
University of Alberta

A Cluster based Free Viewpoint Video System using Region-tree based
Scene Reconstruction

by

Cheng Lei

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

© Cheng Lei
Fall 2009

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

 II

Examining Committee

Yee-Hong Yang, Computing Science

Walter Bischof, Computing Science

Janelle Harms, Computing Science

Dil Joseph, Electrical and Computer Engineering

Kiriakos Neoklis Kutulakos, Computer Science, University of Toronto

 III

Abstract

Free viewpoint video (FVV) has been widely speculated as one of the next

generation of visual media applications. By taking advantage of camera array

based multiple imaging techniques, FVV enables free viewpoint navigation to

invoke a sense of “being immersed” for the viewers.

 This thesis presents a cluster based FVV system which is designed as a

specific application using a new proposed framework for general camera array

applications. Our FVV system enables centralized workflow management and

distributed computation to take advantage of the cluster’s computation power for

fast FVV-oriented video processing. For its implementation, effort is mainly

focused on the FVV workflow stages of multi-view video acquisition and dense

depth based scene reconstruction. Specifically, a new automatic method is

proposed for the efficient geometric, photometric and temporal calibrations of a

camera array. With this novel integrated calibration method, the use of

unsynchronized cameras becomes possible and the multi-view video acquisition is

made easy, which greatly facilitate the practical use of a FVV (or camera array

based) system. On the other hand, the dense depth based FVV scene

reconstruction is addressed as an image discrete labeling problem using a novel

coarse-to-fine region-tree based framework. As a general framework, its high

ranking evaluations in standard binocular stereo matching and optical flow

estimation benchmarking show its effectiveness and versatility. By further

extending it for general position multi-view temporal stereo and integrating with

inconsistency map/background based progressive optimization, spatial-temporal

consistency is enforced in a new and unified way, which greatly helps the final

FVV rendering quality. Extensive experimental results show that the new system

with its accompanying algorithms can provide high quality rendering results.

Acknowledgements

First of all, I wish to express my sincere gratitude to my wonderful supervisor Dr.

Herb Yang for mentoring and supporting me throughout the past six years. His

devotion, encouragement, knowledgeable perspective, enthusiasm and guidance

have been of great help in the completion of this thesis project. I am greatly

indebted to him for giving me confidence, inspirations and mental supports to

overcome obstacles in the process of conducting the research.

Sincere thanks are extended to the members of my supervisory and candidacy

examination committees, Dr. Dale Schuurmans, Dr. Hong Zhang, Dr. Walter

Bischof and Dr. Vicky Zhao, for their helpful insights and useful suggestions for

the progression of my research. Special thanks go to Dr. Kiriakos Kutulakos, Dr.

Dil Joseph and Dr. Janelle Harms, for being the examiners of my thesis defense

and providing valuable comments and constructive advices.

I also would like to thank the present and past members of our group, Dr.

Minglun Gong, Dr. Xujie Qin, Dr. Hai Mao, Dr. Daniel Neilson, Danielle Sauer,

Jason Selzer, Nathan Funk, YiLei Zhang, Xida Chen and Allen Shen, for their

tremendous help, warm friendship and great fun. I enjoyed working in this

extraordinary laboratory.

I am very grateful to the supporting and academic staff of the Department of

Computing Science at the University of Alberta for supplying a first-class

research and education environment. Special thanks go to Mr. Steve Sutphen for

building the cluster and its maintenance. His clear sight and warm heart have

influenced me tremendously. Special thanks also go to Mr. Baochun Bai for his

selfless help and ardent encouragement.

I cannot end without thanking my parents and sisters, on whose constant

encouragement and love I have relied throughout these years. Without their

keeping me away from family responsibilities, I couldn’t have concentrated on

my study. It is to them that I dedicate this work.

 ii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 1

1.1 PIPELINE OF AN FVV SYSTEM ... 2

1.1.1 Multi-view Video Acquisition .. 2

1.1.2 Scene Reconstruction and Representation .. 3

1.1.3 Content Coding and Transmission .. 3

1.1.4 Decoding and Rendering .. 3

1.2 MOTIVATIONS AND CONTRIBUTIONS ... 4

1.3 ORGANIZATION OF THE THESIS ... 5

CHAPTER 2 BACKGROUND AND RELATED WORK .. 6

2.1 MULTI-VIEW VIDEO ACQUISITION .. 6

2.2 SCENE REPRESENTATION AND RECONSTRUCTION FOR FVV ... 14

2.2.1 Ray based Representation .. 14

2.2.2 Object based Representation ... 16

2.2.3 Dense Depth based Representation .. 19

2.3 STEREO VISION .. 22

2.3.1 Binocular Stereo .. 22

2.3.2 Multi-ocular Stereo .. 25

2.3.3 Temporal Stereo ... 26

2.4 DISCUSSIONS .. 27

CHAPTER 3 DESIGN OF A COMPUTER CLUSTER BASED FVV SYSTEM 28

3.1 PREVIOUS WORK IN FVV SYSTEM DESIGN ... 28

3.1.1 CMU’s Virtualized Reality System .. 28

3.1.2 Surrey’s FVV System for Human Actor ... 29

3.1.3 Blue-C System ... 30

3.1.4 Stanford Camera Array ... 30

3.1.5 Microsoft FVV System ... 31

3.2 DESIGN SPECIFICATIONS .. 32

3.3 HARDWARE ARCHITECTURE DESIGN ... 33

3.4 SOFTWARE ARCHITECTURE DESIGN .. 35

 iii

3.4.1 Foundation Components ... 35

3.4.2 Messaging and Parallelism ... 38

3.4.3 Service Customization and Extension ... 39

3.5 IMPLEMENTATION .. 40

SUMMARY ... 43

CHAPTER 4 TRI-FOCAL TENSOR BASED MULTIPLE VIDEO SYNCHRONIZATION 44

4.1 PREVIOUS WORK ... 44

4.2 PROBLEM FORMULATION... 46

4.3 OVERVIEW .. 47

4.4 IMPLEMENTATION DETAILS ... 49

4.4.1 Issue of Computational Complexity .. 49

4.4.2 Tri-focal Tensor based Geometric Alignment Measure .. 50

4.4.3 Sub-frame synchronization and global optimization ... 53

4.4.4 Algorithm workflow ... 54

4.5 EXPERIMENTS AND EVALUATIONS ... 54

4.5.1 Synthetic videos ... 56

4.5.2 Real videos .. 58

SUMMARY ... 62

CHAPTER 5 EFFICIENT GEOMETRIC, PHOTOMETRIC, AND TEMPORAL

CALIBRATION OF UNSYNCHRONIZED CAMERA ARRAY 63

5.1 PROBLEM FORMULATION... 64

5.2 ALGORITHM OVERVIEW .. 65

5.3 IMPLEMENTATION DETAILS ... 65

5.3.1 Integrated Calibration Pattern Tracking .. 65

5.3.2 Linear Initialization .. 67

5.3.3 Non-linear Total Optimization .. 71

5.3.4 Multiple Camera Photometric Normalization... 72

5.4 EXPERIMENTS .. 72

SUMMARY ... 75

CHAPTER 6 A REGION-TREE BASED IMAGE LABELING FRAMEWORK 76

6.1 IMAGE LABELING PROBLEM FORMULATION .. 76

6.2 WORKFLOW OF DISCRETE OPTIMIZATION BASED IMAGE LABELING 78

6.3 MOTIVATION ... 80

 iv

6.4 REGION-TREE BASED IMAGE REPRESENTATION .. 84

6.4.1 Mean-shift based Image Over-segmentation ... 84

6.4.2 Region-tree Generation ... 86

6.5. ENERGY MINIMIZATION OVER A REGION-TREE .. 87

6.6. COARSE TO FINE (C2F) REGION-TREE ... 89

SUMMARY ... 90

CHAPTER 7 REGION-TREE BASED BINOCULAR STEREO MATCHING 91

7.1 FORMULATION AS A LABELING PROBLEM ... 92

7.2 DATA COST COMPUTATION ... 92

7.3 DATA COST AGGREGATION ... 94

7.4 DISPARITY COMPUTATION AND OPTIMIZATION ... 94

7.5 DISPARITY REFINEMENT .. 95

7.5.1 Cross Checking based Occlusion Handling ... 95

7.5.2 C2F Region-tree based Sub-pixel Disparity Refinement ... 96

7.6 EXPERIMENTS AND EVALUATIONS .. 96

7.6.1 Middlebury Dataset Benchmarking ... 96

7.6.2 Performance Comparison of Using Different Optimization Methods 99

7.6.3 Performance Sensitivity to Segmentation Granularity .. 101

7.6.4 More Experiments ... 102

SUMMARY ... 105

CHAPTER 8 REGION-TREE BASED OPTICAL FLOW ESTIMATION 106

8.1 PRIOR WORK ... 107

8.1.1 Differential Algorithms ... 107

8.1.2 Parametric Algorithms .. 108

8.2 MOTIVATIONS .. 109

8.3 IMPLEMENTATION DETAILS ... 111

8.3.1 Optical Flow Estimation Formulation as a Labeling Problem 111

8.3.2 Initial Search Range Probation .. 113

8.3.3 Region-tree based Displacement Computation ... 113

8.3.4 Optical Flow Filed Refinement ... 114

8.4 ALGORITHM WORKFLOW .. 117

8.5 EXPERIMENTAL RESULTS AND EVALUATION ... 117

8.5.2 Performance Comparison of using C2F or Single-level Region-tree 121

8.5.3 Performance Profiling w.r.t Different Parameters ... 122

SUMMARY ... 125

 v

CHAPTER 9 REGION-TREE BASED SPATIAL-TEMPORAL CONSISTENT VIDEO

DEPTH RECOVERY FOR FVV RENDERING ... 126

9.1 PRIOR WORK ... 126

9.2 PROBLEM FORMULATION... 129

9.3 ALGORITHM OVERVIEW .. 130

9.4 IMPLEMENTATION DETAILS ... 133

9.4.1 Temporal Region-tree based Temporal Consistency Enforcement 133

9.4.2 Progressive Spatial-consistency Enforcement .. 135

9.4.3 Background Biased Optimization ... 138

9.5 EXPERIMENTAL RESULTS AND EVALUATIONS ... 140

9.5.1 Quantitative Temporal Consistency Evaluation ... 140

9.5.2 Experiments on MS Datasets .. 141

9.5.3 Experiments on Datasets Captured by Our FVV System .. 142

9.5.4 Rendering based Performance Evaluation and Profiling ... 148

SUMMARY ... 154

CHAPTER 10 CONCLUSIONS AND FUTURE WORK .. 156

10.1 CONTRIBUTIONS .. 156

10.2 LIMITATIONS AND FUTURE WORK ... 158

REFERENCES .. 160

List of Tables

Table 5.1: Photometric calibration error statistics. ... 75

Table 7.1: Middlebury stereo benchmark ranking .. 99

Table 8.1: Middlebury benchmark ranking... 119

List of Figures

Figure 1.1: FVV system pipeline. ... 2

Figure 2.1: FVV based teleconferencing systems. ... 7

Figure 2.2: Examples of large scale camera arrays. .. 8

Figure 2.3: FVV systems using lower sampling density. 9

Figure 2.4: The pin-hole camera model. ... 11

Figure 2.5: Examples of camera array geometric calibration methods................. 13

Figure 2.6: Comparison of forward & backward warping. 21

Figure 2.7: Epipolar geometry. ... 23

Figure 2.8: Illustration of binocular stereo. .. 24

Figure 2.9: Illustration of multi-ocular stereo. .. 26

Figure 3.1: The “Virtualized Reality” System. ... 29

Figure 3.2: Surrey’s FVV System (left) and the Blue-C system (right). 29

Figure 3.3: Stanford’s camera array system (left) and MS’s FVV system. 31

Figure 3.4: Our FVV System hardware setup. .. 35

Figure 3.5: Software architecture component diagram. .. 36

Figure 3.6: Example screenshot of the main GUI of our FVV software system. . 42

Figure 3.7: Example FVV rendering using our system. 43

Figure 4.1: Illustration of the difference between synchronized and 48

Figure 4.2: Global timeline relations between 5 synthetic videos. 56

Figure 4.3: Synchronization result summary of 5 synthetic videos. 57

Figure 4.4: Profiling curve of synchronization accuracy to tracking noise levels. 58

Figure 4.5: Synchronization result of the stop-watch sequence experiment. 59

Figure 4.6: Synchronization result of the ping-pong sequence experiment. 61

Figure 4.7: Synchronization result of the toy-car sequence experiment. 61

Figure 4.8: Synchronization result of the hardware synchronized sequence

experiment. .. 62

Figure 5.1: One redesigned calibration pattern and the calibration 66

Figure 5.2: An example camera array setup. .. 73

 ii

Figure 5.3: Results of 4 cameras (columns from left to right). 75

Figure 6.1: Over-segmentation illustration. .. 85

Figure 6.2: Illustrations of region-tree generation. ... 86

Figure 6.3: Two-level coarse-2-fine over-segmentations. 90

Figure 7.1: Disparity errors without handling border pixel datacost issue. 93

Figure 7.2: Results on Middlebury stereo benchmark datasets.. 98

Figure 7.3: Coarse and fine segmentation level stereo result comparison. 99

Figure 7.4: Comparison of using graph cuts on region-tree and on region-graph.

 ... 101

Figure 7.5: Profiling curves of performance to segmentation granularities 102

Figure 7.6: Result of Flower & Lady dataset from [144].. 102

Figure 7.7: Results of the Middlebury Sawtooth dataset. 103

Figure 7.8: Result of the Middlebury Map dataset ... 103

Figure 7.9: Results of the Stanford dataset from [145]. 104

Figure 7.10: Results of datasets from [128, 146]. ... 105

Figure 8.1: Illustration of cross-checking based optical flow refinement........... 116

Figure 8.2: Illustration of local continuous optical flow optimization. 116

Figure 8.3: Results (right column) of the Middlebury datasets. 120

Figure 8.4: Result of the Middlebury “Yosemite” dataset. 121

Figure 8.5: Comparison of using single-level and C2F region-tree. 122

Figure 8.6: Example results of other Middlebury datasets. 123

Figure 8.7: Profiling curves of performance to ZNCC window size, coarse and

fine level segmentation granularities on 6 Middlebury datasets.. 124

Figure 9.1: Illustration of the typical steps in our proposed algorithm. 132

Figure 9.2: Results of an example lab test dataset. ... 135

Figure 9.3: An example of background estimation ... 139

Figure 9.4: Median-Deviation curves and depth scaline stacks. 141

Figure 9.5: Qualitative comparison of our results to results from [15] on the

Breakdancing dataset (frame 78). ... 143

Figure 9.6: Qualitative comparison of our results to results from [15] on the

Breakdancing dataset (frame 79). ... 144

 iii

Figure 9.7: Our example results of the Ballet dataset (frames 2, 3, and 4). 145

Figure 9.8: Results of a soccer scene dataset ... 146

Figure 9.9: Consecutive depth map results of a Basketball dataset 147

Figure 9.10: Illustration of forward warping based FVV rendering workflow. . 149

Figure 9.11: Quality comparison of FVV rendering using point based and mesh

based approaches.. .. 150

Figure 9.12: Example of rendering evaluation of the Ballet dataset. 152

Figure 9.13: Example of rendering evaluation of the Breakdancing dataset. 153

Figure 9.14: Example of rendering evaluation of the Basketball dataset. 153

Figure 9.15: Representative profiling curves using rendering based evaluation. 155

 1

Chapter 1 Introduction

Interactive visual entertainment has become more and more popular. The huge

progress in graphics software and hardware features and the increase in

performance in hardware make it possible to render highly indistinguishable

lifelike dynamic scenes of virtual world as seen in many movies or games. In

addition to realism, immersiveness is another key feature for achieving their

appealing viewing experience [1]. For example, as arguably the first shown in the

movie “The Matrix,” smoothly transitioning between the viewpoints by

successively switching between multiple real still images captured at different

viewpoints gives the viewer the sensation of flying-around the scene with time

frozen. It has been widely speculated that the next generation of visual media

applications with such an ability to invoke a sense of “being immersed” by

empowering them with the ability to navigate the environment freely will become

ubiquitous and drastically impact many aspects of businesses and industries [2].

 To make the traditional visual media such as a TV show “immersible,” the

viewer must be provided with interactive functions on a control to adjust

important viewing parameters to his/her likings. One popular technology for this

purpose is the so-called Free Viewpoint Video (FVV), which is one of the

applications of multiple view imaging [3]. FVV uses multiple cameras to capture

a dynamic scene from different viewpoints and allows a viewer to navigate within

the dynamic real-world scene by changing the virtual viewpoint and viewing

direction during video playback. Therefore it can be regarded as an extension of

the more traditional interaction provided in a virtual world environment using

computer graphics based techniques to one using the natural representation of

appearance and motion of real world objects.

 2

1.1 Pipeline of an FVV System

As shown in Figure 1.1, the pipeline of a typical FVV system mainly includes

stages of multi-view video acquisition, scene reconstruction, content

coding/transmission, and decoding/rendering.

Figure 0.1.1: FVV system pipeline.

1.1.1 Multi-view Video Acquisition

The task of this stage is to capture a set of video sequences of dynamic scenes

from different viewpoints using multiple cameras. The cameras are usually

managed and coordinated by the controlling computers to work synchronously in

integration mode or work autonomously and independently without central

control in standalone mode. The number and topologic arrangement of the

cameras, which determine the scene geometry sampling density, depends on the

scene representation and the rendering technique to be used in subsequent stages.

Since the amount of video data that needs to be captured is usually huge, even just

for a small-scale FVV system, special hardware and software considerations have

to be made for streaming the videos.

 On the other hand, the cameras have to be synchronized and geometrically

calibrated if explicit scene geometry reconstruction is needed. Moreover, to

compensate for the color response differences between cameras, photometric

camera calibration is also needed.

 3

1.1.2 Scene Reconstruction and Representation

In addition to video frame color information, FVV rendering usually requires

implicit or explicit 3D geometry information of the captured scene, which is

crucial for synthesizing intermediate views. The chosen scene geometry

representation is usually application-specific and depends on the type of scene,

the desired level of realism and the available bandwidth for data transmission.

The chosen scene representation has a significant impact to all other stages of the

FVV pipeline.

1.1.3 Content Coding and Transmission

The potential of commercial success and the popularity of FVV in applications

largely depend on whether or not they are compatible with existing public

broadcasting infrastructures. Therefore, the excessive communication bandwidth

and storage requirements of FVV media compared to conventional video media

should be kept as low as possible. Lots of efforts such as that from the 3DAV

working group established by ISO/IEC MPEG [4] were made to design

“compatible and economical” encoding schemes and standards to take advantage

of the correlation between multiple video streams of the same scene. Even though

no FVV-oriented coding standard has been finalized so far, FVV applications can

still take advantage of many widely deployed standards such as MPEG-2 or

MPEG-4. New compression paradigm called multi-view video coding (MVC)

has been proposed to further exploit inter-view redundancies in addition to

traditional temporal redundancies [5].

1.1.4 Decoding and Rendering

In this stage, the received FVV stream data is decoded and consumed by an FVV

rendering engine for synthesizing views requested by the viewer. Generally

speaking, the underlying rendering techniques all belong to the image based

rendering (IBR) family, but with different “genres” in taking advantage of the

corresponding scene geometry information.

 For collecting viewer’s requests and displaying corresponding rendering, a

presentation/interaction component is usually provided. FVV can be presented on

 4

a computer monitor, a TV, a projected screen, a virtual reality HMD (headed

mounted display) or other display devices. For stereoscopic FVV, special stereo-

capable display devices can be used as well. The viewer can use a mouse,

keyboard, remote control or head movement/gesture to control the viewpoint of

the playback FVV.

1.2 Motivations and Contributions

The potential of commercialization and of the wide range of possible deployments

of FVV have motivated many research groups and companies as well as this

thesis work. As can be seen from the last section, FVV research and development

involve many different disciplines such as imaging, computer vision/graphics,

encoding/decoding and networking and there exist numerous scientific and

technical challenges. Addressing them in a better way, even only partially, can

greatly help the progress of FVV deployment. In this thesis, the focus is mainly in

improving the current state-of-the-art in FVV oriented multiple view video

acquisition and depth-based scene reconstruction, based on which a new practical

FVV system is designed and developed.

 In particular, as pointed out above, the choice of specific 3D scene

representation is of crucial importance for the whole FVV system design and

implementation. Among all the popular scene representations, the dense depth

based one is the most promising one due to its lower requirements on the number

of cameras and higher flexibility on the applicable scenes. For recovering the

dynamic depth information from multiple view video streams, although active

time-of-flight based acquisition systems [6] could be used, stereo vision based

approaches are still the most popular and promising ones due to their much lower

cost requirements and their potential in real time applications. As a research topic,

despite many years of work has been devoted to stereo vision based depth

reconstruction , very few frameworks or methods have been proposed to address

the FVV-specific requirements. Therefore, in this thesis, much effort is devoted to

designing and implementing novel algorithms for reconstructing high quality

video depth maps for FVV rendering. As one main contribution of this research, a

 5

general and versatile region-tree based image labeling framework has been

proposed, with promising performance illustrated in its application to binocular

stereo matching [7], optical flow estimation [8] and FVV-related video depth

recovery [9].

 Another main contribution of this thesis is in developing a new cluster based

FVV system to facilitate the implementation and development of FVV algorithms.

In addition to implementing the proposed FVV scene reconstruction algorithms, a

novel method for the automatic and efficient camera array geometric, photometric

and temporal calibrations [10] is designed for convenient and easy multi-view

video acquisition and calibration.

 Furthermore, we believe that the results from this research to be general, not

just specific to FVV domain. Specifically, the depth based FVV scene

reconstruction is addressed through formulating our method as a general

framework for discrete image labeling problems [7-9]. Designing and

implementing our cluster based FVV system is also done by building a general

framework for camera array based applications [11]. In this way, the applicability

of this thesis work to other areas is greatly extended.

1.3 Organization of the Thesis

 The remainder of this thesis is organized as follows. In the next chapter,

related work is reviewed and some basic concepts and mathematical notations are

introduced. Then a camera array application framework is presented in Chapter 3

based on which our FVV is designed and developed. In Chapters 4 and 5, the

issues of video synchronization and camera array total calibration are addressed

by implementing the multi-view video acquisition module for our FVV system.

Then in Chapter 6, a novel region-tree based labeling framework is presented with

its applications in binocular stereo matching, optical flow estimation and spatial-

temporal consistent FVV video depth map recovery illustrated in Chapters 7, 8

and 9 respectively. Conclusions and possible future works are given and discussed

in Chapter 10.

 6

Chapter 2

Background and Related Work

As expected to evoke a revolution in the next generation of video technology,

extensive research has been conducted on capturing, processing and rendering

FVV in the last two decades. With new technologies kept emerging or advancing

in the closely related disciplines such as imaging, computing and rendering, the

implementation of real-world FVV application has become more and more

feasible and cost-effective.

 In the following, previous research and development work related to FVV will

be briefly reviewed, especially the ones on FVV data acquisition, scene

representation and reconstruction and rendering, which are the main focus of this

thesis.

2.1 Multi-view Video Acquisition

Most existing FVV systems use a camera array for multiple view video

acquisition. Such examples include the Virtualized Reality system at CMU [12],

the view-dependent visual hull system at MIT [13], the Blue-C system from ETH

Zürich [14], the view interpolation system at Microsoft Research [15] and the

Stanford multi-camera array [16].

(1) Camera array based scene sampling

Multiple view video acquisition is equivalent to a sampling process of the

captured 3D dynamic scene. Its sampling pattern and density are determined by

the topological arrangement and the number of cameras in the array.

 Usually the camera array’s topological arrangement is application-specific and

depends on how freely the viewer is allowed to navigate his/her viewpoint when

viewing the FVV rendering. For example, FVV based teleconferencing

 7

applications need less viewpoint freedom and usually take a near-parallel facing

arrangement. Specifically, Kauff and Schreer [17] use four cameras mounted

around a display to capture a conference scene as shown in Figure 2.1 (a). While

in [18], as shown in Figure 2.1 (b), virtual views are synthesized using 5 cameras

on an arc for immersive teleconferencing. On the other hand, for an all-around

viewpoint freedom, a dome like arrangement is usually used, as done in [12, 14].

 In addition to topological arrangement, the number of cameras used, which

determines the sampling density of the captured scene, has a strong relationship

with other FVV pipeline stages. As an example, it is possible to achieve

extremely high sampling density by using a large number of cameras so that even

direct linear viewpoint blending between adjacent cameras is enough for FVV

rendering. But its high implementation cost makes this approach impractical in

most cases. So there are always tradeoffs between system cost and the quality in

rendering realism and the flexibility in selecting viewpoint.

 Usually the sampling density is determined by the 3D scene geometry

representation and the reconstruction approach used by the system. For example,

to use the “ray based” scene representation (Section 2.2), the sampling density

must be high. In [16], as show in Figure 2.2 (a), a large scale camera array using

100 CMOS cameras is built and used for FVV rendering, high frame-rate video

and video super-resolution. In [19], as shown in Figure 2.2 (b), up to 100 high

definition cameras are used to enable viewer free control of the viewpoint of a real

time dynamic 3D scene. In [20], a 32-camera array is used to provide a real-time

interactive multi-view video service.

Figure 2.1: FVV based teleconferencing systems.

(a) (b)

 8

 If more processing overhead is allowed for reconstructing the scene geometry,

much lower sampling density can be used. For example, as shown in Figure 2.3

(a), Zitnick et al. [15] use 8 cameras arranged on a roughly circular arc for dense

depth reconstruction and high quality view interpolation is achieved based on

layered based rendering. Shown in Figure 2.3 (b), Carranza et al. [21] use 7

cameras for 3D human model and motion capture based FVV synthesis.

(2) Video Streaming

 Based on the working mode and type of the cameras used, the captured video

data can be streamed into local media such as video tapes or non-local media such

as hard disks/RAMs of the controlling computers through high-speed cables or

wireless network. The first approach is suitable only for offline FVV applications,

while the second one is more flexible and has the potential for real time FVV

applications.

 Since the amount of data that needs to be captured is usually huge, even just

for a small-scale camera-array, most FVV systems rely on using multiple

computers. However, to lower the cost and deployment difficulties, on-the-fly

Figure 2.2: Examples of large scale camera arrays.

(b) Camera array from [15]

(a) Stanford camera array (c) MSR camera array

 9

MPEG video compression can be done using embedded compression hardware.

For example, as done in the Stanford camera-array [16], it manages to stream

compressed video data from over 100 cameras to a hard disk array by using as

few as one computer per 25 streams. With the cameras integrated with even more

powerful and general computing capabilities in the future, the number of

computers required can be further reduced.

(3) Camera Synchronization

 Since most FVV applications need to establish correspondences between

video frames, synchronization between cameras are very important, especially for

scenes with fast moving objects. When a camera-array works in the integration

mode, the synchronization can be achieved by using hardware based mechanism.

Usually such approaches need a specialized control unit to broadcast external

signals to trigger the exposure shutters of cameras. For example, the

synchronization unit from Point Grey Research [22] can synchronize multiple

cameras on different 1394 buses. For cameras interconnected on the same 1394

bus or through TCP/IP network, by means of the 1394 bus sync-signal or TCP/IP

Figure 2.3: FVV systems using lower sampling density.

(a) 8-camera based FVV system from [15]

(b) 7-camera based FVV system from [21]

 10

signaling [23], hardware-software hybrid camera synchronization approaches can

be used. For example, a series of 1394 cameras can be daisy chained together on

the same 1394 bus and the exposure of the cameras can be synchronized using

synchronization software [24]. In [25], a server–client architecture with a special

error-checking technique is used for synchronization. By estimating and

accounting for the network latency, synchronization between the times for each

camera to receive the trigger signal is achieved.

 On the other hand, when the cameras have to work in the standalone mode,

offline camera (video) synchronization can be done using software-only

mechanism, which does not require the special setup procedure or the equipment

necessary for hardware based synchronization.

(4) Multiple camera calibrations

 In additional to correlating cameras temporally through synchronization, most

FVV applications also require to recover the geometric and photometric

correlations between cameras which are mainly used in the scene reconstruction

and rendering stages.

(a) Pin-hole camera model

 In this thesis, we use the pin-hole camera model to describe the mathematical

relationship between the coordinates of a 3D point and its projection onto the

image plane. In particular, as shown in Figure 2.4, the projected 2D point ࢞ of a

3D point ࢄ is the intersection of the image plane of the camera with the line

joining its optical center and point ࢄ in question. The line that passes through

the camera optical center and is perpendicular to the image plane is called the

principal axis, and the intersection with the image plane is called the principal

point. The distance between the optical center and the principal point is the

camera’s focal length ݂.

 For a pin-hole camera, the relation between ࢄ and ࢞ can be described by

the perspective projection. That is,

 ቆ
ݑ
ݒ
1

ቇ ൌ ࢞ (2.1) ࢄሿ࢚|ࡾሾࡷ

 11

wherein ቆ
ݑ
ݒ
1

ቇ and ࢄ ൌ ቌ
ܺ
ܻ
ܼ
1

ቍ are homogenous coordinate of ࢞ and ࢄ respectively

and means “equal up to a non-zero scale factor.” ሺࡾ, which represents the ,(࢚

camera’s rotation matrix and translation vector w.r.t a reference coordinate frame,

is defined by 6 extrinsic parameters.

 Furthermore, ࡷ ൌ
௨݂ ߙ ݑ
0 ௩݂ ݒ
0 0 1

൩ is called the calibration matrix and ௨݂ ൌ
௦ೣ

,

௩݂ ൌ
௦

ߙ , ൌ
௦ೣ

cot are the camera’s five intrinsic parameters, whichݒ andݑ ,ߠ

models the camera’s optics properties. ݏ௫ and ݏ௬ are the physical width and

height of a pixel on the image plane, which are determined by the camera’s film

size or its electronic sensor dimensions. ߙ is the skew factor, which is determined

by the cosine of the angle ߠ between the x and y axes of the image plane, and is

usually 0 for orthogonal axes. ݑ and ݒ are, respectively, the x and y coordinates

of the principal point in pixels. In this thesis, we always assume ߙ ൌ 0.0 for

simplicity. Equation (2.1) can also be expressed in another simpler form as

࢞ (2.2) ࢄࡼ

where the 3 ൈ 4 matrix ࡼ is called the projection matrix. In many computer

vision and graphics research, using such a linear projection transform based

expression can simplify many derivations of the relations between 3D and 2D

coordinates.

 ࢄ

 ࢝ࢄ ࢞

 ࢉࢆ

 ࢉࢅ

 ࢉࡻ

Figure 2.4: The pin-hole camera model.

 ࢝ࢅ
 ࢝ࢆ

ሺࡾ,t)

 12

(b) Geometric calibration

 Geometric calibration of a camera is an indispensable step for FVV

applications that require explicitly extracting 3D geometric information from 2D

video frames. The purpose of geometric calibration of a camera is to recover the

camera’s intrinsic and extrinsic parameters from the captured image information.

With such parameters known, the 3D-to-2D projection model of the camera can

be established. The accuracy of these geometric parameters have to be high

enough otherwise errors and artifacts may show up in subsequent scene geometry

reconstruction and rendering steps.

 Extensive research has been done for single camera calibration. Existing

techniques can be roughly grouped into two categories: the intrusive ones [26-28]

which rely on using artificial calibration patterns with known geometric

information to facilitate feature extraction; and the non-intrusive ones [29, 30]

which are based on the automatic natural feature matching using self-calibration

techniques. In the first category, the plane based algorithm [28] is the most

popular due to its simplicity of use, flexibility and high accuracy. As well, its

many publicly available implementations [31, 32] also help its popularity.

 On the other hand, automatic geometric calibration for camera arrays is

challenging. Due to application-specific requirements on the topological

arrangement of the cameras, their common field of views could be very small.

Moreover, the use of heterogeneous or low-cost non-synchronized cameras may

further complicate the geometric calibration process due to inaccurate

synchronization.

 Most of the existing camera array geometric calibration methods reply on the

multiple-view geometric constraints on the spatially (and temporally) matched

features (if dynamic). The often used constraints include plane-induced

homography [33, 34], the fundamental matrix [35] or the tri-focal tensor [36]. In

particular, some efforts have been made to extend [28] for camera array

applications in a direct-scaling way [37] or by customizing the calibration pattern

used [34, 36, 40]. Instead of using a planar pattern, the authors in [35, 38, 39] use

 13

the so-called virtual calibration object idea. Indeed, it is based on the observation

that, for synchronized stationary cameras, the trajectory of a dynamic point in a

time span is equivalent to a snapshot of many static points at a time instant. Then

such virtually static points can be used as a virtual rigid object whose matching

between different cameras is considerably easy and robust. To generate virtual

calibration objects, in [35, 38], the active illumination technique is used, while in

[39] a real moving people or object is tracked using the extended Kalman filter

(EKF) approach.

(c) Photometric calibration

 It is very difficult, if not impossible, to guarantee that all the cameras in a

camera array have exactly the same color response characteristics, even for the

ones with the same model purchased at the same time from the same

manufacturer. Therefore in many FVV applications, photometric calibration is

also needed to correct the deviation of the sensed or reproduced colors from the

“true” ones due to the non-linear color-response function of the camera, the on-

board color processing artifacts or other sources. Ensuring such color consistency

is very important for obtaining accurate FVV scene reconstruction and getting rid

of view dependent color variations in FVV rendering.

 Accurate photometric calibration is challenging and it is common practice to

use the Macbeth color checkerboard which has 24 color pigment chips for

calibration. To enforce color consistency among different cameras, the sensed

pigment colors of the same color by different cameras should be as close as

Figure 2.5: Examples of camera array geometric calibration methods.

(b) Virtual object based method [](a) Customized calibration pattern based

 14

possible after calibration. Usually it is done by adjusting the camera’s gain and

offset settings or post-processing of color of the captured video frames [41, 42].

2.2 Scene Representation and Reconstruction for FVV

To achieve the viewpoint navigation freedom, an FVV application usually has to

know the 3D scene geometry to some extent for presenting viewers synthesized

images with realistic viewpoint transitions through changes such as parallax,

object shading and lighting. Therefore, reconstructing 3D dynamic scene from

multiple video streams in a suitable representation format is of crucial importance

to all FVV applications.

 The FVV scene representation formats can be roughly categorized into the

ray-based, depth-based and object-based representations.

2.2.1 Ray based Representation

The ray-based representation originated from IBR research [43], which as a

convergence of computer vision and computer graphics disciplines aims to render

photo-realistic images directly from real world photographs. Compared to the

traditional 3D geometry/appearance description based approach, IBR achieves

photo-realistic rendering with much less computation load and human effort,

which is the main reason why IBR has attracted much attention since the early

90’s.

 In particular, in IBR, a 3D scene is implicitly modeled by a collection of

images, or equivalently light rays filling the scene defined by the so-called 7-

dimensional plenoptic function [44]. The plenoptic function represents the

radiance of each light ray with 7 parameters, namely, the wavelength ߣ, the

camera position ൫ܥ௫, ,௬ܥ and ߠ ௭൯ and the direction defined by the azimuth angleܥ

the elevation angle ߶, and time ݐ. So the image formation process can be regarded

as intersecting a camera’s image plane with the ray space, with each pixel’s color

defined by the corresponding light ray passing the camera’s optical center. Ray

based scene reconstruction is equivalent to reconstruct the plenoptic function

based on the input image samples. With the plenoptic function known,

 15

synthesizing novel images is straightforward as function evaluation using the

corresponding parameters.

 However, fully reconstructing a 7-dimensional plenoptic function, if not

impossible, needs a huge amount of sampling storage and workload. In practice,

the simplified lower-dimensional plenoptic function variants are often used. In the

following, we review only the ones that are most relevant to FVV.

(a) 5D parameterization

 By assuming that wavelength ߣ and time ݐ are fixed, the plenoptic function

can be reduced into a 5D function. For example, in [44], a panning video camera

is used to sample a static scene at several viewpoints. The captured images are re-

projected onto a cylindrical surface. By recovering the optical flow fields and

cylindrical epipolar geometry between the re-projected images, novel views can

be synthesized.

(b) 4D parameterization

 By further assuming light intensity remains constant along a ray, Levoy and

Hanrahan [45] simplify the plenoptic function into a 4D one. This is the well-

known light field rendering using two-plane parameterization for the plenoptic

function. When synthesizing novel views, the two intersection points between

each light ray to be synthesized and the two planes are used to interpolate the ray

intensity using the captured images. Similarly, in the work of lumigraph [46], for

each face of the bounding-box of the captured scene, two such planes are used as

well. Different from light field rendering [45], in lumigraph, the cameras are

allowed to be in general position. However, the object must be placed in a box

with patterns for performing geometric calibration at each camera position.

Furthermore rough volume reconstruction is done for depth-corrected rendering.

 For ray-based FVV applications, light field rendering has also been extended

to dynamic scenes in [47-50]. The corresponding scene geometry reconstruction is

equivalent to a ray indexing process. Based on the dynamic light field

parameterization, each pixel of all video frames at a time instant is indexed as a

 16

light ray with the corresponding discrete plenoptic parameters, all together

forming the so-called “ray database.” To render a novel view at a time instant

according to a queried viewpoint, for each pixel in the image, the parameters of

the queried ray are estimated and used to lookup in such “ray database.” The

pixel’s color is then determined by directly using the closest ray or integrating/re-

sampling using the nearby rays.

 The main challenge of using the ray-based representation is in the required

high sampling density for reconstructing the original continuous plenoptic

function from discrete video frames and the corresponding storage and

transmission overhead. Since there is no explicit (or very rough if any) scene

geometry involved to compensate for view parallax effect of non-planar scenes,

the sampling density has to be high enough or the viewpoint freedom must be

limited otherwise artifacts will appear. Unfortunately, though building large scale

camera-array is possible, the physical dimension of the cameras make it difficult

to satisfy the space density requirement. To address this issue, researchers invent

the approach of using multiple micro-lenses with a single camera [51]. However,

the image resolution/quality and viewpoint navigation range is much limited.

2.2.2 Object based Representation

In this category, a dynamic scene is represented as dynamic 3D objects with

geometry and appearance information. To synthesis a novel view, it just needs to

match the virtual CG camera to the requested viewpoint and viewing direction

and render the reconstructed scene as in classic CG rendering. In this way, full

navigation freedom can be trivially achieved.

 In the following, four popular 3D object representations are briefly reviewed.

(a) Mesh based representation

 Polygonal mesh based representation has been the most universal 3D object

definition format used in the computer graphics industry [52] and many mesh

simplification and compression schemes have been developed [53,54] to meet the

continuously advancing storage and rendering challenges. Mesh-oriented

 17

hardware acceleration is now ubiquitously available and very complex 3D

geometry can be rendered in real-time on low-end desktop or even handheld

devices.

 To model time varying or deforming objects using polygons for FVV, mesh

animation and morphing techniques [55, 56] are used. Instead of using separate

mesh for each time instant, static mesh connectivity is usually used for all video

frames and only vertex position information is updated between frames for better

storage efficiency. To avoid FVV rendering artifacts due to the use of static mesh,

Kircher and Garland [57] proposes a progressive scheme to efficiently produce

incremental level of detail (LoD) approximation for all video frames.

 Reconstructing 3D surface meshes accurately from multiple video streams is

nontrivial and has been a heavily researched topic in computer vision. Many

algorithms such as image based modeling (IBM) [58-59] can reconstruct 3D

models from videos by establishing sparse or dense correspondences between

multiple views.

 While for FVV rendering, the view-dependent video texture mapping

technique [60] is used for realistic mesh appearance rendering, by which, for each

time instant, textures from all available views are mapped onto the mesh and

weighted in relation to a given geometric criterion. This weighting ensures a

seamless fading between the object projection appearances from different

viewpoints, resulting in better rendering quality matching the real lighting

condition and reflectance changes when transitioning between viewpoints.

(b) Voxel based representation

 Voxel based representation uses a set of so-called voxels as the minimal 3D

space units to parameterize the scene reconstruction volume [61]. Each voxel has

a binary visibility flag to indicate if it is empty. A non-empty voxel is associated

with its appearance properties of the surface segment of the object occupying it.

 To reconstruct a scene surface using voxels, the well-known space carving

[62,63] or voxel coloring approaches [64-66] are often used, which starts with a

completely solid volume and iteratively carves away invisible voxels based on

 18

photo consistency. In the work of Snow et. al. [67], the volume reconstruction

problem is reformulated as a voxel visibility labeling optimization problem and

solved using graph cuts.

 To render voxel based FVV content, usually it still needs to convert the

volumetric geometry into textured meshes.

(c) Point based representation

 A 3D object can also be represented using the primitive of points, particles or

surfels [68,69]. In point based representation, there is no explicit topology or

connectivity information and each 3D point is independent and has its own

coordinates, color, normal and other rendering-oriented attributes [14, 70].

Currently, the point based representation has become more popular due to its

better ability and efficiency in handling highly detailed complex 3D geometry.

Progressive schemes have been proposed using hierarchical data structure such as

the octree [68] for better performance. Compared to mesh based representation,

the point based representation can easily implement surface dynamics since there

is no connectivity change for geometry animation or morphing.

 One example FVV system using the point based scene representation is in the

work of Gross et al. [14]. Its rendering consists of the steps of reconstructing the

continuous surface from surface samples, surface filtering and re-sampling

according to viewing parameters. During synthesis, the splatting approach [71] is

used, which projects each point with an orientation-adapted disc or ellipsoid onto

the desired image plane. By properly choosing the splat shape and distribution,

trade-off can be made between rendering quality and performance.

(d) Parametric model based representation

 For a specific class of scene objects such as the human body, a parametric

model with highly detailed geometry given as a priori can be used to ameliorate

the difficulty of general object reconstruction [21]. By matching and fitting the

parametric model to the captured videos with much fewer degrees of freedom

compared to general reconstruction, more robust and convincing reconstruction

 19

can be achieved. On the other hand, temporal coherence can be maintained by

limiting only the maximum range of parameter changes between time instants.

However, since it is difficult, if not impossible, to obtain the exact geometry

model for general scene objects, special process has to be performed to correct the

possible geometry error when projecting the reference video frames as textures

onto the model during rendering.

 2.2.3 Dense Depth based Representation

Dense depth based representation is often called 2.5D (not true 3D) representation

[72]. The scene geometry is encoded by depth maps with the same spatial-

temporal resolution as the video streams so that each pixel in each video frame

has the associated depth information.

 As a tradeoff between the object based and ray based representations, a depth

based representation needs more explicit scene reconstruction than the ray-based

one, but requires much lower sampling density. Compared to the object based

representation, the per-pixel depth information is usually easier to obtain.

 Existing FVV systems using depth based representation include the work of

Zitnick et al., Gong and Yang, and Fehn [15, 73, 74]. The accuracy of depth map

and the strategy to handle occlusions and dis-occlusions due to viewpoint changes

are crucial to the rendering quality.

 To recover accurate per-pixel depth information, hardware-based or software-

based approaches can be used. In particular, specialized hardware such as range

scanners [75], Z-Cam [76], structure light projectors [77] etc. have proved their

effectiveness. On the other hand, stereo vision techniques provide a low-cost and

general software-based solution.

 Most depth based FVV rendering techniques used in practice are based on 3D

image warping [78-80], which is also originated from IBR. Based on the pixel

warping direction between the reference image and the destination image, the

methods can be classified into two categories: forward and backward 3D image

warping.

 20

(a) Forward 3D image warping

 As shown in Figure 2.6, in forward 3D image warping, each pixel in the

warped image is back-projected as a 3D point which is the intersection of its

back-projection ray and a depth plane corresponding to the pixel’s depth. Given a

destination camera, all the back-projected 3D points are re-projected onto its

image plane, forming a geometrically-consistent warped virtual view. Since more

than one source pixels can be warped to the same destination pixel, a Z-buffering

mechanism is commonly used to resolve such conflicts. Moreover, due to parallax

effects between the source and the destination cameras and pixel rasterization

rounding errors, usually there will be some uncolored pixels in the warped image,

forming holes. Specific to FVV rendering, a common solution is to warp from

more than one nearby viewpoint and then weigh or blend all the warped views

together. If necessary, a hole filling post-processing can be done by interpolating

neighboring pixels of each remaining hole.

 The advantage of forward warping is its high efficiency because its

computation complexity depends only on the image dimensions and not on the

scene depth complexity. Its main disadvantage is its higher requirement on depth

accuracy. Zitnick et al. [15] show a practical example using forward 3D warping

approach for FVV rendering. Different from conventional methods, it is assumed

in [15] that the reference image consists of two layers, i.e., the main layer and the

alpha-matted boundary layer. In warping, these two layers are warped

independently and then blended, through which the visual quality greatly

improves.

 21

(a) Forward 3D warping

(b) Backward 3D warping

Figure 2.6: Comparison of forward & backward warping.

(b) Backward 3D image warping

 In contrast to the forward one, backward 3D image warping works in a ray-

tracing-like way [80]. For each pixel to be synthesized in the destination image,

the back-projected ray is built similar to the forward method. However, since

there is no depth map information available for the synthesized novel view, all the

possible depths will be checked to find an optimal one which the projected pixels

in all the reference images of the corresponding 3D point are most consistent with

in the color and depth.

 The advantage of this approach is that the above mentioned hole problem will

be greatly ameliorated. However, it is more computationally intensive, especially

when the scene depth complexity is high and there is no prior knowledge on what

 22

the depth range a “being traced” pixel will be in. As a practical example of using

backward 3D image warping approach for FVV rendering, the zero-crossing of

the difference between the observed and the known disparity is used to determine

the color [73].

In this thesis, the depth based FVV scene representation and forward warping

based rendering is preferred. How to accurately and efficiently reconstruct the

dynamic scene as dynamic depth maps from multiple video streams for FVV

rendering is one of the main topics of this work. For this, the stereo vision based

approach is applied. Since stereo has been one of the most heavily investigated

topics in computer vision research and a huge number of formulations and

algorithms have been proposed in the literature, an exhaustive survey on this topic

is beyond the scope of this chapter. Instead, only a brief overview is provided

here. In the corresponding chapters, more detailed review on the most relevant

methods will be given.

2.3 Stereo Vision

In the following, we roughly categorize the dense stereo matching techniques

based on the data complexity involved, that is, binocular stereo, multi-ocular

stereo and temporal stereo.

2.3.1 Binocular Stereo

 Although not being directly applicable to multiple-view based FVV

applications, the classic binocular stereo matching forms the foundation of the

design and development of any FVV oriented depth recovery method.

(a) Epipolar Geometry

 Binocular stereo matching uses the epipolar geometry constraint to find point

correspondences between two images. As the simplest and most widely used

model of multiple view geometry, the epipolar geometry is the intrinsic projective

geometry between two views.

 23

 In particular, as shown in Figure 2.7, for a 3D point ࢄ imaged by two cameras

at ࢞ and ࢞Ԣ, respectively, it can be easily seen that image points ࢞ and ࢞Ԣ, 3D point

 Ԣ are coplanar. That is, the rays back-projected from and and camera centres ,ࢄ

 Then to .ࢄ࣊ and such rays lie on the same plane ࢄ ᇱ intersect at point࢞ and ࢞

search for the correspondence of ࢞ in view Ԣ, since the corresponding plane ࢄ࣊

can be determined by the baseline and the ray defined by ࢞ and also it is known

that the ray corresponding to the (unknown) point ࢞Ԣ must lie in ࢄ࣊, hence the

point ࢞Ԣ must lie on the intersection line Ԣ of ࢄ࣊ with the image plane of Ԣ. Line

 ᇱ and it is called the in view ࢞ Ԣ is just the image of the ray back-projected from

epipolar line corresponding to ࢞. In terms of stereo matching, such a geometric

relation restricts the candidates of the point corresponding to ࢞ to the points on the

epipolar line of ࢞ instead of the whole image, which greatly decreases the

computation complexity required.

 Algebraically, the epipolar geometry is encapsulated by the so-called

fundamental matrix, which is a rank 2 3 ൈ 3 matrix. That is, for any pair of

corresponding points ࢞ and ࢞Ԣ in two views, the fundamental matrix ࡲ satisfies the

following condition

࢞ࡲԢ்࢞ ൌ 0. (2.3)

 Based on the algebraic constraints provided by Equation (2.3), the

fundamental matrix for two uncalibrated images can be calculated from at least 7

corresponding point pairs. Both linear or robust non-linear algorithms have been

Figure 2.7: Epipolar geometry.

 ᇱ

 ࢄ

 ࢄ࣊

 Ԣ
 Ԣ࢞ ࢞

 Ԣࢋ ࢋ
baseline

 24

proposed [81] and their implementations are commonly available in many

computer vision libraries such as the OpenCV [31].

(b) Classic Binocular Stereo

 In classic binocular stereo, the left and right images are captured by two

identical cameras arranged in parallel so that all the epipolar lines become

horizontal. The matching is simplified to a 1D correspondence search on the

corresponding scanline and the relative depth information is encoded as disparity,

that is, the 1D displacement between matching points. The closer a 3D scene

primitive is to the camera, the larger its disparity. That is, as shown in Figure 2.8,

suppose the corresponding image points of ࢄ is ࢞ ൌ ቀݑ
ᇱ࢞ ቁ andݒ ൌ ቀݑԢ

ݒ
ቁ, we have

ݒ ൌ ݀ Ԣ and disparityݒ ൌ ᇱݑ െ Then the 3D point can be reconstructed as .ݑ

ࢄ ൌ ቌ
ܾሺݑ ᇱሻ/2݀ݑ

݀/ݒܾ
ܾ݂/݀

ቍ (2.4)

where ܾ is the length of the baseline between the two cameras and ݂ the camera’s

focal length. The matching result is a disparity map which encodes per-pixel

disparity information for the left or right image.

Figure 2.8: Illustration of binocular stereo.

 ᇱ

ሺݑ, ሻݒ

 ࢞

baseline ܾ

݂ ݂

 ࢄ

ሺݑԢ, ሻݒ

 Ԣ࢞

 25

2.3.2 Multi-ocular Stereo

Different from the classic binocular stereo setup, in many scenarios such as in our

FVV application, using more cameras could provide more information about the

scene and lessen problems due to occlusions. Based on the camera arrangement,

multi-ocular stereo can be classified into two types: grid-positioned and general

positioned.

 In the former case, the cameras having a same focal length are arranged on a

grid structure such that the baselines (spans) between cameras in the horizontal

and vertical directions are all equal. Such special arrangement enables using

disparity to encode depth information as in classic binocular stereo so that many

binocular stereo methods can be directly used. The use of more images (usually

the 4-connected neighbors) results in more accurate depth evaluations and better

occlusion handling.

 While in the latter case, the cameras are in general positions. Since there is no

simple disparity-to-depth mapping any more, the true 3D depth information has to

be recovered instead. The above simple displacement based inter-image mapping

is replaced by a depth-based 3D forward warping procedure as introduced in

Section 2.2.3. Specifically, as show in Figure 2.9, the 3D depth space is

discretized into different depth planes. To check how well a matching primitive is

matched between two images w.r.t a specific depth, its corresponding 3D

primitive is found by intersecting the back-projected line or cone with the

corresponding depth plane first and then re-projecting the intersection point to the

corresponding cameras. In this way, most of the above binocular stereo matching

techniques can be extended to multi-ocular stereo [82].

 26

Figure 2.9: Illustration of multi-ocular stereo.

2.3.3 Temporal Stereo

In particular to FVV applications, in addition to improving the spatial accuracy of

depth maps of different views, the temporal consistency between depth maps of

consecutive video frames is also very important for better rendering quality. To

this end, many temporal stereo techniques integrating motion analysis have been

proposed.

 Most of the representative temporal stereo methods [83-86] formulate the

temporal stereo problem as a combination of static stereo matching and

conventional monocular video sequence optical flow estimation (or motion

analysis). For example, in 1986, Waxman and Duncan [83] proposed to fuse

binocular stereo and motion estimations at a very early level by observing that a

proper combination of them could help each other to overcome each other’s

inherent difficulties. Nasrabadi et al. [84] propose a cooperative method by

modeling the input data as coupled Markov random fields (MRF's). The stereo

problem is generalized so that not only pixel intensity but also its optical flow

information is matched. As well, the Markov random fields (MRF) are used to

combine stereo and motion estimations so that depth or motion discontinuities can

help predict the other and the preservation of stereo matching is enforced through

motion analysis results [85]. Similarly in the work of Isard and MacCormick [86],

a single MRF probabilistic framework integrated with a multi-frame temporal

 27

filtering mechanism is proposed. Motion and depth are estimated simultaneously

with explicit handling for occlusions, depth discontinuities and motion

discontinuities, which results in better performance than estimating either in

isolation.

 However, the performances of all the above attempts in integrating motion

analysis with stereo matching have not been extensively verified with challenging

real-world FVV data. Moreover, with the recent impressive progress in both

motion analysis and stereo matching research, new integration schemes based on

novel mathematical models and optimization frameworks should be investigated.

2.4 Discussions

Based on above review on FVV related works, it can be seen that building a

practical FVV system requires many technical and scientific issues to be

addressed. In the next chapter, we first deal with the hardware and software

architecture design of our depth based FVV system. Then more detailed

descriptions of the related algorithms are given in the remaining chapters.

 28

Chapter 3

Design of a Computer Cluster Based FVV System

One of the main goals of this thesis is to develop a prototype FVV system. The

system is intended to be self-contained so that it can undertake all the

indispensible workflow processes ranging from acquiring the raw input videos to

presenting the final FVV rendering with as little as possible human interventions.

In this chapter, a scalable and extensible cluster based FVV system design is

presented. Although the system is mainly intended for FVV applications, it is

designed more as a general framework so that it can also be used for developing

other cluster based camera array applications.

3.1 Previous Work in FVV System Design

Most existing FVV systems use their own in-house frameworks. Such frameworks

are usually not developed for a general purpose FVV application and have strong

coupling with the hardware configurations or the application contexts. Moreover,

most of the published literatures do not elaborate their implementation details,

which render it very difficult to reproduce or extend the corresponding FVV

systems.

 In the following some representative FVV system designs are first briefly

reviewed. Then by comparing and trading-off the corresponding advantages and

disadvantages, the system design specifications suitable for this thesis work are

defined.

 3.1.1 CMU’s Virtualized Reality System

The Virtualized Reality™ system [12] built by CMU is arguably regarded as the

first FVV system. Up to 49 widely spaced cameras arranged in a dome or a cube

environment are used to create FVV using object based scene representation.

Camera synchronization is done using external sync signal and time code

 29

generators. Although a large scale cluster is used to stream all the video data in

real-time, the bandwidth bottleneck still limits the system to only streaming very

short video sequences. The calibration of cameras is done using dot patterns on

the in-scene floor and the FVV scene reconstruction is done offline using multi-

view stereo and silhouette information.

3.1.2 Surrey’s FVV System for Human Actor

In the work of Starck et al. [87], an interactive FVV system is presented which

uses up to 10 cameras arranged in a circle. The public domain calibration toolbox

[32] is used for geometric calibration of the camera array. Background subtraction

and view-dependent visual hull approaches are used to generate the FVV content

offline and OpenGL is used for real-time rendering. Since its system design and

underlying techniques have strong reliance on the studio environment for clean

background, the portability and scene applicability are relatively limited.

Figure 3.2: Surrey’s FVV System (left) and the Blue-C system (right).

Figure 3.1: The “Virtualized Reality” System.

 30

3.1.3 Blue-C System

The Blue-C system [14] is a real-time FVV portal specifically devised for

telepresence application. It consists of a room-sized environment with a real-time

16-camera capture system and spatially immersive displays. Complex

synchronizations between cameras, active display panels, illumination lights and

user shutter glasses are precisely managed using specialized hardware for video

capturing, user silhouette/texture extraction and 3D video display. Control

information and non-real-time data are transmitted using traditional remote

method invocations, while for the real-time data, traditional transfer protocols

such as UDP or RTP are used. The visual hull based approach is used to

reconstruct the FVV scene using point based representation. Parallel computation

is done on a PC cluster for real-time performance. In its disclosed framework API

[88], basic components such as distributed scene graph, synchronization manager,

node manager, and built-in services such as graphics/audio rendering and

networking are provided for building other remote collaboration and presentation

applications. However, the API does not include FVV specific components or

services, which render it not very suitable for FVV application development.

3.1.4 Stanford Camera Array

The Stanford camera array [16] intends to provide a general purpose and low cost

camera array system. By using specially designed cameras instead of off-the-

shelf ones, only 4 PCs are needed to stream 100 MPEG2 compressed videos. By

chaining up all the cameras with external triggering lines and using the FPGAs

and dedicated clock, precise timing control with arbitrary phase shifts among

camera triggers can be achieved. This system enables many new camera array

applications such as high speed videography [16]. Its main limitation, however, is

in its reliance on special cameras and the required high-rate video compression

may degrade the FVV rendering quality.

 31

3.1.5 Microsoft FVV System

As the last representative FVV system, Microsoft Research has developed an 8-

camera array system [15]. The cameras can be arranged on a 1D arc horizontally

or vertically for FVV data acquisition. Geometric calibration is done using

Zhang’s method [28]. No explicit photometric calibration is done. To handle real-

time storage of all the uncompressed input videos, the camera manufacturer (Point

Grey Research) was commissioned to build specialized concentrator units which

synchronize the cameras and store the video data directly to a bank of hard disks

connected to the cameras by fiber optic cables. The concentrators themselves are

further synchronized via a Firewire cable. In this way, the video acquisition can

be managed by using only one laptop, greatly increasing the system portability.

However, the system is closely coupled to the specific hardware devices, making

it difficult to scale up or to reproduce.

 As can be seen from all the above reviewed FVV systems, there are mainly

two design strategies. The first one is to separate multiple video acquisition from

other workflow stages. Its advantage is that the hardware system can be made

very portable by using a minimal number of controlling PCs and specialized

cameras. Its main limitation is that all the FVV-specific computations have to be

done offline, which renders real-time FVV applications impossible. On the other

hand, the second strategy is to integrate video acquisition with other workflow

stages together by further providing powerful computation capability through a

cluster of computers. Its advantage is that implementing computation-intensive

Figure 3.3: The Stanford’s camera array system (left) and The MS’s FVV system.

 32

real-time FVV applications is supported and the management of the whole

application workflow can be greatly simplified. Its main disadvantage is that the

system could be bulky due to the use of the cluster, especially when the number of

required cameras is large.

3.2 Design Specifications

In this thesis, we design our FVV system using the above cluster based strategy.

That is, the cameras are managed by a cluster of networked PC nodes. Each node

not only controls a subset of the cameras for multi-view video acquisition but also

participates and collaborates in the application-logic computations. This design

decision is made based on the following considerations.

 First, as the FVV applications using dense depth based scene representation is

the focus of this thesis, the number of cameras used is relatively small compared

to applications using ray based scene representation.

 Secondly, to satisfy long-term research goals, using cluster based design

renders the system more versatile and flexible for satisfying different FVV

application hardware requirements in future research.

 As for the software architecture, in this thesis, our FVV system is designed

more as a general framework so that the number of constraints on applicable

algorithms or workflow patterns is as few as possible. In addition to our interested

FVV authoring and rendering application, it is also intended to be as capable as

possible for prototyping and developing other camera array based algorithms and

applications.

 In the following, we summarize the specifications that such a system or

framework should fulfill with higher priorities.

(1) Centralized Workflow Management

 The system should enable centralized managements of most FVV workflow

stages. It should be able to perform all the required configurations and

managements for different workflow stages on a single node. Otherwise to set up

individual node or camera could be tedious and error-prone.

 33

 (2) Distributed data management and parallel computation

 To best take advantage of the cluster’s capacity, the system should manage the

data in a distributive fashion. Also all the parallelizable computations involved in

the application logic should be distributed to the nodes that control the involved

cameras, resulting in camera-level parallelism.

 (3) Transparent and low latency data access

 With the data/computation distributed, the system has to enable location

transparency of data accesses. That is, each node should be able to transparently

access any other local or remote cameras for their video data or other relevant

information when needed. Moreover, the access latency of remote data should be

as low as possible. This is crucial for real-time services such as FVV rendering.

 (4) Workflow modularization and customization

 The system should be modularized. Application-specific algorithms are

implemented as services. Some basic services commonly required in different

camera array applications such as video acquisition, calibration should be built in

and the developer can customize the workflow and integrate application-specific

services.

(5) Hardware independency

 The system should only use off-the-shelf devices and be independent of

specific hardware configurations as much as possible. Different types of cameras

should be supported directly without the need of other hardware or software

changes. Camera synchronization should not reply on specialized hardware. And

the number of cameras or computer nodes should be scalable for different

application needs.

3.3 Hardware Architecture Design

Based on the specifications summarized above, the hardware architecture of our

FVV framework designed is shown in Figure 3.4. In particular, a cluster with 8

nodes is used. The cluster is mounted on a mobile cart that can be moved around.

 34

Each node is equipped with two AMD dual-core Opteron CPUs, two Nvidia 8800

GTX GPUs. The high-end CPUs and GPUs provide exceptional computing power

for general purpose and graphics intensive computations. Each node is also

equipped with two network interface cards (NIC). One is an on-board 1Gb

Ethernet interface and the other a 10Gb high-speed Ethernet NIC from Myricom

[89], which are interconnected by the corresponding 1Gb and 10Gb switches,

respectively. As to be elaborated later, the 1G star topological network is mainly

for master-worker based non-real-time data communications. The high speed

10G mesh topological network is specific for point-to-point real-time data

communication, which is crucial for low latency remote data access.

 Firewire-b cameras are used for multi-view video capturing due to their high

data throughout. Each node in the cluster is also equipped with a 3-port Firewire-

b interface card so that up to three cameras can be handled directly by each node.

To scale up the camera array, Firewire-b hubs or extra nodes can be used.

However, due to the hard-disk IO bandwidth limit, the camera’s resolution or

frame-rate may have to be lowered appropriately. Currently, we use Flea 2

Firewire-b color cameras manufactured by Point Grey Research, each of which

can operate with a maximum resolution of 1024x768 and maximum frame-rate of

15 FPS. Off-the-shelf 8 mm lenses are used for less lens distortion. Moreover, all

the cameras are mounted on a mobile frame to ease transportation. By

reconfiguring the frame’s structure, different 1D or 2D camera arrangements can

be achieved easily.

 For centralized management, the cluster works in the master/worker mode.

One node is selected as the master one and all the other nodes work as workers

commanded by the master node. Each node controls the video acquisition, stores

and processes the captured video data locally, enabling distributed data

management and parallel computation. The high speed networking makes it

possible to implement transparent and low latency data access. The system also

supports other types of cameras such as camcorders which can work in the

integration mode or standalone mode.

 35

Figure 3.4: Our FVV System hardware setup.

3.4 Software Architecture Design

As mentioned before, our FVV system is developed as a specific implementation

of a general camera array application framework. The software architecture of our

framework is designed using the object-oriented and event-driven paradigms and

the service provider/consumer model. It includes a number of foundation

components and services, which can be used for quick development of a prototype

FVV or camera array application. The developer only needs to focus on the

development of application specific components and services.

3.4.1 Foundation Components

The following loosely-coupled foundation components are implemented to

facilitate development of different FVV or camera array applications. Shown in

Figure 3.5 is an illustration of the software component architecture of our

framework.

 (1) Node

 The node component abstracts the functionalities of a cluster node. Each node

component is tagged with its 1Gb network IP address as a unique ID and can

work in either worker or master mode.

 Each node component hosts a message communicator and a data

communicator for inter-node message and data communications respectively. In

particular, via the message communicators, the worker nodes are connected in a

star topology network with the master node serving as the hub. This is because

 36

most message communications are related to camera manipulation and workflow

configuration and they mainly occur between the master node and the worker

nodes. For message communications between two worker nodes, which mainly

occur for establishing their direct point-to-point data communication connections,

the master node will act as a message router.

 In addition to message communication network, the nodes are connected into

a mesh topology network via the data communicators. In this way, direct data

communication is made possible between any two nodes.

 The node component also hosts a camera manager component, which for a

worker node, manages all of its local cameras, and for the master node, registers

and manages all the cameras in the cluster, with a proxy camera created to

represent each remote one. Anytime a worker node is connected or disconnected,

or anytime a camera is attached or detached, the camera registry will be updated

automatically through the corresponding message communications.

Figure 3.5: Software architecture component diagram.

 (2) Communicator

 As mentioned above, the responsibility of the communicator component is to

perform bi-directional communications between different nodes. Based on the

hardware configuration, two types of communicators are implemented: TCP/IP

protocol based message communicator and MXoE protocol (proprietary to

 37

Myricom) based data communicator. The former one is used for passing

camera/node event messages between master and worker nodes, whose packet

sizes are usually small and fixed. The latter one is used for real-time transfer of

large packets of data, such as images or various computation results, between any

two nodes directly. Using independent networks for message and data

communications can better adapt to their different flow patterns and performance

requirements. This design also allows convenient extension to use future high-

speed networks.

 (3) Camera manager

 The camera manager component is provided mainly for centralized and

layered management of cameras on each node. In addition to its management

routines of inserting/removing cameras, it also has the responsibility to relay

messages from the hosting node to the destination camera(s).

 (4) Camera

 The camera component is one of the key components of our framework. It

generally abstracts any objects being able to provide a sequence of temporally

sorted images. In our framework, we define three categories of cameras: online,

offline and proxy.

 An online camera corresponds to a physical video camera capable of

streaming images sequences. By using the Microsoft DirectShow framework, a

wide range of video cameras are supported. However, our framework also

provides sub-classed component for cameras using non-DirectShow drivers such

as cameras from Point Grey Research [90] for more control options and better

performance.

 An offline camera abstracts a pre-recorded video file, which is useful in our

current FVV application needing to perform offline processing on video files.

 Finally a proxy camera is mainly used by the master node as a proxy of a

remote camera connected to a worker node. It can relay video frames from the

remote camera in full frame-rate through the high-speed network, making

accessing remote video data by the master node indistinguishable to that from

 38

accessing a local one. Also it will automatically synchronize itself with its remote

peer, making it possible to achieve transparency in both camera property/data

query and in the occasion to invoke camera related services.

 The camera component has various properties such as serial number, hosting

node ID, resolution, frame-rate, intrinsic and extrinsic parameters. It provides

basic playback control to start, play, pause, stop, record, seek, rewind or forward a

video. It also provides some local services such as calibration pattern tracking,

intrinsic parameter calibration, geometric un-distortion, color correction and so

on. All of these services can be invoked remotely and asynchronously using the

corresponding event messages.

3.4.2 Messaging and Parallelism

As mentioned before, the message passing scheme is used in our framework to

organize and to coordinate all the components for efficiently fulfilling the

application-specific tasks. The underlying principle of our implementation is

similar to that of the Message Passing Interface (MPI) protocol [91], but in a

lightweight way tailored for better performance and OS deployment requirements.

 Specifically, a message is packed into a packet together with the information

of the message source/destination node ID, the source/destination camera’s serial

number, the message ID and a length variable message buffer. The message

packets are sent or received through the inter-node socket [92] connections. Each

node spawns a thread in which the message communicator continuously

dispatches out or receives in messages to or from another node. By parsing the

message ID information in the received packet, the destination node may further

route the message to the destination camera(s) via the camera manager, for

handling the corresponding event. Similarly, each node also spawns a pumping

thread in which its data communicator communicates bi-directionally with all the

other active nodes to receive or send data through respective channels. With the

use of the 10Gb network, the remote data access latency is very similar to the

local data access latency.

 39

 Moreover, since many services involved in the camera array or FVV

applications are naturally data-parallelizable at the camera level, e.g. calibrating

the intrinsic parameters of the cameras can be done independently in parallel, our

framrwork has built-in support for such parallelism. For this, multiple threading

techniques are heavily leveraged.

 For example, to invoke the intrinsic calibration service on a remote camera, a

unique task ID is generated and sent together with other necessary configuration

information as a message to a remote camera. Simultaneously, the corresponding

proxy camera will be informed to spawn a result-waiting thread in which the task

ID is used to check if the corresponding service computation has been done

remotely. While for the remote camera, upon receiving the corresponding

message, it creates a calibration service execution thread to track feature points of

the calibration pattern and then to do the calibration. When the calibration is done,

the calibrated intrinsic parameters will be sent back through the data

communicator with the task ID tagged as the destination identifier. By keep

probing the data with the task ID as a filter, the waiting proxy camera finally

receives the updated intrinsic parameters. It then notifies the service requesting

thread through inter-thread communication mechanism to indicate that the service

request has been fulfilled and that the data is ready to use.

 In this way, multiple services can be executed on multiple cameras

simultaneously, which greatly improves the performance.

3.4.3 Service Customization and Extension

To satisfy different FVV application requirements, our framework also supports

service customization and extension.

 When developing a new FVV application, a skeleton project is first created

which the node/camera managements and communications are enabled

automatically. The developer only needs to focus on the application logic

implementation by using/customizing the built-in utility and computation services

or integrating new services for fulfilling the corresponding workflow. Such

 40

customization or extension is done through an application logic callback

mechanism.

 Specifically, the application can register callback functions on the

framework’s event-handler components such as Node or Camera, which will be

called first when an event registered is to be handled. For customization, the

application logic can augment or override the built-in event handler code with its

own handler. For extension, the application registers corresponding application

domain events and handles them in the corresponding callback functions. Please

note that the same event may need to be handled differently on the master and the

worker nodes. In this way, the framework components can be reused and the

application logic can be modularized and loosely coupled to the framework.

3.5 Implementation

Based on the above designed framework, our FVV system has been implemented

in C++ on Windows XP Professional 64® OS.

 The system workflow is highly automatic and needs very little user

intervention. In particular, there are 5 steps for creating FVV content.

(a) System Initialization

 The hardware system initialization mainly involves setting up the cluster and

camera frame properly on the FVV capturing site. For software system

initialization, the same application program starts up on each node with different

options to run either as the master or as the worker. The worker starts to run as an

OS service in GUI-less mode automatically upon booting up the operating system

and keeps listening to master, while the master is manually started by the user as a

normal GUI application. After the master starts up, the workers automatically

register themselves to the master and establish the bi-directional message and data

communication connections. Then all the available cameras are probed and

registered. Currently our system can handle 16 cameras. One example on-site

setup and the corresponding system GUI are shown in Figure 3.6 and 3.7,

respectively.

 41

(b) Video Acquisition

 The master node manages the video acquisition process using the GUI, by

which the user can select the online cameras to capture videos. The actual

multiple view video acquisition is triggered by sending the video recording event

to all the selected cameras. Currently we require each video to also capture a part

of movements of our customized plane pattern in the scene for calibration

purpose.

(c) Calibration

 In this stage, our system executes different built-in services to geometrically,

photometrically and temporally calibrate the camera array through the captured

calibration pattern in the videos. The details of the algorithms implemented in the

calibration services are elaborated in Chapter 5.

(d) FVV Scene Reconstruction

 After the calibration is done, depth based FVV scene reconstruction is

performed in this step. Simply speaking, the system notifies each involved offline

camera (video file) to spawn a stereo matching service execution thread in which

all the synchronized video frame sets are collected and matched in turn with the

corresponding camera as the reference. During the process, each camera also

needs to communicate with other ones for accessing their depth maps or other

intermediate results. The details of the specific algorithm implemented in the

service are explained in Chapter 9.

(e) FVV rendering

 After the FVV scene is reconstructed as multiple depth sequences, the user

can invoke the built-in FVV rendering service to view the created FVV content.

The depth-based warping method is used to synthesize novel views for viewpoint

transition. The involved computations are done on the GPUs in real-time. For

each synthesized view, the required corresponding video frames and depth maps

could be fetched remotely from different nodes. High-speed data communication

enables real-time rendering. More details about the FVV rendering algorithm are

given in Chapter 9. Shown in Figure 3.8 is one example synthesized view and the

corresponding depth map.

 42

 With the centralized workflow management, automatic calibration and

distributed computation, our FVV system makes the whole process from

capturing multiple view videos to the final FVV rendering very convenient and

efficient, which provides a practical solution for FVV content authoring and

rendering. On the other hand, because the system is highly modularized, different

algorithms can be easily tested and integrated. Therefore, our system can also be

used as a general platform for different camera array applications.

Figure 3.6: One example on-site setup of our FVV hardware system.

Figure 3.6: Example screenshot of the main GUI of our FVV software system.

 43

Summary

In this chapter, the hardware and software designs and implementation of our

cluster based FVV system are presented. The system is designed not only for

specific research needs of this thesis, but also as a general framework for other

camera array applications. By taking advantage of the built-in utility and

computation services, new applications can be easily prototyped and tested. In the

following chapters, details of the underlying algorithms implemented in our FVV

system are elaborated.

Figure 3.7: Example FVV rendering using our system.

(a) One synthesized view (b) Corresponding depth map (synthesized)

 44

Chapter 4

Tri-Focal Tensor based Multiple Video Synchronization

In this chapter, a novel method for synchronizing multiple (more than 2) un-

calibrated video sequences recording the same event by free-moving full-

perspective cameras is presented. Although this method is not directly used in the

current FVV system, it is a general method to temporally correlate data from

multiple simultaneously recorded video sequences, which may be needed in many

offline camera array applications. Furthermore, since the equivalent underlying

synchronization mechanism is used in the camera array total calibration method to

be elaborated in the next chapter, this method is included for completeness.

4.1 Previous Work

Our proposed multiple video synchronization method is a software based one.

Based on the inter-video temporal correlation constraint used, most software

based video synchronization methods can be roughly categorized as: feature based

[93-100], intensity based [101] and camera movement based [102].

 Specifically, the feature based methods [93-100] usually require tracking

features in videos and implicitly or explicitly matching such features across the

sequences. The most commonly used features are the points, which can be treated

locally as single points or globally as trajectory curves. Such feature based

methods are usually based on the fact that, for the exactly synchronized frames,

the corresponding dynamic 3D scene features can be regarded as a stationary rigid

configuration at the corresponding time instant. Therefore, some form of multiple

view geometric alignment constraints must hold for their 2D projections in the

synchronized frames. Commonly exploited geometric alignment constraints

include the binocular epipolar geometry constraint [94-97], the plane-induced

 45

homography [93, 95], rankness properties arose from special projection models

[98], feature movements [99] and so on.

 The intensity based methods try to minimize the sum of squared differences

(SSD) between the sequences that can be spatially and temporally warped through

a parametric model. As described in the representative work [101], the

homography based spatial transform and the 1D affine temporal transform are

usually used. All the pixels can provide constraints to such a model, while not just

a limited number of salient features so that feature tracking and matching can be

avoided. Moreover, the temporal and spatial information in the sequences can be

utilized in the unified framework for simultaneous spatial and temporal

alignments.

 As an example of camera movement based synchronization methods, in [102],

the sequences with no overlap in their visual field of views can be aligned

spatially and temporally under the assumption that the cameras are fixed rigidly

sharing a common optical center and moved together. The synchronization is

done by using the homography induced constraint between the frame-to-frame

transformations across the sequences.

 Effort has been made for handling multiple free moving cameras. In [99], a 5-

point method is proposed for synchronizing 2 video sequences captured by affine

moving cameras in 3D instead of in 2D by evaluating the line-to-line distance of

the back-projection lines of the matching points as the geometric alignment

measure. While in [94], with fixed inter-camera epipolar geometry recovered

using stationary feature points, for each moving feature point detected in the

reference sequence, if the corresponding epipolar line intersects with any tracked

feature trajectory across consecutive frames in the other sequences, a timeline

map voter voting for the corresponding tentative synchronization offset is formed.

With enough voters collected, a RANSAC procedure is applied to synchronize

more than 2 sequences with the robust feature matching done implicitly.

 Different from most previous work, our proposed method is for synchronizing

more than 2 video sequences. As a feature based one, instead of using the

 46

traditional bi-view geometric constraint, trifocal tensor based tri-view geometric

constraint is used for its better robustness and less ambiguity in identifying cross-

view correspondences. Moreover, similar to [94], our method is voting based.

That is, for each synchronization relation hypothesis between video sequences, a

collection of putatively synchronized video frame sets as voters make vote based

on the corresponding geometry alignment measure. However, instead of fitting

the optimal synchronization in the voting space as done in [94], our method

further resorts to a final non-linear optimization to achieve sub-frame accuracy,

with the voting results used as its initial values.

4.2 Problem Formulation

 Synchronization of a set of ܯሺ 3ሻ video sequences ࡿ ൌ ሼࡿ|݉ ൌ

0, … , ܯ െ 1ሽ can be formulated as a timeline mapping recovery problem and

solved through optimization. The video capturing cameras do not have to be

stationary and free moving cameras can also be handled by this method.

Specifically, each video sequence ࡿ defines a local timeline ܶܮ sampling the

captured dynamic event spatially and temporally with a rate of ݏܨ (i.e. frame

rate), with each sample being a captured video frame ࡵ
௧ ሺݐ א ,.). W.l.o.gܮܶ

taking ࡿ as the reference sequence, the synchronization problem can be stated as:

given a timeline sample ࡵ
௧బሺݐ א , find in the other sequenceࡿ ሻ inܮܶ

ሼࡿ|݉ ൌ 1, … , ܯ െ 1ሽ the corresponding timeline sample ࡵ
௧ሺݐ א ሻ thatܮܶ

is captured at the exact same time instant, i.e., to recover a one-to-one timeline

map ॸ்బ՜் from ࡿ to ࡿሺ݉ ൌ 1, … , ܯ െ 1ሻ respectively.

Various forms of the timeline map can be used. The simplest one is the

“offset-only” form given as ॸ்బ՜்: ݐ ∆ൌ ݏܨ whenݐ ൌ . Theݏܨ

more general “1D-Affine” form defined as:

 ॸ்బ՜்: ி௦
ி௦బ

ݐ ∆ൌ ݐߙ ∆ൌ (4.1)ݐ

 47

can be used when ݏܨ ് . However, if the frame rates are constant andݏܨ

known, it only needs to recover the offset ∆. In some special cases, a dynamic

timeline map is required [103], which is beyond the scope of this thesis.

 Given a specific group of hypothesized synchronization timeline maps

൛ॸ்బ՜்ൟ, each set of video frames that satisfies such mapping relations is

called a “supporting voter,” which votes on how well the inter-sequence

synchronization is achieved according to ൛ॸ்బ՜்ൟ. In the following, we

denote such a “voter set” as ठ.

4.3 Overview

The new proposed video synchronization method is a feature based method. That

is, the video synchronization problem is addressed as a geometric alignment

problem for the set of matching features among multiple video sequences. How

well a set of video frames are synchronized is evaluated using a geometric

alignment metric measure of the matched features.

 Instead of using the binocular epipolar constraint of point feature as in many

previous methods, the proposed method uses the multiple-view geometric

incidence constraint of point and line features. As shown in Figure 4.1, for the

matched 2D point/line features on exactly synchronized frames, their

corresponding back-projected lines/planes must intersect at/in a single 3D

point/line, i.e., forming a sheaf (or pencil) of the back-projected lines/planes.

Otherwise, no such line/plane sheaf can be formed in general. Therefore, how the

back-projected lines/planes are aligned at/in a single 3D point/line can be used as

the metric measure for evaluating how well the video frames are synchronized.

′I

π ′π ′′π

I
′′I

′I
l

′l

′′l

N

′p

′′p
p π

′π
′′πI

′′I

l ′l

′′l

N

′p

′′p

p

 48

(a) Synchronized (b) Unsynchronized

Figure 4.1: Illustration of the difference between synchronized and

 unsynchronized cases when 2D points/lines are back projected.

 The proposed method works as follows.

 Firstly, the point/line features are matched across sequences automatically or

manually and then tracked automatically within each sequence. It is assumed that

the features can be tracked throughout the whole sequence for simplicity, i.e.,

there is no missing data.

 Secondly, all the possible integral synchronization offset combinations are

evaluated to find the best one which maximizes the feature geometric alignment

measure w.r.t all available support voters (M-frame tuples).

 Specifically, w.r.t. the reference sequence ࡿ, the verifiable integral

synchronization offset ∆ corresponding to sequence ࡿ is in the range of

߶ ൌ ሾെ ܶ 1, ܶ െ 1ሿ. That is, it includes the two extreme cases of potential

synchronization between ࡿ and ࡿ when the first frame of ࡿ is synchronized

with the last frame of ࡿ or when the last frame of ࡿ is synchronized with the

first frame of ࡿ.

 For each integral offset combination candidateሺ∆ଵ, ڮ , ∆, ڮ ∆ெିଵሻ, the

support voters ठሺ∆భ,ڮ,∆ೖ,ڮ∆ሻ satisfying the timeline maps defined by

ሺ∆ଵ, ڮ , ∆, ڮ ∆ெିଵሻ is collected so that each voter Γ א ठሺ∆భ,ڮ,∆ೖ,ڮ∆ሻ ൌ

ሼࡵ
௧ , ڮ , ெିଵࡵ

௧ା∆ಾషభሽ with ݐ א कठ൫∆భ,ڮ,∆ೖ,ڮ∆ಾషభ൯
ൌ ሼ݅|0 ݅ ൏ ܶ, 0 ݅∆൏ ܶ, ݉ ൌ

1, … , ܯ െ 1ሽ.

Then all of the support voters are checked with the corresponding feature

geometric alignment measure evaluated and stored in an M-dimensional

evaluation tensor ࡱ as ࡱሺݐ, ,∆ଵݐଵߙ ڮ , ݐ ∆ெିଵሻ withݐெିଵߙ א कठ൫∆భ,ڮ,∆ೖ,ڮ∆ಾషభ൯
,

whose ݊ܽ݅݀݁ܯ௧אकठ൫∆భ,ڮ,∆ೖ,ڮ∆ಾషభ൯
൫ ࡱሺݐ, ,∆ଵݐଵߙ ڮ , ∆ெିଵሻ൯ in turn is usedݐெିଵߙ

as the overall synchronization fitness evaluation of ሺ∆ଵ, ڮ , ∆, ڮ ∆ெିଵሻ. Here

the median value is used instead of the mean value for better robustness. Note that

each entry in ࡱ is initialized to zero.

 49

 Therefore, after checking all possible integral synchronization offset

combinations, the best integral synchronization offsets ൫∆෨ଵ, ڮ ∆෨, ڮ ∆෨ெିଵ൯ can be

recovered such that the synchronization fitness evaluation is maximized, that is,

൫∆෨ଵ, ڮ ∆෨, ڮ ∆෨ெିଵ൯ ൌ

 argmaxሺ∆భ,ڮ,∆ೖ,ڮ∆ሻ ൬݊ܽ݅݀݁ܯ௧אकठ൫∆భ,ڮ,∆ೖ,ڮ∆ಾషభ൯
൫ ࡱሺݐ, ,∆ଵݐଵߙ ڮ , ∆ெିଵሻ൯൰ (4.2)ݐெିଵߙ

Finally, by using the recovered integral synchronization offsets

൫∆෨ଵ, ڮ ∆෨, ڮ ∆෨ெିଵ൯ as initial values, a post-optimization using the Levenberg-

Marquardt (LM) method [81] is performed to further achieve sub-frame

synchronization accuracy.

In the following, the implementation details of our method are presented.

4.4 Implementation Details

4.4.1 Issue of Computational Complexity

Synchronization of M video sequences with a maximum frame number of T using

an exhaustive search strategy has computation complexity of ሺܶெሻ , which has

poor scalability in practical applications. To address this problem, the following

strategies are incorporated.

Instead of processing all the sequences at once, the synchronization process

starts with three bootstrapping sequences and incrementally synchronizes the

remaining ones by adding one or two sequences at a time. That is, after the first

three video sequences are synchronized, the remaining ones are synchronized

incrementally step by step.

Specifically, in each step, two unsynchronized sequences are grouped with

one synchronized sequence as a new group of three sequences which are then

synchronized using the tri-focal tensor based method to be discussed in Section

4.4.2. Moreover, by specifying a global reference sequence (usually it is one of

the bootstrapping sequences), all the synchronization results can be integrated into

a global temporal system, which can be further globally optimized as explained in

Section 4.4.3.

 50

As for the synchronization process of each 3-sequence group, it can be further

speeded up through a coarse-to-fine hierarchical strategy. In particular, assuming

two hierarchical levels are used, the three sequences are first temporally down-

sampled appropriately so that the total number of possible integral

synchronization offset combinations decreases dramatically. Then with the down-

sampled sequences synchronized, three much shorter sub-sequences are each

extracted from the original sequences so that their first frames are coarsely

synchronized according to the synchronization result obtained and are further

synchronized. For long sequences, multiple hierarchies could be used as well.

By using the above strategies, the computation complexity of our method can

be lowered to ࢯሺܯ · ܶଷሻ. Although the complexity is still higher than the

traditional pair-wise approaches, which have a complexity of ࢯሺܯ · ܶଶሻ, the

increase in computation cost is usually acceptable in practice, because the use of

tri-view based geometry alignment measure instead of the two-view based one

greatly improves the synchronization accuracy as can be seen from the

experimental results.

4.4.2 Tri-focal Tensor based Geometric Alignment Measure

Similar to epipolar geometry for two views, there is a similar geometric constraint

for three views. As the generalization of the fundamental matrix in three views,

the trifocal tensor incorporates all the projective geometric relations of three

views, which is independent of the scene structure and depends only on the

relative motion among the views and their intrinsic parameters.

 The trifocal tensor can be calculated in closed form from the projection

matrices of the three views. In practice it is estimated from point or line matches

across the three views. In particular, as shown in Figure 4.1, suppose a 3D line ࡸ

is imaged in three views, then the planes back-projected from its 2D projection

lines in each view must all intersect in line ࡸ in the 3D space. Since in general

three arbitrary 3D planes in space do not meet in a single line, this geometric

incidence condition provides a geometric constraint on the corresponding 2D

lines in the three views. Similarly for a 3D point, there is also such an incidence

 51

constraint for its projected points in the three views. From such incidence

constraints, the tri-focal tensor representation is derived as its algebraic constraint.

 One of the most important properties of a tensor is that it can be used to

transfer corresponding points or lines in two views to the corresponding points or

lines in the third view.

 In particular, there are three trifocal tensors for the three given views, each of

which uses one of three views as the reference. In matrix notation, the tri-focal

tensor corresponding to view can be represented by a set of three 3 ൈ 3 matrices

ࢀ
 ൌ ሼࢀ, ,ଵࢀ ,Ԣࢀଶሽ, with ሼࢀ ,Ԣଵࢀ ,ଵ"ࢀԢ and ሼ Ԣଶሽ for viewࢀ ,ଶ"ࢀ ଷሽ for view"ࢀ

 respectively, we ," Ԣ and , in " Ԣ and , For three corresponding lines . "

have

் ൌ ሺԢ்ࢀ" "ଵࢀԢ் ሻ (4.3)"ଶࢀԢ்

 Similar constraints hold for Ԣ and ". This means that, with any two of ,Ԣ

and " and the corresponding tri-focal tensor known, the remaining one can be

written in closed form using the so-called line transfer. Similar point transferring

relation exists for three corresponding points in the three views. For more details,

please refer to [81].

 Using the bootstrapping (first 3) video sequences as an example, to

synchronize them, each potential synchronization offset combination is evaluated

on how well the induced timeline maps can synchronize the sequences in question

by checking all of its supporting frame triplets (support voter). The evaluation of

each supporting frame triplet is done individually by measuring the feature

geometric alignment based on the point/line incidence relations encapsulated by

the tri-focal tensor.

 In particular, suppose that we are evaluating the synchronization of a video

frame triplet Γሺࡵ, ,Ԣࡵ ሻ among which there exist matching points ൛"ࡵ
|݇ ൌ

0, ڮ ݊ െ 1, ݅ ൌ 0, ڮ 2ൟ and line features ൛
|݇ ൌ 0, ڮ ݊ െ 1, ݅ ൌ 0, ڮ 2ൟ, where

݊ሺ݊ሻ is the number of matching point (line) features. However, for

synchronization, the feature points and lines must not all be stationary or move

rigidly.

 52

 Then from the matching feature points or lines, the tri-focal tensor ࢀ
for the

1st view can be calculated to encoding the tri-view geometry between video

frames ሺࡵ, ,Ԣࡵ ࢀ ሻ. Then given"ࡵ
 and the matched lines in the 2nd view Ԣ ൌ

ሺ݈Ԣ, ݈Ԣଵ, ݈Ԣଶሻ் and 3rd view " ൌ ሺ݈", ݈"ଵ, ݈"ଶሻ், the corresponding line in the first

view ൌ ሺ݈, ݈ଵ, ݈ଶሻ் can be obtained by transferring from Ԣ and " through the

tensor operation of ݈ ൌ ݈Ԣ݈"ࢀ
. Similarly, the above property also holds for the

line transfer process of ሺ, ሻ" ՜ ,Ԣ and ሺ Ԣሻ ՜ w.r.t. the different transferred "

destination frames (with the trifocal tensors calculated accordingly).

 When ሺࡵ, ,Ԣࡵ ሻ are not synchronized, the estimated trifocal tensors will be"ࡵ

invalid and hence, the alignment constraint of the matched feature points/lines

will be violated, which is reflected in the large distance between the transferred

and the observed feature points/lines. This enables the use of the point/line

transfer distance errors for evaluating the synchronization fitness of the three

frames.

 Specifically, part of the available features (hereafter we call them as

“geometry features”) are used to recover the tri-focal tensors of 3 views using the

point based perspective factorization method [104]. Other methods [81] can be

used as well. Then, the transfer distance errors are evaluated for the remaining

point/line features (hereafter we call them as “synchronization features”). For

simplicity and w.l.o.g., in the following, we assume that all the matching point

features are used as “geometry features,” while all the line features are used as

“synchronization features.”

 With the tri-focal tensors recovered, the corresponding line transfer distance

error of the i-th line triplet ሺ, ,ᇱ ሻ is calculated as"

ࢋ
ሺ,ሻ ሺ, ,ᇱ ሻ" ൌ ݀ୄ

ଶ ൫, ሚ൯ ݀ୄ
ଶ ൫, ୄ݀+ሚ൯

ଶ ൫Ԣ, Ԣ෩൯ ݀ୄ
ଶ ൫Ԣ, Ԣ෩൯

݀ୄ
ଶ ൫", ෩൯" ݀ୄ

ଶ ൫", ෩൯ (4.4)"

where ሺሚ, ,ሚᇱ ,Ԣሺሻሺሻሺ ሚ"ሻare the transferred lines; and ሺሻሻ are the end"

points of the observed lines ሺᇱ, ୄ݀ ሻ; and"
ଶ ሺ, ሻ denotes the 2D Euclidean

 53

distance from point to line . Then based on the transfer distance errors of all

matched line triplets, we define the line alignment measure for support voter Γ as

ሺΓሻࡱ ൌ 3݊ ሺ∑ ࢋ
ሺ,ሻ ሻିଵߤ

ୀ⁄ (4.5)

where ߤ is a small positive value for avoiding the divide-by-zero problem. The

point alignment measure can be defined similarly based on the point transfer

distance errors. Therefore, the smaller the average of the point/line transfer

distance errors, the larger the point/line alignment measure, and in turn the better

the frames in question are synchronized. To maximize the alignment measure for

finding the best synchronization, it is equivalent to minimizing the average of

feature transfer distance errors.

 It is noteworthy that the degenerate cases of the trifocal tensor based point/line

transfer can be detected as shown in [81] and are excluded in the alignment

measure.

4.4.3 Sub-frame synchronization and global optimization

With the integral synchronization offsets obtained, the sub-frame accuracy can be

further achieved through a LM based non-linear optimization. It is recommended

that the sub-frame refinement is performed for each group of three sequences

synchronized during the incremental synchronization procedure to minimize error

propagation.

 Specifically, an error function

݂ሺ∆ଵ, ڮ , ∆, ڮ ∆ெିଵሻ ൌ ଵ
ଶ

∑ ሺΓሻଶߝ
 אठ൫∆భ,ڮ,∆ೖ,ڮ∆ಾషభ൯

 (4.6)

is minimized w.r.t. sub-frame synchronization offsets ሺ∆ଵ, ڮ , ∆, ڮ ∆ெିଵሻ by the

LM optimization using finite difference. The optimization is initialized with the

previously recovered integral synchronization offsets and ݂ሺ∆ଵ, ڮ , ∆, ڮ ∆ெିଵሻ

is evaluated by linear interpolation for non-integral synchronization offsets. For

the case of refining with only three sequences, the function of sum of feature

transfer distance errors as defined in Section 4.3.2 is used as ߝሺΓሻଶ, while for the

case of globally optimizing with more than 3 video sequences, ߝሺΓሻଶ is defined

as the sum of squares of the re-projection errors of all synchronization features.

 54

4.4.4 Algorithm workflow

For better clarity, the workflow of our proposed algorithm is summarized as

follows (List 4.1).

__

Step 1: Match and then track point and line features across and along sequences

Step 2: Incrementally process all sequences in groups of three. While for each 3-

sequence group, the best integral synchronization offsets are hierarchically recovered by

evaluating the support voters based on tri-focal tensor transfer as elaborated in Section

4.4.2. Sub-frame accuracy is further achieved using the LM optimization method as

detailed in Section 4.4.3 to avoid possible error propagation due to incremental

integration.

Step 3: The globally integrated synchronization offsets for all the sequences are refined

using the same LM based optimization.

List 4.1: Workflow of our proposed algorithm

4.5 Experiments and Evaluations

To test the effectiveness of our proposed method, extensive experiments using

synthetic and real video sequences have been done. Additionally, two other

pairwise synchronization methods, i.e. the 5-point method [99] and the affine

factorization measurement matrix rank based method [105] are also implemented

and compared. To achieve sub-frame accuracy, the 5-point method is repeated for

different 5-point configurations for ten times and the results are averaged. For the

rank based method, the frame window size [105] used is 10 and the sub-frame

resolution is set as 0.01. For each frame of the reference video sequence, the best

sub-frame matching is searched in the to-be-synchronized sequence in the range

of [-2.0, 2.0] centered with respect to the integer synchronization offset. We use a

RANSAC based outlier elimination process before doing the least squares fitting

the sub-frame offsets to avoid large sub-frame matching inconsistencies.

Moreover, the comparison is also made in using point or line features as

synchronization features when testing our new framework, in which the same

 55

geometry features are used to avoid possible impact caused by the difference in

tri-focal tensor calculations.

 For simplicity, the following notations are used to describe the experimental

details. In particular, ࡿ
ሾ௨:௩ሿ% denotes a sequence obtained by temporally down-

sampling with a rate ݊ to the ሾݑ: . Supposeࡿ ሿ sub-sequence ofݒ

ቄࡿ
ሾ௨బ:௩బሿ%బ, ڮ , ெିଵࡿ

ሾ௨ಾషభ:௩ಾషభሿ%ಾషభቅ are the actual video sequences being

synchronized at the j-th hierarchical level and the corresponding result

ሺ∆ଵ, ڮ , ∆, ڮ ∆ெିଵሻ means that the corresponding timeline map between

sequence ࡿ and ࡿ is

 ॸ்బ՜்: ݐሺߙ െ ሻݑ ∆ൌ (4.7)ݑെݐ

i.e., all the frame-tuples Γቀࡵ
௧బ, ڮ , ெିଵࡵ

ఈಾషభሺ௧బି௨బሻାሺ∆ಾషభ·ಾషభା௨ಾషభቁin the original

sequences are in synchrony.

 Moreover, the 3D evaluation graph in the following illustrations shows the

point/line geometric alignment measurements surface ݖሺݔ, ሻ for three sequencesݕ

being synchronized, where ݖሺݔ, ሻ is the median of the alignment measurementsݕ

of all the voters (frame-tuples) supporting the timeline maps based on specific

synchronization offset relations ሺ∆ଵൌ ,ݔ ∆ଶൌ ,ሻ as described above. Thereforeݕ

the offsets ሺݔ, ሻ corresponding to the highest peak in the 3D evaluation graph isݕ

just the integer offsets best synchronizing the sequences in question.

 In the following experiments, the features are matched manually across

sequences in the first frames and then tracked automatically. For point features,

the KLT [106] point tracker is used. While for the line features, a line tracker

based on the work of [107] is used. Here some remarks should be made on feature

selection. First the selected features should be as spatially distributed as possible

in the frames. Second, features with large relative position changes between

frames are better because the difference of the recovered geometry due to slight

off-synchronization but large movement may still be detectable. Hence, contrary

to intuition, camera movements may even help in the synchronization. Finally, all

the features are normalized [81] for better robustness in computing perspective

factorization and tri-focal tensor transferring.

 56

4.5.1 Synthetic videos

The synthetic video experiments are done to quantitatively evaluate the

performance of our method with known ground truth. The synthesized dynamic

scenes are constructed and rendered using POV-Ray [108] with the virtual

cameras moving rectilinearly and uniformly. The frame rates are constant but

need not be the same. Both the perspective and affine videos of the same scene

are rendered for comparison. As an example shown in Figure 4.2, 5 sequences are

synthesized, each of which starts at a different global time instant and spans for a

different duration with frame rate ݏܨሺ,ଵ,ଶሻ ൌ 25 and ݏܨሺଷ,ସሻ ൌ 50. Figure 4.2

depicts the global timeline relations.

 For our method, the 5 sequences are processed incrementally by

synchronizing two sequence triplets ሼࡿ, ,ଵࡿ ,ࡿଶሽ and ሼࡿ ,ଷࡿ ସሽ. As for the otherࡿ

two methods, the synchronization is done pairwise w.r.t. the reference sequence

 .ࡿ

0.0
0s

Seq. 1 (25 fps) 21 Frames

Seq. 2 (25 fps) 21 Frames

Seq. 3 (25 fps) 21 Frames

Seq. 4 (50 fps) 50 Frames

Seq. 5 (50 fps) 40 Frames

0.0
8s

0.11
s
0.1

6s
0.2

6s

Time

1 2 1 2: 6.5t t→ − =M
1 3 1 3: 2.75t t→ − =M
1 4 1 4:2 4t t→ − =M
1 5 1 5:2 8t t→ − =M

Figure 4.2: Global timeline relations between 5 synthetic videos.

 In Figure 4.3, one can see that the line based method recovers the timeline

maps correctly. The corresponding peak of the 3D line alignment evaluation is

rather dominant and the sub-frame synchronization result is quite accurate

ሺ∆ଵൌ െ6.503, ∆ଶൌ െ2.712, ∆ଷൌ െ3.977, ∆ସൌ െ8.030ሻ as compared with the

ground truth: ሺ∆ଵൌ െ6.50, ∆ଶൌ െ2.75, ∆ଷൌ െ4.0, ∆ସൌ െ8.0ሻ. In contrast, the

other two methods incurred fairly large errors. For the 5-point method, the best

recovered synchronization offsets are ሺ∆ଵൌ െ8.60, ∆ଶൌ െ10.30, ∆ଷൌ

െ0.70, ∆ସൌ െ6.85ሻ and for the rank-based method, they areሺ∆ଵൌ െ8.660, ∆ଶൌ

െ12.665, ∆ଷൌ 1.224, ∆ସൌ െ7.180ሻ. As shown in the figure, both of our line and

 57

point based implementations give comparable results, though there are some noisy

peaks in the second group of results using the line-based method. The exact

reason for this will be investigated in the future. While for the counterpart videos

rendered using affine cameras, the results of the three methods (Note: In our

method, we use affine factorization for the tri-focal tensor calculation.) all give

very accurate results, with the two pair-wise ones showing much higher speeds.

Although different features must be used in the affine video test due to the

perspective difference, it is safe to conclude that large perspective distortions in

the videos to be synchronized will have negative impact on the performance of the

two pair-wise methods. Therefore, in the context where the affine camera model

assumption is satisfied, these methods are still worthy for consideration for their

low computation cost.
(1) (2) (3){ , , }S S S

(1) (4) (5)
%2 %2{ , , }S S S

Figure 4.3: Synchronization result summary of 5 synthetic videos.

We further investigate the performance sensitivity of our synchronization

algorithm. In particular, the tracked features are further distorted with different

level of Gaussian noise to simulate feature tracking errors. At each noise level, 20

tests are performed, with the mean and standard deviation of the resultant

synchronization offsets used for performance profiling. Please note here that the

 58

noise is added to the features tracked using real trackers, which themselves may

already include small errors.

Shown in Figure 4.4 is a typical profiling curve for synchronization results of

 ଵ in the above simulation setup. As we can see, our algorithm can achieve prettyࡿ

high synchronization accuracy when the tracking noise level is lower than 0.5

pixels. But for larger noise levels, larger synchronization errors of up to 2 frames

may appear. One possible reason could be due to the number of features used is

too small. Using more features and RANSAC based tri-focal tensor computation

algorithm [81] may improve the robustness.

Figure 4.4: Example profiling curve of synchronization accuracy to tracking noise levels.

4.5.2 Real videos

Experiments are also conducted using real video sequences captured in the lab

and outdoor.

 First as shown in Figure 4.5, a lab scene with the electronic stopwatch shown

on the wall is captured by two stationary and one hand-held moving Sony

TRV120 DV camcorders. For synchronization, 2 lines and 2 points are used as

“synchronization features,” respectively, in the line and point based

implementation, with the other 9 points used as the “geometry features.” Since the

sequences are a little long, they are synchronized hierarchically for better

efficiency. Specifically, the temporally down-sampled sequences ൛ࡿ
%ସ, ଵࡿ

%ସ, ଶࡿ
%ସൟ

are first synchronized at level ܮଵ with the line-based result of ሺ∆ଵൌ 5, ∆ଶൌ െ5ሻభ,

namely ሺ∆ଵൌ 20, ∆ଶൌ െ20ሻ after transforming to the original frame-rate

0.0 0.4 0.8 1.2 1.6 2.0
-10

-8

-6

-4

-2

0

S
yn

ch
ro

ni
za

tio
n

O
ffs

et
 M

ea
n

&
 S

TD

Noise Level

 59

context. Then guided by this initial result, three sub-sequences

ቄࡿ
ሾଶ:ସହሿ, ଵࡿ

ሾସ:ହሿ, ଶࡿ
ሾ:ଶହሿቅ are extracted and further synchronized at level 0L . The

resulting synchronization offsets are ሺ∆ଵൌ 3, ∆ଶൌ 4ሻ which means that all frame

tuples Γ൫ࡵ
௧బ, ଵࡵ

௧బାଶଷ, ଶࡵ
௧బିଵ൯ are synchronized.

 From the timing information transitions of the synchronized frames shown in

the middle column of Figure 4.5 and by further considering the sub-frame

optimization result ሺ∆ଵൌ 3.226, ∆ଶൌ 4.127ሻ௦௨ (namely, the sub-frame

synchronization offsets of the original sequence ൛ࡿ , ଵࡿ , ଶࡿ ൟ is ሺ∆ଵൌ

23.226, ∆ଶൌ െ15.873ሻ௦௨), it can be seen that our result is quite accurate.

However, our point-based implementation failed to get good result at the

hierarchical level ܮ, though more accurate result could be obtained by increasing

the sub-sequence length. A possible reason might be due to the small inter-frame

movement of the features. In contrast, for the other two compared methods, the 5-

point based one gives the result of ሺ∆ଵൌ 25.60, ∆ଶൌ െ9.20ሻ while the rank-

based one gives the result of ሺ∆ଵൌ 26.176, ∆ଶൌ െ7.893ሻ , both of which incur

large errors.

Seq.1

(1) (2) (3)
[20,45] [40,65] [0,25]{ , , }S S S

Seq.2

Seq.3

Frame 0

Frame 0

Frame 0

Frame 141

Frame 168

Frame 139

Seq.3
First frames Last frames

(1) (2) (3)
%4 %4 %4{ , , }S S S

Hierarchy 0:
Peak/Subframe sync. offsets:
 (3/3.226, 4/4.127)
Sync. frames: (20, 43, 4)

Hierarchy 1:
Peak sync. offsets: (5, -5)

26 ---> 27 27 ---> 28

49 ---> 50 50 ---> 51

10 ---> 11 11 ---> 12

Seq.2

Seq.1

Synchronized frame transitions 3D graph of evaluations

(1) (2) (3)
%4 %4 %4{ , , }S S SHierarchy 1:

Peak sync. offsets: (5, -4)

(1) (2) (3)
[20,45] [40,65] [0,25]{ , , }S S SHierarchy 0:

Peak/Subframe sync. offsets:
 (1/0.723, 9/9.00)
Sync. frames: (20, 41, 9)

 Line based Point based

Figure 4.5: Synchronization result of the stop-watch sequence experiment.

 Figure 4.6 shows another experiment in which three ping-pong sequences

captured in a gymnasium using three stationary DV camcorders are synchronized.

In total 10 point geometry features and 2 line or 2 point synchronization features

are used. Since all the sequences are quite short, they are directly synchronized

without building the hierarchical sequence pyramid. For the

 60

sequences൛ࡿ , ଵࡿ , ଶࡿ ൟ, the integral synchronization offsets are recovered as

ሺ∆ଵൌ 10, ∆ଶൌ 8ሻ . Although such result is quite close to the ground truth

identified manually by checking the trajectory of the moving ping-pong ball

bounced by the person walking from the right to the left, the off-synchronization

error is still fairly large. Then by applying sub-frame synchronization

optimization, more accurate sub-frame synchronization offsets are obtained, that

is, ሺ∆ଵൌ 10.498, ∆ଶൌ 9.830ሻ௦௨. By carefully checking the timing instant (frame)

at when the ping-pong ball hits the pad and its corresponding height from the pad

in the next instant (frame), we can see that the sub-frame synchronization offsets

are quite accurate. Specifically, the height of the ball from the pad in frame ࡵ
ଵହ of

sequenceࡿ is obviously higher than that in frame ࡵଵ
ଶହ and lower than that in

frame ࡵଵ
ଶ of sequence ࡿଵ . Therefore, the synchronization offset ∆ଵ must be in the

range of ሺ25 െ 15,26 െ 15ሻ , that is, ሺ10,11ሻ. By further considering the

kinetics characteristics of the ball movement, we estimate that the ground truth of

2Δ should be very close to 10.5 which coincides with our result very well. While

for sequence ࡿଶ , we can also see that the inaccurate integral result is successfully

corrected by the sub-frame optimization. On the other hand, our point-based

implementation get the integral-frame result of ሺ∆ଵൌ 9, ∆ଶൌ 8ሻ and sub-frame

result of ሺ∆ଵൌ 10.148, ∆ଶൌ 10.542ሻ௦௨, which is quite similar to the line-based

one. While in the comparison, the 5-point and rank-based methods also get quite

accurate results of ሺ∆ଵൌ 10.0, ∆ଶൌ 9.0ሻ and ሺ∆ଵൌ 10.018, ∆ଶൌ 9.573ሻ௦௨,

respectively.

(1) (2) (3){ , , }S S S (1) (2) (3){ , , }S S S

 61

Figure 4.6: Synchronization result of the ping-pong sequence experiment.

 Some wide-baseline videos experiments are also performed. In one example,

shown in Figure 4.7, three toy car sequences captured by 2 stationary and 1 hand-

held circularly moving DVs from different viewpoints are synchronized. In

particular, 11 point geometry features and 2 line or point synchronization features

are used. Our line-based implementation gets the integral-frame result of ሺ∆ଵൌ

െ2, ∆ଶൌ 4ሻ and sub-frame result of ሺ∆ଵൌ െ1.729, ∆ଶൌ 4.257ሻ௦௨, while our

point-based implementation gets the integral-frame result of ሺ∆ଵൌ െ2, ∆ଶൌ

5ሻ and sub-frame result of ሺ∆ଵൌ െ2.196, ∆ଶൌ 4.705ሻ௦௨. By inspecting the on-

off transitions of the ornament LED lights on the car wheels or body, and the

collision event of the toy car with the toy bricks, as shown in the transition

column in Figure 4.7, we can see that such synchronization results are quite

accurate, although the line-based result seems a little better. While for the other

two methods, the 5-point method gets ሺ∆ଵൌ െ3.30, ∆ଶൌ 1.80ሻ௦௨ and the rank-

based one ሺ∆ଵൌ െ1.978, ∆ଶൌ 2.329ሻ௦௨. Both methods incur synchronization

errors of 2~3 frames.
(1) (2) (3){ , , }S S S

Figure 4.7: Synchronization result of the toy-car sequence experiment.

 As shown in Figure 4.8, we also adopt the neat idea in [98] to test the

accuracy of sub-frame optimization. Specifically, we first capture three hardware-

synchronized sequences using the Point-Grey Digiclops® stereo vision camera

system. All sequences are of length 53 frames and the known synchronization

 62

offset ground truth is (0, 0). Then by taking interleaved frames starting from

different starting frame, we create target sequences ቄࡿ
ሾ:ହଷሿ%ଷ, ଵࡿ

ሾଵ:ହଷሿ%ଷ, ଶࡿ
ሾଶ:ହଷሿ%ଷቅ

whose sub-frame synchronization offset should be ሺ∆ଵൌ െ0.33, ∆ଶൌ െ0.66ሻ௦௨.

Applying our line-based implementation using 16 point geometry features and 2

line synchronization features, we get the integral synchronization offset of

ሺ∆ଵൌ െ1, ∆ଶൌ െ1ሻ and sub-frame result of ሺ∆ଵൌ െ0.417, ∆ଶൌ െ0.764ሻ௦௨,

which are quite close to the known ground truth ሺ∆ଵൌ െ0.33, ∆ଶൌ െ0.66ሻ௦௨.

Our point based implementation also gets a similar result of ሺ∆ଵൌ െ0.435, ∆ଶൌ

െ0.778ሻ௦௨ .
(1) (2) (3)
[0 52]%3 [1 52]%3 [2 52]%3{ , , }− − −S S S

Figure 4.8: Synchronization result of the hardware synchronized sequence experiment.

Summary

In this chapter, a novel tri-focal tensor based video synchronization has been

presented. By using the tri-view geometry based point/line transferring distance as

the synchronization alignment measure, high accuracy and robustness in

synchronization are achieved. Even though its accuracy can not really compete

with the hardware based approaches, it provides a more general and flexible

solution for many application scenarios in which hardware based approach may

not be applicable due to various practical constraints. Furthermore, the underlying

idea in this work provides a solid foundation for the automatic total calibration

algorithm to be presented in the next chapter.

 63

Chapter 5

Efficient Geometric, Photometric, and Temporal

Calibration of Unsynchronized Camera Array

This chapter addresses the camera array calibration problem, which is

indispensable for all the FVV applications that require to reconstruct the 3D scene

geometry explicitly. However, most of existing methods for camera array

calibrations have limitations in some aspects.

 For example, different from geometric camera calibration which has been

heavily researched in the literature, photometric calibration is often assumed to be

done separately or even ignored. Little effort has been made to provide an

integrated solution for geometric and photometric calibration, in particular, for

camera arrays. The few existing integrated geometric and photometric calibration

methods usually need complicated procedures and take long processing time.

Possible efficiency improvement is very much desired, especially for mobile

camera array based applications, for which the calibrate-once approach may not

work anymore.

 On the other hand, most of the existing camera array calibration methods

assume that the cameras being calibrated are synchronized. Although this

assumption may be reasonable in some specialized cases, it does restrict the use of

heterogeneous type of cameras or the diversity of their configurations. For

unsynchronized cameras, many existing methods will fail to obtain accurate

results or may require more user interactions. Even though the geometric

calibration itself may be feasible by using snap-shots of a static pattern in

different positions/orientations [42], FVV scene reconstruction and rendering do

need the cameras to be temporally calibrated, i.e. synchronized, especially for

scenes with fast moving objects.

 64

 Therefore, to address the above mentioned limitations and practical needs, in

this chapter we present a novel integrated camera array calibration solution which

is capable of performing geometric, photometric and temporal calibrations for an

array of unsynchronized cameras. This new method extends the classic planar

pattern based calibration method [28] to geometric and photometric calibrations

and incorporates some of the ideas used in the last chapter for temporal

calibration.

5.1 Problem Formulation

The problem of interest in this chapter is to calibrate ܯሺ 2ሻ unsynchronized

stationary cameras with similar formulation to the one discussed in Chapter 4.

Each camera ሺ݉ א ሾ1, ݏܨ at frame rateࡿ ሻሻ captures a video sequenceܯ

of the same dynamic scene. For geometric calibration, the cameras’ intrinsic and

extrinsic parameters are estimated w.r.t the reference camera .

 Our new integrated calibration solution is based on Zhang's work [28] for its

verified robustness, efficiency and accuracy. As a plane pattern based calibration

method, it is assumed that in the scene there is a moving calibration pattern plane

is defined by ܰሺܰ ࣊ Plane .࣊ 4ሻ 3D points ࢄ ሺ݆ א ሾ0, ܰሻሻ in the local object

coordinate frame. Its location and orientation at time instant ݐ defined in the local

coordinate system of camera are denoted by, respectively, the translation

vector ࣊ࢀ
ሺݐሻ and the rotation matrix ࣊ࡾ

ሺݐሻ. Then the undistorted projection of

3D point ࢄ to ࢞
 ሺݐሻ in camera at time instant ݐ can be defined as:

࢞
 ሺݐሻ ൌ ࡷ ቂ࣊ࡾ

ሺݐሻ ࣊ࢀ
ሺݐሻ

 1
ቃ ൬ࢄ

1
൰ (5.1)

The actual observed point projection may be further distorted by the lens radial

and tangent distortions.

 Furthermore, since the cameras are not synchronized, the temporal calibration

is needed to further recover the synchronization offset parameter ∆ for each

camera as defined in the timeline mapping equation (4.1).

 65

 Then given ܯ sequences capturing a moving calibration plane ࣊ using ܯ

unsynchronized cameras, the task of full camera array calibration is to estimate

each camera’s geometric parameters, both intrinsic and extrinsic, and its

synchronization offset with respect to the reference camera. In addition to

geometric and temporal calibrations, the photometric calibration is also done to

recover a 3 ൈ 3 color transformation matrix for each camera to normalize its color

response characteristics w.r.t other cameras.

5.2 Algorithm Overview

The new calibration workflow includes the following steps.

 At the first step, the intrinsic parameters of each camera are calibrated

independently using the plane-based method [28]. However, instead of using the

conventional checkerboard calibration pattern, a redesigned one which is capable

of providing features for both geometric and photometric calibrations is used.

 Then in the second step, the cameras are coarsely synchronized up to integer

frame index and the initial estimations of extrinsic parameters are obtained for

each camera using the video frames synchronized according to the integral

synchronization result.

 In the third step, the LM method based non-linear optimization is performed

to find the cameras’ optimal extrinsic parameters and sub-frame synchronization

offsets by minimizing the projection errors of the moving 3D plane feature points

in the video frames in which the calibration pattern is visible.

 Finally, based on the photometric calibration patterns tracked together with

the geometric calibration patterns, a color-transform based photometric

normalization is done to minimize the color-inconsistency among the cameras.

5.3 Implementation Details

5.3.1 Integrated Calibration Pattern Tracking

Similar to Zhang's work [28], our new method also requires to capture a number

of 2D projections of the calibration plane ࣊ at different orientations and locations,

which will provide the plane-induced homography constraints required for

geometric calibration. For this, a 3D plane ࣊ is usually defined by several

 66

geometry-known 3D feature points, whose 2D projections are easy to detect in the

video frames. It is common practice to use a checkerboard pattern to facilitate

plane detection.

 However, to calibrate a large number of cameras as efficient as possible, it is

desired to collect all the features required for geometric/photometric calibrations

in just one pass. For this, a more versatile calibration pattern which is capable of

integrating geometric and photometric features is preferred. One of the many

possible patterns is shown in Figure 5.1.

 (a) One redesigned calibration pattern (b) Implicit grid structure

Figure 5.1: One redesigned calibration pattern and the calibration
features on an implicit grid structure.

 In particular, we take advantage of the well-tested tracking robustness and

flexibility of the black-and-white patterns (AR-pattern) from the well-known

toolkit for augmented reality research - ARToolkit [109]. As can be seen in Figure

5.1 (a), each AR-pattern has its own “signature” so that it is easily distinguishable

from the rest, resulting in better identifiably and reliability. Pattern tracking is

done using binary template matching and history based tracking prediction. One

advantage of using such patterns over using the traditional checkerboard pattern is

that the complete detection of the calibration pattern is not required. Indeed, when

any one of the AR-patterns is accurately detected, the detection of the remaining

ones can be inferred and facilitated based on the known inter-pattern co-planar

transformations. This feature is especially advantageous for calibration widely

 67

spaced camera array for which the calibration pattern is often not entirely visible

in all the video frames.

 Also we integrate the rearranged Macbeth color checker patterns for

photometric calibration in the middle columns, each of which can be

automatically detected and tracked using the detected AR-patterns.

 As shown in Figure 5.1 (b), each AR-pattern can provide up to 8 feature

points (outer and inner corners of the black square ring), while each pigment-chip

strip pair can provide 4 more feature points. Furthermore, we arrange the AR-

patterns and color checker patterns so that such feature points are on an implicit

grid structure. Just as in the case of using the traditional checkerboard pattern, all

the feature point coordinates and inter-pattern transformations can be defined by

using only one parameter, that is, the size of the implicit grid square block. Hence,

possible errors due to inaccurate pattern printing and layout arrangements can be

accommodated. By trading-off the pattern size which may impact the ease and

accuracy of pattern detection, a total of six AR-patterns are used. Therefore in

total, there are up to ܰ ൌ 6 ൈ 8 3 ൈ 4 ൌ 60 feature points available for

defining the calibration plane.

 However, it should be noted that the specific drawing, number and

arrangement of the geometric calibration patterns or color patterns are not

restricted to the one shown above. They can be customized according to the user’s

specific requirements.

 With the co-planar features tracked, the intrinsic parameters and distortion

coefficients can be calibrated independently [28]. Then the multiple cameras are

further geometrically and temporally correlated through calibrating the extrinsic

parameters and temporal offsets w.r.t a user-specified reference camera. It is done

in two steps: linear initialization and non-linear optimization.

5.3.2 Linear Initialization

As the step to bootstrap the following non-linear optimization, in linear

initialization, the integer-frame synchronization is done first incrementally, which

is similar to the synchronization procedure explained in the last chapter. However,

 68

in here the synchronization is done together with extrinsic parameter calibration,

the cameras are synchronized and calibrated in groups of two instead of three for

better efficiency.

 In particular, initially all the cameras except the reference one are flagged

as unsynchronized. For each unsynchronized camera ሺ݉ א ሾ1, ܯ െ 1ሻሻ, it is

first locally synchronized to a synchronized camera based on the synchronization-

hypothesis-verification step to be detailed below. Then the local synchronization

result is then upgraded to a global one w.r.t via chained temporal

transformations. Then camera is flagged as synchronized and can be used as a

peer camera for other unsynchronized ones. This incremental synchronization

process will stop until all cameras are synchronized.

 Together with this incremental initial synchronization process, the extrinsic

parameter estimation process (in the following, we call it as “positioning” for

simplicity) is done simultaneously since local synchronization of two cameras

implicitly solves the local positioning problem as can be seen later. Similarly, an

un-positioned camera is always first locally positioned w.r.t to a positioned (also

synchronized) one while doing initial synchronization and then upgraded to the

global coordinate frame by chaining the spatial transformations.

 W.l.o.g, in the following, we only focus on how the initial synchronization

and positioning are done for two cameras. The generalization to the remaining

cameras is straightforward.

 (a) Initial synchronization

 Similar to what is described in the last chapter, to locally synchronize a

specific camera pair, a range of integer-frame offsets are hypothesized and each

possible offset is evaluated by the correspondingly deduced multiple view

geometry alignment error of dynamic scene objects.

 This range can be defined in an exhaustive way based on the sequence lengths

as done in the integral offset synchronization procedure in Chapter 4. If prior

knowledge on the rough synchronization offset range is known, a smaller range

can be used instead for better efficiency.

 69

 For each hypothesized temporal offset, a number of “synchronization

hypothesis voter” video frame pairs are first collected, that is, those video frames

in which the calibration pattern features have been detected successfully and the

frame index satisfying the timeline mapping deduced from the currently evaluated

hypothesized temporal offset.

 Instead of using the tri-focal tensor based geometric alignment error for

uncalibrated cameras as in Chapter 4, we take advantage of the fact that the

intrinsic camera parameters are known already and the 3D projection error is used

as the synchronization measure.

 Specifically, for each collected “synchronization hypothesis voter” video

frame pair, since the calibration plane orientation and position in the respective

camera coordinate frame are known through intrinsic parameter calibration, the

inter-camera rotation and translation can be recovered by solving the

corresponding coordinate system transformation. For all the video frame pairs, the

“optimal” inter-camera rotation and translation corresponding to the temporal

offset in question are obtained (see the next sub-section for more details).

 In summary, for a hypothesized temporal offset, the rotation and translation

between two cameras being synchronized are calculated. For a wrong temporal

offset hypothesis, such inter-camera geometric transform will be wrong in

general. This provides a new way for synchronization evaluation.

 In particular, given an inter-camera geometric transform between two

cameras, for each video frame pair, the 3D co-planar points in one view is

transferred into another view and their corresponding projection errors are

calculated. Then the average projection error for all the collected synchronization

frame pairs is used to evaluate the fitness of the corresponding hypothesized

temporal offset. This is based on the observation that for a moving calibration

plane, unsynchronized frame pairs will capture the plane at different orientations

and positions, which in general cannot be aligned by the same inter-camera

geometric transform. Therefore, incorrect synchronization offset hypotheses will

in general result in large projection errors. So the one resulting in the smallest

error will be chosen as the initial integer temporal offset, which will be further

 70

optimized. Meanwhile, the corresponding extrinsic (rotation and translation)

parameters will be used for initial local positioning.

 (b) Local positioning

 Regarding the local positioning process of a camera pair, suppose we are

recovering the relative rotation ࡾ
՜and translation ࢀ

՜ between an un-

positioned camera and a positioned camera whose global extrinsic

parameters are already known as ࡾ
 and ࢀ

 .

 As a by-product of the plane based single camera calibration of camera ,

local translations ࣊ࢀ
 ሺݐሻ and rotations ࣊ࡾ

 ሺݐሻ of the calibration plane ࣊ at

different time instants ݐ can also be recovered w.r.t ’s local coordinate frame.

So the projection1 of 3D plane point ࢄ in the frame captured by another camera

 should beݐ at time instant

࢞
 ሺݐሻ ൌ ࡷ ሾࡾ

՜ ࢀ
՜ሿ ࣊ࡾ

 ሺݐሻ ࣊ࢀ
 ሺݐሻ

 1
൨ ൬ࢄ

1
൰ (5.2)

Meanwhile, since

࢞
 ሺݐሻ ൌ ࡷ ࣊ࡾ

 ሺݐሻ ࣊ࢀ
 ሺݐሻ

 1
൨ ൬ࢄ

1
൰

therefore we have

ሾࡾ
՜ ࢀ

՜ሿ ࣊ࡾ
 ሺݐሻ ࣊ࢀ

 ሺݐሻ
 1

൨ ൌ ࣊ࡾ
 ሺݐሻ ࣊ࢀ

 ሺݐሻ
 1

൨ (5.3)

 Then for a given temporal offset, each synchronized frame pair between

and will provide constraints for recovering the unknown ࡾ
՜and ࢀ

՜. To

accommodate for possible inconsistencies between the results of ࡾ
՜and ࢀ

՜

obtained by different synchronized frame pairs, the median of all available results

is picked. If the temporal offset is not close to the true one, such ࡾ
՜and ࢀ

՜

1 Here for simplicity, we use the undistorted projections and the induction hereafter applies to the distorted projections
too.

 71

will in general result in large deviation between the 2D projections transformed

from camera , i.e.,

௧௦ௗ࢞
 ሺݐሻ ൌ ࡷ ሾࡾ

՜ ࢀ
՜ሿ ࣊ࡾ

 ሺݐሻ ࣊ࢀ
 ሺݐሻ

 1
൨ ൬ࢄ

൰ (5.4)

and the actual observed ones, i.e.,

௩ௗ࢞
 ሺݐሻ ൌ ࡷ ࣊ࡾ

 ሺݐሻ ࣊ࢀ
 ሺݐሻ

 1
൨ ൬ࢄ

൰ (5.5)

 Therefore, as mentioned in the last section, the average projection error

∑ ቚ್࢞ೝೡ
ೕ ೝೌೞೝ࢞ି

ೕ ቚಿషభ
ೕసబ

ே
 provides a good measure for evaluating a hypothesized

temporal offset.

 Finally, to upgrade the local positioning to a global one, the initial estimation

of ’s global rotation and translation are obtained as:

ቊ ࡾ
 ൌ ࡾ

՜ࡾ

ࢀ
 ൌ ࡾ

՜ࢀ
 ࢀ

՜ (5.6)

5.3.3 Non-linear Total Optimization

In this step, an LM-based non-linear optimization is performed to further improve

the accuracy of the cameras’ geometric parameters and synchronization offsets by

minimizing the sum of squared projection errors of the feature points of the 3D

calibration plane in the synchronized video frames. It can be regarded as a variant

of the traditional bundle-adjustment [81] augmented with temporal parameters.

Similar to the method presented in Chapter 4, the involved derivative calculation

is done using finite difference and the projection error evaluation for frames

synchronized up to sub-frame accuracy is done by linear interpolation.

 In particular, the total number of optimized parameters is ሺ4 4ሻ ൈ for ܯ

intrinsic parameters and lens distortion, plus 6ൈ ሺܯ െ 1ሻ for extrinsic parameters,

and plus ሺܯ െ 1ሻ for synchronization offsets. To improve optimization efficiency,

the intrinsic parameters and lens distortion parameters can be dropped because the

single camera calibration results are usually very accurate already.

 72

5.3.4 Multiple Camera Photometric Normalization

In addition to the geometric and temporal calibrations, photometric calibration is

also done automatically.

 In particular, we follow the video post-processing based color normalization

approach [42]. As shown before, for each camera, 24 Macbeth color pigment

chips can be tracked based on their relative position transformations to the

detected geometric calibration pattern. The samples of each pigment color are

collected throughout each video and averaged (temporally) for modeling the

corresponding camera’s color response characteristics. It should be noted that for

better accuracy, the camera's built-in features such as automatic

exposure/gain/white balance adjustments should be disabled when capturing the

videos.

 Then the above temporally averaged colors are further averaged spatially for

all the views and used as reference colors. To ensure color consistency among

different cameras through normalization, a 3 ൈ 3 RGB transform matrix is

recovered for each camera as described in [42] to minimize the color difference

between the camera’s pigment response colors and the reference ones. Finally the

color normalization is done by applying the corresponding RGB color

transformation as a post-processing step.

 Please note that as the Macbeth patches are printed, not painted, their real

colors are not exactly the same as their original designs. Furthermore, the

illuminant color is not factored out during the photometric calibration. Therefore

the transformed video colors are usually not the same as the true color of the

scene. That is, the above photometric calibration is only suitable for applications

in which color consistency is more important than color fidelity, such as our

interested FVV ones.

5.4 Experiments

We tested our new algorithm using several camera array configurations, with an

illustrative one shown in Figure 5.2. In particular, 7 heterogeneous cameras are

used, two of which are Sony camcorders (TRV-120/230) with Fps of 29.97 and

 73

interlaced resolution of 720 ൈ 480 and the other five cameras are Point Grey

Research Flea2 cameras with FPS of 15 and progressive resolution of 1024 ൈ

768. Although coarse synchronization among cameras can be achieved via

TCP/IP communications, as can be seen later, systematic synchronization error

could exist due to varying factors. Also due to the heterogeneity of cameras, the

variation of colors among cameras is large.

 The calibration procedure is fully automatic and the only user intervention is

to first move the calibration pattern plane around in the observing volume of the

cameras for 15 to 20 seconds. As can be seen from one example calibration scene

shown in Figure 5.3, the view and color of each video stream are noticeably

different from the rest. Additionally, the noise in the videos is quite apparent and

makes accurate geometric and photometric calibrations challenging. Also to

evaluate synchronization accuracy, an electronic stopwatch is put in the scene to

provide synchronization ground truth information up to an observable accuracy

limited by the highest camera frame rate.

 Then for calibration, the geometric calibration features (as shown by the red

circles) and color checker patterns (as shown by the yellow blocks) are tracked

automatically and accurately, based on which all the cameras are calibrated

successfully and efficiently.

Figure 5.2: An example camera array setup.

 For the temporal calibration result, we achieve the sub-frame synchronization

offsets of ሺ݉ א ሾ1,7ሻሻ w.r.t to the reference camera as ሾ∆ଵൌ 0.00067, ∆ଶൌ

െ0.00259, ∆ଷൌ 0.614, ∆ସൌ 0.633, ∆ହൌ െ5.474, ∆ൌ െ6.128ሿ. Figure 5.3

 74

illustrates one group of synchronized frames of 4 cameras ሺ݉ א ሼ0,1,3,5ሽሻ

based on the above synchronization result. Specifically, according to the

computed temporal offsets and Equation (4.2), we can deduce that frame 3 of

camera should be synchronized with frame 3.00067 of ଵ, frame 3.614 of ଷ

and frame 0.52 of ହ (please note that ݏܨ ൌ ଵݏܨ ൌ ଷݏܨ ൌ 15 and ݏܨହ ൌ

29.97). From the stopwatch reading of the transitions in the consecutive frames

shown in Figure 5.3 (c), we can see that these sub-frame offset results are quite

accurate.

 Fairly high accuracy is also achieved in geometric and photometric

calibrations. In particular, the average projection error of the calibration pattern

points after optimization is less than 0.3 pixels. The accuracy of calibration

without performing synchronization is also compared, which results in an average

projection error of 5.43 pixels. So it can be seen that the synchronization errors

between cameras cannot be ignored. Accurate temporal calibration does help to

improve the overall geometric calibration performance. While for photometric

calibration, we evaluate its performance by the average (R, G, B) color difference

and standard deviation of each camera’s pigment response color to the reference

color. As can be seen from the statistics listed in Table 5.1, the accuracy is

comparable to the results reported in the work of Litos et al, [23] for similar

heterogeneous camera configuration. The calibration error is mainly due to the

automatic exposure and gain adjustment of the camcorders, which make the

pigment color sampling slightly inaccurate when the large and bright calibration

plane is moving in the scene. As a comparison, for the 5 Flea2 cameras, since

their automatic exposure and gain adjustment features are disabled, a much higher

accuracy is obtained.

 More extensive calibration experiments are also done for different camera

array setups with similar performance observed.

 75

Color

Channel

All 7 Cameras 5 Flea2 Cameras

Before normalization After normalization Before normalization After normalization

Max Mean

Error

Max

STD.

Max Mean

Error

Max

STD.

Max Mean

Error

Max

STD

Max Mean

Error

Max

STD.

R 17.792 16.298 7.402 4.812 12.179 7.142 2.208 1.489

G 12.190 12.190 6.510 5.245 10.981 5.142 1.874 1.253

B 12.036 12.036 6.626 6.033 3.8139 5.218 2.259 1.142

Table 5.1: Photometric calibration error statistics.

Figure 5.3: Results of 4 cameras ሺ݉ א ሼ0,1,3,5ሽሻ (columns from left to right).

The proposed camera array total calibration method has been implemented as a built-in service in
our cluster based FVV system and extensively tested and successfully used for calibrating many

different configurations. Its automatic workflow, high efficiency and no requirement on hardware
based camera synchronization enable fast scene acquisition for FVV rendering and applications.
From the high quality depth scene reconstruction and rendering results to be presented in Chapter
9, it can be seen that the proposed method can provide accurate calibrations for our FVV system.

Summary

In this chapter, we have presented an automatic and efficient method for

performing complete (geometric, photometric and temporal) calibrations of an

array of unsynchronized video cameras by extending the classic plane based

single camera geometric calibration method. It enables the use of heterogeneous

types of cameras and supports more portable camera array configurations.

 76

Chapter 6

A Region-Tree Based Image Labeling Framework

As we know that many important tasks in low level vision, image analysis and

pattern recognition such as image restoration and texture modeling can be

formulated as a discrete labeling problem, where the labels represent some task-

specific local attributes. How to solve this class of labeling problems efficiently

and accurately has attracted a significant amount of computer vision research over

the past few years. In this thesis, we address the dense depth based FVV scene

reconstruction task as an image labeling problem and propose a novel and general

region-tree based image labeling framework.

6.1 Image Labeling Problem Formulation

Image labeling is essentially a discrete optimization problem, which is to assign

each pixel in an image an optimal label from a limited number of candidates. To

formulate the original task into a image labeling problem, a so-called label

discretization process is usually needed if the original solution space is

continuous. By sampling such continuous solution space at discrete points with

fine enough sampling resolution, the original task can then be solved through

discrete optimization. Most popular and successful approaches for addressing

such image labeling problems all use the discrete energy minimization

formulation [110].

Specifically, suppose a labeling target image ࡵ is represented as a spatial

structure ષ of a set of image primitives च spanning the whole image, the task of

image labeling is to assign each image (labeling) primitive א च an optimal label

ℓ from a label set ख. Usually a weighted influence graph ऑ ൌ ሺच, एሻ is also

defined, wherein an edge ݁ א ए represents the pair-wise influence between two

 77

labeling primitives and ݍ and its corresponding edge weight ݓ encodes the

strength of such influence.

Each image labeling solution ࡸሺષሻ defines a mapping function च ՜ ख and is

associated with an energy cost evaluating its fitness. Such energy cost usually

consists of two terms – a data term and a smoothness term. On the one hand,

assigning label ℓ to a labeling primitive incurs the so-called data cost ࣞሺ, ℓሻ

which measures the likelihood of such label assignment based on given

observations. On the other hand, for each pair of labeling primitives and ݍ that

are related, (i.e. connected by an edge א ए), there is the so-called smoothness cost

࣭ሺ, ,ݍ ℓ, ℓ, ሻ which measures the compatibility of assigning primitivesݓ

and ݍ with labels ሼℓ, ℓሽ, respectively, based on the corresponding edge weight

 and task-specific smoothness prior. The justification of introducing such aݓ

smoothness cost is that two strongly related labeling primitives are more likely to

be assigned with similar labels. In this way, spatial piecewise smoothness can be

preserved in the final labeling solution.

Then the labeling problem is solved by finding a labeling solution ࡸሺષሻ which

minimizes an energy function ܧሺࡸሺષሻሻ in the general form of

ሺષሻሻࡸሺܧ ൌ ሺષሻሻࡸௗ௧ሺܧ ߣ · ሺષሻሻ (6.1)ࡸ௦௧ሺܧ

where the positive constant ߣ represents the relative weight.

The data energy term ܧௗ௧ሺࡸሺષሻሻ sums the data cost over all the labeling

primitives as

ሺષሻሻࡸௗ௧ሺܧ ൌ ∑ ࣞሺ, ℓሻאΩ (6.2)

The smoothness term ܧ௦௧ሺࡸሺષሻሻ sums the smoothness cost over all

related labeling primitive pairs as

ሺΩሻሻࡸ௦௧ሺܧ ൌ ∑ ࣭ሺ, ,ݍ ℓ, ℓ, ए (6.3)א ሻݓ

This energy minimization based formulation is closely connected to the theory

of Markov Random Fields (MRFs). Specifically, the optimizing energy function

(6.1) is essentially equivalent to finding the maximum posteriori estimate of a

discrete MRF, with the potential function of the MRF defined as the distance

function between labels [110]. Due to the equivalence to MRFs, solving an image

 78

labeling problem is in general NP-hard and usually only approximate solutions

can be found. Based on the underlying theoretical foundation, existing methods

can be roughly categorized into two classes: those based on linear programming

[111,112] and those based on discrete optimization [113-121]. The former class,

though being more theoretically elegant, is not practical due to its excessive

computational cost. Methods of the latter class are much more efficient and have

been successfully applied in practice. Therefore, in this following, we focus only

on the discrete optimization based techniques.

6.2 Workflow of Discrete Optimization based Image Labeling

Similar to the observations reported in work of Scharstein and Szeliski [122],

most discrete energy minimization based image labeling algorithms follow a

similar workflow pattern in performing the following four steps (or a subset of

them). The specific execution order of such steps as well as the exact strategy

used in each step is what distinguishes different algorithms.

 (a) Data Cost Computation

In this step, for each label ℓ א ख , the corresponding data cost is evaluated for

each pixel in the labeling target image ࡵ. Based on the specific application,

different number of additional images can be involved. Usually a data cost value

is calculated from the difference between the intensity of a pixel ሺݔ, ࡵ ሻ in imageݕ

and the intensity of a relevant pixel induced from the label ℓ in image ࡵ itself or

other involved images. For example, in image restoration, the induced intensity is

just the label itself. While in stereo matching, the induced intensity is the intensity

of the corresponding pixel(s) found using the label (disparity or depth) in the

image(s) being matched.

 The resultant data cost values over all pixels and all labels form a 3

dimensional image, which is called label space image ࣷሺݔ, ,ݕ ℓሻ.

(b) Data Cost Aggregation

 Pixel-wise data cost evaluation usually cannot reflect the true label assignment

fitness distribution due to noise or imperfect cost calculation. To enhance

robustness, the initial label space image ࣷሺݔ, ,ݕ ℓሻ is often “filtered” by summing

 79

or averaging the data costs over an aggregation support region, which can be

either two dimensional in the ݕ-ݔ space or three-dimensional in the ݕ-ݔ-ℓ space.

This process is called data cost aggregation. When a fixed regular support region

is used, the aggregation can be performed using 2D or 3D convolution. For

example, in the case of a rectangular window based support region, the

aggregation can be done using an efficient box filtering. After the aggregation, an

aggregated label space image ࣷԢሺݔ, ,ݕ ℓሻ is obtained.

On the other hand, since the label space image is only pixel based, for image

representations using non-pixel labeling primitives, further aggregation is needed

to evaluate the data costs for the non-pixel primitives.

(c) Labeling Computation and Optimization

In this step, the optimal labeling solution minimizing energy function (6.1) is

calculated using local or global optimization.

 Computing the optimal labeling assignment for each labeling primitive using

local optimization method is usually trivial and fast. In particular, the label

associated with the minimum data cost values for each labeling primitive is

chosen as the optimal one. That is, the local “Winner-Take-All” (WTA)

optimization is performed for each labeling primitive. However, since the

smoothness costs are ignored, the labeling solution obtained by local optimization

usually contains many errors. Therefore, local methods are mainly used in

efficiency critical scenarios.

 In contrast, global optimization needs more intensive computation due to the

enforcement of pair-wise smoothness costs and searching of the global minimum.

A variety of algorithms such as continuation [123], simulated annealing [124],

dynamic programming [113-116], graph cuts [117, 118] and belief propagation

[119-121] have been applied to solving the underlying discrete optimization

problem.

 80

(d) Labeling Refinement

Due to efficiency considerations and computation resource limits, during the

label discretization process, it is usually needed to constrain the size of the label

set ख. However, in some cases, the corresponding discretization resolution may

not be fine enough for the required accuracy. Therefore, in this step, labeling

refinement can be performed to further enhance the resolution of the labeling

solution obtained in the last step. In addition, for algorithms using non-pixel based

image primitives, pixel-wise labeling refinement may also be done based on the

labeling assignment of the corresponding container primitive.

As well, there are also other application-specific ways of post-processing the

obtained labeling solution. For example, median filtering or diffusion can be

applied to “clean up” spurious label assignments in many applications. In

binocular stereo matching or motion estimation, cross-checking can also be done

to detect and correct errors due to occlusions [125].

6.3 Motivation

Most image labeling algorithms focus on the above labeling computation and

optimization step by designing better discrete optimization techniques. With

powerful new discrete optimization algorithms such as graph cuts [117,118] and

loopy belief propagation [119-121] proposed and popularized in the last few

years, the performance improvement in solving various image labeling problems

has been very encouraging, which in turn further enables many novel applications

such as interactive photo editing [126]. Therefore, most popular image labeling

frameworks are categorized according to the underlying discrete optimization

technique.

However, in addition to discrete optimization techniques, image representation

also plays an important role in solving the image labeling problem.

 So far, two image representations are most often used in the existing image

labeling frameworks, in particular, the traditional pixel grid and the layer (or

plane) representations [127, 128]. The former one uses a single pixel as a labeling

primitive and a regular grid as the spatial spanning structure ષ. It is simple to use

 81

and can be applied to any rectangular shaped image. But it suffers from higher

labeling ambiguities because it loses some useful scene-based smoothness prior,

which is implicitly and easily enforced in the layer-based approaches. To address

this issue, hypothesis label evaluations from local neighborhood pixels are usually

used. The shape of such local neighborhood can be a rectangle or an irregular

region. In particular, in the local optimization based labeling framework [129], for

each pixel and each hypothesized label assignment, a region with spatially

varying size is constructed as a connected component containing pixels for which

the likelihood of such hypothesized label assignment is high. Then the label which

gives the largest region is chosen as the final label assignment for that pixel.

The layer based representation uses a layer as a labeling primitive which

results in better ambiguity discrimination performance. It has unique potentials in

various image labeling problems, especially in the classic binocular stereo

matching [127-128, 130] and motion estimation [131].

 According to the de facto stereo benchmarking [122], the current top two

ranked stereo methods [130, 127] are both layer based. In particular, in [[130], an

inter-regional cooperative optimization scheme is proposed. Local window-based

pixel matching is done first to fit a disparity plane for each color-segmented

region. And then the parameters of all such disparity planes are iteratively

optimized to obtain the final disparity map. A similar idea is also used in [127], in

which the scene structure is modeled by a set of planar surface patches through

color segmentation. Disparity planes are extracted by applying local window-

based pixel matching and segmentation-based clustering. The disparity plane label

assignment for each region is optimized using belief propagation.

One drawback of such layer based representation is its reliance on accurate

segmentation and the difficulties of layer parameterization without prior

knowledge. Errors in layer segmentation due to violation of the assumption that

layers do not cross label discontinuities and in parameterization modeling due to

over-fitting can incur errors in the labeling result. Also for non-structured scenes

in which there are no dominant layers (planes), its performance could be

degraded.

 82

 To address the above issues, researchers propose over-segmentation based

approaches [132, 133]. An over-segmented region can be regarded as a trade-off

between a pixel and a layer. Compared to a pixel, it enables a labeling primitive

to contain enough information with a large support area. On the other hand, it also

reduces the risk of violating the parameterization assumption with a relatively

small region size compared to a layer. Due to such advantageous properties,

representations using over-segmented regions have shown great potentials.

Because there is much fewer number of regions than pixels, the computational

complexity is reduced compared to pixel-based representations. Also given the

smaller size of the regions, the chance that color segmentation errors propagate

into the labeling process using over-segmented regions is reduced compared to

those of using layers, which are usually much larger compared to over-segmented

regions.

 In particular, in [132], the image is first over-partitioned into a grid of equal

sized square patches and then K-means clustering is applied to refine the over-

segmentation through region merging and splitting. Depths of regions are

computed using loopy belief propagation optimization over the corresponding

region adjacency graph (RAG).

 In the work of Taguchi et al. [133], over-segmentation is also used for

simultaneous binocular stereo reconstruction and alpha matting of mixed region

boundary pixels iteratively. The over-segmentation is done w.r.t. both input

images for consistency and iteratively updated based on region color, depth and

shape constraints. For a given segmentation, the depths of the regions are

estimated using belief propagation optimization, which are in turn used for

updating the segmentation in the next iteration. In this way, the segmentation and

the depth map as labeling results are updated iteratively until convergence.

 All of the above mentioned encouraging results of using over-segmented based

image representations in stereo matching motivate our work in this thesis to be

described in the next three chapters. In particular, we introduce a general region-

based image labeling framework using a novel image representation – a spanning

tree of over-segmented regions. Different from previous work on using over-

 83

segmentation, using a tree structure instead of a more general graph structure

enables the use of fast optimization techniques such as dynamic programming

(DP). Also it can avoid unnecessary smoothness enforcement between regions

across labeling discontinuities, which may incur errors in the labeling solution.

 The most related previous works in this regard are Veksler's pixel tree [115]

and Deng and Lin's line segment tree based stereo [134], both of which are

proposed mainly for binocular stereo matching and not as a general framework. In

particular, Veksler [115] extends the traditional DP based stereo matching by

introducing the so-called pixel-tree structure. A pixel-tree is formed by keeping

only the “most important” edges to 4 connected neighbor pixels in the pixel lattice

graph based on color similarity. Applying DP to such a 2D pixel-tree structure

enables the vertical consistency to be enforced between scanlines, which cannot

be done in traditional 1D scanline based methods, resulting in truly global

optimization since the label (disparity) assignment for each pixel depends on

assignments of all the other pixels.

 In the work of Deng and Lin [134], scan-lines are partitioned into segments

and the resulting line segments are used as tree vertices instead of single pixels.

The connections between adjacent pixels within the same segment are preserved

as completely as possible, resulting in better stereo matching performance

compared to pixel tree [115].

 In our new proposed framework, similar to the above two methods, a spanning

tree structure is also built, but with a more general and flexible tree vertex

definition for over-segmented regions.

 Specifically, the labeling target image is first over-segmented into a set of

regions using the mean-shift algorithm [135]. From the resultant region adjacency

graph, a weighted spanning region tree is extracted. Then the labeling problem is

solved by optimizing the energy function (6.1) defined on such a region tree.

 The proposed framework is versatile. By using different label definitions and

data/smoothness cost functions, the same framework can be applied to solving a

wide spectrum of image labeling problems such as the classic binocular, multi-

 84

view stereo matching and optical flow estimation, all of which are very important

by themselves and in our FVV applications.

The proposed framework is also extensible and can be adapted to different

applications. For example, as to be elaborated later, by taking advantage of the

bottom-up granularity controllable fusion based image segmentation procedure,

the coarse-to-fine (C2F) scheme can be easily integrated and utilized. On the other

hand, different region tree edge-weighting schemes or region tree extensions such

as the temporal variant used in Chapter 9 may be used or made for different

applications.

6.4 Region-tree based Image Representation

In the proposed framework, the labeling primitive set च is a set of over-

segmented regions ज. The spatial structure ષ is a spanning tree ञ over ज, which

is extracted from the region adjacency graph (RAG) created as the segmentation

result. The region-tree ञ itself is used as the influence graph in solving the

labeling program in question.

6.4.1 Mean-shift based Image Over-segmentation

To build the corresponding region-tree ञ, the labeling target image is first over-

segmented using an improved variant [136] of the mean-shift algorithm [135].

In particular, the segmentation consists of two steps, namely, mean-shift

filtering and pixel/region bottom-up fusion. In the filtering step, in addition to

transforming its intensity/spatial information into feature space parameters, a

weight is also assigned to each pixel. Such weight is defined using its normalized

rank of the gradient magnitude and edge confidence. It is used as the edge-

likelihood measure to enhance the contributions of edge-like pixels and to

suppress the contribution of non-edge-like pixels when calculating the mean-shift

moves in feature space. In this way, the discontinuity preserving property of the

mean-shift filtering is further enhanced. Shown in Figure 6.1 (d) is one example

of the weight map.

 85

After the filtering step is done, the fusion step iteratively fuses smaller regions

(pixels in the first iteration) into larger ones by performing transitive closure

operations to the corresponding RAG. Specifically, for each edge in the RAG, a

boundary strength measure ԑ is computed as a “fusibility” measure between two

regions by averaging the above mentioned weights of pixels on the boundary

shared by the two regions. By thresholding the maximum boundary strength

between any two to-be-fused regions, discontinuity-preserving region fusion can

be achieved. Furthermore, different segmentation granularities can be achieved by

controlling the number of fusion iterations and the minimum region size. An

illustration of a typical over-segmentation result is shown in Figure 6.2.

Figure 6.1: Over-segmentation illustration. Given an input image, its gradient and edge
confidence maps are created first, from which the weight map is calculated. The weight map

is then used for mean-shift based segmentation and edge detection.

(a) Input image

(e) Edge map

(b) Gradient map (c) Edge confidence map

(d) Weight map (f) Over-segmentation

 86

6.4.2 Region-tree Generation

With the results of mean-shift based over-segmentation, the labeling target image

has been partitioned into a set of regions ज and the corresponding RAG

ऑሺज , एԢ ሻ is created. Each region ݎ א ज has ܰ pixels ሺݔ, ሻݕ א andݎ

corresponds to a mode ݉, which is a mean-shift clustering point in the multiple

dimensional feature space. For color images, the dimension is 5 with the first

three for the color channel values in the CIELUV color space and the other two

for the x and y coordinates. For grey-level images, the dimension is 3 with the first

one for the pixel intensity value and the other two for the x and y coordinates.

Each vertex in ऑሺज , एԢ ሻ corresponds to a region ݎ and each edge ݁ሺ,ሻ א एԢ

corresponds to a link between two adjacent regions ݎ and ݎ.

From the RAG ऑሺज , एԢ ሻ , we further extract a region tree by keeping only

the “most important” edges. Then an obvious question is on how to evaluate the

importance of a given edge. An intuitive criterion is that, the more likely that two

regions have the same label, the more desirable is to keep the edge between them.

Therefore, each edge ݁ሺ,ሻ is assigned with a positive edge weight ݓሺ,ೕሻ

encoding the un-likelihood for regions ݎ and ݎ to share the same label. The larger

the edge weight ݓሺ,ೕሻ, the less likely regions ݎ and ݎ to have the same label so

that the less important is the edge ݁ሺ,ሻ.

Figure 6.2: . Illustrations of region-tree generation.

ञ௦௨

leaf

 ݎ

 ݎ

root

ऀሺݎሻ

धሺݎሻ

(a) Over-Segmentation Example (b) Region-tree illustration

 87

In this thesis, we define the edge weight based on the Euclidean distance

,ሺ݉ݏ݅݀ ݉ೕሻ between two region’s modes in the feature space of mean-shift

segmentation and the strength of the common boundary between the two regions

ԑ՞ೕ as

ሺ,ೕሻݓ ൌ ,ሺ݉ݏ݅݀ ݉ೕሻ · ݁ೝ՞ೝೕ (6.4)

It should be noted that different edge weighting schemes can also be used for

specific applications, which may impact the resulting region-tree.

Then we construct a minimum spanning tree (MST) ञሺज , ए ሻ using the Prim

greedy MST method [137] by traversing all region vertices in ऑ and by

minimizing the sum of weights of the remaining edges ∑ एאሺ,ೕሻሺ,ೕሻݓ . In this way,

each specific region is only linked to the regions which are most likely to have the

same label so that the adaptive piecewise labeling smoothness can be enforced

during optimization.

6.5. Energy Minimization over a Region-tree

With the labeling target image represented as a spanning tree of over-

segmentation, the optimization of energy function (6.1) defined over such a

region-tree ञሺज , ए ሻ can be done by any discrete optimization methods

supporting non-grid labeling primitive adjacency system such as graph cuts or

belief propagation. However, the unique tree structure also makes it possible to

use the more efficient DP optimization. As we know, to apply DP, the problem in

question must exhibit an optimal structure. Our region-tree based labeling

optimization does have such an optimal structure. Indeed, the optimal solution

(partial labeling) for any sub-region-tree must also be optimal for the solution for

the whole region-tree.

Specifically, taking the sub-region-tree ञ௦௨
 rooted at vertex (region) ݎ

shown in Figure 6.2(b) as an example. Suppose vertex ݎ is not the global root of

the whole region tree ञ, then the minimum value of the energy as defined in

Equation (6.1) on the sub-tree ञ௦௨
 plus the edge between vertex ݎ and its

 88

parent vertex ऀሺݎሻ can be recursively written as a function of the label

ℓऀሺሻ assigned to ऀሺݎሻ :

൫ℓऀሺሻ ൯ܧ ൌ

 minℓೝאख൫ࣞ൫ݎ, ℓ൯ ߣ · ࣭൫ݎ, ऀሺݎሻ, ℓ, ℓऀሺሻ൯ ∑ धሺሻא൫ℓ൯ܧ ൯ (6.5)

where धሺݎሻ is the set of the children vertices of vertex ݎ.

Then let’s further investigate two types of special vertices in the whole region

tree: the leaf and the root.

For a leaf vertex, since it has no child vertex, then Equation (6.5) can be

directly evaluated for each possible label assignment for its parent vertex, that is,

൫ℓऀሺሻ ൯ܧ ൌ

minℓೌאख ቀࣞ൫݈݂݁ܽ, ℓ൯ ߣ · ࣭൫ݎ, ऀሺ݈݂݁ܽሻ, ℓ, ℓऀሺሻ൯ቁ (6.6)

Therefore, for a leaf vertex ݎ, if the label of its parent vertex ऀሺ݈݂݁ܽሻ has

been assigned somehow, its optimal label ℓ can be easily determined.

While for the root vertex, it has no parent vertex so that Equation (6.5) can be

simplified to

௧ܧ ൌ minℓೝאख൫ࣞሺݐݎ, ℓ௧ሻ ∑ धሺ௧ሻאሺℓ௧ሻܧ ൯ (6.7)

That is, with ܧ௧ known for each possible root vertex label assignment and

for each child vertex of the root vertex, the best label ℓ௧ can be directly

recovered. Furthermore, it can be seen that the minimum energy ܧ௧ of the root

vertex is just the minimum value of the energy (6.1) of the whole region tree. So

the labeling assignment optimizing ܧ௧ is just the one optimizing Equation

(6.1).

Based on the above observed properties, the energy function (6.1) can be

optimized using DP through two recursive region-tree traversals. In the first

bottom-up traversal starting from the leaf vertices, the optimal label that

minimizes the energy (6.6) and the corresponding minimal energy are determined

for each possible parent vertex label. Then upon reaching the root vertex, the

optimal label of the root vertex is trivially determined and the region-tree is

breadth-first traversed again starting from the root vertex. In this turn, for each

visited non-root vertex, since the parent’s optimal label has been set, its optimal

 89

label can be easily determined accordingly. Therefore, in this way, all the optimal

labels of the vertices (regions) can be recovered. Since we assume all the pixels in

a region share the same label, then the original pixel-wise labeling problem can be

solved.

6.6. Coarse to Fine (C2F) Region-tree

As mentioned before, when using discrete labeling formulation to solve real world

problems, the original usually continuous solution space has to be quantized and

mapped to a discrete set of labels. Direct brute-force discretization usually suffers

from the so-called “discretization bottleneck” problem, which means that the

number of labels required for sampling the whole possible solution space with

fine enough resolution could be too large for efficient optimization. This issue is

even more problematic when the label corresponding to multi-dimensional

attribute of a labeling primitive such as 2D displacement in optical flow

estimation.

To address this issue, we further extend our framework by enabling the use of

a new C2F region-tree representation. In particular, during the mean-shift based

image segmentation process, by using different minimal region size thresholds,

multi-level of image over-segmentations with different segmentation granularities

can be obtained. As shown in Figure 6.3, the bottom-up fusion based

segmentation process as explained in Section 6.4.1 makes it possible to obtain

such multiple level over-segmentations efficiently in one single pass. Also it can

guarantee that each larger region in the coarser segmentation level consists of

exactly the same smaller regions in its corresponding finer level segmentation.

That is, each region in a coarser segmentation level consists of a group of adjacent

regions of a finer segmentation level, such that the coarser region is the

“container” region of these adjacent smaller regions. Then for each segmentation

level, a corresponding region-tree can be built as explained in Section 6.4.2.

Hence, all the segmentation levels together form a multiple-layer C2F region-tree.

Its main difference from the single-layer region-tree is that there are implicit

 90

edges between segmentation layers linking coarse-level container region to its

finer-level “child” regions.

Then the labeling problem is solved level by level starting from the coarsest

segmentation one, at each of which a similar region-tree based DP optimization is

performed. In particular, at the coarsest segmentation level, a global label set is

used for all the labeling primitives, while for each of the remaining finer

segmentation levels, the labeling solution from the last coarser level will be used

to define the label sets locally for each region. Hence, each region maintains its

own label set for data/smoothness cost evaluation and optimization. In this way,

C2F label discretization is achieved so that the original solution space can be

explored by using only a relatively small number of labels. Such an incremental

refinement scheme can greatly improve the efficiency and performance of a

labeling algorithm to be shown in the following chapters.

Summary

In this chapter, a novel region-tree based framework for image labeling problems

has been presented. Such a framework forms the foundation of the dense depth

based scene reconstruction module/service of our FVV system. In the following

chapters, three new applications of the presented framework are discussed, which

include binocular stereo matching, optical flow estimation and spatial-temporal

consistent video depth recovery.

Figure 6.3: Two-level coarse-2-fine over-segmentations.

(a) Coarse level

(b) Fine level

For example, regions B, C and D in a
fine level are merged into their

“container region” A in a coarse level

A

B C
D

Region fusion

Over-Segmentations

 91

Chapter 7
Region-Tree Based Binocular Stereo Matching

Perhaps it is the most direct way of reasoning 3D information from image data,

stereo vision has a wide range of applications in computer vision or graphics

research. It has been an extensively researched topic for decades and a large

number of new methods are published every year.

 Generally speaking, the main purpose of stereo vision is to find matching

points among a set of images and then recover the corresponding depth

information based on triangulation. Most existing matching methods are based on

the brightness constancy assumption that the scene objects are Lambertain so that

object appearance does not very with viewpoint.

 Based on the required density of correspondences, methods can be divided

into the sparse and dense stereo matching. In the sparse methods, only a small

number matching feature points, such as Harris [138] or SIFT corners [139],

between images based on intensity cross correlation or affine invariant region

properties are used. In contrast, for the dense methods, all the pixels in an image

must be matched with the given images or flagged as occluded. Sparse stereo

matching is relatively easy compared to the dense one since such feature points

generally are more salient resulting in lower matching ambiguity. In this thesis,

the focus is on dense stereo matching.

 In this chapter, the image labeling framework presented in Chapter 6 is first

applied to binocular stereo matching, for which the dense pixel correspondences

can be recovered directly in 2D image space without calibration and encoded as

disparity map. The same method can also be easily extended to grid-positioned

multi-ocular stereo as reviewed in Chapter 2. In Chapter 9, the general-positioned

multi-ocular stereo problem is further investigated, for which the cameras

normally need to calibrated.

 92

7.1 Formulation as a Labeling Problem

To apply our region-tree framework, the binocular stereo matching problem has to

be formulated as a discrete labeling problem.

 In particular, given two stereo images ࡵ௧ and ࡵ௧ and suppose the

maximum and minimum disparities are known as ݀௫ and ݀, the label set ख

can be defined as a set of integers, each of which serves as an index into a

disparity look-up-table (LUT) sampling the disparity range of ሾ݀, ݀௫ሿ. For

simplicity, most methods usually sample disparity at integral intervals only. Then

the mapping of a label ℓ א ख to a disparity ݀ℓ is

 ݀ℓ ൌ ۂ݀ہ ℓ with ℓ ൌ 0,1, ڮ , ௫݀ڿ െ ݀(7.1) ۀ

 For methods requiring sub-pixel disparity precision, the mapping becomes

 ݀ℓ ൌ ۂ݀ہ ∆ௗ · ℓ with ℓ ൌ 0,1, ڮ , ቒ
ௗೌೣష

∆
ቓ (7.2)

where ∆ௗ൏ 1.0 is the sub-pixel disparity sampling interval.

Using the above label to disparity mapping, the binocular stereo matching can

be solved by optimizing the label assignment for each pixel, from which the

disparity map as the final result is induced.

7.2 Data Cost Computation

Based on the binocular stereo vision fundamentals and label to disparity mapping

explained above, we can see, for a pixel ሺݔ, ௧, its matchingࡵ ሻ in the left imageݕ

point corresponding to a hypothesized label ℓ in the right image ࡵ௧ is defined

as ሺݔ ݀ℓ, ,ݔሻ. Therefore, to evaluate the label space image ࣷሺݕ ,ݕ ℓሻ (or the so-

called disparity space image specific to stereo matching), a pixel-based photo

consistency function based on the intensity difference between each such

matching point pair is used. The most commonly used functions include:

SD (Squared Difference),

 ࣷሺݔ, ,ݕ ℓሻ ൌ ൫ࡵ௧ሺݔ, ሻݕ െ ݔ௧ሺࡵ ݀ℓ, ሻ൯ଶݕ
 (7.3)

and AD (Absolute Difference),

 ࣷሺݔ, ,ݕ ℓሻ ൌ หࡵ௧ሺݔ, ሻݕ െ ݔ௧ሺࡵ ݀ℓ, ሻห (7.4)ݕ

 93

For both of them, the Birchfield-Tomasi intensity difference measure [140]

can be used to lower the sensitivity to image sampling.

Another popular one is ZNCC (Zero-mean Normalized Cross-Correlation)

measure ߟ, by which

ࣷሺݔ, ,ݕ ℓሻ ൌ ,ݔ௧ሺࡵሺߟ ,ሻݕ ݔ௧ሺࡵ ݀ℓ, ሻݕ

∑ ∑ ሺࡵሺ௫ା,௬ାሻିࡵതሺ௫,௬ሻሻ·ሺࡵೝሺ௫ାௗℓା,௬ାሻିࡵതೝሺ௫ାௗℓ,௬ሻሻೈ
ೕసషೈ

ೈ
సషೈ

ට∑ ∑ ሺࡵሺ௫ା,௬ାሻିࡵതሺ௫,௬ሻሻమೈ
ೕసషೈ

ೈ
సషೈ ·ට∑ ∑ ሺࡵೝሺ௫ାௗℓା,௬ାሻିࡵതೝሺ௫ାௗℓ,௬ሻሻమೈ

ೕసషೈ
ೈ
సషೈ

 (7.5)

where ܹ is the half size of ZNCC window and ࡵത௧ሺݔ, ,ݔത௧ሺࡵ ሻ orݕ ሻ is theݕ

mean intensity of the pixels in the window centered at ሺݔ, ௧ orࡵ ሻ in imageݕ

 ௧. In this thesis, we have found ZNCC measure gives better results in mostࡵ

experiments of different applications.

When evaluating the disparity space images, for pixels close to the image

borders, only partial disparity range can be evaluated since for larger disparities

the corresponding matching pixels may be outside of the image. Incomplete

evaluations could result in erroneous optimal disparity decision in the following

optimization step for the involved pixels, which may further propagate to other

pixels if global optimization is used. For example, as shown in Figure 7.1,

without handling the issue related to the data cost of border pixels, the disparity

results of [115] suffer from errors in the border areas.

To address this issue, we propose a new approach based on the traditional

occlusion filling heuristic, which has been previously used in [82] as a post-

Figure 7.1: Disparity errors without handling border pixel datacost issue.

 94

processing technique to estimate unrecoverable disparities of occluded pixels. In

particular, for a specific disparity, the boundary pixels matched to pixels outside

of the image will leave “holes” in the corresponding disparity space image. For

each pixel in the holes in the left image, the data cost value of the leftmost non-

hole pixel on its right side (on the same scanline) is assigned as its data cost for

the disparity in question, and a similar reasoning applies to holes in the right

image. In this way, the missing data cost evaluations can be approximated.

However, this approach works best when the border pixels have horizontally

smooth disparity distribution.

7.3 Data Cost Aggregation

The most often used data cost aggregation schemes in binocular stereo matching

are the window-based ones which average the costs of the neighboring pixels in a

window positioned based on the pixel in question. To address the problem that

symmetric and fix-sized aggregation windows straddling depth discontinuities

may corrupt the data cost of corresponding pixels, more computationally intensive

variants of window-based cost aggregation such as shiftable window [141] or

size-adaptive window [142] have also been proposed.

 For our region-tree based binocular stereo matching, each region itself is used

as the corresponding aggregation support region for all the pixels in that region.

That is, for a region ݎ in the corresponding region-tree ञሺज , ए ሻ, ࣞሺݎ, ℓሻ can

be defined as

ࣞሺݎ, ℓሻ ൌ
∑ ࣷሺ௫,௬,ℓሻ ሺೣ,ሻאೝ

ேೝ
 (7.6)

Based on the assumption that all the pixels in a region has similar disparities,

the above depth discontinuity straddling problem can be ameliorated .

Furthermore, the irregular aggregation regions are more adaptive compared to

using regular windows.

7.4 Disparity Computation and Optimization

After the data cost computation, to apply our framework to binocular stereo

matching, the smoothness costs are evaluated.

 95

 Specific to the binocular stereo matching, for each edge ݁ሺ,ሻ א ए, the

smoothness cost function ࣭ ቀݎ, ,ݎ ℓ, ℓೕቁ measures the assignment of two

adjacent regions ݎ and ݎ with disparities ݀ℓೝ
 and ݀ℓೝೕ

, respectively. It can be

any arbitrary non-decreasing function of absolute disparity difference ቚ݀ℓೝ
െ

݀ℓೝೕ ห. In the current implementation, we define it as

࣭ ቀݎ, ,ݎ ℓ, ℓೕቁ ൌ
ฬௗℓೝ

ିௗℓೝೕ
ฬ

ቀ௪ሺ,ೕሻାఢቁ
 (7.7)

where ߳ is a small positive value for avoiding division-by-zero and ݓሺ,ೕሻ is the

region-tree edge weight as defined in (6.4).

In this way, the general labeling energy function (6.1) has been specialized for

binocular stereo matching. Optimizing such an energy function defined over the

whole region-tree using DP is rather straightforward as explained in Section 6.5.

From the labeling solution, the corresponding disparity map can be deduced. That

is, for each region ݎ assigned with a label ℓ, all the pixels ሺݔ, ሻݕ א will haveݎ

the same disparity ݀ہۂ ∆ௗ · ℓ,where ∆ௗ 1.0 is the corresponding disparity

range sampling interval.

7.5 Disparity Refinement

7.5.1 Cross Checking based Occlusion Handling

Since no explicitly visibility/uniqueness constraint is enforced during the above

region-tree based disparity optimization, there may be possible disparity errors

due to occlusions in the regions which are visible only in one image. To address

this issue, the symmetric cross-checking technique is applied as a post processing

step.

 Specifically, two disparity maps are generated each for the left and right

images. Then the occlusion reasoning and correction is done by symmetrically

cross-checking for violations between these two disparity maps based on the weak

disparity consistency constraint proposed by Gong and Yang [143]. That is,

suppose a pixel ሺݔ, ௧ is assigned with a disparity of ݀ଵ and the disparityࡵ ሻ inݕ

 96

of its corresponding pixel ሺݔ ݀ଵ, ௧ is ݀ଶ. By reasonably assuming allࡵ ሻ inݕ

the disparity errors are caused by occlusions, for an unoccluded pixel, ݀ଵ should

be equal or very similar to ݀ଶ. However, if ݀ଵ is larger than ݀ଶ, then the pixel is

most likely occluded since otherwise it should be matched to a pixel with a larger

disparity ݀ଶ instead, i.e. closer to the camera. Then the detected occlusions can be

corrected by hole-filling [82].

7.5.2 C2F Region-tree based Sub-pixel Disparity Refinement

In our region-tree based labeling framework, all the pixels in a region are assumed

to have the same label. This simple region-label distribution model prefers scene

with fronto-parallel planes, especially for larger regions. Therefore, the disparity

map obtained as above may not be able to capture gradual pixel-level disparity

changes such as that observed for slanted planes. To address this issue, the C2F

region-tree approach introduced in the last chapter is resorted.

 In particular, a multiple-level C2F region tree is built using different

segmentation granularities, with the finest level regions containing only single

pixels. For the coarsest level region tree, the matching is done as above using a

globally sampled disparity hypothesis set (label set) which is the same for all the

regions. Then for any non-coarsest level, for each region, its disparity range of

interest is defined based on the disparity result of its containing region in the last

level. A locally sampled disparity hypothesis set is created and used for each

region in the optimization of non-coarsest level. In this way, incremental spatial

and disparity resolution improvement can be achieved, resulting in smoother

disparity result.

7.6 Experiments and Evaluations

7.6.1 Middlebury Dataset Benchmarking

Four datasets, Tsukuba, Venus, Teddy and Cones in the new Middlebury stereo

evaluation scheme [122] are used to quantitatively evaluate the algorithm.

Specifically, the stereo matching quality is measured by the percentages of the

number of bad pixels (whose absolute disparity error is larger than a threshold) to

 97

the total number of pixels in the whole image, in un-occluded regions and in

discontinuity regions. In all the experiments, we use a two-level C2F region tree

with the minimal region size at the coarse level set as 10 pixels and the fine level

segmentation granularity set to single pixel. The ZNCC window size used is

 3 ൈ 3.

The smoothness energy term weight λ is automatically calculated for a

specific dataset in a similar way (adapted to region-based) as in [119] based on

the Kullback-Leibler divergence ܮܭതതതത. That is, λ ൌ തതതത. As can be seen in theܮܭߩ

following chapters, for different applications, the smoothness weight scale ߩ can

be different. Specific to binocular stereo matching, we set ߩ ൌ 4/3. Please note

that this constant is dependent on the data and smoothness cost functions. When

the data or smoothness cost function is changed for different applications, ߩ

should be changed accordingly.

Figure 7.2 shows the dense disparity maps produced by our algorithm and the

ground truths for the above mentioned datasets. For comparison, the results of the

pixel-tree based algorithm [115] are also included. It can be seen that the

incorporation of the region-based approach using the region tree instead of using

the pixel tree does improve the matching accuracy for most datasets, especially

the more challenging Teddy and Cones datasets due to their fairly large disparity

ranges. Shown in Table 7.1 is the ranking of the overall quality of our results. It

can be seen that our algorithm performs quite well and is ranked among the state-

of-the-art algorithms.

As for efficiency, our method is comparable to the two top-ranking ones,

which are also region-based in which the mean-shift based segmentation is the

most time-consuming step. Specifically, for the teddy dataset, with cross-checking

and two level of C2F region-trees, the processing time is about 35s while the

current No.1 method [127] requires 20s.

 98

To illustrate the improvement obtained by using the C2F region tree based

sub-pixel disparity refinement as explained in Section 7.5.2, Figure 7.3 shows the

comparison of the dense disparity maps produced by the coarse level and the fine

level region trees. As can be easily seen, the C2F region tree based refinement

does produce smoother disparity maps. Through C2F refinement, the sub-pixel

accuracy benchmark ranking (with the bad pixel threshold set as 0.5 pixel) is

improved to 24.3 from 38.2.

Figure 7.2: Results on Middlebury stereo benchmark dataset. Results of the pixel tree
algorithm [115] is also included for comparison.

Reference Image Ground Truth Pixel-Tree results [115] Our results

Tsukuba dataset

Venus dataset

Teddy dataset

Cones dataset

 99

7.6.2 Performance Comparison of Using Different Optimization Methods

Our region-tree based labeling framework can also use other optimization

methods such as belief propagation or graph cuts, which are capable of handling

non-grid-based image representations. To investigate the performance difference

of using different optimization methods, we compare DP with graph cuts. That is,

instead of DP, we use graph cuts to optimize the stereo matching energy function

Figure 7.3: Coarse and fine segmentation level stereo result comparison.

Coarse level results

Fine level results

Table 7.1: Middlebury stereo benchmark ranking
(with the bad pixel threshold set as 1 pixel).

 100

defined on the region-tree and compare the difference of the resulting disparity

map with that of using DP. Please note that the same data and smoothness

functions are used in the comparisons and the only difference is the optimization

method used. We use the expansion based graph cuts implementation from [110],

which provides a generalized coding interface for defining neighborhood

influence system of labeling primitives. Furthermore, unlike DP, since graph cuts

can also handle graph-based influence system, we also investigate the

performance of using graph cuts on region adjacency graph, which is obtained in

the image segmentation step as explained in Section 6.4, for comparison

purposes. For simplicity and better performance, only the single coarse level

segmentation is used in the graph cuts based experiments.

 Specifically, the top two rows of Figure 7.4 are disparity results using graph

cuts on region-tree. For the Venus, Teddy and Cones datasets, the results are very

close to the coarse level results using DP as shown in Figure 7.3, with the largest

quality measure improvement for the Teddy dataset by only 0.02%. The only

exception is the Tsukuba dataset, for which the non-occlusion error rate increases

from 2.07% for DP to 2.19% for graph cuts. Therefore, we can see that for a tree

structure, DP has a very similar performance to that of graph cuts in minimizing

the energy functions. However, DP optimization is significantly faster than graph

cuts optimization. For the Teddy or Cones datasets, the speedup can be more than

10 times.

On the other hand, the lower two rows of Figure 7.4 show the results of using

graph cuts on region adjacency graph instead of region tree. As can be seen from

the “bad pixel” maps shown, for all four dataset, the results are worse than the

ones using region tree, with the results of the Venus dataset being the worst. One

possible reason could be the fact that the region-tree minimizes the number of

edge crossing disparity discontinuities compared to a region graph and hence,

avoids unnecessary and error-incurring smoothness enforcement on them.

Therefore, using a region-tree does have a unique advantage than using a region

graph.

 101

7.6.3 Performance Sensitivity to Segmentation Granularity

We further investigate the performance sensitivity of our stereo algorithm to

segmentation granularity. In Figure 7.5, profiling curves of the disparity error rate

with respect to the minimum region size limit, which varies from 5 pixels to 80

pixels, in non-occluded, all and discontinuity areas for the above 4 Middlebury

datasets are shown. Two examples of the tested segmentation granularities for the

Teddy dataset are shown in the bottom row of the same figure. From the curves,

we can see that the general performance is robust to segmentation granularity,

though for some datasets with dominant slanted surfaces such the Venus dataset, a

larger region size appears to incur a slightly higher error rate. The main reason is

because our current formulation assumes that all the pixels in a region have the

Disparity results and corresponding “bad pixel” maps using graph cuts and region-tree

Disparity results and corresponding “bad pixel” maps using graph cuts and region-graph

Figure 7.4: Comparison of using graph cuts on region-tree and on region-graph.

 102

same label (disparity). Therefore using larger regions will increase errors when

disparity changes occur within a region, in which case using smaller regions is

expected to produce better results.

7.6.4 More Experiments

 In addition to using the Middlebury binocular stereo matching benchmark

datasets, the proposed algorithm is also extensively tested with the other

challenging datasets with better and similar performance obtained.

Figure 7.6: Result of Flower & Lady dataset from [144]. The left two
are the input images. The right is the disparity result.

Figure 7.5: Profiling curves of performance to segmentation granularities on
 four Middlebury stereo datasets. Bottom row shows two example segmentation granularities

for the Teddy dataset.

10 20 30 40 50 60 70 80
0

2

4

6

8

10

N
on

O
cc

lu
de

d
A

re
a

E
rr

or
 R

at
e

(%
)

Coarse Level Minimal Region Size

 Tsukuba
 Venus
 Teddy
 Cones

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

A
ll

A
re

a
E

rr
or

 R
at

e
(%

)
Coarse Level Minimal Region Size

 Tsukuba
 Venus
 Teddy
 Cones

10 20 30 40 50 60 70 80
0

5

10

15

20

D
is

co
nt

in
ui

ty
 A

re
a

E
rr

or
 R

at
e

(%
)

Coarse Level Minimal Region Size

 Tsukuba
 Venus
 Teddy
 Cones

 103

Ground Truth Right Input ImageLeft Input Image

Left Disparity Map Right Disparity Map Bad Pixel Map

Figure 7.8: Result of the Middlebury Map dataset. Similar to the observations reported in
many other region-based stereo papers, our method also gives relatively less satisfactory
result for the Map dataset due to the violation of the disparity discontinuity assumption.

Figure 7.7: Results of the Middlebury Sawtooth dataset.

Input Image Input Image

Fine Level Disparity Map
(Right)

Fine Level Disparity Map
(Left)

Ground Truth (Left)

Coarse Level Disparity Map Coarse Level Disparity Map Bad Pixel Map

 104

Figure 7.9: Results of the Stanford dataset from [145].

Coarse Level Disparity Maps Fine Level Disparity Maps Left and Right Input Images

 105

Summary

In this chapter, our new region-tree based labeling framework is applied to

binocular stereo matching. The promising results in the de facto benchmarking

tests and various real-world datasets show its effectiveness and uniqueness. This

work forms the foundation of the new video depth based FVV scene

reconstruction to be elaborated in Chapter 9.

Figure 7.10: Results of datasets from [128, 146].

Coarse Level Disparity Maps Fine Level Disparity Maps Input Images

 106

Chapter 8

Region-Tree Based Optical Flow Estimation

As another important application of the new region tree labeling framework, this

chapter illustrates how to use it in optical flow estimation.

 Similar to binocular stereo vision, optical flow estimation or motion analysis

is also an active topic in computer vision research with intensive research

activities over the last two decades. Formally speaking, its main task is to

automatically reconstruct a dense field of displacement vectors encoding scene

object motion or camera motion between corresponding pixels in consecutive

images which capture a dynamic scene using a single camera. Such 2D

displacement vectors are commonly known as the optical flow. Accurate and

efficient optical flow estimation is very important to applications such as motion

detection [147] and video compression [148]. Specific to this thesis, we are

interested in it because it is indispensible to recovering temporally consistent

dense depth information for FVV scene reconstruction, which is very desirable for

high quality FVV rendering.

 Although optical flow estimation is to establish the dense correspondences

between two images, which is similar to the dense binocular stereo matching,

solving it is much more difficult. The reason is that the probability of mismatch

increases due to the change from the 1D search range in binocular stereo matching

to a much larger 2D search area in optical flow estimation. Hence, the

correspondence searching is much less constrained and more computational effort

is needed.

In the following, a very brief review of relevant prior work on optical flow

estimation is given for completeness, with more details on the work most relevant

to our proposed method. For a more extensive review, the reader can refer to

 107

some previous surveys such as [149, 150].

8.1 Prior Work

Similar to stereo vision, optical flow estimation is also based on the intensity

constancy assumption between matching pixels. Existing methods can be roughly

classified into two categories, the differential ones and the parametric ones.

8.1.1 Differential Algorithms

The differential algorithms assume that an image sequence is a differentiable

intensity function ࡵሺݔ, ,ݕ ,ݔሻ of parameters of pixel coordinates ሺݐ .ݐ ሻ and timeݕ

By approximating the intensity constancy equation between two matched points

,ݔሺࡵ ,ݕ ሻݐ ൌ ݔሺࡵ ,ݑ ݕ ,ݒ ݐ 1ሻ (8.1)

using the Taylor series expansion and then performing differencing, the well-

known optical flow constraint equation

,ݔ௫ሺࡵ ሻݕ · ݑ ,ݔ௬ሺࡵ ሻݕ · ݒ ,ݔ௧ሺࡵ ሻݕ ൌ 0 (8.2)

is obtained, where ࡵ௫, ࡵ௬ and ࡵ௧ denote the corresponding partial derivatives of

,ݔሺࡵ ,ݕ ሻ, with respect to x, y, and t, respectively. This constraint equation is theݐ

foundation of all differential motion analysis algorithms, but it is under-

constrained and needs additional constraints on the unknowns ݑ and v. Therefore,

the prior knowledge of displacement smoothness between neighboring pixels has

to be used.

 Based on the specific strategy used for employing such smoothness constraint,

the differential algorithms can be further classified into the local and global ones.

 The local algorithms such as [151] assume that the displacement vectors

within a window are all the same and solve the resultant equation system locally

for each pixel’s displacement ሺݑ, ሻ. They are usually very fast, but have poorݒ

performance for pixels in un-textured image areas.

In contrast, the global algorithms such as [152-157] enforce the smoothness

constraint globally by formulating the optical flow estimation as an energy

 108

minimization problem similar to what's done in stereo vision. Among all the

approaches proposed to optimizing such an energy functional so far, the

variational-calculus based computation framework has been the top-performing

one and gained much popularity in the research community [154-157]. However,

such optimization schemes based on continuous mathematics often suffer the

problems of over-smoothing due to their restricted convex flow smoothness

regularizations. Also due to their gradient-descent based minimization, the

optimization could be trapped in local minima, which result in poor performance

for sharp motion discontinuities and for large motion displacements [158].

8.1.2 Parametric Algorithms

Different from solving optical flow on a pixel-wise basis as in the differential

algorithms, the parametric algorithms try to segment the images into a set of

regions/layers in which the pixels undergo consistent motions which can be

described by the parametric models. When appropriate motion models are used

and the motion segmentation is accurate, this class of algorithms can usually give

more accurate optical flow estimation since they can robustly constrain the

motions in large image areas by very few parameters.

 Representative works in this category include the work of Black and Jepson

and Wang and Adelson [159,160]. In particular, Black and Jepson [159] first

segment the reference image into regions of homogenous color, for each of which

a variable order parametric motion model is estimated using an initial dense

optical flow field. The number of parameters used for each region is determined

by selecting the model resulting in minimal color registration error when warping

the region into the second image using the model induced motion. The model

parameters themselves are refined using area based regression techniques. Wang

and Adelson [160] use an affine model to fit motions of a set of seed patches in

the reference image from an optical flow field computed using a local method.

After using K-means clustering, similar motions are identified as layer motions

and blocks are assigned with the corresponding layer motion model. Iteratively,

the algorithm updates the layer partition and layer motion model parameters until

 109

convergence to get the final optical flow field.

However, the main drawbacks of parametric algorithms are in their strong

reliance on the accuracy of image segmentation and motion layer extraction,

which are themselves difficult problems in many situations.

8.2 Motivations

Similar to binocular stereo matching, most state-of-the-art optical flow algorithms

formulate the optical flow estimation as an energy minimization problem based on

the seminal work of Horn and Schunck [152]. However, although discrete

optimization schemes such as graph-cuts, belief propagation and dynamic

programming have gained dominant role in binocular stereo matching, their use is

surprisingly rare in optical flow estimation, in which the variational-calculus

based optimization scheme dominates. Then it is natural to ask the question if

such discrete optimization schemes are also applicable to optical flow estimation

which shares many commonalities with the stereo matching problem.

 Considerable efforts [158-162] have been devoted recently in enabling

discrete optimization schemes for optical flow estimation and promising results

have been reported using the Middlebury quantitative evaluation and

benchmarking datasets [163]. In general, most of them map the original optical

flow problem into a labeling problem through the so-called displacement

discretization and then adapt a well-known discrete optimization scheme such as

graph-cuts or belief-propagation to find the best label assignment for all the

labeling primitives such as pixels, regions or layers, from which the final optical

flow field is induced by mapping the labels back to displacement vectors.

 Based on whether or not the displacement discretization is directly done in the

optical flow solution space, we can roughly classify such methods as direct [161,

164] and indirect [158, 162] discretization based methods. In direct discretization

based methods, the labels are a direct discrete sampling of the final 2D

displacement search space. That is, each label corresponds to a sampled 2D

displacement vector. While in indirect discretization based methods, no discrete

displacement sampling is done.

 110

 Specifically, in the fusion-based method [158], the pixel-wise label sets are

locally created from a set of candidate solutions obtained by running different

continuous flow algorithms or the same algorithm using different parameter

settings. Then graph-cuts optimization is used to find the best label assignment for

fusing candidate solutions. This procedure is equivalent to fusing the best partial

results from different sources together to get a better complete one.

 A similar fusion idea has also been investigated in [162]. The original

minimization problem is formulated as a series of binary sub-problems, each of

which is solved iteratively via the extended discrete graph-cuts with the alpha-

expansion method that facilitates large energy minimization moves. Similar to

[158], the set of candidate displacement vectors to be fused have to be provided

by a standard continuous optical flow algorithm. Thus the success of both

methods is largely dependent on the quality of the initial solution.

 Another piece of related work is presented in [164], in which a framework

based on a dynamic, discrete MRF is proposed for morphing images using a grid

of control points. Discrete MRF optimization is used to iteratively and

accumulatively optimize the displacement vectors at the control points from

which the dense optical flow field is derived based on the influence functions.

The promising performance as demonstrated using the Middlebury benchmark

database of all of the above mentioned recent attempts suggests that discrete

optimization has a great potential in optical flow estimation.

 In addition to adapting discrete optimization, efforts have also been made to

use different image representation other than the traditional pixel grid for optical

flow estimation. For example, some researchers [159, 165-167] try to take

advantage of region based representations to address the problematic issues of

texture-less regions and occlusions in optical flow estimation.

 In particular, Zitnick et al. [165] propose a method to jointly segment

consecutive frames into small regions of consistent size and to compute the

optical flow based on statistical modeling of an image pair using constraints based

on appearance and motion. Bidirectional motion is estimated using spatial

 111

coherence and color similarity between segmented regions using a translational

motion model.

 Bleyer et al. [166] incorporate image segmentation and graph-cuts

optimization to tackle the optical flow problem using a layer-based model. Each

region is first assigned with an affine motion model from sparse correspondences.

Motion layers are extracted by grouping regions with similar rigid motions and by

identifying the dominant ones. Then as an indirect discretization based method, an

energy function measuring the quality of label assignments of regions and pixels

to layers is minimized using graph-cuts. Although very promising results have

been obtained, the assumption of the existence of dominant rigid motion layers

limits its applications.

 Different from the above mentioned work [165, 166], Xu et al. [167] use the

segmented color regions as soft constraints or regularization in the affine motion

model in the classic variational optical flow framework instead of as matching

primitives. To avoid over-regularization for non-rigid motions, a confidence map

encoding the fitness of the affine region motion model is used.

 Motivated by the promising performance of the above recent attempts in using

discrete optimization or region based representation and also specifically needed

for temporal consistent FVV scene reconstruction, in this chapter, we further

apply our region-tree based framework for performing optical flow estimation as a

labeling problem.

8.3 Implementation Details

8.3.1 Optical Flow Estimation Formulation as a Labeling Problem

As mentioned above, using discrete optimization to recover essentially continuous

optical flow field ङ௧՜௧ାଵ from image ࡵ௧ to image ࡵ௧ାଵ requires discretization, by

which the continuous 2D displacement solution space is quantized and mapped to

a discrete set of labels. In particular, we uniformly sample the corresponding

displacement search ranges in both the horizontal and vertical directions each with

a sampling interval. Then the labels are defined as the index into such a

 112

displacement sample array. However, the number of labels required for sampling

such a 2D search area with fine enough precision could be too large for efficient

optimization.

 We address this problem using the C2F region-tree representation presented in

Chapter 6. In particular, multiple-level coarse-to-fine over-segmentations

 ሼ ܵ|݈ ൌ 0, … , ௧. For each segmentationࡵ ሽ are applied to the reference imageܮ

level l, the over-segmented regions ज form the corresponding labeling primitive

set च on which the spanning region-tree ञ is built as explained in Section 6.2.

 At each segmentation level l, the label-to-displacement LUT for each

region ݎ א ज is built by uniformly sample the corresponding region-dependent

displacement search ranges ൣݑ
 , ௫ݑ

 ൧ and ൣݒ
 , ௫ݒ

 ൧ in both the horizontal

and vertical directions with a sampling interval ߜ. At the coarsest level, the

displacement search ranges of all regions are initialized globally with

௫ݑ
 ൌ ௫ݒ

 ൌ െݑ
 ൌ െݒ

 ൌ ߙ · maxሺݓ, ݄ሻ (8.3)

wherein w and h are the width and height of the input images, respectively, and ߙ

is a positive constant. That is, we assume that the horizontal and vertical

displacements each have upper bounds related to the image dimension.

 Then with the result of the last coarser l level known, the search range of a

region ݎ א ज at the finer level ݇ ݈ is set up based on its container region

ݎ א ज at the last coarser segmentation level l. That is, suppose that the

recovered displacement vector for region ݎ is ሺݑ, ሻ, the displacement searchݒ

ranges for region ݎ א ज will be defined in a neighborhood around ൫ݑ, ൯ݒ

as ൣݑ െ Δ, ݑ Δ൧ and ൣݒ െ Δ, ݒ Δ൧, each of which is sampled with

ݎ to set up the corresponding label-to-displacement LUT for regionߜ א ज.

 In addition to decreasing Δ and ߜ level by level, the incremental

displacement refinement can also be achieved by performing multiple iterations at

the finest level and using the last iteration results to define the displacement

search ranges for the next iteration.

 Therefore, by using region-dependent displacement search ranges and

incrementally refining each region’s displacement search ranges level by level or

 113

iteration by iteration, just by using a small number of labels can achieve similar

quality of sampling to continuous methods, resulting in better efficiency and

accuracy. In this way, the original optical flow estimation can be recovered by

solving multiple labeling problems level by level using our region tree

framework.

8.3.2 Initial Search Range Probation

As mentioned in the last section, we use an upper bound based on the image

dimension using Equation (8.3) to initialize the displacement search range at the

coarsest segmentation level. Since the optical flow directions and magnitude can

be arbitrary, we have to use a reasonably large ߙ value to safely capture the full

range. However, due to the limitation of memory and efficiency considerations,

the number of labels used has to be limited. Therefore for large images, the

sampling resolution may not be fine enough for accurate displacement

estimation. Then the corresponding errors will be propagated to the next level and

cannot be removed.

To address this issue, we further take advantage of the image pyramid based

on multiple resolution strategy [81], which is often used in many continuous

optical flow methods. In particular, for large images, we first apply our proposed

method to their half-size down-sampled images and recover the displacement

ranges ൣݑԢ, ,Ԣݒൣ Ԣ௫൧ andݑ Ԣ௫൧. Since for smaller search ranges, usingݒ

the same number of labels enables using a smaller sampling interval, the result

usually contains less errors. Then we apply our proposed method again w.r.t. the

original images using ൣ2ݑԢ, ,ԢݒԢ௫൧ and ൣ2ݑ2 Ԣ௫൧ as the initial searchݒ2

ranges. If necessary, more pyramid levels can be used.

8.3.3 Region-tree based Displacement Computation

Suppose at segmentation level l, the region-tree ञ in question is defined on

region node set ज with edge set ए. Each edge ݁ሺ,ሻ א ए corresponds to a link

between two adjacent regions ݎ א ज and ݎ א ज. Each region ݎ has ࡺ pixels

ሺݔ, ሻݕ א ሻݎሺࡸ and is assigned with a labelݎ א ࣦ after optimization, which

 114

corresponds to the 2D displacement vector ൫ࡸݑሺሻ, ሺሻ൯. Then as explainedࡸݒ

above, our algorithm estimates the optical flow by repeatedly optimizing the

corresponding energy function (6.1) on multiple-level region trees level by level

starting from the coarsest one.

 Based on the label to displacement mapping explained above, for a pixel

ሺݔ, ௧, its corresponding matching point to a hypothesized label ℓ inࡵ ሻ in imageݕ

image ࡵ௧ାଵ is defined as ሺݔ ,ℓݑ ݕ ℓሻ. To evaluate the label space imageݒ

ࣷሺݔ, ,ݕ ℓሻ (or the so-called displacement space image specific to optical flow

estimation) which measures the pixel intensity similarity between pixels ࡵ௧ሺݔ, ሻݕ

and ࡵ௧ାଵሺݔ ,ℓݑ ݕ ℓሻ as is done in stereo matching. In the currentݒ

implementation, we also use the ZNCC measure as defined in (7.5).

 As for data cost aggregation, the same scheme as the one described in Section

7.3 is used.

 Furthermore, to evaluate the smoothness cost of assigning two linked regions

,ሺሻࡸݑ with displacement vectors ൫ݎ andݎ ,൫ೕ൯ࡸݑሺሻ൯ and ቀࡸݒ ,൫ೕ൯ቁࡸݒ

respectively, the following smoothness cost function is used

झ ቀࡸሺݎሻ, ൯ቁݎ൫ࡸ ൌ ቚࡸݑሺሻ െ ൫ೕ൯ቚࡸݑ ቚࡸݒሺሻ െ ൫ೕ൯ቚ (8.4)ࡸݒ

It is different from the one used in stereo matching, which is more adaptive by

including the edge weight between two involved regions. However, in our

experiments, we have found that the above smoothness cost function performs

slightly better for optical flow estimation. A possible reason might be due to the

different smoothness characteristics of depth maps and optical flow field.

Then optimizing the corresponding energy function using DP for recovering

the optical flow field for each segmentation level is done in a similar manner as

explained in Section 6.5.

8.3.4 Optical Flow Filed Refinement

(a) Cross Checking based Occlusion Handling

 A similar symmetric cross-checking technique introduced in Section 7.5.1 is

also used for correcting optical flow errors due to occlusions. In particular, two

 115

optical flows are estimated for images ࡵ௧ and ࡵ௧ାଵ respectively. Then occlusion

reasoning is done by symmetrically cross-checking for consistency violations at

the pixel level between these two optical flow fields.

 Specifically for a pixel ሺݔ, ሻݕ א ,ݑ௧ with recovered optical flow vector ሺࡵ ሻ, ifݒ

its correspondence ሺݔ ,ݑ ݕ ሻݒ א ,Ԣݑ௧ାଵ has optical flow vector of ሺࡵ Ԣሻ andݒ

the consistency measure |ݑ െ |Ԣݑ ݒ| െ ,ߚ Ԣ| is greater than a preset thresholdݒ

then pixel ሺݔ, ሻ will be flagged as an inconsistent pixel. For each region in theݕ

finest segmentation level, if over half of its pixels are flagged as inconsistent, the

region will be flagged as occluded.

 After all the occluded regions are flagged, a new DP optimization pass is done

without applying the data and smoothness cost penalties to links involving an

occluded region so that a larger motion change is made possible at such links.

During the bottom-up DP evaluation traversal as explained in Section 6.5, an

occluded region node will behave as a “pass-through” node, while during the top-

down DP decision making traversal, an occluded region node will be assigned

with its parent node label. This is similar to using neighbor information as is done

in the traditional hole-filling approaches in stereo vision. But the difference is that

the chosen neighbor is not necessarily found in the spatial domain, but in the

region-tree domain in which the parent-child link is assumed to connect regions

with similar attributes based on the region-tree construction procedure. Of course,

we have to point out that since our region-tree spans over the whole image, at

some points some edges must cross discontinuities, violating such an assumption.

Despite its simplicity, this simple approach has shown to give very good

performance in all of our experiments. Shown in Figure 8.1 is an example

showing the difference of results with and without performing crosschecking.

Please note that in this thesis, we always use the same coloring scheme as in the

work of Baker et al. [163], which is also shown in Figure 8.1.

 116

(b) Continuous Optimization based Smoothing

 Our method can recover very smooth optical flow results by using single-pixel

regions and performing multiple iterations at the finest segmentation level. For

better quality, a final local continuous optimization similar to the fusion approach

[158] is further performed. Since the results from discrete optimization are usually

very close to the true displacements, such local continuous optimization

converges very fast and mainly provides smoothing effects. Illustrated in Figure

8.2 is a comparison of results without and with continuous smoothing.

Figure 8.2: Initialized with optical flow result from discrete optimization, local continuous
optimization at the pixel level can smooth out the “grains” due to the use of constant region

motion model.

(a) Without continuous optimization (b) With continuous optimization

Figure 8.1: Cross-checking based inconsistency detection helps to correct errors due occlusions
for the “Wooden” dataset, resulting in sharp motion discontinuities.

(a) Without cross-checking (b) With cross-checking

Optical flow
coloring scheme

 117

8.4 Algorithm Workflow

For better clarity, our proposed algorithm is summarized as follows.

Step 1: Build image pyramids and use downsized images to determine the initial

displacement search ranges (Section 8.3.2)

Step 2: At each image pyramid level, over-segment image ࡵ௧ using ܮ different granularity

constraints and build the corresponding ܮ region-trees

Step 3: Loop from segmentation level l = 0 to ܮ

Step 4: At each segmentation level:

(a) Set up the label-to-displacement LUT for each region ݎ in the current region-tree

ञ (Section 8.3.1)

(b) Evaluate “label space images” for all the hypothesized labels ℓ א ࣦ. GPU is used

for better efficiency in fast image interpolation (Section 8.3.3)

(c) Run DP to optimize the corresponding energy function and induce the optical flow

field ሺࢁ, ሺࡸ ሻ from the resulting optimal labelingࢂ ࣮ሻ

Step 5: Go to Step 3 if ݈ ൏ otherwise perform K more iterations at the finest level to ,ܮ

further refine the optical flow ሺࢁ, ௧ାଵ at the current pyramid levelࡵ ௧ toࡵ ሻ fromࢂ

(Section 8.3.1)

Step 6: Recover the optical flow ሺࢁԢ, ௧ and perform cross-checkingࡵ ௧ାଵ toࡵ Ԣሻ fromࢂ

based correction (Section 8.3.4-a)

Step 7: Perform continuous optimization for smoothing (Section 8.3.4-b)

Step 8: Go to Step 2 if there is a finer scale image pyramid level

List 8.1: Workflow of our C2F region-tree based optical flow estimation algorithm

8.5 Experimental Results and Evaluation

8.5.1 Middlebury Optical Flow Benchmarking

We use the 2-frame color version of the Middlebury optical flow benchmarking

datasets [163] to quantitatively evaluate the proposed method. In particular, 12

image sequences from hidden fluorescent texture, realistic synthetic, stereo and

real video categories are tested. In all of the experiments, we used the same set of

parameters, which were not explicitly optimized for performance tuning. We use

 118

ܮ ൌ 2 level image over-segmentations as it is observed to be enough to provide

good performance. The constant ߙ ൌ 0.04 is used to initialize the global search

range and Δ ൌ 0.5 is used for the local search range refinement. At the fine

segmentation level, Kൌ 2 refinement iterations are performed with each Δ ൌ 0.25

and Δ ൌ 0.125 are used.

 In discrete optimization, 25 ൈ 25 labels are used by default and the sampling

interval ߜ is correspondingly determined based on the ranges being sampled.

When the displacement range is too wide or too narrow, the number of labels used

in the corresponding direction is adjusted adaptively for better sampling

resolution or efficiency.

 As for over-segmentation, the granularity in the coarse level is determined by

limiting the region number to be around 3000, while for the fine level, the

minimal region size is fixed at 5 pixels, instead of using single pixel regions as

done in stereo matching. This is because we have found that although using single

pixel regions in the finest segmentation level can improve the results, such

improvement is usually minor due to the continuous optimization based

smoothing, while being slower than using larger finest-level regions.

 The threshold ߚ is set as 1.0 and the ZNCC window size is 3ൈ 3 for the coarse

segmentation level and 5 ൈ 5 for the fine level. The smoothness weight scale ߩ is

set as 0.85 . All of these parameters are empirically determined and could be

further optimized.

 In Table 8.1, we show the average angular error (AAE) and the average end-

point error (AEPE) of the top five algorithms at the time of writing this thesis.

Our results on 8 datasets for quantitative evaluation are shown in Figures 8.1 to

8.5. It can be seen that the overall ranking of our method is pretty high (both 4th

for AAE and AEPE). Furthermore, it is ranked first or second on 4 out of 16

available performance measures including angular SD, endpoint SD, R2.0 and

A95 measures. In particular, the lowest AAE is obtained for the “Teddy” and

“Shcefflera” datasets and the lowest AEPE is obtained for “Shcefflera” and the

“Teddy” and “Grove” datasets. One possible reason for the relatively inferior

AAE performance on these datasets may be due to our current method of

 119

discretization. That is, uniformly sampling in the horizontal and vertical

displacement search range results in non-uniformity in angular sampling.

 Moreover, the average performance of our method on the Yosemite sequence

also negatively impact the overall ranking. This is mainly due to its small image

dimension which makes the finest granularity regions still not fine enough to

capture subtle motion details. We have found that using different parameters

specific to this dataset could improve its performance to some extent. On the other

hand, our method obtained superior evaluations around motion discontinuities in

most datasets, showing our region-based representation has the advantage in

preserving motion boundaries. Furthermore, using continuous optimization gives

slightly better statistics than the one without using it and boosts the overall

ranking by approximately one position.

Table 8.1: Middlebury benchmark ranking (average angle & endpoint errors). Red
color highlights rows with results using our method.

 120

Figure 8.3: Results (right column) of the Middlebury Grove, Wooden, Mequon, Urban,
Army and Teddy datasets along with the ground truths (middle column), in which black

color means no ground truth is known.

 121

 As for the computation efficiency, take the Urban dataset [163] (image size

640x480) as an example, our un-optimized implementation takes a total running

time of about 261 seconds on a PC with a dual-core AMD 2.2GHz CPU. The

fairly high time cost is mainly due to its much larger displacement range (over 40

pixel in both the horizontal and vertical directions). For the other datasets with

smaller displacement ranges, the time needed is much shorter.

8.5.2 Performance Comparison of using C2F or Single-level Region-tree

As shown in Figure 8.5, we compare the performance difference between using

multiple level C2F region trees and the single-level one. Specifically, the optical

flow result is obtained as shown in the second column by using only the finer

level regions. However, C2F displacement refinement is still performed. As we

can see, more errors are incurred along motion boundaries compared to the result

using two-level region-trees as shown in the third column. Therefore, using C2F

region tree does help to improve the accuracy. Furthermore, for reference, the

result from the state-of-art continuous optimization based method [159] is also

included. By comparison, we can see that using over-segmented regions instead

of using pixels does have the unique advantage in handling sharp motion

discontinuities.

Figure 8.4: Result of the Middlebury “Yosemite” dataset.

 122

8.5.3 Performance Profiling w.r.t Different Parameters

To quantitatively investigate the performance sensitivity of our algorithm to

parameter settings, we further perform experiments on the other eight Middlebury

datasets. Different from the benchmarking datasets shown previously, the flow

field ground truth of these datasets are made public by Middlebury for algorithm

designers to fine tune parameters. Some example results are shown in Figure 8.6.

 Due to time and space limit, exhaustively profiling the performance of all the

possible parameter combinations is beyond the scope of this thesis. Based on the

experimental experience, here only three relatively more important parameters are

investigated, i.e., the coarse level ZNCC window size, the coarse level and fine

level segmentation granularities. For performance profiling, we vary the

parameter of interest and keep the other ones fixed as reported in Section 8.5.1. In

particular, odd number ZNCC window sizes from 3 ൈ 3 to 11 ൈ 11 are tested.

For the coarse level segmentation granularity, the minimal region size of 30, 60,

90, 120, 150, 180 and 210 are used and the fine level segmentation granularity,

the minimal region size of 1, 3, 5, 10, 15, 20 and 25 are profiled.

Shown in Figure 8.7 are the profiling curves of AAE and AEPE with respect

to the corresponding parameters. From the curves, we can see that the general

Ground truth

Single level region-tree
results Input images Result from [158] C2F region-tree results

Figure 8.5: Comparison of using single-level region-tree and C2F region-
tree for the “Schefflera” dataset.

 123

Figure 8.6: Example results (right column) of the Middlebury Dimetrodon, Grove2, Hydrangea,
RubberWhale, Urban2 and Grove3 datasets along with the ground truths (middle column).

 124

performance is pretty robust to the varied parameters for most datasets. However,

some datasets do show higher sensitivity to specific parameters than others. For

example, when the ZNCC window size is larger than 5, the datasets of Grove2

and Urban2 show larger AAE and AEPE. Furthermore, when the fine level

minimal region size is equal to 20, the AEPE of Urban2 shows larger increases.

Figure 8.7: Profiling curves of performance to ZNCC window size, coarse and fine
level segmentation granularities on 6 Middlebury datasets. For simplicity and clarity,

the same legend is only added in the first graph.

4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

En
dp

oi
nt

 E
rr

or
 (P

ix
el

)

ZNCC Window Size

30 60 90 120 150 180 210
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

A
ve

ra
ge

 A
ng

ul
e

E
rr

or
 (D

eg
re

e)

Coarse Level Minimal Region Size

5 10 15 20 25
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

A
ve

ra
ge

 A
ng

le
 E

rro
r (

D
eg

re
e)

Fine Level Minimal Region Size

4 6 8 10 12
1.5

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

An
gl

e
Er

ro
r (

D
eg

re
e)

ZNCC Window Size

 Dimetrodon
 Grove2
 Hydrangea
 RubberWhale
 Urban2
 Venus

30 60 90 120 150 180 210
0.0

0.1

0.2

0.3

0.4

0.5
A

ve
ra

ge
 E

nd
po

in
t E

rr
or

 (P
ix

el
)

Coarse Level Minimal Region Size

5 10 15 20 25
0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 E
nd

po
in

t E
rr

or
 (P

ix
el

)

Fine Level Minimal Region Size

 125

Summary

In this chapter, we have presented another important application of our new

region-tree based labeling framework to optical flow estimation. By using the

C2F region-tree based image representation and incremental displacement search

range refinement, good efficiency and performance are achieved. The presented

method can produce sharp motion discontinuities through coarser segmentation

while it is also capable of recovering subtle details through finer segmentation. As

one of its many possible applications, in the next chapter, the new region-tree

based optical flow estimation method is used in dense video depth recovery for

FVV applications.

 126

Chapter 9

Region-tree based Spatial-temporal Consistent Video

Depth Recovery for FVV Rendering

In this chapter, the FVV scene reconstruction problem of recovering multiple

view-dependent depth videos from the video streams captured from multiple

viewpoints is addressed. This is commonly called the general position temporal

stereo and its main challenge is to enforce spatial consistency across multiple

synchronized views and temporal consistency across different time instants. That

is, spatially, the global depth values assigned to pixels corresponding to the same

3D point in different synchronized views should be spatially close. And

temporally, the depth values assigned to pixels corresponding to the same 3D

point in successive frames of the same view should be consistent w.r.t. the

continuity of its 3D motion. Such space-time consistency is especially important

in FVV rendering, with which the rendering quality can be improved by

suppressing the objectionable flickering artifacts during view transitioning or

video playback.

 We generalize the binocular stereo matching algorithm presented in Chapter 7

to general position multi-ocular stereo matching. Motion information obtained

using the algorithm presented in Chapter 8 is also incorporated using a new

temporal variant of region-tree representation for enforcing temporal consistency.

To enforce spatial consistency, a novel inconsistency map based progressive

optimization approach is used.

9.1 Prior Work

To enforce temporal consistency in video depth recovery, most related work relies

on incorporating motion information. For example, Gong [168] proposes an

integrated representation called disparity flow to encode the temporal mapping

 127

between pixels and disparities and their corresponding pixels and disparities in

two consecutive frames. The temporal consistency is enforced by using the

globally optimized disparity flow field to predict disparity map of the next frame

and by biasing the stereo matching cost volume in favor of the predicted disparity

values. Zhang and Kambhamettu [169] compute the structure and motion

simultaneously as an energy minimization problem by iteratively fitting an affine

motion model to the partitioned image patches with global spatial smoothness

regularization. Discontinuities are further preserved using color image

segmentation information. Temporal consistency between depth maps of

successive frames is enforced whenever possible by enhancing the traditional

belief propagation (BP) algorithm to operate on a 3D graph that includes both

spatial and temporal neighbors induced from the optical flow information [170].

By enabling BP to automatically disconnect neighbors whose beliefs are

incompatible, it can avoid performance degradation due to errors in the optical

flow. Similar region-based idea is also used in Tao et al.’s method [171], in which

the color segmentations of input video frames are used to induce planar surface

patch based 3D scene representation. By optimizing a cost function incorporating

the spatial color consistency constraint and a smooth scene motion model,

temporal consistent depth maps can be recovered.

 Our method incorporates motion information in depth recovery by using a

new temporal region-tree based framework with which the consistency of depth

estimation between the current and the last frame can be enforced. Additionally,

our method further enforces spatial consistency through an inconsistency map

based progressive optimization. In particular, using multi-view geometric

constraints, inconsistencies between depth maps for each view are obtained in

each iteration of optimizations across different views and are captured in an

inconsistency map, which is then used in the next iteration to progressively

propagate consistency information and to correct inconsistencies through

visibility reasoning and depth hypotheses pruning. Ours is different from the

outlier confidence map concept proposed in [172], which dynamically measures

how likely pixels are occluded and is mainly used as a soft constraint to regularize

 128

matching cost evaluation. Instead, the role of our iteratively updated inconsistency

map is to capture all spatial inconsistencies between depth maps, which are used

to help in region-wise visibility reasoning and depth hypotheses pruning for

improving spatial consistency in subsequent optimization iterations. Our work is

most related to the work of Zhang et al. [173], in which a bundle adjustment

optimization model is used to enforce temporal consistency (or equivalently

spatial consistency for a static scene) by explicitly incorporating geometric

consistency constraint across multiple frames of a video sequence along with the

corresponding depth map video. Their method appears to produce impressive

results. However, its reliance on redundancy information of a static scene video

and a relatively small baseline may degrade its performance in our application

with sparsely distributed multi-view images.

 Background information has also been used to enforce space-time consistency

before. For example, Goldlucke and Magnor [174] perform stereo matching and

background separation simultaneously using graph-cut optimization under the

assumption that clean background color and depth images are known. As a result,

each pixel is assigned with a binary background or foreground label in addition to

a depth label. Lee and Ho [175] enforce temporal consistency for each frame

using temporal filtering using five consecutive frames and a background mask

generated by thresholding. All five background masks are merged to form the

temporal median filter mask. Larson et al. [170] apply clustering to the depth

estimates together with the corresponding colors for all the pixels in all the frames

of a sequence in a 4D HSV plus depth space. The median color and depth of the

furthest significant cluster are selected as the background color and depth of each

pixel. The background models are then used in belief propagation to define a

pixel-wise background-depth bias based on color similarity and depth likelihood

distribution. Our method also takes advantage of the background model. Its

difference from [170] or [175] is in its new way for background estimation and its

use in a new background-biased optimization.

 129

9.2 Problem Formulation

Given a set of ܯ video sequences ࡿ ൌ ሼࡿ|݉ ൌ 0, … , ܯ െ 1ሽ, in which each

video sequence ࡿ is captured by a stationary camera ܥ for view ܸ and has ܶ

video frames ࡵ ൌ ሼࡵ
௧ ݐ| ൌ 0, … , ܶ െ 1ሽ. At each time instant ݐ, the synchronized

frame set ࡵ௧ ൌ ሼࡵ
௧ |݉ ൌ 0, … , ܯ െ 1ሽ contains snapshots of a dynamic scene

from different viewpoints. Then the objective of our space-time consistent

dynamic depth recovery problem is to estimate ܯ depth map sequences ࡰ ൌ

൛ࡰ|݉ ൌ 0, … , ܯ െ 1ൟ by maximizing the temporal consistency between any

two consecutive depth maps ܦ
௧ and ܦ

௧ାଵ for view ܸ, and the spatial consistency

between the synchronized depth maps ࡰ ௧ ൌ ሼࡰ
௧ |݉ ൌ 0, … , ܯ െ 1ሽ for time

instant ݐ.

 To use our region-tree based framework for matching a synchronized frame

set ࡵ௧, the general position multi-ocular stereo matching has to be formulated as

a labeling problem.

 We follow the well-known plane-sweeping scheme, by which the depth search

space is globally discretized into a set of depth planes ࣊௭ ൌ ሺ0,0, ݀௭ሻ் ሺݖ ൌ

0, … , ܼ െ 1ሻ each of which is perpendicular to the optical axis of camera ܥ, with

corresponding depths ݀௭ ሺݖ ൌ 0, … , ܼ െ 1ሻ tessellating a known depth range

ሾ݀, ݀ሿ linearly or non-linearly. Each depth plane ࣊௭ is tagged with a label

ℓ ൌ -which together form the label set ख. In this chapter, we use the same non ,ݖ

linear depth tessellation scheme as the one used in [15], that is,

݀௭ ൌ ଵ

௭ ሺିଵሻ൬ భ
ೌೝ

ష భ
ೌೝ

൰ା భ
ೌೝ

ൗ
ݖሺ ݄ݐ݅ݓ ൌ 0, … , ܼ െ 1ሻ (9.1)

 In this way, recovering the depth map ܦ
௧ is mapped to a region-tree labeling

problem.

Since there are ܯ െ 1 1 images to be matched, a generalized label space

image function ࣷሺࡵ
௧ , ࡵ

௧ , ,ݔ ,ݕ ݀ℓሻ is used to evaluate the matching cost of pixel

,ݔ) ࡵ ሻ onݕ
௧ to its corresponding pixel in another image ࡵ

௧ according to depth ݀ℓ

and ܯ െ 1 label space images will be generated. As explained in Chapter 2, such

pixel correspondence between views is found through depth based pixel forward

 130

warping from view ࡵ
௧ to ࡵ

௧

ऐ՜ሺݔ, ,ݕ ݀ሻ ~ࡷࡾ
ࡷࡾ்

ିଵ ቆ
ݔ
ݕ
1

ቇ ࡾࡷ݀
்ሺࢀ െ ሻ (9.2)ࢀ

 Similar to binocular stereo, different photo consistency measure such as SD,

AD or ZNCC can be used to compute ࣷሺࡵ
௧ , ࡵ

௧ , ,ݔ ,ݕ ݀ℓሻ.

Then in the cost aggregation step, the data cost for a region ݎ is calculated as

ࣞሺݎ, ℓሻ ൌ
∑ ∑ ࣷቀࡵ

 ೖࡵ,
 ,௫,௬,ௗℓೝ

ቁሺೣ,ሻאೝೖאೇೝ
ெೝ ·ேೝ

 (9.3)

with ܸ being the set of ܯ views selected for evaluating the matching cost of

region ݎ . That is, for a specific region, the corresponding evaluations in the

ܯ െ 1 available label space images may have errors due to occlusions. Then some

visibility reasoning based view selection mechanism is used to select only the

views without occlusion errors for cost aggregation. Please note that such view

selection is region dependent.

 The smoothness cost function is defined as

࣭ ቀݎ, ℓ, ,ݎ ℓೕቁ ൌ
൬௫൬ฬௗℓೝ

ିௗℓೝೕ
ฬିఋ,.൰,ଵହఋ൰

ቀ௪ሺ,ೕሻାఢቁ
 (9.4)

where ߳ is a small constant value for avoiding divided-by-zero error and ߜ ൌ

ห݀ߤ െ ݀ห, the “penalty exempt” threshold is to allow for small gradual

depth changes between regions. As detailed later, during iterative optimizations,

functions ࣞሺݎ, ℓሻ and ࣭ ቀݎ, ℓ, ,ݎ ℓೕቁ will be changed to incorporate the last

iteration results and to allow for larger depth deviations for error correction.

9.3 Algorithm Overview

Our proposed method has two passes. In each pass, for each input video frame

ࡵ
௧ ሺݐ 0ሻ, a region tree ञሺࡵ

௧ ሻ is built from a set of over-segmented regions ज
௧

as described in Chapter 7. Then the region-tree based optical flow estimation is

done as described in Chapter 8 to estimate an optical flow field ङ௧՜௧ିଵ from ࡵ
௧

 131

to ࡵ
௧ିଵ. With ङ௧՜௧ିଵ known, for each region ݎ א ज

௧ , its “temporally adjacent”

region is found in ࡵ
௧ିଵ . Then new inter-frame edges connecting ݎ א ज

௧

and its corresponding are augmented to ञሺܫ
௧ ሻ, resulting in a temporal region

tree ञഥሺܫ
௧ ሻ. For the first frame ࡵ

௧ ሺݐ ൌ 0ሻ, ञഥሺࡵ
௧ ሻ is just ञሺࡵ

௧ ሻ.

 After ञഥሺࡵ
௧ ሻ is constructed, a progressive optimization scheme is used to

iteratively enforce depth spatial consistency among different views by correcting

inconsistencies captured in the corresponding inconsistency map ࡽ
௧ .

 Specifically, ܭ iterations of optimizations are performed with the first

iteration initializing depth map ࡰ
௧ using the normal DP on region-tree ञഥሺࡵ

௧ ሻ

optimization approach. Then in each of the subsequent iterations, the last iteration

depth maps ࡰ ௧ for all views are used to generate an inconsistency map ࡽ
௧ for

each view by identifying inconsistent regions whose depth values violate the

multi-view geometric constraint.

 The depth values of consistent regions will be “frozen” and will not change in

subsequent iterations. The inconsistency maps together with the last iteration

depth maps are used to prune incorrect depth hypotheses through a Z-buffer like

mechanism and to select appropriate view based on visibility reasoning. In this

way, inconsistencies can be corrected progressively and the final depth map ࡰ
௧ is

then used for recovering ࡰ
௧ାଵ if ݐ ൏ ܶ െ 1.

 After all ܶ frames of ࡵ have been processed in the first pass, the background

information is estimated for each view ܸ and used in the second pass for

background biased optimization to further improve the space-time consistency

between depth maps.

 Shown in Figure 9.1 is an illustration of the typical steps in our proposed

algorithm. The second row shows the inconsistency map based iterative

optimizations of the depth map in the first pass. After the first pass, the

background information is estimated. Then with the background information

available, which is shown in the third row, in the second pass, the depth map is

iteratively refined. As we can see, in the first iteration of pass one, the depth map

exhibits many errors. By iteratively enforcing spatial consistency, many of these

errors are corrected and accordingly the number of inconsistent pixels (white

 132

pixels in the inconsistency map) decreases after each iteration. Furthermore, the

use of background information in the second pass further improves the depth

accuracy.

 For better clarity, the workflow of our proposed algorithm is summarized in

List 9.1.

Pass 1 (No background info)

 Iteration 1 Iteration 2

 Input frame

Figure 9.1: Illustration of the typical steps in our proposed algorithm with
frame 57 view 7 of the Ballet dataset.

 Iteration 3

Background depth Background color Background confidence

Result from [15]

Inconsistency map Inconsistency map

Pass 2 (Using background info)

Inconsistency map Inconsistency map
 Iteration 1 Iteration 2 Iteration 3

Background estimation using pass 1 results

 133

Starting with pass ൌ 0 and time ݐ ൌ0

Step 1: If 0, estimate background information for each view using results from pass

 െ 1

Step 2: Over-segment frame ࡵ
௧

Step 3: If ݐ 0, estimate the optical flow field ङ௧՜௧ିଵ from ࡵ
௧ to ࡵ

௧ିଵ and build the

temporal region-tree ञഥሺࡵ
௧ ሻ, otherwise build ञഥሺࡵ

௧ ሻ as the normal one ञሺࡵ
࢚ ሻ

Step 4: Iterate ܭ times ݇ ൌ 0, … , ܭ െ 1

Step 5: In each iteration ݇

(a) If ݇ ൌ 0, set all regions א ञഥሺࡵ
௧ ሻ as inconsistent;

else use the depth map results ࡰ ௧ from iteration ݇ െ 1 to generate/update

inconsistency map ࡽ
௧ and to identify consistent and inconsistent regions

(b) Run DP on ञഥሺࡵ
௧ ሻ minimizing energy function (6.1) without changing the depth

values of consistent regions and obtain new depth maps ࡰ
௧ . Background

information is used if 0

(c) ݇ ൌ ݇ 1, If ݇ ൏ ܭ െ 1, goto Step 4, otherwise obtain the final ࡰ
௧

Step 6: ݐ ൌ ݐ 1, if ݐ ൏ ܶ െ 1 goto Step 2

Step 7: ൌ 1, if p ൏ ݐ ,2 ൌ 0 and goto Step 1

List 9.1

9.4 Implementation Details

9.4.1 Temporal Region-tree based Temporal Consistency Enforcement

We extend the traditional 2D region-tree ञሺࡵ
௧ ሻ to a temporal one ञഥሺࡵ

௧ ሻ ൌ

ञഥሺज
௧തതതതത, ࣟҧሻ for enforcing temporal consistency between depth maps ܦ

௧ and ܦ
௧ିଵ

when ݐ 0. For this, the optical flow estimation from ࡵ
௧ and ࡵ

௧ିଵ is performed

using our region-tree based method elaborated in the last chapter. However, we

only use single-level region-tree instead of a C2F one here. The main reason is

that most of our videos are of low frame-rate which makes accurate optical flow

estimation too challenging for scenes with fast movements. Therefore, as to be

explained below, in the current implementation, we only trust optical flow

 134

information of static background regions, for which using single-level region-tree

is sufficient and efficient.

 With the optical flow field ङ௧՜௧ିଵ from frame ࡵ
௧ to ࡵ

௧ିଵ obtained, each

region ݎ א ञሺܫ
௧ ሻ is assigned with a 2D displacement vector ङሺݎሻ by which

“temporal neighbor” of region ݎ in ࡵ
௧ିଵ can be found.

 At this stage the depth map ࡰ
௧ିଵ of the previous frame ࡵ

௧ିଵ has been

estimated with spatial and/or temporal consistency enforced. Since the result is

pretty accurate, it is reasonable to further enforce the depth smoothness between

each region ݎ and its temporal neighbor , in addition to the smoothness

between ݎ and its spatial neighbors. To this end, for each region ݎ, we add a new

node to ज
௧ for and a “temporal edge” ݁՜ೝ

connecting ݎ and ,

extending ञሺࡵ
௧ ሻ to a temporal region-tree ञഥሺࡵ

௧ ሻ. Then performing energy

minimization on ञഥሺࡵ
௧ ሻ to estimate ࡰ

௧ implicitly enforces its consistency to

ܦ
௧ିଵ.

 However, to limit propagation of possible errors in ࡰ
௧ିଵ and over smoothness

enforcement due to errors in the optical flow field ङ௧՜௧ିଵ, we trust the optical

flow estimation accuracy of static background regions more than dynamic ones

and only add temporal edges to regions whose |ࣩሺr୧ሻ| ൌ 0. Furthermore, we

perform consistency checking on the optical flow fields ङ௧՜௧ିଵ for all views

based on depth maps ࡰ
௧ିଵ to filter out erroneously identified static background

regions. The weight of temporal edge ݁՜ೝ
is defined as

ೝ՜ೝݓ
ൌ

∑ ቆଶ.ିఎሺூ
 ሺ௫,௬ሻ,ூ

షభቀ௫ା௨ॷഥ൫ೝ൯,௬ା௩ॷഥ൫ೝ൯ቁቇ ሺೣ,ሻאೝ

ೝࡺ
 (9.5)

That is, the similarity between two regions ݎ and is evaluated based on the

pixel ZNCC measure ߟ and is used to define the weight. The more similar they

are, the smaller the weight, the more influence on ݎ from .

 Shown in the first row of Figure 9.2 is an example of the optical flow

estimation result for two consecutive frames of a lab scene video, which is color

 135

coded using the same scheme as that specified in the Middlebury Stereo Vision

site [162]. As we can see, the optical flow result is quite accurate. For low FPS

sequences with fast movements, even though more errors could be incurred, most

static regions (colored as white) are still accurate. Conservatively using only static

regions to build temporal region tree can lower the impact of inaccuracies in the

optical flow estimation while still can improve in enforcing temporal consistency.

9.4.2 Progressive Spatial-consistency Enforcement

The depth spatial consistency across different views is progressively enforced by

using inconsistency maps.

(1) Inconsistency map generation

To generate inconsistency map ࡽ
௧ , we use the geometric consistency constraint

proposed by Zhang et al. [173] as the measure for identifying inconsistent pixels

as follows. For a pixel ࢞ ൌ ሺݔ, ࡰ ሻ with depthݕ
௧ ሺݔ, ,ሻ in depth map of view Vmݕ

its corresponding pixel ࢞ᇱ ൌ ሺݔᇱ, Ԣሻ in another view ܸሺ݅ݕ ് ݉ሻ is found using

Equation (9.4) as

 ሺݔᇱ, ᇱሻݕ ൌ ऐ՜൫ݔ, ,ݕ ܦ
௧ ሺݔ, ሻ൯ݕ

 Then the conjugate pixel ሺݔᇱ, "࢞ Ԣሻ is warped back to pixelݕ ൌ ሺݔ", ሻ in view"ݕ

ܸ similarly. Ideally, pixels ࢞ and ࢞" should coincide with each other. So the

distance ԡ࢞ െ provides a reasonable measure of the "࢞ and ࢞ ԡ between pixels"࢞

consistency between two depth values ࡰ
௧ ሺݔ, ࡰ ሻ andݕ

௧ ሺݔᇱ, Ԣሻ. Therefore afterݕ

Figure 9.2: Results of an example lab test dataset.

Last Frame Current Frame Optical Flow

 136

checking all of the view pairs ሺ ܸ, ܸሻሺ݅ ൌ 0, … , ܯ െ 1, ݅ ് ݉ሻ, if the total

number of views for which ԡ࢞ െ ԡ"࢞ 2 is greater than 2/ܯ, pixel ࢞ is marked

as inconsistent by setting ࡽ
௧ ሺ࢞ሻ ൌ 1 to indicate that its depth value ࡰ

௧ ሺݔ, ሻݕ

needs to be re-estimated, otherwise ࢞ is marked as consistent by setting ࡽ
௧ ሺ࢞ሻ ൌ

0. For reference, example inconsistency maps are shown in Figure 9.1.

 After inconsistency map ࡽ
௧ is generated, all of the corresponding regions in

ञഥሺࡵ
௧ ሻ which have over one quarter of their pixels marked as inconsistent will be

flagged as inconsistent otherwise consistent. The depth value of a consistent

region is regarded as determined and will not be changed, while the depth value of

an inconsistent region is regarded as undetermined and can be changed in

subsequent iterations.

(2) Progressive spatial consistency enforcement

 Our iterative optimization based spatial consistency enforcement scheme is a

progressive one similar to that proposed by Wei and Quan [176]. In any non-first

iteration, previously identified consistent regions provide useful information for

constraining current matching optimization and resolving matching ambiguities.

In particular, inconsistency map ࡽ
௧ together with the last iteration depth map ࡰ

௧

are used in the matching cost evaluation step to prune wrong depth hypotheses of

regions and to use visibility reasoning to select views to better handle occlusions.

 (a) Depth hypotheses pruning

 In any iteration after the first one, the label space image function used is a

variant of the original ࣷሺࡵ
௧ , ࡵ

௧ , ,ݔ ,ݕ ݀ሻ for incorporating the inconsistency and

depth information of the last iteration. Specifically, in iteration>1, when

evaluating the matching cost of pixel א ܫ
௧ for a candidate depth ݀, there are

three possible cases for its corresponding pixel ᇱ in another view ܸ. That is, ᇱ

has been flagged as inconsistent since ࡽ
௧ ሺԢሻ ൌ 1, or ᇱ is consistent with

ࡽ
௧ ሺԢሻ ൌ 0 and ݀ is larger or smaller than its determined depth ܦ

௧ ሺԢሻ.

Accordingly, we use a new pixel-based photo consistency function as

ࣷ̃ሺࡵ
௧ , ࡵ

௧ , ,ݔ ,ݕ ݀ሻ

 137

ൌ ቐ
ࣷሺܫ

௧ , ܫ
௧ , ,ݔ ,ݕ ݀ሻ ܳ

௧ ሺԢሻ ൌ 1
ܳ ߴ

௧ ሺԢሻ ൌ 0 & ݀ ܦ
௧ ሺԢሻ

 ∞ ܳ
௧ ሺԢሻ ൌ 0 & ݀ ܦ

௧ ሺԢሻ
 (9.6)

where ߴ is the occlusion cost. In particular, for the case when the depth of ᇱ is

inconsistent, i.e. undetermined, the original cost evaluation is used. For the case

when ᇱ has been determined before, if ݀ ࡰ
௧ ሺԢሻ, i.e. the 3D point

corresponding to ሺ, ݀ሻ is occluded by other known closer 3D point ሺԢ, ࡰ
௧ ሺԢሻሻ,

an occlusion penalty is incurred. Conversely, if ݀ ࡰ
௧ ሺԢሻ , which means that

3D point ሺ, ݀ሻ occludes 3D point ሺԢ, ࡰ
௧ ሺԢሻሻ, which is not possible because

otherwise depth ࡰ
௧ ሺԢሻ cannot be flagged as consistent with ࡽ

௧ ሺԢሻ ൌ 0, a

larger penalty is given to candidate depth ݀ so that it will less likely be chosen in

the optimization result. Through this Z-buffer like mechanism [176], invalidate

depth hypotheses can be implicitly pruned.

 Furthermore, to correct errors caused by possible over-smoothness in the first

iteration, a new “penalty exempt” depth deviation threshold ߜᇱ ൌ is used in ߜ5

function ࣭ for any edge linking a consistent region to an inconsistent region to

allow for a larger depth discontinuity.

 (b) Visibility reasoning and view selection

 As observed in various experiments, appropriate region-wise view selection in

the stereo matching cost evaluation step is very important for better result. In

particular, the “best half of candidate views” selection strategy proposed in [177]

is used for region-wise view selection. That is, views ܸ used in Equation (9.3)

for region ݎ will correspond to half of the candidate views that give lower

matching costs for depth hypothesis ݀. In the first iteration, all available ܯ views

are used as candidate views. Then during subsequent iterative optimizations, we

further take advantage of the last iteration results from other views to improve

view selection. Specifically, we first warp all the other views’ depth maps

ࡰ
௧ ሺ݅ ് ݉ሻ to view ܸ. For each inconsistent region in view ܸ, all the other

views witnessing larger depth values at the same location will be collected as

candidate views. If the number of collected candidate views is less than 2, then as

 138

above all ܯ views are used for that region. This simple visibility reasoning is

based on the observation that an occluded region is more likely to be assigned

with the depth value of a foreground object.

9.4.3 Background Biased Optimization

 (1) Background estimation
 After the first pass is done, we apply a novel segmentation-based background

estimation algorithm to recover background color
, depth

ௗ௧ and

confidence
for each view ܸ.

 Specifically, given the depth map results ࡰ from the first pass, ܤ
ௗ௧ is

estimated as

ௗ௧ሺݔ, ሻݕ ൌ ࡰ

ሺ௫,௬ሻሺݔ, ሻݕ

where ݂ሺݔ, ݐ ሻ corresponds to an indexݕ א ሾ0, ܶ െ 1ሿ that selects a pixel ሺݔ, ሻ inݕ

an image in ࡰ out of ܶ candidates as the background depth at ሺݔ, ,ݔሻ. ݂ሺݕ ሻ isݕ

solved scanline by scanline as a labeling problem by minimizing a cost function

using DP [178].

 To further improve smoothness, after ݂ሺݔ, ሻ is determined, all the pixels atݕ

ሺݔ, ࡰ ሻ in the entire depth map sequenceݕ with their absolute intensity

difference to the candidate ࡰ
ሺ௫,௬ሻሺݔ, ሻ is less than 5 are collected for linearݕ

blending. By applying the same selection results and blending to the

corresponding color image ࡵ, the background color image
 is obtained

simultaneously.

 In addition, the variances of each pixel in
ௗ௧ and

are computed and

used to define the background confidence map
. If the variance is high,

then the confidence that the pixel is a static background pixel is low. We further

apply inconsistency checking as done in Section 9.4.2 to all background depth

maps
ௗ௧(݉ ൌ 0, … , ܯ െ 1ሻ. All the identified inconsistent pixels will be

given a zero confidence to avoid error propagation to subsequent background

biased optimization. As can be seen in Figure 9.3, by doing estimation on depth

maps instead of color images directly, much better background color and depth

 139

quality can be obtained compared to traditional median filtering or clustering

based approaches [170]. This is because depth maps are invariant to illumination

changes as well as to ambiguities in the foreground and background colors.

 (2) Background biased optimization
 Then the background information obtained above is used as a high-level prior

by biasing the depth hypothesis cost evaluations of the background-like pixels. In

particular, for each pixel ሺݔ, ࡵ ሻ inݕ
௧ , a background bias weight is defined based

on its likelihood to be a static background pixel for depth hypothesis ݀ as

,ݔ௦ሺݓ ,ݕ ݀ሻ ൌ ଵߚ ࡵቀߟ
௧ ሺݔ, ,ሻݕ

ሺݔ, ሻቁൗݕ (9.7)

if
ሺݔ, ሻݕ ܫቀߟ ,ଶߚ

௧ ሺݔ, ,ሻݕ
ሺ ݔ, ሻቁݕ ݀ ଷ andߚ ൌ

ௗ௧ሺݔ, ,ሻݕ

otherwise ݓ௦ሺݔ, ,ݕ ݀ሻ ൌ 1.0, where ߟ is the ZNCC measure. Then the label

space image function becomes a biased version as

ࣷ̃ሺܫ
௧ , ܫ

௧ , ,ݔ ,ݕ ݀ሻ ൌ ௦ݓ · ࣷሺܫ
௧ , ܫ

௧ , ,ݔ ,ݕ ݀ሻ (9.8)

 In this way, the optimization and inconsistency based error correction has a

higher probability to assign background pixels with the correct background

depths, resulting in better sequence wise temporal consistency.

 Background information is also used in inconsistency checking for identifying

inconsistencies due to occluded background pixels. Specifically, for a pixel

ࡵ
௧ ሺݔ, ሻ, ifݕ

ሺݔ, ሻݕ ࡵቀߟ ,ଶߚ
௧ ሺݔ, ,ሻݕ

ሺ ݔ, ሻቁݕ ࡰ ସ andߚ
௧ ሺݔ, ሻݕ ൌ

݀ ൌ
ௗ௧ሺݔ, ሻ, then it will not flag as an inconsistent pixel even if it fails theݕ

consistency checking. We use a conservatively higher ߚସ value to avoid pre-

mature errors.

Figure 9.3: An example of background estimation for view 5 of the “Breakdancing” dataset
from [15]. (Brighter color in background confidence map means lower confidence.)

 Background depth Background color Background confidence

 140

9.5 Experimental Results and Evaluations

The algorithm proposed in this paper is extensively tested using a variety of multi-

view stereo video sequences, including the Microsoft Research Breakdancing and

Ballet datasets [15] and sequences captured by our own FVV system. All video

sequences were captured with Point Grey Research Flea2 1024 ൈ 768 cameras at

a frame rate of 15 FPS. Our cluster-based implementation processes each video in

parallel and uses GPU’s for match cost evaluation. In all the experiments, the

same set of empirically tuned parameters are used: ߤ ൌ 0.008, smoothness weight

scale ߩ ൌ ߴ ,4/3 ൌ 0.1, ܰ ൌ ଵߚ , 256 ൌ ଶߚ ,0.35 ൌ ଷߚ ,0.95 ൌ ସ ൌߚ ,0.65 0.85

and the ZNCC window size is 5 ൈ ܭ .5 ൌ 3 iterations are found enough for

acceptable accuracy. The frames are downsized to 512 ൈ 384 for speed.

Furthermore, we use inter-view depth smoothing schemes as those used in [15].

9.5.1 Quantitative Temporal Consistency Evaluation

To quantitatively evaluate the effectiveness of our temporal consistency

enforcement, we compare the depth stability of background regions throughout

the whole video sequence. As was done in [170], for each pixel on a chosen static

background scanline, we compute the median of 100 estimated depth values and

the standard deviation (STD) from the median. The resultant curve and the 100

frame depth scanline stack for row 20 (equivalent to row 40 for full-size frames as

that used in [170]) of view 3 of the Breakdancing dataset is shown in Figure 4.

From the comparison to the corresponding curve and stack for [15], which process

each frame independently, our curve is more stable with much smaller deviation

and the depth stack is smoother. Large deviations mainly appear around depth

discontinuities between the two walls2. So our depth profile shown as the black

2 Please note the claim in [169] that the curve should be close to a flat line is incorrect since we
can see easily in the snapshot in Figure 9.4 that the upper right brown wall is not on the same

 141

curve is closer to the scene geometry qualitatively. Specifically, the average/min

SD3 over all pixels is 2.80/0.33 for [15], while 0.29/0.00 for our method, which

means that our depth estimations for static pixels across all frames are more stable

and hence, more consistent.

9.5.2 Experiments on MS Datasets

The publically available datasets and depth maps from [15] have been invaluable

to the FVV research community as inputs and baseline results. The Breakdancing

and Ballet datasets are particularly challenging due to large indoor textureless

surfaces, surface reflections, and fast moving people.

 Our depth map results for frames 78 and 79 of the Breakdancing dataset are

illustrated in Figure 9.5 and 9.6 as examples. By comparison to the results of [15],

we can see that even though both methods can achieve similar overall spatial

accuracy, ours performs better in handling occlusions. Furthermore, in our results,

the depth values of static and textureless regions of the scene such as the wall and

plane as the blue wall so that they should have different depths as shown in our results but not in
theirs.

3 Unlike in [169], which appears to use a different definition, the SD is defined as the square
root of the variance.

Figure 9.4: Median-Deviation curves and depth scaline stacks.

 Depth scanline stack (ours) Depth scanline stack [15]

0 100 200 300 400 500
20

40

60

80

100

120

M
ed

ia
n

D
ep

th

X Coordinate

 Our Results
 MS Results

A snapshot from [15]

 142

floor are more temporally consistent than those shown in [15], which can be better

observed when viewing the depth videos.

 Similar performance is also observed for the Ballet dataset. As shown in

Figure 9.7, compared to the results of [15], the quality of our depth map results is

comparable if not better. Furthermore, the results are very consistent across

different views and temporally.

9.5.3 Experiments on Datasets Captured by Our FVV System

In addition to the widely referred MS datasets, our proposed algorithm has also

been integrated into our FVV system as a built-in service and extensively tested.

In all the experiments, the camera array total calibration is done using the method

introduced in Chapter 5.

 Illustrated in Figure 9.8 is one example indoor scene with a person playing

soccer in a lounge area. Similar to the MS datasets, this scene is also very

challenging since most surfaces are textureless. Since only natural lighting is

used, there are washed-out issues for bright or reflective surfaces due to the long

exposure time, which also causes slight motion blur issue to the moving soccer

ball in some frames. From the shown video frames, it can be seen that the simple

photometric calibration is pretty accurate. The colors in all the views are very

consistent. From the shown depth maps, though they are also accurate enough for

FVV rendering, compared to the results we obtained for MS datasets, there are

more errors. A possible reason could be the much larger depth range and

viewpoint change due to the widely spaced camera arrangement compared to that

used in the Breakdancing or Ballet datasets.

 Illustrated in Figure 9.9 is another indoor scene example with a person playing

basketball in a lab. Due to the limited lab space, only 8 cameras are used. As

there is no natural lighting, to avoid the washed-out problem in some image

regions due to the uneven fluorescent lamp lighting, a short exposure time (10ms)

and high gain (5.0) are used, making the videos a little dark and noisy. Therefore

bilateral smoothing is used before depth recovery. As can be seen from the

corresponding depth maps, our algorithm is robust to video noise and performs

well.

 143

View 4

 Input video frames

View 1

View 2

View 3

View 5

View 6

 Our results

Figure 9.5: Qualitative comparison of our results to results from [15] on the Breakdancing
dataset (frame 78).

Result from [15]

 144

View 4

View 1

View 2

View 3

View 5

View 6

Figure 9.6: Qualitative comparison of our results to results from [15] on the Breakdancing
dataset (frame 79).

 Input video frames Our results Result from [15]

 145

View 4

View 1

View 2

View 3

View 5

View 6

Figure 9.7: Our example results of the Ballet dataset (frames 2, 3, and 4).

 146

Figure 9.8: Results of a soccer scene dataset captured by our FVV system
(8 out of 16 views).

 147

Figure 9.9: Consecutive depth map results (center view) of a Basketball dataset captured
by our FVV system.

 148

9.5.4 Rendering based Performance Evaluation and Profiling

 (a) Real-time FVV rendering using depth based forward warping

 Similar to [15], our FVV system also takes advantage of depth based forward

3D image warping to synthesize virtual views for FVV rendering. As shown in

Figure 9.10, its workflow includes two main steps of warping and blending.

 Specifically, given a novel view to synthesize, the two nearest source cameras

are selected. For each of them, the corresponding depth map is used to warp the

color video frame to the novel view. Due to occlusions, there must be some

uncolored pixels in the warped images, which are shown as red pixels in Figure

9.10. To generate more complete image, these two warped images are blended

together using the novel viewpoint to source camera distance information to

define the blending ratio. For the two pixels to be blended, if one of them is

uncolored, then the blended color is just the color of the other pixel if it is colored.

If both pixels are uncolored, then the blended pixel remains uncolored. All the

uncolored pixels form holes which are then filled using the color of neighbor’s

pixel.

 The depth based 3D image warping is done by converting the depth map and

the corresponding color image into a colored/textured 3D geometry first and then

projecting them into the novel view. For this, two approaches have been

implemented.

 In the first point based one, all the pixels are independently back-projected

into the reference 3D space using per-pixel depth information, forming a point

cloud with each 3D point associated with the corresponding color attribute. This

approach is fast and does not need special geometry processing. However, without

further using more advanced point based rendering techniques such as splatting,

the rendering quality is not good enough.

 In contrast, the second approach converts the color image into a textured 3D

mesh through depth based pixel back-projection. That is, each back-projected 3D

point is not independent any more, but being a vertex connected to other vertices

in a mesh. The advantage of this approach is that the projected geometry is more

complete and all the gaps between projected pixels are automatically interpolated.

149

Acquisition
Calibration

Stereo

Rendering

Warping

Blending & Hole Filling

W
or

kf
lo

w
 A

xi
s

Viewpoint Axis

Camera 2 Camera 3 Camera 4 Camera 5... ...

Figure 9.10: Illustration of forward warping based FVV rendering workflow.

 150

Its main disadvantage is that mesh connectivity has to be updated for different

views.

 As shown in Figure 9.11, it can be seen that the mesh based approach gives

better rendering quality than the point based one. Therefore in this thesis, we

choose the mesh based approach. All the FVV rendering is implemented on the

GPU using GLSL. In our current implementation, for better performance, we

always use a fixed mesh formed from the pixel grid and update the mesh by

discarding the triangles across big depth discontinuities using a geometry shader

to avoid the so-called “rubber-sheet” rendering artifacts.

Figure 9.11: Quality comparison of FVV rendering using point
based and mesh based approaches. It can be seen that mesh based

rendering is sharper and has fewer artifacts.

Mesh based FVV Rendering

Point based FVV Rendering

 151

 (b) Rendering based performance evaluation

 To further quantitatively evaluate the performance of our new FVV-oriented

video depth recovery framework, FVV rendering based depth accuracy analysis is

done.

 In FVV rendering, the most important issue is to make the synthesized views

visually plausible. Therefore, although there is no ground truth depth maps

available, the difference between images synthesized using the corresponding

depth maps and the actually observed ones provides a good measure for

evaluation. However, please note that this measure is only suitable for FVV

rendering applications since the synthesized views can still appear to be correct

even though the recovered depth has errors.

 Specifically, given a set of synchronized video frames

௧ࡵ ൌ ሼࡵ
௧ |݉ ൌ 0, … , ܯ െ 1ሽ and their depth maps ࡰ ௧ ൌ ሼࡰ

௧ |݉ ൌ 0, … , ܯ െ 1ሽ,

each view can be synthesized as ࡵ
௧തതതത using the nearest two views generated using

the above rendering process. The average of the sum and standard deviation

(STD) of the absolute color difference หࡵ
௧തതതത െ ࡵ

௧ ห for all pixels can be used as the

color plausibility measure for that view. For video sequences, the measure is

further averaged for all the time instants. In addition to color difference, depth

plausibility can be evaluated similarly through differencing the synthesized depth

map ࡰ
௧തതതതത and ࡰ

௧ . The depth difference is usually normalized w.r.t. the depth

range. However, it should be noted that using estimated ࡰ
௧ as the depth ground

truth may bias the measure unless it is very accurate.

 We profile the above defined color and depth plausibility for the

Breakdancing, Ballet and Basketball datasets, and for each of them the spatial-

temporal consistent depth recovery is done multiple times using different

parameters. Only sub-sequences of 25 frames are used for faster profiling. The

profiled parameters include:

(a) the number of depth levels ܼ

(b) Smoothness penalty exempt threshold scale ߤ

(c) Smoothness weight scale ߩ

 152

 Example synthesized color/depth images and the corresponding color

difference images are shown in Figures 9.12-9.14. Please note in the following

shown synthesized color or depth images, the red color denotes pixels with no

color information, which is mainly due to occlusions or depth errors. These pixels

will not be counted in the color difference statistics. In the color difference

images, the brighter the color, the larger the difference. As can be easily seen,

most color errors appear on the depth discontinuities.

Real view (Ground truth) Synthesized view (Color)

Synthesized view (Depth) Color difference

Figure 9.12: Example of rendering evaluation of the Ballet dataset.

 153

Real view (Ground truth) Synthesized view (Color)

Synthesized view (depth) Color difference

Figure 9.14: Example of rendering evaluation of the Basketball dataset.

Real view (Ground truth) Synthesized view (Color)

Synthesized view (depth) Color difference

Figure 9.13: Example of rendering evaluation of the Breakdancing dataset.

 154

 Shown in Figure 9.15 are the corresponding parameter profiling curves.

Please note that there is a set of curves for each individual view so that it is not

possible to show all of them here. However, most of them share very similar

shapes and hence only the representative ones are presented.

 To investigate the relationship between viewpoint location and depth accuracy

and rendering quality, in each sub-figure of Figure 9.15, two views are compared.

One is a boundary view where the remaining views are on the same side. The

other one is the center view or the reference view. From the curves it can be seen

that the center view usually can have higher depth accuracy and rendering quality

compare to the boundary one. Moreover, both views behave similarly to

parameters changes. For example, as shown in the top row, as the depth level

number increases, the finer depth resolution help to improve the accuracy.

However, the improvement becomes very small up to some point. Although the

color difference statistics information changes very little w.r.t. different

smoothness penalty exempt threshold scales, from the depth difference statistics

sub-figure, it can be seen that setting it as 0.008 results in better performance.

Finally as for the smoothness weight scale parameter, the center view is more

sensitive to this parameter than the boundary view is. Relatively large scale value

gives slightly better results.

Summary

In this chapter, the region-tree based binocular stereo matching and optical flow

estimation presented in the last two chapters are combined together into a unified

framework for spatial-temporal consistent video depth-based FVV scene

reconstruction. By using the new temporal region-tree representation and

inconsistency map based progressive optimization, high quality video depth can

be generated efficiently and robustly, which is indispensible to our FVV system.

Extensive video depth recovery and FVV rendering experiments have shown its

effectiveness.

 155

Figure 9.15: Representative parameter profiling curves using rendering
based evaluation.

50 100 150 200 250
4

5

6

7

8

9

10

11

12

In
te

ns
ity

 D
iff

er
en

ce
 M

ea
n

&
ST

D

Depth Levels

 Boundray View Mean
 Boundray View STD
 Center View Mean
 Center View STD

64 128 192 256
0

2

4

6

8

D
ep

th
 D

iff
er

en
ce

 M
ea

n
&

 S
TD

 (%
)

Depth Levels

 Boundary View Mean
 Boundary View STD
 Center View Mean
 Center View STD

0.006 0.008 0.010 0.012 0.014

2

3

4

5

6

7

8

 Boundary View Mean
 Boundary View STD
 Center View Mean
 Center View STD

D
ep

th
 D

iff
er

en
ce

 M
ea

n
&

 S
TD

 (%
)

Smoothness penalty exempt threshold scale

1.0 1.5 2.0

2

3

4

5

6

 Boundary View Mean
 Boundary View STD
 Center View Mean
 Center View STD

D
ep

th
 D

iff
er

en
ce

 M
ea

n
&

 S
TD

Smoothness Weight Scale

Depth level number profiling

0.006 0.008 0.010 0.012 0.014
4

5

6

7

8

9

In
te

ns
ity

 D
iff

er
en

ce
 M

ea
n

&
 S

TD

Smoothness penalty exempt threshold scale

 Boundary View Mean
 Boundary View STD
 Center View Mean
 Center View STD

1.0 1.5 2.0
4

5

6

7

8

In
te

ns
ity

 D
iff

er
en

ce
 M

ea
n

&
 S

TD

Smoothness Weight Scale

 Boundary View Mean
 Boundary View STD
 Center View Mean
 Center View STD

Penalty exempt threshold scale profiling

Smoothness weight scale profiling

 156

Chapter 10

Conclusions and Future Work

The driving motivation of this thesis is to provide a convenient and efficient

hardware and software solution for free viewpoint video content creation and

rendering using multiple cameras. Since there are too many scientific challenges

to achieve this goal, we particularly focused more on the camera array based FVV

scene acquisition and depth based FVV scene reconstruction. In the following,

the main technical contributions of this thesis in these two areas are summarized

first, followed by their respective limitations and possible future works.

10.1 Contributions

The main contributions of this thesis include: efficient camera array calibrations, a

new region-tree based image labeling framework and a new cluster based FVV

system (platform).

(1) Efficient and accurate camera array total calibrations

 By extending the classic plane based single camera geometric calibration

method [28], our automatic camera array total calibration algorithm enables

efficient and accurate geometric, photometric and temporal calibrations. The

traditional static scene oriented bundle-adjustment optimization is enhanced to

further handle temporal parameters, through which unsynchronized cameras can

be calibrated more conveniently. By enabling the use of unsynchronized cameras

and performing the geometric and photometric calibrations simultaneously,

camera array based multiple view video acquisition is made easier and much more

efficient.

 157

(2) Region tree based labeling framework

 As one of the main contributions of this thesis work, our new proposed region-

tree based image representation provides a good combination of traditional pixel

based and layer based ones. By taking advantage of image over-segmentation, the

bests of both worlds are nicely combined. Through the new representation, the

desired trade-off between enabling image primitives to contain enough

information with a large support area and reducing the risk of violating the layer

parameterization assumption with a small support area is achieved. The spanning

tree structure further provides many advantageous properties for fast optimization

and image manipulation. The region-tree image representation is also extensible.

Different variants such as the coarse-to-fine and temporal ones are also been

presented for different application requirements.

 Based on the region-tree representation, a general discrete image labeling

framework is presented. Its successful applications in solving two classic

computer vision problems – binocular stereo matching and optical flow estimation

have shown its unique potentials and versatility.

 In the spatial-temporal consistent video depth recovery application which is of

crucial importance to depth based FVV rendering, our region-tree framework also

shows very promising performance. The temporal consistency between

temporally consecutive depth maps is enforced through the temporal region-tree

variant which is used for integrating optical flow estimation with general position

multi-view stereo matching. While for the spatial consistency, it is enforced using

the new inconsistency map based progressive optimization.

(3) Cluster based FVV system design and implementation

 As another main contribution, a cluster based FVV system has been

developed, with its hardware and software architectures designed towards more

general camera array applications. With the developed system, several highly

desired features such as centralized workflow management, distributed data

storage and transparent data access are enabled. Powerful computation

 158

performance is also provided by taking advantage of the parallel computing and

hardware acceleration using the GPU’s.

 The system is highly modularized and use service provider/consumer model.

New functionalities can be easily extended or incorporated. Hence, the system can

be used as a platform or test bed for prototyping new FVV algorithms. By

integrating our camera array total calibration technique and parallelizing our

region-based FVV depth scene reconstruction on cluster, the whole FVV process

from the multi-view video acquisition to the final rendering can be done

efficiently and in a highly automatic way. Extensive practical experiments have

shown its robustness and effectiveness.

10.2 Limitations and Future Work

One limitation of our camera total calibration method is the use of relatively

simple linear color transform model for color normalization. More advanced

models can be investigated as one possible future work. Although in most

experiments the current color normalization appears good enough for stereo

matching and optical flow estimation, better normalization accuracy is expected to

further improve their performance.

 As for the region-tree framework, its main limitation is in its relatively inferior

performance for large images due to the use of mean-shift segmentation. Also for

the case of requiring large-size label set such as in optical flow estimation, the

optimization can become slow due to the cubic computational complexity of DP

(though it can still be faster than other global optimization methods such as graph

cuts). In the future, different ways to further utilize the image pyramid approach

for faster speed up can be investigated. For example, segmentation result from

down-sized image could be used to speedup full-size image segmentation. Also

labeling result of down-sized levels could be further used to limit the label set

size.

 On the other hand, the current region-tree framework implementation uses the

constant region label model, i.e., all the pixels in a region share the same label. In

the future, different region label distribution model such as the affine model can

 159

be investigated. Moreover, currently for video depth recovery, each video frames

are segmented independently which is not time economical and also cannot

maintain segmentation consistency between consecutive frames. In the future, a

possible approach for incremental region-tree generation can be investigated to

take advantage of the region-tree information of the last frame.

 As for possible future work of our FVV system, a real-time FVV scene

reconstruction module can be developed and integrated. More advanced FVV

rendering techniques such as the alpha matting based method [15] could be

implemented. Also more camera array applications can be developed by taking

advantage of current system modules or services.

 160

References

[1] “Introduction to the special issue on immersive telecommunications,” IEEE Trans.

on Circuits and Systems for Video Technology, 14(3), 2004.

[2] O. Schreer, P. Kauff, T. Sikora, “3D video communication: algorithms, concepts

and real-time systems in human centred communication,” Wiley Press, 2005.

[3] S. L. Hill, “Scalable multi-view stereo camera array for real world real-time image

capture and three-dimensional displays”, M.Sc. Thesis, MIT, 2004.

[4] ISO/IEC JTC1/SC29/WG11, “Report of 3DAV exploration,” Doc. N5878,

Trondheim, Norway, July 2003.

[5] ISO/IEC MPEG & ITU-T VCEG, “Joint Draft 1.0 on multiview video coding,”

JVT-U209, Nov. 2006.

[6] S.B. Gokturk, H. Yalcin, and C. Bamji, “A time-of-flight depth sensor, system

description, issues and solutions,” in Proc. of IEEE Conf. Computer Vision and

Pattern Recognition, Washington, DC, 2004, pp. 35.

[7] C. Lei, J. Selzer, and Y.H. Yang, “Region-tree based stereo using dynamic

programming optimization,” in Proc. of IEEE Conf. on Computer Vision and

Pattern Recognition, New York, NY, USA, June 17-22, 2006, pp. 2378-2385.

[8] C. Lei and Y.H. Yang, “Optical flow estimation on coarse-to-fine region-trees

using discrete optimization,” in Proc. of International Conf. on Computer Vision,

Kyoto, Japan, Sept. 27-Oct. 2, 2009.

[9] C. Lei, X. Chen, and Y.H. Yang, “A new multiview spacetime-consistent depth

recovery framework for free viewpoint video rendering,” in Proc. of International

Conf. on Computer Vision, Kyoto, Japan, Sept. 27-Oct. 2, 2009.

[10] C. Lei and Y.H. Yang, “Efficient geometric, photometric, and temporal calibration

of an array of unsynchronized video cameras,” in Proc. of the 6th Canadian

Conference on Computer and Robot Vision, Kelowna, BC, May 25-27, 2009.

[11] C. Lei and Y.H. Yang, “Design and implementation of a cluster-based smart

camera array application framework,” in Proc. Second ACM/IEEE International

Conference on Distributed Smart Cameras, Stanford, California, September 7-11,

2008.

[12] G. Cheung, T. Kanade, J. Bouguet, and M. Holler, “A real time system for robust

3-D voxel reconstruction of human motions,” in Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, 2000, pp. 714-720.

 161

[13] W. Matusik, C. Buheler, R. Raskar, S. Gortler, and L. McMillan, “Image-based

visual hulls,” in Proc. of ACM SIGGRAPH 2000, pp. 369-374.

[14] M. Gross, S. Wuermlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-

Meier, T. Svoboda, L. Van Gool, S. Lang, K. Strehlke, A. Vande Moere, and O.

Staadt, “Blue-c: A spatially immersive display and 3D video portal for

telepresence,” in Proc. of ACM SIGGRAPH 2003, July 2003, pp. 819-827.

[15] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High-

quality video view interpolation using a layered representation,” in Proc. of ACM

SIGGRAPH 2004, Los Angeles, CA, USA, August 2004.

[16] B. Wilburn, N. Joshi, V. Vaish, E. V. Talvala, E. Antunez, A. Barth, A. Adams,

M. Levoy, and M. Horowitz, “High performance imaging using large camera

arrays,” in Proc. of ACM SIGGRAPH 2005, pp. 765-776.

[17] P. Kauff and O. Schreer, “An immersive 3-D video-conferencing system using

shared virtual team user environments,” in Proc. of ACM Collaborative Virtual

Environments, 2002, pp. 105-112.

[18] H. Baker, D. Tanguay, I. Sobel, D. Gelb, M. Gross, W. Culbertson, and T.

Malzbender, “The Coliseum immersive teleconferencing system,” in Proc. of Int.

Workshop Immersive Telepresence, Juan-les-Pins, France, 2002.

[19] M. Tanimoto, “Overview of free viewpoint television,” Signal Processing: Image

Communication, vol. 21, no. 6, pp. 454-461, July 2006.

[20] J. G. Lou, H. Cai, and J. Li, “A real-time interactive multi-view video system,” in

Proc. of ACM Multimedia 2005, pp.161-170.

[21] J. Carranza, C. Theobalt, M. Magnor, and H.-P. Seidel, “Free-viewpoint video of

human actors,” in Proc. of ACM SIGGRAPH 2003, vol. 22, no. 3, July 2003, pp.

569-577.

[22] Point Grey Research Sync Unit, http://www.ptgrey.com/products/sync/

[23] G. Litos, X. Zabulis, and G. Triantafyllidis, “Synchronous image acquisition based

on network synchronization,” in IEEE Workshop on Three-Dimensional

Cinematography, 2006.

[24] Multi-Sync, http://www.ptgrey.com/products/multisync/index.asp

[25] T. Svoboda, H. Hug, and L. van Gool, “ViRoom - Low cost synchronized

multicamera system and its self-calibration,” in Pattern Recognition, DAGM

Symposium, 2002, pp. 515-522.

 162

 [26] W. Faig, “Calibration of close-range photogrammetry systems: Mathematical

formulation,” Photogrammetric Engineering and Remote Sensing, 41(12):1479-

1486, 1975.

[27] R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D

machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE

Journal of Robotics and Automation, 3(4): 323-344, Aug. 1987.

[28] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.

[29] S. J. Maybank and O. D. Faugeras, “A theory of self-calibration of a moving

camera,” The International Journal of ComputerVision, 8(2):123-152, Aug. 1992.

[30] Q. T. Luong and O. Faugeras, “Self-calibration of a moving camera from point

correspondences and fundamental matrices,” International Journal of Computer

Vision, 22(3):261-289, 1997.

[31] Intel OpenCV Library, http://www.intel.com/technology/computing/opencv/

[32] Camera Calibration Toolbox for Matlab, http://ww.vision.caltech.edu/bouguetj/

[33] L. Lee, R. Romano, and G. Stein, “Monitoring activities from multiple video

streams: establishing a common coordinate frame,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, 22(8):758-767, August 2000.

[34] V. Vaish, “Light Field Camera Calibration,”

http://graphics.stanford.edu/projects/array/geomcalib/

[35] P. T. Baker and Y. Aloimonos, “Complete calibration of a multi-camera network,”

in Proc. of the IEEE workshop on Omnidirectional Vision, Hiton Head Island, SC,

2000, pp.134-141.

[36] P. T. Baker and Y. Aloimonos, “Calibration of a multicamera network,” in Proc. of

the IEEE workshop on Omnidirectional Vision, 2003.

[37] S. Prince, A. D. Cheok, F. Farbiz, T.Williamson, N. Johnson, M. Billinghurst, and

H. Kato, “3D live: Real time captured content for mixed reality,” in International

Symposium on Mixed and Augmented Reality (ISMAR’02), 2002, pp. 7-13.

[38] T. Svoboda, D. Martinec, and Tomas Pajdla. “A convenient multi-camera self-

calibration for virtual environments,” PRESENCE: Teleoperators and Virtual

Environments, 14(4): 407-422, MIT Press, August 2005.

[39] X. Chen, J.E. Davis, and P. Slusallek, “Wide area camera calibration using virtual

calibration objects,” in Proc. of IEEE Conference on Computer Vision and Pattern

Recognition, 2000, Vol. II , pp.520-527.

 163

[40] V. Vaish, B. Wilburn, N. Joshi, and M. Levoy, “Using plane + parallax for

calibrating dense camera arrays,” in Proc. of IEEE Conference on Computer Vision

and Pattern Recognition 2004, Vol. I, pp.2-9, 2004.

[41] N. Joshi, “Color calibration for arrays of inexpensive image sensors,” Stanford

University, Technical Report CSTR 2004-02, 2004.

[42] A. Ilie, G. Welch, “Ensuring color consistency across multiple cameras,” in Proc.

of the 10th IEEE Conference on Computer Vision (ICCV), Vol. 2:1268-1275, Oct.

17-20, Beijing, China, 2005.

[43] C. Zhang and T. Chen, “A survey on image-based rendering – representation,

sampling and compression,” EURASIP Signal Processing: Image Communication,

pp. 1-28, Vol. 19, No. 1, Jan 2004.

[44] L. McMillan, “Plenoptic modeling: An image based rendering system,” in Proc. of

ACM SIGGRAPH 1995, ACM Press, 1995, pp 39-46.

[45] M. Levoy and P. Hanrahan, “Light filed rendering,” in Proc. of ACM SIGGRAPH

1996, ACM Press, 1996, pp. 31-42.

[46] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen, “The lumigraph,” in

Proc. of ACM SIGGRAPH 1996, ACM Press, 1996, pp. 43-54.

[47] J. C. Yang, M. Everett, C. Buehler and L. McMillan, “A real-time distributed light

field camera,” in Proc. of the 13th Eurographics workshop on Rendering,

Eurographics Association, 2002, pp.77-86.

[48] T. Fujii and Tanimoto, “Free-viewpoint television based on the ray-space

representation,” SPIE ITCom, 2002, pp. 175-189.

[49] P. Bangchang, T. Fujii and Tanimoto, “Ray-space data compression using spatial

and temporal disparity compensation,” in Proc of IWAIT 2004, Singapore, 2004,

pp. 171-175.

[50] M. Panahpour, P. Bangchang, T. Fujii and Tanimoto, “The optimization of

distributed processing for arbitrary view generation in camera sensor networks,”

IEICE Transactions on Fundamentals of Electronics, Communication and

Computer Sciences, E87-A, 8, pp. 1863-1870, 2004.

[51] A. Lumsdaine, T. Georgiev, “The focused plenoptic camera,” in Proc. of ICCP,

April 2009.

[52] J. C. Miller, “Computer graphics principles and practice,” second edition,

Computers & Graphics 16(2): 239-240 (1992).

 164

[53] A. Khodakovsky, P. Schroeder, and W. Sweldens, “Progressive geometry

compression,” in Proc. of ACM SIGGRAPH, 2000, pp. 271-278.

[54] D. P. Luebke, “View-dependent simplification of arbitrary polygonal

environments,” Doctoral Dissertation, University of North Carolina at Chapel Hill,

1998.

[55] D. DeCarlo and J. Gallier, “Topological evolution of surfaces,” in Proc of Conf. of

Graphics Interface 1996, May 1996, pp. 194-203.

[56] A. Lee, D. Dobkin, W. Sweldens and P. Schröder, “Multiresolution mesh

morphing,” in Proc. of ACM SIGGRAPH 1999, August 1999, pp. 343-350.

[57] S. Kircher and M. Garland, “Progressive multi-resolution meshes for deforming

surfaces,” in Proc. of the 2005 ACM SIGGRAPH/Eurographics symposium on

Computer Animation, pp.191-200.

[58] M. Pollefeys, “Self-calibration and metric 3d reconstruction from uncalibrated

image sequences,” Ph.D thesis, 1999.

[59] P. E. Debevec, C. J. Taylor and J. Malik, “Modeling and rendering architecture

from photographs,” in Proc. of ACM SIGGRAPH 1996, August 1996.

[60] P. E. Debevec, Y. Yu, and G. D. Borshukov, “Efficient view dependent image-

based rendering with projective texture mapping,” in Proc. Eurographics

Rendering Workshop, June 1998, pp. 105-116.

[61] A. Kaufman. and E. Shimony, “3D scan-conversion algorithms for voxel-based

graphics,” in Proc. of ACM Workshop on Interactive 3D Graphics, Chapel Hill,

NC, October 1986, pp. 45-76.

[62] K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,”

International Journal of Computer Vision, Marr Prize Special Issue, 38(3):199-

218, 2000.

[63] S. Vedula, S. Baker, S. Seitz, and T. Kanade, “Shape and motion carving in 6D,”

in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, 2000.

[64] S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction by voxel

coloring,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition,

1997, pp. 1067-1073.

[65] S. M. Seitz and K. N. Kutulakos, “Plenoptic image editing,” in Proc. 6th Int. Conf.

of Computer Vision, 1998, pp.17-24.

[66] W. B. Culbertson, T. Malzbender, G. G. Slabaugh, “Generalized voxel coloring,”

Workshop on Vision Algorithms 1999, pp.100-115.

 165

[67] D. Snow, P. Viola, R. Zabih, “Exact voxel occupancy with graph cuts,” in Proc.

of IEEE International Conf. of Pattern Recognition, Vancouver, Canada, 2000.

[68] M. Botsch, A. Wiratanaya, and L. Kobbelt, “Efficient high quality rendering of

point sampled geometry,” in Proc of Eurographics Workshop on Rendering, 2002,

pp. 53–64.

[69] R. L. Carceroni, K. N. Kutulakos, “Multi-view scene capture by surfel sampling:

From video streams to non-rigid 3D motion, shape and reflectance,” International

Journal of Computer Vision 49(2-3): 175-214 (2002).

[70] S. Würmlin, “Dynamic point samples as primitives for free-viewpoint video,”

Ph.D. Thesis, No. 15643, Department of Computer Science, ETH Zürich,

Switzerland, 2004.

[71] M. Zwicker, H. Pfister, J. Baar, M. H. Gross, “Surface splatting,” in Proc. of ACM

SIGGRAPH 2001, 2001, pp. 371-378.

[72] R. J. Watt, and B.J. Rogers, “Human vision and cognitive science,” in Cognitive

Psychology Research Directions in Cognitive Science: European Perspectives, vol.

1, pp. 10-12, East Sussex: Lawrence Erlbaum Associates, 1989.

[73] M. Gong and Y.H. Yang, “Camera field rendering of static and dynamic scenes,”

Graphical Models, Vol. 67, pp. 73-99, 2005.

[74] C. Fehn, “Depth-image-based rendering (DIBR): compression and transmission for

as new approach on 3D-TV,” in Proc. of Conf. on Stereoscopic Displays and

Applications, San Jose, CA, USA, 2004.

[75] Trimble 3D Scanning, http://www.trimble.com/

[76] Z-Cam, http://www.3dvsystems.com/

[77] Q. Li, H. J Feng, Z. H. Xu, H. Q. Huang, “Application of color-encoded structure

light in 3D vision technology,” in Proc. SPIE Vol. 4922, Color Science and

Imaging Technologies, 2002, pp. 112-116.

[78] L. McMillan and G. Bishop, “Shape as a perturbation to projective mapping,” UNC

Computer Science Technical Report TR95-046, University of North Carolina, April

1995.

[79] L. McMillan, “An image-based approach to three-dimensional computer graphics,”

Ph.D. Dissertation, University of North Carolina, April 1997.

[80] W. R. Mark, L. McMillan and G. Bishop, “Post-rendering 3D warping,” in Proc. of

Symp. on Interactive 3D Graphics, pp.7-16, 1997.

 166

[81] R. I. Hartley and A. Zisserman, “Multiple view geometry in computer vision,”

Cambridge University Press, 2000.

[82] V. Kolmogorov and R. Zabih, “Multi-camera scene reconstruction via graph cuts,”

in Proc. of European Conference on Computer Vision 2002.

[83] A. M. Waxman and J. H. Duncan, “Binocular image flows: Steps toward stereo-

motion fusion,” IEEE Trans. on Pattern Analysis and Machine Intelligence,

8(6):715-729, Nov. 1986.

[84] Nasrabadi, M. Nasser, Clifford, P. Sandra, Y. Liu, “Integration of stereo vision and

optical flow by using an energy-minimization approach,” Journal of the Optical

Society of America Series A: Optics, Image Science, and Vision, 6(6), pp.900-907,

1989.

[85] G. Sudhir, S. Banerjee, R. Bahl, and K. Biswas, “A Cooperative integration of

stereopsis and optic flow computation,” Journal of the Optical Society of America

Series A: Optics, Image Science, and Vision, vol. 12, pp. 2564, 1995.

[86] M. Isard, and J. MacCormick, “Dense motion and disparity estimation via loopy

belief propagation,” in Proc. of Asian Conference on Computer vision, 2006, vol.2,

pp 32-41.

[87] J. Starck and A. Hilton, “Free-viewpoint video for interactive character animation”,

in Proc. of 4th. Symposium on Intelligent Media Integration for Social Information

Infrastructure, Nagoya JAPAN, 2006, pp. 25-30.

[88] M. Naef, O. Staadt, and M. Gross, “Blue-C API: A multimedia and 3D video

enhanced toolkit for collaborative VR and telepresence,” in Proc. ACM

SIGGRAPH Int'l Conf. Virtual Reality Continuum and Its Applications in Industry

(VRCAI '04), pp. 11-18, 2004.

[89] http://myrinet.com

[90] http://www.ptgrey.com

[91] http://www-unix.mcs.anl.gov/mpi/

[92] B. Quinn and D. Shute, “Windows sockets network programming,” Addison-

Wesley, MA, ISBN: 0-201-63372-8.

[93] G. P. Stein, “Tracking from multiple view points: Self-calibration of space and

time,” in DARPA IU Workshop, 1998, pp. 521-527.

[94] R.L. Carceroni, F.L.C. Pádua, G.A.M.R. Santos, and K. N. Kutulakos, “Linear

sequence-to-sequence alignment,” in Proc. of IEEE Conf. on Computer Vision and

Pattern Recognition, 2004, pp. 746-753.

 167

[95] Y. Caspi, D. Simakov, and M. Irani, “Feature-based sequence-to-sequence

matching,” in Proc. of Workshop on Vision and Modeling of Dynamic Scenes,

Copenhagen, Denmark, May 2002.

[96] D. W. Pooley, M. J. Brooks, A. van den Hengel, and W. Chojnacki, “A voting

scheme for estimating the synchrony of moving camera videos,” in Proc. of Int.

Conf. on Image Pro., Barcelona, Sept. 2003, pp. 413-416.

[97] C. Rao, A. Gritai, M. Shah, and T. Syeda-Mahmood, “View-invariant alignment

and matching of video sequences,” in Proc. IEEE International Conference on

Computer Vision, Nice, France, Oct. 13-16, 2003, pp. 939-045.

[98] P. Tresadern and I. Reid, “Uncalibrated and unsynchronized human motion

capture: a stereo factorization approach,” in Proc. IEEE Conf on Computer Vision

and Pattern Recognition, Washington, D. C., June 27 - July 2, 2004, pp.128-134.

[99] T. Tuytelaars and L. Van Gool, “Synchronizing video sequences,” in Proc. IEEE

Conference on Computer Vision and Pattern Recognition, Washington DC, USA,

2004, Vol. 1, pp. 762-768.

[100] L. Wolf and A. Zomet, “Correspondence-free synchronization and reconstruction

in a non-rigid scene,” in Proc. Workshop on Vision and Modeling of Dynamic

Scenes, Copenhagen, Denmark, May 2002.

[101] Y. Caspi and M. Irani, “A step towards sequence-to-sequence alignment,” in Proc.

IEEE Conf. on Computer Vision and Pattern Recognition, Hilton Head Island, SC,

June 13-15, 2000, pp. 682-689.

[102] Y. Caspi and M. Irani, “Alignment of non-overlapping sequences,” in Proc. of the

8th Int. Conf. on Computer Vision, Vancouver, B.C., July 2001, pages 76-83.

[103] I. Reid and A. Zisserman, “Goal-directed video metrology,” in Proc. of the 4th

European Conference on Computer Vision, vol. 2 LNCS 1065, Cambridge, April

1996, pp. 647-658.

[104] B. Triggs, “Factorization methods for projective structure and motion,” in Proc.

IEEE Conference on Computer Vision and Pattern Recognition, San Francisco,

CA, USA, 1996, pp 845-851.

[105] P. Tresadern and I. Reid, “Synchronizing image sequences of non-rigid objects,” in

Proc. British Machine Vision Conference, Norwich, Sept. 9-11 2003, Vol. 2, pp.

629-638.

 168

[106] J. Shi and C. Tomasi, “Good features to track,” in Proc. of the IEEE Conference on

Computer Vision and Pattern Recognition, Seattle, Washington, June 1994, pp.

593-600.

[107] N. Chiba and T. Kanade, “A Tracker for broken and closely spaced lines,” in Proc.

of the Int. Soc. for Photogrammetry and Remote Sensing, Stuttgart, Germany,

1998, Vol. XXXII, No. 5, pp. 676-683.

[108] The Persistence of Vision Raytracer, http://www.povray.org/

[109] ARToolkit, http://www.hitl.washington.edu/artoolkit/

[110] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M.

F. Tappen, C. Rother, “A comparative study of energy minimization methods for

markov random fields with smoothness-based priors,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 30(6): 1068-1080 (2008).

[111] C. Chekuri, S. Khanna, J. Naor, and L. Zosin, “A linear programming formulation

and approximation algorithms for the metric labeling problem,” SIAM J. Discrete

Math, 18(3): 608-625 (2004).

[112] N. Komodakis, G. Tziritas, “Approximate labeling via graph cuts based on linear

programming,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

29(8):1436-1453 (2007).

[113] M. Gong and Y.H. Yang, “Near real-time reliable stereo matching using

programmable graphics hardware,” in Proc. of IEEE Conference on Computer

Vision and Pattern Recognition 2005.

[114] C. Kim, K.M. Lee, B.T. Choi, and S.U. Lee, “A dense stereo matching using two-

pass dynamic programming with generalized ground control points,” in Proc. of

IEEE Conference on Computer Vision and Pattern Recognition, 2005.

[115] O. Veksler, “Stereo correspondence by dynamic programming on a tree,” in Proc.

of IEEE Conference on Computer Vision and Pattern Recognition, 2005.

[116] Y. Ohta and T. Kanade, “Stereo by intra- and inter-scanline search using dynamic

programming,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

7(2):139–154, 1985.

[117] V. Kolmogorov and R. Zabih, “Computing visual correspondence with occlusions

using graph cuts,” in Proc. of International Conf. on Computer Vision 2001.

[118] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via

graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

2001.

 169

[119] J. Sun, H. Y. Shum, and N. N. Zheng, “Stereo matching using belief propagation,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003.

[120] Q. Yáng, L. Wang, R. Yang, H. Stewénius, and D. Nistér, “Stereo matching with

color-weighted correlation, hierarchical belief propagation and occlusion

handling,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition

2006.

[121] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nistér, “Real-time global

stereo matching using hierarchical belief propagation,” in Proc. of BMVC 2006.

[122] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms,” International Journal of Computer Vision,

47(1/2/3):7-42, 2002.

[123] A. Blake and A. Zisserman, “Visual reconstruction,” MIT Press, Cambridge, MA,

1987.

[124] J. Marroquin, S. Mitter, and T. Poggio, “Probabilistic solution of ill-posed

problems in computational vision,” Journal of the American Statistical

Association, 82(397):76-89, 1987.

[125] S. D. Cochran and G. Medioni, “3D surface description from binocular stereo,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(10):981-994,

1992.

[126] A. Agarwala,M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn,B. Curless, D.

Salesin, and M. Cohen, “Interactive digital photomontage,” in Proc. of ACM

Trans. Graphics, vol. 23, no. 3, 2004, pp. 294-302.

[127] A. Klaus, M. Sormann and K. Karner, “Segment-based stereo matching using

belief propagation and a self-adapting dissimilarity measure,” in Proc. of ICPR

2006.

[128] M. Bleyer and M. Gelautz, “A layered stereo algorithm using image segmentation

and global visibility constraints,” in Proc. of ICIP 2004.

[129] Y. Boykov, O. Veksler and R. Zabih, “A variable window approach to early

vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(12):1283–1294.

[130] Z. Wang and Z. Zheng, “A region based stereo matching algorithm using

cooperative optimization,” in Proc. of IEEE Conf. on Computer Vision and Pattern

Recognition 2008.

 170

[131] J. B. Xiao, M. Shah, “Motion layer extraction in the presence of occlusion using

graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(10): 1644-1659, 2005.

[132] C. L. Zitnick, S. B. Kang, “Stereo for image-based rendering using image over-

segmentation,” International Journal of Computer Vision 75(1): 49-65, 2007.

[133] Y. Taguchi, B. Wilburn, C. L. Zitnick, “Stereo reconstruction with mixed pixels

using adaptive over-segmentation”, in Proc of IEEE Conf. on Computer Vision and

Pattern Recognition 2008.

[134] Y. Deng, X. Y Lin, “A fast line segment based dense stereo algorithm using tree

dynamic programming,” in Proc. of European Conference on Computer Vision,

vol.3, 2006, pp. 201-212.

[135] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space

analysis,” in IEEE Trans. on Pattern Analysis and Machine Intelligence,

24(5):603-619, May 2002.

[136] C. Christoudias, B. Georgescu, and P. Meer, “Synergism in low-level vision,” 16th

International Conference on Pattern Recognition, Quebec City, Canada, August

2002, vol. IV, pp.150-155.

[137] T. H. Cormen, C. E. Lerserson, Ponald L. Rivest, and C. Stein, “Introduction to

algorithms,” The MIT Press, 2nd Edition, 2001.

[138] C. Harris and M. Stephens, “A combined corner and edge detector,” in Proc. of the

4th Alvey Vision Conference, 1988, pp. 147-151.

[139] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. of

International Conf. of Computer Vision, 1999, pp.1150-1157.

[140] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is insensitive to

image sampling”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 20(4):401–406, 1998.

[141] A. Bobick and S. Intille, “Large occlusion stereo,” Int. Journal of Computer Vision,

33(3):1–20, Sept. 1999.

[142] T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive

window, theory and experiment,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, 16(9):920-932, Sept. 1994.

 171

[143] M. Gong and Y.H. Yang, “Fast stereo matching using reliability-based dynamic

programming and consistency constraints,” in Proc. of Int. Conf. on Computer

Vision, Nice, France, 13-16 October 2003.

[144] T. Hai, S. S. Harpreet, K. Rakesh, “A global matching framework for stereo

computation,” in Proc. of International Conf. of Computer Vision, 2001, pp. 532-

539.

[145] S. Birchfield, C. Tomasi, “Depth discontinuities by pixel-to-pixel stereo,”

International Journal of Computer Vision, 35(3):269-293, 1999.

[146] M. Bleyerand M. Gelautz, “Graph-cut based stereo matching using image

segmentation with symmetrical treatment of occlusions,” Signal Processing: Image

Communication (Special Issue on Three-dimensional Video and Television), 22(2):

127-143, 2007.

[147] F. Dufaux and F. Moscheni, “Motion estimation techniques for digital TV: A

review and new contribution,” in Proc. of the IEEE, vol. 83, pp. 858-876, June

1995.

[148] R. Krishnamurthy, P. Moulin, and J. Woods, “Optical flow techniques applied to

video coding,” in Proc. of International Conference on Image Processing, pp. 570,

1995.

[149] C. Stiller and J. Konrad, “Estimating motion in image sequences: a tutorial on

modeling and computation of 2D motion,” IEEE Signal Processing Magazine,

16(4):70-91, 1999.

[150] J. Weickert, A. Bruhn, T. Brox and N. Papenberg, “A survey on variational optic

flow methods for small displacements,” Mathematical Models for Registration and

Applications to Medical Imaging (2006), pp. 103-113.

[151] J. Bigün, G. H. Granlund, J. Wiklund, “Multidimensional orientation estimation

with applications to texture analysis and optical flow,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, 13(8): 775-790, 1991.

[152] B. K. P. Horn, B. G. Schunck, “Determining optical flow,” Artificial Intelligence,

17(1-3):185-203, 1981.

[153] D. Kalivas and A. Swachuk, “A region matching motion estimation algorithm,”

CVGIP: Image understanding, 54(2):275-288, 1991.

[154] P. Anadan, “A computational framework and an algorithm for the measurement of

visual motion,” International Journal of Computer Vision, 2(3): 283-310, 1989.

 172

[155] M. J. Black and P. Anandan, “The robust estimation of multiple motions:

parametric and piecewise smooth flow fields,” Computer Vision and Image

Understanding, 63(1):75–104, January 1996.

[156] I. Cohen, “Nonlinear variational method for optical flow computation,” in Proc.

Eighth Scandinavian Conference on Image Analysis, vol.1, Norway, May 1993, pp.

523-530.

[157] A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnorr, “Variational

optic flow computation in real-time,” IEEE Transactions on Image Processing,

14(5):608–615, May 2005.

[158] V. Lempitsky, S. Roth, and C. Rother, “FusionFlow: Discrete-continuous

optimization for optical flow estimation,” in Proc. of IEEE Conf. on Computer

Vision and Pattern Recognition 2008.

[159] M. J. Black, Allan D. Jepson, “Estimating optical flow in segmented images using

variable-order parametric models with local deformations,” IEEE Trans. on

Pattern Analysis and Machine Intelligence, 18(10): 972-986, 1996.

[160] Y. A. Wang, E. H. Adelson, “Representing moving images with layers,” IEEE

Transactions on Image Processing 3(5): 625-638, 1994.

[161] M. L. Gong, Y. H. Yang, “Estimate large motions using the reliability-based

motion estimation algorithm,” International Journal of Computer Vision 68(3):

319-330, 2006.

[162] W. Trobin, T. Pock, D. Cremers, and H. Bischof, “Continuous energy

minimization via repeated binary fusion,” in Proc. of European Conference on

Computer Vision 2008.

[163] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A

database and evaluation methodology for optical flow,” in Proc. of International

Conf. on Computer Vision 2007.

[164] B. Glocker, N. Paragios, N. Komodakis, “Optical flow estimation with

uncertainties through dynamic MRFs,” in Proc. of IEEE Conf. on Computer Vision

and Pattern Recognition 2008.

[165] C. L. Zitnick, N. Jojic, S. B. Kang, “Consistent segmentation for optical flow

estimation,” in Proc. of International Conf. on Computer Vision 2005, pp. 1308-

1315.

[166] M. Bleyer, C. Rhemann, M. Gelautz, “Segmentation-based motion with occlusions

using graph-cut optimization,” DAGM-Symposium 2006, pp. 465-474.

 173

[167] L. Xu, J. Chen, and J. Jia, “Segmentation based variational model for accurate

optical flow estimation,” in Proc. of European Conference on Computer Vision

2008.

[168] M. L. Gong, “Enforcing temporal consistency in real-time stereo estimation,” in

Proc. of European Conference on Computer Vision 2006, vol(3), pp. 564-577.

[169] Y. Zhang and C. Kambhamettu, “Integrated 3D scene flow and structure recovery

from multiview image sequences,” in Proc. of IEEE Conf. on Computer Vision and

Pattern Recognition, 2000.

[170] E. S. Larsen, P. Mordohai, M. Pollefeys, H. Fuchs, “Temporally consistent

reconstruction from multiple video streams using enhanced belief propagation,” in

Proc. of International Conf. on Computer Vision 2007, pp. 1-8.

[171] H. Tao, H. S. Sawhney, R. Kumar, “Dynamic Depth Recovery from Multiple

Synchronized Video Streams”, in Proc. of IEEE Conf. on Computer Vision and

Pattern Recognition, pp. 118-124, 2001.

[172] L. Xu and J. Jia, “Stereo matching: an outlier confidence approach,” in Proc. of

European Conference on Computer Vision, 2008.

[173] G. Zhang, J. Jia, T. T. Wong and H. Bao, “Recovering consistent video depth maps

via bundle optimization,” in Proc. of IEEE Conf. on Computer Vision and Pattern

Recognition 2008, Anchorage, Alaska, USA, June 2008.

[174] B. Goldlucke and M. A. Magnor, “Joint 3D-reconstruction and background

separation in multiple views using graph cuts,” in Proc. of IEEE Conf. on

Computer Vision and Pattern Recognition 2003, Madison, USA, June 2003, pp.

683-694.

[175] S. B. Lee and Y. S. Ho, “Multi-view depth map estimation enhancing temporal

consistency,” ITC-CSCC 2008.

[176] Y. Wei and L. Quan, “Region-based progressive stereo matching,” in Proc. of

IEEE Conf. on Computer Vision and Pattern Recognition 2004, vol (1), pp.106-

113.

[177] S. B. Kang, R. Szeliski, J. X. Chai, “Handling occlusions in dense multi-view

stereo,” in Proc. of CVPR, 2001, vol (1), pp. 103-110.

[178] X. Chen and Y. H. Yang, “Segmentation-based background estimation using a set

of related images,” under submission.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

