
Parallel Dynamic State Estimation of Large-scale Cyber-physical Power Systems

by

Hadis Karimipour

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Energy Systems

Department of Electrical and Computer Engineering
University of Alberta

cHadis Karimipour, 2016

Abstract

Growing system size and complexity along with the large amount of data provided by pha-

sor measurement units (PMUs) are the drivers for accurate state estimation algorithms for

online monitoring and operation of power grids. State estimation is the process of estimat-

ing unknown state variables in a power grid, which are then used for energy management

system (EMS) functions in the control centre. Even with modern computing power, the

large volume of computation in the state estimation process is highly time and memory

intensive, and a serious bottleneck for online operation and control of the grid.

Furthermore, the deployment of new smart grid technologies in communication and

smart metering technologies brings new challenges to the state estimation problem. In ad-

dition to failure of physical infrastructure, the smart grid is also sensitive to cyber-attacks

on its communication layer. Intelligent cyber-attacks can be designed to be unobservable

by the traditional bad data detector. Such attacks can significantly impact the decision

making process in control centres and can result in potentially catastrophic outcomes.

The focus of this research is to design parallel computational algorithms to accelerate

dynamic state estimation for both static and dynamic states in large-scale power networks.

Moreover, a stochastic model is proposed to guard the system against intelligent cyber-

attacks. Utilizing the massively parallel architecture of graphic processors and using de-

tailed models of power system components, the proposed research achieved the required

accuracy as well as the computational speed-up in the results.

ii

Preface

The material presented in this thesis is based on original work by Hadis Karimipour. As

detailed in the following, material from some chapters of this thesis has been published

in conference proceedings, and as journal articles under the supervision of Dr. Venkata

Dinavahi in concept formation and by providing comments and corrections to the article

manuscript.

Chapter 3 includes the results published in following papers:

•H. Karimipour, V. Dinavahi, ”Accelerated parallel WLS state estimation for large-

scale power systems on GPU”,NAPS, pp. 1-6, 2013.

•H. Karimipour, V. Dinavahi, ”Extended Kalman filter based massively parallel dy-

namic state estimation”,IEEE Trans. in Smart Grid, vol. 6, no. 3, pp. 1539-1549, May

2015.

The materials presented in Chapter 4 are published/under publication in following

papers:

•H. Karimipour, V. Dinavahi, ”On detailed synchronous generator modeling for mas-

sively parallel dynamic state estimation”,NAPS, pp. 1-6, 2014.

•H. Karimipour, V. Dinavahi, ”Parallel domain decomposition based distributed state

estimation for large-scale power systems”,IEEE Trans. on Ind. App., pp. 1-5, Aug.

2015.

•H. Karimipour, V. Dinavahi, ”Parallel relaxation based joint dynamic state estimation

of large-scale power system”,IET Gen., Trans. and Dist., vol. 10, no. 2, pp. 452-459,

Feb. 2016.

Chapter 5 has been submitted for peer review as follows:

•H. Karimipour, V. Dinavahi, ”Robust parallel dynamic state estimation against cyber-

physical attack”,Submitted to IEEE Trans. on Ind. Inf., pp. 1-9, Nov. 2015, (TII-15-

1635).

iii

To my husband, Amin

who is always a constant source of support and encouragement

and to my parents for their unconditional love.

iv

Acknowledgements

I would like to express my deepest appreciation to my supervisorProf. Venkata Dinavahifor

his supportive attitude, encouragement, and guidance through my research at the Univer-

sity of Alberta. Undoubtedly, without his constant help and supervision, this dissertation

would not have been possible.

It is an honor for me to extend my gratitude to all my Ph.D. committee membersDr.Sahar

Pirooz Azad,Dr. Hai Jiang,Dr. Qing Zhaoand the external examinerProf. Chi Yung Chung

from University of Saskatchewan for reviewing my thesis and providing thoughtful com-

ments to improve it. And my special thanks go to my colleagues and friends at the RTX-

Lab with whom I had a wonderful time during my Ph.D. program.

I would like to thank my husband Amin for his great understanding and support

throughout my research.

v

Table of Contents

1 Introduction 1

1.1 General Terms and Definitions 4

1.1.1 Static State Estimation........................... 4

1.1.2 Dynamic State Estimation......................... 4

1.1.3 Supervisory Control and Data Acquisition System........... 4

1.1.4 Phasor Measurement Unit......................... 4

1.1.5 Graphics Processing Units......................... 5

1.1.6 Online Simulation 5

1.2 Literature Review.................................. 5

1.2.1 Static State Estimation........................... 5

1.2.2 Dynamic State Estimation......................... 7

1.2.3 Application of PMUs in State Estimation 8

1.2.4 Smart Grids................................. 9

1.2.5 Cyber-Physical Attacks on State Estimation............... 10

1.2.6 Relaxation Methods 11

1.2.7 Domain Decomposition.......................... 11

1.3 Motivation of this work 12

1.4 Thesis Objectives 13

1.5 Thesis Outline.................................... 15

2 Overview of Multi-Core and Many-Core Architectures 17

2.1 Introduction..................................... 17

2.2 Parallel Processing 18

2.2.1 Massively Parallel Processing on the GPU................ 18

2.3 CPU and GPU Architecture............................ 19

2.3.1 Multi-Core CPU Architecture....................... 20

2.3.2 OpenMP................................... 21

2.3.3 Many-Core GPU Architecture....................... 23

2.3.4 CUDA Program Structure......................... 23

2.3.5 CUDA Hierarchy.............................. 23

2.3.6 Memory Hierarchy............................. 26

2.4 Hardware Setup................................... 26

2.5 Type of parallelism used in this work....................... 29

2.6 Discussion...................................... 29

2.7 Summary....................................... 30

3 Massively Parallel Static/Dynamic State Estimation: Single GPU Implementa-

tion 31

3.1 Introduction..................................... 31

3.2 State Estimation Formulation........................... 32

3.2.1 Weighted Least Square Static State Estimation............. 32

3.2.2 Extended Kalman Filter Dynamic State Estimation 33

3.3 Measurement and Component Modeling 36

3.4 Numerical Methods for Solving Linear Systems 37

3.4.1 Direct Method................................ 38

3.4.2 Iterative Method 39

3.5 Test Systems..................................... 42

3.6 GPU Implementation of Static WLS State Estimator.............. 43

3.6.1 Parallel Kernel Structure.......................... 43

3.6.2 Experimental Results............................ 44

3.7 GPU Implementation of EKF-based Dynamic State Estimator......... 46

3.7.1 Data Collation................................ 47

3.7.2 Extraction of Parallelism.......................... 52

3.7.3 Experimental Results............................ 55

3.8 Discussion...................................... 60

3.9 Summary....................................... 61

4 Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 64

4.1 Introduction..................................... 64

4.2 Formulation and State-space Model 65

4.3 Relaxation Method................................. 66

4.3.1 Space Parallelism.............................. 66

4.3.2 Time Parallelism 67

4.4 Domain Decomposition 68

4.4.1 Power System Domain Decomposition 69

4.4.2 Coherency Analysis 70

4.5 Iterative Gauss-Jacobi Method........................... 71

4.5.1 Relaxation-based Gauss-Jacobi Method................. 72

4.6 Parallel Relaxation-based WLS Static State Estimation............. 73

4.6.1 Experimental Results............................ 74

4.7 Relaxation-based Joint Dynamic State Estimation................ 78

4.7.1 Hierarchy of Parallelism.......................... 79

vii

4.7.2 Implementation of RJDSE on GPU.................... 81

4.7.3 Experimental Results............................ 81

4.8 Discussion...................................... 88

4.9 Summary....................................... 88

5 Robust Dynamic State Estimation Against Cyber-attack 90

5.1 Introduction..................................... 90

5.2 Bad Data Detection................................. 91

5.2.1 Chi-squares Test 91

5.2.2 Largest Normalized Residual Test.................... 92

5.2.3 Bad Data Removal............................. 93

5.3 False Data Injection Attack............................. 93

5.3.1 Minimum Cost FDI Attacks........................ 95

5.4 Markov-Chain Formulation............................ 97

5.5 Critical Measurement Protection 99

5.5.1 Optimal PMU Placement 99

5.6 Parallel Implementation of the Robust DSE Against FDI............ 100

5.6.1 Implementation of Robust DSE Against FDI on GPU 101

5.6.2 Experimental Results............................ 101

5.7 Discussion...................................... 106

5.8 Summary....................................... 107

6 Conclusions and Future Works 108

6.1 Contributions of Thesis............................... 109

6.2 Directions for Future Work............................. 110

Bibliography 111

Appendix A Generator Model 124

Appendix B TESLA Manufacturer Data Sheet 126

B.1 SYSTEM CHASSIS 126

B.2 HOST INTERFACE CARD (HIC)......................... 127

B.3 PCI EXPRESS CABLE................................ 127

B.4 ENVIRONMENTAL SPECIFICATIONS..................... 128

Appendix C Single Line Diagram of Test Systems 130

C.1 Scale 1 .. 130

C.1.1 Load Data................................. 131

C.1.2 Generator Data............................. 132

C.1.3 Branch Data 133

viii

C.1.4 Transformator Data.......................... 133

C.1.5 Load-Flow Results........................... 134

C.2 Scale 2 .. 135

C.3 Scale 4 .. 135

C.4 Scale 8 .. 136

C.5 Scale 16.. 137

C.6 Scale 32.. 138

C.7 Scale 64.. 139

C.8 Scale 128 140

ix

List of Tables

3.1 Summary of Simulation Results.......................... 45

3.2 Summary of Sequential and Parallel Variable in MPDSE............ 55

3.3 DSE Error Norm (Eq. 3.47) for Different Percentage of PMU Installation . . 57

3.4 Summary of Overall Estimation Time for Multi-thread and Massive Thread

DSE Under Contingency Condition........................ 59

3.5 State Estimation Execution Time 59

4.1 Summary of Results for Comparison of RG-J WLS with Centralized WLS . . 76

4.2 Execution Time in Single-GPU and Multi-GPU Implementation 87

5.1 Summary of DSE Results Under FDI Attack................... 106

5.2 GPU Resource Occupancy for MPDSE...................... 106

List of Figures

1.1 State estimation process block diagram...................... 3

2.1 Steps of parallel algorithm generation....................... 18

2.2 Comparison between CPU and GPU [121]. 19

2.3 CPU, GPU, CUDATMand OpenMP resources................. 20

2.4 CUDA thread organization for data-parallel processing............. 24

2.5 CUDA memory hierarchy and thread organization for data-parallel process-

ing... 27

2.6 FermiTMGPU architecture. 28

2.7 TeslaTMS2050 computing system architecture.................. 28

3.1 State estimation process block diagram...................... 34

3.2 Standard transmission lineπmodel. 36

3.3 LU decomposition algorithm............................ 39

3.4 Cholesky decomposition algorithm. 40

3.5 Conjugate gradient algorithm. 41

3.6 Preconditioned conjugate gradient algorithm. 42

3.7 GPU implementation of the WLS algorithm. 44

3.8 Execution time and speed-up for various case studies. 45

3.9 Percentage of time used for various steps in Stage 2 (Fig. 3.7). 46

3.10 Voltage magnitudes for Case 1........................... 47

3.11 Voltage angles for Case 1. 47

3.12 Example of data collation for MPDSE....................... 50

3.13 Polar and Cartesian representation......................... 50

3.14 Data collation process flowchart.......................... 53

3.15 MPDSE operation flowchart. 54

3.16 IEEE 39-bus power system used to build the large test cases.......... 56

3.17 MPDSE test procedure. 56

3.18 Estimation errors in MPDSE for Case 1 compared to PSS/E under fault

conditions. 57

3.19 Snapshot of estimation error for Case 1 at buses numbers 10, 11, 13 and 32. . 58

3.20 Execution time (TEx.) and speed-up (Sp) comparisons of multi-thread and

massive-thread DSE along with growth rate functions. 60

3.21 Pseudo code for GPU implementation of MPDSE................ 62

3.22 Pseudo code for quad-core CPU implementation of DSE............ 63

4.1 Gauss-Seidle relaxation method applied in different level of equations: (a)

differential equation, (b) non-linear equation, (c) linear equation. 68

4.2 Domain decomposition: (a) interconnection of two subsystems, (b) split of

two subsystem.................................... 69

4.3 Original power system decomposed intoJsubsystems for RJDSE implemen-

tation. .. 71

4.4 Gauss-Jacobi iterative method for two sub-systems............... 72

4.5 Gauss-Jacobi Algorithm 73

4.6 The relaxation-based Jacobi WLS algorithm with BDD; k: time step, i: the

number of subsystems, p: iteration counter, l: index of component in resid-

ual vector. 75

4.7 Decomposing a Case 1 into 4 subsystems to apply the additive Schwarz al-

gorithm. 76

4.8 Voltage magnitudes for Case 1 with respect to system size........... 77

4.9 Phase angles for Case 1 with respect to system size. 77

4.10 Percentage of execution time breakdown with respect to system size..... 78

4.11 Flowchart of RJDSE implementation on multi-GPU architecture. 80

4.12 Hierarchy of parallelism in RJDSE,τ: integration time-step, t: simulation

time.. 81

4.13 Time progression of RJDSE on GPU........................ 82

4.14 Overall block diagram of the proposed RJDSE method............. 82

4.15 Normalized euclidian norm of the estimation error using RJDSE. 83

4.16 Generator state estimation (δ, ω, ψfd) and error of estimation in RJDSE. . . . 84

4.17 Generator state estimation (ψ1d,ψ1q,ψ2q) and error of estimation in RJDSE. . 85

4.18 Generator state estimation (V1,V2,V3) and error of estimation in RJDSE. . . 86

4.19 Percentage of execution time for varying test cases on single and multi-GPU

simulators. 87

5.1 Dynamic state estimation under cyber-attack,a: attack vector,m: measure-

ment,r: measurement residual,̂x: estimated state 95

5.2 3-bus power network with three measurementsP1,P12, andP23. 96

5.3 Overall block diagram of the proposed robust DSE method. 98

5.4 5-bus power network. 100

5.5 Flowchart of the proposed robust DSE method implemented on GPU. . . . 102

5.6 Voltage magnitude under normal operation condition. 103

xii

5.7 Detectors output along with threshold under normal operation condition. . 103

5.8 IEEE 118-bus power system............................. 104

5.9 Voltage magnitude under FDI attack. 105

5.10 Detectors output along with threshold under FDI attack............ 105

A.1 Synchronous generator excitation system with AVR and PSS. 125

B.1 System Chassis Drawing. 126

B.2 Host Interface Card (x16 Version). 127

B.3 PCI Express Cable (0.5 Meter). 128

B.4 PCI Express Cable Minimum Bend Radius. 128

B.5 Environmental Specifications and Conditions. 129

C.1 Scale 1 system: 39 buses, 10 generators. 130

C.2 Scale 2 system: 78 buses, 20 generators. 135

C.3 Scale 4 system: 156 buses, 40 generators. 135

C.4 Scale 8 system: 312 buses, 80 generators. 136

C.5 Scale 16 system: 624 buses, 160 generators. 137

C.6 Scale 32 system: 1248 buses, 320 generators. 138

C.7 Scale 64 system: 2496 buses, 640 generators. 139

C.8 Scale 128 system: 4992 buses, 1280 generators. 140

xiii

List of Acronyms

AC Alternating Current
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DSE Dynamic State Estimation
DC Direct Current
EKF Extended Kalman Filter
GPU Graphics Processing Unit
IR Instantaneous Relaxation
MIMD Multiple-Instruction-Multiple-Data
PMU Phasor Measurement Unit
SCADA Supervisory Control and Data Acquisition
SIMD Single-Instruction-Multiple-Data
SM Streaming Multiprocessor
SP Stream Processor
SSE Static State Estimation

xiv

1
Introduction

Continuous growth in electricity demand and complexity of the power systems brings

up new challenges in online monitoring and state estimation of large-scale power system.

Therefore, power engineers are always exploring methods for fast and efficient solutions

for these problems. In addition, the evolution of power systems toward the new smart

grid era is increasing the size and complexity of the power grids. Compared with the tra-

ditional state estimation, state estimation of smart grids has a lot of key differences. One

of the main differences is that, the power grid can be distributed in a variety of environ-

ments. The traditional centralized state estimation is not scalable enough to process the

huge amount of data generated all over the grid. In addition, the traditional state estima-

tion updates much slower than the measurement cycle, so it is not fast enough to predict

the real-time behavior of power grids and respond to emergencies [1], such as the 2003 US

Canada Blackout [2].

Accurate state estimation with increasing uncertainties is another grand challenge to

the smart grid. As the grid evolves, supervisory control and data acquisition (SCADA) sys-

tems will inter-operate with smart meters and communication devices, networks [3] and

sensors such as phasor measurement units (PMUs) [4]. This fact results in higher speed at

reduced costs; however, it increases the grid’s vulnerability to IP based cyber-attacks. The

existing bad data identification methods can detect basic attacks, but they may fail in the

presence of more intelligent and unobservable attacks.

State estimation is a fundamental problem in monitoring and control of large-scale

power systems. There are several key functions in power networks which are developed

based on state estimation such as contingency analysis, optimal power flow and economic

1

Chapter 1. Introduction 2

dispatch [5]. Therefore a fast and accurate state estimation is invaluable for secure and

economical operation of complex power systems.

A state estimator provides accurate estimate of the state variables, which usually in-

cludes static states like bus voltages and phase angles or dynamic states such as generator

rotor angles and speed. The process is done using remotely captured and periodically col-

lected measurements by SCADA through remote terminal units (RTU) in substations.

The overall state estimation process consists of the following steps:

1. Data acquisition

2. Network topology processing

3. Observability analysis

4. Estimation of the state vector

5. Detection/identification of bad data

The block diagram on Fig. 1.1 shows the components of a state estimator. RTU updates

the system regarding the current status of the power system and encode measuremen-

t transducer outputs into digital signals. A central master station, located at the control

center, gathers information through the SCADA system. Typical measurements include

power flows (both active and reactive), power injections, voltage magnitude, phase angles

and current magnitude. In addition, direct measurement of voltage phase angle is avail-

able through PMUs which are equipped with a GPS receiver allows for synchronization of

measurements, yielding accurately measured and time-stamped voltage phase angles.

The network topology processor determines the topology of the network from the

telemetered status of circuit breakers. The updated electrical model of the power transmis-

sion system is sent to the state estimator program together with the analog measurements.

The state estimator processes all data before being used by other programs, except

the analog measurements of generator outputs, which are used directly, by the Automatic

Generation Control (AGC) program.

The output of the state estimator consists of all bus voltage magnitudes, phase angles,

power injections and power flows. The bad data is also identified, detected and, if possible,

eliminated by the estimator. The output data together with the electrical model, developed

by the network topology program, provides the basis for the economic dispatch program

and contingency analysis program.

Many studies have been conducted online state estimation of large-scale power system.

However, parallel dynamic state estimation, considering detailed modeling of generators,

Chapter 1. Introduction 3

V-PQ
Meters

CB
Status

Noise

AGC
Economic
Dispatch

State
Estimator

Power
System

Contingency
Analysis

x̂

RTU

Topology
Processor

SCADA

GPS

Bad Data
Detection

PMUs

Figure 1.1: State estimation process block diagram.

has so far gained less attention. In this research, the main focus is to develop parallel algo-

rithms for both static and dynamic states estimation on massively parallel graphic process-

ing units (GPU). The popularity of the GPUs in the field of high-performance computing

is due to their ability to provide computational power for massively parallel problems at

a reduced cost. Using GPUs separate task will be assigned to individual computational

core. Therefore, all tasks can be off-loaded and executed in parallel utilizing thousands of

threads, thereby accelerating the process of state estimation significantly.

In addition, to maintain both the accuracy and speed, SCADA and PMU measurements

will be used simultaneously. The numerical algorithms includes Extended Kalman Filter

(EKF) method for state prediction, and Weighted Least Square (WLS) for state estimation.

Furthermore, the relaxation based method will be employed for parallel and distributed

state estimation of large-scale systems. Moreover, in contrast with the existing state esti-

mation algorithms, which neglect the effect of cyber-attacks in state estimation modeling,

we will use a more complex model by considering the stochastic nature of cyber-attacks

which offers a robust state estimation method against false data injection attack.

Chapter 1. Introduction 4

1.1 General Terms and Definitions

In this section the important terms used in this thesis are defined to clearly identify the

scope of work done in this research.

1.1.1 Static State Estimation

Static state estimation (SSE) relies on the fact that under normal operation condition, the

power system is considered as a quasi-static system [6]. It mainly tries to estimate static

parameters of the power system, such as voltage magnitude and phase angle, using the

measurers provided by PMUs and SCADA system.

1.1.2 Dynamic State Estimation

Unlike the former method which only uses the current measurements to estimate the net-

work state, dynamic state estimation (DSE) employs the previous states to predict the state

one step ahead of the time and then correct it using current measurements [7]. The term dy-

namic state estimation also implies to the estimation of dynamic states of the synchronous

generator.

1.1.3 Supervisory Control and Data Acquisition System

In general, supervisory control and data acquisition system (SCADA) implies to data ac-

quisition systems with data transmission systems and human machine interface software

which provide a centralized monitoring and control system for numerous process inputs

and outputs. SCADA systems are designed to collect field information, transfer it to a cen-

tral computer facility, and display the information to the operator graphically or textually,

thereby allows the operator to monitor or control an entire system from a central location

in real time [8].

1.1.4 Phasor Measurement Unit

A phasor measurement unit (PMU) provides measurements by sampling the AC voltage

and current waveforms collected at secondaries of instrument transformers (CT and PT)

while synchronizing with a global positioning system (GPS) clock with the accuracy of

1μs. The voltage and current phasors are then transmitted to the SCADA server via pha-

sor data concentrators (PDCs). Compared to SCADA measurements, which are usually

updated every 3-5 seconds, PMU measurements are more accurate and can deliver up to

50 measurements per second [9].

Chapter 1. Introduction 5

1.1.5 Graphics Processing Units

The especial architecture of the graphic processing units (GPUs) made it a successful ac-

celerator/processor in particular applications where a large amount of computations is

required to be performed on data-parallel structure elements. A data-parallel application

consists of large streams of data elements in the form of matrices and vectors that identical

computation codes (kernels) are applied to them [10].

1.1.6 Online Simulation

While dealing with power system state estimation, online simulation implies that the re-

sults of state estimation should be available at specific time intervals, sufficiently fast e-

nough to track the system dynamics. In the context of DSE, online simulation means that

the results are available before the next set of measurements arrives. Currently the update

rate is every 30-60 seconds which is not fast enough to track the dynamic behaviour of the

system.

1.2 Literature Review

This section will review the milestones and previous studies in areas that must be focused

on this research.

1.2.1 Static State Estimation

Since power system SSE was formulated by Schweppe in 1969 [11–13], it has remained an

extremely active and contentious area. Of the many criteria used to develop a robust state

estimator, the following three are regarded as the most common:

•Maximum Likelihood: maximizes the probability that the estimated state variable is

near the true value.

•Weighted Least-Squares (WLS): minimizes the sum of the squared weighted residu-

als between the estimated and actual measurements.

•Minimum Variance: minimizes the expected value of the sum of the squared residu-

als between components of the estimated state variable and the true state variable.

Schweppe used the WLS algorithm which has been the most popular method and fun-

damental for all other algorithms. He constructed an objective function based one the

weighted sum of squares of the measurement residuals to be minimized.

The growing size and complexity of the power systems motivated researchers to inves-

tigate faster and numerically more stable methods. After the advent of various algorithmic

Chapter 1. Introduction 6

enhancements such as parallel computation, distributed processing, hierarchical methods

and etc., variety of techniques were examined to apply these methods in the state estima-

tion algorithm for better computational speed [14, 15].

In hierarchical state estimation, the power system is split into smaller interconnected

observable areas. Each area has its own state estimator which estimates the states locally.

A global estimator coordinates the local estimates considering the correlations among sub-

systems due to tie-line measurements [16,17]. The main drawback of this kind of estimator

is the communication overhead between subsystems and the delay caused by coordination

stage. Besides that, all of the subsystems need to be observable which may not be feasible

in real time applications. In Chapter 4 the proposed domain decomposition and relaxation

method reduced the communication between subsystems by decomposing the system into

fully independent subsystems using coherency characteristic of the generators. Also, since

the system of equations are decomposed instead of the physical system there is no need

for observability of all subsystems.

In decoupled state estimation, the interconnection between different subsystems was

neglected which resulted in a simpler model [18, 19]. This method requires less memory

and saves a significant fraction of the computations. However, it has the same problems as-

sociated with hierarchical sate estimation. These problems motivated researchers toward

distributed state estimation [20, 21]. In this approach state estimators are physically dis-

tributed across the subsystems. Each substation performs its own state estimation without

transferring data to control centre. Even in distributed state estimation it is necessary to

accelerate state estimation for online monitoring of the system. In this research different

types of state estimation are implemented on the massively parallel architecture of the G-

PU to reduce the overall execution time.

In addition to intelligent methods, parallel programming techniques have also been

exploited to accelerate the state estimation. Parallel execution deals with the running of

the estimation process simultaneously in different subsystems which significantly speed

up the computational process [22–24]. In the above techniques, the state vector for each

instant of time is obtained from the measurement set at the same instant, which usually

cannot follow the dynamic behaviour of the power system. In Chapter 3 using EKF and

the state prediction technique we capture the dynamic nature of the power system. Also,

fine-grained parallelization offered by the GPU significantly reduced the execution time of

our proposed method compared with parallel programming technique on CPU.

Chapter 1. Introduction 7

1.2.2 Dynamic State Estimation

DSE possesses the ability to predict the system states in advance and within a short time

interval. By modeling the time varying nature of the system DSE alleviates losses under

drastic changes during load fluctuations or network switching. The idea of using DSE was

examined shortly after SSE [27]. Many of DSE techniques follow a prediction correction

method which gives the operator a rough estimate of the states one step ahead of the time.

Existing DSE paradigms mainly focus on complexity reduction using partial measure-

ments, hierarchical and decoupled methods [28–30]. These approaches compromise the

accuracy for speed, and are not fast enough to predict the real-time behavior of the sys-

tem. Other methods that focus on estimation accuracy by increasing either modeling or

algorithmic complexity are computationally onerous limiting their practical applicability

to small scale systems [31–34]. For nonlinear systems, subject to Gaussian noise, EKF is

the most popular method which is computationally very demanding specially combined

with the complexity of detailed power system component model [35,36]. To alleviate com-

putational burden one approach tried reduce the computational complexity by describing

an equivalent reduced order state-space system with lower dimensional measurement da-

ta [37, 38]. Utilizing the massively parallel architecture of the GPU in this work we accel-

erate state estimation without reducing the complexity of the model. In order to be able to

implement the proposed method for realistic application we tried to apply methods which

are applicable for large-scale systems and are suitable for SIMD architecture of the GPU to

reduce the computational burden.

Most of the approaches dealing with DSE tried to improve the computational perfor-

mance of the steady-state estimation process [34, 39–41] which only provides a series of

snapshots of system conditions, where the dynamic transition between the snapshots is

overlooked. However, few researchers focused on the dynamic parameters of the syn-

chronous generator which plays a vital role in a power system [31, 33, 42–44]. Detailed

representation of the synchronous generator in online DSE would allow system operators

to accurately assess system condition and take rapid control actions following major dis-

turbances.

There is limited research on the state estimation of the synchronous generator. An

unscented Kalman filter based state estimation method for third-order generator model

assuming the rotor angle as a measurable signal was represented in [45–47]. Also pro-

posed in [33] is DSE with unknown inputs for fourth-order generator model considering

the exciter output voltage as unknown input. Using the same generator model, [47] pro-

posed an optimal state estimation of both generator internal dynamic and algebraic states.

In all of the previous works the number of synchronous generators in the state estimation

Chapter 1. Introduction 8

process was limited to a single generator which precluded the study of computational per-

formance of large-scale systems. In Chapter 4 we used a ninth-order generator model for

DSE. Furthermore, instead of a single generator, DSE was simulated for all generators in

the network.

1.2.3 Application of PMUs in State Estimation

PMUs provide measurements by sampling instantaneous waveforms can deliver up to

50/60 measurements per second. The implementation of synchronized measurement tech-

nology in the modern power networks has improved the capability of system operators to

monitor the real-time condition of power systems [48, 49].

For large-scale power networks, installing enough PMUs for full network observa-

tion may be impractical. Several state estimation methods that incorporated only PMU

measurements are discussed in [33, 50–52]. A more realistic and feasible deployment of

the PMUs is achievable using a hybrid estimator, in which both conventional and syn-

chronized measurements are included in the algorithm [53, 54]. Some approaches used

mixed measurements by transforming the PMU to traditional format which may cause ill-

conditioning in case of poor transformation or neglecting the time synchronisation [55,56].

Others proposed a hierarchical scheme which used PMU and SCADA in different level-

s [57, 58]. However, none of these methods can track system dynamics during fault or

sudden change in load.

It should be considered that the PMU and SCADA measurements are different in terms

of accuracy, refresh rate and transmission delay. The differences in measurement accuracy

affect data compatibility. Data refresh rate and transmission delay can be combined in-

to a unified time synchronization issue [59]. To overcome above mentioning drawbacks,

in [61] authors interpolated the nodal voltage of PMU unobservable buses. They consid-

ered a sensitivity matrix added to admittance matrix in case of significant changes in PMU

measurements. However, this assumption may not be always true since not all buses in

the network fallow the same changes. Another approach decoupled the system into PMU

observable areas and SCADA observable area to estimate the states locally [28, 62]. This

type of estimator requires the system to be completely observable through PMU which is

not practically possible. In Chapter 3 we proposed a new data collation technique to com-

bine the measurement input from both PMU and SCADA. Considering different accuracy

for each set of the measurements, extrapolation of the SCADA measurements for time syn-

chronization, and transformation of PMU data from polar to cartesian format provides a

uniform measurement set for online DSE.

Chapter 1. Introduction 9

1.2.4 Smart Grids

Smart grids are large distributed systems which utilize enhanced information and com-

munication technologies coupled with advanced control algorithms to improve efficiency

and reliability of the power system [63]. With the addition of communication and smart

metering technologies, state estimation is now feasible at all levels of the power system.

However, new generations of digital devices, such as PMUs, distributed generation and

smart meters provide huge amount of additional information which increase the compu-

tational burden and significant data storage resulting in new challenges [64].

Considering complexity associated with the large-scale estimation problems, researcher-

s proposed network reduction [65], and domain decomposition [66, 67] to scale down the

problem. A survey of multi-area and distributed state estimation can be found in [68].

However, as the number of measurements and sampling rate increase, these approaches

may suffer from communication bottleneck and computational reliability issues inherent

in system architecture.

To alleviate the drawbacks of above methods, distributed state estimation approach

was investigated [64,69,70] which, both reduces the size of the problem and does not suffer

from long latency caused by communication between different levels. Recent research in

power system state estimation within the smart grid context is focused on the following

subjects:

•Distributed state estimation by domain decomposition to scale down the problem [65,

67, 70].

•Combined parameter and dynamic state estimation on practical data [42].

•Vulnerability analysis of power grids as a cardinality minimization problem [71].

•Secure state estimation by identification and protection of critical measurements [72,

73].

While the above methods address important issues, they overlook the computational

efficiency aspect and speed of the state estimation process which are vital for online mon-

itoring and control of the grid. In addition, the proposed approaches are mainly tested

on CPU-based hardware for small system sizes which behave somewhat differently from

large-scale power systems in terms of computational complexity. In this work parallel

implementation of DSE on GPU significantly reduces the computational burden. The pro-

posed methods are tested on large-scale systems which guarantee its efficiency for realistic

applications.

Chapter 1. Introduction 10

1.2.5 Cyber-Physical Attacks on State Estimation

Since the beginning of state estimation development, it was necessary to validate the mea-

surements obtained from SCADA, as they are known to contain measurements with vari-

ous types of errors. Many researchers have considered the problem of bad data detection

(BDD) in the power systems [17, 75–78], however conventional BDD approaches usually

fail when the network malfunction is intentionally caused by an attacker [4, 79, 80].

Although, the advancement of cyber technologies in sensing, communication and s-

mart measurement devices significantly enhanced the power system security and relia-

bility, it increased the vulnerability of smart grids to cyber-attack [81, 82]. Coordinated

cyber-attacks can be designed to be unobservable for BDD algorithms. Such attacks may

impose significant errors in the state estimation algorithms, and mislead system opera-

tors into making potentially catastrophic decisions [83]. Vulnerabilities of power system

to cyber-attacks can be classified into three main categories [84]:

•Data integrity analysis- this research area investigates the possibility of the attack from

attacker’s point of view by exploiting weaknesses in BDD techniques [85–87].

•Consequence analysis- the effect of false data attack within different functions of energy

management systems such as optimal power flow, congestion analysis, automatic

generation control and energy pricing is investigated in this research area [88–90].

•Attack prevention analysis- specifically this research area is interested in finding the

critical measurements and protecting them by improving the security of the commu-

nication system [91–94].

One important fact which is neglected in above works is that the cyber-security anal-

ysis should be performed in a timely manner in order to efficiently solve the data attack

construction problem. Otherwise it will slow down the process of state estimation and

control of the system behaviour. Another main concern related to most of the above ap-

proaches is that they are not tested on large-scale power systems. So the complexity and

efficiency of the proposed approaches in practical system is unclear.

In Chapter 5, considering the fact that the power system is a nonlinear system which is

subjected to many random events, a method based on the stochastic nature of the power

system is proposed. The power system can be best modeled as a stochastic hybrid dynam-

ical system where the stochastic availability of generation and state/structure interaction

is explicitly included [95, 96]. Using Markov chain theory and Euclidian distance we pro-

posed a detection technique which can reduce the chance of a successful cyber-attack. The

proposed method is implemented on the GPU and tested on large-scale systems.

Chapter 1. Introduction 11

1.2.6 Relaxation Methods

Relaxation approach is not restricted to a particular system structure. In this method the

system is partitioned into a number of subsystems to reduce the computational complexity

of the system solution. Each subsystem uses the previous results of other subsystems as

an initial guesses for its new iteration. After each iteration results are exchanged between

subsystems, and this process is repeated until convergence [98].

The relaxation method was first introduced in the power system area in [100]. In [101]

the simulation time between the sequential relaxation method and direct method has been

compared for some study cases. The useful outcome resulted from both sequential [101]

and parallel [102] implementation of the relaxation method is getting a higher efficiency

for the larger systems. Applying the Gauss-Seidel relaxation technique to the large lin-

ear matrix solutions confirmed that the present method can reduce the CPU cost without

losing the numerical accuracy and stability [103]. The application of relaxation for cyber-

attack analysis [104] and for real-time transient stability simulation of power systems [105]

was also investigated. In chapter 4, this method is employed for parallel DSE on GPU.

1.2.7 Domain Decomposition

Domain decomposition techniques are primarily partitioning methods which try to split

a system into several subsystems that can be solved individually [106, 107]. The main ad-

vantage of decomposition techniques is that they are suitable for parallel application on

multi-processors since independent subsystems can be solved simultaneously.

Generally, from a power system point of view, domain decomposition methods reduce

the problem size by dividing the network into several sub networks which results in less

computation effort in each individual sub network. Most of the approaches in distribut-

ed state estimation partitioned the system either randomly or based on the geographical

distances by assigning equal numbers of generators and buses among the subsystems.

Most of these approaches ignore overlapping and boundary buses which is not an efficient

method because the network buses have different connectivity which leads to load balanc-

ing problem and inaccuracy [70, 109, 110].

Other methods which tried to overcome the load balancing problem based on graph

theory approaches are mainly too complicated for online applications [111–113]. Anoth-

er option would be to split the computation burden among processors based on the total

number of equations. However, this approach will increase both the programming and

communication complexity [22, 24].

Chapter 1. Introduction 12

In the proposed decomposition technique the combination of coherency characteristic

with equal computational load balancing in Chapter 4 increased the efficiency of the par-

allel programming while reducing the execution time with no changes in the complexity

of the system.

1.3 Motivation of this work

Conventional methods to improve the cycle time for state estimation mainly include the

following strategies:

•Complexity reduction

•Hierarchical state estimation

•Distributed state estimation

•Parallel state estimation

Although above approaches tried to improve the process of state estimation, they all

have their own drawbacks which are discussed in literature review. Moreover, in almost

all of the aforementioned works, DSE has been performed for either a single machine or

a small power system. However, in large-scale power systems with detailed modeling

of grid components, a key issue is the requirement for high-performance computation re-

sources. It was one of the major motivation in this work to look for faster techniques for

DSE in Chapter 3 and Chapter 4. For online monitoring of the power system, we need to

preserve accuracy and speed simultaneously to prevent catastrophic events like blackouts.

From computing source point-of-view, supercomputers, multiprocessor networks, var-

ious types of parallel processing architectures, and distributed memory have already been

employed for power system analysis. All of these approaches accelerate the simulation

process to some extent; however, they are limited by some important factors such as cost,

system size programmability, and communication issues. Advancements in GPU tech-

nology along with the increasing deployment of high-speed time-synchronized PMUs in

wide areas provide the opportunity for online monitoring of the power system which was

another important motivation of this research. The GPU offers significant speed-up with

the lowest possible cost on properly designed parallel algorithm. Moreover, it can be used

in existing power network with minimum changes in the system.

In addition, historically researchers focused on the effect of faults on the physical in-

frastructure; however, faults in the cyber components may cause even more damages than

the physical failures. Cyber attacks are intelligently designed to manipulate the operator

so that they result in irreparable damages in the system which, are not comparable with

Chapter 1. Introduction 13

random bad data. Therefore, new solutions must be developed to assess sources of vul-

nerabilities and detect cyber-attacks. The primary effect of including cyber-attacks in the

system modeling is that it increases the size of the system under study. As a result, faster

algorithms need to be investigated to guarantee online system performance by detecting

the attack in the smallest possible time which gives the operator enough time to take pre-

ventive actions. Utilizing the GPU and considering the stochastic nature of the power

system in Markov chain modeling the proposed method in Chapter 5 reduces the chance

of successful cyber-attack in the power system.

Overall, the desire to accelerate the state estimation process for large-scale power sys-

tems is the main motivation of this thesis. The speed of state estimation can be improved

by three approaches:

•Developing new algorithmic methods

•Exploiting parallel and distributed processors

•Utilizing faster processors

This thesis aggregates all three aforementioned approaches to accelerate the state es-

timation process for large-scale power systems. A novel algorithmic method is proposed

and implemented on two different types of processors. One is a general purpose CPU,

and the other is the massively parallel GPU. GPU offers a viable alternative computational

engine for speeding up online simulators for endless growing complexity and increasing

accuracy demand of a system model.

1.4 Thesis Objectives

The objective of the proposed research is to develop parallel algorithms for dynamic state

estimation of large-scale power systems. Utilizing the massively parallel architecture of

GPUs, the proposed approach is implemented in both single-GPU and multi-GPU com-

puting systems. Main contributions of this study are as follows:

•Two-level state estimation

In order to capture the dynamic nature of the power systems, a WLS state estimation

method applying EKF on PMU measurements is proposed. Due to the high cost of

PMU synchronization, it is not possible to have them all over the grid, so a hybrid of

PMU and SCADA measurements is used. The SCADA measurements in the buses

without PMU installation are calculated based on the historical data considering the

delay in the PMU measurements to take advantages of the PMU’s faster refresh rate.

Using EKF the entire states are predicted one step ahead of the time. The PMU and

Chapter 1. Introduction 14

estimated SCADA measurements are used for state correction. In normal operation

condition the exponential moving average method is used to estimate the PMU mea-

surements. To consider the effect of load changes, in case of significant difference in

PMU measurements, a correction term is added to the results of prediction. The time

synchronization, which is the most important reason for ill-conditioning, is guaran-

teed since the SCADA measurements are estimated at the same time as the PMU

measurements are sent.

•Massively parallel implementation on GPUs

In this research, we do not compromise on the system model complexity. GPU

thread-level parallelism is used for large-scale power system state estimation for the

purpose of online monitoring and control. Taking advantages of the massively paral-

lel architecture of the GPU, computationally intensive sections of the state estimation

program converted into a CUDA kernel (functional program which generates a large

number of threads for data parallelism).

Via thousands of threads the entire task executed in parallel, which significantly ac-

celerates the process of state estimation. Three types of parallelism are used in this

research; algorithm-parallelism, task-parallelism and data parallelism. The first one

find the parallelism inherent in the problem. In the second method the traditional

serial algorithm is converted into various smaller and independent tasks which may

be solved in parallel. The last method is the most fine-grained type of parallelism

that can be used on the SIMD-based architecture of the GPUs.

•Numerical solution methods

The numerical methods for parallel computations is an important subject for a bet-

ter system performance. Both direct and iterative sparse linear solvers are exploited.

The LU decomposition and Conjugate Gradient solver are applied for state estima-

tion using static states. Relaxation methods is employed for the nonlinear system of

dynamic states using detailed generator model. Relaxation based solver is an iter-

ative method whose underlying structure is parallelized in nature. Therefore, each

subsystem is solved independently to fit in the parallel hardware architecture of the

GPU.

•System partitioning

Another important factor for exploiting parallelism is to partition the large system

into smaller subsystems. Partitioning can be done in two different ways. The prob-

lem can be divided into many small tasks to be solved independently which result

in intensive the communication between the processors. Or it can be split into a few

Chapter 1. Introduction 15

but large tasks or subsystems which impose less communication on the processors.

In our research, a combination of both approach is employed using the thread-level

parallelism on GPU and applying the relaxation technique. For partitioning a load

balancing technique considering coherency characteristic of the generator is used to

distributed equal load work among processors.

•Cyber-attack analysis

To overcome the effect of cyber-attacks, the stochastic nature of the system distur-

bances is considered and a cyber-physical model of the power system utilizing the

Markov chain is proposed. Considering the previous results of state estimation, a

set of possible states along with the probability of each state is provided. A Markov

chain based on these states is defined. After each estimation process all states are

checked on the Markov chain. If the estimated state is close to a value with low

probability or out of the Markov chain, the possibility of the cyber-attack is high. In

this situation, critical measurements are identified and updated based on the on-line

power flow analysis. The state estimation run again using updated measurements.

Changing the critical measurements using updated information decreases the chance

of successful cyber-attack.

1.5 Thesis Outline

This thesis consists of six chapters and is organized as follows:

•Chapter 1: Introduction- The general terms used in this thesis are described in this

chapter to highlight the scope of the research. The background work done in this

area since several decades ago is also summarized.

•Chapter 2: Overview of Multi-Core and Many-Core Architectures- This chapter

presents an introduction about CPU and GPU technology and its architecture.

•Chapter 3: Massively Parallel Static/Dynamic State Estimation: Single GPU Im-

plementation:- This chapter presets the results of parallel state estimation for both

static and dynamic states implemented in single GPU architecture. By exploiting the

parallelism inherent in the state estimation problem, a parallel algorithm is devised

to maximize the computational efficiency of the GPU.

•Chapter 4: Relaxation-based Dynamic State Estimation: Multi-GPU Implementa-

tion- The Relaxation method is introduced and implemented in this chapter. The

objective is to revisit the application of relaxation-based approaches to the state esti-

mation problem using coherency based domain decomposition.

Chapter 1. Introduction 16

•Chapter 5: Robust Dynamic State Estimation Against Cyber-attack- Considering

the stochastic nature of the power system and using Markov chain model a robust

state estimation against false data injection attack is presented in this chapter.

•Chapter 6: Conclusions and Future Works- The contribution of this research and

the future works are summarized in this chapter.

2
Overview of Multi-Core and Many-Core

Architectures

2.1 Introduction

A sequential computer with one central processing unit (CPU) includes only one control

instruction unit. Apart from its limitation to single instruction execution at any time, there

are two main obstacles with this technology: slow memory access and fundamental lim-

itations such as overheating with compact circuits. These issues limited the achievable

speed of serial computers even with the growth of the hardware technology. Therefore,

the parallel processing techniques were seriously taken into account as the main alterna-

tive approach.

Recently, GPU which was originally developed for video game programming has be-

come programmable as a general purpose programming platform. Due to the low cost and

huge computational power of the recent GPUs, they are getting a lot of attention in differ-

ent type of power system analysis. GPU-based techniques as an alternative for CPU-based

parallel programming have a major role in acceleration of simulations which need highly

intensive computational power.

The application of parallel processing in power system analysis is motivated by the

desire for faster computation. The popularity of the GPUs in the field of high performance

computing is due to their ability to provide computational power for massively parallel

problems at a reduced cost.

17

Chapter 2. Overview of Multi-Core and Many-Core Architectures 18

2.2 Parallel Processing

Parallel processing is an information processing technique in which two or more proces-

sors work simultaneously on the solution of a problem. The application of parallel pro-

cessing in power systems analysis is motivated by the desire for faster computation and

not because of the structure of problems. Parallel processing techniques attracted con-

siderable research interest in different types of power system computations such as state

estimation [22, 24], power flow analysis [114–116] and transient stability [117, 118].

2.2.1 Massively Parallel Processing on the GPU

Parallel processing is a type of computation where many calculations are performed si-

multaneously. This method of computation is based on the fact that large problems can be

divided into smaller pieces and then solved concurrently. In parallel processing the single

CPU is replaced by multiple CPUs (even if they are individually slower than the presumed

single CPU) whose overall parallel performance accelerates the simulation. Fig. 2.1 shows

the four main steps in creating a parallel program which includes: 1) decomposition of

computation in tasks, 2) Assigning tasks to processors, 3) arrangement of data access, com-

munication and synchronization, and 4) mapping processes to processors.

Task

Task

Task

Task

Task

Task

Task

Task

P1

P3

P2

P4

P1

P3

P2

P4

Decomposition Assignment Arrangement Mapping

Sequential
Computation Processors Parallel Program Processors

P1 P2

P4P3

Tasks

Figure 2.1: Steps of parallel algorithm generation.

Chronologically, there are two main classification for parallel processing architecture

hardware. In the first one computing machines are characterized by the number of simulta-

neously active instruction and data streams which practically grouped as single instruction

multiple data (SIMD) and multiple instruction multiple data (MIMD) architectures [119].

In a SIMD-based technology the parallelism is exploited by performing the same operation

Chapter 2. Overview of Multi-Core and Many-Core Architectures 19

concurrently on many pieces of data, while in the MIMD architecture different operations

may be performed simultaneously on many pieces of data. The SIMD model works best

on a certain set of problems such as image processing, and MIMD is suitable for general

purpose computation. Vector processors and array processors are examples of the SIMD-

based architecture, multi-processor and PC clusters have an MIMD architecture.

In the other category the focus is on the relationship between processing elements and

memory modules [120]. There are two classes of parallel processing architectures: dis-

tributed memory, and shared memory. In the former, there is no memory in the system

other than the local memory on each processing element, and the processors communicate

with each other by sending and receiving messages in a network. In the shared memory

processors, however there is a central memory accessible from any of the processing units,

regardless of existing local memory on each processing units. The common memory is

used to make communications between processors in shared memory architecture.

2.3 CPU and GPU Architecture

There exist two major processor architectures: the multi-core CPU and the many cores

GPU. The CPU, which is the processor in most of the computers, is composed of only a

few cores that can handle a few software threads at a time. In contrast, the GPU which

is an energy-efficient processor on the market is composed of hundreds of cores known

as stream processors (SP) that can simultaneously handle thousands of threads. Fig. 2.2

shows a comparison between the GPU and CPU computation capabilities and bandwidth,

where it can be seen that, as of 2011, the peak performance and bandwidth of the GPU is

about four times the performance and bandwidth of an Intel CPU [121].

(a) Floating-point operation per second for the
CPU and the GPU.

(b) Memory bandwidth for the CPU and the G-
PU.

Figure 2.2: Comparison between CPU and GPU [121].

Chapter 2. Overview of Multi-Core and Many-Core Architectures 20

The modern GPU consists of multiprocessors which map the data elements to the par-

allel processing threads. A multi-core CPU has 6 to 7 times larger cache than the GPUs

cache system. On the other hand, the GPU has many more cores than the CPU. Owing

to the fact that more transistors are devoted to data processing than caching and flow

control, the GPU has significantly larger computational power compared to a multi-core

CPU [122]. In order to highlight the differences between CPU and GPU, Fig. 2.3 is provid-

ed which shows the physical and abstracted resources in a CPU and a GPU. CUDATMand

OpenMP which are used for parallel programming will be explained later.

CPU
SM1 SM4

SM13 SM16

...

...

...

...

NVIDIA GPU

Core 1 Core 2

Core 3 Core 4

SP

SPSPSP SP

SP SPSP

P
CIe I

nterf
ace

System Main
Memory GPU Global Memory

Physical Resources

SP

SPSPSP SP

SP SPSP

SP

SPSPSP SP

SP SPSP SP

SPSPSP SP

SP SPSP

Parallel
Region

Slave
Thread

Master
Thread

Grid 0

Grid 1

Block 0 Block N

...

CUDA
Threads

Block 0 Block N

...

NVIDIA CUDA KernelOpenMP Function

Abstracted Resources

Do / for loop

Parallel
Sections

Local Memory

Figure 2.3: CPU, GPU, CUDATMand OpenMP resources.

2.3.1 Multi-Core CPU Architecture

The term multi-core refers to a multiple core processor that is simply an integrated circuit

where two or more processors have been attached for increased performance via parallel

processing. The multiprocessor creates, manages, and executes concurrent threads in hard-

Chapter 2. Overview of Multi-Core and Many-Core Architectures 21

ware with zero scheduling overhead. To manage hundreds of threads the multiprocessors

map each thread to one scaler processor core, and each scaler thread executes independent-

ly with its own instruction. There is a global device memory that all the multiprocessors

can have access to. Also, each multiprocessor has its own on-chip memory that is accessi-

ble individually.

2.3.2 OpenMP

OpenMP is a standard application programming interface (API) for multi-core CPUs

which does not require major code reformation for parallelization [123]. It supports shared

memory, however it is limited to a couple hundred core due to thread management over-

heads and cache coherence hardware requirements .

OpenMP also includes directives, library routines, and environment variables to fa-

cilitate scheduling and parallelism at runtime with high level of portability. It provide

support for sharing and privatizing data using extension of the C and C++ languages with

tasking constructs, device constructs, work sharing constructs, and synchronization con-

structs. The program begins as a single process called a master thread which executes

sequentially. The master thread creates a group of slave threads within the parallel con-

struct (Fig. 2.3). At the end of the construct only the master thread remains while the rest

of the slave threads synchronize and terminate.

Simple Example

An example is provided here to illustrate how an algorithm may be parallelized in a shared

memory programming model using OpenMP . Consider a function that takes twoN×N

matricesAandBand multiply them in a third matrixC. On the CPU, threeforloops are

used over all array elements as follows:

for(i=1 : N)

for(j=1 : N)

for(k=1 : N)

C[i][j]=A[i][k]∗B[k][j]+C[i][j]

end

end

end

Chapter 2. Overview of Multi-Core and Many-Core Architectures 22

There are two level of active computation in each loop: outside the loop and inside the

loop. Outside the loop, the loop counter is increasing and compared with the length ofN,

while inside the loop, the actual computation is performed on arrays at a fixed position

determined by the loop counter. The calculations performed on each data element in the

matrices are independent of each other.

The OpenMP version of the same function can be written as:

#pragma omp parallel numthread(n)

#pragma omp parallel f or private(j, k),shared(−−)

for(i=0;i<N, i++){

for(j=0;j<N,j++){

sum=0;

#pragma omp parallel reduction(+ :sum)

for(k=0;k<N, k++){

sum=A[i][k]∗B[k][j]+sum;

}

C[i][j]=sum;

}

}

Usingparallelconstruct a team ofnthreads which are defined bynumthread(n)is

formed to start parallel execution of the corresponding code.numthread(n)is an internal

control variable which defined the maximum number of threads in the team executing the

parallel region. Appropriate iterations are assigned to the individual threads by compiler.

The data environment consists of:

•Private variable- which determine private variables in the thread executing region.

•Shared variable- which determine variables that are shared among the team of threads

executing the parallel region.

•Reduction variable- which identifies which shared value and operation will be used.

This model of execution is referred to master/slave model where multiple threads of

execution perform tasks defined implicitly or explicitly by OpenMP directives. Given

a sequential program, the master/slave makes it easy to get loop level parallelism in an

incremental fashion which take advantages of a multiprocessor system.

Chapter 2. Overview of Multi-Core and Many-Core Architectures 23

2.3.3 Many-Core GPU Architecture

The GPU thrives on data-parallel applications with large computational requirement. A

data-parallel application consists of large streams of data elements in the form of matrices

and vectors that run the same computation code. To efficiently use and program a GPU it

is instructive to learn the GPUs internal architecture. The following section briefly explains

the architecture and hardware specifications that we require for programming purposes.

2.3.4 CUDA Program Structure

The first general-purpose programming model for the GPU hardware was compute uni-

fied device architecture (CUDA) which provide a C-like syntax to execute and manage

computations on the GPU as a data-parallel computing device. A CUDA program consists

of multiple phases that are executed on either the CPU (host) or the GPU (device). The

sequential parts are implemented on the host, and intensive parallel phases are performed

on the device.

The executable code which runs on the device is known as a CUDA kernel. Kernels are

functions designed to run in parallel on multiple streaming multiprocessors (SMs) of the

GPU. The GPU runs its own kernel independently under the CPU’s control. The execution

starts with the host and moves to the device after a kernel function is invoked. All the

kernels have their own unique coordinates to distinguish themselves, and to identify the

specific portion of the data to process. Typically, calling a kernel create a large number of

threads to execute the same task all in parallel [121].

2.3.5 CUDA Hierarchy

Threads are the smallest computing element in the GPU that can be scheduled to run on

SPs. When a kernel is invoked, blocks of threads are defined to assign one thread to each

data element. All threads associated with a particular kernel are allocated in a grid run-

ning the same instruction on one SM. The grid is subdivided into a set of thread blocks,

where each block has the same number of threads.

Each block within a grid, and each thread within a block are identified by individual

indicesblockIdandthreadIdthat make them accessible via the built-in variables in CUDA.

All blocks in a grid have the same dimensions and share the sameblockIdvalues. Grids

can be one- or two-dimensional with a maximum of 65535 blocks in each dimension. Each

block within the grid is composed of up to 1024 threads. These threads are basically gen-

eral purpose arithmetic units, each having their own floating point unit (FPU) which can

be organized in one, two, or three dimensions arrays with a maximum of 1024 threads in

Chapter 2. Overview of Multi-Core and Many-Core Architectures 24

the 1st and 2nd dimensions and a maximum of 64 threads in the 3rd dimension [124]. Fig.

2.4 shows a high level view of CUDA in a grid of four blocks.

Grid 2

Block
(0, 1)

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(1, 1)

Thread
(0,1,0)

Thread
(0,0,0)

Thread
(1, 1, 0)

Thread
(1, 0, 0)

Thread
(2,1,0)

Thread
(2,0,0)

(0, 0, 1) (1, 0, 1) (2, 0, 1)
Kernel 2

Kernel 1

.

.

.

Figure 2.4: CUDA thread organization for data-parallel processing.

When a block of threads is assigned to a SM, the instruction unit splits and creates

groups of 32 parallel threads called warps. Each of these warps contains the same number

of threads, called the warp size, and is executed by the multiprocessor in a SIMD fash-

ion. Because threads in a given block execute within the same SM, they have access to the

shared memory in the SM, as well as to a global memory in the GPU.

To ensure all threads in a block have completed a stage of their execution, threads

have to stop until every thread in the block reached the same point in the set of kernel

instructions before continuing with execution. Excessive synchronization calls can result

in wasted time where the SPs are waiting rather than working. Once all the threads have

finished executing, the host can copy results from GPU memory to host memory and begin

execution of a different kernel.

Simple GPU Kernel

In contrast with CPU which executes one instruction at a time, and each instruction does

one thing, GPU can executes several instructions at the same time. To illustrate how the

CUDA works, consider the same example provided in Section 2.3.2.

Chapter 2. Overview of Multi-Core and Many-Core Architectures 25

The computation on the GPU is performed by separating the outer loop from the inner

calculations. First of all, enough memory space on device memory should be allocated for

each matrix usingCudaM alloccommands:

CudaM alloc((void∗∗)&dA,(sizeof(float)∗N∗N));

CudaM alloc((void∗∗)&dB,(sizeof(float)∗N∗N));

CudaM alloc((void∗∗)&dC,(sizeof(float)∗N∗N));

dAanddBspecifies the location of the matrix A and B in device memory. The size of

allocated memory is defined by measuring the size of the variable (float in our case) and

multiplying it by the size of matrix A.

The next step is to transfer data to the GPU by executing the following command:

cudaM emcpy(dA,hA,(sizeof(float)∗N∗N), cudaM emcpyHostT oDevice);

cudaM emcpy(dB,hB,(sizeof(float)∗N∗N), cudaM emcpyHostT oDevice);

hAandhBspecify the location of matrix on host memory. Arrays of the matrices will

be stored in vector format in the GPU. The kernel code to perform the operation can be

written as:

global void M atrixM ultiplication(float∗A, f loat∗B, float∗C, int N)

{

float sum=0;

int id.x=blockIdx.x∗blockDim.x+threadIdx.x;

int id.y=blockIdx.y∗blockDim.y+threadIdx.y;

if(id.x < N||id.y < N)

for(int i=0;i<N;++i)

sum+=A[id.y∗N+i]+B[i∗N+id.x];

C[id.y∗N+id.x]=sum;

syncthreads();

}

The global qualifier global specifies that the kernel is callable from the CPU and will

be executed on the GPU. Instead of the frits twoforloops new parameters, calledid.xand

id.y, are defined to control the execution of the kernel. Each thread will perform on the

Chapter 2. Overview of Multi-Core and Many-Core Architectures 26

vector elements specified byid.x.blockDim.xreturns the number of threads in each block.

Every thread in a block and every block in a grid has a unique index which is accessible

through thethreadIdxandblockIdx, respectively. The next line performs the dot product

between rows of first matrix and column of second one. Once the results are added up it

will be saved on matrix C. The number of threads have to be equal or more than the num-

ber of elements in matrices to ensure that calculation is performed on all elements. The

syncthreads()call ensures that all threads are synchronized. To invoke this kernel from

a CPU-based code we need to add a syntax as below:

M atrixM ultiplication <<< grid, block >>>(dA,dB,dc,N);

The grid dimensions and the block dimension in execution configuration (<<< >>>)

are defined bygridandblock, respectively. At the end the result can be transferred to host

memory using thecudaM emcpycommand.

2.3.6 Memory Hierarchy

At the fundamental level, each of the threads has their own set of local memory and a set

of registers. Threads in a block have collective access to shared memory which is local to

that block. All the threads also, have access to a global memory which is the main mem-

ory of the GPU with the largest size and slowest access speed. Constant memory is a fast

but read-only memory and texture memory is usually used for graphics rendering appli-

cations.

In addition, a CUDA also contains constant memory, which is very fast but read-only

memory. Texture memory which is usually used for graphics rendering applications is

also available. Finally, the GPU also has access to the host’s main memory, but not direct

access [121]. Fig. 2.5 shows the memory hierarchy in a grid of four blocks described above.

2.4 Hardware Setup

The hardware used in this work is one unit of TeslaTMS2050 GPU from NVIDIA with 148

GB/s memory bandwidth. Each FermiTMGPU inside TeslaTMS2050 has 448 cores which

deliver up to 515 Gigaflops of double-precision peak performance. This device contains 16

streaming multiprocessors (SMs), each with 32 streaming processors (SPs), an instruction

unit, and on-chip memory. Each SM has 4 special function units (SFUs) execute transcen-

dental instructions such as sin, cosine, and 16 load/store units, allowing source and des-

tination addresses to be calculated for sixteen threads per clock [121]. Fig. 2.6 shows the

Chapter 2. Overview of Multi-Core and Many-Core Architectures 27

Grid 1

Texture Memory

Block
(0, 1)

Block
(1, 0)

Block
(0, 0)

Block
(0, 0)

Shared Memory

Registers

Local

Registers Registers

Local
Memory

Registers

Registers Registers

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(2,1,0)

Thread
(1,1,0)

Thread
(0,1,0)

Local
Memory

Local
Memory

Constant Memory

Global Memory

Figure 2.5: CUDA memory hierarchy and thread organization for data-parallel process-
ing.

architecture of the FermiTMGPU.

The Tesla S2050 is a CUDA-enabled device which can execute multiple kernels (4) si-

multaneously. Thus to have four GPUs working in parallel, in a Tesla S2050 or any multi-

GPU architecture, we require the same number of CPU cores to manage and control the

GPUs simultaneously to minimizes the overhead that occurs in data copying and kernel

invocation. The CPU is the quad-core Intel XeonTME5-2620 with 2.0 GHz core clock

and 32 GB memory with 42.6 GB/s memory bandwidth, running 64-bit Windows 7 op-

erating system. Fig. 2.7 shows the inside architecture of TeslaTMS2050 computing system

connected to CPU.

In this work, the C-run-time library and the Win32 API was used to have a full con-

trol on the synchronization of GPU data-transfer. CUDA version 5.0 with compute ca-

Chapter 2. Overview of Multi-Core and Many-Core Architectures 28

L2 cache

Giga Thread Engine

Host Interface
M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

Raster Engine Raster Engine

Raster Engine Raster Engine

GPC GPC

GPC GPC

SP SP SP SP
LD/ST

LD/ST

LD/ST

LD/ST

S
F
U

S
F
U

S
F
U

S
F
U

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 × 32 bit)

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SM

Instruction
network

Shared
memory

Uniform
cache

Text Text Text Text

Texture cache

Polymorph engine

aa

e
r
e
r

Dispatch Port

Result Queue

Operand Collector

FP Unit INT Unit

CUDA Core

L

F
U

L

F
U

U

L

LD/

ST

U

L

LD/

ST

Figure 2.6: FermiTMGPU architecture.

L2 cache

Giga Thread Engine

Host Interface

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

Raster Engine Raster Engine

Raster Engine Raster Engine

GPC GPC

GPC GPC

L2 cache

Giga Thread Engine

Host Interface

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

Raster Engine Raster Engine

Raster Engine Raster Engine

GPC GPC

GPC GPC

L2 cache

Giga Thread Engine

Host Interface

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

Raster Engine Raster Engine

Raster Engine Raster Engine

GPC GPC

GPC GPC

L2 cache

Giga Thread Engine

Host Interface

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

M
e
m
or
y
C
o
nt
r
oll
er

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap Scheduler Wrap Scheduler

Dispatch unit Dispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

S
P

S
P

S
P

S
P

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SF
U

SF
U

SF
U

SF
U

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

Instruction cache

Wrap SchedulerWrap Scheduler

Dispatch unitDispatch unit

Register file (32,768 32 bit)

L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T
L
D
/
S
T

SM

Instructi
on

network

Shared
memory

Uniform
cache

Te
xt

Te
xt

Te
xt

Te
xt

Texture cache

Polymorph engine

Raster Engine Raster Engine

Raster Engine Raster Engine

GPC GPC

GPC GPC

Fermi GPU Fermi GPU

Fermi GPU Fermi GPU

Memory Memory

Memory Memory

Device: Tesla S2050

Power
Supply

Thermal
Unit

System
Monitoring

PCIe
Switch

PCIe
Switch

32 GB RAM

Host: CPU

Intel Xeon
E5-2620
2GHz

Figure 2.7: TeslaTMS2050 computing system architecture.

pability 2.0 is used for programming. While a generic programming language such as

OpenCL [125] could have been used to program GPU, CUDA’s advantages in providing

advanced debugging, better performance, and higher level of abstraction are the main rea-

son for its adoption in this work.

Chapter 2. Overview of Multi-Core and Many-Core Architectures 29

2.5 Type of parallelism used in this work

Overall, three types of parallelism used in this thesis as follows:

•Algorithm Parallelization- this is a coarse-grain parallelism which happens at the first

step and before any numerical method starts solving the system of equations. The

main objective is to find the parallelism inherent in the overall algorithm. Implemen-

tation of relaxation method on state estimation problem is an example of algorithm

parallelism.

•Task Parallelization- this type of parallelism the convert the traditional serial algorithm

into several smaller independent tasks which can be solved concurrently. Decompo-

sition of Gain matrix in state estimation problem into smaller matrices that can be

solved in parallel falls under this type of parallelism. The space parallelism methods

which will be explained later also falls into this category.

•Data Parallelization- this type of parallelism can be used on the SIMD architecture of

GPU depends on the capability of the problem. This type of parallelism also called

as fine-grained parallelism which can be used in both of the previous methods.

2.6 Discussion

It is shown that both CPU and GPU are capable of parallel programming. However, con-

sidering the SIMD architecture of the GPU it is a lot more efficient than CPU specially

when the problem deals with huge amount of computation. Besides that the number of

cores available in GPU’s hardware are hundred times more than CPU which makes it sig-

nificantly more powerful in fine-grained parallelism.

Based on Amdahl’s law [129], even with many-core processors such as GPU, the max-

imum achievable speed-up utilizing parallel processing is limited by the time needed for

the sequential part of the program. Gustafson’s law which is a refined version of Amdahl’s

law argues that as the size of the problem increases, the inherently serial part of the pro-

gram takes less portion in the overall problem. Since almost all the steps of our program

is running on GPU, as the size of the system increases the parallel portion of GPU code

expands faster than the serial portion.

Based on Gustafson’s law ifXis a non-parallel fraction of a program, the highest pos-

sible speed-up usingNprocessors is given as [130]:

Sp=N−X(N−1), (2.1)

Xcan be calculated using the measured speed-up (Sm) on a specific number of proces-

sors (Np) using

Chapter 2. Overview of Multi-Core and Many-Core Architectures 30

X=
Sm−Np
(1−Np)Sm

(2.2)

Above law prove that parallelization using GPU is not limited and it is possible to

achieve higher speed-up by a different programming structure and more cores unlike CPU

which can offer a limited speed-u with parallelization.

2.7 Summary

This chapter presents the fundamentals of GPU architecture and parallel processing. The

issues involved in CPU-based parallelization are shortly explained. Taking the advantage

of parallel architecture of GPU, efficient parallel programming with high speed, improved

data throughput, and optimized hardware resource utilization is possible.

Overall, GPU have the following advantages over CPU clusters:

•Parallelism- parallelization using GPU is fine grained parallelization which is a lot dif-

ferent from coarse grained parallelization on CPU. In contrast to the CPU with a lim-

ited number of arithmetic cores, the GPU is composed of hundreds of cores known

as stream processors (SPs) that can simultaneously handle thousands of threads.

•Extensibility- unlike CPU with limited achievable speed-up, the maximum achievable

speed-up by massive parallelism in GPU is proportional to the number of cores.

•Cost- A GPU with hundreds of core is a lot cheaper than a system with hundred

CPU cores. Basically, the GPU has enormous cost advantage, GFlops per dollar, in

comparison with CPUs.

3
Massively Parallel Static/Dynamic State
Estimation: Single GPU Implementation

3.1 Introduction

This chapter presents a unified framework for GPU-based static/dynamic state estimation

of large-scale power system.

The evolution of power systems toward the new smart grid era is bringing unprece-

dented operational challenges toward online monitoring of networks. Traditional SSE and

DSE are not scalable enough to process the large amount of data generated over the grid.

Indeed, new approaches which are both fast and accurate are required for efficient moni-

toring of the system dynamic behaviour.

The novelty of the proposed method includes the parallel implementation of SSE on

GPU, data collation method which is used to prepare measurement set, and the massive-

thread parallel implementation of the DSE (MPDSE) on GPU which to the best of our

knowledge is not reported yet. In this work, using an NVIDIA GPU, separate tasks are

assigned to individual compute unified device architecture (CUDATM) abstracted thread-

s. Therefore, the computationally onerous tasks are off-loaded and executed in parallel

utilizing thousands of threads, accelerating the process of state estimation significantly.

31

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation32

3.2 State Estimation Formulation

The weighted least squares method is a commonly used method for state estimation which

tries to minimize the weighted sum of the squares of the residuals between the estimated

and actual measurements [5].

3.2.1 Weighted Least Square Static State Estimation

Consider the measurement set vectormas:

m=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

m1
m2
.
.
.

m2(l+n)+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

h1(x1, ...,xn)
h2(x1, ...,xn)

.

.

.
h2(l+n)+1(x1, ...,xn)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε1
ε2
.
.
.

ε2(l+n)+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=h(x)+ε, (3.1)

wherem,h(x)andε, are the vectors of measurements, nonlinear measurement func-

tions, and measurement errors, respectively. For a system withnbuses andllines, there

are2l+2n+1elements in each vector:2lpower flows,2npower injections, and slack bus

measurements.xis a vector of system states comprising of voltage magnitudes and phase

angles. Since the phase angle in slack bus is considered 0, there are2n−1states to be

estimated. For simplicity, it is assumed that:

•Ex[εi]=0i=1,2, ...,2(l+n)+1,

•Ex[εiεj]=0,

ThereforeCov[ε]=R=Ex[εεT] = diag(σ21, ..., σ
2
2(l+n)+1), whereσiis the standard de-

viation of measurementi.

Substituting the first-order Taylor’s expansion ofh(x)aroundx0in (3.1), we obtain:

m−h(x0)=HΔ(x)+ε, (3.2)

whereΔ(x)=x−x0is the(2n−1)×1state mismatch vector andHis the(2l+2n+

1)×(2n−1)Jacobian matrix defined as:

H(x)=

⎡

⎢
⎢
⎣

∂h1(x)
∂x1

··· ∂h1(x)
∂xn

...
...

...
∂h2(l+n)+1(x)

∂x1
···

∂h2(l+n)+1(x)

∂xn

⎤

⎥
⎥
⎦ (3.3)

The objective functionJ(x)to be minimized by the WLS formulation can be expressed

as:

J(x)=

2l+2n+1

k=1

(mk−hk(x))
2R−1kk=[m−h(x)]

TR−1[m−h(x)], (3.4)

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation33

whereRis the(2l+2n+1)×(2l+2n+1)covariance matrix. Indexkrefers to thekth

measurement. The following equation satisfies the first-order optimality condition at the

minimum ofJ(x):

g(x)=
∂J(x)

∂x
=HT(x)R−1[m−h(x)]=0, (3.5)

whereg(x)is the(2n−1)×1matrix of gradient of the objective function. Substituting

the first-order Taylor’s expansion ofg(x)in (4), the following equation is solved iteratively

to find the solution which minimizesJ(x):

G(x)Δ(x)=HT(x)R−1[m−h(x)], (3.6)

whereG(x)=
∂g
∂xis(2n−1)×(2n−1)gain matrix. The WLS state estimation algorithm

given by (4.20)-(A.3) can be solved iteratively until convergence ofΔ(x). Fig. 3.1 shows the

block diagram of state estimation process.

3.2.2 Extended Kalman Filter Dynamic State Estimation

Using the present and previous states of the network, DSE predicts the state vector one

step ahead of the time. The generic power system for DSE can be described by:

xk+1=f(xk)+wk, (3.7)

mk+1=h(xk+1)+εk+1,εk∼N(0,Rk), (3.8)

wherexis a vector of system states comprising of voltage magnitudes and phase angles

at all buses except the slack bus whereV1=1∠0
◦p.u.f(x),mandh(x), are vectors of

nonlinear system transition function, unified measurements, and nonlinear measurement

functions, respectively.εandware measurements and system noises assuming normal

distribution with zero mean, and covarianceR. (3.7) can be linearized as follows if the

time frame is small enough:

xk+1=Fkxk+ak+ωk,ωk∼N(0,Qk), (3.9)

whereFkrepresents the(2n−1)×(2n−1)state transition matrix between two time

frames,akis the vector of associated behavior of the state trajectory, andωkis the Gaussian

noise vector with zero mean and covariance matrixQk.

Generally, EKF is composed of three major steps: identification, prediction, and filter-

ing which are explained in details as follows:

a) Parameter Identification

To evaluate the dynamic model, unknown parameters need to be calculated online. Holt’s

exponential smoothing technique [136] was used for identification ofFkandak. Based on

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation34

Start

End

Read
measurements

Build Ybus for
the network

Calculate power injection
and power flow

Create Jacobian
matrix

Weight bus and
line data

Calculate the gain
matrix

Calculate the state
mismatch vector

Bad data
identification

? 001.0x

Is there bad
data?

Update

xxx kk1

Stop
state estimation
process

)(xhm ii

2

1)(2

2

1

0

0

nl

R

n

l

l

l

n

x

xh

x

xh

x

xh

x

xh

H
)()(

)()(1

1

1

THHRxG 1)(

))(()(11 xhzHRxGx

)cossin()(

)sincos()(

)cossin(

)sincos(

2

2

ijijijijjisiijiji

ijijijijjisiijiji

ijijijij
j

jii

ijijijij
j

jii

bgVVbbVQ

bgVVggVP

BGVVQ

BGVVP

Yes

No

Figure 3.1: State estimation process block diagram.

this methodFkandakcan be described as follows if̃xand̂xrepresent the predicted and

estimated value of the states, respectively:

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation35

Fk=α(1 +β)Iidn,0<(α, β)<1,

ak=(1+β)(1−α)̃xk−βγk−1+(1+β)ξk−1,

γk=α̂xk+(1−α)̃xk,

ξk=β(γk−γk−1)+(1−β)ξk−1,

(3.10)

whereαandβare smoothing parameters. Under normal operation conditions it is

possible to adjustFkandaksuch thatQkremains constant.Iidnis the(2n−1)×(2n−1)

identity matrix. However, considering the dynamic behaviour of the network neglecting

the changes inQkmay result in inaccurate prediction. Online estimation ofQkcan be

formulated as [137]:

Q̂k+1=Qk
trace{Hk+1(FkρkFk

T+Q̂k)H
T
k+1}

trace{Hk+1(FkρkFk
T+Qk)H

T
k+1}

, (3.11)

b) State Prediction

Using the measurement and estimated states at the time instantk, the predicted valuẽxk+1

can be formulated as:

x̃k+1=Fk̂xk+ak,(xk−x̂k)∼N(0,ρk),

ρ̃k+1=FkρkFk
T+Qk,(xk−x̃k)∼N(0,̃ρk),

(3.12)

whereρand̃ρare(2n−1)×(2n−1)error covariance matrices for estimated and pre-

dicted values, respectively. The objective functionJ(x)was chosen to minimize both esti-

mation and prediction errors:

J(x) = argmin
x
[m−h(x)]TR−1[m−h(x)]+[x−x̃]Tρ̃−1[x−x̃], (3.13)

The following equation satisfies the first-order optimality condition at the minimum of

J(x):

g(x)=HT(x)R−1[m−h(x)]−ρ̃−1[x−x̃]=0, (3.14)

whereg(x)is the(2n−1)×1vector of gradient of the objective function, andH=∂h
∂x

is the(2m+2n+1)×(2n−1)Jacobian matrix. Using Taylor’s expansion ofh(x)around

x̃0(3.14) can be expressed as follows:

G(x)Δ(x)=HT(̃x)R−1[m−h(̃x)],

G(x)=HT(̃x)R−1H(̃x)+̃ρ−1,
(3.15)

whereΔ(x)=̂x−x̃0is the(2n−1)×1state mismatch vector andG(x)=
∂g
∂xis the

(2n−1)×(2n−1)gain matrix. The state estimation algorithm given by (3.13)-(3.15) can

be solved iteratively until convergence ofΔ(x)to a specified threshold.

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation36

c) State Filtering

This step updates the predicted values using the next set of measurements at the time

instantk+1. The updated state through EKF can be written as:

x̂k+1=x̃k+1+Kk+1(mk+1−h(̃xk+1)),

Kk+1=ρ̃k+1H
T
k+1[Hk+1̃ρk+1H

T
k+1+R]

−1,

ρk+1=ρ̃k+1−Kk+1Hk+1̃ρk+1,

(3.16)

whereKis the(2n−1)×(2n−1)Kalman gain matrix. For the same reasons men-

tioned earlier, this step is also a good candidate for parallelization.

3.3 Measurement and Component Modeling

An individual transmission line is typically modeled as a single phaseπcircuit equivalent.

An equivalentπmodel of a two bus (i,j) system is shown in Fig. 3.2. The measurements

in an AC system are mainly of three types, bus power injection, line power flows and bus

voltage magnitudes. These quantities can be expressed using the state variables.

ijij jbg

sisi jbg sjsj jbg

iiV jjV

i j

Figure 3.2: Standard transmission lineπmodel.

The real and reactive power injection at a bus can be expressed as:

Pi=Vi

2l+2n+1

j=1

Vj(Gijcosθij+Bijsinθij),

Qi=Vi

2l+2n+1

j=1

Vj(Gijsinθij−Bijcosθij),

(3.17)

wherePiandQiare the real and reactive bus power injection at busi, respectively.Vi

andθiare the voltage magnitude and phase angle at busiandθij=θi−θj.

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation37

(Gij+jBij)is theij-th element of the complex bus admittance matrix.

The real and reactive power flow from busito busjare expressed as follows:

Pij=V
2
i(gsi+gij)−VjVi(gijcosθij+bijsinθij),

Qij=−V
2
i(bsi+bij)−VjVi(gijsinθij−bijcosθij),

(3.18)

wherePijandQijare the real and reactive bus power flow from busito busj, respec-

tively.

(gij+jbij)is the admittance of the series branch connecting busesiandj.

(gsi+jbsi)is the admittance of the shunt branch connected at busi.

To construct the Jacobian matrix (H), the partial derivative of line flows and bus power

with respect toθi,θj,ViandVjshould be computed:

H(x)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂V1
∂V1

··· ∂V1
∂Vn

∂V1
∂θ2

··· ∂V1
∂θn

...
...

...
...

...
...

∂Vn
∂V1

··· ∂Vn
∂Vn

∂Vn
∂θ2

··· ∂Vn
∂θn

...
...

···
∂Pij
∂Vi
,
∂Pij
∂Vj

··· ···
∂Pij
∂θi
,
∂Pij
∂θj

···
...

...
...

...

···
∂Qij
∂Vi
,
∂Qij
∂Vj

··· ···
∂Qij
∂θi
,
∂Qij
∂θj

···
...

...
∂P1
∂V1

··· ∂P1
∂Vn

∂P1
∂θ2

··· ∂P1
∂θn

...
...

...
...

...
...

∂Pn
∂V1

··· ∂Pn
∂Vn

∂Pn
∂θ2

··· ∂Pn
∂θn

∂Q1
∂V1

··· ∂Q1
∂Vn

∂Q1
∂θ2

··· ∂Q1
∂θn

...
...

...
...

...
...

∂Qn
∂V1

··· ∂Qn
∂Vn

∂Qn
∂θ2

··· ∂Qn
∂θn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.19)

3.4 Numerical Methods for Solving Linear Systems

Solution of a linear system is usually the most computationally expensive step in various

power system analyses such as power flow and state estimation. In general, a linear system

can be written as:

Ax=b, (3.20)

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation38

whereAis an×nsquare matrix known as coefficient matrix,bis an×1vector andx

is an×1vector.

Methods of solving linear systems fall into two general categories: direct methods and

iterative methods. Direct methods obtain the exact solution of the system in a definite

number of operations, whereas iterative methods calculate sequences of approximation-

s that may or may not converge to the solution. While direct methods obtain an exact

solution of the linear system, they require significantly more computations than iterative

methods.

3.4.1 Direct Method

To solve the linear systemAx=bseveral different algorithms can be used. One is to explic-

itly calculate the inverse of the coefficient matrix and multiply it by vectorb. This method

is computationally very expensive especially for large, sparse matrices, such as those en-

countered in power systems. Thus, various methods have been developed to solve a sys-

tem of linear equations without explicitly calculating the inverse of the linear system. The

most famous direct methods are LU-Decomposition and Cholesky decomposition [138].

Depending on the properties of the matrix A, different factorizations are used:

•For ann×nsymmetric positive definite matrix, the Cholesky factorizationA=LLT

is usually computed, whereLis a lower triangular matrix.

•For a nn asymmetric matrix , its LU decompositionA=LUis computed whereLis

a unit lower triangular matrix, andUis an upper triangular matrix.

LU Decomposition

The idea is to factorA=LUwhere L is lower-triangular andUis upper-triangular. Then

you solve the pair of equations as follows:

⎡

⎢
⎢
⎢
⎣

a1,1 a1,2 ··· ···a1,n
a2,1 a2,2 ··· ···a2,n
...

...
...
...

...
an,1 an,2 ··· ···an,n

⎤

⎥
⎥
⎥
⎦

A

=

⎡

⎢
⎢
⎢
⎣

l1,1 0 0 ··· 0
l2,1 l2,2 0 ··· 0
...

...
...
...

...
ln,1 ln,2 ln,3 ···ln,n

⎤

⎥
⎥
⎥
⎦

L

⎡

⎢
⎢
⎢
⎣

u1,1 u1,2 u1,3 ···u1,n
0 u2,2 u2,3 ···u2,n
...

...
...
...

...
0 0 0 ···un,n

⎤

⎥
⎥
⎥
⎦

U

(3.21)

Then the linear system of (3.20) becomes

LUx

Z

=b⇒ LZ=b.
(3.22)

Fig. 3.3 shows the algorithm ofLUdecomposition.

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation39

Algorithm: LU decomposition

Initialize ILAU ,

end

for

iiijij UUL ,,, /

1:1ni

nij :1for

end

kiijkjki ULUU ,,,,

nik :for

end

Figure 3.3: LU decomposition algorithm.

Cholesky Decomposition

The Cholesky factorization is a special LU factorization technique which decomposes the

coefficient matrix intoLLT. WhereLis a lower triangular matrix with real and positive

diagonal entries, andLTdenotes the transpose ofL. For symmetric positive definite ma-

trices, Cholesky factorization needs less computation and memory space, since only the

elementsai,j,i=j, ...,n; j = 1, ...,nshould be stored in memory. Cholesky decomposition

algorithm is shown in Fig. 3.3.

3.4.2 Iterative Method

In contrast with direct methods, iterative methods construct a series of solution approxi-

mations such that it converges to the exact solution of a system. It starts with an approxi-

mation to the solution of (3.20) and improves this approximate solution in each iteration.

The approximate solution may converge to the exact solution in an infinite or infinite num-

ber of iterations. The iterative method can be stopped whenever the desired accuracy in

the solution is obtained. Some of the famous method in this category includes conjugate

gradient (CG), Gauss-Seidel, successive over relaxation and Jacobi iterative method. Here

we only focus on CG. Detailed description of the properties of iterative methods and their

algorithms is provided in [139].

Conjugate Gradient

Starting from (3.20) and assumingAis a symmetric matrix, the conjugate gradient method

was originally developed to minimize following quadratic function [140]:

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation40

Algorithm: Cholesky decomposition

Initialize AL

end

for

iiijij LLL ,,, /)(

ni :1

nij :1

for

end

2

,kiL

for

1:1ik

end

0

sumLL iiii ,,

kjki LL ,,

Figure 3.4: Cholesky decomposition algorithm.

f(x) =
1

2
xTAx−bTx, (3.23)

The gradient vector points into the direction of the maximum increase of thef(x). The

gradient off(x)is defined as:

fg(x)
∂f(x)
∂x1

∂f(x)
∂x2

··· ∂f(x)
∂xn

T
, (3.24)

fg(x)=
1

2
(ATx+Ax)−b, (3.25)

SinceAis symmetric, thenA=ATand (3.25) can be rewritten as:

fg(x)=Ax−b, (3.26)

Therefore, setting the gradient vector to zero and finding the critical point off(x)is

equal to solving the linear systemAx=b. The process start from a gauss about the so-

lution and the method tries to reduce the residual in each iteration and get close to the

exact solution as much as possible. The residual vectored is defined asr=b−Ax.Ifris

less than the threshold, or the iteration has exceeded the allowed maximum iterations, the

algorithm will stop. Fig. 3.5 describe the conjugate gradient algorithm.

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation41

Algorithm: Conjugate gradient method

Choose an initial solution
0x

while do
1kr

end

1kkUpdate

Calculate
T

kk

T

kkk Addrr /

Calculate
000 Axbrd

0kSet

Update

kkkk

T

kk

T

kkk

kkkk

kkkk

drd

rrrr

drr

dxx

111

111

1

1

/
Calculate

Figure 3.5: Conjugate gradient algorithm.

Preconditioned Conjugate Gradient

Iterative solvers are mainly less robust compared to direct solvers. To combat this problem,

preconditioned are developed to improve the performance by speeding the convergence

rate which leads to less number of iterations and thus less run time. Preconditioning trans-

forms the original linear system into one which has the same solution, but with a better

condition number [141]. The condition number of the matrix is often used to quantify the

eigenvalue spread of a matrix, and it is defined as:

CondA=
λmax(A)

λmin(A)
, (3.27)

whereCondA denotes the condition number,λmax is the maximum eigenvalue and

λminis the minimum eigenvalue. The system is said to be ill-conditioned, if the condition

number is considerably more than unity.

Consider (3.20) whichAis symmetric and positive-definite, letM be a precondition-

er which approximatesAin preserving the same solution. It is assumed thatM is also

symmetric positive definite. Then, the following preconditioned system could be solved:

M−1Ax=M−1b, (3.28)

To preserve symmetry one can decomposeMin its Cholesky factorization and split the

preconditioner between left and right:

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation42

L−1AL−Tu

x

=L−1b, (3.29)

Considering the sparsity pattern and the structure of matrixA, Cholesky precondition-

er was selected which has the lowest computational cost for symmetric positive definite

matrices. The preconditioned conjugate gradient algorithm is described in Fig. 3.6.

Algorithm: Preconditioned conjugate gradient method

Choose an initial solution
0x

while do
1kr

end

1kkUpdate

Calculate
T

kkk

T

kk APPrMr /1

Calculate
00 Axbr

0kSet

Update

kkkk

k

T

kk

T

kk

kkkk

kkkk

PrMP

rMrrMr

APrr

Pxx

1
1

1

1
1

1
1

1

1

/
Calculate

Calculate
0

1
0 rMP

Figure 3.6: Preconditioned conjugate gradient algorithm.

3.5 Test Systems

In order to evaluate the efficiency of the proposed GPU-based method, large-scale systems

were constructed by duplicating the IEEE 39-bus system. Details are available in Appendix

C. The uniform set of measurements which are the input to the state estimation algorithms

are obtained by corrupting online power flow results of the test power systems with Gaus-

sian noise of zero mean and covarianceR. Therefore, to assess the accuracy of the state

estimator, the results are verified using bus voltage magnitudes and phase angles for all

test cases modeled in PSS/E. While it is possible to use a partial set of measurement, all

of the measurements are included to make the problem as complicated as possible for the

GPU. All results are verified by in terms of both accuracy and time efficiency.

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation43

3.6 GPU Implementation of Static WLS State Estimator

In steady state condition power system can be considered as a quasi static system with

slow changes which update almost every 30 second. Therefore, for SSE it is sufficient to

only consider SCADA measurements which provide new measurements every 2-5s. SSE

can not monitor the dynamic behaviour of the system, it only provides a snapshot of the

system changes which is useful for normal operation condition.

Fig. 3.7 illustrates the implementation of WLS state estimator on the GPU. Initializa-

tion was done in Stage 1. After transferring the data from CPU to GPU, all the other steps

were executed in the GPU. Stage 2 contains the main parts of the parallel kernel. All the

vector products for the computation of admittance matrixY, measurement functionh(x)

and Jacobian functionH(x)were done in parallel utilizing CUDA kernels. The transpose

ofH(x)or the computation of residualrare not intensive tasks like matrix or vector prod-

ucts, however for large-scale systems it can take significant execution time which is here

reduced using parallel implementation. To compute the gain matrixG(x)and the gradi-

ent of the objective functiong(x), the matrix-matrix multiplicationHTR−1was partitioned

into a series of independent operationsHTiR
−1
j whereH

T
iandR

−1
j refer to thei

throw and

jthcolumn inHTandR−1matrices, respectively. The vector inner product ofHTiR
−1
j was

defined as the sum of the elements ofHTiaR
−1
jb
whereHTiaandR

−1
jb
areathandbthelement of

theHTiandR
−1
j , respectively. These independent operations are simultaneously executed

by individual CUDA threads. In totalw×zsingle threads were needed for product of

HTwithwrows andR−1withzcolumns. Using CUDA basic linear algebra subroutines

(CUBLAS) library,G(x)was decomposed in parallel. Code for LU decomposition and for

solvingΔ(x)was prepared utilizingcublasSscal(),cublasSswap()andcublasStrsv()functions.

After updatingΔ(x)in Stage 3, convergence check was done in Stage 4.

3.6.1 Parallel Kernel Structure

Generally, matrix-vector and matrix-matrix product is time consuming for large data-sets.

In the WLS method, the computation ofHT(x)R−1[m−h(x)]andHT(x)R−1Hcan take a

long time to complete even on CPU clusters. The matrix-vector multiplication to calcu-

lateR−1[m−h(x)]takes about one order of magnitude less execution time than that of

HT(x)R−1[m−h(x)]orHT(x)R−1Hbut still can be a significant burden under emergency

situations. Matrix-matrix and matrix-vector products contains severalforloops in their

implementation, which are the best candidates for parallelization utilizing GPU threads.

Since all iterations of the loop can be executed in parallel, by assigning each iteration in a

loop to individual CUDA threads, the task can be converted into a CUDA kernel.

In addition, solvingG(x)Δ(x)=g(x)by inversion ofG(x)is considerably expensive

due to the sheer size of the inverted matrix. As an alternative method, LU decomposition

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation44

Transfer data fromCPUtoGPU

Compute:

Assemble:
Measurement vector, M
Covariance matrix,R

1. Admittance matrix,Y

2. Measurement function,h(x)

3. Jacobian function,H(x)

4. Transpose ofH

5. Residualr=M-h(x)

6.G(x)=HTR-1H

7.g(x)=HTR-1r

8.LUfactorization ofG(x)

9. SolveG(x)Δ (x)=g(x)

UpdateΔ (x)

Δ (x)<1e-4

Yes

No

Done

CPU

GPU

GPU

Stage 1

Stage 2

Stage 3

Stage 4
GPU

Transfer data fromGPUtoCPU

Figure 3.7: GPU implementation of the WLS algorithm.

is used in this work.

3.6.2 Experimental Results

To evaluate accuracy and efficiency of the parallel SSE algorithms, experiments were con-

ducted based on two separate simulation codes: multi-thread CPU-based code in C++, and

a massive-thread GPU-based code written in C++ and CUDA. The results of state estima-

tion are compared with the CPU simulations. Since the matrices are highly sparse in state

estimation, all matrices and vectors are stored in compressed sparse row format to reduce

the computational burden.

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation45

Efficiency Evaluation of the GPU-based Static State Estimator

The simulations were done using the test data sets listed in Table 3.1, with a tolerance

of 0.0001 for convergence of the estimated parameters. Fig. 3.8 show the results of com-

parison between the CPU and the GPU programs along with the speed-up of the parallel

code.

Table 3.1: Summary of Simulation Results
Case No. of No. of Jacobian Gain Single GPU GPU Speed-up

Buses Meas. matrix matrix thread Comm. Comp.

H(x) G(x) CPU

1 39 171 171×77 77×77 0.031s 0.017s 0.033s 0.6
2 78 347 347×155 155×155 0.18s 0.041s 0.069s 1.6
3 156 699 699×311 311×311 0.39s 0.08s 0.11s 2.05
4 312 1421 1421×623 623×623 2.7s 0.13s 0.38s 5.3
5 624 2865 2865×1247 1247×1247 16.5s 0.34s 1.56s 8.7
6 1248 5825 5825×2495 2495×2495 59.1s 0.86s 4.34s 11.4
7 2496 11553 11553×4991 4991×4991 195s 2.81s 10.19s 15
8 4992 23151 23151×9983 9983×9983 1577s 6.51s 34.99s 38

10̂−2

10̂−1

10̂0

10̂1

10̂2

10̂3

System Scale

E
xe
cu
ti
o
n
Ti
me

(s
ec
.)

14816 32 64 128

10

20

30

40

50

60

70
CPU

GPU

Speed−up

Figure 3.8: Execution time and speed-up for various case studies.

Fig. 3.9 illustrates the percentage of time taken by various steps in Stage 2 of Fig. 3.7

for all case studies. The results verify that for both the sequential CPU program and the

data-parallel GPU program, the 3 most computationally demanding steps are the LU de-

composition, computation of gain matrixG(x)and the solution of state mismatch vector

Δ(x).

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation46

Figure 3.9: Percentage of time used for various steps in Stage 2 (Fig. 3.7).

Accuracy Analysis of the GPU-based Static State Estimator

The inputs to the GPU-based WLS state estimator are the power-flow results from PSS/E

corrupted with noise which are used as Pseudo-measurements. Therefore, to assess the

accuracy of the state estimator, its output was compared with the original power-flow re-

sults from PSS/E. The results of Case 1 in Fig. 3.10 and Fig. 3.11 verify the accuracy

of the proposed method. There are small differences in the result which are justifiable

considering the fact that the order of blocks execution in each grid is undefined in kernel

definition. Therefore, it leads to slightly different results if different blocks perform calcu-

lations on overlapping portions of data. The estimation error for voltage magnitude and

voltage angle in all of the case studies is less than 0.001 p.u. and 0.002 deg., respectively.

3.7 GPU Implementation of EKF-based Dynamic State Estimator

Since static state estimation consider the power system as a quasi-static system, it is enough

to only use SCADA measurements during the estimation process. However, for dynamic

state estimation it is necessary to have enough measurements to capture the dynamic of

the system. So different type of measurements like PMUs are needed. PMUs provide mea-

surements by sampling instantaneous waveforms and can deliver up to 50 measurements

per second while SCADA measurements update every 2-5s. For large-scale networks, in-

stalling enough PMUs for full network observation may be expensive and impractical. A

more realistic and feasible deployment of the PMU for dynamic state estimation is to use

both conventional (SCADA) and synchronized measurements together.

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation47

0 5 10 15 20 25 30 35 40
0.85

0.9

0.95

1

1.05

1.1

Bus Number

Vo
lt
ag
e
Ma
gn
it
ud
e
(p
.u
.)

PSS/E

CPU

GPU

Figure 3.10: Voltage magnitudes for Case 1.

0 5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

14

16

18

Bus Number

Vo
lt
ag
e
An
gl
e
(d
eg
.)

PSS/E

CPU

GPU

Figure 3.11: Voltage angles for Case 1.

3.7.1 Data Collation

The main goal in this section is to provide a coherent set of measurements for the MPDSE

algorithm. Since it is not possible to make the whole system observable using PMUs due to

the high cost of this technology, the proposed data collation method extrapolates SCADA

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation48

measurements to update them as fast as PMU measurements arrive. The process of data

collation is done under the following assumptions:

•The network is observable with the existing SCADA measurements, and the PMU

devices are installed at the generator buses.

•The number of PMU channels is limited to a maximum of two (one for voltage and

one for current) for economical reasons.

•Since practical state estimation update every 30-60s, and SCADA measurements up-

date every 2-5s [134, 135], SCADA and PMU refresh rate are considered as every 2s

and30/s, respectively.

•Based on the previous assumption, in between two SCADA measurements 60 P-

MU measurements are available. Since the changes for close measurements are very

small, the buffer length of 6 is chosen to use the average of each 6 consecutive P-

MU measurements. So, in between two SCADA measurements there are 10 PMU

measurements. However, under contingency scenarios, the actual refresh rate of the

PMU measurements is used to decide the condition of the system.

•For simplicity the measurement uncertainty due to instrument transformers [142] is

neglected, and PMU measurements are considered with higher accuracy than the

SCADA measurements. To increase the accuracy of the results, higher weights are

assigned to PMU measurements in error covariance matrix.

•SCADA data are recorded with local time stamps, so the time skew between SCADA

and PMU measurements will be negligible considering the fact that quantities pro-

vided by SCADA measurements do not change significantly in a short time interval.

•The time stepΔtis equal to 0.2s which is the time interval between two averaged

PMU measurements.

Exponential Moving Average

The overall measurement set (m) is divided into two subsets: PMU measurements (mP)

and SCADA measurements (mS). Since the refresh rate ofmPis a lot faster thanmS, there

are more measurements available for the buses with PMU installations during the same

time interval. To take advantage of all available measurements, missing SCADA measure-

ments are extrapolated employing the exponential moving average method.

In general, for a set of observationsOa moving average of ordern, is the value ofn

consecutive observations.

Õt+1=
(Ot+Ot−1+Ot−+...+Ot−n+1)

n
, (3.30)

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation49

wheretrepresent the time,nis the number of terms in the moving average, andÕ

shows forecast for the next period.

In contrast with moving average which assign the same weight to all data set, expo-

nential moving average [143] assigns different weights to each measurements in a way

that older measurements fade exponentially and new measurements have more effect on

the result of prediction. Formally, the exponential smoothing equation can be presented as

follows:

Õt+1=μOt+(1−μ)̃Ot,0<μ<1, (3.31)

whereμis the scalar smoothing constant.

Considering above explanation, extrapolated SCADA measurements can be formulat-

ed as:

m̃Ek+1=μm
S,E
k +(1−μ)̃mEk,0<μ<1, (3.32)

wheremS,Ek andm̃Ekare previous measurements (including actual and extrapolated

SCADA measurements) and extrapolated measurements, respectively. The indicesk=t

andk+1=t+Δtare used for present time and one step in the future, respectively.μis

chosen to be 0.7 in this work by trial and error to get the best result.

To extrapolate a SCADA measurement, the last 10 available measurements which con-

tain both measured SCADA and extrapolated SCADA are used. The algorithm, extrapo-

lates all measurements even those that arrive exactly at the time the new set of SCADA

measurements arrive. It should be noted that in every 10 extrapolated SCADA measure-

ments, two of them will be available by actual measurement. Whenever new SCADA is

available, extrapolated measurement is replaced by the actual measurement. To increase

the accuracy, the average of last 10 estimation errors (difference between actual SCADA

measurements and the extrapolated measurements) are added to the predicted value. Ex-

pandingm̃Ekwith its components results in following:

m̃Ek+1=μ

10

i=0

(1−μ)imS,Ek−i+(1−μ)
11m̃Ek−11+

1

10

10

j=1

(Δejk)
2, (3.33)

whereΔejkrepresents the estimation error at the time instantk. Indicesiandjrefer

to the last 10 available measurements, and last 10 available estimation errors, respectively.

An example of data collation fort=24.2sis shown in Fig 3.12.

Polar to Cartesian Transformation

In order to have a uniform set of measurements, the PMU measurements which are in

polar format are transformed into cartesian format (mPTin Fig. 3.14). A Polar coordinate

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation50

t=6

t=6

. . .

t=8

6.26.4 8

. . .
8.28.4 10

. . .

t=12

10.210.4 12

. . .

t=14

12.2 12.4 14

. . .

t=16

14.214.4 16

. . .

t=18

16.216.4 18

. . .

t=20

18.218.4 20

. . .

t=22

20.220.4 22

. . .

t=24

22.2 22.4 24

t=10

. .

Uniform set of
measurement .

. .

t=24.2

t=24.2

Measurement set that
are needed to

extrapolate SCADA
measurement at t=24.2

--
t=6

--
t=8

--
t=10

--
t=12

--
t=14

--
t=16

--
t=18

--
t=20

--
t=22

--
t=24

e

.

. .

.

.

.

+

t

PMU measurements

Extrapolated SCADA measurements

Actual SCADA measurements

Extrapolation error at t=24.2

e

210

1

)(
10

1

i

e

Average Estimation Error

Figure 3.12: Example of data collation for MPDSE.

system is determined by a fixed point, a origin or pole, and a zero direction or axis as

shown in Fig. 3.13. Each point is determined by an angle and a distance relative to the zero

axis and the origin as follows:

r= x2+y2, ϕ=arctan(y/x), (3.34)

22 yxr

)cos(rx

)
si
n(

r
y

)/(atan xy

Figure 3.13: Polar and Cartesian representation.

whereris the distance from origin to the point,xrepresent Cartesian x-coordinate,

andyrepresent Cartesian y-coordinate.ϕis the relative angle to the zero axis. Cartesian

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation51

coordinates can be calculated from Polar coordinates:

x = r cos(ϕ),y=rsin(ϕ), (3.35)

For a given functionf(r,ϕ)in polar coordinates the relationship between derivatives in

cartesian and polar coordinates is as follows:

∂f

∂x
=
∂f

∂r

∂r

∂x
+
∂f

∂ϕ

∂ϕ

∂x
= cos(ϕ)

∂f

∂r
−
sin(ϕ)

r

∂f

∂ϕ
,

∂f

∂y
=
∂f

∂r

∂r

∂y
+
∂f

∂ϕ

∂ϕ

∂y
=sin(ϕ)

∂f

∂r
+
cos(ϕ)

r

∂f

∂ϕ
.

(3.36)

Defining∂fx=
∂f
∂xand the same for the rest of the variable, (3.36) can be rewritten as:

∂fx= cos(ϕ)∂fr−
sin(ϕ)

r
∂fϕ,

∂fy=sin(ϕ)∂fr+
cos(ϕ)

r
∂fϕ,

(3.37)

which results in following transformation matrix:

∂fx
∂fy

=
cos(ϕ) −sin(ϕ)/r
sin(ϕ) cos(ϕ)/r

∂fr
∂fϕ

. (3.38)

The error covariance matrixRcorresponding to PMU measurement errors in polar coordi-

nates must also be transformed to cartesian coordinates. By definition of differentiability

the incremental changeΔxandΔyare given as:

Δx=x(r+Δr,ϕ+Δϕ)−x(r,ϕ)
∂x

∂r
Δr +

∂x

∂ϕ
Δϕ, (3.39)

Δy = y(r + Δr,ϕ+Δϕ)−y(r,ϕ)
∂y

∂r
Δr +

∂y

∂ϕ
Δϕ, (3.40)

resulting in the following general transformation:

Δx
Δy

=
cos(ϕ) −rsin(ϕ)
sin(ϕ) r cos(ϕ)

Δr
Δϕ

= Tr
Δr
Δϕ

. (3.41)

Based on definition of covariance matrix [144]:

R(x,y) = Ex[(x−x̄)(y−ȳ)T], (3.42)

whereExindicate the expected value.̄xand̄y, represent the mean value ofxandy,re-

spectively. Substituting (3.41) in (3.42) using the transformation matrix (Tr), the error co-

variance sub-matrix of PMU measurements in cartesian format can be driven as follows:

RCPMU=R(Δx,Δy) = Ex[(TrΔr)(TrΔϕ)
T]=Ex[TrΔrΔϕ

TTTr]

=TrEx[ΔrΔϕ
T]TTr=TrR(ΔrΔϕ)T

T
r=TrR

P
PMUT

T
r.

(3.43)

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation52

Δ̄xandΔ̄yassumed to be zero.

SuperscriptsCandPrefers to cartesian and polar format, respectively. Since the PMU

measurements are assumed to have higher accuracy than SCADA measurements, more

weight is assigned to them in measurement error covariance matrix:

R=
RCSCADA 0

0 RCPMU
. (3.44)

In case of sudden changes in the PMU measurements the accuracy of the estimation

may degrade. By online tracking (as fast as measurement update rate) of the difference

between two consecutive PMU measurements at the buses with PMU installations, the al-

gorithm decides whether the network was in normal condition or not. The threshold for

detecting contingency is set to50%of previous measurement; it is assumed that if the next

PMU measurement changes more than50%of the previous value there is a contingency.

The proposed method also can be applied for smaller thresholds. To handle the contingen-

cy effect on the state estimation process, a correction step is added to the algorithm. Nodal

equations in a power network can be written as:

IP
IS
=
YPP YPS
YSP YSS

VP
VS
, (3.45)

where the subscriptsPandSrefer to buses with PMU measurement and SCADA mea-

surement subsets, respectively. In general:

ΔVP=(ΔYPP)
−1(ΔIP−ΔYPSΔVS). (3.46)

From (A.3), it can be concluded that changes inΔVSis proportional to changes inΔVP.

Therefore, in the case of sharp or sudden changes in the PMU measurements, onlyYPSand

YPPneeded to be updated using online power flow. These matrices are too small compare

toYSS. Fig. 3.14 shows the block diagram of the entire data collation process.

3.7.2 Extraction of Parallelism

In the proposed MPDSE method several aspects of parallelism are combined to utilize the

full capability of GPUs as efficiently as possible. First, all initialization and data collation

are done on the CPU. After that all of the data are transferred to the GPU for executing the

MPDSE algorithm. The following types of parallelism are used in this work:

•Task parallelism- in this level, the traditional serial algorithm is converted into vari-

ous smaller and independent tasks which can be solved in parallel. All of the inde-

pendent tasks in the three main steps of EKF are calculated in parallel to accelerate

the algorithm. In the parameter identification,ak,λkandQkdo not rely on each

other’s result, so they are calculated in parallel to accelerate the algorithm. In the

state prediction stagẽxk+1,̃ρk+1,G(x)andg(x)are parallelizable. Finally in the state

filtering step,x̂k+1andρk+1can be calculated simultaneously.

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation53

Polar to
Cartesian

Transformation

Yes

No

PMU
Measurement

Normal
Operation ?

Previous
SCADA and
extrapolated
Measurement

Uniform Set of
Measurements

Update Yps,Yps

Add Average
Estimation Error

Extrapolation

Em~

10

1

2ES,))e((1.0m~
i

Online
Power Flow

m
MPDSE

P

Tm

New
SCADA?

ES,m

Pm

Sm

Figure 3.14: Data collation process flowchart.

•Data parallelism- this level employs the fine-grained type of parallelism that can be

used on the SIMD-based architectures such as GPUs for the basic computations in the

algorithm. Generally, matrix-vector and matrix-matrix products are time consuming

for large data-sets. There are several independentforloops in the implementation

of each matrix-matrix and matrix-vector products which make them the best candi-

dates for parallelization utilizing GPU threads. Assigning each iteration in a loop to

individual threads, the task can be executed in parallel by converting into a kernel.

In the MPDSE algorithm, the computation ofakfor state prediction andG(x),K,λ,

ρandHT(x)R−1H+ρ̃−1for state filtering can take a long time to complete even on

CPU clusters. These separate tasks are composed of matrix-matrix and matrix-vector

product or summations which can be assigned to an individual kernel to run in paral-

lel. Each kernel is responsible for the calculation of that specific task. As the number

of independent threads is a lot more than the CPU cores, this type of parallelization

is not possible on the CPU.

•Parallelism in linear solver- Solution ofΔ(x)by inversion ofG(x)is considerably

expensive due to the sheer size of the inverted matrix. Two alternatives, LU de-

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation54

composition as a direct method and Preconditioned Conjugate Gradient (PCG) as an

iterative method were used in this work. For iterative solvers, the preconditioner is

the most challenging part to parallelize. Coarse grained or task parallelism is difficult

to achieve on LU and Cholesky factorization due to inherent sequentiality. Howev-

er, underlying implementation of these algorithms (vector updates, inner products,

matrix vector products) takes advantage of the data parallelism. So, these tasks are

done as a combination of sequential and parallel computations.

Sparse matrix-vector multiplication and sparse triangular solve is used for GPU imple-

mentation using cuSPARSE library [156]. Fig. 3.15 shows the overall MPDSE flowchart,

and Table 3.2 summarizes the sequential and parallel variables.

IInnniitttiaalizzaaattiooonnnnInitialization

Parameter Identification

˜

State Prediction

State Filtering

Xk+1
1

~
kx

Xk+1
1k̂x

Measurement /Jacobian

˜

Gain Matrix

Xk+1
1k

Xk+1
1kK Xk+1

1k

EKF SE

Yes No

CPUCPU

GPUGPU

text
texttext ? 41ex

Data Collation

MPDSE

Xk+1
1

~
k

Done

Yes

No

tkk

kQkakF

Solve

Convergenc

Xk+1Xk+1)()(xgxxG

Xk+1Xk+1)(xhXk+1Xk+1)(xH

Xk+1Xk+1)(xG Xk+1Xk+1)(xg

Figure 3.15: MPDSE operation flowchart.

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation55

Table 3.2: Summary of Sequential and Parallel Variable in MPDSE

Task
Sequential Task Data Parallel

Parallel

Initialization Y,R,... – –

Data Collation m̃E – –

Parameter Identification F a,λ,Q a,λ,Q,ξ

State Prediction H,h x̃,̃ρ H,h,̃x,̃ρ

State Filtering – x̂,ρ x̂,ρ,λK

Linear solver LU,PCG – G,g,Δx,LU,PCG

3.7.3 Experimental Results

The same as SSE implementation, to evaluate accuracy and efficiency of the parallel DSE

algorithms, experiments were conducted based on two separate simulation codes: multi-

thread CPU-based code in C++, and a massive-thread GPU-based code. The results of

state estimation were compared utilizing both iterative PCG and direct LU decomposition

methods for the linear solver. Buses with PMU measurements and SCADA measurements

in the IEEE 39-bus system are shown in Fig. 3.16. The block diagram for the MPDSE test

procedure is shown in Fig. 3.17.

The simulations were done using the test data sets listed in Table 3.1, with a tolerance

of10−4for convergence of the estimated parameters.

In the proposed GPU implementation most of the computational steps are moved to

GPU to avoid any unnecessary communication between host and device. Fig. 3.21 illus-

trates the implementation of the MPDSE on the GPU. The OpenMP standard was utilized

to develop the multi-core DSE code. All theforloops and parallel sections were assigned

to separate threads and cores. Each thread is responsible for specific portion of the tasks to

execute on that core. The entire DSE task was divided into several subsets to distribute an

equal workload among the threads which equals the number of the cores. Fig. 3.22 shows

a sample of the multi-thread CPU code.

Accuracy Analysis of the GPU-based MPDSE

The performance of the proposed MPDSE method, was evaluated under both normal and

contingency conditions. The estimation error in Case 1 for a temporary fault at Bus 10 at

t=10 min for a duration of 0.1 sec. are shown in is shown in Fig. 3.18. It is clear that the

proposed MPDSE can accurately track the system dynamics. The average error of 0.07 p.u.

for voltage magnitudes and 2.5 deg. for phase angles during the first 5 minutes was due

to the fact that the estimator needed to predict missing SCADA measurements at the first

level (Fig. 3.12).

Since at the beginning there was not enough history data to be used for prediction, the

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation56

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

Buses with SCADA measurements

Buses with PMU measurements

Figure 3.16: IEEE 39-bus power system used to build the large test cases.

Gaussian
Noise

δV
+
Pseudo

Measurements
M

Uniform
Measurements

+ MPDSE

Data Collation

-
Online

Power Flow

PSS/E

ΔδΔV,

Figure 3.17: MPDSE test procedure.

error of estimation was large. However, in a long term simulation neglecting the effect of

incomplete historical data the average estimation error for voltage magnitudes and phase

angles was 0.002 p.u. and 0.05 deg., respectively. A snapshot of the estimation error at

buses numbers 10, 11, 13 and 32 is provided in Fig. 3.19. In addition, the performance of

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation57

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

Time (min.)

Er
ro
r
(p
.u
.)

0 5 10 15 20 25 30
0

5

10

15

Time (min.)

Er
ro
r
(d
eg
.)

Figure 3.18: Estimation errors in MPDSE for Case 1 compared to PSS/E under fault con-
ditions.

the proposed state estimation method is tested for various number of PMU installations.

The normalized Euclidian norm of the state estimation is defined as a factor to evaluate

the accuracy using:

xEN=
x−x̂

dim(x)
, (3.47)

Table 3.3: DSE Error Norm (Eq. 3.47) for Different Percentage of PMU Installation

Case
Normalized Error Norm Normalized Error Norm

Case
in Voltage Magnitude in Phase Angle

NP= NP= NP= NP= NP= NP=

10%NT 20%NT 40%NT 10%NT 20%NT 40%NT

1 0.004 0.0027 0.0015 0.59 0.37 0.23

2 0.0038 0.0028 0.0013 0.57 0.39 0.25

3 0.0036 0.0027 0.0015 0.55 0.32 0.29

4 0.0041 0.0029 0.0016 0.56 0.34 0.24

5 0.0033 0.0028 0.0017 0.58 0.36 0.27

6 0.0039 0.003 0.0017 0.59 0.37 0.28

7 0.0041 0.0026 0.0016 0.57 0.34 0.21

8 0.0036 0.0029 0.0015 0.56 0.38 0.28

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation58

0 5 10 15 20 25 30

0

0.05

0.1

0.15

Time (min.)

Er
r
or
 (
p.
u.
)

24.95 2525.05

1.4

1.6

1.8

x 10
−3

24.6 25 25.4
−0.4

−0.3

−0.2

−0.1

0 5 10 15 20 25 30
−6

−4

−2

0

2

Time (min.)

Er
ro
r
(d
eg
.)

24.6 25 25.4
−0.4

−0.3

−0.2

−0.1

Bus No. 11

Bus No. 32

Bus No. 13

Bus No. 10

Bus No. 11

Bus No. 32

Bus No. 13

Bus No. 10

Figure 3.19: Snapshot of estimation error for Case 1 at buses numbers 10, 11, 13 and 32.

wherexENis the normalized Euclidian norm of the estimation error, anddim(x)is the

dimension of vectorx.xand̂xare vector of true states and estimated states, respectively.

Table 3.3 shows the accuracy index for both voltage magnitude and phase angle using

PMU installation (NP)at10%,20%and 40%of the total system buses (NT).NPis rounded

to the next larger number. As it is shown the results are accurate for all of the case studies

and the accuracy is increased as the percentage of PMU measurements increased.

Speed-up and Complexity Analysis

The total execution time under contingency scenario including sequential data collation,

contingency check, admittance matrix update, and state estimation is reported in Table 3.4.

The results obtained using double precision (64 bit) format for both CPU (TCPUEx) and GPU

(TGP UEx) codes as the system size increased. The execution time for GPU-based program

includes both execution and communication time. An incomplete Cholesky PCG iterative

algorithm was used to condition the gain matrix which reduced the number of iterations

in each solution. The condition numbers before and after preconditioning are shown in

Table 3.4. The results also show that the execution time reduced by approximately 20%-

50%using PCG compared to the LU decomposition method. The reason is that direct

methods calculate an exact solution on a single iteration, so that they deal with large size

matrices which take more time to be solved; however, the iterative method starts from

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation59

an initial guess and improves the solution in each iteration. Fig. 3.20 show the results of

comparison between the CPU and GPU simulations along with the speed-up of the parallel

code for both iterative and direct solvers. As can be seen, PCG converged faster than the

LU decomposition algorithm but the speed-up (Sp=T
CPU
Ex /TGP UEx) using GPU is almost

the same for both methods. The reason is that the execution times for both CPU-based PCG

and GPU-based PCG experience a similar drop in each case study. Therefore, the overall

speed-up is almost the same. The accuracy was mostly the same for both linear solvers, so

the details are omitted from Table 3.4.

Table 3.4: Summary of Overall Estimation Time for Multi-thread and Massive Thread DSE
Under Contingency Condition

Case No. of Cond. Cond. TCPUEx TGP UEx TCPUEx TGP UEx Sp Sp

buses no. CG no. PCG LU LU PCG PCG LU PCG

1 39 2.4E+02 1.6E+01 0.49s 0.29s 0.38s 0.19s 1.69 2

2 78 9.7E+03 6.3E+02 1.16s 0.59s 0.83s 0.39s 1.96 2.12

3 156 3.9E+04 1.1E+03 4.5s 2.04s 3.1s 1.1s 2.2 2.81

4 312 8.9E+04 1.8E+03 19.2s 6.8s 13.4s 4.3s 2.8 3.02

5 624 2.8E+05 4.9E+04 45.3s 12.5s 38.8s 9.8s 3.6 3.9

6 1248 3.6E+06 2.6E+05 146s 26s 109.1s 20s 5.6 5.4

7 2496 2.4E+07 1.3E+06 369s 40s 290.4s 33s 9.2 8.8

8 4992 4.5E+08 9.4E+06 932s 59s 722.5s 48s 15.9 15.05

Table 3.5: State Estimation Execution Time
Case TCPUSE TGP USE TCPUSE TGP USE SSEp SSEp

LU LU PCG PCG LU PCG

1 0.19s 0.13s 0.15s 0.06s 1.46 2.5

2 0.45s 0.24s 0.31s 0.12s 1.87 2.6

3 1.46s 0.59s 1.1s 0.33s 2.4 3.3

4 6.4s 2.05s 4.5s 1.2s 3.1 3.7

5 16.4s 3.4s 12.4s 2.6s 4.8 4.8

6 52.3s 7.2s 36.1s 5.4s 7.2 6.6

7 128s 9.8s 99.5s 8.5s 13 11.7

8 323s 15.91s 249.1s 12.9s 20.3 19.3

The portion of execution time related to actual dynamic state estimation process (pa-

rameter identification, state prediction and state filtering) along with the actual state es-

timation process speed-up is reported in Table 3.5. As the results show state estimation

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation60

takes approximately 25%-30%of the total execution time of massive-thread DSE and be-

tween 35%-40%of the total execution time of the multi-thread DSE.

To analyze the algorithms complexity, their efficiencies are expressed as functions of the

problem size. ConsideringScas the system scale, by curve fitting the closest growth rate

function (GR=TEx(Sc)) for the CPU-based and the GPU-based algorithms are calculated

asSc∗log2(Sc)and
√
Sc∗log2(

√
Sc), respectively. The growth rate functions for CPU

(GRCPU) and GPU (GRGP U) are plotted in Fig. 3.20.

248 16 32 64 128

10̂−1

10̂0

10̂1

10̂2

10̂3

System Scale

Ex
ec
ut
io
n
Ti
me
 (
se
c.
)

0

5

10

15

20

25

Sp
ee
d
−
upGRCPU

T
Ex.LU

CPU

T
Ex.PCG

CPU

T
Ex.LU

GPU

T
Ex.PCG

GPU

GRGPU

s
p.LU

s
p.PCG

Figure 3.20: Execution time (TEx.) and speed-up (Sp) comparisons of multi-thread and
massive-thread DSE along with growth rate functions.

As the size of the problem increases, the required time for execution increased propor-

tional to these functions which proves that the speed-up will increase with growing sys-

tem sizes. It can be seen that the CPU-based algorithm follows a higher order complexity

compared to the GPU-based algorithm. The complexity reduction is the main advantage

afforded by the GPU for MPDSE.

3.8 Discussion

Although GPUs are well suited for large-scale data-parallel processing, writing efficient

code for them is not without its difficulties. One of the most important bottleneck in par-

allel GPU programming is the overhead in data transfer between host and device. The

size and frequency of data transfers can create a bottleneck which significantly impacts

the execution time of an algorithm. This fact is considered in both proposed methods by

moving all the time consuming steps to GPU to reduce the data transfer which resulted in

significant speedup for both SSE and DSE applications.

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation61

As shown in Table 3.1 and Table 3.4, the advantage of utilizing GPU for parallelization

is significant when the size of the system is increased. One explanation is that for small

size of data the communication overhead between the host and device supersedes the ex-

ecution time on the CPU. With growing system sizes, the CPU is barely able to handle the

computation tasks in a reasonable time. With growing system sizes less time is spent on

state estimation. The reason is that, as the size of the system grows the parallel portion of

the program expands faster than the serial portion, while underscore GPU’s advantages.

These results are not unique due to the fact that the programming structure is one of the

most important factors which affects the processing time. Therefore, a different program-

ming style may lead to faster results; nevertheless, the speed-up would still be valid for

increasing system sizes although with a slightly lower numerical value.

In terms of accuracy, the small differences compared to PSS/E results are justifiable

considering the fact that the order of block execution in each GPU grid is undefined in

kernel definition. Therefore, it leads to slightly different results if different CUDA blocks

perform calculations on overlapping portions of data.

3.9 Summary

The application of parallel processing for static/dynamic state estimation is motivated by

the desire for faster computation for online monitoring of the system behavior. The ap-

proach proposed in this chapter investigates the process of accelerating the static/dynamic

for large-scale networks. In the first part, WLS-based state estimation was explored using

massively parallel graphic processing unit.

In the second part, a data collation method was proposed where PMU devices are in-

stalled at a subset of buses, and the remaining measurements were extrapolated employing

the exponential moving average method. A massively parallel dynamic state estimation

process was formulated on the GPU along with a multi-threaded CPU implementation.

In both methods, for a fair comparison exactly the same algorithm was used on both

CPU and GPU. Numerical experiments in this work proved that successful parallelization

utilizing iterative and direct linear solver results in a notable reduction in execution time.

The results verify the accuracy of the proposed GPU-based estimators under both normal

and contingency conditions.

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation62

Algorithm: GPU Implementation of EKF-based DSE

Given an initial 0
~x

Calculate

...

...)(

~)1(ˆ

...~)1)(1(

)1(

1

kk

kkk

kkk

kk

indk

QQ

xx

xa

IF

Until termination do

end while

while dox

end for

Calculate

11

1

~)(

))(()(

HRHxG

xhmHRHxg
T

T

Solve)()()(xgxxG

Update)(1 xxx ii

for i=1,… until convergence

end

k

T

kkkk

kkkk

QFF

axFx

~~

ˆ~

1

1

Update

1111

111

111

~)(

....~

...~ˆ

kkkk

T

kkk

kkk

HKI

HK

Kxx

1kkUpdate

GPU
3*(2n-1) summations

2*(2n-1) summations
GPU

 6M-MPI,2(2n-1)2VA
GPU

GPU

1 M-M P, 2 M- V PII

 2 M-M PIII
GPU

 LU/PCG
GPU

(2n-1) VA
GPU

GPU
(2n-1) VA, (2n-1) M-V P

2 (2n-1)2 M-M P, (2n-1)2 VA
GPU

GPU
1 M-M P, 2 VAIV

GPU
2 (2n-1) (2n + 2m+1) M-M P

GPU

2 (2n-1)2 M-M P, (2n-1)2 VA

Matrix-matrix product (M-M P), Vector add (VA), Matrix-vector product (M-V P).

I2(2n-1)2+4(2m+2n+1)(2n-1) operations

II(2m+2n+1) (2n-1) +2(2n-1) operations

III(2n-1) (2n-1) + (2m+2n+1)(2n-1) operations

IV(2n-1) (2n+2m+1), (2n-1) + (2n+2m+1) operations

Figure 3.21: Pseudo code for GPU implementation of MPDSE.

Chapter 3. Massively Parallel Static/Dynamic State Estimation: Single GPU Implementation63

Algorithm: OpenMP-based algorithm of EKF-based DSE

Given an initial 0
~x

Calculate

end while

while dox

Calculate
11

1

~)(

))(()(

HRHxG

xhmHRHxg
T

T

Solve)()()(xgxxG

Update)(1 xxx ii

end

k

T

kkkk

kkkk

QFF

axFx

~~

ˆ~

1

1

Update

1111

111

111

~)(

....~

...~ˆ

kkkk

T

kkk

kkk

HKI

HK

Kxx

1kkUpdate

#pragma omp_set_num_threads(4)

#pragma omp parallel sections
#pragma omp section

Calculate
indk IF)1(

#pragma omp section
#pragma omp parallel shared (…), private (…)

Calculate ...~)1)(1(kk xa

#pragma omp section

...)(

~)1(ˆ

1kkk

kkk xx
Calculate

#pragma omp parallel shared

...kk QQ

#pragma omp parallel sections
#pragma omp section

#pragma omp parallel for

#pragma omp parallel for reduction (+:…)

If do
finalkk

#pragma omp parallel sections
#pragma omp section

Calculate

#pragma omp parallel for

Figure 3.22: Pseudo code for quad-core CPU implementation of DSE.

4
Relaxation-based Dynamic State Estimation:

Multi-GPU Implementation

4.1 Introduction

Massive amounts of data generated in large-scale grids along with the wide usage of P-

MUs poses a formidable challenge for online monitoring of power systems. DSE which

is a prerequisite for normal operation of power systems involves the time-constrained so-

lution of a large set of equations which requires significant computational resources. So

for accurate monitoring of the system dynamic behaviour it is necessary to generate faster

techniques to alleviate computational burden.

In contrast with most available approaches for DSE which only accelerated SSE pro-

cess, the objective of this chapter is to explore DSE using EKF in large-scale power systems

utilizing detailed synchronous generator modeling. Utilizing highly detailed models com-

plicates the state estimation problem resulting in a high computational burden. A hetero-

geneous parallel multi-GPU and multi-core CPU implementation of large-scale DSE based

on an accurate and robust relaxation method is presented to estimate both generator (dy-

namic) and network (static) states of the power system. Coarse-grained parallelism using

relaxation method along with its implementation on a multi-GPU computational server

where each of the individual GPUs has a fine-grained parallel architecture enables signifi-

cant acceleration of the DSE process.

64

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 65

4.2 Formulation and State-space Model

Joint dynamic and static state estimation for a multi-machine power system can be math-

ematically described as follows:

⎧
⎨

⎩

f(̇xg,xg,t,u)=0 xg(t0)=xg0
g(x,t,u)=0
h(xn,m,ε)=0 xn(t0)=xn0

(4.1)

wherexis the vector of state variables includingxg, dynamic state of generator and,

xn, static state of the network.x0is the initial values of state variables.f(.)describe the

nonlinear dynamic behaviour of the generators,g(.)model the output function, andh(.)

is the nonlinear function of network measurement.uandm represent the output vector

and network measurements vector, respectively.trepresents the simulation time. For a

system withlgenerators, andnbuses, there are9×l+2nelements in vectorx: 9 states per

generator, andnvoltage magnitudes,nphase angles.

One of the widely used method for detailed modeling of the synchronous generator is

the Parks equations with an individualdqreference frame fixed on the generator’s field

winding [151]. The ninth-order model used in this work include automatic voltage regu-

lator (AVR) and power system stabilizer (PSS) which includes two windings on thed-axis

(one excitation field and one damper) and two damper windings on theq-axis. Although

the excitation system increases the number of differential equations and complexity of the

model, it increase the accuracy of the results. The details of the synchronous generator

model are provided in Appendix A.

The vector of state variablesxgfor a single synchronous generator is given as:

ẋg=[δ,Δω,ψfd,ψ1d,ψ1q,ψ2q,v1,v2,v3]
Tr, (4.2)

whereδandΔωrepresent vector of rotor speed and angle, respectively.ψfd,ψ1d,ψ1q,ψ2q

shows vector of rotor flux linkages andv1,v2,v3are vector of exciter voltages.Trrepresent

the transpose of matrix.

In order to solve the system of equation, following three steps are required:

Step 1. The continuous-time differential equations are discretized using the Trape-

zoidal integration method which results in a new set of non-linear algebraic equations:

xt+τg −xtg=
τ

2
[f(xg,t+τ,u)−f(xg,t,u)], (4.3)

whereτis integration time-step.

Step 2.In second step the nonlinear algebraic equations are linearized which results in

following:

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 66

xt+τg =Fxtgx
t
g+η

t,ηt∼N(0,Qt), (4.4)

whereFxtg=
∂f
∂xtg
|xtgrepresents the9×9state transition between two time steps.ηand

Qare9×1linearization error, and9×9error covariance matrix, respectively.

Step 3.The resulting linear algebraic equations are solved using iterative method to

obtain the system states.

The network model and nonlinear measurement function which was earlier explained

in detail in Section 3.2.1. can be rewritten as:

xt+τn =G(xn)
−1g(xn)+x

t
n, (4.5)

4.3 Relaxation Method

Relaxation-based approaches partition the system into a number of subsystems based

on either the system equations or component connectivity which reduce the complexi-

ty [98, 153]. It facilitates the parallel solution of the small subsystems, and the exchange

of computational data between them. This method can be used at different levels of e-

quations by braking the system into subsystems in a way that the variable inside of each

subsystem (local variables) are strongly interdependent while the dependency between

variable in two different subsystems (local and global variables) is weak enough to ignore

their interconnection. The relaxation method was the first attempt to exploit both space

and time parallelism [154].

4.3.1 Space Parallelism

This parallel approach partitions the original system into subsystems and distributes them

among the parallel processors. It usually addresses the task-level parallelism in which

serial algorithms are converted into various smaller and independent tasks that may be

solved in parallel. The obvious part that parallelism can be exploited in is the solution of

linear algebraic equations. As an example consider (4.4) and (4.8) which can be decoupled

and solved with Gauss-Jacobi method.

xk+1g =F(xkg)x
k
g+η

k, (4.6)

xk+1n =G(xkn)
−1g(xkn)+x

k
n, (4.7)

wherekis the iteration index. Equation (4.6) and (4.7) can be solved to updatexgand

xnat each time-step. Therefore, the work associated with each time-step can be distributed

among the parallel processors and run simultaneously.

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 67

4.3.2 Time Parallelism

This technique concurrently solves many time-steps by dividing simulation time into a se-

ries of blocks that each of them contains a number of steps which lead to the solution of the

system. In the parallel-in-time method the vectorxis determined forTstime-steps simul-

taneously, whereTis the number of time-steps for which the output results are required.

As an example consider (4.3) which can be rewritten as follows for a set ofTequations:

x1g−x
0
g=
τ

2
[f1+f2],

x2g−x
1
g=
τ

2
[f2+f1],

...

xTsg −x
T−1
g =

τ

2
[fT+fT−1],

(4.8)

where the superscript denotes the individual time-step.

Overall, relaxation has following main advantages over existing parallel-processing

method:

•It is an inherently parallel method.

•Each subsystem can be solved independently.

•Subsystems become smaller than the original large system, it takes less time to solve.

•Different levels of accuracy for modeling in each subsystem can be used.

The same as other parallel computation algorithms, the preliminary step in utilizing

relaxation method is to decompose the problem into smaller tasks that can be distribut-

ed among several processors. After decomposition, each subsystem will be solved inde-

pendently. In every iteration each subsystem is solved for its local variables while other

subsystems are considered constant or relaxed during the time-step. Each subsystem us-

es the previous value of other subsystems as a guess for its new iteration. At the end of

each iteration the global variables of all subsystems are exchanged for the next time-step

and this process is repeated until convergence is gained. The parallelism inherent in the

relaxation method, offers a coarse grained parallelization as a top level algorithm which

should be implemented before using a numerical method for solving the system of equa-

tions. Figure 4.1 gives an example of Gauss-Seidel relaxation in different level of equations.

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 68

0),,...,,,...,(

0),,...,,,...,(

0),,...,,,...,(

11

2112

1111

nnnn

nn

nn

uxxxxf

uxxxxf

uxxxxf

0),,...,,,,...,,(

0),,...,,,,...,,(

0),,...,,,,...,,(

2121

2
1

21
1

212

1
11

21
11

211

n
t
n

ttt
n

tt
n

t
n

ttt
n

tt

t
n

ttt
n

tt

uxxxxxxf

uxxxxxxf

uxxxxxxf

(a)

0),,...,(

0),,...,(

0),,...,(

1

212

111

nnn

n

n

uxxg

uxxg

uxxg

0),,...,,(

0),,...,,(

0),,...,,(

21

2
1

212

1
11

211

n
t
n

tt
n

t
n

tt

t
n

tt

uxxxg

uxxxg

uxxxg

(b)

0...

0...

0...

11

22121

11111

nnnnn

nn

nn

uxaxa

uxaxa

uxaxa

0...

0...

0...

2211

2
1

2221111

1
1

1
1
212111

n
t
nnn

t
n

t
n

t
nn

tt

t
nn

tt

uxaxaxa

uxaxaxa

uxaxaxa

(c)

Figure 4.1: Gauss-Seidle relaxation method applied in different level of equations: (a) dif-
ferential equation, (b) non-linear equation, (c) linear equation.

4.4 Domain Decomposition

Any technique that divides a system of equations into several subsets which can be solved

individually can be classified as domain decomposition method. The subsystem is a sub-

set of system variables. Since subsystems can be solved simultaneously decomposition

techniques are suitable for parallel hardware architectures.

There are two main approaches for domain decomposition: overlapping and non-

overlapping sub-domains. In cases that after domain decomposition subsystems have

common states and need to exchange data it is called overlapping decomposition, oth-

erwise it is non-overlapping decomposition.

Consider a power network that is decomposed into two parts as shown in Fig. 4.2. As

an example, the objective function for static WLS state estimation can be formulated as:

J(x) = argmin
x1,x2

⎧
⎨

⎩

[m1−h1(x1)]
TR−11 [m1−h1(x1)]+

[m2−h2(x2)]
TR−12 [m2−h2(x2)]+,

[mB−hB(xB)]
TR−1B [mB−hB(xB)]

subject to(xB1−xB2)=0 (4.9)

wherehi(xi),i=1,2is the nonlinear measurement function for each subsystemiwhile
∂h1(x1)
∂xB1

=∂h2(x2)
∂xB2

=0, and the complete vectors are as follow:

•x1=[x1,int,xB1]
T.

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 69

Subsystem #1 Subsystem #2

B
111 Vx 222 Vx

(a)

Subsystem #1 Subsystem #2

11int,1 Vx 22int,2 Vx

(b)

)(11 xhm)(22 xhm

)(11 xhm)(22 xhm

11 BB jQP
22 BB jQP

11 BBV 22 BBV

Figure 4.2: Domain decomposition: (a) interconnection of two subsystems, (b) split of two
subsystem.

•x2=[x2,int,xB2]
T.

4.4.1 Power System Domain Decomposition

The preliminary step for parallel implementation of relaxation-based DSE on GPU is to

partition the system into interdependent subsystems while making the dependency be-

tween any two subsystems weak enough to ignore their interconnection. It is already

shown that the rate of convergence in relaxation method is highly dependent on the method

of partitioning [155]. There are different approaches to decompose a power system for par-

allel processing:

•Decomposition based on geographical distance; however, this approach stymied by

the computational load balancing problem and may result in inaccuracy due to ne-

glecting the effect of subsystems.

•Distributing equal numbers of generators and buses among subsystems; however,

this is not an efficient method since the generator models vary in both size and com-

plexity and network buses have different connectivity.

•Splitting the computation burden among processors based on the total number of

equations; however, this method will increase the programming complexity.

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 70

The best way to decompose a system for parallel processing is to distribute equal

amount of work among processors. The best result guaranteed when subsystem are in-

dependent of each other or in another word tightly coupled variables are gathered in same

subsystem.

4.4.2 Coherency Analysis

From power system point of view determination of tightly coupled variables can find a

physical meaning. Following a disturbance in the system, some generators lose their syn-

chronism with the network which causes sudden changes in the buses connected to those

generators and naturally partition the system into several areas. Generators in each of

these areas are said to be coherent. In this situation, state estimation will take more iter-

ations for some area since it should be repeated after clearing the disturbance. Coherent

generators can be grouped in the same subsystem which can be solved independently

from other subsystems. Partitioning the system into several areas in which generators are

in step together or are coherent, will increase the accuracy of the state estimation and save

time by localizing the effect of disturbances. The partitioning achieved using the coheren-

cy property is independent of the size of disturbance and the level of detail used in the

generators which makes it suitable for our case studies [146].

In a network a pair of generators is called coherent if the difference between their rotor

angles remains constant over time (4.10):

δi(t)−δj(t)=Δδij± (4.10)

whereΔδijis a constant value, andis a small positive number.

For efficient parallelization, in our work computational load balancing was also con-

sidered in domain decomposition. Equal load distribution among subsystems reduces the

complexity resulting in faster computations which also makes it efficient for implemen-

tation in a multi-GPU architecture. Fig. 4.3 shows a power system decomposed intoJ

subsystems. Decomposition based on the coherency approach and equal load work crite-

ria, divides the full set of equations into several independent functions running in separate

GPUs. The proposed method decomposes the system in two steps. First considering the

coherency characteristic groups of coherent generators are identified. Then equal com-

putational load among subsystems is considered which reduced the size of subsystems

with significantly more load compared to other subsystems. It should be mentioned that

upcoming GPUs are designed to handle load balancing automatically. However, the pro-

posed method is designed to work with all types of GPU.

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 71

G

G

G

. .
 .

. . .

. . .

G

. . .

. . .

. .
 .

. .
 .

G

G

. . .

. . .

. . .

. .
 .

G . .
 .

G

. . .

. . .

. .
 .

. . .

1
2

3 J

2,12,1 ,bbV

1,
1,
 ,
J b

J
b
V

3
,2

3
,2
 ,
b

b
V

Figure 4.3: Original power system decomposed intoJsubsystems for RJDSE implementa-
tion.

4.5 Iterative Gauss-Jacobi Method

Two of the most famous iterative methods used for relaxation-based solutions are the

Gauss- Seidel (G-S) and Gauss-Jacobi (G-J) methods. Consider a set of equations withn

unknowns as follows:

a11x1+a12x2+···+a1nxn=b1,

a21x1+a22x2+···+a2nxn=b2,

...

an1x1+an2x2+···+annxn=bn,

(4.11)

In order to calculate unknowns values (4.11) can be rewritten as:

x1=
1

a11
(b1−a12x2−···−a1nxn),

x2=
1

a22
(b2−a21x1−···−a2nxn),

...

xn=
1

ann
(bn−an1x1−···−ann−1xn−1),

(4.12)

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 72

In general, for any unmown value in (4.11) following equation can be written:

xi=
1

aii

⎡

⎣bi−

n

j=1,i=j

aijxj

⎤

⎦,i=1,2, ...,n (4.13)

The algorithm starts with an initial guess for the solution. At each iteration it updates

x. The iterations stops when the absolute relative approximate error is less than a pre-

specified tolerance for all unknowns. If in each iteration the algorithm uses the results of

previous iteration it is called G-J (4.14) and if it uses the most updated value it is called

G-S method. Since G-S uses the latest iteration it has a serial nature which makes it less

suitable for our case study. So we only focus on G-J formulation. G-J iteration sequence for

two subsystems are described in Fig. 4.4, respectively. Fig. 4.5 describe G-J algorithms.

xk+1i =
1

aii

⎡

⎣bi−
i−1

j=1

aijx
k
j−

n

j=i+1

aijx
k
j

⎤

⎦ (4.14)

4.

2.

1s

2s

nt

3.1

16.

14.

15.

8.

6.

7.

8.

6.

7.

1nt 2nt

13

1
st
it
er
at
i
o
n

2
nd
it
er
at
io
n

Figure 4.4: Gauss-Jacobi iterative method for two sub-systems.

4.5.1 Relaxation-based Gauss-Jacobi Method

In the relaxation based G-J (RG-J) method, theithsubsystem uses the current iterate val-

ue from subsystems (1,...,i-1) and the previous iterate value from subsystems (i+1,...,n)

as inputs. In another word, the solution of Subsystemifor the current time-step is fully

independent from the solution of other subsystems. The subsystems are discretized and

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 73

Algorithm: Gauss Jacobi method

Choose an initial solution 0x

Whilenot convergedo

end

end

0kSet

0ix
fori=1 ton

forj=1 toi-1 and j=i+1 ton

i
k
i xx

end

Check convergence

jkjiii xaxx)1(,

iiiii axbx ,/)(

1kkUpdate

Figure 4.5: Gauss-Jacobi Algorithm .

solved independently using space parallelism. This method exploits time parallelism over

the simulation period since subsystems are solved concurrently.

Consider following differential equation which can be used for RG-J:

ẋL=f(xL,uL,xG,uG,t,), (4.15)

wherexLanduLare local variables which define the dynamic behavior of Subsystem

i, andxGanduGare global variables that defining all subsystems excluding Subsystemi.

To solve each subsystem (4.15) all three steps explained earlier in Section 4.2 should be

followed step by step. After the convergence of iterative solutions in all subsystems, the

state and algebraic variables calculated from the last time-step are updated.

4.6 Parallel Relaxation-based WLS Static State Estimation

As first case study, proposed method was implemented on CPU architecture to evaluate

the efficiency for further implementation in multi-GPU architecture. Consider a decompo-

sition of the domainΩintoM non-overlapping sub-domains:

Ω=
M

i=1

Ωi, Ωi∩Ωj={∅}i=j (4.16)

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 74

LetΔ(x)
(0)
i denote the initial condition in sub-domainΩi. A general RG-J algorithm for

state estimation can be written as:

⎧
⎪⎨

⎪⎩

G(x)
(k+1)
i Δ(x)

(k+1)
i =g(x)

(k+1)
i inΩi

x
(k+1)
i =x

(k)
j on∂Ωi∩Ωj

Z
(k+1)
i =Z

(k+1)
j on∂Ωi∩Ωj

(4.17)

The flowchart of the relaxation-based Jacobi implementation of WLS static state estimation

on CPU for a time interval of [0 T] is depicted in Fig. 4.6.

After decomposition, each sub-domain is stored and computed by a processor core. All

processor cores solve the sub-domains in Parallel. The process starts from an initial con-

dition for all the subsystems. To achieve convergence several iterations may be required,

where each of the subsystems exchange boundary information and are then solved with

updated data collected from other subsystems. If the stopping criteria is not satisfied,

new iteration is performed. This process is repeated using a Jacobi method to iterate a-

mong subsystems until all variable converge with the necessary accuracy. In case of bad

measurements, state estimation will repeat only for the sub-domain affected by bad mea-

surement.

4.6.1 Experimental Results

To evaluate accuracy and efficiency of the proposed algorithms, the results were com-

pared with traditional centralized state estimation. It is assumed that PMUs are installed

at the boundary buses. To assess the accuracy of the state estimator, the results were also

compared with the original power-flow results from PSS/E. Using the partitioning pat-

tern mentioned in [147], Case 1, IEEE 39-bus system has been divided into 3 subsystems:

{1,8,9},{2,3,4,5,6,7}, and{10}. For computational load balancing another criteria was

considered to have almost equal number of buses in each sub-domain. Satisfying both

conditions simultaneously resulted in following 4 domains which are shown in Fig. 4.7.

Accuracy Analysis and Bad Data Detection

The role of bad data detection in state estimation is necessary since bad measurements

easily affect the accuracy of the results. One of the popular method for BDD which is used

in this paper is based on normalized residual test [150]:

rN(l) =
r(l)

σr(l)
≤λ, (4.18)

whererN(l)is the largest residual among all andσr(l)is the standard deviation of thel
th

component of the residual vector. More details about BDD methods is provided in Chapter

5. In this work the measurements having the largest normalized residual and larger than

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 75

In ParallelIn Parallel

Initialize

p=0

i=1

Solve

i=i+1

START

END

i>M?
No

Yes

? 41ex
No

Yes

p=p+1

Exchange data for
boundary buses

),...,,;,...,,(11
1

11
1

1 I
M

I
i

II
M

I
i

II
i xxxfx

I
j

I
i xx 1

Calculate

)(),(11 k
i

k
i xHxh

k=0

Next time step

No

Yes

Exchange data for
boundary buses

k
j

k
i xx 1

11 k
j

k
i ZZ

BDI

?)(lr
Yes

No

k=k+1

Remove
bad data

Four subsystems
in parallel

Figure 4.6: The relaxation-based Jacobi WLS algorithm with BDD; k: time step, i: the
number of subsystems, p: iteration counter, l: index of component in residual vector.

3 were considered as bad data, with a99.7%confidence level. After removing bad data,

state estimation was repeated starting from the most recent estimate.

The results of parallel distributed state estimation are compared with traditional cen-

tralized state estimation method. The simulations were done using the data sets listed in

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 76

Figure 4.7: Decomposing a Case 1 into 4 subsystems to apply the additive Schwarz algo-
rithm.

Table 4.1, with a tolerance of 0.0001 for convergence of the estimated parameters. Perfor-

mance of the proposed method was evaluated for different case studies. The estimated

states for Case 1 are shown in Fig. 4.8 and Fig. 4.9. It is clear from the results that the

proposed approach can accurately estimate the voltage magnitude and phase angle.

Table 4.1: Summary of Results for Comparison of RG-J WLS with Centralized WLS

Case No. of No. of ECen.V ECen.φ EDec.V EDec.φ TCen.Ex TDec.Ex Sp
buses meas.

1 39 171 0.009 0.85 0.006 0.46 0.08s 0.11s 0.72
2 78 347 0.004 0.6 0.003 0.43 0.26s 0.33s 0.78
3 156 699 0.0032 0.55 0.001 0.47 0.51s 0.61s 0.83
4 312 1421 0.0041 0.6 0.0014 0.48 1.49s 0.91s 1.6
5 624 2865 0.0033 0.7 0.0012 0.49 5.2s 1.84s 2.8
6 1248 5825 0.004 0.65 0.0011 0.5 24.5s 8.1s 3.1
7 2496 11553 0.0044 0.6 0.0013 0.49 68.3s 15.5s 4.4
8 4992 23151 0.005 0.65 0.0017 0.49 364.5s 56.3s 6.5

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 77

0 5 10 15 20 25 30 35 40
0.9

0.95

1

1.05

1.1

1.15

Bus Number

V
ol
ta
ge

Ma
g
ni
t
u
de
 (
p.
u.
)

PSS/E

Centralized WLS

Parallel WLS

Figure 4.8: Voltage magnitudes for Case 1 with respect to system size.

0 5 10 15 20 25 30 35 40
−5

0

5

10

15

20

Bus Number

Ph
as
e
An
gl
e
(d
eg
.)

PSS/E

Centralized WLS

Parallel WLS

Figure 4.9: Phase angles for Case 1 with respect to system size.

The normalized Euclidian norm of the state estimation is also defined as a factor to

evaluate the accuracy using:

Ex=
x−x̂

dim(x)
, (4.19)

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 78

whereExis the normalized Euclidian norm of the estimation error, anddim(x)is the

dimension of vectorx.xand̂xare vector of true states and estimated states, respectively.

Table 4.1 shows the accuracy index for both voltage magnitude (EV) and phase angle (Eφ)

for all case studies which clarifies the performance of the proposed method for large-scale

systems.

Speed-up Analysis

To demonstrate the efficiency of the proposed approach execution time using decomposed

SE (TDec.Ex) is compared with traditional centralized (T
Cen.
Ex) SE method. As can be seen from

Fig. 4.10 the percentage of required execution time for centralized WLS method increase

very fast which shows the higher complexity of this method. In contrast, in proposed

method growth rate of execution time is close to a linear behaviour.

Figure 4.10: Percentage of execution time breakdown with respect to system size.

4.7 Relaxation-based Joint Dynamic State Estimation

In this section a relaxation-based joint dynamic state estimation (RJDSE) is implemented on

4 GPUs using relaxation-based Gauss-Jacobi method. All equations are expressed based

on the unique SIMD-based architecture of GPU. Instead of using single element values

vectors or matrices of them are used. In addition, all matrix-matrix and matrix-vector

which includes many independentforloops are implemented in a fully parallel manner.

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 79

CUDA which is the general-purpose programming model for the GPU hardware was

used in this work. The entire simulation code was written in C++ integrated with CUDA

using CUBLAS and CUSPARSE libraries [156, 157] using double precision floating point.

4.7.1 Hierarchy of Parallelism

After partitioning the system, the following set of equations can describe the dynamics of

each subsystem:

⎧
⎪⎪⎨

⎪⎪⎩

f(xt1, ...,x
t+τ
i , ...,x

t
J,̇x

t
1, ...,̇x

t+τ
i , ...,̇x

t
J,t,

ut1, ...,u
t+τ
i , ...,u

t
J)=0

g(xt1, ...,x
t+τ
i , ...,x

t
J,t,u

t
1, ...,u

t+τ
i , ...,u

t
J)) =0

h(xt1, ...,x
t+τ
i , ...,x

t
J,Z

t
1, ...,Z

t+τ
i , ...,Z

t
J,ε)=0

(4.20)

where indicesLandGstands for local and global variables, respectively. Eq. (4.20) is

solved in parallel and iteratively for all subsystems. After each iteration, the global state

variables are exchanged and updated between all interconnected subsystems. In order to

calibrate the results, an overall loop based on the Gauss-Jacobi algorithm is applied outside

the solutions of sub-systems. Since the Gauss-Jacobi algorithm only uses the previously

computed values for the solution of each sub-system, all computations of sub-systems can

be processed in parallel.

The algorithm starts at top level with Gauss-Jacobi iteration. By functional parallelism,

almost equal tasks are assigned to each GPU. The iteration starts at the same time and in

parallel inside all GPUs. Inside each iteration fine-grained parallelism is used to accelerate

the process. After each iteration, only estimated states of boundary buses are exchanged. If

the Gauss-Jacobi algorithm convergence is not satisfied, new iterations will be performed.

Since the subsystems are fully independent of each other, after each time-step the results of

network estimation will be transferred to the generator state estimation model. The same

procedure is performed for generator dynamic state estimation. While network estimation

is working on estimation for the time-stept+τ, generator state estimation is working for

the time-stept, simultaneously. Thus, the network estimation is always one step ahead of

the generator estimation. The results will be checked for bad data identification after each

time-step of network estimation. In case of bad data, only the subsystem affected by bad

data will repeat state estimation instead of the whole system. Fig. 4.11 shows the complete

flowchart of the RJDSE.

In summary, fine-grained parallelism is performed inside the functional parallelism,

and functional parallelism is a subset of coarse-grained parallelism (Fig. 4.12). In the best

case scenario, coarse-grained parallelism by dividing the system intoJsubsystems reduce

the execution time toτ/J; using functional parallelism andJ1independent tasks result-

s in execution time ofτ/J.J1; and finally utilizingJ0independent matrix-matrix, matrix-

vector and other type of fine-grained parallelism execution time can be further reduced to

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 80

p=0

Solve

? 41ex
No

Yes

p=p+1

Exchange data for
boundary buses

),...,;,...,(1
1

1
1

1
1

k
M

kk
M

kk xxfx

I
j

I
i xx 1

Calculate

)(),(1
1

1
1

kk xHxh

k=0

Next time step

No

Yes

Exchange data for
boundary buses

k
j

k
i xx 1

11 k
j

k
i ZZ

BDI

?)(lr
Yes

k=k+1

Replace
bad data

...

C
P
U
T
hr
ea
d
#1

C
P
U
T
hr
ea
d
#2

C
P
U
T
hr
ea
d
#3

Solve

Calculate

)(),(1
4

1
4

kk xHxh

C
P
U
T
hr
ea
d
#
n
C

...

GPU #1 GPU #nG

Initialize GPU #1 Initialize GPU #nC

Nominal
Data

+

Calculate
Generator State

GPU #1

Nominal
Data

+

Calculate
Generator State

GPU #nG

...

),...,;,...,(1
1

1
1

1
4

k
M

kk
M

kk xxfx

Discretize/Initialize

No

START

END

Figure 4.11: Flowchart of RJDSE implementation on multi-GPU architecture.

τ/J.J1.J0. However, in reality the speedup is less than this considering the different costs of

parallelization and data transfer to GPU.

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 81

...

Jindependent subsystems

...

Coarse-grained

J1independent functions

J0M-M/M-V product,…

Fine-grained

Functional

...

...

τtt

τ/J

1τ/J.J

01J.τ/J.J

Figure 4.12: Hierarchy of parallelism in RJDSE,τ: integration time-step, t: simulation time.

4.7.2 Implementation of RJDSE on GPU

Case 1 which is the IEEE 39-bus system has been partitioned into four sub-domains sat-

isfying both computational load balancing and coherency characteristic of the generators.

Similarly, all the large test cases are partitioned. The simulation starts by initialization

on the CPU. After that, the measurement set corresponding to each subsystem was trans-

ferred to GPU assigned for that specific subsystem. All the subsystems start the simulation

at the same time. After each iteration boundary data was exchanged among subsystems.

Once network state was converged, the results were used for generator state estimation.

Network and generator state estimation was running simultaneously as shown in Fig. 4.13.

4.7.3 Experimental Results

The results of RJDSE implementation on multiple GPUs are demonstrated in this section.

The accuracy of the simulation has been verified using the PSS/E software. The initial

condition for generator states was chosen based on the steady-state condition. Fig. 4.14

shows the overall block diagram of the proposed method.

Accuracy Analysis and BDD

Accuracy of the proposed method was evaluated under both normal and emergency con-

ditions. A temporary three-phase fault is considered at t=3s which is cleared after 100 ms.

The normalized Euclidian norm (4.19) of the state estimation is defined as a factor to eval-

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 82

Generator

It
er
.
1

It
er
.
2

It
er
.
p

It
er
.
1

It
er
.
2

It
er
.
p

Network

1

1

2
2

2

3

t
nx

t
nx

t
nx

t
gx

t
gx

t
gx

...

...

.
.
.

Subsys. 1

Subsys. J

...

...

.
.
.

Subsys. 1

Subsys. J

G1… Gm

t tt

G1… Gm

G1… Gm G1… Gm

Figure 4.13: Time progression of RJDSE on GPU.

G

G

G

. . .

. .

.
 .

State
Estimator

GV

S S

N

N
Generator
Nominal Data

Generator Exciter

Network Model

State
Estimator

V

 ,

321 , , VVV

dfd 1 ,

qq 21 ,

1,…,J

1,…,J

GPS

PMU Data

Figure 4.14: Overall block diagram of the proposed RJDSE method.

uate the accuracy. Results of simulation on all case studies are shown in Fig. 4.15.

The simulation results was followed by BDD. The largest normalized residuals with

threshold ofκ=3were considered as bad data. Here the bad data refers to measurements

with gross errors. Once bad data is identified corresponding measurement was updated

by deducting gross error (Riiσiiri) from bad data. Using the updated measurements state

estimation was repeated only for the subsystems which were affected by bad data. For

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 83

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

x 10
−3

Case Number

No
r
ma
li
ze
d
Eu
cl
id
ia
n
No
r
m

V
EN

φ
EN

δ
EN

Δω
EN

ψ
fdEN

ψ
1dEN

ψ
1qEN

ψ
2qEN

V
1EN

V
2EN

V
2EN

Figure 4.15: Normalized euclidian norm of the estimation error using RJDSE.

large scale systems, this localization of bad data can save lots of time which can in turn

accelerate the state estimation process.

Also, the estimated states for Case 1 are shown in Fig. 4.16, Fig. 4.17, and Fig. 4.18. As

shown the maximum of the average errors for all case studies are less than 0.001 p.u. All

the simulation results proves that proposed method is able to accurately capture the dy-

namic behaviour of the system.

Complexity Analysis and Speedup

Generally, when a system withNbuses is partitioned intoMsubsystems, each sub-domain

has approximatelyN/Mbuses. Assume that solving a linear system with iterative method

has complexity ofO(Nα)whereα≥ 1. Using domain decomposition technique, the

complexity of solving each subsystem isO((N/M)α)which results in the complexity of

O((N)α/(M)α−1)for the entire system. It may not be realistic to expect the same speedup

in practice; however, the results clearly indicate the advantages of domain decomposition

in accelerating DSE.

As can be seen from Table 4.2 and Fig. 4.19 the percentage of required execution times

increases faster in single-GPU (TEx.S.GP U) simulation compared with multi-GPU (T
Ex.
M.GPU)

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 84

0

0.5

1

1.5

Ro
to
r
An
gl
e,
δ,
 (
p.
u.
)

1 2 3 4 5 6 7 8 9 10

0

0.005

Time (sec.)

Er
ro
r
(p
.u
.)

Realδ

Estimatedδ

Estimation Error

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2

Ro
to
r
Sp
ee
d,

ω
,
(p
.u
.)

−0.01

0

0.01

Time (sec.)

Er
ro
r
(p
.u
.)

Realω

Estimatedω

Estimation Error

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2

3

4

Fi
el
d
Wi
nd
in
g,
ψ
fd
,
(p
.u
.)

−0.1

0

0.1

Time (Sec.)

Er
ro
r
(p
.u
.)

Realψ
fd

Estimatedψ
fd

Estimation Error

Figure 4.16: Generator state estimation (δ, ω, ψfd) and error of estimation in RJDSE.

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 85

1 2 3 4 5 6 7 8 9 10

0.63

0.64

0.65

Time (sec.)

d−
ax
is

Wi
nd
in
g,
ψ
1
d
 (
p.
u.
)

0

0.01

Er
ro
r
(p
.u
.)

Realψ
1d

Estimatedψ
1d

Estimation Error

1 2 3 4 5 6 7 8 9 10

−0.2

0

0.2

0.4

Time (sec.)

q−
ax
is

Wi
nd
in
g,
ψ
1q
,
(p
.u
.)

0

0.1

Er
ro
r
(p
.u
.)

Realψ
1q

Estimatedψ
1q

Estimation Error

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

Time (sec.)

q−
ax
is

Wi
nd
in
g,
ψ
2q
,
(p
.u
.)

−0.01
0
0.01

0.05

Er
ro
r
(p
.u
.)

Realψ
2q

Estimatedψ
2q

Estimation Error

Figure 4.17: Generator state estimation (ψ1d,ψ1q,ψ2q) and error of estimation in RJDSE.

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 86

1 2 3 4 5 6 7 8 9 10

0.8

1

1.2

Time (sec.)

Ex
ci
te
r
vo
lt
ag
e,
V
1
(p
.u
.)

1 2 3 4 5 6 7 8 9 10

0

0.02

Er
ro
r
(p
.u
.)

Real V
1

Estimated V
1

Estimation Error

1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

1

1.5

2

Time (sec.)

Ex
ci
te
r
Vo
lt
ag
e,
V 2
,
(p
.u
.)

−0.2

0

0.2

Er
ro
r
(p
.u
.)

Real V
2

Estimated V
2

Estimation Error

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Ex
ci
te
r
V
ol
ta
ge
,
V
−
3
(
p.
u.
)

−0.04

−0.01
0
0.01

0.04

Time (sec.)

Er
ro
r
(
p.
u.
)

Real V
3

Estimated V
3

Estimation Error

Figure 4.18: Generator state estimation (V1,V2,V3) and error of estimation in RJDSE.

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 87

implementation which shows the higher complexity of this method. The execution time

also verify that exploiting parallelism using GPUs can results in significant speed-up in

the state estimation process.

Table 4.2: Execution Time in Single-GPU and Multi-GPU Implementation

Case No. of No. of TEx.S.GP U TEx.M.GP U
buses gen.

1 39 10 0.4s 0.4s
2 78 20 1.1s 0.9s
3 156 40 2.16s 1.45s
4 312 80 6.9s 4.3s
5 624 160 12.6s 7.3s
6 1248 320 28.9s 15.3s
7 2496 640 43.1s 22.2s
8 4992 1280 62.8s 30.6s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

0.4 1.1 2.16 6.9 12.6 28.9 43.1 62.8

0.4 0.9 1.45 4.3 7.3 15.3 22.2 30.6

E
xe
c
ut
i
o
n
Ti
me

Br
ea
k
d
o
w
n
(
%)

Case Number

Single GPU Multi-GPU

Figure 4.19: Percentage of execution time for varying test cases on single and multi-GPU
simulators.

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 88

4.8 Discussion

Overall, simulation results prove the efficiency of the proposed method compare to other

existing parallel SE approaches. There are small differences compared to PSS/E (actual)

results which are due to the fact that the order of block execution in each GPU grid is un-

defined in the kernel definition. Therefore, it leads to slightly different results if different

CUDA blocks perform calculations on overlapping portions of data.

In terms of speed-up, as the results show for small cases, the parallel method is slow-

er than the centralized method which is due to communication overhead in parallelism.

Also comparison between single-GPU and multi-GPU shows the possibility of even more

speed-up using more GPU. In addition, since the data set is divided into several subsets,

in case of bad data SE was only repeated for the affected subset not for the whole system

which saved lots of time and accelerated the DSE process.

In addition to the high parallelization offered by the relaxation method, its implementa-

tion on multiple GPUs covers the maximum size limitation imposed by CUDA/CUBLAS.

Most of the CUBLAS function are limited to matrices with maximum size of 2040 row or

column. In our case study the size of Jacobian matrix is9l×9l. Thus, the largest system

that can be modeled is limited to 450 machines. In the relaxation method, however, the

system is decomposed into subsystems which are solved individually, so each subsystem

can use the maximum compute capacity of the available hardware.

4.9 Summary

Using traditional SE method, the size and cost of the simulator is usually prohibitive, e-

specially for simulating large-scale systems. The main objective of this chapter was to

investigate the effect of domain decomposition and relaxation-based techniques on accu-

racy and speed of SE by proposing a parallel relaxation-based joint DSE.

The proposed method is general and extensible to any number of GPUs connected in

a cluster. Results show that more GPUs can reduce expected computation time. Result

comparisons verified the accuracy and efficiency of the proposed method. In addition, the

performance of the slow coherency method as the partitioning tool was analyzed, and it

was concluded that for different fault locations in the system, results derived from this

method had lower amounts of error.

In summary, the main contributions of the proposed approach are as follows:

•Parallel multi-GPU implementation of joint generator and network DSE.

Chapter 4. Relaxation-based Dynamic State Estimation: Multi-GPU Implementation 89

•Application of relaxation method which distributes equal workload among all the

processors and eliminates the need for all subsystem to be observable.

•Domain decomposition based on coherency method which reduce the effect of non-

overlapping decomposition on the accuracy.

•Eliminating central coordinator which reduces the communication time between the

subsystems.

•Distributed localized bad data analysis in parallel with state estimation.

5
Robust Dynamic State Estimation Against

Cyber-attack

5.1 Introduction

Although the advancement of cyber technologies in sensing, communication and smart

measurement devices significantly enhanced power system security and reliability, its de-

pendency on data communications makes it vulnerable to cyber-attacks. Coordinated false

data injection (FDI) attacks manipulate power system measurements in a way that emu-

late the real behaviour of the system and remain unobservable, which misleads the state

estimation process, and may result in power outages and even system blackouts [80]. The

increasing demand for reliable and economical electricity services raises critical challenges

in online monitoring and control of future power grids which rely on DSE; therefore, se-

curity of DSE and its vulnerability to cyber-attack is a major concern.

To overcome the effect of cyber-attacks, in this chapter considering the stochastic na-

ture of the system disturbances a cyber-physical model of the power system utilizing the

Markov chain is proposed. A set of possible states along with the probability of each state

is generated. A Markov chain based on these states is then defined. After each estimation

process all states are checked on the Markov chain. If the estimated states are close to a

value with low probability or out of the Markov chain, the possibility of the cyber-attack

is deemed high. Furthermore, to increase the security of the system, critical measure-

ments are identified and protected. The proposed attack detection method was built upon

a parallel Kalman filtering algorithm for DSE. In order to speed up the whole process, the

proposed robust DSE was implemented on GPU.

90

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 91

5.2 Bad Data Detection

Detecting and identifying bad data in state estimation is usually done by comparing the

telemetered measurements from SCADA with the estimated values of the states. Tradi-

tionally, bad data were assumed to be caused by random errors resulting from a fault

in a meter and/or its attendant communication system [74, 161]. Some bad data such as

negative voltage magnitudes or measurements with several orders of magnitude larger or

smaller than expected values can be easily detected and eliminated prior to state estima-

tion. However, it is not the case for all types of bad data. Therefore, state estimators have

to be followed by BDD to ensure the accuracy of the estimation. The traditional BDD anal-

ysis is usually based on the properties of measurements residuals.

There are different types of measurements in power system which may show different

properties and affect the outcome of the state estimation accordingly [5]. These measure-

ments can be classified in two main categories as follows:

•Critical measurement-those measurements whose elimination from the measurement

set will result in an unobservable system are called critical measurements. The mea-

surement residual of a critical measurement is always zero.

•Redundant measurement- a measurement which is not critical is a redundant measure-

ment. Only redundant measurements may have nonzero measurement residuals.

Two of the most important methods used for detecting bad data are the Chi-squares

and largest normalized residual (LNR) tests.

5.2.1 Chi-squares Test

Consider a set ofJindependent variable (Si) where:

Si∼N(0,1),i=1, ...,J, (5.1)

A new variableSdefined as follows:

S=

J

i=1

S2i, (5.2)

will have aχ2distribution withJdegree of freedom. The degree of freedom shows the

number of independent variables. In a power system, degree of freedom is equal to the

difference between the total number of measurements and the system states. Choosing a

probability of error, e.g. 0.03, the thresholdx̂tcan be set such that:

Pr{̂x≥x̂t}=0.03, (5.3)

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 92

wherePris the probability function. Thêxtrepresents the largest acceptable value for̂x

that will not trigger BDD. If̂xexceeds this threshold, then it will not have aχ2distribution

which implies it is a bad data with97%probability.

Consider the objective function in WLS state estimation written in terms of measure-

ments error:

J(̂x)=

2l+2n+1

i=1

(mi−hi(̂x))
2R−1ii, (5.4)

Define the threshold forddegree of freedom withpprobability (χ2d,p):

p=Pr{J(̂x)≤χ
2
d,p}, (5.5)

IfJ(̂x)≥χ2d,pthen bad data exist, otherwise measurements are free of bad data. Theχ
2

distribution values for different degrees of freedom can be determined using MatlabR or

in various statistical publications [5].

5.2.2 Largest Normalized Residual Test

The normalized residual vectorrNcan be defined as follow:

rNi=
ri
√
σii
, (5.6)

whererNiis thei
thnormalized residual,σiiis the diagonal component of the residual

covariance matrix which can be calculated as:

Cov(r)=σ=R−HG−1HT, (5.7)

The largest value of normalized residual (LNR) vectorrNLis compared against a desired

threshold to decide on the existence of bad data.

Considering the residual vector in WLS state estimation, the LNR test can be written

as:

rNi=
mi−hi(̂x)
√
σii

>rt, (5.8)

whererts the desired threshold. Ifr
N
L>rtthenL

thmeasurement is bad data. TherNLis

the largest residual among all [5].

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 93

5.2.3 Bad Data Removal

If a measurement is suspected as a bad data it should be removed from measurement set

before the next cycle of state estimation. The measurement that is corrupted with bad data

can be written as:

mbadi =mi+ei, (5.9)

wherembadi is the bad measurement andeiis the gross error. An approximate value for

eiis computable, however is out of scope of our work [5]. Subtracting this error from bad

measurement results in:

mi mbadi −
Rii
σii
rbadi , (5.10)

whererbadi is the residual of bad measurements. State estimation can be repeated after

correcting the bad measurement.

It should be considered that measurement redundancy is a key issue in the perfor-

mance of BDD. However, existing measurement configurations may not always yield such

desired level of redundancy which makes the BDD impractical for such cases. For ex-

ample bad data associated with critical measurements can not be detected or identified.

Many researchers have considered the problem of BDD in power systems [75, 77, 78, 162],

however conventional BDD approaches usually fail when the network malfunction is de-

liberately caused by an attacker who manipulates the communication between RTUs and

the SCADA system [4, 79].

5.3 False Data Injection Attack

In false data injection (FDI) attacks, the adversary who has the knowledge of the network

configuration changes some of meter readings from SCADA and manipulates the state

variables arbitrarily. This type of malicious attacks can effectively bypass the existing BD-

D technique. The main reason for this failure is that all traditional BDD techniques assume

that bad measurements result in significant measurements residual, However there is no

trace of measurements residual in cyber-attack.

The general rule for a hidden attack is that the attacker must alter the data so that the

measurements can plausibly correspond to the physical properties of the system. The main

idea of FDI attack is to add a nonzero attack vectorato the original measurements vector

mwhich results in a false estimation as follow:

x̂a=x̂+c (5.11)

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 94

wherecandx̂aare the error added to the original estimation, and corrupted state,

respectively. Theithnonzero element inameans that the attacker compromises theith

measurement by replacing its original value withmi+ai.

Considering the measurement residual a necessary condition to hide an attack can be

derived as follows:

ra= ma−Ĥxa= m+a−H(̂x+c)

= m−Ĥx+(a−Hc)= m−Ĥx.
(5.12)

The above equality constraint results ina=Hc. A structured sparse attack likea=Hc

will result in the same residual and will not be detected by BDD. In this case, the system

operator would mistakêx+cfor a valid estimate.

Definition: The sparse attack vectora=[a1, ...,am]
Tis called false data injection attack

if and only if it satisfies the relationa=Hc, wherec=[c1, ...,cn]
Tis a arbitrary nonzero

vector [80].

In general, the minimum number of measurements the attacker needs to manipulate

for a hidden attack on estimated value at busidepends on the following:

•The number of adjacent buses to busi,

•The number of measurements at busi,

•The lines connecting busito its adjacent buses.

Fig. 5.1 shows a possible cyber-attack on an energy control center. For example, assume

that the attacker wants to alter the active power flow on the line connecting busiand

j. Based on the following equation the attacker has to at least change one of the four

variables, voltage magnitude:vi,vj, and phase angle:θi,θj.

Pij=v
2
i.gij−vivj(gijcos(θi−θj)−bijsin(θi−θj)). (5.13)

Imagine that the attacker adjusted the estimated value forvjtov
a
j, the following equa-

tion must be solved in order to find the voltage magnitude which will yield the desired

power flow:

Pij=v
2
i.gij−viv

a
j(gijcos(θi−θj)−bijsin(θi−θj)). (5.14)

wheregijandbijrepresents line admittance parameters. Since power flow and power

injection are functions of voltage magnitudes and phase angles, the value of other mea-

surements can be calculated considering the relationship between power flow and power

injection. Also, the attacker must change all the measurements which are functions ofvj.

In another words, the following should be satisfied in order to keep the attack hidden:

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 95

Optimal Power Flow

Contingency Analysis

... . State Estimation.
.
.
.

......

Control Center

a

SCADA
m

Operator

X̂

Bad Data
Identification

Alarm?

r

Attacker

Energy Management System

Power Grid

Figure 5.1: Dynamic state estimation under cyber-attack,a: attack vector,m: measurement,
r: measurement residual,̂x: estimated state .

i

ΔPi+ΔLP=0,

i

ΔQi+ΔLQ=0
(5.15)

whereΔPandΔQrepresent the alterations in active power flow/power injection and

reactive power flow/power injection, respectively.ΔLrepresents the power losses.

5.3.1 Minimum Cost FDI Attacks

In order to find a minimal attack on measurementithe attacker has to optimise vectorato

have the least number of non-zero elements by solving following problem [163]:

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 96

αi=min
a
a0=min

c
Hc 0,

such that 1 =
j

Hijcj,
(5.16)

where a0denotes the number of non-zero elements ina, andHis the Jacobian matrix

in WLS state estimation problem. The above problem is hard to solve, so the easiest way

is to find upper and lower bound onαi.

Since at least one measurements need to be corrupted, the lower bound isαui=1.By

considering theithrow of Jacobian matrix and the columns for which this row has nonzero

elements, an upper bound can be found to construct a false-data attack vector. The upper

bound implies the minimum number of measurements required for a successful FDI at-

tack.

Assume thatHijis non zero. The following attack vector archives the attackers goal:

aji=
ai
Hij
H.,j,

αui= min
j:Hij=0

H.,j0,
(5.17)

whereH.,jis thej-the column ofHandα
u
iis the upper bound which is associated with

the sparest vector among allaji.

For further clarification consider a simple small 3-bus power network shown in Fig. 5.2.

11 Pm
122 Pm

233 Pm

11V 22V

33V

Figure 5.2: 3-bus power network with three measurementsP1,P12, andP23.

For simplicity assume that the resistance in the transmission lines is small compared

to its reactance and all voltages are set to 1 p.u.θ1=0as the reference angle and the state

vector to be estimated is[θ2,θ3]
T. Considering[P1,P12,P23]as measurements, jacobian

matrix for network in Fig. 5.2 can be calculated as:

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 97

H=

⎡

⎣
−1 −1
−1 0
1 −1

⎤

⎦ (5.18)

Using (5.16) in order to calculateα1following should be satisfied:

−c1−c2=1=⇒
Ifc1=−1,c2=0 Hc=[1,1,−1]

T

Ifc1=0,c2=−1 Hc=[1,0,1]T
(5.19)

It is obvious that the second choice results in sparsesta1and the upper bound isα
u
1=2.

The same waya2anda3can be calculated.

5.4 Markov-Chain Formulation

Consider a physical system that has k possible states and at any one time, the system is

in one of itskstates. The system called Markov Chain if given an observation set at time

t, the probability of the system being in a specific state depends only on its status at time

t-1 [164]. Considering a set of statesxiwhich taking valuessi, a first order Markov chain

fulfill following properties:

Pr(xt=sit|xt−1=sit−1, ...,x0=si0)=Pr(xt=sit|xt−1=sit−1) (5.20)

The power system can be modeled as a stochastic hybrid dynamical system where

the stochastic availability of generation and state is explicitly included. Because many

cyber-attacks require a series of related events to accomplish, anlthorder Markov-chain is

suitable for our case study to improve attack detection performance by incorporating the

continuous events. A stochastic process which fulfils the following properties is called an

lthorder Markov-chain.

Pr(xt=sit|xt−1=sit−1, ...,x0=si0)=Pr(xt+1=si0|xt=si1, ...,xt−l=sil) (5.21)

wherePrrefers to probability function andtrepresent the time. In this process the

probability of getting into the next state depends upon thelprevious states.

To define a Markov model, the following probabilities have to be specified:

•The transition probability matrixTP=[tpij]k×k,

•Initial probabilitiesπi=Pr(x0=si)

where

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 98

tpij=Pr(xt+1=sj|xt=si),i,j∈1,2, ..., k (5.22)

In this chaptertpijis modeled by a function of Euclidean distance between historical

measurement and current observation. Since 10 set of measurements are selected as his-

torical data, we use a10thorder Markove chain. The proposed parallel DSE using EKF

calculates the state of the system. The Euclidian distance of the historical data and estima-

tion of the trusted buses are calculated. Based on the results a probability is assigned to

each data set. When the Markov model is ready, the projected estimates and the Markov

model are compared by the detector. If the difference between the two is above a pre-

computed threshold, an alarm is triggered to notify a possible attack or failure.

The Euclidean method compares the difference between the two sets of data (x1,x2)

based on the distance metric as shown in (5.23).

ED(x1,x2)= (x1,1−x2,1)2+...+(x1,n−x2,n)2 (5.23)

If the difference is larger than a pre-computed threshold, the detector triggers an alarm.

However, to avoid false alarms due to measurement or system errors, the threshold was

set to filter99%of noise. Fig. 5.3 shows the overall block diagram of the proposed method.

δV

Pseudo
Measurements

ΔδΔV,

+
Measurement

Set

Online
Power Flow

False Data
Injection Attack

Robust
Dynamic State Estimation

with
Extended Kalman Filter

-

Markov
Model

Euclidian
Distance

EDEDV,

...

...

...

...

... ...

Network

Trusted Buses
Measurements

Attack
Detection

Figure 5.3: Overall block diagram of the proposed robust DSE method.

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 99

5.5 Critical Measurement Protection

Changing the critical measurements using updated information decreased the chance of

successful cyber-attack. Large-scale power grids contain thousands of meters which makes

the protection of measurements highly expensive. In order to reduce the cost, in our work

the critical meters are identified and protected based on optimal PMU placement. Critical

measurements are the ones whose elimination make the entire system unobservable. One

of the important properties of critical measurements is that its measurement residual will

always be zero. The measurement residualrcan be written as follows:

r=Δm−Δm̂=Δm−(h(̂x)+ε) Δm−(HΔ̂x+ε). (5.24)

Substituting gain matrix from (3.15) in (5.24) we get,

r=Δm−HG−1HTR−1Δm=(I−S)Δm (5.25)

For residual equal to zero, the diagonal elementSiiof matrixSshould be one, which

implies that theithmeasurement is critical.

5.5.1 Optimal PMU Placement

By optimal PMU placement at strategic buses in the system, we try to increase the accuracy

of the system, protect most of the critical measurements, and provide a subset of trusted

buses to use them in the attack detection algorithm. The objective of PMU placement

problem is to accomplish this task using minimum number of PMUs. This problem can be

formulated and solved as shown below [165]:

min.

n

i=1

Λi×Γi,

subject to :

n

j=1

μi,j×Γi≥1 at bus i

(5.26)

Γi=
1 If PMU is installed at bus i
0 Otherwise

(5.27)

whereμi,jis the element of connectivity matrix which is1if busiand busjare con-

nected , and0otherwise.Λiis the cost of PMU installation at busi. The constraint on

(5.26) ensures that all subsystems created upon removal of each critical measurements will

have at least one PMU measurement. It actually transform all critical measurements into

redundant measurements.

Consider a 5-bus system shown in Fig.5.4. The connectivity matrix can be written as:

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 100

μ=

⎡

⎢
⎢
⎢
⎢
⎣

1 1 0 0 1
1 1 1 0 1
0 1 1 1 0
0 0 1 1 1
1 1 0 1 1

⎤

⎥
⎥
⎥
⎥
⎦

(5.28)

11V 22V 33V

55V 44V

Figure 5.4: 5-bus power network.

The constraint for this case can be formed as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Γ1+Γ2+Γ5 ≥1
Γ1+Γ2+Γ3+Γ5 ≥1

Γ2+Γ3+Γ4 ≥1
Γ3+Γ4+Γ5 ≥1

Γ1+Γ2+Γ4+Γ5 ≥1

(5.29)

For example, first constrain implies that at least one PMU must be installed at either

one of buses 1, 2 or 5 to protect bus 1. To optimize the number of PMU, the best option

is to install one PMU in bus 2 since it is common in four constrain. Te other PMU can

be installed in either of bus 3, 4 or 5. it should be considered that in our case study the

objective for using optimal PMU placement is to increase the accuracy of the detector not

just minimising the number of installed PMU.

5.6 Parallel Implementation of the Robust DSE Against FDI

In this section, a trust-aware scheme for DSE is proposed which is robust under FDI attack.

In the first step, critical measurements are identified. Utilizing optimal PMU placement for

critical measurements, a group of trusted buses are introduced into the network. Secondly,

using historic data of the trusted buses normal activities a Markov-chain model represent-

ing the normal behavior of the network is created. Thus, given an observed sequence,

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 101

the system has to decide if there is a cyber-attack or system is under normal operation

condition. The Euclidian distance of the results from Markov-chain model is then calcu-

lated. The higher the distance observed activities receive from the Markov-chain model

of the normal profile, the more likely the observed activities are anomalies resulting from

cyber-attacks, and vice versa. If the results match to data set with a probability less than

0.1 they are assumed to be corrupted with cyber-attack. In other worlds the probability of

the attack increases when results match to data set with lower probability. Also, in case of

the load change, the change in voltage magnitude or phase angle caused due to the load

change can be predicted, so the model parameters can be adjusted to reflect the change in

the voltage due to the load change.

5.6.1 Implementation of Robust DSE Against FDI on GPU

The proposed robust DSE combines several aspects of parallelism to utilize the full capa-

bility of GPUs as efficiently as possible. Initializations are done on the CPU. After that all

of the data are transferred to the GPU for executing the robust DSE algorithm. In the first

step, the traditional serial algorithm is converted into smaller independent tasks which

results in task parallelism to be solved in parallel. All of the independent tasks in the three

main steps of EKF are calculated in parallel to accelerate the algorithm.

In order to take advantages of SIMD-based architectures of GPUs for the basic com-

putations data parallelism is used for matrix-vector and matrix-matrix products which are

time consuming for large data-sets. By assigning each independentforloops to individu-

al threads, the task can be executed in parallel by converting into a kernel. In the robust

DSE algorithm, several tasks are composed of matrix-matrix and matrix-vector product or

summations which can be assigned to an individual kernel to run in parallel. Each ker-

nel is responsible for the calculation of that specific task. As the number of independent

threads is a lot more than the CPU cores, this type of parallelization is not possible on the

CPU. Sparse matrix-vector multiplication and sparse triangular solve is used for GPU im-

plementation using cuSPARSE library [156]. Fig. 5.5 shows the flowchart of the proposed

robust DSE method.

5.6.2 Experimental Results

To explore the efficiency of the GPU based robust DSE against FDI large-scale systems

were constructed for simulations. IEEE 39-bus, IEEE 118-bus, and IEEE 2496-bus systems

were implemented on the GPU for simulation studies. Case 3 is build by duplicating IEEE

39-bus system. The same hardware setup as previous chapters is used for case studies.

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 102

Initialize

Solve

START

END

? 41exNo Yes

Calculate

)(),(),(),(tttt xgxGxHxh

t=0

Next time step

No

Yes

BDI

?)(lr
YesReplace

Bad Data

Transfer Data From CPU to GPU

GPU

Build Markov Model

No

Parallel

Serial

Calculate

tttbF
~,,

)()(1 ttt xgxGx

Calculate

111 ,,ˆ ttt Kx

t=t+1

Compute Euclidian
Distance

Cyber Attack
Yes

Find Critical Measurements
Install PMUs
Find Set of Trusted Buses

Use Closest Data Set Until
next MeasurementsArrive

Transfer Data From GPU to CPU

GPU Parallelization

Set Block size and threads

Load Data to Shared Memory

Implementation of Algorithm in
Fine-grained Parallelism

Input in Texture and Device
Memory

ThradId.x
BlockId.x

Th
ra
dI
d.
y

Bl
oc
kI
d.
y

Th
ra
dI
d.
z

Bl
oc
kI
d.
z

Figure 5.5: Flowchart of the proposed robust DSE method implemented on GPU.

Accuracy Analysis and BDD

In order to evaluate the accuracy of the proposed method, the results of state estimation

in normal operation condition are plotted in Fig. 5.6 and Fig. 5.7. As there is no attack in

the system, the result of state estimation is close enough to PSS/E (real states). It is also

shown in Fig. 5.7 that both LNR and proposed FDI test were resulting in lower values than

the threshold indicating that there was no attack in the systems. The same experiment is

performed for all case studies, however only results of IEEE-118 bus system, are plotted to

save the space.

Attack Detection Analysis

In the second scenario, the proposed approach was evaluated for false data injection at-

tack. The goal of the attack was to change the power injection at bus 22 by influencing the

estimated values for the state variables at this bus in the IEEE 118-bus system shown in

Fig. 5.8. For this attack to remain hidden other measurements have to be changed as well.

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 103

0 20 40 60 80 100 120
0.9

0.95

1

1.05

1.1

Bus Number

Vo
lt
ag
e
Ma
gn
it
ud
e
(p
.u
.)

0

0.002

0.006

0.008

0.01

Er
ro
r
(p
.u
.)

Estimation Error

Real States

Estimated States

Figure 5.6: Voltage magnitude under normal operation condition.

2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

Time (sec.)

La
rg
es
t
No
r
m.
Re
s.

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

Time (sec.)

Pr
ob
ab
il
it
y

Proposed FDI Test

Threshold

LNR Test

Threshold

Figure 5.7: Detectors output along with threshold under normal operation condition.

In order to satisfy (5.15), power injections at buses 20 and 23 need to be changed. Also, the

power flows on the 21-22 and 22-23 connecting lines need to be adjusted as well which will

change the power flow on line 20-21. As a results the estimated value for bus 21 should

also change to keep the attack hidden.

Fig. 5.9 shows the behavior of the LNR and proposed FDI test under the cyber-attack. It

is clear from results that the estimation does not match with the measured values. During

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 104

G

G

G

1 2

117123

4

5

11

13

15

14

G

6

7

G
8

16 17

113
30

G

G

9

10

27

G

G

29

28

114
115

31

32

G

G

26

25

20

21

22

23

G

G

18

19

G G G G
40 41 42 53 54 55

G

59

39

37 52
44

43

G

36

57 58
63

50

5148

45

46

47

49

60

64

61

G
34

35

G
G

G

56

G

33

G
24

72

71

G

G
73

74 75 77

G

118

76

78

79

G

80

81

G 69
68

G

116

G

65

G

66

67

G

62

98
97

9682

G

83

84

85

G

89

86

90

88

G

87

95

G

92

94

93

G
99

G

100

G

102

91
110

103

G

111

G
112

G G G

104 105 107

108

109

G

101

G

G

G

106

Normal Buses

Generator Buses

Attacked Buses

Attacker Goal

Alternate Change

70

G

G

G

G

Figure 5.8: IEEE 118-bus power system.

this attack, the LNR detector resulted in values below threshold and thus it was not able

to detect the attack in the system as shown in Fig. 5.10. However, in the same setup, the

proposed detector exceeds the threshold; hence, the FDI attack can be detected. The results

of LNR test in Fig. 5.10 show that this method can detect bad data using smaller threshold.

However, it should be considered that from the first case study we know that there is not

a bad data in the system. So the threshold for LNR was selected to filter99.9%of the

noise to only focus on cyber-attack. If we change the threshold to 3, in the first run LNR

will detect a bad data so state estimation will run one more time after removing the bad

data. As explained earlier for cyber-attack several measurements should change. So the

trace of cyber-attack still exists in the system and LNR will not detect it this time. In other

worlds, by selecting smaller threshold, instead of focusing on cyber-attack we just waste

the time by redoing state estimation. The same experiment is performed for all case studies

resulting in similar results, which proved the effectiveness of the proposed approach.

Computational Efficiency and Resource Distribution

In order to certify the efficiency of the proposed GPU-based robust DSE the speed-up ratio

is defined asSp=TCPU/TGP U, whereTGP UandTCPUare the execution time of the serial

algorithm running only on CPU and parallel algorithms on the GPU, respectively. As the

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 105

0 10 20 30 40 50 60 70 80 90 100 110 120

0.95

1

1.05

1.1

1.15

Bus Number

Vo
lt
ag
e
Ma
gn
it
ud
e
(p
.u
.)

0 20 40 60 80 100 120

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Er
ro
r
(p
.u
.)

Estimation Error

Real States

Estimated States

Figure 5.9: Voltage magnitude under FDI attack.

2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

Time (sec.)

La
rg
es
t
No
r
m.

Re
s.

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

Time (sec.)

Pr
o
ba
bi
li
ty

LNRTest

Threshold

Proposed FDI Test

Threshold

Figure 5.10: Detectors output along with threshold under FDI attack.

results reported in Table 5.1 show, the advantage of utilizing GPU for parallelization is

significant when the size of the system is increased. It is obvious that execution time on

CPU follows a high order complexity as the system size grows. However, the execution

of the robust estimator on GPU almost increase linearly with respect to the system size

as a result of fine grained parallelism on GPU. So it is expected to see higher speed up

using larger case studies. Details of the case studies along with average estimation error

for voltage magnitude (EAve.V) and phase angle (EAve.δ) are shown in Table 5.1.

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 106

Table 5.1: Summary of DSE Results Under FDI Attack

Case No. of buses No. of meas. Jacobian (H) EAve.V EAve.δ TCPU TGP U Sp

1 39 171 171×77 0.0027 0.059 0.31s 0.21s 1.47

2 118 609 609×235 0.0022 0.049 2.6s 0.55 4.7

3 2496 11553 11553×4991 0.0021 0.051 243s 31s 7.8

Based on Gustafson’s law [130], the maximum achievable speed-up by parallelization

is proportional to the number of CPU cores in the system. Unlike CPU, there is no fixed

law to predict the maximum achievable speed-up using GPU. As it is obvious from result-

s, more cores increases the processing power and throughput of the GPU and results in

significantly faster algorithm. So it is expected to see even better performance using GPU

for larger case studies which make it suitable for real implementation.

The resource distribution from CUDA on the Tesla S2050 GPU server is shown in Ta-

ble 5.2. As can be seen from the results, the number of cores increase dynamically as the

size of the system increases. Distribution of threads, blocks and memory varies in different

kernels. Typically, the number of thread per block is a constant number which was 128 in

our case studies. The number of blocks per grid is different based on the problem size in

each case study. The maximum number of block per grid in each dimension was 16. The

maximum number of grids for each Case study is reported in Table 5.2.

Table 5.2: GPU Resource Occupancy for MPDSE

Case Occupancy No. of cores Max. no. of grids

1 51.4% 230 7
2 63.2% 283 53
3 84.8% 379 9384

5.7 Discussion

Overall, accuracy analysis verify that the proposed method can accuracy estimate the state

of the system along with detecting the possible FDI attack. There are small differences

compared to PSS/E results which are justifiable considering the fact that the order of

block execution in each GPU grid is undefined in kernel definition the same as explained

Chapter 5. Robust Dynamic State Estimation Against Cyber-attack 107

in previous chapters. It should be considered that this will not affect the resulted of detec-

tor since the threshold is set in a way to detect attacks with high probability. In rare cases

the detector may report false attack however, it is always better to be prepared rather than

paying expenses caused by a neglected attack.

In terms of speed-up, as it is shown the more GPU core results in more speed-up. It is

possible to achieve higher speed-up using more cores however it should be considered that

a method should keep computational efficiency and cost at the same time. Methods which

works using costly hardware setup are not applicable on real system infrastructure. In

our case study as the resource distribution shows it is possible to achieve higher speed-up

even with the same number of cores.

The threshold for proposed detector was selected based on trial and error to decrease

the chance of false alarm. It is possible to find a better threshold with detailed analysis,

however in our case study the main goal was to show that Markov chain modeling is a

good candidate for cyber-attack analysis. Selecting a different threshold will not change

the fact that proposed method can detect FDI attack which bypass the traditional BDD

techniques.

5.8 Summary

In this chapter, a robust parallel dynamic state estimation approach utilizing GPU and

EKF was presented. As a solution to mitigate FDI attack, a new analytical technique is

proposed based on the Markov chain theory and using Euclidian distance approach when

the SCADA system is subject to a hidden FDI attack. The proposed approach can detect

FDI attack using trusted set of measurements which was secured using optimized PMU

installation. Considering the stochastic nature of the power system, using Markov chain

theory and history of the system’s dynamic behaviour a Markov model was prepared to

check the accuracy of the estimation results using euclidian distance method. The estimat-

ed states are analyzed by calculating the Euclidian distance from the Markov model. States

which match the lower probability are considered as attacked states.

Simulation results verify the accuracy of the proposed method both in normal opera-

tion condition and under FDI attack. It is shown that proposed method is able to detect the

presents of malicious attacks which were undetectable by BDD methods.Moreover, large

case studies along with parallel implementation on GPUs shows the speed and applicabil-

ity of the proposed approach for real time large-scale power system.

6
Conclusions and Future Works

Continued growth in demand followed by system development and complex interconnec-

tions within the new smart grid paradigm has led to significant operational and control

problems. These problems necessitate the need for major changes in computational re-

sources for real-time action by system operators in energy control centers which are hard

to achieve using traditional measurements provided by SCADA.

State estimation is a major requirement for safe operation and control of power system-

s. It is the core of EMS which is computationally very demanding for large-scale power

system operation and control. The state estimation problem is rich in parallelism which

makes it very suitable for utilizing massively parallel processing techniques. In addition,

for secure operation of power system, robustness of state estimation against different type

of fault and cyber-attack should be considered.

The investigation in this thesis branched into three directions. In part one the focus is

the online static and dynamic state estimation. For this purpose, WLS state estimation was

implemented on single GPU as a static and dynamic estimator. In the second part the relax-

ation method in conjunction with domain decomposition was proposed and successfully

implemented on multiple GPU for the estimation of dynamic parameters of synchronous

generator. In the last part, for cyber security analysis, results are verified through bad data

identification and also modeled as a Markov chain to check the robustness against false

data injection attack.

108

Chapter 6. Conclusions and Future Works 109

6.1 Contributions of Thesis

The main contributions of this thesis can be summarized as follows:

•The proposed methods accelerate state estimation for large-scale power systems us-

ing the general purpose computing capacity of the GPU and utilizing algorithm, task

and data parallelism in different steps. The overall results revealed the advantage

of GPU-based estimation over the CPU-based one for large-scale systems satisfying

both accuracy and speed.

•The unique data collation technique by considering time synchronisation, data ex-

trapolation and transformation resulting in a uniform set of measurements that were

fed to the state estimator. Considering different weights for SCADA and PMU mea-

surements along with the time synchronisation and extrapolation of SCADA mea-

surements proposed method offers dynamic monitoring of the system behaviours.

•For the first time, a unified framework is investigated for GPU-based programming

of dynamic state estimation. Although state estimation has a rich literature resources,

in this thesis the effort was to aggregate all of the required equations for synchronous

machine and network modeling, and step-by-step numerical methods to solve these

equations.

•The relaxation method used in this work showed an efficient performance in multiple

GPU implementation. Novel integration of the relaxation method with the coherency

based partitioning and its implementation on GPU resulted in an inexpensive and

efficient state estimator. In the GPU applications, the relaxation method was also

very helpful to overcome the technology restriction existing in the present GPUs. By

the use of this method it was possible to conduct the state estimation of large-scale

power systems which are modeled in detail.

•The unique decomposition approach used in this thesis minimizes the effect of bound-

ary buses in accuracy by exchanging data. It uses only local measurements for DSE

in each subsystem which reduce the size of the problem and minimize data commu-

nication, localizes the effects of bad data to subsystems, and does not require either

local observability or a central coordinator. Coherency analysis along with computa-

tional load balancing resulted in a highly efficient decomposition method for parallel

programming.

•The proposed robust dynamic state estimation against false data injection attack lo-

calizes the effect of false data injection attacks. It identifies critical measurements

and protect them by optimal PMU placement which again reduce the effect of cyber-

attack. For the first time, using Markov chain modeling, the proposed method can

Chapter 6. Conclusions and Future Works 110

easily detect the malicious attacks which are not detectable by traditional BDD ap-

proaches.

6.2 Directions for Future Work

The following topics are proposed for future work:

•Since the programming structure is one of the most important factors which affects

the execution time, it is possible to achieve faster results by different multi-thread

programming paradigms.

•There exist many other possibilities for solving state estimation problem including

least absolute value (LAV), maximum likelihood estimation (MLE), other existing

iterative and non-iterative solvers which can be applied to state estimation problem.

•Proposed methods can be expanded to include more details in network or generator

modeling. It is also possible to change the number of processor nodes or GPUs which

are running in parallel.

•It is possible to implement other parallel processing based techniques to investigate

higher speed-ups. It is predicted that if a method accelerates the CPU-based simula-

tion, it would also accelerate the GPU-based model, if that approach was efficiently

implemented on the GPU.

•It can play an important role in online dynamic cyber security assessment to detect

the possible cyber attack as fast as possible which save time for further action. The

cyber security analysis is an open research area which can take advantages of the

GPUs’ power.

•The application of the proposed method is not limited to the power system analysis,

so future research can also be done to develop GPU-based algorithm for any dynam-

ic system regardless of complication and the type of states or parameters that are

needed to be estimated.

Bibliography

[1] A.Benigni, J. Liu, F. Ponci, A. Monti, G. Pisano, S. Sulis, “Decoupling power system

state estimation by means of stochastic collocation”,IEEE Trans. on Instrumentation and

Measurement, vol. 60, no. 5, pp. 1623-1632, May 2011.

[2] U.S.-Canada Power System Outage Task Force,Final report on the August 14, 2003 black-

out in the United State and Canada: causes and recommendations,April 2004.

[3] A. Teixeira, S. Amin, H. Sandberg, K. H. Johansson, and S. S. Sastry, “Cyber-security

analysis of state estimators in electric power systems”,Proc. IEEE Conf. on Decision and

Control,March 2010.

[4] H. Wu, “PMU impact on state estimation reliability for improved grid security”,Proc.

of IEEE PES General Meeting,vol. 25, no. 1, pp. 1349-1351, 2006.

[5] A. Abur, A. Ǵomez-Exṕosito, “Power system state estimation theory and implemen-

tation”,Marcel Dekker, Inc., 2004.

[6] A. Jain, N. R. Shivakumar, “Power system tracking and dynamic state estimation”,

Proc. of IEEE PES,vol. 1, no. 8, pp. 15-18 Mar. 2009.

[7] A. S. Debs and R. E. Larson, “A dynamic estimator for tracking the state of the power

system”,IEEE Trans. on Power App. and Syst.,vol. 89, pp. 1670-1678, Sept. 1970.

[8] K. Stouffer, J. Falco, K. Kent, “Guide to supervisory control and data acquisition (S-

CADA) and industrial control systems security”,NIST Special Publication 800-82 (Initial

Public Draft),Sept. 2006.

[9] J. De La Ree, V. Centeno, J. S. Thorp, A. G. Phadke, “Synchronized phasor measure-

ment applications in power systems”, IEEE Transactions on in Smart Grid,vol. 1, no. 1,

pp. 20-27, June 2010.

[10] T. D. Han, T. S. Abdelrahman, “hiCUDA: high-level GPGPU programming”,IEEE

Trans. on Parallel and Distributed Systems,vol. 22, no. 1, pp. 78-90, Jan. 2011.

[11] F . C. Schweppe and J. Wildes, “Power system static-state estimation, part I: exact

model”,Proc. of Power Ind. Comp. Conf.,1969.

111

Bibliography 112

[12] F . C. Schweppe and J. Wildes, “Power system static-state estimation, part II: approx-

imate model”,IEEE Trans. on Power App. and Syst.,1970.

[13] F . C. Schweppe and J. Wildes, “Power system static-state estimation, part III: imple-

mentation”,IEEE Trans. on Power App. and Syst.,1970.

[14] V. Cutsem, J. L. Howard and M. R. Pavella, “A two level static state estimator for

electric power systems”,IEEE Trans. on Power App. and Syst.,vol. 100, 1981.

[15] K. Clements, O. Denison, and R. Ringlee, “A multi-area approach to state estimation

in power system networks”,Proc. of IEEE PES,1972.

[16] A. Garcia, A. Monticelli, and P. Abreu, “Fast decoupled state estimation and bad data

processing”,IEEE Trans. on Power App. and Syst.,vol. 98, no. 5, pp. 1645-1652, 1979.

[17] A. Monticelli and A. Garcia, “Fast decoupled state estimators”,IEEE Trans. on Power

Syst.,vol. 5, no. 2, pp. 556-564, May 1990.

[18] S. Y. Lin and C. H. Lin, “An implementable distributed state estimator and distributed

bad data processing schemes for electric power systems”,IEEE Trans. on Power Syst.,vol.

9, 1994.

[19] S. Y. Lin, “A distributed state estimator for electric power systems”,IEEE Trans. on

Power Syst.,vol. 7, 1992.

[20] A. A. El-Keib, J. Nieplocha, H. Singh, and D. J. Maratukulam, “A decomposed state

estimation technique suitable for parallel processor implementation”,IEEE Trans. on

Power Syst.,vol. 7, no. 3, pp. 1088-1097, Aug. 1992.

[21] M. Hiroyuki, “An artificial neural net based method for power system state estima-

tion”,Proc. of Int. Joint Conf. on Neural Networks,1993.

[22] H. Sasaki, K. Aoki and R. Yokoyama, “A parallel computation algorithm for static

state estimation by means of matrix inversion lemma”,IEEE Trans. on Power Syst.,vol.

2, no. 3, pp. 624-632, Aug. 1987.

[23] S. Iwamoto, M. Kusano and V.H. Quintana, “Hierarchical state estimation using a fast

rectangular coordinate method”,IEEE Trans. on Power Syst.,vol. 4, no. 3, pp. 870-879,

Aug. 1989.

[24] D. M. Falciio, F. F. Wu and L. Murphy, “Parallel and distributed state estimation”,

IEEE Trans. on Power Syst.,vol. 10, 1995.

[25] R. Ebrahimian, and R. Baldick, “State estimation distributed processing”,IEEE Trans.

on Power Syst.,vol. 15, no. 4, pp. 1240-1246, Nov. 2000.

Bibliography 113

[26] C. G. Quiles, A. Villa and A. G. Exposito, “A factorized approach to WLS state esti-

mation”,IEEE Trans. on Power Syst.,vol. 26, no. 3, pp. 1724-1732, Aug. 2011.

[27] P. Rousseaux, V. Cutsem and M.R. Pavela, “Multi level dynamic state estimation for

electric power systems”,Proc. of 8th power syst. compt. conf.,pp. 19-24, 1984.

[28] H. Sun, Zh. Wang and D. Nikovski, “Two-level state estimation method for power

systems with SCADA and PMU measurements”,Proc. of IEEE PES Conf. on Inn. Smart

Grid Tech.,vol. 1, no. 5, pp. 21-24, May 2012.

[29] T. V. Cutsem and M. Ribbens-Pavella, “Critical survey of hierarchical methods for

state estimation of electrical power systems”,IEEE Trans. on Power App. and Syst.,vol.

102, no. 10, pp. 3415-3424, Oct. 1983.

[30] G. N. Korres, and G. C. Contaxis, “Application of a reduced model to a distributed

state estimator”,Proc. of IEEE PES,vol. 2, pp. 999-1004, 2000.

[31] W. Shaobu,G. Wenzhong, A. P. S. Meliopoulos, “An alternative method for power

system dynamic state estimation based on unscented transform”,IEEE Trans. on Power

Syst.,vol. 27, no. 2, pp. 942-950, May 2012.

[32] G. G. Rigatos, “A derivative-free Kalman filtering approach to state estimation-based

control of nonlinear systems”,IEEE Trans. on Ind. Elec.,vol. 59, no. 10, pp. 3987-3997,

Oct. 2012.

[33] E. Ghahremani, I. Kamwa, “Dynamic state estimation in power system by applying

the extended Kalman filter with unknown inputs to phasor measurements”,IEEE Trans.

on Power Syst.,vol. 26, no. 4, pp. 2556-2566, Nov. 2011.

[34] C. Huanyuan, L. Xindong, S. Caiqi, Y. Cheng, “Power system dynamic state estima-

tion based on a new particle filter”,Proc. of IEEE PES,pp. 1-7, July 2011.

[35] P. Rousseaux, D. Mallieu, V. Cutsem and M.R. Pavela, “Dynamic state prediction and

hierarchical filtering for power systems state estimation”,Proc. of Automatica IFAC,vol.

24, pp. 595-618, 1988.

[36] G. Durgaprasad and S. S. Thakur, “Robust dynamic state estimation of power systems

based on M-estimation and realistic modeling of system dynamics”, IEEE Trans. on

Power Syst.,vol. 13, no. 4, pp. 1331-1336, Nov. 1998.

[37] G. Welch and G. Bishop, “SCAAT: incremental tracking with incomplete informa-

tion”,Proc. of Comp. Graph. Conf.,pp. 333-344, 1997.

[38] F. Shabani, N. R. Prasad, and H. A. Smolleck, “State estimation with aid of fuzzy

logic”,Proc. of 5th IEEE Int. Conf. Fuzzy Syst.,vol. 2, pp. 947-953, Sept. 1996.

Bibliography 114

[39] J. K. Mandal, A. K. Sinha, L. Roy, “Incorporating nonlinearity of measurement func-

tion in power system dynamic state estimation”,Proc. of IEE, Gen., Trans. & Dist.,vol.

142, no. 3, pp. 289296, May 1995.

[40] K. R. Shih, S. J. Huang, “Application of a robust algorithm for dynamic state esti-

mation of a power system”, IEEE Trans. on Power Syst.,vol. 17, no. 1, pp. 141147, Feb.

2002.

[41] F. Aminifar, M. Shahidehpour, M. Fotuhi-Firuzabad, S. Kamalinia, “Power system

dynamic state estimation with synchronized phasor measurements”, IEEE Trans. on

Inst. and Meas.,vol. 63, no. 2, pp. 352-363, Feb. 2014.

[42] L. Fan, Z. Miao, Y. Wehbe, “Application of dynamic state and parameter estimation

techniques on real-world data”,IEEE Trans. on Smart Grid,vol. 4, no. 2, pp. 1133-1141,

June 2013.

[43] J. Zhang, G. Welch, G. Bishop, Z. Huang, “A two-stage kalman filter approach for

robust and real-Time power system state estimation”,IEEE Trans. on Sust. Energy,vol.

5, no. 2, pp.629-636, April 2014.

[44] N. Zhou, D. Meng, Z. Huang, G. Welch, “Dynamic state estimation of a synchronous

machine using PMU data: a comparative study”,IEEE Trans. on Smart Grid,vol.6, no.1,

pp.450,460, Jan. 2015.

[45] L. Lin, Linawati, L. Jasa, E. Ambikairajah, “A hybrid state estimation scheme for

power system”,Proc. IEEE Circuits and Systems Conf.,vol. 1, pp. 555-558, 2002.

[46] M. Huanga, W. Li, and W. Yana, “Estimating parameters of synchronous generators

using square-root unscented Kalman filter”,Int. J. Elect. Power Syst. Res.,vol. 80, pp.

1137-1144, Sep. 2010.

[47] E. Farantatos, G. K. Stefopoulos, G. J. Cokkinides, and A. P. Meliopoulos, “PMU-

based dynamic state estimation electric power systems”,Proc. of IEEE PES,pp. 1-8, Sep.

2009.

[48] A. G. Phadke, J. S. Thorp and K. J. Karimi, “State estimation with phasor measure-

ments”,IEEE Trans. on Power Syst.,vol. 1, no. 1, pp. 233-238, Feb. 1986.

[49] S. Chakrabarti, D. Eliades, E. Kyriakides, and M. Albu, “Measurement uncertainty

considerations in optimal sensor deployment for state estimation”,Proc. of IEEE Int.

Symp. Intelligent Signal Proc.,pp. 1-6, Oct. 2007.

[50] C. Yunzhi, H. Xiao, and G. Bei, “A new state estimation using synchronized phasor

measurements”,Proc. of IEEE Int. Symp. Circ. and Syst. ,pp. 2817-2820, May 2008.

Bibliography 115

[51] C. Bruno, C. Candia, L. Franchi, G. Giannuzzi, M. Pozzi, R. Zaottini, and M. Zaramel-

la, “Possibility of enhancing classical weighted least squares state estimation with linear

PMU measurements”,Proc. of IEEE Power Tech.,pp. 1-6, 2009.

[52] S. Chakrabarti and E. Kyriakides, “PMU measurement uncertainty considerations in

WLS state estimation”, IEEE Trans. on Power Syst,vol. 24, no. 2, pp. 1062-1071, May

2009.

[53] G. Valverde, S. Chakrabarti, E. Kyriakides, and V. Terzija, “A constrained formulation

for hybrid state estimation”,IEEE Trans. on Power Syst.,vol. 26, no. 3, pp. 1102-1109,

Aug. 2011.

[54] L. Wu, L. Xia, “Research on data compatibility of PMU/SCADA mixed measurement

state estimation”,Proc. of Comm. in Comp. and Inf. Scie.,vol. 288, pp. 703-712 ,2012.

[55] Z. Ming, V. A. Centeno, J. S. Thorp, and A. G. Phadke, “An alternative for including

phasor measurements in state estimators”,IEEE Trans. on Power Syst.,vol. 21, no. 4, pp.

1930-1937, Nov. 2006.

[56] L. Zhao and A. Abur, “Multiarea state estimation using synchronized phasor mea-

surements”,IEEE Trans. on Power Syst.,pp. 611-617, May 2005.

[57] W. Jiang, V. Vittal, and G. T. Heydt, “A distributed state estimator utilizing synchro-

nized phasor measurements”,IEEE Trans. on Power Syst.,vol. 22, no. 2, pp. 563-571,

May 2007.

[58] H. Xue, Q. Jia, N. Wang, Z. Bo, H. Wang, and H. Ma, “A dynamic state estimation

method with PMU and SCADA measurement for power systems”, Proc. of Int. Power

Eng. Conf.,pp. 848-853, Dec. 2007.

[59] W. Jiang, V. Vittal, G. T. Heydt, “Diakoptic state estimation using phasor measurement

units”,IEEE Trans. on Power Syst.,pp. 1580-1589, Nov. 2008.

[60] K. Das, J. Hazra, D. P. Seetharam, R. K. Reddi, A. K. Sinha, “Real-time hybrid state

estimation incorporating SCADA and PMU measurements”,Proc. of IEEE PES Conf. on

Inn. Smart Grid Tech.,vol. 1, no. 8, pp. 14-17 Oct. 2012.

[61] E. Farantatos, G. K. Stefopoulos, G. J. Cokkinides, and A. P. Meliopoulos, “PMU based

dynamic state estimation for electric power systems”,Proc. of IEEE PES,pp. 1-8, Jan.

2009.

[62] T. Yang, H. B. Sun, and A. Bose, “Transition to a two-level linear state estimator part

II: algorithm”,IEEE Trans. on Power Syst.,vol. 26 ,no. 1, Feb. 2011.

[63] S. M. Amin and B. F. Wollenberg, “Toward a smart grid: power delivery for the 21st

century”,Proc. of IEEE PES,vol. 3, no. 5, pp. 34-41, Sep. 2005.

Bibliography 116

[64] K. Moslehi and R. Kumar, “Smart grid - a reliability perspective”,Proc. of Inn. Smart

Grid Tech. Conf.,pp. 1-8, Jan. 2010.

[65] I. Dzafic, S. Henselmeyer, and H. T. Neisius, “High performance state estimation for

smart grid distribution network operation”,Proc. of IEEE PES Conf. on Inn. Smart Grid

Tech.,pp. 1-6, Jan. 2011.

[66] P. Du, Z. Huang, Y. Sun, R. Diao, K. Kalsi, K. Anderson, Y. Li, and B. Lee, “Distribut-

ed dynamic state estimation with extended Kalman filter”,Proc. of North Amer. Power

Symp.,pp. 1-6, Aug. 2011.

[67] C. G. Quiles, A. G. Exposito and A. Villa, “State estimation for smart distribution

substations”,IEEE Trans. on Smart Grid,vol. 3, no. 2, pp. 986-995, Jun. 2012.

[68] A. G. Expsito, A. Villa, C. G. Quiles, P. Rousseaux, and V. Cutsem, “A taxonomy of

multi-area state estimation methods”, Proc. of Elect. Power Syst. Res.,vol. 81, pp. 1060-

1069, Apr. 2011.

[69] N. Kashyap, S. Werner, T. Riihonen, Y. F. Huang, “Reduced-order synchrophasor

assisted state estimation for smart grids”, Proc. of IEEE 3rd Int. Conf. on Smart Grid

Comm.,vol. 605, no. 610, pp. 5-8, Nov. 2012.

[70] L. Xie, D. H. Choi S. Kar, H. V. Poor, “Fully distributed state estimation for wide-area

monitoring systems”,IEEE Trans. on Smart Grid,vol. 3, no. 3, pp. 1154-1169, Sept. 2012.

[71] K. Ch. Sou, H. Sandberg, K. H. Johansson, “On the exact solution to a smart grid

cyber-security analysis problem”,IEEE Trans. on Smart Grid,vol. 4, no. 2, pp. 856-865,

Jun. 2013.

[72] O. Kosut, L. Jia, R. Thomas, and L. Tong, “Malicious data attacks on the smart grid”,

IEEE Trans. on Smart Grid,vol. 2, pp. 645-658, 2011.

[73] S. Zonouz, K. M. Rogers, R. Berthier and T.J. Overbye, “SCPSE: security-oriented

cyber-physical state estimation for power grid critical infrastructures”,IEEE Trans. on

Smart Grid,vol. 3, no. 4, pp. 1790-1799, Dec. 2012.

[74] A. Abur and A. G. Expoosito, “Bad data identification when using ampere measure-

ments”,IEEE Trans. on Power Syst.,vol. 12, no. 2, May 1997.

[75] N. Xiang, S. Wang, and E. Yu, “A new approach for detection and identification of

multiple bad data in power system state estimation”, IEEE Trans. on Power App. and

Syst.,vol. 101, no. 2, pp. 454-462, Feb. 1982.

[76] A. Monticelli and A. Garcia, “Reliable bad data processing for real-time state estima-

tion”,IEEE Trans. on Power App. and Syst.,vol. 102, no. 5, pp. 1126-1139, May 1983.

Bibliography 117

[77] L. Milli, T. V. Cutsem, and M. R. Pavella, “Bad data identification methods in power

system state estimation”,IEEE Trans. on Power App. and Syst.,vol. 103, no. 11, pp. 3037-

3049, Nov. 1985.

[78] A. Monticelli, F. F. Wu, and M. Y. Multiple, “Bad data identification for state estima-

tion by combinatorial optimization”,IEEE Trans. on Power Del.,vol. 1, no. 3, pp. 361-369,

July 1986.

[79] E. N. Asada, A. V. Garcia, and R. Romero, “Identifying multiple interacting bad data

in power system state estimation”,Proc. of IEEE PES,pp. 571-577, Jun. 2005.

[80] Y. Liu, M. K. Reiter, and P. Ning, “False data injection attacks against state estimation

in electric power grids”,Proc. of ACM Conf. on Comp. and Comm. Sec.,pp. 21-32, Nov.

2009.

[81] A. R. Metke and R. L. Ekl, “Security techn ology for smart grid networks”,IEEE Trans.

on Smart Grid,vol. 1, no. 1, pp. 99-107, Jun. 2010.

[82] G. N. Ericsson, “Cyber security and power system communication essential parts of

a smart grid infrastructure”,IEEE Trans. on Power Del.,vol. 25, no. 3, pp. 1501-1507, Jul.

2010.

[83] L. Xie, Y. Mo, and B. Sinopoli, “Integrity data attacks in power market operations”,

IEEE Trans. on Smart Grid,vol. 2, no. 4,pp. 659-666, 2011.

[84] G. Hug, J. A. Giampapa, “Vulnerability assessment of AC state estimation with re-

spect to false data injection cyber-attacks”,IEEE Trans. on Smart Grid,vol. 3, no. 3, pp.

1362-1370, Sept. 2012.

[85] T. T. Kim and H. V. Poor, “Strategic protection against data injection attacks on power

grids”,IEEE Trans. on Smart Grid,vol. 2, pp. 326-333, Jun. 2011.

[86] O. Kosut, L. Jia, R. Thomas, and L. Tong, “Malicious data attacks on the smart grid”,

IEEE Trans. on Smart Grid,vol. 2, pp. 645-658, 2011.

[87] S. Ntalampiras, “Detection of integrity attacks in cyber-physical critical infrastruc-

tures using ensemble modeling”,IEEE Trans. on Industrial Informatics,vol. 11, no. 1, pp.

104-111, Feb. 2015.

[88] L. Xie, Y. Mo, B. Sinopoli, “Integrity data attacks in power market operations”,IEEE

Trans. on Smart Grid,vol. 2, no. 4, pp. 659-666, 2011.

[89] S. Sridhar, G. and Manimaran, “Data integrity attacks and their impacts on SCADA

control system”,Proc. of IEEE PES,pp. 1-6, July 2010.

Bibliography 118

[90] F. Cleveland, “Cyber security issues for advanced metering infrastructure”,Proc. of

IEEE PES,pp. 1-5, July 2008.

[91] A. Srivastava, T. Morris, T. Ernster, C. Vellaithurai, P. Shengyi and U. Adhikari, “Mod-

eling cyber-physical vulnerability of the smart grid with incomplete information”,IEEE

Trans. on Smart Grid,vol. 4, no. 1, pp. 235-244, Mar. 2013.

[92] G. Dan, H. Sandberg, “Stealth attacks and protection schemes for state estimators in

power systems”,in Proc. 1st IEEE Int. Conf. Smart Grid Commun.,pp. 214-219, Jun. 2010.

[93] S. Cui, Z. Han, S. Kar, T. T. Kim, H. V. Poor, A. Tajer, “Coordinated data-injection

attack and detection in the smart grid: a detailed look at enriching detection solutions”,

IEEE Signal Process. Mag.,vol. 29, no. 5, pp. 106115, Sep. 2012.

[94] R. B. Bobba, K. M. Rogers, Q. Wang, H. Khurana, K. Nahrstedt, and T. J. Overbye,

“Detecting false data injection attacks on dc state estimation”,Proc. of 1st Workshop on

Sec. Cont. Syst.,2010.

[95] K. A. Loparo and F. F. Abdel-Malek, “A probabilistic approach to dynamic power

system security”,IEEE Trans. on Circ. and Syst.,vol. 37, no. 6, pp. 787-799, June 1990.

[96] F. F. Wu and Y.-K. Tsai, “Probabilistic dynamic security assessment of power systems:

Part I- basic models”,IEEE Trans. on Circ. and Syst.,vol. 30, no. 3, pp. 148-159, March

1983.

[97] R. M. Kolacinski and K. A. Loparo, “A mathematic framework for analysis of complex

cyber-physical power systems”,Proc. of IEEE PES,pp. 1-8, July 2012.

[98] J. M. Ortega and W. C. Rheinboldt, “Iterative solution of nonlinear equations in sev-

eral variables”,Academic Press,1970.

[99] A. R. Newton and A. S. Vincentelli, “Relaxation-based electrical simulation”,IEEE

Trans. Elec. Dev.,vol. 30, no. 9, pp. 1184-1207, Sept. 1983.

[100] M. I. Spong, M. L. Crow and M. A. Pai, “Transient stability simulation by waveform

relaxation methods”,IEEE Trans. Power Syst.,vol. 2, no. 4, pp. 943-952, Nov. 1987.

[101] M. L. Crow, “Waveform relaxation methods for the simulation of systems of differen-

tial/ algebraic equations with application to electric power systems”,Ph.D. Dissertation,

University of Illinois, 1990.

[102] L. Hou and A. Bose, “Implementation of the waveform relaxation algorithm on a

shared memory computer for the transient stability problem”,IEEE Trans. Power Syst.,

vol. 12, no. 3, pp. 1053-1060, Aug. 1997.

Bibliography 119

[103] Y. Nakazono and H. Asai, “Application of Relaxation-Based technique to ADI-FDTD

method and its estimation”,Proc. of IEEE Int.Symp. on Circ. and Syst.,pp. 1489-1492, May

2007.

[104] F. Dorfler, F. Pasqualetti, F. Bullo, “Distributed detection of cyber-physical attacks in

power networks: a waveform relaxation approach”,Proc. of 49th Ann. Allerton Conf. on

Comm. cont. and Comp.,pp. 1486-1491, 2011.

[105] V. J. Marandi, V. Dinavahi, “Instantaneous relaxation-based real-time transient sta-

bility simulation”,IEEE Trans. on Power Syst.,vol. 24, no. 3, pp. 1327-1336, Aug. 2009.

[106] T. F. Chan, and D. Goovaerts, “On the relationship between overlapping and

nonoverlapping domain decomposition methods”, IAM Journal on Matrix Analy. and

App.,vol. 13, no. 2, April 1992.

[107] B. Smith, “Domain decomposition: parallel multilevel methods for elliptic partial

differential equations”,Cambridge University Press,2004.

[108] H. Karimipour, and V. Dinavahi, “Accelerated parallel WLS state estimation for

large-scale power systems on GPU”,In Proc. of North American Power Symposium (NAPS),

pp. 1-6, Sept. 2013.

[109] R. Ebrahimian, and R. Baldick, “State estimation distributed processing”,IEEE Trans.

on Power Syst.,vol. 15, no. 4, pp. 1240-46, Nov. 2000.

[110] W. Jiang, V. Vittal, and G. T. Heydt, “Diakoptic state estimation using phasor mea-

surement units”,IEEE Trans. on Power Syst.,vol. 23, no. 4, pp. 15801589, Nov. 2008.

[111] B. A. Carre, “Solution of load-flow problems by partitioning systems into trees”,

IEEE Trans. on Power App. Syst.,vol. PAS-87, no. 11, pp. 1931-1968, Nov. 1968.

[112] L. Xie, D.H. Choi, S. Kar, “Cooperative distributed state estimation: Local observ-

ability relaxed”,Proc. of IEEE PES,pp. 1-11, July 2011.

[113] Y. Weng, Q. Li, R. Negi, M. Ilic, “Distributed algorithm for SDP state estimation”,

Proc. of Innovative Smart Grid Tech.,pp. 1-6, Feb. 2013.

[114] A. Gopal, D. Niebur, S. V. subramanian, “DC power flow based contingency analysis

using graphics processing units”,Proc. of IEEE Power Tech,pp. 731-736, Jul. 2007.

[115] N. Garcia, “Parallel power flow solutions using a bi-conjugate gradient algorithm

and a Newton method: a GPU-based approach”,Proc. of IEEE PES,pp. 1-4, Jul. 2010.

[116] C. Vilacha, J. C. Moreira, E. Miguez and A. F. Otero, “Massive Jacobi power flow

based on SIMD-processor”,Proc. of 10th Int. Conf. on Env. and Elec. Eng.,pp. 1-4, May

2011.

Bibliography 120

[117] V. J. Marandi, V. Dinavahi, “SIMD-based large-scale transient stability simulation on

the graphics processing unit”,IEEE Trans. on Power Syst.,vol. 25, no. 3, pp. 1589-1599,

Aug.2010.

[118] V. J. Marandi, Z. Zhou, V. Dinavahi, “Large-scale transient stability simulation of

electrical power systems on parallel GPUs”,IEEE Trans. on Paral. and Dist. Syst.,vol. 23,

no. 7, pp. 1255-1266, Jul. 2012.

[119] M. J. Flynn, “Very high speed computing systems”,Proc. of the IEEE,pp. 1901-1909,

Dec. 1966.

[120] J. R. Gurd, “A taxonomy of parallel computer architectures”,Proc. of Int. Conf. on

Des. and App. of Paral. Digit. Proc.,pp. 57-61, Apr. 1988.

[121] NVIDIA, “NVIDIA Tesla: a unified graphics and computing architecture”,NVIDIA

CUDA C Programming Guide 4.0.,2013.

[122] Z. Li, V. D. Donde, J. C. Tournier and F. Yang, “On limitations of traditional multi-

core and potential of many-core processing architectures for sparse linear solvers used

in large-scale power system applications”,Proc. of IEEE PES,pp. 1-8, Jul. 2011.

[123] B. Chapman, G. Jost, R. van der Pas, “Using OpenMP: portable shared memory

parallel programming”,IEEE Trans. on Parallel and Distributed Systems,vol. 22, no. 1, pp.

78-90, Jan. 2011.

[124] NVIDIA, “CUDA C Programming guide”, Feb. 2014.

[125] J. E. Stone, D. Gohara, G. Shi, “OpenCL: a parallel programming standard for het-

erogeneous computing systems”,Computing Sci. Eng., vol. 12, no. 3, pp. 66-72, May.

2010.

[126] J. Zhang, G. Welch, G. Bishop, “LoDiM: a novel power system state estimation

method with dynamic measurement selection”,Proc. of IEEE PES,pp. 1-7, July 2011.

[127] V. J. Marandi, V. Dinavahi, “Instantaneous relaxation-based real-time transient sta-

bility simulation”,IEEE Trans. on Power Syst.,vol. 24, no. 3, pp. 1327-1336, Aug. 2009.

[128] S. Chakrabarti, E. Kyriakides, G. Ledwich, and A. Ghosh, “Inclusion of PMU current

phasor measurements in a power system state estimator”,IET Generation, Transmission,

and Distribution,vol. 4, no. 10, pp. 1104-1115, Sept. 2010.

[129] D. Blythe, “Rise of the graphics processor”,Proc. of IEEE,vol. 96, no. 5, pp. 761-778,

May 2008.

[130] J. L. Gustafson, “Reevaluating Amdahl’s law”,Communications of the ACM,vol. 31,

no. 5, pp. 532-533, Jan. 1988.

Bibliography 121

[131] N. Husted , S. Myers , A. shelat , P. Grubbs , “GPU and CPU parallelization of honest-

but-curious secure two-party computation”,Proc. of29thComputer Security Applications,

pp. 169-178, 2013.

[132] M. Glavic, T. Van Cutsem, “Reconstructing and tracking network state from a limited

number of synchrophasor measurements”,IEEE Trans. on Power Syst.,vol. 28, no. 2, pp.

1921-1929, 2013.

[133] M. Gol, A. Abur, “Rapid tracking of bus voltages using synchro-phasor assisted state

estimator”,Proc. of IEEE ISGT-Europe,pp. 1-5, Oct. 2013.

[134] Y. Chen, Sh. Jin, M. Rice, Zh. Huang, “Parallel state estimation assessment with

practical data”,Proc. of Power and Energy Society General Meeting (PES),pp. 1-5, 2013.

[135] Y. Chakhchoukh, V. Vittal, G. T. Heydt, “PMU based state estimation by integrating

correlation”,IEEE Trans. on Power Syst.,vol. 29, no. 2, pp. 617-626, 2014.

[136] A. M. Leite da Silva, M. B. Do Coutto Filho, and J. F. de Queiroz, “State forecasting

in electric power systems”,Proc. of Gen., Trans. and Distr.,vol. 130, no. 5, pp. 237-244,

Sept. 1983.

[137] W. Ding, J. Wang, C. Rizos, “Improving adaptive Kalman estimation in GPS/INS

integration”,SIAM,2008.

[138] T. A. Davis, “Direct methods for sparse linear systems”,SIAM, Philadelphia, PA,

2006.

[139] Y. Saad, “Iterative methods for sparse linear systems”,The Journal of Navigation,vol.

60, pp. 517-529, 2007.

[140] J. R. Shewchuk, “An introduction to the conjugate gradient method without the

agonizing pain”,Pittsburgh, PA, USA, Tech. Rep.,1994.

[141] M. Benzi, “Preconditioning techniques for large linear systems: a survey”,Journal of

Comput. Phys.,vol. 182, pp. 418-477, 2002.

[142] M. Asprou, E. Kyriakides, M. Albu, “The effect of variable weights in a WLS state

estimator considering instrument transformer uncertainties”,IEEE Trans. on Instr. and

Measur., vol. 63, no. 6, pp. 1484-1495, June 2014.

[143] R. G. Brown, “Exponential smoothing for predicting demand”,Cambridge, Mas-

sachusetts: Arthur D. Little Inc.,1956.

[144] J. J. Shynk, “Probability, Random Variables, and Random Processes: theory and

signal processing applications”,Wiley-Interscience Press., 2012.

Bibliography 122

[145] S. B. Yusof, G.J. Rogers, and R.T.H. Alden, “Slow coherency based network parti-

tioning ncluding load buses”,IEEE Trans. Power Syst.,vol. 8, no. 3, pp. 1375-1382, Aug.

1993.

[146] H. You, V. Vittal, and X. Wang, “Slow coherency-based islanding”,IEEE Trans. Power

Syst.,vol. 19, no. 1, pp. 483-491, Feb. 2004.

[147] X. Wang, V. Vittal, G. T. Heydt, “Tracing generator coherency indices using the con-

tinuation method: a novel approach”,IEEE Trans. Power Syst.,vol. 20, no. 3, pp. 1510-

1518, Aug. 2005.

[148] A. Quarteroni and A. Valli, “Domain decomposition methods for partial differential

equations”,Oxford University Press,1999.

[149] A. Toselli and O. Widlund, “Domain decomposition methods, algorithms and theo-

ry”,Springer-Verlag,,2005.

[150] R. R. Nucera, V. Brandwajn, and M. L. Gilles, “Observability analysis and bad data

analysis using augmented blocked matrices”,IEEE Trans. Power Syst.,vol. 8, no. 2, pp.

426433, May 1993.

[151] P. M. Anderson, A. A. Fouad, “Power system control and stability”,Iowa State

University Press,1977.

[152] IEEE Std 421.5-2005, “IEEE recommended practice for excitation system models for

power system stability studies”,IEEE Power Eng. Soc.,pp. 1-85, 2006.

[153] M. La Scala, A. Bose, “Relaxation/newton methods for concurrent time step solution

of differential-algebraic equations in power system dynamic simulation”,IEEE Trans.

Circ. Syst.,vol. 40, no. 5, pp. 317-330, May 1993.

[154] S. H. Roosta, “Parallel processing and parallel algorithms: theory and computation”,

Springer-Verlag New York, Inc.,1999.

[155] C. T. Leondes, “Control and dynamic systems: analysis and control system”,Aca-

demic press Inc.,1991.

[156] NVIDIA, “CUSPARSE library”,NVIDIA Developer,Feb. 2013.

[157] NVIDIA, “CUBLAS library”,NVIDIA Developer,Aug. 2014.

[158] S. Azizi, A. S. Dobakhshari,S. A. Nezam Sarmadi, A. M. Ranjbar, “Optimal PMU

placement by an equivalent linear formulation for exhaustive search”,IEEE Trans. on

Smart Grid,vol. 3, no. 1, pp. 174-182, March 2012.

[159] A. Ǵomez-Exṕosito, A. Abur, “Generalized observability analysis and measurement

classification”,IEEE Trans. on Power Syst.,vol. 13, no. 3, pp. 10901096, Aug. 1998.

Bibliography 123

[160] T. Vollmer, M. Manic, “Cyber-physical system security with deceptive virtual hosts

for industrial control networks”,IEEE Trans. in Industrial Informatics,vol. 10, no. 2, pp.

1337-1347, May 2014.

[161] A. Abur, “A bad data identification method for linear programming state estima-

tion”,IEEE Trans. on Power Syst.,vo1. 5, no. 3, pp. 894-900, Aug. 1990.

[162] A. Monticelli and A. Garcia, “Reliable bad data processing for real-time state esti-

mation”,IEEE Trans. on Power App. and Syst.,vol. 102, no. 5, pp. 1126-1139, May 1983.

[163] A. Teixeira, S. Amin, H. Sandberg, K. H. Johansson, S. S. Sastry, “Cyber security

analysis of state estimators in electric power systems”,in Proc. of 49th IEEE Conf. in Dec.

and Cont.,pp. 5991-5998, Dec. 2010.

[164] S. P. Meyn, R. L. Tweedie, “Markov chain and stochastic stability”,Springer-verlag.,

2005.

[165] J. Chen, A. Abur, “Improved bad data processing via strategic placement of PMUs”,

in Proc. of PES General Meeting,vol. 1, pp. 509-513, June 2005.

A
Generator Model

The ninth-order order state-space model of the generator can be written as follows:

ẋg1(t) =ωR.xg2(t),

ẋg2(t) =
1

2S
[Te(t) + Tm−D.xg2(t)],

ẋg3(t) =ωR.[efd(t)−Rfd.Ifd(t)],

ẋg4(t) =−ωR.R1d.I1d(t),

ẋg5(t) =−ωR.R1q.I1q(t),

ẋg6(t) =−ωR.R2q.I2q(t),

ẋg7(t) =
1

TR
[vt−xg7(t)],

ẋg8(t) =
1

T2
[T1Kstab.̇xg2−xg8+(1−

T1
TW
)α],

ẋg9(t) =
1

TA
[β−xg9].

(A.1)

TmandTerepresent mechanical input torque, and electrical output torque, respective-

ly.efdandIfdare field voltage and current.I1d,I1q, andI2qdescribedandq-axis currents.

For the whole system, according to the aforementioned formulations the9×lvector of state

variablesxgof the synchronous generator is given as:

ẋg=[δ,Δω, ψfd,ψ1d,ψ1q,ψ2q,v1,v2,v3]
T, (A.2)

whereδandΔωrepresent vector of rotor speed and angle, respectively.ψfd,ψ1d,ψ1q,ψ2q

shows vector of rotor flux linkages andv1,v2,v3are vector of exciter voltages.vtrepre-

sents the vector of terminal voltage which can be calculated as network state. For a system

124

Appendix A. Generator Model 125

withmgenerators, all of aforementioned vectors arel×1. Fig. A.1 shows AC5A type exci-

tation system [152].

RsT1

1 1vtE
fdE

maxFE

minFE

WashoutPhase
Compensation

Terminal Voltage
Transducer

refv

sv
AK

fdI
FsT

s

1

Transient Gain
Reduction

Damping Filter

B

C

sT

sT

1

1

AsT1

1

FK

2

1

1

1

sT

sT

3v

2v

Main Regulator

stabK
W

W

sT

sT

1

maxv

minv

Figure A.1: Synchronous generator excitation system with AVR and PSS.

The output electrical torqueTeof the machine can be written as:

Te=−[ψadIq−ψaqId], (A.3)

where

ψad=Lad[−Id+
ψfd
Lfd
+
ψd1
Ld1
],

ψaq=Laq[−Id+
ψq1
Lq1
+
ψq2
Lq2
].

(A.4)

whereωR,S,D,Rfd,R1d,R1q,R2q,Lfd,Ld1,Lq1,Lq2,Lad,Laq,TR,Tw,T1,T2, andKstab

are constant system parameters whose definition can be found in [151].

B
TESLA Manufacturer Data Sheet

The specifications illustrated in this section are borrowed from [121].

B.1 SYSTEM CHASSIS

The Tesla S2050 use a 1U form factor chassis and conform to the EIA 310E specification

for 19-inch 4-post racks with 900 mm to 1000 mm depth. The chassis dimensions are 1.73

inches high 17.5 inches wide 28.5 inches deep.

Figure B.1: System Chassis Drawing.

126

Appendix B. TESLA Manufacturer Data Sheet 127

B.2 HOST INTERFACE CARD (HIC)

The HIC conforms to the PCI Express low profile form factor. This card is compatible with

both PCI Express Gen1 and PCI Express Gen2 systems. A 8 version is also available for

systems that do not have 16 PCI Express slots. The HICs ship with a full-height bracket

installed and includes a low-profile bracket. Fig. B.2 shows the 16 version of the card with

the full-height bracket.

Figure B.2: Host Interface Card (x16 Version).

B.3 PCI EXPRESS CABLE

The Tesla S2050 use 0.5-meter PCI Express cables as the standard connection to the host

system(s). Fig. B.3 shows the dimensions of this cable and its connectors. A 2.0-meter ver-

sion of the cable is also available as a stand alone accessory and uses the same connectors

as the 0.5-meter cable.

The minimum bend radius is 38.7 mm for the PCI Express cable. Fig. B.4 shows details

of how this is measured relative to the I/O plate on the host interface card and relative to

the cable/connector interface.

Appendix B. TESLA Manufacturer Data Sheet 128

Figure B.3: PCI Express Cable (0.5 Meter).

Figure B.4: PCI Express Cable Minimum Bend Radius.

B.4 ENVIRONMENTAL SPECIFICATIONS

Fig. B.5 shows the environmental specification of Tesla S2050.

Appendix B. TESLA Manufacturer Data Sheet 129

Figure B.5: Environmental Specifications and Conditions.

C
Single Line Diagram of Test Systems

In this section the single-line diagram of the test systems used in the thesis are given. The

Scale1 system is IEEE 39-bus system (Fig. C.1) which its complete data and load flow

results are also given in the PSS/E’s *.raw file format. IEEE 39-bus system was duplicated

and interconnected to create large-scale systems, whose dimensionnis obtained asn=

39∗2Sc, whereSc=Γ−1withΓbeing the test case index.

C.1 Scale 1

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

G3 Generator Transformator Load

Figure C.1: Scale 1 system: 39 buses, 10 generators.

130

Appendix C. Single Line Diagram of Test Systems 131

C.1.1 Load Data

Bus Pload Qload
Number (MW) (MVAR)
1, 0.000, 0.000
2, 0.000, 0.000
3, 322.000, 2.400
4, 500.000, 84.000
5, 0.000, -200.000
6, 0.000, 0.000
7, 233.800, 840.000
8, 522.000, 176.000
9, 0.000, 0.000
10, 0.000, 0.000
11, 0.000, 0.000
12, 8.500, 88.000
13, 0.000, 0.000
14, 0.000, 0.000
15, 320.000, 153.000
16, 329.400, 323.000
17, 0.000, 0.000
18, 158.000, 30.000
19, 0.000, 0.000
20, 680.000, 103.000
21, 274.000, 115.000
22, 0.000, 0.000
23, 247.500, 84.600
24, 308.600, -92.200
25, 224.000, 47.200
26, 139.000, 17.000
27, 281.000, 75.500
28, 206.000, 27.600
29, 283.500, 126.900
31, 9.200, 4.600
39, 1104.000, 250.000

0 / END OF LOAD DATA, BEGIN GENERATOR DATA

Appendix C. Single Line Diagram of Test Systems 132

C.
1.
2
G
e
n
e
r
a
t
o
r
D
a
t
a

B
u
s

P
g
e
n

Q
g
e
n

Q
m
a
x

Q
m
i
n

V
s
c
h
e
d

M
b
a
s
e

R
s
o
u
r
c
e

X
s
o
u
r
c
e

N
u
m
b
e
r
(
M
W
)

(
M
V
A
R
)

(
M
V
A
R
)

(
M
V
A
R
)

(
p
u
)

(
M
V
A
)

(
p
u
)

(
p
u
)

3
0
,

2
5
0
.
0
0
0
,

2
1
6
.
1
9
2
,

8
0
0
.
0
0
0
,
-
5
0
0
.
0
0
0
,

1
.
0
4
7
5
0
,

1
0
0
0
.
0
0
0
,

0
.
0
0
1
4
0
,

0
.
2
0
0
0
0

3
1
,

5
7
2
.
9
3
0
,

5
5
0
.
5
9
6
,

8
0
0
.
0
0
0
,
-
5
0
0
.
0
0
0
,

1
.
0
4
0
0
0
,

1
0
0
0
.
0
0
0
,

0
.
0
2
7
0
0
,

0
.
2
0
0
0
0

3
2
,

6
5
0
.
0
0
0
,

2
6
5
.
1
9
8
,

8
0
0
.
0
0
0
,
-
5
0
0
.
0
0
0
,

0
.
9
8
3
1
0
,

1
0
0
0
.
0
0
0
,

0
.
0
0
3
8
6
,

0
.
2
0
0
0
0

3
3
,

6
3
2
.
0
0
0
,

1
2
3
.
8
5
1
,

8
0
0
.
0
0
0
,
-
5
0
0
.
0
0
0
,

0
.
9
9
7
2
0
,

1
0
0
0
.
0
0
0
,

0
.
0
0
2
2
2
,

0
.
2
0
0
0
0

3
4
,

5
0
8
.
0
0
0
,

1
7
5
.
2
0
1
,

4
0
0
.
0
0
0
,
-
3
0
0
.
0
0
0
,

1
.
0
1
2
3
0
,

1
0
0
0
.
0
0
0
,

0
.
0
0
1
4
0
,

0
.
2
0
0
0
0

3
5
,

6
5
0
.
0
0
0
,

3
1
7
.
8
7
9
,

8
0
0
.
0
0
0
,
-
5
0
0
.
0
0
0
,

1
.
0
4
9
3
0
,

1
0
0
0
.
0
0
0
,

0
.
0
6
1
5
0
,

0
.
2
0
0
0
0

3
6
,

5
6
0
.
0
0
0
,

2
4
5
.
8
4
4
,

8
0
0
.
0
0
0
,
-
5
0
0
.
0
0
0
,

1
.
0
6
3
5
0
,

1
0
0
0
.
0
0
0
,

0
.
0
0
2
6
8
,

0
.
2
0
0
0
0

3
7
,

5
4
0
.
0
0
0
,

5
2
.
0
1
9
,

8
0
0
.
0
0
0
,
-
5
0
0
.
0
0
0
,

1
.
0
2
7
8
0
,

1
0
0
0
.
0
0
0
,

0
.
0
0
6
8
6
,

0
.
2
0
0
0
0

3
8
,

8
3
0
.
0
0
0
,

1
5
8
.
2
2
6
,

8
0
0
.
0
0
0
,
-
5
0
0
.
0
0
0
,

1
.
0
2
6
5
0
,

1
0
0
0
.
0
0
0
,

0
.
0
0
3
0
0
,

0
.
2
0
0
0
0

3
9
,

1
0
1
1
.
7
7
7
,

3
4
2
.
7
0
2
,
1
5
0
0
.
0
0
0
,
-
1
0
0
0
.
0
0
0
,

1
.
0
3
0
0
0
,

1
0
0
0
.
0
0
0
,

0
.
0
0
1
0
0
,

0
.
0
2
0
0
0

0
/
E
N
D
O
F
G
E
N
E
R
A
T
O
R
D
A
T
A
,
B
E
G
I
N
B
R
A
N
C
H
D
A
T
A

Appendix C. Single Line Diagram of Test Systems 133

C.1.3 Branch Data

From Bus To Bus Line R Line X Charging
Number Number (pu) (pu) (pu)
1, 2, 0.00350, 0.04110, 0.69870
1, 39, 0.00100, 0.02500, 0.75000
2, 3, 0.00130, 0.01510, 0.25720
2, 25, 0.00700, 0.00860, 0.14600
3, 4, 0.00130, 0.02130, 0.22140
3, 18, 0.00110, 0.01330, 0.21380
4, 5, 0.00080, 0.01280, 0.13420
4, 14, 0.00080, 0.01290, 0.13820
5, 6, 0.00020, 0.00260, 0.04340
5, 8, 0.00080, 0.01120, 0.14760
6, 7, 0.00060, 0.00920, 0.11300
6, 11, 0.00070, 0.00820, 0.13890
7, 8, 0.00040, 0.00460, 0.07800
8, 9, 0.00230, 0.03630, 0.38040
9, 39, 0.00100, 0.02500, 1.20000
10, 11, 0.00040, 0.00430, 0.07290
10, 13, 0.00040, 0.00430, 0.07290
13, 14, 0.00090, 0.01010, 0.17230
14, 15, 0.00180, 0.02170, 0.36600
15, 16, 0.00090, 0.00940, 0.17100
16, 17, 0.00070, 0.00890, 0.13420
16, 19, 0.00160, 0.01950, 0.30400
16, 21, 0.00080, 0.01350, 0.25480
16, 24, 0.00030, 0.00590, 0.06800
17, 18, 0.00070, 0.00820, 0.13190
17, 27, 0.00130, 0.01730, 0.32160
21, 22, 0.00080, 0.01400, 0.25650
22, 23, 0.00060, 0.00960, 0.18460
23, 24, 0.00220, 0.03500, 0.36100
25, 26, 0.00320, 0.03230, 0.51300
26, 27, 0.00140, 0.01470, 0.23960
26, 28, 0.00430, 0.04740, 0.78020
26, 29, 0.00570, 0.06250, 1.02900
28, 29, 0.00140, 0.01510, 0.24900

0 / END OF BRANCH DATA, BEGIN TRANSFORMER DATA

C.1.4 Transformator Data

From Bus To Bus Specified R Specified X Winding
Number Number (pu) (pu) (MVA)
2, 30, 0.00000, 0.01810, 100.00
6, 31, 0.00000, 0.02500, 100.00
10, 32, 0.00000, 0.02000, 100.00
11, 12, 0.00160, 0.04350, 100.00
12, 13, 0.00160, 0.04350, 100.00
19, 20, 0.00070, 0.01380, 100.00
19, 33, 0.00070, 0.01420, 100.00
20, 34, 0.00090, 0.01800, 100.00
22, 35, 0.00000, 0.01430, 100.00
23, 36, 0.00050, 0.02720, 100.00
25, 37, 0.00060, 0.02320, 100.00
29, 38, 0.00080, 0.01560, 100.00

0 / END OF TRANSFORMER DATA

Appendix C. Single Line Diagram of Test Systems 134

C.1.5 Load-Flow Results

Bus Voltage Angle
Number Code G-Shunt B-Shunt (pu) (deg)
1, 1, 0.000, 0.000, 1.03297, -9.3761
2, 1, 0.000, 0.000, 1.01107, -6.5836
3, 1, 0.000, 0.000, 0.97373, -9.6291
4, 1, 0.000, 0.000, 0.93270, -10.4775
5, 1, 0.000, 0.000, 0.91852, -9.0155
6, 1, 0.000, 0.000, 0.91880, -8.1528
7, 1, 0.000, 0.000, 0.86315, -10.6842
8, 1, 0.000, 0.000, 0.88084, -11.4079
9, 1, 0.000, 0.000, 0.98072, -11.2091
10, 1, 0.000, 0.000, 0.93851, -5.4052
11, 1, 0.000, 0.000, 0.93050, -6.3356
12, 1, 0.000, 0.000, 0.91230, -6.3741
13, 1, 0.000, 0.000, 0.93620, -6.2589
14, 1, 0.000, 0.000, 0.93615, -8.2553
15, 1, 0.000, 0.000, 0.93910, -8.7854
16, 1, 0.000, 0.000, 0.95674, -7.1671
17, 1, 0.000, 0.000, 0.96640, -8.3608
18, 1, 0.000, 0.000, 0.96767, -9.3332
19, 1, 0.000, 0.000, 0.97919, -1.8354
20, 1, 0.000, 0.000, 0.98066, -3.2817
21, 1, 0.000, 0.000, 0.97306, -4.4866
22, 1, 0.000, 0.000, 1.00987, 0.3478
23, 1, 0.000, 0.000, 1.00805, 0.1165
24, 1, 0.000, 0.000, 0.96783, -7.0433
25, 1, 0.000, 0.000, 1.02018, -5.1214
26, 1, 0.000, 0.000, 1.00002, -6.3872
27, 1, 0.000, 0.000, 0.97808, -8.5778
28, 1, 0.000, 0.000, 1.00181, -2.5385
29, 1, 0.000, 0.000, 1.00379, 0.4750
30, 2, 0.000, 0.000, 1.04750, -4.1349
31, 2, 0.000, 0.000, 1.04000, 0.3286
32, 2, 0.000, 0.000, 0.98310, 2.6947
33, 2, 0.000, 0.000, 0.99720, 3.3869
34, 2, 0.000, 0.000, 1.01230, 1.9120
35, 2, 0.000, 0.000, 1.04930, 5.3801
36, 2, 0.000, 0.000, 1.06350, 8.2185
37, 2, 0.000, 0.000, 1.02780, 1.7236
38, 2, 0.000, 0.000, 1.02650, 7.6230
39, 3, 0.000, 0.000, 1.03000, -10.9600

Appendix C. Single Line Diagram of Test Systems 135

C.2 Scale 2

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

Figure C.2: Scale 2 system: 78 buses, 20 generators.

C.3 Scale 4

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

Figure C.3: Scale 4 system: 156 buses, 40 generators.

Appendix C. Single Line Diagram of Test Systems 136

C.4 Scale 8

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

Figure C.4: Scale 8 system: 312 buses, 80 generators.

Appendix C. Single Line Diagram of Test Systems 137

C.5 Scale 16

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

Figure C.5: Scale 16 system: 624 buses, 160 generators.

Appendix C. Single Line Diagram of Test Systems 138

C.6 Scale 32

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

Figure C.6: Scale 32 system: 1248 buses, 320 generators.

Appendix C. Single Line Diagram of Test Systems 139

C.7 Scale 64

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

Figure C.7: Scale 64 system: 2496 buses, 640 generators.

Appendix C. Single Line Diagram of Test Systems 140

C.8 Scale 128

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

1

2

30

25

37 26

18 17

27

3

4

5

8

7

6

12

11

13

10

14

15

16

32

20

33

19

21

22

35

24

29

38

23

36

28

9

39

31

34

G9

G2

G3

G4

G5

G7

G8G10

G1

G6

Figure C.8: Scale 128 system: 4992 buses, 1280 generators.

