of the statistical significance (p-value) of trends 

(p ≤ 0.3) derived by the regMK and the partMK tests for station AMP and SMPs data with four 

climate indices as covariates. The scatterplots are divided into four quadrants by two lines 

representing p = 0.10. Dots in the bottom right quadrant, marked as (1) represent stations where 

the trend of AMP or SMP is not statistically significant by the regMK test, but is significant by 

the partMK test which considers a climate anomaly as a co-variate. However, station AMP or 

SMP data in quadrant (1) do not covary with climate anomalies, whereas dots in the top left 

quadrant denoted as (2) indicate that station AMP or SMP data covary with climate anomalies 

because trends of such data are statistically significant by the regMK test but not so by the 

partMK test. Figure 4-7 shows that differences in p-values derived by the regMK and the 

partMK tests are evidence that winter SMP of Canada shows more significant relationships with 

large-scale climate indices than other seasons (Gan et al. 2007; Ropelewski and Halpert 1986; 

Shabbar et al. 1997; Zhang et al. 2010).  

As similar number of stations was detected in quadrants (1) and (2) for the winter SMP of 

the 1930-2010, 1950-2010 and 1970-2010 periods (Figure 4-7), it means that there is no 
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significant difference in the number of stations showing significant trends with or without 

accounting for the effect of large-scale climate anomalies on the trend analysis (Table S3). This 

is partly because of the large spatial variation of relationships between Canadian precipitation 

and climate anomalies. Figure 4-7 shows that the four climate anomalies, SOI, NAO, PDO and 

NP, exert similar effects on trends of Canadian winter SMPs. On a whole, NAO exerted more 

significant influences on the trends of the summer and autumn SMPs, and is more significant for 

data of the 1950-2010 period. PDO exerted its effects on trends of AMP, spring and summer 

SMPs of some stations for the 1950-2010 period (Figure S4). Compared to the regMK test, the 

partMK test does not seem to change the field-significance of the station AMP, and SMP data of 

Canada. 

 

Table 4-3 Number of stations showing field-significant trends detected by the FDR approach at p≤0.10 in 

AMP and SMPs detected by the regMK, tfpwMK, modMK and ltpMK tests, and the field-significance of 

local trends identified by the Walker test, for the period 1950-2010. A significant Walker test at p≤0.10 is 

indicated by a ‘‘*” symbol and a nonsignificant test at p≤0.10 is indicated as “NS”. 

  Canada West (59)a Canada North (24)  Canada Centre (32) Canada East (86) 

  FDR Walker FDR Walker FDR Walker FDR Walker 

Annual          

regMK  0b * 0 NS 0 NS 2 * 

tfpwMK 
 

0 * 0 NS 0 NS 2 * 

modMK 
 

0 NS 0 NS 0 NS 7 * 

ltpMK 
 

0 * 0 NS 0 NS 0 NS 

Spring          

regMK 
 

0 NS 6 * 0 NS 1 * 

tfpwMK 
 

1 * 7 * 0 NS 2 * 

modMK 
 

2 * 7 * 2 * 0 NS 

ltpMK 
 

0 NS 0 NS 0 NS 0 NS 

Summer          

regMK 
 

0 NS 1 * 0 NS 0 NS 

tfpwMK 
 

0 NS 1 * 0 NS 0 NS 

modMK 
 

0 NS 1 * 1 * 0 NS 

ltpMK 
 

0 NS 0 NS 0 NS 0 NS 

Autumn          

regMK 
 

0 NS 1 * 0 NS 4 * 

tfpwMK 
 

0 NS 0 NS 0 NS 4 * 

modMK 
 

0 NS 3 * 0 NS 0 NS 

ltpMK 
 

0 NS 0 NS 0 NS 1 * 

Winter          

regMK 
 

0 NS 12 * 0 NS 2 * 

tfpwMK 
 

0 NS 8 * 0 NS 2 * 

modMK 
 

0 NS 0 NS 4 * 0 NS 

ltpMK 
 

0 NS 3 * 0 NS 2 * 
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4.4.5 Change point tests 

Figure 4-8 and Figure S5 shows the spatial distribution of stations showing significant 

change points in AMP and SMPs for the 1930-2010 and 1950-2010 periods, respectively. The 

years that significant and non-significant change points occurred are interpolated and presented 

by different colors in the figures. Table 4-4 summarizes the total number of stations showing 

significant local change points and their field-significance in four regions. There are significant 

variations in the timing (year) of detected change points and their statistical field-significance 

obtained from analyzing precipitation data of the four periods. For example, the average year that 

change points of winter SMP in Canada West and Canada Centre detected over 1930-2010 is 

~15 years later than that detected over 1950-2010. The detected change points obtained for 1900-

2010 and 1930-2010 are generally statistically field-significant while those obtained for 1970-

2010 are mostly not field-significant. However, the percentage of stations individually showing 

significant increasing or decreasing change points is comparable for 1930-2010, 1950-2010 and 

1970-2010. An increasing (decreasing) change point means that the mean value of the pre-

change period is lower (higher) than that of the post-change period. 

 

 
Figure 4-7 Maps showing change points of stations for AMP (a) and SMPs (b-e) of 1950-2010. The upward-

pointing triangles represent increasing change points while downward- pointing triangles represent 

decreasing change points for various stations at p ≤ 0.10. The shaded color represents spatially interpolated 

timing (years) of both significant and non-significant change points detected. 

a. AMP b. Spring SMP c. Summer SMP 

d. Autumn SMP e. Winter SMP 
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Figure 4-8 Scatterplots between statistical significance (p-value) of trends in winter SMPs for stations with p ≤ 

0.30 detected by the regMK test versus those detected by the partMK test with climate indices, SOI (a), NAO 

(b), PDO (c) and NP (d) as the covariates. The p-values obtained are represented by black for the 1900-2010, 

red for 1930-2010, green for 1950-2010 and blue for 1970-2010 periods, respectively. 

Since there were not many stations with data spanning over the 1900-2010 period and data 

of the 1970-2010 period may not be long enough to detect a change point, only the overall results 

of change point analysis for 1930-2010 and 1950-2010 are further discussed. For the change 

point analysis of AMP data, field-significant change points are detected in all regions except in 

Canada West over the 1950-2010 period. The percentage of stations showing significant change 

points in AMP varies from 10.4 and 20.8% in Canada Centre and Canada West, to 35.4 and 

37.3% in Canada North and Canada East, respectively. For AMP, Canada West is dominated by 

increasing change points while a comparable number of increasing and decreasing change points 

are found in the other three regions. The timing of change points occurred is relatively late in 

Canada West and Centre (around 1970-1980) compared Canada North and East (around 1960-

1970), except in some parts of the Atlantic Maritime change points only occurred in around 

1990-2000 (Figure 4-8a).  

For the four SMPs, there are great variations in statistically significant change points 

detected across Canada. Spring and autumn SMPs tend to be dominated by increasing change 

points in all regions, while the summer SMP tend to have both decreasing and increasing change 

points. On the other hand, the winter SMP is dominated by significant increasing change points 

in northern Canada but decreasing change points in southern Canada. The percentage of stations 
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showing significant change points in winter SMP (42%) is relatively high compared to spring 

(32.0%), autumn (24.3%), summer SMPs (22.8%), and AMP (26.0%). The timing (year) of 

detected change points are similar between AMP and SMPs (Figure 4-9 and Figure S6). For the 

1950-2010 analysis, most change points were detected during 1970-1990 even though among the 

four SMPs, there are significant spatial variations in the years change points are detected. For 

spring SMP, change points in Canada North and Centre occurred relatively early (around 1960-

1975) than in Canada West and East (around 1980-1990). On a whole, Canada Centre (1960-

1970) had experienced relatively early change points in autumn while Canada West late change 

points (around 1985-1995) in summer. For winter, change points that had occurred across 

Canada had been spatially homogenous in around 1975-1985, except for the region of Canada 

East. 

Table 4-4 The number of stations in each region detected with statistically significant local increasing (↑) and 

decreasing (↓) change points at p≤0.10; the number of stations showing the field-significance at p≤0.10 

detected by the FDR approach; and the field-significance of local trends identified by the Walker test, in 

which a significant test at p≤0.10 is indicated by a ‘‘*” symbol and a nonsignificant test at 10% level is 

indicated as ‘‘NS”. 

 
Canada West Canada North Canada Centre Canada East 

 
↓ ↑ FDR Walker ↓ ↑ FDR Walker ↓ ↑ FDR Walker ↓ ↑ FDR Walker 

1900-2010 9a    1    4    27    

Annual 1 3 3 * 0 1 1 * 0 0 0 NS 2 9 3 * 

Spring 0 4 1 * 0 0 0 NS 0 0 0 NS 1 6 3 * 

Summer 0 3 2 * 0 1 1 * 0 0 0 NS 1 5 4 * 

Autumn 2 4 1 * 0 0 0 NS 0 0 0 NS 1 7 0 NS 

Winter 2 4 0 * 0 0 0 NS 2 0 0 NS 2 11 11 * 

1930-2010 48    6    24    62    

Annual 4 7 3 * 1 1 2 NS 1 1 1 * 8 16 3 * 

Spring 4 11 8 * 0 0 0 NS 1 6 1 * 5 15 0 NS 

Summer 0 6 1 * 1 2 0 NS 2 1 1 * 3 10 1 * 

Autumn 5 8 0 NS 1 0 0 NS 5 3 0 NS 0 15 2 * 

Winter 15 5 2 * 1 1 0 NS 10 0 0 NS 15 13 19 * 

1950-2010 59    24    32    86    

Annual 5 6 0 NS 3 6 2 * 3 1 0 NS 7 24 4 * 

Spring 3 18 3 * 0 9 5 * 3 7 0 NS 4 19 2 * 

Summer 4 4 1 * 4 5 2 * 2 2 0 NS 8 9 0 NS 

Autumn 2 9 0 NS 2 5 3 * 2 2 0 NS 1 27 4 * 

Winter 18 3 2 NS 2 14 14 * 13 3 0 NS 14 9 5 NS 

1970-2010 64    30    38    91    

Annual 6 5 0 NS 4 5 1 * 6 1 0 NS 7 16 0 NS 

Spring 4 12 0 NS 3 5 0 NS 2 7 0 NS 9 8 0 NS 

Summer 5 6 0 NS 1 3 0 NS 4 4 0 NS 6 8 0 NS 

Autumn 2 2 0 NS 2 2 0 NS 4 1 0 NS 2 17 0 NS 

Winter 15 4 0 NS 0 9 0 NS 4 9 1 * 13 4 0 NS 
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Figure 4-9 Temporal distributions of the timing (years) of both significant and non-significant change points 

detected for the four periods. 

4.5 Discussions of results 

4.5.1 Trend test for Canadian extreme precipitation 

The presence of positive (negative) serial or inter-station correlations in a hydroclimatic 

time series inflates (deflates) the chance of falsely accepting a null hypothesis (no trend) even 

though significant trend exists (Douglas et al. 2000; Khaliq et al. 2009b). In other words, trend 

detection analysis may result in misleading results if we ignore strong serial or inter-station 

correlations of the data to be analyzed (Khaliq et al. 2008; 2009a). Moreover, some fluctuation 

behaviors in time series could be better explained by LTP instead of trends (Cohn and Lins 2005; 

Franzke 2010; 2012; 2013; Klemeš 1974; Koutsoyiannis 2003, 2006; Koutsoyiannis and 

Montanari 2007). Without accounting for the influence of LTP if it exists, a trend test may 

greatly overestimate the statistical significance of observed trends (Cohn and Lins 2005; Khaliq 

et al. 2008; 2009a). In this study, the percentage of stations showing significant trends in AMP 

and SMPs detected by the ltpMK test was ~8% less than that by the regMK test. 1/3 of stations 

that showed both significant lag-1 autocorrelation and trends in AMP and SMPs by the modMK 

test that considers the effects of STP, did not show significant trends if the regMK test was used. 

Persistence characteristics of SMPs were more prevalent in winter than in other seasons. 

Therefore, using modMK or ltpMK tests instead of the regMK test that assumes the data to be 

serially independent could make a difference to the trend analysis result. 
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Considering only the lag-1 autocorrelation may not be sufficient to remove all significant 

serial correlations in a time series (Dinpashoh et al. 2014; Kumar et al. 2009; Sagarika et al. 

2014). However, using the modMK test that consider all form of serial correlations by an 

effective sample size approach resulted in more stations detected with significant trends in AMP 

and SMPs, than results obtained from using regMK and tfpwMK tests. Note that in the tfpwMK 

test, only time series of stations showing statistically significant lag-1 autocorrelations were 

trend-free pre-whitened before using the regMK test (Yue et al. 2002). However, using the 

modMK test always led to trend results different from the regMK test, irrespective of whether 

the serial correlation is statistically significant or not (Hamed and Rao 1998; Yue and Wang 

2004). Conversely, results obtained from tfpwMK and modMK tests are expected to be different. 

Further, for AMP and SMP time series which exhibit negative autocorrelations (significant or not 

significant), significant trends may not be detected by using regMK and tfpwMK tests, but 

significant trends could be detected by the modMK test. For time series with positive 

autocorrelations, the tfpwMK test will tend to detect fewer stations with significant trends than 

the regMK test but not the modMK test which lead to more stations with significant trends. 

Overall, the modMK test detected more significant trends than regMK and tfpwMK tests because 

more stations exhibit positive than negative autocorrelations (Table S1). 

Trend analysis results for extreme precipitation across Canada are also expected to be 

related to the impact of large-scale climate anomalies which could lead to drier or wetter 

conditions in different regions of Canada (Gan et al. 2007; Khaliq and Gachon 2010; Raible 

2007; Ropelewski and Halpert 1986; Shabbar et al. 1997; Yin and Branstator 2008; Yiou and 

Nogaj 2004; Zhang et al. 2010). Even though overall the number of stations showing significant 

trends detected by the partMK test that considers the effect of climate indices generally do not 

differ much from results based on the regMK test, significant trends could be detected at some 

stations or some seasons by the regMK test but not detected by the partMK test, and vice versa. 

Thus, the partMK test can either be more, or less likely to reject the null hypothesis of no trend 

than the regMK and the partMK tests, which means that the influence of large-scale climate 

anomalies on the temporal trends of extreme AMP and SMP of Canada is likely haphazard. In 

other words, the temporal trend in AMP and SMP data of Canada may or may not covary with 

certain climate anomalies represented by climate indices over time, or their positive or negative 

relationships could “appear” or “disappear” or even interchange between positive and negative 
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relationships on a long-term basis (Coulibaly 2006; Coulibaly and Burn 2004, 2005; Gan et al. 

2007). Therefore, the partMK test is not effective in detecting the influence of large-scale climate 

anomalies on the AMP and SMP of Canada this test only consider the monotonic, linear 

relationship between two variables. 

4.5.2 Change point test for Canadian extreme precipitation 

Results from the change point test show that more than 1/4 of the stations experienced a 

significant shift in AMP and SMPs. Decreasing (increasing) change points were spatially 

consistent with the negative (positive) trends (Figures 4-5 and 4-7). More stations were detected 

with significant change points than with significant trends for AMP and SMPs in Canada, and 

the characteristics of trends and change points vary from season to season, and spatially, clusters 

of increasing or decreasing change points were not as extensive as that of trends. Among the four 

seasons, winter seems to have experienced the most evident change in extreme precipitation for 

nearly half of the winter SMP of stations showed significant trends and change points.  Even 

though this study was conducted for four different periods, on a whole significant change points 

are primarily detected between 1960 and 1990. However, differences in the spatial density and 

distribution of stations and different data length considered in the four periods result in 

uncertainties associated with the years change points were estimated. More reliable estimation of 

change points can be achieved if longer periods of AMP and SMP data, and/or more station data 

could be supplemented from other database. 

There have been past studies on the effects of climate anomalies on precipitation and 

streamflow for various regions and river basins of Canada (e.g., Coulibaly 2006; Coulibaly and 

Burn 2004, 2005; Gan et al. 2007; Whitfield et al. 2010). Using wavelet analysis, Coulibaly and 

Burn (2004; 2005) found significant relationships between Canadian streamflow and climate 

anomalies such as ENSO and NAO after 1970s but not significant prior to 1950s, and were 

teleconnected to other climate anomalies in other time periods. Given that changes in the 

relationships between large-scale climate anomalies and regional climate and/or hydrology over 

the study periods could lead to the detection of change points in AMP and SMPs.  

Because AMP and SMPs are affected by climate indices, their change points could also be 

related to the phase change of climate indices. McCabe et al. (2004) found that PDO shifted from 

the cold (warm) phase to the warm (cold) phase at about 1976 (2000), while Atlantic 

Multidecadal Oscillation (AMO) shifted from the warm (cold) phase to the cold (warm) phase 
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around 1963 (1995). Given more change points were detected in Canadian AMP and SMPs at 

around 1976 and 1963 (Figures 9 and S6), this likely means that change points of AMP and SMP 

were at least partly associated with shifts in PDO and AMO. Conversely, there are many clusters 

of change points associated with the transition between warm or cold phases of large-scale 

climate anomalies (Figures 8 and S5). Combined effects of some climate indices can contribute 

to the variability and prediction of AMP and SMP. For example, McCabe et al. (2004) also 

assessed the combined effects of PDO and AMO over four periods: PDO warm and AMO warm 

(1926-1943), PDO cold and AMO warm (1944-1963), PDO cold and AMO cold (1964-1976), 

and PDO warm and AMO cold (1977-1994). The change points detected in the Canadian AMP 

and SMP (Figures 8 and 9) can be partly attributable to these combined effects of phase changes 

in climate anomalies. For example, Canadian hydroclimate was found to be significantly 

correlated with PDO (Whitfield et al. 2010) and AMO (Assani et al. 2010). 

Change points that represent shifts in climatic regimes are mostly of interdecadal time 

scale, as found in this study and other climate data (Alley et al. 2003; Sagarika et al. 2014).  In 

contrast to a hydroclimate regime shift that will likely remain relatively constant until a new shift 

occurs, trends that are gradual changes attributed to global warming or interactions of the earth 

system tend to continue in the future (McCabe 2002; Mccabe and Dettinger 2002). In some 

sense, under a changing climate, identifying a shift in a climatic regime could be more important 

than estimating gradual changes in hydroclimatic predictions. In this study, relationships 

between change points and climate anomalies were purely derived from statistical analysis. A 

more vigorous investigation using more in-depth analysis of regional responses to one or more 

climate anomalies will be helpful to obtain more definitive conclusions on possible changes in 

climatic regimes in relation to the effect of climate anomalies and global warming. 

4.6 Summary and conclusions 

In this study, we did a comprehensive study on the analysis of trends and change points of 

AMP and SMP time series of 223 climate stations of Canada distributed over four regions for 

four different time periods. Monotonic trends were estimated from time series of AMP and 

spring, summer, autumn and winter SMPs, using variants of the non-parameteric MK test 

designed to account for the effects of STP, LTP and large-scale climate anomalies, while change 

points were detected by the non-parametric Pettitt test, with the following conclusions: 
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(1) For AMP, most regions in western and southern BC, western ON and the Atlantic 

Maritime experienced an increase but Canada Centre, eastern ON and western QC, and 

northwestern Canada generally experienced a decrease. As expected, SMPs could either increase 

or decrease and historical seasonal changes varied spatially and from season to season.  

However, trends of SMPs were more spatially coherent than those of AMP. Across Canada, 

there were more stations showing a significant increase in spring, summer and autumn SMPs 

than a decrease, while the winter SMP experienced a significant decrease (increase) over 

southern (northern) Canada; 

(2) Trends detected using the tfpwMK, modMK and ltpMK tests differed from trends 

detected by the regMK test that assumes serial independence in a time series. As expected, the 

regMK test generally detected more significant trends than the ltpMK test that accounts for LTP. 

However, the number of significant trends detected by tfpwMK that only considers STP and 

regMK tests was comparable, while the modMK test that accounts for all form of serial 

correlations marginally detected more significant trends than the regMK test. The partMK test 

shows that the influence of large-scale climate anomalies on the detected trends of winter SMP 

were statistically significant;  

(3) The Pettitt test detected more than 1/4 of the stations with a shift in the AMP and the 

four SMPs. Results of this test show that spring, summer and autumn, SMPs tend to experience 

more increasing than decreasing change points, but the reverse were detected in winter SMP.  

More stations had shown significant change points than trends in AMP and the four SMPs for all 

four regions of Canada. Compared to other seasons, winter had experienced more significant 

trends and change points in extreme precipitation, and most change points had occurred around 

1960-1990; 

(4) Based on results obtained from the Walker and FDR tests, trends and change points 

detected in 1900-2010 and 1930-2010 were mostly field-significant, even though spatial 

correlations between time series are statistically significant. Trends and change points detected in 

Canadian precipitation are likely associated the influence of large scale climate anomalies that 

vary spatially across Canada.  
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Chapter 5 Multifractality of Canadian precipitation and streamflow 

5.1 Introduction 

Precipitation and streamflow records represent valuable historical data for physical 

understanding of hydroclimatic patterns that have received considerable attention in the 

geophysical science in recent decades. In the last several decades, scaling and fractal behavior of 

some geophysical fields, e.g., streamflow, precipitation and temperature, has been widely studied 

(Kantelhardt et al. 2006; Labat et al. 2013; Lovejoy and Mandelbrot 1985; Lovejoy and 

Schertzer 1986; Matsoukas et al. 2000; Movahed and Hermanis 2008; Rego et al. 2013; 

Veneziano and Langousis 2005; Veneziano et al. 2006; Yu et al. 2014; Zhang et al. 2008; Zhang 

et al. 2009b). Many studies show that persistence is a common characteristic in climatological 

and hydrologic time series over a wide range of space-time scales. As the hydrological cycle is 

accelerated by global warming, there is a growing interest to model hydrologic extremes such as 

extreme precipitation, snowfall, flood and drought of river basins (especially ungauged) which 

could have significant impact to our environment and water security. For example, scaling and 

fractal properties of hydroclimatic time series are closely related to their nonstationary behavior, 

the frequency and severity of the occurrence of extreme events, etc. 

Since Hurst (1951) first discovered long-term persistence (LTP) or long-term 

autocorrelation in hydrologic time series using the rescaled-range technique, many types of 

signals were found to exhibit complex behavior with LTP and/or nonstationary trends, e.g., DNA 

sequences (Peng et al. 1994), heart rate dynamics (Ivanov et al. 1999) and hydroclimatic time 

series mentioned above. Such complex behavior was generally characterized by the Hurst 

exponent (H) that quantifies the correlation property of a signal. Earlier scaling studies generally 

focused on the mean (first moment F1(s)) or the variance (second moment F2(s)) of the 

fluctuations in certain length segments, s. Furthermore, between monofractal and multifractal 

analysis, the latter is likely more appropriate for studying scaling properties of geophysical fields 

and time series, given geophysical phenomena can exhibit scaling behavior over a wide range of 

moments (Lovejoy and Schertzer 2007; Pandey et al. 1998; Tessier et al. 1996; Veneziano et al. 

2006). Therefore, a wide range of moments Fq(s) have to be analyzed to comprehensively 

characterize fluctuations of a time series. 
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Next, the presence of LTP represented by Hurst exponents may lead to spurious detections 

of trends in a signal. To eliminate the effect of trends in detecting LTP, Peng et al. (1994) 

introduced the detrended fluctuation analysis (DFA) to estimate H and to estimate scaling 

properties in monofractal and nonstationary time series. Since then, DFA has been widely 

applied to detect LTP in various time series (Kantelhardt et al. 2006; Koscielny-Bunde et al. 

2006; Rybski et al. 2011). Kantelhardt et al. (2002) proposed the multifractal DFA (MFDFA), a 

modified version of DFA, to estimate multifractal properties of a time series. In this study, we 

applied both DFA and MFDFA to investigate the scaling behavior and multifractal spectrum of 

both daily precipitation and daily streamflow records which may or may not have trends. The 

multifractal properties of precipitation and streamflow time series are “fingerprints” that can be 

used in some hydrologic or climate models for re-constructing these time series. 

Compared to classical statistical tests, sample uncertainties associated with statistical 

testing of a time series involving scaling or fractal behavior are generally larger (Kerkhoven and 

Gan 2011; Koutsoyiannis and Montanari 2007; Koutsoyiannis et al. 2007; Rybski et al. 2006). A 

typical sample of observed hydroclimatic data only represents a small portion of a population 

and so it may be difficult to accurately estimate properties of the population from the available 

data. Therefore, based on the hypothesis of short-term persistence (STP) and/or the assumption 

of independent and identically distributed variables, it will be difficult to use classical statistical 

methods to decipher processes characterized by LTP, or multifractal behavior. The detection of 

trends in a hydroclimatic time series with STP, LTP, or multifractal properties is affected by the 

presence of positive (negative) autocorrelation in that time series, which could increase 

(decrease) the probability of rejecting the null hypothesis (e.g., no trend) even when there is 

trend (Koutsoyiannis and Montanari 2007). 

For Canada, there has been limited analyses conducted for detecting the scaling or fractal 

properties of precipitation and streamflow record, e.g., the scaling or fractal characteristics of 

daily snowfall (Shook and Pomeroy 2010) and summer daily rainfall (Shook and Pomeroy 2010) 

of the Canadian prairies had been examined. Gan et al. (2007) found that daily precipitation of 

southwestern Canada generally reveal two linear decay regions of different slopes separated by a 

breakpoint located approximately at 20 to 30 days, and different multifractal behavior of stations 

were detected because rainfall generating mechanisms vary from station to station. It will be 

useful to conduct a comprehensive analysis on the multifractal behavior of both precipitation and 
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streamflow data for the whole of Canada which can be divided into seven climatic zones, 

especially in recent years climate warming and human impacts have intensified the global 

hydrologic cycle, and so in recent years statistical properties of precipitation and streamflow of 

Canada might have experienced changes. 

The objectives of this chapter are to detect: 1) multifractal properties of Canadian 

precipitation and streamflow data, 2) changes to multifractal properties of Canadian 

precipitation, and 3) effects of river regulation to multifractal properties of Canadian streamflow 

using DFA and MFDFA. The chapter is organized as follows: description of precipitation and 

streamflow dataset in Section 5.2, research methods using DFA and MFDFA in Section 5.3, 

discussions of results in Section 5.4, and summary and conclusions in Section 5.5. 

5.2 Data 

We analyzed long-term, daily precipitation records Pi of 100 stations and long-term daily 

streamflow records Qi of 145 stations, which are representative of Canadian rivers and climatic 

zones (Figure 5-1). The precipitation records were taken from the 2
nd

 generation, adjusted 

historical Canadian climate data with 463 stations of precipitation data statistically adjusted for 

known measurement issues such as wind under-catch, evaporation and wetting loss for each type 

of rain-gauge, snow water equivalent from ruler measurements, trace observations and 

accumulated amounts from several days (Mekis and Vincent 2011). Missing data were gap filled 

using data from nearby stations. This is likely the best long-term observed precipitation data 

currently available for Canada. Stations with more than 85 years by 2010, 2011 or 2012 were 

selected for this study. The length of stations ranges from 85 to 173 years, with an average of 

106 years. Generally, precipitation measurements in northern Canada began much later than in 

southern Canada and so relatively few stations of long-term records are available in northern 

Canada (Figure 5-1). Detailed information of the dataset is given in Mekis and Vincent (2011). 

The daily streamflow records taken from the HYDAT Database of Water Survey Canada 

were previously used for nonstationary analysis by Tan and Gan (2015a). The RHBN (Reference 

Hydrometric Basin Network) data included in HYDAT have been extensively used for climate 

change studies, since these data are characterized by relatively pristine and stable land-use 

conditions (<5% of landcover modified) and have a minimum of 20 years of record (Burn et al. 

2010; Coulibaly and Burn 2004). 62 stations with at least 50 years of data, out of over 200 

RHBN stations, were selected for this study. To ensure a large coverage of watersheds over 



103 

 

various geographic areas of Canada, another 83 non-RHBN stations from HYDAT, each with a 

minimum record length of 70 years and a maximum total missing length of 4 years were selected 

(Figure 5-1). River basins of non-RHBN stations could experience anthropogenic influence such 

as land use changes, river regulations, agricultural production and other human activities. 

Average lengths of RHBN and non-RHBN stations are 72 and 85 years, with a maximum length 

of 102 and 118 years, and an average drainage area of 9070 km
2
 and 31,403 km

2
, respectively. 

Stations are mainly selected from southern Canada and around the Rocky Mountain of British 

Columbia.  

5.3 Methodology 

5.3.1 Detrended fluctuation analysis (DFA) 

DFA was applied to the anomaly of daily data by applying: 

P j

i i jP P      and   
Q j

i i jQ Q                                                   (5-1) 

where i = 1,…,N (N is the number of days in the record), the mean daily precipitation jP or 

streamflow jQ are the mean daily values computed for each Julian day j = 1,…,365/366, e.g., for 

j = 1, for 1
st
 of January, etc.  Equation (5-1) is then standardized by the standard deviation for 

each calendar date, i.e., 
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To avoid unnecessary repetitions, subsequent equations, each written only once, will 

represent both P and Q, e.g., applicable to both P

i and Q

i . Correlations between standardized 

precipitation or streamflow anomalies separated by s days are computed as: 
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where means the average is taken over all values of i. C(s) that ranges from -1 to +1 decays 

with the lag in days, which can be represented by a power law relationship if the time series 

exhibits LTP, 

 C s s  , 0 1                                                         (5-4) 

For large lags with finite record length, C(s) could be unstable and it may be difficult to 

achieve a reasonable estimate of C(s). Further, a stationary time series with LTP can exhibit 
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persistent behavior with a tendency to remain more or less unchanged for a prolonged period, or 

could switch abruptly between positive or negative anomalies, which could complicate the 

distinction between trends and LTP (Koutsoyiannis and Montanari 2007). To overcome the 

aforementioned problems, we applied the DFA method developed by Peng et al. (1994) which 

consists of four steps: 

Step 1: Determine the “profile” 

 
1

i

k

k

Y i 


 ,  1, ,i N                                                  (5-5) 

of the data series k of length N. The cumulative sum generates a nonstationary profile Y(i).  

Step 2: Divide the profile Y(i) into  intsN N s non-overlapping segments of equal 

length s. Since the length N is usually not a multiple of a chosen timescale s, very likely a small 

part will remain at the end of Y(i). In order not to disregard this remaining part, the same 

procedure is repeated starting from the opposite end of Y(i). Thereby, 2Ns segments are obtained 

altogether. 

Step 3: Calculate the local trend for each of the 2Ns segments by least-square fitting a 

polynomial pv(i) of order n to the data and determine the variance 
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for each segment v, v=1,…, 2Ns. Linear, quadratic (n=1), cubic (n=2), or higher-order (n>2) 

polynomials can be used in fitting a segment. When linear polynomials are used, the DFA is 

called DFA1, for quadratic polynomials we have DFA2, for cubic polynomials DFA3, etc. In this 

study, DFA2 was used to remove quadratic trends in the profile Y(i), which equals to removing 

linear trends in the original series i . DFA2 was used partly because higher order polynomials, 

such as DFA3 and DFA4 could lead to over-fitting problems.  

Step 4: Average the variance of all segments and take the square root to obtain the mean 

fluctuation function, 
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To find out how F(s) changes with the timescale s, steps 2 to 4 for several timescale s were 

repeated. Apparently, F(s) will increase with s. Since the correlation of i  follows a power law 
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relationship shown in Equation (5-4), F(s) will increase with s in a manner represented by a 

power law function (Kantelhardt 2009; Peng et al. 1994), 

   2
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This means when the autocorrelation function decreases faster than 1/s in time, 

asymptotically we have F(s) ~ s
1/2

. Data with STP tends to undergo exponential decay, which 

means that in Equation (5-4), 1   or by setting h(2)=1/2 when s exceeds the correlation time s

. If the time series i  is stationary, we can also apply standard spectral analysis techniques and 

calculate the power spectrum S(f) as a function of the frequency f. The exponent β in the scaling 

law S(f) ~ f 
-β

 is related to h(2) of F(s) by β=2h(2)-1 (Ihlen 2012; Kantelhardt 2009; Kantelhardt 

et al. 2002; Rybski et al. 2011). 

Movahed et al. (2006) and Movahed and Hermanis (2008) showed that for small scales 

where the sinusoidal behavior of a time series is not pronounced, h(2) > 1 indicates that the time 

series is non-stationary, and the relation between h(2) for small scales and the Hurst exponent H 

is H= h(2)-1. For stationary time series, h(2) for small scales is identical to H. Further, for 

uncorrelated series, H equals to 0.5; 0.5 < H < 1 indicates long-term persistence; 0 < H < 0.5 

indicates short memory or anti-persistence. Hence we can use the value of h(2) to determine 

whether a time series is stationary or nonstationary, and also to estimate its correlation, C(s). 

5.3.2 Multifractal detrended fluctuation analysis (MFDFA) 

For multifractal time series, a single scaling exponent like h(2) or  cannot completely 

characterized the record, since many subsets of the series have different scaling behavior, e.g., 

large fluctuations are less correlated than small fluctuations (Ihlen 2012; Kantelhardt et al. 2002). 

To study multifractal scaling properties, we use the MFDFA proposed by Kantelhardt et al. 

(2002). In this procedure, the variance F
2
(v, s) in Equation (5-7) is replaced by its q/2-th power 

and the square root is replaced by the 1/q-th power, where q ≠ 0 is a real parameter, 
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Analogous to Equation (5-8), the generalized fluctuation exponent h(q) is defined as 

   
~

h q

qF s s                                                               (5-10) 
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where h(1) corresponds to the classical Hurst exponent H determined by the rescaled range 

analysis, and MFDFA and DFA are the same if q = 2, given as h(2) in Equation (5-8). 

For a monofractal time series, h(q) is independent of q, since the scaling behavior of the 

variance F
2
(v, s) is identical for all segments v. On the other hand, if small and large fluctuations 

scale differently, h(q) will depend on q. For positive (negative) values of q, the segments v with 

large (small) variance F
2
(v, s) will dominate Fq(s), and h(q) describes the scaling behavior of 

segments with large (small) fluctuations. h(q) of Equation (5-10) are directly related to the 

classical Renyi exponent τ(q) via (Kantelhardt et al. 2002): 

    1h q q q                                                             (5-11) 

such that the basic Renyi exponent τ(q) can be calculated for both negative and positive q values. 

5.3.3 Other related multifractal formalisms 

In geophysics, other multifractal indicators that are related to h(q) are: 

(1) The “generalized variogram” Cq(s) is defined as, 

       
~

q K q

qC s Y i s Y i s                                             (5-12) 

Olsson (1995) showed that h(q) and the moment scaling function, K(q) are related by  

        K q qh q                                                             (5-13) 

(2) In some geophysics and turbulence papers (Lovejoy and Schertzer 2007; Pandey et al. 

1998; Tessier et al. 1996), the structural function 
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                                                (5-14) 

was analyzed without employing the profile Y(i) as done in Equation (5-6) and (5-12). It can be 

shown that H(q) is related to h(q) by 

      1H q q q h q                                                 (5-15) 

The multifractal exponent H(q) defined by Davis et al. (1994) and the exponent h(q) 

defined in the MFDFA method of Kantelhardt et al. (2002) in Equation (5-10) differ only by 1, 

because MFDFA analyzes the cumulative sum of φi or Y(i), while Davis et al. (1994) analyzed φi 

directly. 

(3) A multifractal series can also be characterized by a singularity spectrum f(α) related to 

τ(q) via the Legendre transform, 
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 d q

dq


     and     f q q                                            (5-16) 

Here, α is the singularity strength or the Hölder exponent, while f(α) represents the 

dimension of a subset of a time series characterized by α. From Equation (5-11), α and f(α) are 

related to h(q), 

 
 dh q

h q q
dq

      and      1f q h q                               (5-17) 

 
Figure 5-1 A map of Canada showing precipitation and streamflow stations selected for this study. 

 
Figure 5-2 Fluctuation functions F2(s) versus timescale s obtained from a DFA2 analysis for four sets of 

representative precipitation (a) and streamflow records (b). 

 

(a) (b) 
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Figure 5-3 The spatial distribution of generalized Hurst exponents h(2) for all 100 daily precipitation records 

(a) and  all 145 daily streamflow records (b and c). h(2) of streamflow data have been obtained from power 

law fits of fluctuation functions for (b) small (4 < s <300 days) and (c) large (400 < s < 12000 days) timescales, 

while h(2) of precipitation data were obtained for (a) time scales of 4 < s <12000 days. 

The multifractal strength of a time series is characterized by the difference between the 

maximum and minimum singularity strength of α, Δ α= αmax- αmin. To find αmax and αmin, f(α) is 

set to 0. 

In general, there are two types of multifractality in time series (Kantelhardt et al. 2002): (1) 

multifractality due to a broadening of the probability density function (PDF) of the time series, 

which cannot be removed by shuffling the series, (2) multifractality due to different correlations 

in small and large scale fluctuations of the time series that have a PDF with finite moments. In 

the latter case, the shuffled time series will show monofractal scaling because all long-term 

correlations are destroyed by the shuffling procedure. Therefore, the easiest way to clarify the 

type of multifractality is to analyze the corresponding shuffled time series. If the multifractality 

is only due to long-term correlation, hshulf(q) = 0.5.  However, the multifractality nature due to 

the broadening of the PDF is not affected by the shuffling procedure. However, if both kinds of 

multifractality are present, the shuffled series will show a weaker multifractality when compared 

to the original time series. 

5.4 Results and discussion 

5.4.1 Long-term persistence (LTP) 

We did a large scale DFA2 and MF-DFA2 analysis on 100 stations of daily precipitation 

and 145 stations of daily streamflow time series. Figures 5-2a and 5-2b show fluctuation 

functions F2(s) obtained from DFA2 for four representative daily precipitation records and four 

streamflow records, respectively. There are differences in fluctuation properties between 

precipitation and streamflow time series. The log-log plots for precipitation are approximately 

straight lines on time scales larger than 10, with some obvious deviations at time scales (s) 

smaller than 10 days (Figure 5-2a), which could be caused by some kinds of artifact (Kantelhardt 

(b) (a) (c) 
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et al. 2001). These results concur with that of Kantelhardt et al. (2006), who analyzed 99 stations 

of daily precipitation records collected from different continents, but they differ from results of 

Gan et al. (2007) who applied a power spectral analysis to daily precipitation of southwestern 

Canada and found crossovers approximately at a timescale of 20 to 30 days. The differences may 

be caused by trends in the time series (Zhang et al. 2014a), or by using two different methods, 

DFA and spectral analysis (Kantelhardt et al. 2001). For time scales larger than 10 days, 

fluctuation functions of these four precipitation records show a power law behavior with 

exponents h(2) ≈ 0.60. From analyzing 9 precipitation records of United States of 15 min 

resolution, Matsoukas et al. (2000) found a crossover at around 5-10 days. Similar scaling 

properties on time scales less than 10 days were also detected from high temporal resolution (1 

min to hourly) precipitation data by others (de Montera et al. 2009; Deidda et al. 1999; Olsson 

1995; Tessier et al. 1996; Verrier et al. 2011). Crossover behavior in precipitation time series 

usually represents different precipitation generating mechanisms under different temporal scales, 

such as convective or stratiform storms (Gan et al. 2007; Lovejoy and Mandelbrot 1985; 

Matsoukas et al. 2000). Because we do not have precipitation data of high temporal resolutions, 

we did not attempt to analyze scaling properties of Canadian precipitation at time scales less than 

10 days. 

In contrast to precipitation data, streamflow data showed a pronounced crossover at time 

scales of 1-2 weeks and about 120-205 days. Similar crossover at time scales of several weeks, 

which is approximately the time scale of Rossby waves (Laštovička et al. 2003), were also 

detected by other studies for daily streamflow (Kantelhardt et al. 2006; Koscielny-Bunde et al. 

2006; Rego et al. 2013; Zhang et al. 2008; Zhang et al. 2009b). Crossovers at time scale of about 

120-250 days could be related to rain-induced and snowmelt-induced streamflow cycles, for 

different streamflow generating mechanisms could lead to different spatial and temporal scaling 

behavior (Gan et al. 2007). Beyond a time scale of 120-250 days, the fluctuation functions of 

streamflow showed a power law behavior with exponents h(2) ≈ 0.84, while at time scales 

between 1-2 weeks and 120-250 days, h(2) ≈ 1.69. For time scales less than 1-2 weeks, h(2) were 

even larger than 1.69. Given that h(2) for streamflow data were mostly larger than 1, it means 

that streamflow time series were generally nonstationary. Therefore for time scales less than 120-

250 days, with h(2) > 1, we found that Hurst exponent H (= h(2)-1) ranges from 0 to 0.99, with 

an average of 0.37 for all the streamflow data analyzed in this study.  
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Figure 5-3 shows the spatial distribution of h(2) obtained from applying DFA2 on 100 

stations of precipitation records at time scales 4 < s < 12000 days (Figure 5-3a); on 145 stations 

of streamflow records at time scales of 4 < s < 300 days (Figure 5-3b), and 400 < s < 12000 days 

(Figure 5-3c), respectively. We investigated scaling exponents h(2) of streamflow data for two 

sets of time scales because of large differences between scaling properties of streamflow of small 

and large time scales. All 100 stations of precipitation records exhibited long-term persistence 

(0.55 < h(2) < 0.81), which agrees with Gan et al. (2007) who found 0.56 < h(2) < 0.67 for 21 

stations of weekly precipitation data of southwestern Canada; with Matsoukas et al. (2000) who 

found 0.6 < h(2) < 1.0 for precipitation of USA of 15 min to 16 months of time resolutions; with 

Kantelhardt et al. (2006) who got 0.50 < h(2) < 0.56 for Germany daily precipitation records at 

time scales greater than 30 days; and Peters and Christensen (2002) and Peters et al. (2001) who 

got h(1) ≈ 0.76 > h(2) for radar precipitation data of Germany at time scales ranging from 1 to 30 

min.  

Figure 5-3a shows spatial distributions of h(2) for Canadian precipitation, which 

essentially reflects different climatic regimes and geographical factors such as topography, 

landcover, soil types, etc., of Canada. Daily precipitation of eastern Canada predominantly 

exhibits weak LTP, while that of central and western Canada show strong LTP (Figure 5-3a). On 

the other hand, spatial distributions of h(2) of streamflow records are related to time scales 

considered. Similar to precipitation records, at large time scales (Figure 5-3c), most streamflow 

records of western and central Canada exhibited significant LTP, while streamflow records of 

eastern Canada showed weak or no LTP. h(2) for streamflow records of northern Canada were 

significantly higher than that of southern Canada. It is interesting that west coastal region of 

Canada showed highest h(2) values for precipitation but relatively low or medium h(2) for 

streamflow at large time scales. At small time scales (Figure 5-3b), h(2) for streamflow were 

mostly larger than 1, except for six stations located in eastern Canada where streamflow h(2) was 

less than 1. This means that at small time scales, streamflow data are mostly nonstationary (h(2) 

> 1) but streamflow series that show LTP mostly come from northern Canada where Hurst 

exponents H (= h(2) −1) ranged from 0.5 to 0.99. Generally, h(2) of Canadian streamflow varied 

more spatially than Canadian precipitation. This is expected given scaling properties of 

streamflow are generally affected by various climatic, geographic and anthropogenic factors 

more than precipitation. For example, Koscielny-Bunde et al. (2006) found that streamflow data 
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with significant contributions from snowmelt are less auto-correlated than streamflow that are 

predominantly rain fed. More comprehensive analyses are needed to confirm factors that 

influence scaling properties of Canadian streamflow. 

 
Figure 5-4 Fluctuation functions of four sets of precipitation (a and b) and streamflow (c and d) records for 

different q-order moments. 

 
Figure 5-5 Generalized Hurst exponents h(q) fitted to Equations (5-18) and (5-19), for representative 

precipitation (a) and streamflow (b) records. 
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5.4.2 Multifractal characterization 

In this section, analytical relations are developed to characterize multifractal behavior of 

100 daily precipitation and 145 daily streamflow records of Canada. Figure 5-4 shows examples 

of MF-DFA2 fluctuations Fq(s) for precipitation data of Kamloops and Edmonton, and 

streamflow data of stations, 01AD002 (Saint John River at Fort Kent) and 08JE001 (Stuart River 

near Fort St. James). Figures 5-4c and 5-4d show that before crossovers, slopes of Fq(s) versus s 

for these two stations tends to decrease as s increases, and more so for negative than for positive 

q moments. However, there were also significant crossovers for precipitation data under negative 

q-order moments at time scale of approximately 500-600 days. Differences between q-order 

Fq(s) for positive and negative q’s are generally more obvious at small than at large time scales. 

From fitting Fq(s) functions with linear regression lines in the double logarithmic space for each 

q-order at time scales 4 < s <12000 days, the slope of these regression lines represent the h(q) for 

these time series. Moving from high positive toward high negative q-order moments, these 

slopes increased significantly, which are signatures of multifractality (Figure 5-5). For example, 

for precipitation of Edmonton (Figure 5-5a), the slope changes from 0.40 for q=9 to 1.33 for q=-

9. For the streamflow at Stuart River near Fort St. James (Figure 5-5b), the slope changes from 

0.67 for q=9 to 1.99 for q=-9. Similar to DFA2 results, on an average, h(q) of streamflow are 

larger than that of precipitation. 

Figure 5-5 also shows two models developed to describe multifractality (Equations 5-18 

and 5-19) fitted to h(q) results derived from MF-DFA. First, the universal multifractal equation 

of Kantelhardt et al. (2006): 

   

   

1
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1

1 1     for  0
1
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K q q q
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h q H q q













 


    


                                (5-18) 

with three parameters H  , 1C  and  , that has been widely used to describe multifractal 

behavior of rainfall and runoff records at smaller time scales (Kantelhardt et al. 2006; Koscielny-

Bunde et al. 2006; Rego et al. 2013; Rybski et al. 2006; Schertzer and Lovejoy 1989; Tessier et 

al. 1996; Yu et al. 2014). 0H   and 0H   mean that fluctuations are scale independent and 

scale dependent, respectively. In Equation (5-18), because 1C  is a numerator while   a 

denominator, their numerical values have opposite effect to K(q) and h(q), e.g., small   and/or 
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large 1C  are indicative of tendencies to large fluctuations in the data, while large   and/or small 

1C  are indicative of greater temporal homogeneity (Koscielny-Bunde et al. 2006; Shook and 

Pomeroy 2010; 2012).  Values of the three parameters are listed in Tables S1 and S2 for all 

precipitation and streamflow records analyzed in this study, respectively.  Equation 5-18 was 

applied only to positive q-order moments and dashed lines in Figure 5-5 represents best fit lines 

to h(q) versus q. 

Figures 5-6a-6c and 5-6g-6i show histograms of H  , 1C  and  derived for all 

precipitation and streamflow data selected for this study, respectively. In terms of 

..1 DevStdMean  , 0.27 0.08H    , 1 0.15 0.05C    and 1.10 0.14   for precipitation, 

and 0.15 0.16H   , 1 0.13 0.04C    and 1.04 0.15    for streamflow data. Tessier et al. 

(1996) reported 0.35 0.20H    for precipitation records and 0.05 0.2H    for streamflow 

records of France. Pandey et al. (1998) obtained 0.03 0.14H    for streamflow records in 19 

river basins of USA. Kantelhardt et al. (2006) obtained 0.45 0.06H    for precipitation 

records and 0.25 0.10H    for streamflow records over Germany. The above values are 

slightly lower than those derived from Canadian precipitation and streamflow data in this study.  

Similarly, our 1C values are similar to the above studies, but our   are much lower than the 

above studies. Tessier et al. (1996) and Kantelhardt et al. (2006) concluded that differences 

between H   for precipitation and streamflow (∆H’) are about 0.3 and 0.2, respectively, while we 

found ∆H’ to be about 0.4. 

However, 1C and  are more important parameters than H’ to characterize multifractal 

properties of climate data shown by h(q) ~ q curves (Kantelhardt et al. 2006; Koscielny-Bunde et 

al. 2006; Lovejoy and Schertzer 1986; Schertzer and Lovejoy 1989; Shook and Pomeroy 2010; 

2012; Tessier et al. 1996). Previous studies reported ranges of 1C and  are 0.01~0.20 and 

1.40~2.00, respectively (Kantelhardt et al. 2006; Koscielny-Bunde et al. 2006; Pandey et al. 

1998; Tessier et al. 1996). Our average 1C and values for precipitation and streamflow only 

differ marginally, 1 0.02C  , ∆α’ ≈ 0.06, even though the distribution of their histograms are 

not similar (Figure 5-6).  However, streamflow fluctuations are generally higher than 

precipitation because streamflow data is rarely generated by a simple time integration of rainfall 

data but by a complex, highly nonlinear, basin-scale rainfall-runoff transformation process 
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involving multiple forms of surface and subsurface runoff that are affected by heterogeneous 

vegetation cover, terrains, soil types and moisture, etc. (Tan and Gan 2015a).  

 

 
Figure 5-6 Histograms of multifractal parameters, H  (a and g), 1C (b and h) and  (c and i) for Equation 

(5-18), and a (d and j) and b (e and k) for Equation (5-19), and multifractal spectrum width (strength)  (f 

and l) for 100 daily precipitation records (a-f) and 145 daily streamflow (g-l) records. 

Next, we applied a modified, multiplicative cascade model (Koscielny-Bunde et al. 2006) 

to the precipitation and streamflow data as shown in Figure 5-5. 

 
 

 
 ln ln1

    or  
ln 2 ln 2

q q q qa b a b
q h q

q q


 
                                  (5-19) 

Equation 5-19 is also applicable to negative q and can be used to estimate the multifractal 

spectrum f(α) of a process, whose multifractal strength is defined as Δα=|lna-lnb|/ln2. Values of 

parameters a and b were listed in Tables S1 and S2 for precipitation and streamflow data, 

respectively, while their histograms are shown in Figures 5-6d-e and 5-6j-k, respectively. For 

streamflow data a and b distributed fairly evenly over 0.25-0.75, but for precipitation data, a and 

b mainly distributed around 0.25, 0.50 and 0.75. The mean values of a and b are 0.60 and 0.50 

for precipitation data, and 0.43 and 0.44 for streamflow data, respectively. Equation (5-19) 

generally fitted the precipitation and streamflow data well except for 20 precipitation and 38 

streamflow time series. 
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Figure 5-7 Multifractal spectrum (f(α) ~ α) of representative precipitation (a) and streamflow (b) records. 

Figure 5-7 shows examples of multifractal spectrum for some selected precipitation and 

streamflow data, while spatial distributions of the multifractal strength, ∆α, of Canada are shown 

in Figure 5-8. The multifractal spectrum of precipitation data of the four selected stations is 

relatively similar to each other, especially for low α values, but not so for streamflow data whose 

multifractal spectrum varies widely between the four selected stations. This further demonstrates 

differences in the multifractal properties between precipitation and streamflow data. As 

expected, histograms of the multifractal spectrum width Δα of streamflow have a broader 

distribution than the precipitation (see Figures 5-6f and 5-6l), even though they tend to 

concentrate within a range of 1.25-2.75.  Δα of precipitation are more evenly distributed.  Mean 

values of Δα, αmin and αmax for precipitation data are 1.57, 0.24 and 1.81, and for streamflow data 

are 1.98, 1.00 and 2.98, respectively. Apparently, the multifractal strength of Canadian data are 

considerably higher than that of German data, e.g., Δα=0.29 for precipitation and Δα=0.49 for 

streamflow of Germany (Kantelhardt et al. 2006). This could be partly because Canada has 

higher snowfall to rainfall ratios and larger variations between streamflow generated by 

snowmelt versus that generated by rainfall. However, for both Canada and Germany, the 

multifractal strength of precipitation is generally smaller than that of streamflow. In terms of 

spatial variability, Δα of streamflow data are less dependent on the geographic location or the 

climate zone than precipitation data, even though lower Δα values are usually found in non-

RHBN streamflow stations of southern Canada (Figure 5-8).  For precipitation data, western 

(central) Canada generally has lower (higher) Δα values, while for eastern Canada Δα values are 

more scattered.   
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Figure 5-8 Spatial distributions of the multifractal spectrum width Δα of precipitation (a) and streamflow 

records (b and c). The same legends apply to figures (a), (b) and (c).  

We also found that multifractal properties of observed precipitation and streamflow data 

are more related to their autocorrelations than other factors such as the distribution of i because 

both randomly shuffled precipitation and streamflow data have not much multifractal strength.  

 

Figure 5-9 Distribution of trends of 30 parameters computed for the universal multifractal model (Equation 

5-18) applied to 100 stations of precipitation time series, each divided into 30 non-overlapping subseries. 
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Figure 5-10 Differences in q-order Hurst exponent (hq) and multifractal spectrum (αmax−αmin) of the daily 

streamflow of the North Saskatchewan River at Edmonton (Station # 05DF001) between pre- and post-

change point periods caused by the streamflow regulation that began in 1973. The top panel shows the 

observed 1911-2010 streamflow anomalies; and the middle and the bottom panels show multifractal 

characteristics of the pre-change and post-change subseries, respectively. 

 

5.4.3 Temporal changes of multifractal properties of precipitation 

To test temporal changes of universal multifractal parameters of Equation 5-18, 30 sets of 

H’, C1 and α’ were calculated for each precipitation time series, by first dividing each time series 

uniformly into 30 subseries, and from the parameters estimated for each subseries, temporal 

trends of these parameters were estimated. Results of Mann-Kendall tests on the temporal trends 

of these parameters are shown in Figure 5-9. Since no statistically significant trend was found for 

H’, only trends in C1 and α’ are presented in Figure 5-9. Out of 100 stations, 38 stations showed 

statistically significant trends in C1 and/or α’, of which 33 stations showed increasing trends in α’ 

and/or decreasing trends in C1 and 5 stations showed decreasing trends in α’ and/or increasing 

trends in C1. These stations with significant trends distributed across Canada, with some clusters 

Change point Prechange Period Postchange Period 
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located in southeastern British Columbia and eastern Canada. Increasing trends in α’ combined 

with decreasing trends in C1 (downward triangles in Figure 5-9) means that precipitation became 

temporally more uniform because multifractal strength decreased with time. Temporal trends in 

multifractal strength for snowfall and summer rainfall over the Canadian Prairies were also 

detected by (Shook and Pomeroy 2010; 2012). The detected temporal trends of multifractal 

strength of Canadian precipitation could be related to impacts of climate change.  

5.4.4 Multifractal changes in streamflow data 

Over the Twentieth Century, hydrologic processes of Canadian river basins had been 

significantly altered by human activities such as streamflow regulation with dams (Assani et al. 

2006; Peters and Prowse 2001), afforestation and deforestation (Buttle 2011), and so multifractal 

properties of streamflow subseries data for pre-change and post-change periods are expected to 

be different from each other. Multifractal properties of streamflow subseries of stations located 

downstream of dams, before and after dam operation began, are compared to study the impact of 

human influences on streamflow data of Canada. Tan and Gan (2015a), who used the same 

streamflow dataset, showed that annual maximum daily streamflow of 19 out of 62 RHBN 

stations, and 40 out of 83 non-RHBN stations, exhibited significant abrupt changes. Therefore, 

for these 59 daily streamflow time series, we separated each streamflow time series to two 

subseries, one before and one after the detected change point (around the 1940s and the 1970s), 

and multifractal characteristics for both subseries were analyzed. 

Figure 5-10 shows multifractal changes to daily streamflow time series of the North 

Saskatchewan River at Edmonton (Station # 05DF001) before (lower panel) and after (lower 

panel) the dam operation began. The top panel shows that there were more large fluctuations in 

the pre-change than in the post-change streamflow subseries. Given h(q) for positive (negative) q 

is better in analyzing the scaling behavior of large (small) fluctuations (Ihlen 2012; Kantelhardt 

2009), we explored scaling properties of small and large fluctuations and their variations 

between pre-change and post-change subseries by comparing h(q) over a range positive and 

negative q-order as shown in Figure 5-10. The maximum h(q) (1.72) of the pre-change subseries 

is higher than that of the post-change subseries (1.49), while their minimum h(q) are almost the 

same. As a result, the range of h(q) for the pre-change subseries to the post-change series 

decreases from 0.93 to 0.71. Streamflow regulated by dam operations are expected to be 

smoother with less fluctuation than un-regulated streamflow. However, the effect of dam 
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operation for extreme floods that exceed the control capacity of a dam will likely be insignificant 

or negligible. With dam regulation, Peters and Prowse (2001) found that the average winter flow 

of the Peace River was about 2.5 times higher, while annual peaks (1-day, 15-day, 30-day highs) 

were about 35–39% lower, and so the overall variability in the daily streamflow of the Peace 

River decreased.  

 

Figure 5-11 Comparison of the multifractal parameters between the pre- and post-change point subseries of 

Canadian streamflow records detected with statistically significant abrupt change points. 

Differences in the multifractal spectrum between pre-change and post-change subseries are 

evident from plots of α, f(α), and Δα= αmax- αmin shown in Figure 5-10. The multifractal strength, 

Δα, decreased from 1.14 for the pre-change subseries to 0.93 for the post-change subseries partly 

because Δα for the right half of the multifractal spectrum decreased from 0.52 for the pre-change 

subseries to 0.35 for the post-change subseries.  In other words, streamflow regulation weakened 

the multifractal strength of the North Saskatchewan River. 

Figure 5-11 compares the multifractal strength of the pre-change and post-change subseries 

of the 59 stations with abrupt change point detected. It is interesting to find that there was no 

consistent difference between the multifractal strength of the two subseries of these stations 

partly because about equal number of stations exhibited a decrease or an increase in h(q) and Δα 

between the pre- and post-change periods. Among these 59 stations, only 27 stations were 

subjected to the effect of dam operation.  Out of these 27 stations, only 13 stations showed a 

decrease in h(q) and Δα, such as Station #05DF001, but the multifractal strength of the other 14 

stations had increased. Further, out of 62 regulated stations, change points were detected only in 

35 of such stations, which suggest that streamflow regulations may not always result in the 

occurrence of statistically significant change points, which may related to the reservoir operation 
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rules of the stations, and the degree of changes in streamflow regimes because of reservoir 

operations (Assani et al. 2006; Tan and Gan 2015a). Even though precipitation regimes of 

Canada have become more uniform temporally (Section 5.4.3), streamflow may fluctuate more 

erratically because of streamflow regulation and other human activities that result in hydrologic 

changes of river basins. In addition, for Canada dominated by winter snowfall, a warmer climate 

has inevitably changed the timing and magnitude of peak snowmelt streamflow (Assani et al. 

2006). More detailed, basin scale studies are recommended to identify factors behind detected 

changes to multifractal properties of the streamflow regimes of Canada. 

5.5 Summary and conclusions 

In this study, 100 and 145 stations of long-term daily precipitation and streamflow records 

across Canada were respectively analyzed using DFA and MFDFA. All precipitation time series 

showed LTP at both small and large time scales, while streamflow time series generally showed 

nonstationary behavior at small time scales and LTP at large time scales. Widespread crossovers 

of fluctuation functions, F2(s), versus timescale s for streamflow data at approximately a time 

scale of 120-250 days could be related to the cross-over between rain-induced and snowmelt-

induced streamflow cycles, since no crossover was found in precipitation data. In general, the 

multifractal strength of precipitation data was location dependent but not so for streamflow data. 

The multifractal behavior of Canadian precipitation and streamflow data measured in terms of 

generalized Hurst exponents, h(q), can be accurately described by the universal multifractal 

model for positive q-order moments, and also by the modified multiplicative cascade model but 

it can only fit about 2/3 of the h(q) of precipitation and streamflow data consistently. 

About 1/3 of the fitted parameters of the universal multifractal model for precipitation data 

showed positive temporal trends, which means that precipitation of these stations became 

temporally more uniform because their multifractal strength decreased with time. However, only 

about half of the stations whose streamflow data exhibited statistically significant abrupt change 

points showed a weakening in the multifractal strength moving from the pre-change to the post-

change periods. Differences in the multifractal strength between Canadian precipitation and 

streamflow data suggest that the persistence of streamflow was not only because streamflow is 

more auto-correlated than precipitation, it is also more consistently affected by human activities 

in terms of runoff production and temporal processes. More extensive research is needed to study 
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the inhomogeneous, multifractal properties of precipitation and streamflow spatially and 

temporally.
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Chapter 6 Wavelet analysis of precipitation extremes over Canadian ecoregions and 

teleconnections to large-scale climate anomalies 

6.1 Introduction 

Coherent climatic patterns of large-scale atmospheric circulation can appropriately 

interpret the variabilities and long-term persistence in hydroclimatic records. Interannual and 

interdecadal variabilities in hydroclimatic variables (e.g., temperature, precipitation and 

streamflow) have been closely associated with large floods and droughts and found to be 

extensively teleconnected to low-frequency large-scale climatic fluctuations, which can further 

our understanding of the physical dynamics of the hydrologic cycle (Coulibaly and Burn 2004; 

Elsanabary et al. 2014; Gan et al. 2007; Jiang et al. 2014; Özger et al. 2009). Some temporal and 

regional teleconnections between low-frequency large-scale climate anomalies and the 

variability of hydro-climatic variables can lead to improved hydrologic frequency analysis and 

prediction (Khedun et al. 2014; Kuo et al. 2010; Min et al. 2013) which will be useful for 

regional water resource management.  

The Canadian climate is significantly influenced by natural climate variabilities, such as 

the El Niño Southern Oscillation (ENSO), the Pacific-North American (PNA) pattern, the North 

Atlantic Oscillation (NAO) and the Pacific Decadal Oscillation (PDO), as well as other 

teleconnection patterns, and their influence is seasonally and regionally dependent (Bonsal and 

Shabbar 2008; Coulibaly 2006; Coulibaly and Burn 2004; Gan et al. 2007; Ropelewski and 

Halpert 1986; Shabbar et al. 1997). For example, distinct patterns of negative (positive) 

precipitation anomalies in Southern Canada have been linked to El Niño (La Niña) events, while 

significant positive precipitation anomalies over the southeastern Northwest Territories and 

northern Prairies have been associated with El Niño events (Shabbar et al. 1997). For western 

Canada, low-flow events have frequently been related to the warmer/drier conditions during El 

Niño events and positive phases of the PDO and PNA (Bonsal and Shabbar 2008). The influence 

of NAO on Canadian precipitation was found to be restricted to northeastern regions, where 

positive NAO values were related to lower than normal winter precipitation (Stone et al. 2000). 

However, most previous studies on low-frequency relationships between Canadian precipitation 

and large-scale climate anomalies have focused on monthly or seasonal precipitation totals, but 
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oscillations of precipitation extremes and their teleconnections to large-scale climate anomalies 

are seldom examined.  

Recent studies have started to identify the spatiotemporal impacts of ENSO on the 

probability distribution of daily precipitation. The influence of ENSO on the frequency of heavy 

precipitation was examined over the contiguous United States. El Niño was associated with an 

increase in the frequency of heavy precipitation over the southwestern United States (US) but a 

decrease over the northwestern US (Cayan et al. 1999). An ENSO signal was also linked to the 

frequency of heavy precipitation in other parts of the US (Gershunov and Barnett 1998). Other 

interannual and interdecadal climate variabilities in the North Pacific have also exerted influence 

on the frequency of heavy precipitation in the US (Gershunov and Cayan 2003). Grimm and 

Tedeschi (2009) and Ropelewski and Bell (2008) found that extreme precipitation events over 

South America were mainly modulated by ENSO. Zhang et al. (2010) examined changes in 

probability distributions of winter daily maximum precipitation over North America by using 

climate indices for ENSO, PDO and NAO as covariates to estimate the time-varying parameters 

of generalized extreme value (GEV) distributions. By incorporating the Southern Oscillation 

Index (SOI) into parameters of marginal GEV models, Shang et al. (2011) fitted max-stable 

process models to winter maximum daily precipitation of California. They found that ENSO has 

shifted the location parameter of GEV distributions. Min et al. (2013) found that changes in the 

magnitude of extreme seasonal precipitation over Australia were caused by ENSO, the India 

Ocean Dipole and the Southern Annular Mode. These studies show that large-scale climate 

variabilities played a significant role in different aspects of probability distributions for heavy 

precipitation in various regions.  

Some correlation, composite and empirical orthogonal function (EOF) analyses also 

indicate that climate variabilities influenced extreme temperature and precipitation. There are 

statistically significant Pearson correlations between global precipitation extremes and ENSO 

(Alexander et al. 2009; Curtis et al. 2007). Kenyon and Hegerl (2010) examined global stations 

where precipitation extremes showed a statistically significant difference between positive and 

negative phases of some large-scale climate anomalies, such as ENSO, NAO and the North 

Pacific. They found that precipitation extremes were most substantially affected by ENSO. 

Represented by leading EOFs of winter precipitation over the contiguous US (Schubert et al. 

2008) and Southern Brazil (Pscheidt and Grimm 2009), large spatial scale storms were 
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significantly influenced by the state of ENSO and interdecadal, non-ENSO variabilities. Through 

correlation analysis, Wang et al. (2014a) examined long-term changes in extreme precipitation 

over China and the US and their linkage to climate anomalies of oceanic–atmospheric origin. 

The frequency of extreme precipitation over the Mediterranean region was associated with 

ENSO, NAO, Arctic Oscillation, the East Atlantic/Western Russian (EAWR) pattern and the 

Scandinavian pattern (Krichak et al. 2014). Duan et al. (2015) used cross-wavelet analysis to 

study the correlation of extreme precipitation over Japan with climate indices. Cioffi et al. (2015) 

also detected possible relationships between ENSO, NAO, EAWR and global temperature 

gradients and the European extreme precipitation by cross-wavelet analysis. Markovic and Koch 

(2005) analyzed the cross-wavelet spectra and the scale-averaged wavelet power (SAWP) of 

NAO and German extreme precipitation. They found that NAO exerted opposite effects on low-

frequency variabilities of extreme precipitation over northern and southern Germany.  

Given that climate oscillations may modulate the observed evolution of precipitation 

extremes, this study has two objectives: (1) to detect the dominant oscillations of Canadian 

monthly maximum daily precipitation (MMDP) and their temporal variations using wavelet 

analysis; and (2) to relate observed extreme precipitation signals to some large-scale climate 

anomalies, i.e., ENSO (represented by the Niño 3 Sea Surface Temperature Index (NINO3) and 

SOI), NAO and PDO, by wavelet coherence (WTC) analysis, wavelet EOF (WEOF) analysis and 

composite analysis. This chapter is organized as follows. The data of Canadian precipitation and 

large-scale climate anomalies is described in Section 6.2, technical details on research methods 

such as WTC, WEOF and composite analysis in Section 6.3, results and discussions in Section 

6.4, and conclusions in Section 6.5. 

6.2 Data 

Trends in Canadian extreme precipitation have been extensively studied using the first 

generation Canadian daily precipitation dataset released in 1999 (Mekis and Hogg 1999; 

Peterson et al. 2008; Vincent and Mekis 2006; Zhang et al. 2000; 2010). The second generation 

adjusted Canadian daily precipitation (APC2) dataset released recently was used in this study. 

Precipitation observations, which are the source of APC2, were statistically adjusted for known 

measurement issues (such as evaporation and wetting loss) for each type of rain-gauge, wind 

under-catch and snow water equivalent that was estimated (Mekis and Vincent 2011). Although 
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APC2 has 464 station-adjusted daily precipitation series, the observation length, data gap and 

spatial distribution of stations vary significantly among stations. 

To study adequately the low-frequency variabilities of Canadian extreme precipitation and 

to compare differences in results between different regions, 131 stations (Figure 6-1) with daily 

precipitation data collected in 1930-2005 were selected from the APC2 dataset for this study. 

The selected stations are distributed evenly in western Canada, fewer stations in northern and 

central Canada, but relatively more stations in the eastern, coastal regions of Canada. For each 

station, the MMDP time series was extracted from its daily precipitation time series, and then it 

was detrended by subtracting the monthly mean extreme precipitation from the MMDP time 

series for each month to obtain the MMDP anomalies. The standardized MMDP anomalies of the 

131 stations for 1930–2005 are transformed by wavelet analysis while seasonal maximum daily 

precipitation (SMDP) series were extracted for composite analysis. 

 

Figure 6-1 Locations of 131 selected precipitation stations and nine ecoregions over Canada. The Provinces or 

Territories of Canada are: AB, Alberta; SK, Saskatchewan; MB, Manitoba; NL, Newfoundland & Labrador; 

PE, Prince Edward Island; NS, Nova Scotia; NT, Northwest Territories; NU, Nunavut; ON, Ontario; NB, 

New Brunswick; YT, Yukon Territory; British Columbia; and QC, Quebec. 

Monthly climate indices of large-scale climate anomalies, ENSO represented by SOI and 

NINO3, NAO and PDO that affected Canadian precipitation were analyzed. NINO3 is a time 

series of SST anomalies over the equatorial Pacific (Morice et al. 2012), while SOI is a time 

series of normalized monthly differences in sea level pressure between Tahiti and Darwin 
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(Ropelewski and Halpert 1986; Trenberth 1984). When ENSO is active, there is large-scale 

atmospheric fluctuation in the tropical and subtropical Pacific and Indian Oceans (Trenberth 

1984). NAO index is differences in sea level pressure (SLP) anomalies between stations in the 

Reykjavik and Azores (Jones et al. 1997); the PDO index is the leading principal component 

from an un-rotated empirical orthogonal analysis of monthly detrended SST anomalies in the 

North Pacific Ocean (Mantua et al. 1997). The above monthly data of climate indices were 

provided by the Global Climate Observing System (GCOS) Working Group on Surface Pressure 

(WG-SP). 

6.3 Research methodology 

We extracted dominant oscillations of Canadian MMDP using continuous Morlet wavelet 

transformation, and studied relationships between detected oscillations and some large-scale 

climate anomalies that have possibly affected the climate of Canada using WTC, WEOF, partial 

wavelet coherence (PWC) and multiple wavelet coherence (MWC). The wavelet analysis is 

briefly introduced below. 

6.3.1 Wavelet analysis 

Wavelet transform (WT) decomposes time series into time-frequency space and identifies 

the dominant modes of variability and how these modes vary in time. Continuous WT is 

appropriate for extracting a wide range of possible dominant frequencies from geophysical and 

hydroclimatic time series. WT is also an efficient approach to analyzing nonstationary signals. 

This study is limited to practical details useful for applying the wavelet analysis on the MMDP 

time series. Further detailed descriptions of wavelet analysis can be found in literature (e.g., 

Aguiar-Conraria and Soares 2014; Grinsted et al. 2004; Ng and Chan 2012b; Torrence and 

Compo 1998). 

In a continuous WT, using a wavelet g(t), an observed time series x(t) can be expanded. 

The former scales a particular wavelet member up and down with a flexible window width, while 

the latter slides the window center along the time axis, with x(t) projected over the wavelet. g(t) 

is a packet wave with a certain amplitude and scale, satisfying . In this study, we 

used the Morlet wavelet. The WT of x(t) is 

  0g t dt





http://www.wmo.int/pages/prog/gcos/index.php
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                              (6-1) 

where g* is the complex conjugate of g, ξ is the scale parameter for controlling the window width 

and is often taken as multiples of the lowest possible frequency (1/δt), δt is the time interval, γ is 

the translation parameter for sliding the wavelet along the time axis, and ξ
-1/2

 is a normalized 

factor to keep the total energy constant. The wavelet power spectrum is defined as . A 

picture describing how the wavelet power spectrum of a signal varies in the time-frequency 

domain can be constructed by varying ξ and γ. 

 

Figure 6-2 Continuous Morlet wavelet spectrum of MMDP and Global wavelet power spectrum (GWS) (solid 

line) with the 95% confidence level (dashed line) at Crowsnest and Aroostook are presented. The thick black 

contours depict the 95% confidence level of local power relative to a white noise background. The white 

dashed line is the cone of influence beyond which the energy is contaminated by the effect of zero padding.  

Figure 6-2 shows the WT for the MMDP at Crowsnest, Alberta, and Aroostook, New 

Brunswick. The thick black contour lines enclose regions of statistically significant wavelet 
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power in the time-frequency space at a 5% significance level of a white noise process. 

Significant interannual (approximately 4–10 years) oscillations occurred in the 1950s to 1970s 

and the 1990s at Crowsnest, and in the 1940s to 1960s and 1980s to 2005 at Aroostook. 

Interdecadal (10–25-year) oscillations were active from the 1940s to 2005 at Crowsnest and from 

the 1960s to 2005 at Aroostook. 

To interpret the wavelet spectrum and conduct further statistical analysis, various 

quantities derived from WT were proposed to condense the vast quantity of information 

contained in the wavelet spectrum. We used the scale-averaged wavelet power (SAWP) to 

further investigate the fluctuations in wavelet power over specific ranges of wavelet periods 

(bands). SAWP, over scales j1 to j2, is the weighted summation of the wavelet power spectrum: 

                                                      (6-2) 

where δj is a scale averaging factor and Cδ is a reconstruction factor. The global wavelet power 

spectrum (GWS), which is an equal-weighted average of all the local wavelet power spectra for 

each scale and a special case of SAWP, only shows dominant scales with no temporal 

transformation. GWS in Figure 6-2 presents a statistically significant low-frequency oscillation 

with a period of 10–25 years at Crowsnest and a period of 6-8 years, 10-20 years  and a possible 

60-80 years at Aroostook.  

Scale bands and time periods within which the MMDP time series (Y) presents covariance 

with climate index series (X) can be identified from WTC, which is defined as [Torrence and 

Compo, 1998]: 

                                       (6-3) 

where is the cross-wavelet spectrum of Y and X, is a smoothing operator and

. is the normalized covariance between two time series, as the WT 

conserves variance. WTC has been widely used to study the relations between precipitation or 

streamflow in different regions and some large-scale climate anomalies (see, e.g., Elsanabary et 

al. 2014; Gan et al. 2007; Grinsted et al. 2004; Jiang et al. 2014; Özger et al. 2009; Torrence and 

Compo 1998).  
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We also assessed correlations between the PCs of band-pass filtered signals of MMDP 

time series and climate index series at multiple-scale bands. One can reconstruct the band-passed 

(wavelet-filtered) signal x′(t) over a subset of scales from the wavelet coefficients by the 

equation, 

                                                (6-4) 

where is a factor to remove the energy scaling (Torrence and Compo 1998). 

Because selected climate indices appear to be interrelated at several scales (Gan et al. 

2007; Ng and Chan 2012a, 2012b), the stand-alone relationship between a climate index series 

and the MMDP time series should be further studied by removing the effect of another climate 

index. In wavelet applications, PWC is a technique similar to partial correlation for finding the 

resulting WTC between two time series Y and X1 after the influence of the time series X2 is 

eliminated (Mihanović et al. 2009). WTC is principally similar to the traditional correlation 

coefficient, and it shows a localized correlation in the time-frequency space. Mihanović et al. 

(2009) extended a simple linear correlation to the WTC between Y and X1 ( ), Y and X2 (

), and X1 and X2 ( ) and suggested that the PWC is Equation (5). 

                                                 (6-5) 

6.3.2 Wavelet empirical orthogonal function (WEOF) analysis 

WEOF analysis, also called wavelet principal component (WPC) analysis, is a statistical 

approach to reducing the dimensionality of SAWP series at multi-locations to some orthogonal 

PCs that explain the majority of the variability in regional SAWP. WEOF is applied to transform 

a matrix [ ]n×k of SAWP by the n observations on k stations into another matrix [ ]n×k of SAWP 

signals and noises. WPCs, like ordinary PCs, are the signals and noises accounting for all the 

variability of SAWP. Denoting these WPCs as U and its component uj: 

                                    (6-6) 
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where eij are the eigenvectors, xi
* represent the standardized anomalies of SAWP, and J is a small 

subset of the k possible signals. If the MMDP variability is the same for every station, the matrix 

U would contain only one SAWP signal (WPC1) to account for all the variability of the SAWP. 

However, MMDP time series vary from station to station in reality. Hence, usually a few WPCs 

tend to represent the majority of the SAWP variability. 

6.3.3 Composite analysis 

A composite analysis was conducted for each station to investigate the possible influence 

of large-scale climate variability on local SMDP for all seasons. For each season, the composite 

SMDP will be computed from the 5-year mean SMDP observed in the 5 years when climate 

indices (SOI, NINO3, NAO, and PDO) were the lowest (Plow) and the highest (Phigh), 

respectively. Typically, Plow and Phigh for a given station and season correspond to the warm or 

cold phase of each climate index, respectively. The difference between these 5-year averages 

(Plow−Phigh) demonstrates the influence of certain large-scale climate oscillations at the local 

(station) scale (Zhang et al. 2010). The statistical significance of these differences was tested 

based on a bootstrapping method, where for each station and at each season, SMDP was 

computed from two randomly selected 5-year samples, and the difference (δPmax) between them 

was estimated. The empirical distribution of δPmax was obtained by repeating this process 5000 

times. If Plow−Phigh ≤ 2.5
th

 percentile of δPmax, or if Plow−Phigh ≥ 97.5
th

 percentile of δPmax, the 

influence of a particular large-scale climate pattern on SMDP is statistically significant at the 5% 

level. 

6.4 Results and discussion 

6.4.1 Wavelet analysis of MMDP 

To fully show the spatiotemporal properties of the wavelet power spectrum of all studied 

Canadian MMDP time series, time-longitude Power Hovmöller diagrams of the SAWP are 

shown in Figure 6-3. Three scale bands (1-3 years, 3-8 years and 8-30 years) were selected to 

compute the SAWP. The SAWP enclosed in the solid black contours in Figure 6-3 is statistically 

significant at the 5% level relative to a white noise process. For North America, the interannual 

oscillations (1-3 years and 3-8 years) are usually modulated by the low-frequency components of 

ENSO, while decadal or interdecadal oscillations (8-30 years) are associated with climate 
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anomalies of the North Pacific and North Atlantic (Bonsal and Shabbar 2008; Gan et al. 2007; 

Schubert et al. 2008; Shang et al. 2011).  

 

Figure 6-3 Time-longitude Power Hovmöller diagrams of the SAWP (a-c) and space-average of the SAWP 

power Hovmöller (d-f) for Canadian monthly maximum precipitation anomalies at the 131 stations: 1-3-year 

scale band (Figures 6-3a and 6-3d), 3-8-year scale band (Figures 6-3b and 6-3e), and 8-30-year scale band 

(Figures 6-3c and 6-3f). The grey contours are at a normalized power of 0.13, 0.035, and 0.015 for Figure 3a, 

Figure 3b and Figure 3c, respectively. The solid black contours enclose periods of statistically significant 

SAWP relative to a white noise process at the 5% significance level.  

(a) 

(b) 

(c) 

d) 

(e) 

(f) 
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Unlike the space-averaged SAWP of the southwestern Canadian seasonal total 

precipitations, for which, on average, up to 15% and 7% of the variance was accounted for by the 

3-8- and 8-30-year scales, respectively (Gan et al. 2007), the same scales only account for up to 

4.8% (Figure 6-3e) and 2.2% (Figure 6-3f), respectively, of the variance of the Canadian MMDP 

time series. Similar high percentages of variance represented by interannual scales are also found 

for the seasonal total precipitation and streamflow of Canada (Anctil and Coulibaly 2004; 

Coulibaly 2006; Coulibaly and Burn 2004, 2005). However, lower variance representations were 

also found in the German MMDP time series (Markovic and Koch 2005). This relatively low 

space-averaged variance in % is partly caused by large variances in the MMDP time series with a 

positively skewed and a long decaying tail distribution, and partly caused by large spatial 

variabilities in MMDP processes, in which the high SAWP of a station may be averaged out by a 

neighbor station with very low SAWP. The 1-3-year oscillation is prevalent for Canadian 

MMDP time series and accounts for up to 12-15% of the total variance. The high SAWPs 

enclosed in the solid black contours in the three time scales for some stations are usually 2-4 

times higher than the spatially averaged SAWP but mostly with a lifetime shorter than 3 years. 

By comparing our results with those of Coulibaly (2006) and Gan et al. (2007), extreme 

precipitation events show more randomness than seasonal total precipitation. Because SAWP of 

all stations studied are presented in several Hovmöller diagrams to give an overview of the 

spatiotemporal variability of extreme precipitation from west to east, small patches of solid black 

contours scattered across the Hovmöller diagrams represent significant activity of selected scales 

at some stations, as shown in Figures 3a-c. 

Comparing the SAWP of 1-3-year time scale for individual stations, the largest percentage 

of variance explained by the 1-3-year band varies from as low as 5% at Powell River, British 

Columbia, in 1930-1935 to as high as 89% at Mont Laurier, QC, in 1939-1940, which is far 

larger than the maximum space-averaged SAWP of 15% in this band (Figure 6-3a). There had 

been several high SAWP (gray areas in Figure 6-3a) at the 1-3 year scale that occurred fairly 

consistently across Canada around 1960-1990, but on a whole their occurrences had been 

haphazard and limited.  

Compared to the 1-3 year scale, the diagram for the 3-8-year scale (Figure 6-3b) shows 

more patches of statistically significant SAWP in eastern (east of 75
o
W) and western (west of 

115
o
W) Canada than in Central Canada (115

o
W~75

o
W). The percentage of variance explained 
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by the 3-8-year band for individual stations varies from less than 1% at Barkerville, British 

Columbia, during 1935-1950 to more than 40% at the same station in 1931-1933, which is much 

higher than the maximum space-averaged SAWP of 4.8% at this band (Figure 6-3e).  For the 8-

30-year band, no statistically significant SAWP had been observed in the study period. Although 

the space-averaged 8-30-year SAWP only explained about 1.8% of the total variance of 

Canadian MMDP time series, the 8-30-year SAWP accounted for more than 8% of the total 

variance of some individual stations (e.g., from 1936 to 1945 at Rimouski, QC; from 1935 to 

1943 at Barkerville, British Columbia; and from 1933 to 1945 at Collegeville, NS).  

The large difference between the space-averaged and individual SAWPs demonstrates high 

spatial variabilities of extreme precipitation events in general. However, there had been cases of 

regionally and temporally coherent oscillations detected across certain longitudes but these 

oscillations were mostly short-live. To investigate the variability of MMDP in details, we used 

the agglomerative hierarchical clustering method to divide Canada into 9 clusters with similar 

probability distributions for MMDP (Hosking and Wallis 1997). As expected, the 9 clusters 

generally fall within 9 Canadian ecoregions classified by Environment Canada (1996) (Figure 6-

1), although some clusters may occupy more than one ecoregions at the borders. Therefore, we 

decided to further analyze the variabilities of MMDP based on the 9 ecoregions: Pacific 

Maritime (PM), Boreal Cordillera (BC), Montane Cordillera (MC), Canadian Prairies (CP), 

Boreal Plain (BP), Boreal Shield (BS), Taiga Plain (TP), Mixedwood Plains (MP), and Atlantic 

Maritime (AM).  

6.4.2 Wavelet analysis of climate indices 

Figure 6-4 shows the wavelet power spectra of the monthly climate indices SOI, NINO3, 

NAO and PDO. SOI showed statistically significant interannual variability at 2 to 8 year time 

scale in 1935-1960 and 1965-2000, which agrees with results of previous studies for seasonal 

SOI (Gan et al. 2007; Jiang et al. 2014; Torrence and Compo 1998). We also identified a 

statistically significant interdecadal variability at 8-30-year scale post-1970s (Figure 6-4a) not 

detected in previous studies partly because we used the SOI series of GCOS WG-SP, which is 

marginally different from the SOI series of NOAA Climate Prediction Center (CPC) used in 

previous studies (Gan et al. 2007; Jiang et al. 2014), as GCOS WG-SP and CPC calculated SOI 

indices from different SST or SLP datasets using different methods. However, large-scale 

climate variability patterns identified from both datasets are virtually identical to each other.  

http://www.wmo.int/pages/prog/gcos/index.php
http://www.wmo.int/pages/prog/gcos/index.php
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Figure 6-4 In the four wavelet power spectra of monthly climate indices, the thick black contours represent 

significant local wavelet power at the 95% confidence level relative to a white noise background. The white 

contour of each plot is the cone of influence beyond which energy is contaminated by the effect of zero 

padding. 

 

Figure 6-5 In wavelet power spectra of MMDP PC1 of nine ecoregions, all features are the same as Figure 6-

4. PM, Pacific Maritime; MC, Montane Cordillera; BC, Boreal Cordillera; CP, Canadian Prairies; BP, 

Boreal Plain; BS, Boreal Shield; TP, Taiga Plain; MP, Mixedwood Plains; AM, Atlantic Maritime. 
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Even though, on a whole, ENSO activities represented by NINO3 and SOI are similar to 

each other, there are some minor differences. For example, for the 3-8 year interannual, NINO3 

only shows a few scattered, statistically significant periods after 1960s but not in the 1935-1960 

period as detected by SOI. NAO shows scattered, significant interannual oscillations in 1935-

1945 and 1985-2000, and an intermittent, significant annual cycle during 1985-2002 (Figure 6-

4c), but no significant interdecadal oscillation. PDO also shows limited interannual variability 

after 1940s, 1950s and in 1990s. PDO shows strong interdecadal oscillations (larger than 20-

year) over 1930-2005, even though most of the detected oscillations lie outside the cone of 

influence (Figure 4d). 

6.4.3 Wavelet coherence between MMDP and large-scale climate indices 

By comparing the wavelet power spectrum of climate indices (Figure 6-4), MMDP (Figure 

6-2), and the Power Hovmöller (Figure 6-3), we see some common, large scale power spectrum 

between the time- frequency domains of Canadian MMDP and selected climate indices. 

However, their relationships are highly unstable both temporally and spatially. Therefore wavelet 

coherence analysis was used to statistically estimate the linkage between regional MMDP signals 

and climate indices. To limit the number of time series to be analyzed by WTC, the leading PCs 

(hereafter, PC1 and PC2) of MMDP anomalies for the 9 regions, which together on the average 

explain about 48.0% of the total variance of regional MMDP, were used to represent regional 

signals of Canadian MMDP. Because extreme precipitation has much larger spatial variability 

than seasonal total precipitation, PC1 and PC2 of MMDP explain about 30.0 and 18.0% of the 

variance of regional MMDP, respectively, which together is approximately the percentage (50%) 

of variance explained by PC1 of the seasonal total precipitation of a similar region (Gan et al. 

2007). As expected, the wavelet spectra of MMDP PC1 (Figure 6-5) and PC2 (Figure S1) are 

complementary to each other in presenting oscillations of regional, extreme precipitation. For 

example, the MMDP PC1 (PC2) in AM shows significant variabilities at the 5-8- (8-30-) year 

scale during 1940-1980 (1940-2000). The MMDP PC1 and PC2 in eastern Canada, including 

BS, MP and AM, consistently show significant decadal and interdecadal variabilities during 

1930-2005, while significant variabilities at interannual time scales randomly scattered across 

wavelet spectra of MMDP PC1 and PC2 of all ecoregions of Canada.   



136 

 

 

Figure 6-6 In WTC spectra and phase difference between the MMDP PC2 of nine ecoregions and SOI, thick 

black contours enclose periods with statistically significant coherence relative to a red noise process at 5% 

significant level. The phase difference is plotted only for time periods and scales with a coherence over 0.7. 

Right (left) pointing arrows indicate that the two signals are in phase (antiphase); arrows pointing down 

mean that NINO3 leads MMDP PC2 by 90°; and arrows pointing up mean that MMDP PC1 leads NINO3 by 

90° or that NINO3 leads MMDP PC2 by 270°. 

 

WTCs between regional MMDP PC1 and PC2 and four climate indices are shown in 

Figure 6-6 and Figures S2-S8. The black contours in these figures represent periods of 

statistically significant coherence of a thick red noise process at 5% significant level by a Monte 

Carlo experiment (Grinsted et al. 2004; Jevrejeva 2003). Note that significant coherences of two 

signals do not necessarily mean that powers of those two signals are also statistically significant. 

For instance, neither NINO3 (Figure 6-4b) nor the MMDP PC1 of region AM (Figure 6-5) has 

significant power of 15-30-year scale during 1930-2005, but they show significant coherence 

over 1930-2005 (Figure S3). As expected, MMDP PC1 and PC2 of a region generally show 

significant coherence with climate indices at time scales and time periods that are different from 

each other. For example, significant coherence between MMDP PC1 of region MC and NINO3 

at the 3-5-year scale was detected during 1965-1995 (Figure S3) but significant coherence 
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between MMDP PC2 at region MC and NINO3 at 8-12-year scale was detected during 1930-

1960 (Figure S4).  

For most ecoregions of Canada, the MMDP PC1, PC2 and ENSO (represented by NINO3 

and SOI) show non-consistent, statistically significant coherence at interannual (2-10 years) scale 

and also at interdecadal (10-30 years) scales but the latter are generally not statistically 

significant. The MMDP PC2 shows more-significant coherences with the ENSO than the MMDP 

PC1 for all regions (Figure 6-6 and Figures S2-S4). Moreover, SOI tends to show more 

widespread and significant coherences with the MMDP PC2 for all regions at the 4-20-year scale 

(Figure 6-6), which likely implies that SOI is a better index to represent teleconnections of 

ENSO with Canadian extreme precipitation. At regional scale, with respect to variations in the 

coherence between MMDP PC1-2 and ENSO, the western and central regions (including PM, 

MC, BC, CP and BP) show more significant coherence than the eastern regions which, however, 

also show significant coherence at certain time scales. With respect to the phase difference 

between them at time scales with significant coherences, there are large spatial variations, such 

as the coherence between MMDP PC2 and SOI are of antiphase in the western and central 

regions (PM, MC, BC, BP and TP), while SOI leads the MMDP PC2 by 90° in the eastern 

regions (BS, MP and AM) (Figure 6-6). However, the coherence between MMDP PC2 and 

NINO3 are in phase in the western regions (PM, MC, BC and TP) but of antiphase in the central 

regions (CP and BP) (Figure S4). 

In western regions (PM, MC, BC and TP), the strongest coherence between MMDP PC1-2 

and NAO occurred over the 8-20-year scale (Figures S5-S6) in which both MMDP PC1-2 of 

western regions (Figures 6-5 and S1) and NAO (Figure 6-4) show significant power. MMDP 

PC1 shows stronger coherence with NAO than the MMDP PC2. At 2-8 years scale, the eastern 

regional (BS, MP and AM) MMDP PC1-2 shows a more significant coherence with NAO than 

other regions because MMDP PC1-2 of these regions have stronger wavelet power at the 

interannual time scale than other regions. Overall, temporal changes to phase angle at time scales 

with significant coherence between MMDP PC1-2 and NAO are stronger than those between 

MMDP PC1-2 and SOI.  

Because PDO is dominated by interdecadal oscillations, MMDP PC2 in western and 

central regions shows significant coherence with PDO at time scales of more than 20 years 

(Figures S7-S8), but scattered significant coherence between eastern MMDP PC1-2 and PDO 
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also exist at interannual time scales. Significant coherences can either be in phase, such as 

MMDP PC2 at PM and CP regions, or of antiphase, such as MMDP PC2 at MC and BP regions. 

In the phase interpretation of this study, it is assumed that MMDP usually follows large-scale 

climate anomalies even though precipitation can also affect the phase pattern of large-scale 

climate anomalies, as shown by Zhou et al. (2007).  

 

Figure 6-7 PWC spectra and phase difference between the MMDP PC2 and SOI with the influence of PDO on 

MMDP PC2 eliminated. 

6.4.4 Partial wavelet coherence 

Figure 6-7 (S9) shows the PWC between MMDP PC2 (PC1) and SOI after eliminating the 

influence of PDO on MMDP PC2 (PC1). As expected, their coherence had been reduced because 

MMDP PCs are correlated with both SOI and PDO. Specifically, significant coherence at 

interdecadal time scales between MMDP PC2 and SOI over western and central regions (PM, 

MC, CP and BP) shown by the WTC analysis (Figure 6-6) is not found in the PWC analysis 

(Figure 6-7). Furthermore, significant coherence at interannual (2-10 years) scales between 

MMDP PC1-2 and SOI become less significant after the influence of PDO is eliminated (Figures 

6-7 and S9). Even though PDO is primarily of interdecadal modes, the interannual variability of 
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PDO can also affect the Canadian MMDP, as shown in Figures S7-S8, and by the significant 

coherence at interannual scales in PWC spectra between MMDP PC1-2 and PDO after the 

influence of SOI on MMDP PC1-2 is eliminated (Figures S10-S11). Therefore, in addition to 

SOI, incorporating the PDO index as a predictor can also improve the predictability of the 

Canadian MMDP.  

The significant coherence between MMDP PC1-2 and NAO at interannual scales over 

western and central regions (Figures S5-S6) also decrease after the influence of SOI on MMDP 

PC1-2 is eliminated (Figures S12-S13); however, significant coherence between MMDP PC1 

and NAO at the interdecadal scales over western regions (PM, MC and BC), and between 

MMDP PC1-2 and NAO at the interannual scales over eastern regions (BS, MP and AM), 

remain widely present. Further, the significant coherence between MMDP PC1 of western 

regions and NAO at interdecadal scales remain even after the influence of PDO is eliminated 

(Figure S14), which show that NAO is significantly correlated with MMDP over western Canada 

at interdecadal scales.  

6.4.5 Correlations at multiple time scales 

The correlation between MMDP and ENSO (NINO3, SOI), NAO and PDO was further 

examined using MMDP SAWP computed over 1-3-, 3-8- and 8-30-year time scale. We also 

explored relationships between PCs of band-passed MMDP time series and band-passed climate 

indices and relationships between PCs of SAWP of MMDP and climate indices at multiple time 

scales. Both sets of relationships are expected to be strong if a climate index exerts a consistent 

and significant influence on the regional MMDP at a given time scale.  
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Table 6-1 Pearson’s correlations between the PC scores of band-passed MMDP and band-passed climate indices for 

selected scale bands. 

scale PC Var (%)a NINO3 SOI PDO NAO  Var(%)a NINO3 SOI PDO NAO 

  

Pacific Maritime (PM)  Montane Cordillera (MC) 

1-3 year 1 27.8 -0.238  0.182  -0.095  0.030   18.3 0.141  -0.022  0.119  0.040  

 

2 17.4 0.060  -0.073  -0.006  0.053   11.9 -0.031  0.053  -0.001  0.184  

 

3 13 -0.237  0.054  -0.172  0.035   8.2 0.118  -0.147  0.054  0.053  

3-8 year 1 33.3 0.178  -0.149  0.024  -0.273   17.3 0.004  0.048  -0.117  -0.023  

 

2 14.7 -0.300  0.531  -0.307  0.182   13.4 -0.056  -0.042  -0.031  -0.010  

 

3 13.5 0.310  -0.258  0.257  -0.091   10 0.152  -0.265  0.160  -0.208  

8-30 year 1 26.1 0.055  0.141  -0.107  -0.241   28.2 0.144  -0.137  0.527  -0.060  

 

2 21.3 -0.021  0.170  -0.034  0.614   15.9 0.103  -0.051  0.000  -0.643  

 

3 16.4 0.453  -0.466  0.481  -0.419   10.5 -0.233  0.157  -0.184  0.008  

  

Boreal Corillera (BC)  Canadian Prairie (CP) 

1-3 year 1 62.4 0.095  -0.107  -0.048  0.044   21.6 0.136  -0.072  0.056  0.227  

 

2 37.6 -0.102  0.066  -0.143  -0.028   11.6 0.199  -0.153  0.220  0.039  

 

3 NA NA NA NA NA  8.4 0.006  0.048  0.048  0.105  

3-8 year 1 69.4 0.345  -0.202  0.281  -0.044   19.4 0.049  -0.053  0.011  -0.028  

 

2 37.6 0.063  -0.655  0.073  0.029   16.7 0.293  -0.184  0.144  -0.075  

 

3 NA NA NA NA NA  12.7 0.120  -0.258  0.233  -0.386  

8-30 year 1 60.2 0.134  -0.155  0.022  -0.668   26 0.190  -0.112  0.469  0.162  

 

2 39.8 0.185  -0.305  0.256  0.249   13.6 -0.505  0.513  -0.299  0.187  

 

3 NA NA NA NA NA  12.6 -0.021  -0.164  -0.303  0.139  

  

Boreal Plain (BP)  Boreal Shield (BS) 

1-3 year 1 19.6 -0.225  0.160  -0.113  -0.219   17.4 -0.059  0.040  -0.046  -0.029  

 

2 16.5 -0.066  0.004  0.083  -0.176   11.7 0.077  -0.033  0.282  -0.041  

 

3 13.5 -0.033  -0.104  -0.188  0.121   9.9 -0.154  0.159  -0.111  -0.010  

3-8 year 1 24.1 -0.274  0.228  -0.112  -0.268   21.9 -0.019  0.070  -0.132  0.098  

 

2 21.2 -0.152  0.102  -0.143  -0.170   15 0.314  -0.248  0.435  0.056  

 

3 14 0.252  -0.104  -0.163  0.063   12.1 -0.054  -0.042  0.186  0.007  

8-30 year 1 30.4 -0.050  0.375  0.158  -0.190   28.1 0.112  -0.023  0.206  0.107  

 

2 19.9 -0.409  0.486  0.031  0.316   18 0.246  -0.216  -0.239  0.023  

 

3 15.2 0.104  -0.318  0.090  0.201   12.8 0.105  -0.409  0.053  0.298  

  

Taiga plain (TP)  MixedWood Plain (MP) 

1-3 year 1 63.1 0.205  -0.176  0.108  0.040   17.9 -0.077  0.084  -0.102  -0.017  

 

2 36.9 0.127  -0.177  0.002  -0.033   12.2 0.147  -0.115  0.135  -0.026  

 

3 NA NA NA NA NA  11.6 -0.091  0.021  -0.281  0.077  

3-8 year 1 62.2 0.030  0.126  -0.081  -0.048   20.1 -0.173  0.064  -0.115  -0.095  

 

2 37.8 -0.062  0.183  -0.053  -0.130   18.7 0.240  -0.222  0.192  -0.060  

 

3 NA NA NA NA NA  11.9 -0.005  -0.005  0.006  0.092  

8-30 year 1 73.1 -0.065  -0.087  -0.186  -0.076   30.4 0.286  -0.333  0.346  -0.545  

 

2 26.9 0.058  -0.352  0.224  -0.134   20.7 0.063  0.217  0.190  -0.474  

 

3 NA NA NA NA NA  11.7 0.391  -0.272  0.353  0.119  

  

Atlantic Maritime (AM)  

     1-3 year 1 23.8 -0.060  0.093  0.133  0.066   

     

 

2 11.1 -0.115  0.178  -0.108  0.084   

     

 

3 9.1 -0.299  0.137  -0.200  0.093   

     3-8 year 1 23.5 0.202  -0.047  0.143  -0.002   

     

 

2 14.5 -0.102  0.016  -0.043  -0.265   

     

 

3 12.2 0.052  -0.058  -0.009  0.010   

     8-30 year 1 34.2 0.070  0.078  -0.020  -0.126   

     

 

2 17.9 -0.210  0.074  -0.452  0.440   

     

 

3 12.4 0.273  0.053  -0.094  0.109   

     
a
 The variance that the PCs represent. Statistically significant correlations at the 5%significance level are shown in 

bold text. 
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Figure 6-8 The 1930-2005 time series of normalized WPCs for the MMDP SAWP of Pacific Maritime (PM) 

region, and the corresponding normalized SAWP of NAO, PDO and NINO3. WPC1, WPC2 and WPC3 

respectively explain 24.8%, 12.3% and 11.1% of the total variance of the 1-3-year scale; 35.9%, 23.5% and 

13.3% of the variance of the 3-8-year scale; and 52.1%, 24.5% and 11.6% of the variance of the 8-30-year 

scale, MMDP SAWP. 

Table 6-1 shows Pearson’s correlations between the 1–3-year, 3–8-year and 8–30-year 

scale band-passed precipitation PC scores of each region and the climate index subjected to the 

same band-passes. The statistical significance of the estimated Pearson’s correlation at a 5% 

level is tested using an asymptotic confidence interval sampled from a sampling probability 

distribution based on Fisher's Z transform (Hawkins 1989). In total, 73.4% of 108 Pearson’s 

correlations computed from combinations of 3 bands, four climate indices over 9 regions are 

statistically significant.  Between the four climate indices, MMDP shows slightly weaker 

correlations with NAO (60%).  There are more statistically significant correlations for the 8-30-

year band (80.4%) than the 1-3-year (60.7%) and 3-8-year (60.7%) bands in most regions. 
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Relatively weaker correlations between the interannual-scale, band-passed MMDP and ENSO 

(SOI and NINO3) for the MC region agree with significant WTC that are found to be mostly of 

short-durations (Figure 6-6 and S2-S8) because ENSO episodes are mostly short-live. Even 

though correlations between band-passed MMDP PC1-3 and climate indices are significant, 

generally less than 40% of the total variability at 1-30-year scale can be explained by a single 

climate index.   

Figures 6-8 and S15 show the temporal variability of normalized WPC1-3 of the MMDP 

SAWP in the PM and AM regions, respectively, along with SAWPs of SOI, NAO and PDO of 

the same time scales. PM and AM are of the western and eastern coastal regions, respectively, 

where the MMDP evidently shows more significant low-frequency variabilities compared to 

inner regions (Figure 6-3). Here we can also see some correlations between climate indices (such 

as SOI, NAO and PDO) and MMDP at certain time scales. The SAWPs of NAO and PDO are 

negatively (positively) correlated during the pre-1950s (1960s and 1990s) at the 1-3-year scale, 

1950-1960 (1965-1975 and 1990s) at the 3-8-year scale, and 1950-1970 at the 8-30-year scale. 

SOI and PDO are consistently positively correlated at the 3-8-year scale but are negatively 

correlated during 1940-1980 at the 8-30-year scale, which supports asymmetric relationships 

found between extreme precipitation and climate indices (e.g., Cai et al. 2010; Sun et al. 2015). 

MMDP was modulated by one or more large-scale patterns, as periods of strong 

oscillations of the MMDP SAWP usually corresponds to active episodes of one or more large-

scale climate patterns. For example, WPCs of the MMDP SAWP at the 1-3-year scale in the PM 

region shows strong oscillations during 1965-1980 and 1990-2005, which are likely linked to 

episodes of active SOI+PDO and SOI+NAO+PDO, respectively (Figure 6-8a). For the 3-8-year 

time scale, strong oscillations of WPC1, WPC2 and WPC3 of the MMDP SAWP during 1985-

1995, 1930-1935 and 1965-1975 are related to active SOI, NINO3+NAO+PDO, and 

NAO+PDO, respectively (Figure 6-8b). 

The relationship between MMDP and ENSO is mostly represented by correlations between 

WPC1 of MMDP and SOI at three time scales, although it shows some temporal discrepancies. 

For the 3-8-year time scale, the WPC1 of MMDP of PM and SOI are positively (negatively) 

correlated pre-1955 and 1970-1990 (1955-1970) (Figure 6-8). A transition from a negative to a 

positive relationship between WPC1 of MMDP of PM and SOI also occurred around 1980 at the 

8-30-year scale. Similarly inconsistent relationships are also found between WPCs of MMDP-
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PM and SOI, NAO and PDO, and primarily one climate anomaly tends to modulate some WPCs 

at certain time scales, e.g., PDO at the 8-30-year scale is consistently and negatively correlated to 

WPC3. MMDP in the AM region is more strongly modulated by NAO, such as its WPC1 and 

WPC3 at both 3-8- and 8-30-year scales are consistently and negatively correlated with NAO; 

and its WPCs at 1-3-year scale show strong oscillations during 1960s and 1980-2000 when 

strong episodes of NAO also occurred (Figures S15b-c). Pearson’s correlations between band-

passed MMDP and climate indices at the three time scales are generally less than 0.4. 

Table 6-2 Years included in the composite analysis of SDMP for the extreme phases of ENSO (represented by 

SOI and NINO3), NAO and PDO patterns. 

 Spring Summer Fall Winter  Spring Summer Fall Winter 

 SOI  NINO3 

Low 1987 1982 1982 1982  1955 1988 1955 1973 

 
1998 1997 1997 1940  1950 1970 1988 1999 

 
1994 1987 1940 1991  1985 1954 1942 1949 

 
1997 1940 1965 1997  1971 1938 1973 1975 

 
1992 1941 1941 1977  1964 1955 1954 1970 

High 1956 1956 2000 1970  1987 1957 1987 1991 

 
1950 1955 1955 1938  1941 1983 1965 1930 

 
1989 1938 1973 1950  1992 1987 1930 1972 

 
1974 1975 1975 1975  1998 1972 1972 1982 

 
1971 1950 1988 1973  1983 1997 1997 1997 

 
NAO  PDO 

Low 1971 1995 1933 1995  1956 1955 1955 1955 

 
1936 1987 1993 1962  1972 1950 1961 1948 

 
1941 1944 2002 1968  1971 1933 1950 1949 

 
1951 1999 1972 1978  1950 1971 1999 1971 

 
1975 1977 1939 1976  1955 1956 1956 1990 

High 1992 1993 1986 1989  1986 1936 1993 1939 

 
1986 1936 1953 1948  1983 1993 1936 1935 

 
1947 1990 1938 1999  1987 1983 1997 1986 

 
1963 1946 1978 1994  1941 1997 1934 2002 

 
1943 1961 1954 1988  1940 1941 1987 1940 

6.4.6 Composite analysis 

The influence of extreme phases of ENSO, NAO and PDO on the Canadian SMDP was 

further explored using a composite method. SMDP data of years (Table 6-2) when 5 extremely 

high/low climate indices occurred were selected in the composite analysis of SMDP subjected to 

extreme phases of ENSO (represented by SOI and NINO3), NAO and PDO patterns. Figures 6-9 

and S16-18 show composite differences for winter, spring, summer and autumn SMDPs under 

extreme phases of the three climate anomalies. Magnitudes of composite differences (mm) 
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shown in Figure 6-9 are presented as bubble plots. Extremely large (≥17 mm) composite 

differences in the winter SMDP are shown at some stations: 1) four green stations (17.4-44.5 

mm) in the PM region (Figure 6-9a); 2) four red stations (17.6-31 mm) in the AM region (Figure 

6-9b); and 3) three red stations (17.2-32.9 mm) in the PM region (Figure 6-9d). Table 6-3 shows 

the number of stations where composite differences in SMDPs are either statistically significant 

or not significant in four seasons. 

 

Figure 6-9 Composite differences in the winter (Dec-Jan-Feb) maximum daily precipitation averaged over the 

5 years with the lowest SOI (a), NINO3 (b), NAO (c) and PDO (d) values and the 5 years with the highest SOI 

(a), NINO3 (b), NAO (c) and PDO (d) values. Red and green dots respectively indicate stations whose winter 

extreme precipitation is significantly influenced by large climate anomalies positively and negatively, 

respectively, while black dots indicate that SMDP differences are not statistically significant. The size of the 

dots shows the absolute magnitude of the composite difference. 

There are significant seasonal variations between the influence of three large-scale climate 

patterns on the Canadian SMDP. For ENSO, represented by SOI and NINO3, the magnitude of 

SMDP in extreme El Niño years (minimal SOI and maxima NINO3) tends to be lower over the 

CP region in summer and winter compared with extreme La Niña years (maxima SOI and 

minimal NINO3), but it tends to be higher in spring and autumn. The effects of ENSO on the 



145 

 

winter SMDP agree well with the results of Zhang et al. (2010) for the Canadian winter SMDP. 

Spatially, ENSO exerts greater influence on the magnitude of SMDP in coastal than in inner 

regions. However, the influence of ENSO is not spatially consistent in these regions.  Even 

though the composite SMDP differences of more stations showing positive (negative) relations 

with SOI (NINO3) index, there are stations that show an opposite relation with ENSO indices. 

This is somewhat different from a consistent spatial pattern of positive (negative) influence of 

ENSO represented by SOI (NINO3) on the total precipitation of southern Canada (Ropelewski 

and Halpert 1986; Shabbar et al. 1997). Although ENSO tends to have more-profound impact on 

the winter precipitation totals over North America than in other seasons (Ropelewski and Halpert 

1986; Shabbar et al. 1997), the number of stations (35 and 42) where the winter SMDP is not 

significantly influenced by ENSO (SOI and NINO3) is much higher number of stations (24 and 

17, on average) for SMDP of the other three seasons (Table 6-3). By comparing the seasonal 

variations of ENSO’s effect given in Figures 6-9 and S16-18, we find that SOI and NINO3 has 

affected the summer and autumn SMDP the most, partly due to the relatively high magnitude of 

SMDP in these two seasons.  

Table 6-3 Number of stations where composite differences in SMDPs are positively or negatively significant, 

or not significant in different seasons for four climate indices. 

Significance Spring Summer Fall Winter 

 
 SOI   

Negatively  60 35 50 43 

Not significant 29 19 25 35 

Positively 42 77 56 53 

  
NINO3 

  
Negatively  41 54 60 71 

Not significant 24 12 16 42 

Positively 66 65 55 18 

  
NAO 

  
Negatively  54 44 35 41 

Not significant 59 38 55 66 

Positively 18 49 41 24 

  
PDO 

  
Negatively  46 79 36 70 

Not significant 30 18 20 30 

Positively 55 34 75 31 

Note that there are some differences between the influence of extreme ENSO represented 

by SOI and NINO3 on SMDP in all four seasons, as shown by the different number of stations 

where the SMDP-SOI and SMDP-NINO3 relationship is statistically significant, especially in 

winter (Table 6-3). For example, based on the composite analysis, the spring SMDP in all 
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stations of the PM region is much higher in extreme El Niño years than in extreme La Niña years 

represented by NINO3, but by SOI, only the spring SMDP of some stations is significantly lower 

in extreme El Niño years than in extreme La Niña years (Figure S16). 

Spatially the composite differences in SMDP between years with extremely high and low 

phases of PDO are similar to those of ENSO (Figures 6-9 and S16-18). ENSO and PDO exert 

statistically significant influence on SMDP for a similar number of stations in all seasons (Table 

6-3). An extremely positive PDO generally plays a similar role in increasing or decreasing the 

magnitude of Canadian SMDP as an extreme El Niño, other than an opposite influence of PDO 

versus El Niño for the autumn SMDP of the MC region. However, there are some composite 

differences in the magnitude of SMDP for the four seasons. The composite difference in the 

spring (summer and autumn) SMDP between positive and negative PDO is smaller (higher) than 

that between active El Niño and La Nina, but the composite difference in winter SMDP between 

these two opposite phases of PDO and ENSO are similar to each other. 

A large proportion (about 58% in all seasons) (Table 6-3) of SMDP are significantly 

influenced by NAO statistically. Zhang et al. (2010) suggested that the influence of NAO on the 

winter SMDP over North America is regional and is not field-significant, as only 6% of stations 

show a statistically significant winter SMDP composite difference. However, for Canada, there 

is a spatial clustering of stations in the PM, BS and AM regions, where the winter SMDP is 

significantly influenced by NAO (Figure 6-9c), but not so for the spring SMDP. In the MC, CP 

and AM regions, the summer SMDP tends to decrease with NAO but it increases in other 

regions. Composite analysis shows that the autumn SMDP tends to increase with NAO in the 

PM, MC and AM regions but it tends to decrease in the CP and BS regions.  Furthermore, the 

magnitude of autumn SMDP composite differences of stations significantly influenced by NAO 

can vary by up to about 12 mm per day in autumn. 

6.5 Summary and conclusions 

The oscillations of precipitation extremes (i.e., MMDP and SMDP) from 131 selected 

gauging stations across Canada and their teleconnections to large-scale climate anomalies were 

analyzed using variants of wavelet analysis and composite analysis. Our findings and 

conclusions can be summarized as follows: 

1. Applying the Morlet WT to Canadian precipitation extremes, low-frequency, interannual 

(1-8 years) oscillations were found to be more significant than interdecadal (8-30 years) 
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oscillations for all selected stations, and the oscillations are both spatial and time-dependent in 

all 1-30 year time scale, even though interdecadal oscillations are generally more persistent than 

interannual oscillations. Even though precipitation extremes tend to exhibit larger temporal and 

spatial variabilities than precipitation totals, longitude-averaged SAWP of 3-30-year time scale 

for precipitation extremes represent less variability (7%) than that for precipitation totals (22%). 

2. The precipitation extremes of 131 stations distributed over 9 ecoregions are linked to 

large-scale climate anomalies (based on climate indices) through WTC and PWC analyses. For 

each region, the wavelet coherence and phase difference between the leading PC1-2 of MMDP 

and climate indices are highly variable in periodicity and in time. Even though Pearson’s 

correlation between the band-passed MMDP PC1-3 and climate indices are generally significant, 

a single climate index can explain less than 40% of the total variability at 1-30-year scale. These 

characteristics indicate changes in the strength of teleconnection between Canadian extreme 

precipitation and large-scale climate anomalies. PWC analysis shows that both ENSO and PDO 

modulated the interannual variability, and PDO modulated the interdecadal variability of MMDP 

over Canada.  NAO is significantly correlated with the western MMDP at interdecadal scales and 

the eastern MMDP at interannual scales. Thus, incorporating climate indices such as the SOI, 

NINO3, PDO and NAO indices as predictors in teleconnection models can possibly improve the 

predictability of the Canadian MMDP. 

3. Composite analysis shows that precipitation extremes at approximately 3/4 of the 

stations have been significantly influenced by ENSO and PDO patterns, while about 1/2 of the 

stations by the NAO patterns. The magnitude of SMDP in extreme El Niño years was mostly 

lower (higher) over the CP region in summer and winter (spring and autumn) than in extreme La 

Niña years. An extreme PDO event of positive phase played a similar role in increasing or 

decreasing the magnitude of Canadian SMDP compared with extreme El Niño events. Winter 

precipitation extremes over eastern Canada were also significantly influenced by NAO. As 

expected, overall, the degree of influence of large-scale climate patterns, i.e., ENSO, PDO and 

NAO, on Canadian precipitation extremes varies by season and by region. 
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Chapter 7 Projected timing of perceivable change in global extreme climate  

7.1 Introduction 

Extreme climate change could have various social, economic and environmental 

repercussions to our society (Garcia et al. 2014; Sherwood and Huber 2010; Urban 2015; Willis 

and Bhagwat 2009), such as a decrease in primary forest productivity because of heatwave and 

drought (Parmesan et al. 2000), increase in mortality (Oudin Åström et al. 2013; Shi et al. 2015), 

damage of infrastructure (Mailhot and Duchesne 2010), changes in energy consumption 

(Destouni et al. 2013), wild fire (Jolly et al. 2015; Westerling et al. 2006), and food and energy 

production (Wheeler and Braun 2013). Occurrences of climatic extremes have been observed 

and projected to change over the mid-latitude of Northern Hemisphere (NH) during the 20
th

 and 

21
st
 century (Sillmann et al. 2013a; Sillmann et al. 2013b).  Changes in climatic extremes have 

been detected in some regions (Meehl et al. 2000; Stott et al. 2010), such as observed positive 

trends in the frequency (Hegerl et al. 2004) and magnitude (Zwiers et al. 2011) of hot extremes. 

Some past studies have focused on the absolute magnitude of future climate change, albeit the 

magnitude of change relative to natural climate variability should be more useful since both 

natural and human systems can only tolerate certain degree of change from its existing level of 

climate variability (Meehl et al. 2000; Parmesan et al. 2000; Penuelas et al. 2013; Sherwood and 

Huber 2010; Walther et al. 2002; Williams et al. 2007).  

There is considerable evidence that extreme weather and climate have been mechanistic 

drivers behind broad ecological responses to climate change (Garcia et al. 2014; Meehl et al. 

2000; Parmesan et al. 2000). Possible changes in climatic extremes may exceed biological 

thresholds which are often neglected in ecological studies based on future climate scenarios, 

even though both gradual mean climatic trends and extreme climate have been implicated for 

various patterns of biological responses, such as local adaptation (e.g., morphological changes) 

or a poleward shift and an upward shift in elevation in the habitat range (Destouni et al. 2013). 

If the signal (S) of climate change is of sufficient magnitude relative to natural climate 

variability (N), the climate change signal should be statistically significant, and the time of 

perceivable change in extreme climate is referred to as time of emergence (ToE) (Hawkins and 

Sutton 2012) or “time of expulsion” (Power 2014). ToE represents the pace of perceivable 
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climate change, and thus it is a key indicator for predicting climate change impact to natural and 

human systems (Sherwood and Huber 2010; Williams et al. 2007). If ToE is early, it gives little 

time for implementing effective adaptations and mitigation measures. However, knowledge 

about ToE of climate change will motivate people to take necessary actions to reduce greenhouse 

gas emissions, to defer or even to eliminate the projected ToE for climate change. Even though 

ToE of the global mean climate is projected to emerge by 2100 (Hawkins and Sutton 2012; 

Williams et al. 2007), it is unclear when the ToE of extreme climate change will occur because it 

is not possible to validate extreme climate projections (Easterling et al. 2000). However, recent 

model assessment studies (Fischer and Knutti 2014; Fischer et al. 2013; Sillmann et al. 2013a; 

Sillmann et al. 2013b) suggest that simulations from the Coupled Model Inter-comparison 

Project Phase 5 (CMIP5) are robust enough to represent past and future regional extreme climate 

and have been widely adopted for studies on the assessment of impacts of changes in extreme 

climate (Donat et al. 2016; Harrington et al. 2016; King et al. 2015).  

We investigated the ToE of annual extreme climate represented by 18 indices defined by 

Expert Team on Climate Change Detection and Indices (ETCCDI) (Zhang et al. 2011), 10 for 

temperature and 8 for precipitation (Table 7-1), using historical and projections of 30 global 

General Circulation Models (GCMs, Table 7-2) of CMIP5 (Taylor et al. 2012), and 39 

ensembles from the CESM1 large ensemble community project (CESM-LE) (Kay et al. 2015) 

under climate scenarios of Representative Concentration Pathways 8.5 (RCP8.5). These 18 

ETCCDI indices encompass a wide variety of metrics to describe the magnitude, frequency and 

severity of extreme climate which can significantly affect ecological and human systems. For 

example, the magnitude indices txx (maximum of daily maximum temperature) and tnn 

(minimum of daily minimum temperature) are the hot and cold tolerance of many plants, 

respectively (Parmesan et al. 2000). Even if the magnitude of extreme temperature and 

precipitation is within its tolerance range, changes in the frequency of hot and cold extremes 

represented by tx90p and tn10p (percentage of time when daily maximum temperature is higher, 

and the minimum temperature is lower than the 10th percentile, respectively) could exceed the 

physiological tolerance of a particular species. Life dieback, mortality and reproductive failure in 

large areas on a continental scale are usually linked with severe drought and heatwaves (Allen et 

al. 2010; Penuelas et al. 2013) described by severity indices such as wsdi (annual count when at 

least six consecutive days of maximum temperature is larger than the 90th percentile) and cdd 
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(maximum number of consecutive days when precipitation is lower than 1 mm) (Jentsch et al. 

2009). Heavy precipitation represented by indices such as rx1day or rx5day (maximum 

consecutive 1- and 5-day precipitation) can reduce the flowering length by several days (Jentsch 

et al. 2009).  

When the pace of change to extreme indices emerge beyond the adaptability limit of the 

ecosystem, its species compositions could alter, and the productivity and plant phenology of its 

plant communities could change or shift (Jentsch and Beierkuhnlein 2008; Reusch et al. 2005). 

As a result, the biodiversity and resistance to invasion (Burrows et al. 2014; Loarie et al. 2009; 

Parmesan et al. 2000) of the ecosystem will be affected. Human health will also be impacted by 

extreme climate events including heatwaves, droughts and heavy precipitation of long-duration 

(Haines et al. 2006; McMichael et al. 2006), which can also be comprehensively measured by 

indices designed to represent the frequency and severity of extreme temperature and 

precipitation, such as wsdi, tx90p, rx1day, rx5day and cdd. If the pace of change in extreme 

climate exceeds the public’s health system to overcome adverse climate-related health 

consequences, people, especially those from low-income countries, will not be able to adapt to 

such extreme events because of the high cost to improve health care. We emphasize that 

detecting the projected timing of perceivable change in extreme climate relative to the variability 

of recent past is of greater relevance for the adaptation of human and ecosystems, than the timing 

when anthropogenic signals of extreme climate change emerge from internal climate variability 

exhibited in a pre-industry period. 

We estimated ToE of indices for each grid of each ensemble member (Methods and Figure 

7-1), which is the year when the trend S exceeds n times the noise N, i.e., S/N > n.  S is estimated 

using a normal distribution for frequency and severity indices, a generalized extreme value 

(GEV) distribution for magnitude indices, and N is the standard deviation (SD) of the time series 

detrended by S. The ToE is the year when S exceeds the n times of N, i.e., S/N > n. We chose the 

S/N threshold n values (Table 7-1) partly to follow values used by previous studies for mean 

temperature and precipitation (Hawkins and Sutton 2012; Maraun 2013; Sui et al. 2014) and 

partly to ensure that considerable percentage of global grids will show ToE before 2100. The 

ensemble median ToE was then calculated for each metric by regridding ToE of each ensemble 

member to a common grid system of 2˚×2˚ resolution. Since the ensemble median ToE generally 

outperforms individual ToEs (Sillmann et al. 2013a), and in using a median ToE, the possible 
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influence of outliers of ToE can be nullified (Hawkins et al. 2014), our results are based on 

ensemble median ToE.  
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Table 7-1 Extreme climate indices analyzed 

# Variable Indices Type 
Low 

S/N 

High 

S/N 
Annual Seasonal Name Definition 

1 

T
em

p
er

at
u

re
 

txx 
Absolute 

magnitude 
1 2 √ √ Max Tmax Maximum value of daily max temperature 

2 tnx 
Absolute 

magnitude 
1 2 √ √ Max Tmin Maximum value of daily min temperature 

3 txn 
Absolute 

magnitude 
1 2 √ √ Min Tmax Minimum value of daily max temperature 

4 tnn 
Absolute 

magnitude 
1 2 √ √ Min Tmin Minimum value of daily min temperature 

5 tn10p 
Percentile 

frequency 
1 2 √ √ Cool nights 

Percentage of time when daily min temperature 

< 10th percentile 

6 tx10p 
Percentile 

frequency 
1 2 √ √ Cool days 

Percentage of time when daily max temperature 

< 10th percentile 

7 tn90p 
Percentile 

frequency 
1 2 √ √ Warm nights 

Percentage of time when daily min temperature 

> 90th percentile 

8 tx90p 
Percentile 

frequency 
1 2 √ √ Warm days 

Percentage of time when daily max temperature 

> 90th percentile 

9 wsdi 
Threshold 

severity 
1 2 √  

Warm Spell 

Duration Index 

Annual count when at least six consecutive days 

of max temperature > 90th percentile 

10 csdi 
Threshold 

severity 
0.5 1 √  

Cold Spell Duration 

Index 

Annual count when at least six consecutive days 

of min temperature < 10th percentile 

11 

P
re

ci
p

it
at

io
n

 

rx1day 
Absolute 

magnitude 
0.5 1 √ √ 

Max 1-day 

precipitation 

amount 

Maximum 1-day precipitation 

12 rx5day 
Absolute 

magnitude 
0.5 1 √ √ 

Max 5-day 

precipitation 

amount 

Maximum consecutive 5-day precipitation 

13 r10mm 
Threshold 

frequency 
0.5 1 √  

Number of heavy 

precipitation days 
Annual count when precipitation ≥ 10 mm 

14 r20mm 
Threshold 

frequency 
0.5 1 √  

Number of very 

heavy precipitation 

days 

Annual count when precipitation ≥ 20 mm 

15 cdd 
Threshold 

severity 
0.25 0.5 √  

Consecutive dry 

days 

Maximum number of consecutive days when 

precipitation < 1 mm 

16 cwd 
Threshold 

severity 
0.5 1 √  

Consecutive wet 

days 

Maximum number of consecutive days when 

precipitation ≥ 1 mm 

17 r95p 
Percentile 

frequency 
0.25 0.5 √  Very wet days 

Annual total precipitation from days > 95th 

percentile 

18 r99p 
Percentile 

frequency 
0.25 0.5 √  Extremely wet days 

Annual total precipitation from days > 99th 

percentile 
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Table 7-2 GCMs used in the analysis 

# Model Name # Model Name 

1 ACCESS1-0 16 GFDL-ESM2G 

2 ACCESS1-3 17 GFDL-ESM2M 

3 bcc-csm1-1 18 GISS-E2-R 

4 bcc-csm1-1-m 19 HadGEM2-ES 

5 BNU-ESM 20 inmcm4 

6 CanESM2 21 IPSL-CM5A-LR 

7 CCSM4 22 IPSL-CM5A-MR 

8 CESM1-FASTCHEM 23 IPSL-CM5B-LR 

9 CMCC-CM 24 MIROC4h 

10 CMCC-CMS 25 MIROC-ESM 

11 CNRM-CM5 26 MIROC-ESM-CHEM 

12 CSIRO-Mk3-6-0 27 MPI-ESM-LR 

13 EC-EARTH 28 MPI-ESM-MR 

14 FGOALS-s2 29 MRI-CGCM3 

15 GFDL-CM3 30 NorESM1-M 
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Figure 7-1 . Illusion of the time of emergence (ToE).  An example of ToE estimated for the txx (annual 

maximum daily maximum temperature) of a grid box in the Atlantic Ocean (30˚W, 30˚N). S is the trend 

represented by the slope of fitted lines for txx time series. N is the residual standard deviation of time series. 

ToE is the year when the trend estimated based on the normal distribution(green line) and the GEV 

distribution (brown line) exceeds the range of historical variability represented by n times (S/N) the residual 

standard deviation of the txx time series during 1971-2100, relative to the base year 2000 (n is a threshold of 

interest show in Table S1). The threshold of  S/N for ToE1 and ToE2 are 1 and 2, respectively. 

 

 

 

Figure 7-2 Global distributions of ToEs of different S/N thresholds under RCP8.5. ToE of 6 representative 

extreme temperature (txx, tx90p and wsdi) and precipitation (rx1day, r20mm, and cdd) indices for high 

thresholds of S/N. For extreme precipitation indices, the blue/green (red/yellow) color shows ToEs exhibiting 

perceivable decreasing (increasing) change. Blank grids show the ToEs will not occur by 2100. 
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7.2 Discussions of results 

The year at which the S/N of climatic extremes exceeds certain thresholds varies 

considerably between different extreme climate indices (Figures 7-2 and S2). We found that 

ToEs under low S/N thresholds are about 10~30 years earlier than those under high S/N 

thresholds. Under RCP8.5, the projected magnitude of temperature extremes, represented by txx 

and tnx (maximum value of daily minimum temperature) for hot extremes and tnn and txn 

(minimum value of daily maximum temperature) for cold extremes, respectively, across all land 

and ocean regions will almost exceed their 2 SDs before 2100, as most grids show median ToEs 

to occur before 2100 (Figures 7-2 and S3) and the low and high values (represented by the 25
th

 

and 75
th

 percentiles of the values derived from GCM ensembles) of ToEs to also occur before 

2100 (Figure S4). Although ToEs with S/N >2 for the frequency of hot extremes represented by 

tx90p and tn90p (percentage of time when the daily minimum temperature is larger than the 90th 

percentile) are projected to be earlier than 2050, those of cold extremes represented by tn10p and 

tx10p (percentage of time when daily maximum temperature is lower than the 10th percentile) 

will occur later than 2070 and the ToEs for the frequency of cold extremes in most ocean grids 

will not occur before 2100. The median ToEs for the frequency of hot (cold) extremes in all 

global grids with S/N >2 will be 2022 (>2100), while ToEs for the magnitude counterparts will 

be 2068 (2052), respectively. The early ToEs for the severity of hot extremes represented by 

wsdi is more significant than those of cold extremes represented by csdi (annual count when at 

least six consecutive days of minimum temperature is lower than the 10th percentile), as the 

median ToE for wsdi of all global grids with S/N >2 is 2013 while that for csdi with S/N >0.5 is 

2092.  

Spatially, ToEs for extreme temperature magnitudes will occur 2-3 decades earlier in low-

latitudes than in mid-latitudes (Figures 7-2, S2 and S5) because in the former these indices have 

low variability. These results are similar to ToEs for the mean daily temperature that has already 

been observed in some parts of the world (Anderson 2011; Diffenbaugh and Scherer 2011; 

Mahlstein et al. 2012) and in various climate model simulations (Anderson 2011; Diffenbaugh et 

al. 2011; Hawkins and Sutton 2012; Mahlstein et al. 2013). On average ToEs for the magnitude 

of hot and cold extremes tend to occur 5-25 years earlier in oceans than in land (Figure S3). 

ToEs for the magnitude of hot and cold extremes tend to occur earlier in northern high-latitudes 

which have both higher variance and trends than those in mid-latitude regions. However, ToEs 
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for the frequency of hot and cold extremes will occur earlier in mid-latitudes than in low- and 

high-latitudes. ToEs for the frequency of cold extremes will occur 10-30 years earlier in oceans 

than in land, while ToEs for the frequency of hot extremes will be comparable between oceans 

and land. ToEs for the severity of hot (cold) extremes will occur about 3 (10-20) years earlier 

(later) in oceans than in land (Figure S3).  

Globally ToEs for the magnitude and frequency of extreme precipitation is projected to 

occur before 2100 only for S/N > 1 because of the large variability of extreme precipitation, as 

was also found in climate model simulations for total precipitation (Beaumonta et al. 2011; 

Giorgi and Bi 2009). The median global ToE for extreme precipitation magnitude (rx1day and 

rx5day) is projected to be approximately 2048 and 2095 for S/N >0.5 and S/N >1, respectively. 

The median global ToE for the frequency counterpart represented by r10mm and r20mm (annual 

count of precipitation events when daily precipitation is larger than 10 and 20 mm, respectively) 

is projected to occur earlier, at approximately 2040 and 2080 for S/N >0.5 and S/N >1, 

respectively (Figure S3). The evolution of fraction of land and ocean grids showing ToEs for the 

magnitude and frequency of extreme precipitation are projected to be similar in land and ocean 

(Figure S3). For S/N >0.5, the global median ToEs for the severity of extreme precipitation 

represented by the consecutive wet and dry days (cwd and cdd) is projected to occur by 2065 and 

2062, respectively. 

Unlike hot extremes projected to increase globally under global warming, there are some 

land areas in Central America, Mediterranean, Australia, South Africa and oceans in 

southeastern Pacific, Southern Indian, Central and Southern Atlantic where extreme precipitation 

is projected to decrease both in magnitude and frequency (Figures 7-2, S2, S4, S7 and S8). 

However, the severity of droughts (cdd) in these regions is projected to increase (Figures 7-2, S2 

and S4), which means that the climate of these regions is expected to become drier. Furthermore, 

cwd is also projected to decrease in South America, Central and South Africa, Mediterranean 

regions and Australia (Figure S7) because of more frequent transitions between wet and dry days 

under an intensified hydrological cycle (Held and Soden 2006). The spatial pattern of projected 

changes in extreme precipitation is consistent with some recent studies that support the 

paradigm, “wet gets wetter and dry gets drier” (Held and Soden 2006; Trenberth 2011). Since the 

variability (trend) of extreme precipitation is significantly lower (higher) in high- and low-

latitudes than in mid-latitudes, ToEs for the magnitude and frequency of extreme precipitation 
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are projected to occur earlier in high- and low-latitudes than in mid-latitudes, while ToEs for the 

severity of extreme precipitation are projected to occur earlier in mid-latitudes than in high-and 

low-latitudes (Figures 7-2, S2, S4, S7 and S8).  

ToEs for the frequency of hot extremes in various terrestrial biomes and marine realms of 

the world will be approximately 3-50 years earlier than the magnitude counterparts of hot 

extremes, and the projected perceivable changes in severity of hot extremes will occur 

approximately 10 years earlier than the frequency counterparts with S/N >2 (Figures 7-3, 7-4 and 

S9-S11). Tropical and subtropical forests are projected to experience earlier ToEs for the 

magnitude and frequency of extreme temperature (2010-2050) than other biomes (2040-2070) 

(Figure 7-4). ToEs for extreme temperature magnitude in Tropic Atlantic, Indo-Pacific, Tropical 

eastern Pacific (2025-2050) are projected to be much earlier than other marine realms (2030-later 

than 2100) (Figure 7-4). ToEs for the magnitude of extreme temperature in marine realms of 

low- and mid-latitudes in NH (Realms 3-8 of Figure 7-4; 2020-2070) are projected to occur 

earlier than those in the Southern Hemisphere (SH) (Realms 9-12; later than 2030) especially in 

the Southern Ocean where the median ToEs for the magnitude, frequency and severity of 

extreme temperature are all projected to be 10-30 years later than other marine realms. 

For changes in extreme precipitation, only certain grids for all terrestrial biomes and 

marine realms are projected to experience perceivable changes before 2100 with both high 

(Figures 7-3, 7-4 and S9-S11) and low (Figures S9-S11) S/N thresholds, because of high spatial 

variabilities of the magnitude, frequency and severity of extreme precipitation. For most biomes, 

higher fractions of grids are projected to experience ToEs before 2100 for the severity than for 

the frequency and magnitude of extreme precipitation. Moreover, in grids where ToEs are 

projected to occur before 2100, perceivable changes in the severity of extreme precipitation are 

projected to occur earlier than its frequency and magnitude. For ToEs of cdd with S/N>0.5, 95% 

of grids in biomes of Tropical and subtropical coniferous forests and Mediterranean forest are 

projected to occur before 2100 (with median ToEs of around 2050 and 2045, respectively), 

which implies a high risk of potential changes in these two ecosystems because of worsening 

drought severity. However, the high-latitude biomes (boreal forest/taiga and tundra) are 

projected to experience earlier perceivable changes in the frequency than the magnitude and 

severity of extreme precipitation, because a larger fraction of grids where ToEs for r20mm are 

projected to occur before 2100 than ToEs for rx1day and cdd, and similarly with an earlier 
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Figure 7-3 Time evolution of fraction of grids showing ToE. The fraction is the ratio of the number of 

cumulative grids where ToEs are not later than a year to the total number of grids where perceivable changes 

in extreme climate have occurred by 2100 under high thresholds of S/N (Table 7-1) for 6 representative 

extreme climate indices in each terrestrial biomes (left two columns) and marine realms (right two columns) 

under RCP8.5. The thresholds of S/N chosen for extreme climate indices, txx, tx90p and wsdi are 2, and for 

rx1day and r20mm are 1, and for cdd is 0.5, respectively. Definitions of these indices are given in Figure 7-2’s 

legends and in Table 7-1. Numbers in the top left frame are the total number of grids for each biome or 

realm. Numbers in the right show the percentage of grids where ToEs are later than 2100, with the same 

colors applied to evolution lines for indices. 
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Figure 7-4 Same as Figure 7-3, but for marine realms. 
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median ToEs for r20mm than for rx1day and cdd (Figure 7-4). More than 80% of grids with 

tundra biome, which is much higher than other biomes, are projected to experience ToEs with 

high S/N thresholds before 2100 in the magnitude, frequency and severity of extreme 

precipitation (Figure 7-3 and S10-11) because of Arctic amplification by which atmospheric 

moisture is expected to increase under warmer climate (Ghatak et al. 2010). 

Similar to high-latitude terrestrial biomes, high-latitude marine realms such as the Arctic, 

temperate northern Pacific and Atlantic are also projected to experience more widespread 

perceivable changes in extreme precipitation (Figure 7-4 and S10-11), even though the median 

ToEs for grids (where ToEs are projected earlier than 2100) are not projected to be significantly 

earlier than the median ToEs of other marine realms of the NH. Only about half of grids of low- 

and mid-latitude marines in NH, such as tropic Atlantic, Indo-Pacific, are projected to experience 

ToEs with high S/N thresholds for extreme precipitation, and there are no major differences in 

the percentage of grids where ToEs are projected to be earlier than 2100, irrespective of whether 

it is for the magnitude, frequency or severity of extreme precipitation. Again, ToEs for extreme 

precipitation over marine realms in SH are projected to be very late (2075 and thereafter). 

If emissions of greenhouse gases will occur according to RCP8.5 climate scenarios, 

roughly 0.75 billion urban residents currently living in major cities across the world could 

experience perceivable changes (ToEs) in the daily maximum temperature txx (magnitude of hot 

extremes) in 2050 under high S/N thresholds, while 0.28, 0.33 and 0.86 billion residents could 

experience perceivable changes in the magnitude, frequency and severity of extreme 

precipitation represented by rx1day, r20mm and cdd, before 2080, respectively (Figure 7-4 and 

S12). However under low S/N, similar size of urban residents is expected to experience 

perceivable changes in these climate indices much earlier, as many as 50 years in advance. The 

urban population expected to experience such perceivable changes in extreme precipitation 

represented by rx5day, r10mm and cwd before 2080 under high S/N thresholds is projected to be 

0.20, 0.35 and 0.08 billion, respectively (Figure S12a). Thus, the population projected to be 

exposed to severe dry climate (0.86 billion) before 2080 is considerably higher than those 

projected to experience severe wet climate (0.08 billion). All major urban residents (around 1.4 

billion) will encounter perceivable changes for the frequency and severity of hot extremes, tx90p 

and wsdi, before 2035 and before 2020 under low and high S/N thresholds, respectively. 

However, under high S/N thresholds, virtually no urban population in major cities is expected to 
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experience perceivable changes (ToEs) for the frequency and severity of cold extremes before 

2060 and 2100, respectively (Figures S12a and S12b), but about 0.5 billion urban population 

could experience perceivable changes for the magnitude of cold extreme before 2060.   

 

Figure 7-5 Exposure of human societies to ToEs of extreme climate change. Top two pannels show the time 

evolution of urban residents in 590 large cities exposed to ToE of various extreme climate indices, i.e., txx, 

tx90p, wsdi, rx1day, r20mm and cdd, while bottom two pannels show the scatterplots between the medium 

ToEs (in years) and the GDP per capita for 231 countries. Least-squares regression lines and confidence 

intervals (grey bands) are also shown in the scatterplots.  Left two pannels shows results under the high 

threshold of S/N while right two under the low threshold of S/N that are listed in Table 7-1. Definitions of 

these indices are given in Figure 7-2’s legends and in Table 7-1.  
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Based on generally positive relationships between median ToEs for grids over a country 

and GDP per capita of that country considered (Figures 7-5 and S12), it seems that early 

perceivable extreme climate change tends to occur in low-income countries. This projected, 

global, socio-economic response to climate change impact will not provide much incentive to 

high-income countries capable of reducing GHG emissions to mitigate climate change impact 

given they will likely benefit less from mitigation than low-income countries who will be more 

in need of increasing GHG emissions for their socioeconomic development. On the other hand, 

because wealthy countries tend to suffer much more loss of properties from extreme events, 

which likely occur more frequently and in greater severity because of climate change impact 

(Diffenbaugh et al. 2007), they should be motivated to reduce GHG emissions. 

7.3 Methods 

The analysis was done with climate extreme indices defined by the Expert Team on 

Climate Change Detection and Indices (ETCCDI) (Zhang et al. 2011) using daily temperature 

and precipitation data simulated by GCMs of the CMIP5 for both the base and climate projection 

periods. The global extreme temperature and precipitation data simulated by GCMs of CMIP5 

have been widely assessed and found to be appropriate by various studies (Fischer and Knutti 

2014; Fischer et al. 2013; King et al. 2015; Sillmann et al. 2014; Sillmann et al. 2013a). 18 

annual indices (Table 7-1; including 10 extreme temperature and 8 extreme precipitation indices) 

were computed from data simulated by multi-GCMs for historical experiments over the baseline 

(1971-2005) and the future period (2006-2100) projections under RCP8.5 climate scenarios 

(Table 7-2). Only one realization (“r1i1p1”) of each GCM was selected for this study. The 

magnitude, frequency and severity of extreme temperature and precipitation were estimated in 

terms of three types of indices, e.g., absolute, percentile and threshold indices (see the type of 

indices in Table S1). We used GCMs’ simulations for the base period as the historical data, 

rather than gridded, observed data such as HadEX2 and GHCNDEX, to minimize the effect of 

bias of GCMs on ToEs estimated from the results of CMIP5.  

We estimated the 1971-2100 trend signal (S) from individual time series of selected 

ETCCDI indices for each grid cell of a GCM fitted with a non-stationary normal distribution for 

frequency and severity indices, and a non-stationary generalized extreme value (GEV) 

distribution for magnitude indices, respectively. Thus for year ti, i = 1,.., K=130, a climate index 
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yi is described as  ,i iy Normal   with i ia St    for the non-stationary normal distribution, 

or  , ,i i iy GEV    with i ia S t    , i ia S t     and  1S S S S         for 

the non-stationary GEV distribution (Coles 2001; Maraun 2013), respectively. Distribution 

parameters such as , , , , , , , , andi ia a a S S S       were derived from a least-squares regression 

for normally distributed indices and the maximum likelihood method implemented in the R 

package “extRemes” (Gilleland and Katz 2011) for GEV distributed indices, respectively. The 

noise (N) is the interannual variability computed as the detrended standard deviation of a time 

series y during 1971-2100,    
22

1
1 1

K

i ii
N K y 


   .  The ToE, emergence of signal from a 

fraction, n, of the internal variability relative to the reference year of 2000, is

 ToE 2000n n N S   (Figure 7-1). Because spatial averaging could reduce the variability of 

climate indices in grid cells (Kendon et al. 2008), ToEs tend to be earlier in larger than smaller 

spatial scales (Maraun 2013). Therefore, for each extreme climate index selected, instead of 

normalizing S and N estimated from multi-GCMs before estimating ToEs, we first estimated ToE 

for each grid cell of each GCM data. After that, we regridded ToEs derived from each GCM to a 

standard 2˚×2˚ grid to estimate the ensemble median ToE. The uncertainty of the ToE is based 

on the 25
th

 and 75
th

 percentile of ToEs from GCMs.  

Since there may be some uncertainties associated with the intra-model simulations, we also 

used 39 model simulations from the CESM1 Large Ensemble Community Project (CESM-LE) 

(Kay et al. 2015) to calculate projected ETCCDI indices of annual scale and we estimated the 

ToE for the 39 model simulations. The range of ToEs derived from 39 CESM-LE ensembles is 

generally within the range of ToEs derived from multi-model simulations. The uncertainty of 

ToEs of CESM-LE ensembles is less than that of multi-model simulations. On the basis of the 

1979-2005 ERA-Interim reanalysis(Dee et al. 2011) daily data as the “observed” data, and the 

empirical, quantile mapping bias correction method, we corrected possible biases in model 

simulation of CESM-LE ensembles used to estimate projected extreme climate indices. ERA-

Interim 1979-2005 and GCM 1979-2005 data were used to obtain parameters for quantile 

mapping using the “fitQmapQUANT” function and then CESM-LE 1979-2100 data were bias-

corrected using the “doQmap” function implemented in the R package “qmap” (Gudmundsson et 

al. 2012). To assess the effects of model simulation bias that are possibly large in projected 
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threshold-based extreme climate indices (Cannon et al. 2015; Scherer and Diffenbaugh 2014; 

Sillmann et al. 2013a), we compared ensemble median ToEs derived from raw model 

simulations versus bias-corrected model simulations for  threshold-based indices that were used 

in this study (Figures S13-S14). Given the spatial distributions of ToEs derived from threshold-

based indices estimated from raw and bias-corrected datasets are consistent to each other, we 

therefore used ToEs derived from raw instead of bias-corrected model simulations for further 

analysis of impacts of extreme climate change. 

ToEs for 14 major terrestrial biomes and 9 marine realms of the world are based on the 

World Wildlife Fund (WWF) terrestrial ecoregions (Olson et al. 2001) and marine ecoregions 

(Spalding et al. 2007), respectively. We determined the distributions of projected ToE of extreme 

climate indices for each biome and realm by overlaying terrestrial and marine ecoregions maps 

with maps of median ToE derived, and so we extracted ToEs for each ecoregion. To assess 

possible impact of extreme climate change on human societies, the same procedure as those of 

ecosystems was conducted using maps for urban populations (in 2010) of the largest 590 cities of 

the world obtained from the archive of Demographia World Urban Areas, and maps of GDP per 

person for all countries of the world in 2010 obtained from the World Bank. Urban residents are 

substantially more susceptible to impacts of extreme climate such as extreme heat waves 

(Smoyer et al. 2000), droughts and floods (Haines et al. 2006; McMichael et al. 2006) than rural 

residents. 
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Chapter 8 Conclusions and future work 

8.1 Conclusions 

In this thesis, the first six chapters are devoted to analyzing and characterizing 

hydroclimate extremes over Canada, while Chapter 7 is devoted to global extreme climate 

change that can be broadly categorized under annual, seasonal, spatial, nonstationary and 

multivariate extremes. This research is based on rigorous statistical analysis of the long-term 

daily precipitation and streamflow data of hydroclimate stations across Canada. The following 

summaries will be useful for water policymakers and engineers involving in water resources 

management and planning to mitigate potential impact of water-related nature hazards such as 

floods and droughts. 

1) Non-stationarities of streamflow and precipitation 

From analyses of 145 RHBN and non-RHBN stations of Canada with long-term AMS 

series and hydrological observations, the results show that almost half of the stations experienced 

an abrupt shift in the mean of the annual maximum daily streamflow (AMS). The timing of 

abrupt change points have been shown to be closely related to the years when the regulation of 

streamflow began. About 1/3 stations exhibit monotonic temporal (more negative than positive) 

trends. However, only 12 out of 59 stations detected with abrupt change points showed 

significant monotonic trends in the time series before and/or after change points were detected. 

Thus, abrupt changes are more likely the cause of nonstationarities to AMS series over Canada 

than monotonic trends. More than 2/3 of the AMS series could be accurately fitted with non-

stationary lognormal and gamma probability distributions.  

From analyses of time series of annual maximum daily precipitation (AMP) and counts of 

extreme/heavy precipitation of 463 gauging stations of Canada, the results show that about 1/3 of 

AMP time series shows non-stationary characteristics. Stations located in southwestern Canada, 

northern Canadian Prairies (CP) and Quebec (QC), Newfoundland (NL), and southwestern 

Ontario (ON) showed statistically significant increase in AMP, while AMP in southern CP, 

southeastern ON and Arctic region significantly decreased.  

From analyses of 100 and 145 stations of long-term daily precipitation and streamflow 

records across Canada, the results show that all precipitation time series showed LTP at both 
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small and large time scales, while streamflow time series generally showed nonstationary 

behavior at small time scales and LTP at large time scales. Widespread crossovers of fluctuation 

functions, F2(s), versus timescale s for streamflow data at approximately a time scale of 120-250 

days could be related to the cross-over between rain-induced and snowmelt-induced streamflow 

cycles. About 1/3 of precipitation time series became temporally more uniform because their 

multifractal strength decreased with time. However, only about half of the stations whose 

streamflow data exhibited statistically significant abrupt change points showed a weakening in 

the multifractal strength moving from the pre-change to the post-change periods. 

From wavelet analysis of monthly maximum daily precipitation (MMDP) of 131 selected 

gauging stations across Canada, the results show that low-frequency, interannual (1-8 years) 

oscillations were more significant than interdecadal (8-30 years) oscillations, and the oscillations 

are both spatial and time-dependent in all 1-30 year time scale, even though interdecadal 

oscillations are generally more persistent than interannual oscillations. 

2) Seasonality of extreme precipitation 

Seasonal maximum daily precipitations (SMPs) could either increase or decrease and 

historical seasonal changes varied spatially and from season to season. Across Canada, there 

were more stations showing a significant increase in spring, summer and autumn SMPs than a 

decrease, while the winter SMP experienced a significant decrease (increase) over southern 

(northern) Canada. More than 1/4 of the stations exhibited a shift in SMPs of all four seasons. 

Spring, summer and autumn, SMPs tend to experience more increasing than decreasing change 

points, but the reverse were detected in winter SMP. More stations had shown significant change 

points than trends in AMP and the four SMPs. Compared to other seasons, winter had 

experienced more significant trends and change points in extreme precipitation, and most change 

points had occurred around 1960-1990; 

3) Teleconnections between large-scale climate anomalies and extreme precipitation 

AMP and heavy precipitation of Canada show strong non-stationarities which are likely 

related to the influence of large-scale climate patterns given strong correlations are found 

between extreme Canadian precipitations and climate indices. AMP in southwestern coastal 

regions, southern CP and the Great Lakes regions tend to be higher in El Niño years than in La 

Niña years, while other regions of Canada showed a lower AMP in El Niño years than in La 

Niña years. The effect of other climate patterns such as PDO, NAO and NP on extreme 
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precipitation is also significant at some stations across Canada. The influences of large-scale 

climate anomalies on the detected trends of winter SMP were statistically significant.  

The wavelet coherence and phase difference between the leading PC1-2 (principle 

components 1-2) of MMDP and climate indices are highly variable in periodicity and in time. 

Even though Pearson’s correlation between the band-passed MMDP PC1-3 and climate indices 

are generally significant, a single climate index can explain less than 40% of the total variability 

at 1-30-year scale. These characteristics indicate changes in the strength of teleconnection 

between Canadian extreme precipitation and large-scale climate anomalies. Partial wavelet 

coherence analysis shows that both ENSO and PDO modulated the interannual variability, and 

PDO modulated the interdecadal variability of MMDP over Canada. NAO is significantly 

correlated with the western MMDP at interdecadal scales and the eastern MMDP at interannual 

scales. Composite analysis shows that precipitation extremes at approximately 3/4 of the stations 

have been significantly influenced by ENSO and PDO patterns, while about 1/2 of the stations 

by the NAO patterns. The magnitude of SMDP in extreme El Niño years was mostly lower 

(higher) over the CP region in summer and winter (spring and autumn) than in extreme La Niña 

years. An extreme PDO event of positive phase played a similar role in increasing or decreasing 

the magnitude of Canadian SMDP compared with extreme El Niño events. Winter precipitation 

extremes over eastern Canada were also significantly influenced by NAO. As expected, overall, 

the degree of influence of large-scale climate patterns, i.e., ENSO, PDO and NAO, on Canadian 

precipitation extremes varies by season and by region. 

4) Detection and attribution of annual streamflow totals 

Annual streamflow decreased in Canadian Rockies but increase in other basins. Annual 

precipitation increased in southern Canada, but decreased in northern Canada. Annual potential 

evapotranspiration increased in northern Canada and BC, but decreased in southern Canada. The 

land parameter n used in the Budyko Framework decreased in northern Canada while increased 

in southern Canada. The attribution results show that Precipitation contributed to the increase of 

streamflow, while human influences decreased the streamflow in most Canadian non-RHBN 

watersheds. Many watersheds subjected to both increasing precipitation and negative human 

influences did not exhibit obvious net changes in streamflow. 

5) Global extreme climate impacts on ecosystems and human society 
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Under RCP8.5, the projected global changes in the magnitude, frequency and severity of 

hot extremes are projected to exceed their twofold variance (S/N >2) before 2100, while 

counterparts of extreme precipitation are projected to exceed one variance (S/N >1) before 2100. 

In contrast to perceivable changes in the magnitude (magnitude and frequency) of both hot and 

cold extremes (precipitation extremes) projected to occur early in low- and high-latitudes, the 

frequency (severity) of both hot and cold extremes (precipitation extremes) are projected to 

occur earlier in mid-latitudes instead of low- and high-latitudes. As a result, tropical and 

subtropical forests (tropic Atlantic, Indo-Pacific, Tropical eastern Pacific) are projected to 

experience earlier perceivable changes in hot extremes than other terrestrial biomes (marine 

realms). Arctic tundra is projected to experience perceivable changes in the magnitude, 

frequency and severity of extreme precipitation before 2100, while biomes such as tropical and 

subtropical coniferous forests and Mediterranean forest are projected to experience earlier 

perceivable changes in severe droughts. All major urban residents (about 1.4 billion) are 

projected to experience perceivable changes in the frequency and severity of hot extremes, and 

more are projected to experience severe droughts (0.86 billion) than wet climate (0.08 billion).  

Lastly, early perceivable extreme climate change tends to occur in low-income than rich 

countries.  

8.2 Future work 

Given the research only provided limited regional frequency analysis of Canadian extreme 

hydroclimate and some qualitative discussions of physical mechanisms behind non-stationarities 

of climatic extremes of Canada, future work as a follow up to this thesis will be: 

1) Spatiotemporal modeling of extreme precipitation and streamflow based on spatial non-

stationary extreme value processes and quantile regression processes.  

Since modeling extreme precipitation and streamflow of Canada at each station using a 

GEV distribution was conducted across Canada with diversified climatic regimes, we expect the 

GEV parameters to vary spatially and possibly temporally. In addition to estimate the risk of 

occurrence of extreme precipitation using GEV at regional scale, future work should also 

estimate how that risk could change in time based on certain time-varying environmental 

variables, e.g., the temporal evolution of GEV parameters for Canadian precipitation and 

streamflow maxima should be accounted for. Moreover, in this thesis, the focus had been mainly 

on analyzing the mean (the 50
th

 percentile), the large (95
th

 or higher percentile) and small (5
th

 or 
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lower percentile) values, even though changes of precipitation may be occurring around other 

quantiles, such as the 25
th

 or 75
th

 percentiles or others. A spatiotemporal quantile regression will 

be used to detect possible changes at various quantile levels, for changes can vary between 

quantile levels. Through the Bayesian approach, changes to precipitation quantiles subjected to 

external climatic forcings at various quantile levels should be analyzed in the future.  

2) Moisture transport patterns associated with Canadian heavy precipitation.  

Recurrent large-scale atmospheric circulation patterns have been shown to be associated 

with variations in the intensity and location of polar jet stream, subtropical jet stream, or mid-

latitude storm tracks. In this research, significant statistical relationships have been detected 

between various climate indices and hydroclimatic variables over Canada and North America, 

but causal mechanisms responsible for widespread precipitation and streamflow anomalies have 

not been comprehensively identified. Therefore, in future work, teleconnections between 

precipitation of North America with large-scale atmospheric circulation patterns will be explored 

by identifying propagating patterns in atmospheric fields, e.g., jet stream–level wind speed, 

moisture flux, temperature advection, and vorticity advection, which have potential relevance to 

precipitation. Moisture sources and pathways that have contributed to the Canadian extreme 

precipitation will be identified through moisture trajectory analysis.  

3) Changes in large-scale circulation patterns (dynamic) and thermodynamic conditions 

conducive to Canadian seasonal precipitation extremes.  

Changes in hydroclimatic extremes can be either thermodynamic or dynamic (Seager et al. 

2010; Seager et al. 2007), and extreme weather conditions are often strongly associated with 

large-scale atmospheric circulations. Recent advances in climate research have linked changes in 

the probability of extreme events to changes in atmospheric circulations (Cassano et al. 2015; 

Coumou et al. 2014; Francis and Vavrus 2012; Horton et al. 2015; Petoukhov et al. 2013). 

Previous studies have identified some primary synoptic circulations contributing to the surface 

weather conditions of western Canada. For example, a ridge centered over western Canada is 

usually linked to low precipitation (Romolo et al. 2006; Saunders and Byrne 1996), while high 

precipitation is associated with zonal flow (Romolo et al. 2006) or a ridge centered over the 

Pacific Ocean (Cassano and Cassano 2009; Cassano et al. 2006; Finnis et al. 2009). Precipitation 

over western Canada generally results from the development of lee cyclones at the surface that 

are preceded by a mid-tropospheric low-pressure system across the Pacific Ocean (Lackmann 
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and Gyakum 1998). The low-pressure system generates a narrow band of moisture influx to 

southwestern Canada (Liu and Stewart 2003; Smirnov and Moore 2001). Newton et al. (2014b; 

2014b) examined changes in the frequency of occurrences synoptic circulation patterns classified 

using self-organizing maps, and related these patterns to anomalies of temperature and 

precipitation over western Canada. However, synoptic patterns contributing to the occurrence of 

extreme temperature and precipitation events have not been identified and the changes in the 

frequency of synoptic patterns have not been linked to changes in the frequency of extreme 

events over Canada. 

The atmospheric moisture content governed by the Clausius-Claperyron equation, tends to 

increase with the warming of troposphere, which thermodynamically results in changes to 

surface weather conditions, particularly intensified hydrological cycle with precipitation extreme 

events (Allen and Ingram 2002; Held and Soden 2006; Seager et al. 2012). However, actual 

moisture content is also dependent on the available water and energy supply, so warming may 

not result in changes in precipitation at large time scales (e.g., > 1 day) (Allen and Ingram 2002; 

Panthou et al. 2014). Increase in precipitation intensity at small time scales (e.g., 1 hour) has 

been observed beyond 7% K
-1

, given by Clausius-Claperyron relation, from temperature changes 

in some locations (Lenderink and van Meijgaard 2008, 2010; Panthou et al. 2014). Since 

statistically significant trends in Canadian extreme precipitation have been found in this thesis,  

future work should identify relative contributions of changes in dynamic and thermodynamic 

conditions to changes in the frequency and magnitude of extreme precipitation.   
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