
University of Alberta

Efficient Query Support for a Brain Tumour Database

by

Jonathan Levesqu

A thesis submitted to the Faculty o f Graduate Studies and Research
in partial fulfillment o f the requirements for the degree of

Master o f Science

Department o f Computing Science

Edmonton, Alberta
Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-33294-8
Our file Notre reference
ISBN: 978-0-494-33294-8

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents Rejean & Denise and my sister Tiffanie, all hard-working people who
have helped me become the person I am today.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This thesis details the implementation of a brain tumour imaging database. The

database server necessity is two-fold: it must support researchers seeking to

determine the growth patterns and other properties exhibited by brain tumours, and

must support physicians requiring data to formulate treatment plans as well. This

project is undertaken as part of the Brain Tumour Analysis Project, whose members

will be the first to benefit from the database server, gaining easy access to data for

theory validation. The system presented follows the client-server model and provides

secure encrypted transmission of data between the two ends to maintain medical

record security. An easy-to-use front-end client has been created to abstract away any

implementation details and allow a physician (the target user) to intuitively find data

applicable to their treatment plan. A new data structure, called the Volume

Distribution Tree, for the efficient processing of Jaccard queries is described.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I would like to thank my supervisor Dr. Jorg Sander for being available to discuss my

ideas and review my work. As the oncologist in the Brain Tumour Analysis Project,

Dr. Albert Murtha of the Cross Cancer Institute has provided very valuable insight

and ideas to my research. Thanks also to Bret Hoehn of the AICML for showing me

how to obtain and process raw data on the BTAP disk space, as well as the BTAP

members in general for their feedback during meetings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents:

CHAPTER 1: INTRODUCTION... 1

1.1 M o t iv a t io n ...1
1.2 P r o b l e m D e f in it io n a n d Sc o p e ...2
1.3 In t r o d u c t io n t o t h e T e c h n ic a l T e r m s in t h is D o c u m e n t .. 3

1.3.1 Brain Tumour Anatomy.. 3
1.3.2 Brain Imaging Techniques.. 3

1.4 O u t l in e .. 5

CHAPTER 2: RELATED WORK..7

2.1 T u m o u r Se g m e n t a t io n ... 7
2.1.1 Automatic Brain Tumour Segmentation.. 7

2.2 O b je c t S im il a r it y M e a s u r e s ...8
2.2.1 The Jaccard Coefficient...8
2.2.2 Shape Histograms.. 8
2.2.3 Other Similarity Measures.. 10

2.3 Sp a t ia l D a t a b a s e In d e x in g ... 10
2.3.1 TheR-Tree and its Variants.. 10
2.3.2 The GSS Tree..13
2.3.3 The P-Tree... :... 15
2.3.4 The RI-Tree... 16

CHAPTER 3: SEGMENTATION.. 18

3.1 M o t iv a t io n ...18
3.2 P r o je c t io n o n t o E ig e n b r a in Sp a c e ..19
3.3 F in d in g H ig h Z -S c o r e s ..22

CHAPTER 4: SIMILARITY MEASURES..25

4.1 T h e N o t io n o f S im il a r it y ..25
4.2 Su p p o r t e d S im il a r it y M e a s u r e s ...25

4.2.1 The Jaccard Measure..25
4.2.2 Depth Jaccard ... 26
4.2.3 Finding the Center Point o f a Tumour.. 28
4.2.4 Ray Trend...29
4.2.5 Shape Histogram ... 30
4.2.6 MidSim...30
4.2.7 Eigen Decomposition...30
4.2.8 Elongation, Flatness and Sphericity..31
4.2.9 Growth Direction...31

4.3 O t h e r R e l e v a n t In f o r m a t io n Q u e r i e s ...33
4.3.1 Growth Through Regions..34

4.4 C o m p a r is o n o f t h e Sim il a r it y M e a s u r e s ..34

CHAPTER 5: THE VOLUME DISTRIBUTION TREE... 36

5.1 V o l u m e D is t r ib u t io n C o n c e p t .. 36
5.2 V o l u m e D is t r ib u t io n T r e e P r o p e r t ie s ..38
5.3 E s t a b l is h in g Ja c c a r d S c o r e B o u n d s .. 40
5.4 R a n g e Q u e r y P r o c e s s in g ... 44
5.5 C o n s t r u c t io n , D e l e t io n a n d In s e r t io n ..50

5.5.1 Finding the Most Similar Volume Distribution... 53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.2 Overfilled Nodes...54
5.6 Im p l e m e n t a t io n -S pe c if ic D e t a il s .. 57

CHAPTER 6: SYSTEM ARCHITECTURE.. 60

6.1 O v e r a l l Sy s t e m C o m p o n e n t C o n n e c t io n .. 60
6.2 D a t a b a s e S u b s y s t e m ...65
6.3 M a t l a b -B a s e d S u b s y s t e m ... 67
6.4 F r o n t -E n d C l ie n t .. 69
6.5 Se c u r e d In t e r n e t C o n n e c t iv it y ...77

CHAPTER 7: EXPERIMENTAL RESULTS... 79

CHAPTER 8: FUTURE WORK...83

SUMMARY...85

GLOSSARY...86

BIBLIOGRAPHY...88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables:
Table 4.4.1: Similarity Measure Dependence Comparison

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures:
Figure 2.1: Shape Histogram Shells and Sectors [2]..9
Figure 2.2: R-Tree: Object Groupings and Corresponding Tree [9].........................11
Figure 2.3: Split History Tree Example [4]...13
Figure 2.4: MIV and MSV Example [14]..13
Figure 2.5: Cuboid GSS Tree Example [14]..14
Figure 2.6: P-Tree Example [7]..15
Figure 2.7: RI-Tree Query Processing [16]...17
Figure 3.1: Eigenvalues of the brain space, sorted in descending order.....................20
Figure 3.2: Eigenbrain Examples...21
Figure 3.3: Segmentation Using Eigenbrains... 21
Figure 3.4: Z-Score Segmentation Process... 23
Figure 4.1: Euclidean Distance Transform of a Tumour in 2D and 3 D 27
Figure 4.2: Depth Jaccard Intersection Example..28
Figure 4.3: Center Point Measures... 29
Figure 4.4: Problem With Finding Growth Direction By PCA...................................32
Figure 5.1: Division of Volume for the Volume Distribution Tree............................ 37
Figure 5.2: Sample Volume Distribution Tree... 40
Figure 5.3: Candidate List Algorithm..46
Figure 5.4: Bulk Loading Algorithm...52
Figure 5.5: Node Insertion Algorithm...57
Figure 6.1: High-Level System Architecture.. 60
Figure 6.2: Query Form ..70
Figure 6.3: Draw-Your-Own-Query Form ... 71
Figure 6.4: Typical Display of Query Results.. 72
Figure 6.5: Future Timestamp Justification Example...73
Figure 6.6: Side-By-Side Result Comparison... 75
Figure 6.7: Results Aggregation Form...76
Figure 7.1: VD-Tree Speedup with Increasing Fraction of the Database Returned.. 80
Figure 7.2: Volume Distribution Tree vs. 3D R-Tree...81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction

1.1 Motivation
The general location of a brain tumour is discemable on an MRI scan, but the true

extents of the cancerous cells are undeterminable using current imaging technology

[6]. Cancerous cells not showing up as part of the tumour are called occult cells and

must be destroyed to avoid re-growth of the tumour after treatment. Physicians must

therefore treat (kill the included cells using conformal radiation) a larger volume than

that apparent with imaging in order to properly mitigate the risk of relapse. The

accepted rule of thumb is to take a 2-centimetre margin around the volume segmented

from an MRI scan.

The problem with this strategy is that tumours do not tend to grow spherically and

thus the treatment is likely to destroy healthy cells contributing to the patient’s

functionality and quality of life. Occult cells having grown beyond the treatment

margin also present a high risk of relapse. Based on evidence from many years of

radiation treatments, physicians allow limited radiation doses to patients, measured in

gray (Gy), a measure of radiation energy absorption per unit mass (1 Gy = 1 J/kg).

This limit implies that there is a budget of radiation treatment available and that

savings in one area that we can determine does not need treatment can correspond to

a higher allowance of treatment of a higher risk area.

A major goal of the Brain Tumour Analysis Project (BTAP) at the University of

Alberta is to predict the growth pattern of tumours such that the treatment focuses on

high-probability cancer-containing areas and ignores areas where it is almost

impossible for cancerous cells to have infiltrated. A physician having noted a few

instances of tumours in a certain location and none of which grew beyond a certain

membrane or in a certain direction may predict the same to occur with a new patient,

but may not be confident in that assumption due to the limited cases upon which to

base the assumption. The work detailed in this thesis aims to augment such estimates

using a large collection of data, rendering more statistically significant predictions.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Problem Definition and Scope
An oncologist planning a patient’s treatment will sometimes edit the common 2-cm

margin based on prior experience. These edits are generally cuts to the treatment

edges due to impassable barriers like bones and the Falx line. Having a human sort

through thousands of MRI studies to find similar cases is unfeasible and

unmanageable. A database is the natural choice for the storage and management of

large datasets, but the tables will have to be well laid-out for efficient retrieval. The

oncologist will generally be looking for cases similar to the one in question in order

to get a sense of how this tumour is likely to grow and where the best chance of

finding occult cancer cells are. Finding similar data necessitates similarity measures

conducive to the retrieval of what expert oncologists would agree is relevant. Once

the similarity measures are implemented, a reasonably efficient manner of indexing

the data with respect to that measure must be defined and implemented to avoid

linearly scanning the whole database to resolve each query.

Researchers coming up with theories regarding the growth of tumours will also

want data to back up or refute their theories. Postulating a theory involving a drug or

therapy would take several years to complete, and even then would have a small

dataset due to the shortage of volunteers, ethics approvals and other obstacles. There

are, however, theories that can be validated using existing data, such as tumours not

being able to grow through certain regions or preferentially growing through certain

classes of brain matter. With some data, say the data from a few years at a hospital, a

small amount of results can provide support for a theory. With a very large amount

of data, collected from hospitals all over the world, researchers can place much more

confidence in their results. Thus the long-term goal for this database is for medical

research centers worldwide to contribute brain imaging of tumour-stricken patients

via internet communication. These research centers would also make use of the

database to aid in their cancer research. The short-term goal is to use and contribute

to the system locally within the Cross Cancer Institute and the University of Alberta.

Predicting the growth of tumours is beyond the scope of the current database

project. This project is limited to setting up a database to house the data and provide

the necessary facilities to access relevant data without any SQL knowledge and to do

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

so remotely without compromising patient privacy. This will lay the groundwork for

further research by the BTAP and act as its common repository for data, avoiding

copies in multiple locations. New data will be able to be seamlessly integrated into

the query system without the user having to update any software. New members to

the group can be given Matlab and Java connection modules to be abstract away from

the data storage, enabling them to focus on their scope of work. The work presented

here does not focus on improving a specific technique such as modelling tumour

growth; the goal is instead to create a solid software base to provide others with an

invaluable tool for their research. Now a researcher modelling tumour growth has

access to a queryable data repository and can focus on inventing and testing models

rather than spending time finding data and on system implementation details.

1.3 Introduction to the Technical Terms in this Document
This document uses some acronyms and scientific terms, so this subsection will give

a little background on these. A glossary is also available on page 86 as a quick

reference when reading the text.

1.3.1 Brain Tumour Anatomy

Cancerous tumours growing in the brain are called gliomas and have several common

hallmarks. The live tumour cells have a metabolic rate much higher than normal

cells; the outer part of the tumour uses up too much of the available oxygen and

nutrients, causing cells deeper into the tumour to die. This portion of the tumour is

called the necrotic core as it is a cluster of dead cells. The tumour cells’ very large

division rate causes it to increase in size, putting pressure on the rest of the brain as

the space available is confined by the skull. This causes swelling of the brain tissue,

called edema, around the tumour.

1.3.2 Brain Imaging Techniques

When suspected of having any abnormalities, a patient’s brain is generally imaged

using MRI (Magnetic Resonance Imaging) and sometimes MRS (Magnetic

Resonance Spectroscopy), PET (Positron Emission Tomography) and DTI (Diffusion

Tensor Imaging). All of these are non-invasive means for a physician to see parts of

the patient’s brain anatomy and chemistry to help with diagnosis and treatment.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Although the future plan for the database involves storing all of these types of images

and more, the current system only deals with MRI images. MRI really only shows

the macroscopic brain anatomy as opposed to the more refined DTI which traces

nerve tracts and MRS which shows the distribution of brain chemicals. This however

generally suits the purpose of finding tumours as these show up (for the most part) in

MRI.

An MRI machine houses a large electromagnet capable of creating a very strong

(usually 1.5 Teslas or greater) and uniform magnetic field. The imaged patients are

primarily composed of water and thus, there are vast quantities of hydrogen protons

inside their tissues. Each hydrogen proton spins about its own axis, and this spinning

proton creates a small electric field and thereby produces a perpendicular magnetic

field. While the orientation of these small magnetic fields is usually random, once in

the bore of an activated MRI machine’s magnet the rotation axes line up with the

magnetic field. When a radio frequency (RF) pulse at a precisely calculated

frequency is then delivered, this forces the hydrogen protons to precess about the

magnetic field axis. When the RF pulse is stopped, the precession of the protons

gradually decays as the protons once again align their spins with the magnetic field.

During this decay, the protons move to a lower energy state and in doing so emit

energy in the form of an RF signal which can be detected and measured. The rate of

decay is dependent upon the relative chemical composition of the tissue imaged. This

information can be used to render a depiction of the tissues imaged.

There are 3 modalities in which MRI images are taken, T1-weighed, TIC-

weighed, and T2-weighed. T1 images show water as dark and lipids brightly, making

white matter appear white, grey matter appear in various intensities of gray and brain

fluids to appear black. T2 images show the opposite response, with lipids appearing

dark and fluids showing up brightly. Bones are dark in both cases; although there

appears to be a skull outline to both sets of images, this bright outline is actually the

skin covering the skull containing both lipids and water. TIC imaging is just T1

imaging performed after the patient has been injected with the contrast agent

gadolinium. This agent causes only the tumour to have an increased intensity, greatly

helping tumour segmentation.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Outline
A database of brain imaging and patient data is being assembled both to aid clinical

treatment planning and for research use. This document outlines the status of the

database work as it stands, the current similarity queries supported by the system, and

the client software provided to the clinicians, as well as the security permitting client

access without compromising sensitive data.

The primary contributions of this project are:

• Simple segmentation procedures.

• New similarity measures:

o Depth Jaccard

o Ray Trend

o MidSim

o Eigen Decomposition

o Elongation and Flatness

o Growth Direction

• A new tree structure to more efficiently support Jaccard-type queries.

• A working set of database tables and a secure client-server implementation

including client software that is easy-to-use by physicians.

• A means of easily testing tumour growth hypotheses on a large quantity of

data.

• A remote, encrypted query system that is extensible by non-expert

computer users with only Matlab programming knowledge.

The remainder of this document is organized as follows:

• Chapter 2 summarizes and comments upon literature related to this work.

• Chapter 3 discusses simplified segmentation approaches devised to help

the influx of data.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Chapter 4 goes over the numerous similarity measures used in data

retrieval as well as the methods used to efficiently support queries

employing these similarity measures.

• Chapter 5 gives a detailed explanation of the Volume Distribution Tree.

• Chapter 6 gives a high-level overview of the system architecture followed

by a focus on each major component.

• Chapter 7 presents experimental results.

• Chapter 8 discusses future work ideas.

• Chapter 9 summarizes the work performed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

Chapter 2: Related Work

The system detailed in this thesis encompasses technology fitting into several

research fields - tumour segmentation, object similarity measures, and spatial

database indexing. Other work that can be compared and contrasted with ours is the

topic of this chapter. Commentary regarding the works’ relation to and influence on

this project is provided.

2.1 Tumour Segmentation
2.1.1 Automatic Brain Tumour Segmentation

The segmentation algorithm currently used by the BTAP group is discussed in the

paper “Segmenting Brain Tumors using Alignment-Based Features” [25] and as part

of a pipeline including intensity standardization and registration in the Master’s thesis

related to the aforementioned paper [24]. Although the segmentation ideas presented

in Chapter 3 do not supersede this work as the group’s standard segmentation

algorithm, they are presented in this thesis as simple ideas that could be used in a

registration framework that avoids warping the original data. Here we summarize

Schmidt’s work as it not only contrasts with the segmentation ideas presented here

but actually serves as the accepted method of segmentation, providing the tumour

labels currently stored in the database.

Schmidt et al. employ machine learning to perform automatic brain tumour

segmentation. The feature sets used for the machine learning task are alignment-

based features. The four features extracted from the training images were the brain

mask (B set), the a priori tissue type probabilities (P set), average intensities (A set),

and left-to-right symmetry (S set). The features were all extracted at multiple

resolutions to include neighbourhood information along with voxel-level (localized)

information. The segmentations provided on the test cases after training are

compared with human expert-drawn labels using the Jaccard measure, with a higher

score denoting a better automatic segmentation as it corresponds well with the human

expert labelling, which is as good a ground truth as is available. All combinations of

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the four feature sets were tested to see which would provide the best segmentations,

and these experiments found the multi-scale PAS features to provide the best score,

tied with the multi-scale BP AS features. The PAS features would therefore be

declared the best option as adding the B feature to this set did not help the final result.

In the current incarnation of the automatic segmentation program described in

Schmidt’s thesis, the alignment-based, or coordinate-based, features are

supplemented by image-based features, registration-based features, and feature-based

features. Image-based features are extractions of brain structures, textures, the

intensities of pixels and their neighbourhoods, and image histograms. Registration-

based features include using information from prior segmentations of the same patient

and warping fields calculated during registration with a template. Feature-based

features involve using multiple resolutions, gaining neighbourhood information, or

using a subset of other features as a feature.

2.2 Object Similarity Measures
2.2.1 The Jaccard Coefficient

A popular similarity measure is the Jaccard coefficient [12]. To obtain the similarity

between two sets, the number of intersecting elements is divided by the number of

total unique elements in the two sets combined. Disjoint objects have no intersection

and thus score a 0 on the Jaccard measure. Any intersection raises the Jaccard score.

For two identical objects, both the intersection and union are equal to either object’s

volume, yielding a maximal similarity measure of 1. The Jaccard coefficient is

within the range [0,1] with increasing values denoting higher similarity.

2.2.2 Shape Histograms

From the centerpoint of an object, the object is split into sectors and shells, with the

volumes in each division being inserted in a histogram used to describe the shape [2],

The center could be defined in many ways, but the object’s center of mass is used to

locate the center in [2], Sectors are pie-shaped divisions like dividing a pie into 12 or

16 sections, whereas shells are divisions made at specified radii (see Figure 2.1).

Combining these two puts a 2D grid resembling a spider web over an image of the

object.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 shell bins 12 sector bins 48 combined bins

Figure 2.1: Shape Histogram Shells and Sectors [2]

This grid can be extended to 3 dimensions by splitting into sectors all 360 degrees

around one axis, again splitting into sectors for 180 degrees around an orthogonal

axis, and having 3D shells which are now splits along a spherical shell of a given

radius. This is a discretized version of continuous spherical coordinates, with one set

of divisions along the 360° azimuth range, one set along the 180° zenith range, and

finally one set along the linearly outward radius range. The volume occupied by the

object in each grid cell is entered as one element of a feature vector, leading this
'y

vector to be of length (sectors)(shells) /2.

The distance from other vectors is found using quadratic form distance instead of

Euclidean distance, in order to take into account that the last sector around a circle is

actually very close to the first. The form of this distance measure is

dA2(x, y) = (x - y)A(x - y f , which would be Euclidean in the case where the

weighing matrix A is the identity matrix, or would be weighed Euclidean if it is

diagonal with the diagonal values being the weights. By having nonzero values

outside the diagonal, these weigh in a bin’s neighbours along with itself. The weight

matrix used and suggested by the Shape Histogram creators is the matrix A with

elements atJ = e~ad{,'j) with a between 1.0 and 10.0 and d being the distance between

bins (for example with 16 divisions, sectors 1 and 16 are neighbours and thus have a

distance of one between them). A higher cris closer to the identity matrix I and

therefore closer to Euclidean distance. We actually implement the shape histogram

idea with 3 shells, 16 sectors and <7=1.0 as one of our similarity measures for similar

tumour retrieval.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.3 Other Similarity Measures

Although we only implement the Jaccard measure and Shape Histograms in this

work, many other object similarity (and distance) measures exist in the literature. In

[10], the similarity between solid objects is computed by comparing their Reeb

graphs’ R-node lengths and areas. In [5], objects are recursively decomposed into

smaller components, yielding a tree where the leaves are the smallest decomposition

done by the algorithm and a parent is the union of its children before comparing these

components’ Reeb graphs. Oriented bounding boxes, which are bounding boxes

aligned with the principal axes of an object, are organized into OBB (Oriented

Bounding Box) trees in [13]. A distance measure can be obtained using two objects’

OBB trees by computing the sum of the Euclidean distances between the (x,y,z)

positions indexed by the nodes. In [1], a model is meshed and then one node is put

into a first group, its neighbours are put into a second group, and so forth with each

group forming a conical ‘wavefront’. The Cone-Curvatures’ Euclidean distance is

taken as a distance metric separating the objects. In [19], a solid object is

decomposed into positive and negative polyhedrons which make up the original

object by addition. The distance measure is taken as the norm of 7 distances: mean

value and standard deviation of gaps between matched vertices projected on a sphere

around the object, distance between matched components’ centroids, difference in

volumes, and difference in angle between the x, y, and z directions of the

components. 3D models are posed from 42 different viewpoints in [20]. These each

lead to a ‘depth image’ which is then converted to a polar coordinate image (each

pixel (x,y) is instead plotted in its (r,0) coordinate), which is then Fourier

transformed. This creates a 2D matrix of values for each image, and the distance

metric is the sum of differences between matrices.

2.3 Spatial Database Indexing
2.3.1 The R-Tree and its Variants

The R-Tree is an index structure originally meant for low-dimensional spatial data;

generally 2-4 dimensions [9]. The objects in a database are amalgamated in a

hierarchical manner. That is, objects that are close together are grouped together into

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

one rectangular area encompassing them all; this is the combined objects’ minimum

bounding rectangle. A larger rectangular area R2 groups together several smaller

rectangles Rla, R ib ... to make a more generalized node acting as the parent to these

R l ’s (see Figure 2.2). Continuing this strategy, the root node of an R-Tree contains

the whole space of objects in the dataset, whereas each of its children’s rectangles

only contains part of the set of objects. Note however that rectangles on the same

level are not necessarily disjoint; they may overlap and thus one extended object may

be partly covered by more than one rectangle.

Sbapetf
Date Object

i!
i!

Jf

|B4

RIO

K* i
I

BUS

rat
ftB

|R3 liU lKS

m

t 1 i 4 4
To Data Tuples

Pyisi iKEinESBr itSTpgian
T T 4 4 4

Figure 2.2: R-Tree: Object Groupings and Corresponding Tree [9]

A query using the R-Tree would typically be a two-dimensional window along

with a desired relationship, such as that the query window touches the objects

returned or that it entirely contains them. A query could also be a small window or

point to be contained within an object in the database. At each node expanded, only

the children whose MBRs meet the query criteria need be examined further, with the

rest being pruned.

A variation of the R-Tree is the R+-Tree [26], where overlap between nodes is

disallowed. Due to this property, when descending an R+-Tree with a point query no

more than one path needs to be followed (whereas in a regular R-Tree, the point may

be covered by several sibling nodes’ rectangles). This makes R+-Trees advantageous

for point queries despite the added complexity inherent in keeping the rectangles

disjoint while still indexing all objects in a dataset.

Another variant is the R*-Tree, which is effectively an R-Tree with a revised node

splitting strategy [3]. During the insertion of a new object into any R-Tree variant,

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the node housing the new object may overflow (have more children than allowable by

design). When this overflow occurs, the strategy taken by the R*-Tree is to re-insert

selected rectangles in the overfull group in order to optimize the placement of

rectangles to get better performance out of the tree. The authors identify the primary

criteria for optimizing the R-Tree structure: minimizing the dead space within a

rectangle, minimizing the dead space between rectangles, minimizing the perimeter of

a rectangle, and maximize the number of children for each node, although this last

goal competes with the first three. Although in construction of an R-Tree these

parameters could be optimized, in a dynamic update situation the R-Tree tends to lose

some performance due to suboptimal organization and this is where the modifications

in the R*-Tree help.

Although the R-Tree can technically handle data of higher than 2 dimensions

using hyper-rectangles, its performance rapidly degrades with increasing data

dimensionality due to the hyper-rectangles naturally intersecting each other by large

amounts due to the ‘curse of dimensionality’. An early R-Tree modification to help

with multidimensional indexing issues was the Similarity Search Tree (SS-Tree) [29].

The SS-Tree directory nodes contain children clustered within ellipsoids rather than

hyper-rectangles. Rather than nodes spanning a range of values in each dimension

like R-Trees, the SS-Tree nodes hold objects within a set threshold distance from its

representative point. This would make spherical regions for a Euclidean distance

metric but the authors instead use a weighed-Euclidean scheme resulting in

ellipsoidal regions having principal axes that are aligned with the space’s dimensional

axes.

To further improve the ability of databases to index higher-dimensional data

(above about 5 dimensions), the X-Tree (extended node tree) was created by

extending the R-Tree [4], The X-tree permits ‘supemodes’ to form, meaning that

overfull nodes are allowed to remain that way in order to avoid splits that would

cause large overlaps. In the X-Tree, splits are only allowed if they cause no more

than a preset amount of overlap. The authors prove that an overlap-free split (for

point data) is possible if and only if there exists at least one dimension that no MBR

spans. This is because if all dimensions have at least one spanning MBR each, for

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each dimension an MBR other than the spanning one has some length in that

dimension, overlapping the spanning one. A split-history tree is maintained to keep

track of the splits, as shown in Figure 2.3.

split tree

0
;s

A* B A’ B*’ C D A” B“ C D B

Figure 2.3: Split History Tree Example [4]

Examining this tree we instantly know that C is the result of splits along dimensions 2

and 5. Now when we want to split set S {A” B” C D E } into subsets SI & S2, it

would be advantageous for them to have as many common splits as possible.

Logically then, the best split is the overlap-free one into the subtrees rooted by nodes

4 (containing {A” E}) and 5 (containing {B” C D}). The anti-overlapping measures

are what allow the X-Tree to extend to higher dimensions without suffering immense

time increases.

2.3.2 The GSS Tree

One main contribution of this thesis is in the spatial database indexing field, using the

Volume Distribution Tree to efficiently access 3D objects not resembling any

geometric primitives. A similar application to this one is tracking the shape of the

hippocampus in medical imaging. The spatial indexing demonstrated by Keim is the

Geometric Similarity Search (GSS) tree, grouping together closely located objects in

a tree using the objects’ minimum included volume (MIV) and maximum

surrounding volume (MSV) [14]. Figure 2.4 displays the MIV and MSV concepts.

a. MIV Approximation b. MSV Approximation

Figure 2.4: MIV and MSV Example [14]

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The GSS tree uses hierarchical approximations, with the directory nodes deeper

down the tree being closer approximations of the objects below them; parent nodes

are lower resolution amalgamations of their children. Many algorithms could

hierarchically determine the MIV & MSV as do the two instances given in the paper,

the Cuboid and Octree GSS trees. The Cuboid version keeps finding the largest

rectangular box available to add to the MIV and subtract from the MSV in order to

give a closer approximation to the exact volume indexed, while the Octree version

recursively deems any octants of the space containing some object volume as full and

others empty. An example of the Cuboid GSS tree is provided in Figure 2.5.

search object
entry 1 entry!

□
MTV MSV

MIV

M S V

i
□□

I**ay
t t

B ■#

u □ □□ V□□
r i r i r i r i

Figure 2.5: Cuboid GSS Tree Example [14]

We can see in this example the increasingly accurate geometric representations when

descending the tree and that the construction and insertion try to keep similar

representations grouped together for effective pruning.

The strategy carried over to the Volume Distribution Tree is to represent a group

of volumes with a small set of numbers and to set reasonably tight mathematical

bounds on the attainable similarity score of a group based on those numbers.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.3 The P-Tree

The P-Tree (Peano Count Tree) is effectively a Quad Tree [8] with counts of the l ’s

in its quadrant included in each node; the l ’s being the binary high pixels in a black

and white Boolean image[7]. Each node either has 0 or 4 children - if the node’s

quadrant contains some white voxels and some black ones it is recursively divided

into its quadrants, giving 4 children and otherwise the node has 0 children as it is a

uniform color and thus no more information is required to explain it. Any node’s

value is the number of white pixels in its quadrant, so white pixels are summed for

each leaf node, and then the directory node values are simply the sum of their

children’s values. A P-Tree then contains all of the information necessary for

reconstructing the image. An example of a P-Tree is shown in Figure 2.6, with the

left box containing an array of ones and zeros which can be the representation of a

black and white image, and the right box containing the corresponding P-Tree with

the left-to-right node order being the Z-Order of the picture (NW,NE,SW,SE).

11 11 11 00
11 11 00 00
11 1 1 1 1 00
11 11 1 1 10
11 1 1 0 0 00
11 11 00 0 0
00 1 1 00 00
01 1 1 00 00

F-tree 36
/ A \

/ / \ \
/ / \ \

16 7 1 r ©
/ / 1 \ / 1 \ \

2 0 4 1 4 4 1 4
//|\ /

1100 0010 0001

Figure 2.6: P-Tree Example [7]

In contrast to our Volume Distribution Tree which is global, one P-Tree is created

for each image. The Volume Distribution Tree employs the idea of denoting the

number of white voxels in each section, but only using a forced 1-level representation

with a user-defined grid rather than variable levels with quadrants. That is, whereas a

P-Tree would recursively decompose a single object into volume octants, the Volume

Distribution Tree is an index structure where the leaves are single-level volume

distributions. There is no recursion in the VD-Tree’s volume distributions and the

partitioning is defined according to the application rather than always being octants.

By avoiding variable levels, the Volume Distribution Tree allows easier comparisons

between objects, sacrificing accuracy however, and allows objects to be listed in

nodes which can be grouped together to form a global tree indexing all objects in a

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

database. To clarify, by taking a P-Tree, expanding its divisions from octants to an

application-defined scheme, and then taking the values from its first level below the

root we have one VD-Tree leaf node. The VD-Tree structure is built to index these

leaf nodes.

2.3.4 The RI-Tree

The Relational Interval (RI) Tree was designed for range overlap queries [16]. That

is, given an interval, to be able to return all intersecting stored intervals. This is

achieved with a tree where nodes contain sorted lists L & U being the lower and

upper bounds respectively, of the ID intervals represented by that node. Instead of

stored intervals being held exclusively in leaf nodes, they are each held in the highest

node where the stored interval entirely contains the node’s range. This node is

deemed the interval’s ‘fork node’. A query starts by determining the query range’s

fork node and then travelling down to its parent from the root of the tree. Since the

descent is to one level above the fork node (recall that the fork node is the highest

node entirely contained within the query range), each node explored has necessarily

had an extension to the left or right of the query range. For the left ones, their upper

range can be examined and if not meeting the query’s lower range, they can be

pruned, as can nodes right of the range whose lower bounds are also to the right of the

range. The intervals directly stored within the fork node can be reported since they

definitely intersect the query range. The search continues below the fork node first to

the left, where if that node’s lower bound is above the query’s lower bound all results

contained in that node’s subtree can be reported, and otherwise the node must be

linearly scanned for intersecting intervals. Processing for the right side of the fork

node is analogous. Part of a tree and its processing during a query is shown in Figure

2.7 with the labels ‘lower’ and ‘upper’ denoting the query range.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

root

scan U{w)
scan L{W)
 ̂report all

lower upper

Figure 2.7: RI-Tree Query Processing [16]

A method of indexing 3D spatial data using this structure is necessary to make it

relevant to our work, but [17] does just that by encoding 2D and 3D objects into ID

by means of space-filling curves. The objects are turned into multiple intervals in the

space filling curve, and these intervals are indexed by the RI-Tree.

A further extension to permit more efficient use of the RI-Tree is proposed in

[15]. The main problem with the decomposition of objects into intervals is the shear

amount of intervals necessary to compose an object. This huge amount of intervals

causes poor retrieval performance. In an effort to reduce this burden [15] uses gray

intervals, which are intervals covering many black intervals (the ones directly

extracted from the space-filling curve). One gray interval being able to represent

many black intervals reduces the burden of storing and finding so many intervals, at a

cost of lower accuracy representation requiring more post-processing. The authors

create the Grouplnt algorithm to take advantage of the gray intervals. The

representation of data in that algorithm is hierarchical, with the top level using only

one big gray interval to encode an object, and at the next level splitting this interval

along the largest gap between black intervals. This strategy continues by giving a

better approximation to the object in each level down, allowing a search to stop after

only a few levels by determining that there is already no potential for this object to be

relevant to the query.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Segmentation

The database and surrounding system described in this work assume a working

segmentation technique providing an enhancing vs. non-enhancing label matrix for

database entry. Segmentation’s purpose, whether done manually by an expert or

automatically by a computer program, is to segment the region that enhances on the

TIC imaging, as this corresponds to the visible edema region housing the tumour.

Any good segmentation technique, consistently used across studies in the database, is

valid and can be used as a replaceable module without changing the database work.

The accuracy of similar tumour retrieval from the database is however tied to the

segmentation quality and thus improving the segmentation is advantageous to the

database project.

3.1 Motivation
Ideally, medical imaging should be automatically segmented into enhancing and non

enhancing regions. Clinicians simply do not have the time to segment every MRI

image, and there has been shown to be significant variation in segmentation not only

between clinicians but between the same clinician at different times [18]. Image

segmentations are stored in the database and then are used as a fundamental part of

the query process, and as such must be precise.

The current pre-processing of MRI imaging includes automatic segmentation, but

its time-consumption, inaccuracy and mistakes have prompted investigation into new

methods. Since the idea of the database is to supply data for processing, the data

itself should be clean and free from harmful pre-processing. Currently the raw

imaging in DICOM format is converted to a series of PNG images via a pipeline

performing spatial registration and intensity standardization [24]. Although this

pipeline provides a common intensity and coordinate system, it locally warps the

data. In order to place a brain image in a standardized position, the system minimizes

the difference from the template brain Colin27 [11], In doing so the system however

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performs local deformations, changing the shape of the tumour and therein distorting

any morphological study. An effort has thus been made to circumvent the pipeline,

replacing it with an affine registration based on placing the Falx line on the center

plane and new segmentation procedures whose internals are transparent and easily

understood.

3.2 Projection onto Eigenbrain Space
Principal components analysis (PCA) was suggested for the compression of

images to a set of weights, a concept known as eigenfaces due to the mapping of face

images into a space defined by the eigenvectors of a training set of faces [28]. An

idea derived from this paper is that a face vastly different from the training set or

having a new feature (glasses, beard if these were not in the training set) would likely

be poorly reconstructed, and thus casting an unhealthy brain into a space created via

only normal brains would yield errors at a much higher rate in the tumour region.

The plot of absolute reconstruction error could then be a basis for automatic

segmentation. Since the segmentation of the error plot is well defined as getting a

region best encompassing the large values, it should be an easier problem to solve

than the original segmentation problem where we need to segment an area that is

somehow different from the rest.

Due to the nature of our studies and collaborations, our brain imaging database

consists only of brains with tumours rather than normal, healthy brains. Since a set of

normal brains is required to form a healthy image basis, the set was created from the

right halves of exclusively left-side tumour patients and left halves from exclusively

right-side tumour patients. With this trick we can avoid the cardinality of the set of

tumour images from greatly surpassing the cardinality of the set of normals.

PCA is used to create a basis in v dimensions, where v is the number of voxels

used in each original image or 3D matrix describing a normal brain. By reshaping

each brain image into a 1 x v vector and stacking all of these together, we get an n x v

matrix (n being the number of training brains) containing the whole training set

information. With PCA we replace this matrix by its eigenvectors, forming an

orthonormal basis that is still of size n x v. To eliminate high-frequency noise as well

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as obtain better compression, we only use the eigenvectors corresponding to the

highest 40 eigenvalues (this value selected after looking at the rapid drop in

eigenvalues, as these represent the variance). See Figure 3.1 for the eigenvalue trend.

x 109
8 ---------------------;-------------------- , --------------- -- :------------------- r---------------------------- .

7

6 i
i

5 - \
<v

Eigenvalue #

Figure 3.1: Eigenvalues of the brain space, sorted in descending order

The eigenbrains each represent some intensity component of the brain such that

any brain can be expressed (with lossy compression) by a set of 40 weights meaning

the brain can be said to be wr eigenbraini + W2 -eigenbrain2 + ... + w 4o-eigenbrains

where the Wj’s are the weights. Our 1st and 9th eigenbrains’ 40th slice are displayed in

Figure 3.2 as an example of what the different eigenvectors can focus on. Projection

of unhealthy brains onto the normal brain space somewhat localized reconstruction

error to the tumour, but this was marred by much noise.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.2: Eigenbrain Examples

One suggestion that has been implemented here to reduce this noise is to use a

robust fitting technique which iteratively reconstructs the brain, with each iteration

putting lower weight on high-error voxels. The idea is that the normal part of the

unhealthy brain is the part that should be well-reconstructed without interference

from trying too hard to fit the bad parts. This raised the ratio of average intensity

inside the tumour to that outside the tumour, indicating more focus on highlighting

the tumour compared with other artefacts.

To see an example, refer to Figure 3.3, which shows the original brain to the far

left, as segmented by our current segmentation program, next the map of the

reconstruction error, clearly highest in the tumour region, next is the reconstruction

error thresholded to provide a clear segmentation, and to the right the post-processed

segmentation overlaid onto the brain image.

Figure 3.3: Segmentation Using Eigenbrains

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Finding High Z-Scores
An even simpler means of locating the tumour is to find out which voxels are far out

of tolerance compared with the normal set. The mean and standard deviation of every

voxel for normal brains is kept in two 3D matrices, keeping a low memory footprint.

Any brain to be segmented has its z-score map computed by dividing the absolute

difference between this brain and the mean for the set by the set’s standard deviation.

High z-scores indicate variation from the mean that is much higher than usual, and

therefore abnormal. This map can therefore be used as a basis for segmentation in the

same way as the eigenbrain projection. Note that due to the lack of a large enough set

of normals, the training set was split into a left half using patients with a right-side

only tumour and a right half in the same manner, as explained in Section 3.2.

This procedure can be done with T1 and TIC images compared to the normal

statistics for T l ’s, as well as T2 images compared to normal T2 values. Combining

the results of these two filtered out much of the noise since the tumour is found in

approximately in the same place with either modality while the noisy bits did not

match up very often. The combination was done by segmenting only the voxels

whose average Z-Score (in TIC and T2) was above a set threshold.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

a) Original Brain Image b) Z-Scores Above 115

c) After Post-Processing d) Final Segmentation

Figure 3.4: Z-Score Segmentation Process

What is left of the noise is filtered out by keeping only the deepest white section,

since erroneous segmentations generally appear as tiny blobs and larger but thin

shells. Matlab’s bwlabel function labels all disjoint white segments with different

integers, allowing easy separation of all segments such that they are alone in their

own matrices. The depth of each of these segments is then taken as its maximal

Euclidean distance transform value. This distance transform is a morphological

operation where each white voxel is replaced by a real number equal to its distance to

the closest black voxel, and is performed by Matlab’s bwdist function. Figure 3.4

helps explain the procedure of segmenting by Z-Scores; in (a) we see one slice of a

TIC-weighed brain image to be segmented and in (b) the location of the voxels being

1.5 standard deviations away from the norm. In this figure we can see that the

thresholding of Z-Scores to above 1.5 mostly focuses on the tumour region. The

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

smaller regions identified are later filtered out by post-processing as shown in (c).

The final segmentation is shown in (d) with the red outline denoting the segmentation

extents overlaid onto the original brain image. The reader may note from Figure 3.4

(b) that the segment with the largest volume could more simply be selected than the

one with the largest depth. The selection by depth however avoids selecting long thin

membranes instead of the tumour. A lot of noise, joined with a thin but large area of

high z-scores can make up a larger contiguous volume than a small tumour, leading to

obviously poor results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Chapter 4: Similarity Measures

4.1 The Notion of Similarity
What it means for two objects to be ‘similar’ is subjective and as such no concrete

true value of similarity is available for comparison with the presented similarity

measures’ outputs. In this case we wish to predict a tumour’s growth based upon

similar tumours in the past and through experience with the query system presented,

physicians can pick the similarity measures whose results turn out to be most

conducive to this purpose.

Several similarity measures will be defined in this section, each of which

describes a subset of the following aspects of similarity: location, shape, volume,

extents, texture, and orientation. Efficiency-increasing implementations will also be

discussed here.

Note that the imaging data has been registered to a template in order to maintain a

consistent coordinate system between brains. Each brain image is a 258 x 258 x 88

voxel matrix (due to the template brain being of this size) with each voxel containing

an 8-bit greyscale value.

4.2 Supported Similarity Measures
4.2.1 The Jaccard Measure

The classic similarity between two sets of voxels in a common space is the Jaccard

measure, which is the intersection of the sets divided by their union volume [12]. A

simple but very effective optimization for this calculation is obtained by noticing that

the union is simply the sum of the two volumes minus the intersection. Since the

volumes remain constant between queries, each tumour’s volume is stored, ready for

quick access during queries. Thus only the intersection must be computed, but this

still requires accessing the tumour image from disk, which makes a linear scan too

costly. To save on I/O and computational costs, instead of storing each segmentation

in a 258 x 258 x 88 matrix they are stored in smaller matrices the size of their

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Minimum Bounding Rectangle (MBR). Thus if a segmentation only resides within

100-120 in the x-axis, 145-185 in the y-axis and 40-51 in the z-axis, its MBR field

will list [100 120 145 185 40 51] and the segmentation matrix will be of size 21 x 41

x 12; the rest is known to be full of 0’s (empty). Despite the gains from this storage

strategy, the linear scan is still too slow so a specialized data structure is applicable

here. A tree structure has been created to quickly filter out the distant tumours and

provide a short list of candidates to check thoroughly. This structure, the Volume

Distribution Tree, is the topic of the 5th chapter of this thesis.

4.2.2 Depth Jaccard

Although the Jaccard measure captures the intersection of two bodies, it ignores the

differences in volume distribution between the bodies. For example, two bodies only

differing in that one of them has a thin protrusion from its main mass may get a lower

score than bodies who intersect a lot but whose core parts are not that close.

To capture the depth of a tumour, we use the Euclidean distance transform (3D

version of [21]), which approximately indicates how far a tumour voxel is from the

outside of the tumour. Figure 4.l ’s upper set of images shows an example tumour

shape in 3D on the left and a 2D slice of this shape on the right, along with their

analogous distance transform images on the lower set of images. Note that the 2D

picture of the distance transform has uneven contours since it is only a slice of the 3D

distance transform, not a distance transform of the 2D slice.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Figure 4.1: Euclidean Distance Transform of a Tumour in 2D and 3D

To capture the degree to which the objects’ cores are intersecting, for each voxel

that intersects instead of adding 1 to the intersection count as the Jaccard measure

does we add (l - 1dx - d21) where di and d2 indicate the normalized distance transform

values for the voxels from tumour 1 and tumour 2 respectively. That is, after the

Euclidean distance transform is computed for a segmentation it is normalized,

meaning that all values are divided by the maximal distance transform value obtained.

What is added to the intersection sum is one minus the difference in normalized

depths of the intersecting voxels. For example a point near the core of tumour 1 may

have a depth of 0.9 while its intersecting voxel is near the edge of tumour 2 with a

depth of 0.2, in this case their intersection would be counted as (l - J0.9 - 0.2|) = 0.3

instead of 1.

This method of counting intersection means that tumours whose cores are at each

other’s edges but still intersect at 30% will be given a much lower than 30% score.

For example consider one shape intersecting with two others, shown in Figure 4.2.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.2: Depth Jaccard Intersection Example

Here compare the left-side case where the two objects share the same core and have

similar extensions in different directions to the intersection shown in the right-hand

case where there is a sizeable intersection between somewhat dissimilar shapes. Now

instead of purely finding the intersection each intersecting voxel is weighed down

according to the difference in depth. The result of this modification is that the right-

side example’s score will suffer far more than the left-side example due to the left

one’s lining up of the cores. This would be a desirable modification for a user

wishing to find tumours growing from the same structure of the brain, or wanting to

ignore small fringes on the edges of tumours in favour of the bulk of each tumour.

Since each intersecting point adds one or less to the intersection and we count the

union exactly like the regular Jaccard case, the Depth Jaccard scores are always equal

to or lower than the corresponding Jaccard scores. Therefore we can use the VD-Tree

(detailed in Chapter 5) created to support the Jaccard measure to also support the

Depth Jaccard variant since any branch excluded due to not meeting the Jaccard quota

can definitely be excluded from meeting the same Depth Jaccard quota since the latter

cannot be larger than the former.

4.2.3 Finding the Center Point o f a Tumour

The next few similarity measures require a definition of the center point of a tumour.

Here we discuss three central measures, each of which can be used to define the

center point (thus each similarity measure requiring a center point naturally has three

variants). The easiest to compute is to simply take the center of the tumour

segmentation’s minimum bounding rectangle (MBR). This point can however be

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

heavily swayed by a long appendage to a tumour and may not actually reside inside

the tumour outline (although in general for good segmentations it does). The second

means of picking the center is to pick the center of volume, which is the point at

which half of the volume resides on each side of any plane that includes this point.

The third method used (and the one used in the current database system) is to pick the

core as defined by the Euclidean distance transform. With the distance transform

applied, only the set of maximum values is kept, with the center of this volume being

deemed the center point. This method has the advantage that it is not only definitely

within the tumour volume, but is actually at the deepest point. Thus this point

indicates the middle of the largest mass and is unaffected by protrusions at the edge

of the tumour. Figure 4.3 shows an example tumour slice and its center as defined by

the three methods discussed above, along with the distance transform map on the left

showing why the red point on the right was picked as the core point.

Legend

«» Carter of MBR

• Carter of Volume

X Core Point

Figure 4.3: Center Point Measures

4.2.4 Ray Trend

The similarity measures thus far only take into account the Boolean tumour

segmentation; i.e. whether a voxel is or is not cancerous. To take into account the

texture of the tumour, the Ray Trend measure uses the actual greyscale values of the

MRI image which are located within the segmented region. From the centerpoint of

the tumour, we take a vector in each of the 26 directions (there are 26 combinations

of (right, left, center) for 3 dimensions other than (center, center, center) which is the

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

origin). Each vector comprises the greyscale values along the straight line path from

the center to the tumour edge in the specified direction. This serves as a set of feature

vectors, whose Euclidean distance to other tumours’ rays is taken and summed up

into a distance. The smaller the distance, the more similar the two tumours are said to

be. This is an extension to Vranic and Saupe’s use of the extents of a shape from its

center in the sense that it uses values defining the interior texture of the tumour as

well as a simplification in the sense that we use only 26 standard directions rather

than defining continuous functions [23].

4.2.5 Shape Histogram

This technique developed by Ankerst et al. is described in Section 2.2.1. It was

implemented here since it provides an innovative means of describing the shape of a

tumour, which is important in finding similar tumours. In our work the center of the

tumour was found using the core point as opposed to the original work, which used

the center of mass as the center of the object.

4.2.6 MidSim

To create a similarity measure targeting the shape of the tumour, we start by finding

the center of volume. Using this center as the origin, the three standard planes

partition the volume into 8. A recursive application of this to each partition a preset

number of times yields a group of 3D points describing the shape of the tumour.

These points can be normalized with respect to the extents in each dimension to

provide invariance to the size of the tumour. The sum of the Euclidean distance

between the points describing two tumours is used as the distance between the

tumours for queries.

4.2.7 Eigen Decomposition

As described in Section 3.2, the important information can be extracted from a brain

image by projecting it into a well-made standard space. By using the voxels where

the brain can actually be present (i.e. excluding the huge always black section outside

the head), we get a much smaller representation of the brain image (1,397,314 voxels

instead of 5,857,632). This makes it possible to perform an eigen decomposition of

the whole dataset. Thinking of each imaging session as a long vector, we can find the

eigenvectors making up a new basis set for these vectors. Although the new basis has

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the same dimensionality as the original set, many of the dimensions contain very little

variability compared with others and thus can be discarded with very little effect on

the information carried. After plotting the eigenvalues, it was decided that the 40

rows corresponding to the 40 highest eigenvalues would be kept since after 40, the

eigenvalues are significantly lower than the first few eigenvalues. That is, the 40

dimensions of the dataset with the most variability would be kept.

Each MRI image is then projected onto this space, being compressed into a 40-

length vector representing the image’s weights in the 40 most important directions

according to PCA. The distance between two images’ weight vectors can be used as

a distance metric to assess their similarity with respect to the group.

4.2.8 Elongation, Flatness and Sphericity

As an easy-to-understand pure shape descriptor, we approximate the aspect ratio of

the tumour. This is invariant to the tumour location, volume and orientation. The

actual quantities calculated are the eigenvalues corresponding to the principal

components of the tumour. Ratios close to 1 indicate a somewhat spherical tumour

while larger ratios indicate a more elongated ellipsoid-like shape. Note that the

eigenvalue indicates the variance of all of the voxels comprising the tumour in a

particular direction. Although the ratio of eigenvalues is not proportional to the

aspect ratio, a larger eigenvalue ratio generally corresponds to a larger aspect ratio.

The ratios maintained in the database are that of the first to the second eigenvalues

(Elong), indicating elongation and the second to the third eigenvalues (Flat),

indicating flatness. Since some tumours have quite concave faces, dividing the Elong

ratio by the tumour depth is a good idea to minimize this nonlinear effect.

Another scalar value kept in the database is the sphericity H*, calculated as

i 1
7t3(6V)3

*¥ ------------ , where A is the object’s surface area and V its volume [27]. This
A

value lies in the range (0,1], with 1 indicating a perfect sphere and low values

indicating an elongated or highly folded structure.

4.2.9 Growth Direction

Since a main goal of the BTAP is to predict tumour growth, an important piece of

information to find the growth pattern of tumours similar to the one we wish to

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predict. Given a current patient with a brain tumour it would be advantageous to find

similar tumours in the database with the later stages of their growth also documented

in the database. The further growth of past tumour cases in other patients may guide

physicians in predicting the growth of a current tumour whose future cannot be seen.

How do we find similar growth patterns efficiently though? One way is to index

growth between two visits by a vector pointing out from the core of the tumour in the

direction of greatest growth.

The natural choice for picking the primary direction of data is PCA. By

subtracting the older tumour from the newer one, a ‘shell’ representing the growth is

left and this can be run through principal components analysis. An uneven growth all

around a spherical tumour should align the principal axis in the direction of the

largest growth. We may however be looking at a growth shell that is empty on one

side instead of a full volume and thus PCA may not be the best choice. For a 2D

example, a round tumour with a purely right-side growth should be pointed to by a

vector in the positive x-direction but may actually have its main principal axis in the

y-direction (see Figure 4.4).

The alternative used is the vector sum of the growth voxels’ normalized vectors

originating at the core. Each voxel appearing in the later timestamp that does not in

the earlier timestamp is tagged as a growth voxel. These are all indexed by their

vector from the first timestamp’s tumour core. The set of vectors are projected onto a

unit sphere around the tumour core to avoid skewing of the resultant by further points

since we are only concerned with the direction of growth, not how far away from the

core it happens. The resultant of all these vectors is converted to spherical

coordinates (p,(|),0). The radius p has a [0,1] range with a value close to 1 denoting

Original
Tumour

Growth
PCA First
Principal
Direction

Figure 4.4: Problem With Finding Growth Direction By PCA

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

very directed growth with altitude <|> above the x-y plane and rotation 0 around the z-

axis, while a radius of 0 denotes equal and opposite growth on each side of the

tumour.

4.3 Other Relevant Information Queries
Many standard pieces of data are put into the database and may well be required by

someone wanting to study only the subset of the population where a certain property

applies or is within a defined range. One such example is the sex of the patient - this

is stored as a column and may be used as a predicate when querying the database.

The only other stored patient data is their birth date; no other patient information is

available after anonymization due to ethical guidelines preserving anonymity of the

patient. The image time is stored, as well as the MRI machine used since

specifications such as magnet strength can be important. Stored quantities derived

from imaging are the Gross Tumour Volume (GTV) in units of voxels, and the center

point of the tumour as defined in three ways: by the center of its volume, by the

center of its Minimum Bounding Rectangle, and by the center of the peak of its D26-

distance transform. The extents of the tumour in its 3 primary directions are listed

since physicians often discuss tumour size by these measures in addition to the GTV.

The box created by these extents can also be compared with the other ones in the

database by a routine giving the Jaccard score between two boxes aligned and

centered together. The tumour contrast enhancement is listed in a column and

therefore a user can easily query for enhancements in a certain range. The

enhancement number is defined here as the mean intensity growth within the

segmented tumour region between the T1 image and the TIC image taken on the

same day. A proposed additional column is whether or not the tumour enhancement

has a sharp contour, or perhaps a measure of the sharpness of the enhancement’s

contour. Other data that may be added to the database include the survival (time from

when a study was done until the patient passed away), types and dates of treatments,

and tumour grade.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.1 Growth Through Regions

Physicians often want to know if tumours can cross a certain barrier or membrane.

We provide two simple means of asking that query of the database. The simplest

being for the user to provide 2 points, a and b, to find the tumours that grew from a to

b. This is simply achieved by finding all tumours intersecting (a & —ib) and finding

their further timestamps who intersect b. Since the interface provides drawing

facilities, the user can easily pick two points to query for tumours which have grown

from the first to the second point. When the user chooses ‘Growing A to B’ from the

similarity measure drop-down list, two boxes for entering coordinates appear, but the

user can just pick the points while looking at brain images by clicking on the desired

spots.

4.4 Comparison of the Similarity Measures
How do the similarity measures complement each other? Table 4.4.1 gives a succinct

rundown of the aspects of similarity each similarity measure (including its variants)

takes into account. The blank spots therefore denote aspects with respect to which a

particular similarity measure is invariant.

Similarity M easure Location

T akes Into Account This A spect of Similarity

S h ap e Volume Extents Texture Orientation

Jaccard ■ M m /m H H I Y |
Jaccard (Centered by Volume) ■ H ■ H B ! Y W.
Jaccard (Centered by MBR) ■ H S i l l f f l H Y I P
Jaccard (Centered by Core)

■ i S J

■ H ■ H I Y | | |

Depth Jaccard W gt ■ E B ■ ■ ■ ■ I Y B

Depth Jaccard (C entered by Volume) f l H H g H B g R B E j Y | | i
Depth Jaccard (C entered by MBR) I B s
Depth Jaccard (C entered by Core) 8 f l p | ■ m s h s e Y j | |

Ray Trend (Appended with 0's) B B b b 1 |
Ray Trend (Appended with Out of Tumor
Values) I f l B I H 9 | I 8 H B
Ray Trend (Vector Stretched) M at ■ H n
Shape Histogram I B j i llliM I S l i l K g H E f l B
Shape Histogram (Sectors Only) lllllllli M B

Shape Histogram (Rings Only) iiBllj
3D Shape Histogram (Bin, GrayValue) I X f l I s H K g R i ilipiiSIKH
Distance Between C enters (By C enter of
Volume)

Distance Between C enters (By MBR Center)

D istance Between C enters (By Core)

Volume Difference

MidSim (Recursive Division of Volume into 8)

Y

(ll■fii
V

Table 4.4.1: Similarity Measure Dependence Comparison

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The above table can be used as a quick reference, summarizing the aspects of

similarity integral to each similarity measure. Ideally, we would like each similarity

measure to represent only a single aspect of similarity such that there is no cross

coupling between measures when used together. This perfect decomposition is not

easily achieved and instead Table 4.4.1 represents the actual coupling involved in

weighing together the results of several similarity measures. Since the similarity

measures shown naturally cross-couple shape and volume, we differentiate these

using the volume as a number and the MidSim measure which is independent of the

volume as a quantity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

Chapter 5: The Volume Distribution Tree

Since queries using the Jaccard coefficient as a similarity measure (see Section 4.2.1)

are so frequently used to retrieve similar tumours, an efficient implementation of this

query was in order. Linearly searching the whole database is very inefficient and

slow due to the large size of the matrices to be intersected. Organizing the tumour

minimum bounding rectangles (MBR’s) into an R-Tree allows a query script to

efficiently target objects in the database with MBR’s intersecting the query object’s

MBR but this unfortunately does a poor job of narrowing down the list of possible

candidates to be exactly checked. The Volume Distribution Tree, or VD-Tree, is our

solution to this problem.

5.1 Volume Distribution Concept
The base idea involves dividing the space into n-by-n-by-n blocks and computing

their filled-in volumes since this can provide information bounding the maximum

possible Jaccard measure while taking up little space. Figure 5.1 shows the division

of the volume into a 4-by-4 grid (for a 2D example). In this work the matrix of

numbers is flattened into a vector for storage, and this vector is what will be referred

to by “volume distribution”.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

volDiv =

0 0 822 55
0 0 605 0
0 0 337 0
0 0 0 0

Figure 5.1: Division of Volume for the Volume Distribution Tree

At Left: A standard brain image showing that the grid is concentrated toward

the middle since the head only covers that part.

Middle: A graphical 2D example of a 4x4 division of a tumour segmentation.

At Right: The matrix showing the volume (in number of pixels) of the tumour in

each division.

Note that the divisions are set up closer to the middle instead of evenly distributed -

this is meant to somewhat equalize the space in each section. The two lines beside

the middle are each placed at 35% of the maximum distance from the middle to the

outside of the brain since this is the half-volume point in an ellipsoid modelling the

head. Note that the maximum extents of a head are located in a lower slice than that

shown in Figure 5.1, so despite the lines shown being 35% of the distance to the true

extents they appear too be about 50% of the way to the edge since at this height, the

head is narrower than its maximal width. Note that the grid cells can be set up to be

anywhere so long as all volumes in the database are split in the same way, making

this structure easily adaptable to other applications. A guideline to set up a grid for a

specific application is to make each cell approximately equally likely to contain part

of an object. In other words, for a grid of N total cells, each cell should be sized to

hold an expected value of 1/N of a random object’s voxels. In this way we spread the

information over all the cells, avoiding any cells whose value is always zero (which

would provide no information gain for that cell).

The volume distribution concept is analogous to the feature vector of volumes

employed in shape histograms as both divide the volume of an object into cells and

use it as a vector conducive to their respective purposes (see Section 2.2.2) [2], The

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

volume distribution in the shape histograms is used to compare shapes using a quasi-

Euclidean distance metric to get dissimilarity between object shapes. In contrast, the

VD-Tree does not use any distance metric between distributions to obtain similarity

or distance. Rather, the VD-Tree employs volume distributions to compute bounds

on the intersection and union of spatial objects, and uses this in a hierarchical manner

(a tree of volume distributions) to efficiently index objects for similarity search

employing the Jaccard measure. To achieve this end, the volume distributions for the

VD-Tree must be taken on a grid consistent to the whole dataset rather than each

object’s center. The partitioning method employed in creating shape histograms

could certainly be used as the grid in creating a VD-Tree, although the grid’s center

would have to always be at the center of the full space. For the brain tumour

similarity search application, the spherical shells would also have to be modified to be

ellipsoidal to take the brain shape into account; since the brain is not spherical, there

would be many cells that hardly contain any of the volume.

5.2 Volume Distribution Tree Properties
The VD-Tree is a tree designed to index objects with spatial extents for Jaccard

measure queries. The VD-Tree query processing strategy guarantees 100% recall as

it can never exclude a valid result when pruning branches. Recall is a measure

denoting the percentage of the relevant documents in a database that are actually

retrieved by query processing.

Leaf nodes index exactly one study each (a single patient visit) and thus contain

the patient number, study number along with their own node number (to be pointed to

by other nodes), their parent’s node number and the volume distribution vector for the

tumour segmentation done for the study indexed. A directory node contains its own

node number as well as its parent’s and children’s and two vectors to indicate volume

distribution. A directory node roots a subtree and the directory contains element-wise

maximum and minimum vectors of the volume distributions in this subtree.

Directory nodes index a group of 2 to M children (either leaves or other directories),

where M is the node capacity defined by the administrator prior to tree construction

(in this work we use M=6). Using a large value for M would cause the max / min

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bounds to be too wide leading to following many branches during a query, and also

increasing the cost of a split due to the number of pair-wise distances computed

increasing exponentially with M. Small M values would cause the tree to be very

deep as well as requiring frequent splitting of nodes.

All leaves appear on the same level of the tree. As will be shown, each node (leaf

or directory) permits the calculation of an upper bound on the Jaccard score for the

subtree it roots. This upper bound allows branches to be pruned during queries,

saving computational and 10 effort.

The tree structure is created bottom-up either by bulk-loading or by insertions,

trying to cluster similar volume distributions together. The volume distribution

vectors are the leaves of the tree. A set of vectors clustered together are aggregated

into a node carrying the minimum and maximum volume for each cell, rendering

directory nodes roughly twice as large for storage as leaves. This process is recurred

and higher-level directory nodes stay the same size as lower-level ones since they still

simply carry the maximum and minimum bounds for any node below them. A

miniature example of a VD-Tree is displayed in Figure 5.2, and it will be used as a

running example later in this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Max Mia

"9 8" "4 o'

8 ° 2 0

M ax Min

9 l l f 7 O'
M ax Min

7

0

L e a r

7 i

6 0

L e a f

9 O'

8 0

L e a f L e a f L e a f

5 8

2 0

8 7

2 0

4 8

2 0

Figure 5.2: Sample Volume Distribution Tree

5.3 Establishing Jaccard Score Bounds
Following from Figure 5.1, the 258 x 258 picture has now been compressed to 16

numbers so how does the loss of information affect the Jaccard measure? We never

want to exclude a result within the query range (i.e. we demand 100% recall), so the

maximum possible Jaccard value (given only the volume distribution) is computed

and the node being examined can be discarded if this best case scenario cannot meet

the query threshold. The maximal Jaccard measure occurs when the intersection is

maximized, thereby also minimizing the union. The maximum intersection within

each cell occurs when the smaller volume is entirely included in the larger and thus

the actual objects’ intersection within each cell is upper bounded by the smaller

volume. The union cannot sink below the larger volume’s value since any of the

smaller volume sticking out from the larger could only add to the union, and therefore

the actual objects’ union within each cell is lower bounded by the larger volume.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Equations 1 -3 formalize these notions for the whole group of cells (in a vectorized

way).

Let Q be the query object and X a leaf node’s indexed object.

Let V q = (qi, ... , qn) be the query object’s volume distribution.

Let Vx = (xi, ... , xn) be a leaf node.

Then,
n

An upper bound for the intersection is: \Q ^ X\ ^ X mm(qi yxt) (])
i

n
A lower bound for the union is: \q u x \ > X maxfo,. jct) (2)

i

Hence an upper bound on the Jaccard score between Q and X is:
nX min (qirXi)

Jaccard (Q,X)< —n--------------- (3)
X m axC ^T)

i

What happens when we want to obtain an upper bound for the Jaccard score of

any node that is a child of a given directory node? To calculate the upper bound on

intersection we can use the vector of maximum volumes in place of the exact set of

volumes available in a leaf node. For example if the child node volumes are [3 6 5 2]

and [7 5 1 3] the matrix of maximums would be [7 6 5 3] as this is the matrix where

each element indicates the maximum value, for that position of the matrix, in any of

its children’s distributions. Matrices representing minimums and maximums will be

used for pruning branches during descent of the VD-Tree. Using the matrix of

maximum values does not allow underestimation of the true maximum Jaccard score

as we show in Theorem 5.1.

Lemma 5.1: The upper bound on intersection calculated using the vector of

maximum volume distribution values cannot be lower than that calculated using the

volume distribution values of any node under it.

Proof:
n

From (1), |g ^ A| < X mm(qi jc.)
i

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let Dmx = (dniXi), ... , dmX)n) be directory D ’s upper bound.

Dmx > any of the leaves X in its subtree.

Since a minimum value cannot decrease by increasing the numbers considered, we

know that min(g;., dmx i) > min(c/(, x -).

Since the sum of a vector cannot decrease by increasing its components, we can see
n n

that: Y minfe 4 naj) £ Y min(<?(- S i) ■
i

n

Therefore ^ m i n ^ , . , ^ ,.) > |g n X |, \/X e subtree(D); the maximum intersection
i

calculated using the maximum of the range of a directory node is equal to or greater

than the maximum intersection calculated using any node below this directory node.

Since there can be no underestimation, the upper bound calculated using the

vector of maximums is definitely the highest intersection possible between the query

node and any child (no matter how many levels below) of the directory node D. By

the same logic using the vector of minimums in place of the node volume distribution

in Equation 2’s union lower bound calculation cannot cause overestimation of the

union, thereby keeping a conservative estimate of the union lower bound.

Lemma 5.2: The lower bound on union calculated using the vector of minimum

volume distribution values cannot be higher than that calculated using the volume

distribution values of any node under it.

Proof:
n

From (2), \ Q u X \ > Y max(g; jc,)
i

Let Dmn = (dmnj , ... , dmnjl) be the directory lower bound.

Dmn < any of the leaves X in its subtree.

Since a maximum value cannot increase by decreasing the numbers considered, we

know that max(^;, dmn i) < max(q.,xi).

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the sum of a vector cannot increase by decreasing its components, we can see
n n

that: £ max(c/, ,) < £ max(?,).
/ i

n

Therefore ^ max(^i 4 mrtti) ^ \Q ^ 2 f |, VX e subtree(D); the minimum union
/

calculated using the minimum of the range of a directory node is less than or equal to

the minimum union calculated using any node below this directory node.

Theorem 5.1: The Jaccard coefficient between an object Q and a directory node D

obtained using the maximum volume distribution values to calculate intersection and

the minimum vales to calculate union cannot be exceeded by any node in the subtree

rooted by D.

Proof:
n

^ m i n (q i jci)

Recall (3): Jaccard(Q,x)< —n---------------
E nia x (^ T)

i

Per Lemmas 5.1 and 5.2, the intersection is the highest possible for the subtree rooted

by D when the directory’s maximum vector is used in place of any of the actual

volume distributions and the union is the lowest possible for any node in this subtree

when the directory’s minimum vector is used in place of any of the actual volume

distributions.

max (Jaccard(Q, X)) = max
Xesubtree(D) X esubtree(D)

min(c/(yx[)
i___________________

n

^ max(g; rxi)
\ i

^ m i n (4 ; / / „ « , ,)

< - ^ --------------------
n

£ m a x(qiJ mnJ)

Obtaining a maximum Jaccard score below the query threshold is therefore

justification to eliminate all children of the tested node from contention without

sacrificing the 100% recall criterion. Equations 4-6 formally define the upper bound

on Jaccard score for any node in the subtree when examining a directory node.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let Q be the query object and X be any object indexed within the subtree of a

directory node D.

Let V q = (qi, ... , qn) be the query object’s volume distribution.

Let Dmn - (dmivi, ... , dmn;n) be a directory node’s volume distribution lower

bound and Dmx = (dmXj), ... , dmx,n) be that node’s volume distribution upper

bound.

Then,

An upper bound for the intersection is:
n

IQnX Lsublree{D) ̂X (4)
i

A lower bound for the union is:
n

\Qn X L subtree{D) * Z (5)
i

Hence an upper bound on the Jaccard score between Q and D is:
n

Z m in (q i d ^ t)

Jaccard (Q, X) < —------ (6)
VX esubtree(D) J L ,

2^max(qndmni)
i

Theorem 5.1 justifies the use of the bound provided by Equations 4-6 for pruning

branches. Note that these equations generalize Equations 1-3 since the element-wise

maximum and minimum set for only one distribution are identical to the distribution

itself. Equations 4-6 merely substitute the maximums for the exact volumes in the

intersection calculation and the minimums instead of the exact volumes in the union

calculation. We therefore can use Equations 4-6 to test both directory nodes and leaf

nodes if we see the leaf node maximums and minimums as one and the same, the

actual volume distribution for that leaf. From a bound-checking perspective, a leaf

node is just a directory node encompassing the subtree it roots, which for a leaf node

is only itself.

5.4 Range Query Processing
This subsection examines the process of performing a range query with the VD-Tree.

A range query is one where the desired return set is the set of objects in the database

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

having a value within a specified range for a specified field. Instead of a field, the

result of an algorithm using any database object as an argument can be used. This is

the case here, where the user desires to know which tumour segmentations in the

database have a Jaccard score in the range [x,l] (0<x<l) with the query tumour.

Equations 1 through 6 are the basis for querying using the VD-Tree structure.

Starting at the root, the volume distribution representation of the query is tested for

maximum Jaccard score using Equation 1 for leaf nodes and Equation 2 at the

directory nodes. Directory nodes getting at least the query threshold for a score are

expanded into their children; others are discarded as even their guaranteed upper

bound is not high enough to be accepted by the query. Leaf nodes passing the test

denote a single study that must be examined to determine the exact Jaccard score. So

the end of the crawl down the tree yields a shortlist of studies to be examined further,

saving considerable time over checking each study linearly. The algorithm yielding

this shortlist is displayed in Figure 5.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

Algorithm VectorNode GetCandidateList
Input: Query object’s volume distribution Q, minimum Jaccard score required for

an object to be returned (Threshold)
Output: List of candidates to check exactly by performing matrix-wise intersections

Queue[l] = pointer to root node of VD-Tree
While queue not empty

X = extract head of the queue
intMax = min(Q,X.max)
unionMin = max(Q,X.min)
JaccardMax = intMax / unionMin
If JaccardMax > Threshold

If X.children == directories
Append X.children to queue

Else
Append X.children to leafQueue

End If
End If

End While

For Y = each member of the leaf queue
intMax = min(Q,Y.volDist)
unionMin = max(Q,Y.volDist)
JaccardMax = intMax / unionMin
If JaccardMax > Threshold

Append X.study to studies
End If

End For

Return studies
Figure 5.3: Candidate List Algorithm

An example should help clarify matters. Say we have 2D binary images and to

make things even simpler we make the volume distribution only a 2 x 2 grid.

If we have the following 3 volume distributions:

"5 8 ' ' 8 1 '4 8 ’
Cl = ,C 2 = ,C3 =

2 0 2 0 2 0

all stored under a directory node DN, this directory would have the following

properties (obtained by maximizing and minimizing all indices individually):

DN =mx

8 8
2 0

>DNm
4 7
2 0

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now that the grouping of nodes is obvious, a query example is in order. Say we have

the following query object and tree root (note that directory nodes are displayed here

with the maximums on the left and minimums on the right), with threshold 0 .6 :

Query: '5 O' , Root: '9 8 ' '4 0 "
! 0 1 _ 8 0 2 0

The maximum intersection and minimum union are calculated as:
/n ___

E m in (qi,dmx,i)= £ min
elements

"5 O' '9 8 '

V 10 1
5

_ 8 0)

elements

5 0
8 0/ elen

n

'Y_irnm(qi4 mxi) = 13
i

n____________________________ ___

Z ma< q i4 mn,i)= X max
i elemen

n____________________________ ____

2 > a < q i4 mn,i) = 2
i elements

n

I m a x (g „ J)M,.) = 16

r '5 O' '4 0 "

V ! 0 1
5

2 0 7
5 0

10 1

The maximum Jaccard score we can attain in the subtree below this node is therefore:
n

E m m ^ , ^ , .)

Jaccard (Q, X) < —
VXesubtree(D) n

Jaccard (Q, X) <
XfX^subtree(D) 16
Jaccard (Q , X) < 0.8125

VX esubtree(D)

Zmax(?y ,MJ
i

13

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since this upper bound is above the query threshold we must expand this node and

perform the same procedure on its children:

Root: 9 8 4 0 Sim 0.8125
8 0 2 0

Sim 0.7222
9 1
8 0

7 0 8 8 4 7
2 0 Sim 0.3043

For both children we calculate the upper bound on the Jaccard similarity measure but

this time the right branch can be pruned since the upper bound does not meet the

query threshold. We continue with only the left branch, revealing leaf nodes:

Root: 9

1---00 '4 O'

1...
.

00
o

' 2

o

Sim 0.8125

Sim 0.7222 9 1
8 0

7 0 8 8 4 7
2 0

Sim 0.3043

Sim 0.5789 7
6

Sim 0.6500

Patient = 3, Study = 6

We get the upper bound on a leaf using its only volume distribution in both the

intersection and union calculations per Equation 1 and obtain an unsatisfactory result

(below threshold) for the left node and a satisfactory one for the right node. We

therefore want to know which imaging is referred to by the right node. The patient

and study numbers are contained within the node as fields in the LeafNodes table (see

Section 6.2). Each leaf node showing an upper bound that is higher than the query

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

threshold is put into a list to be checked exactly after the tree has been processed.

The advantage of the tree is that the list to be checked is typically only a small

fraction of the whole list that a linear scan must check. As we show in the results

section, even an R-Tree cannot help shorten the list nearly as well as the VD-Tree.

It is worth noting that a k-nearest neighbour search is possible with the VD-Tree.

Due to the provable upper bounds given at any node in the tree, a best-first approach

would be a good strategy to obtain the nearest neighbour or the few nearest

neighbours if we keep the kth best value as our bound in the best-first search. Best-

first search is an algorithm where the best-looking path (the one with the highest

upper bound) is followed to get a potential nearest neighbour, and other paths are

only followed is their upper bound lies above the closest neighbour found to date.

See Section 5.5.1 for one example of best-first search.

As a side note to this indexing for the Jaccard measure, the Volume Distribution

Tree could be used to index any measure exclusively requiring some combination of

volumes and the maximum or minimum of either intersection or union. Previously

we showed how to obtain the minimum union and maximum intersection, but their

counterparts can also be quickly computed from stored values. The maximum union

and the minimum intersection occur when the volumes are as disjoint as possible; that

is when they fill up different portions of the volume in each cube, intersecting only

when no empty space is left. Equations 7 and 8 are the mathematical formulation of

this idea.
n

\Q n X\ > ̂ max(<7, +xt — fullvolumesj ,0) (7)
i

n

\Q c\X \< mm(qi +xt, fullvolumesi) ^

Each of the grid sections in the volume division has a constant volume up to which it

could be filled, and this is what is listed in the fullvolumes variable above. For

example if one of the grid cells is of dimension 5 x 5 x 5 it has a volume of 125

voxels so if we have 2 tumours with volumes 70 and 80 we still cannot have a

maximum union of 150 voxels in this cell as there is no more than 125 voxels

available to be fdled. The fullvolumes variable thus is a vector of length equal to the

number of cells in the grid, with each element being equal to the volume capacity of

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the cell it denotes. Note that the cell volume is not necessarily equal in all divisions -

in our case we unevenly divided the brain to get a more meaningful set of values, but

in any case the set of full volumes is constant and can be stored as one small constant

vector.

To set up a tree using the lower bound on intersection and the upper bound on

union by using volume ranges like the VD-Tree directory nodes do, the minimum

intersection formulation requires the use of the minimum volumes to avoid

overestimation of the lower bound on intersection. Technically the set of minimum

volumes could all belong to a single object, so using any values above the minimums

would only heighten the computed lower bound, excluding this small-volume object

despite that it may be a valid result. This potential exclusion of a valid result must

never be allowed to happen. By the same logic, the maximum union requires the use

of the large end of the volume range to avoid underestimation of the upper bound.

Equations 9 and 10 summarize these two points.
n

IQ n X Lsubtrees ~ Z m ax^,: ~ fullvolumes, ,0) (9)
i

n

IQ n A x .subtrees ~ Z m m ^ , fullvolumes,,) (10)
i

It is also worth noting that the Volume Distribution Tree structure is trivially

extensible to any number of dimensions; a 4 x 4 x 4 grid is used in this work but

could easily be a 3 x 3 x 3 x 3 x 3 grid of hypercubes if desired for another

application.

5.5 Construction, Deletion and Insertion
A VD-Tree can be constructed by bulk-loading, insertion or bulk-loading followed by

insertion. For bulk-loading, the all-pairs Manhattan distances between the volume

distributions are taken, and in a loop the lowest distance between nodes where at least

one is unassigned to a group is chosen. If one of the two nodes are unassigned, it is

assigned to the other one’s group and if they are both unassigned, they form a new

group together. The upper triangular all-pairs distance matrix is updated to show

infinite distances from all nodes to any node already in a full group. Once the loop

has completed, the groups of leaves are completed. Each group is assigned a parent, a

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

new directory node whose maximum and minimum volume distribution vectors are

then filled in using the group members’ volume distributions. These new directory

nodes are then clustered in the same manner, but since there are necessarily less of

these nodes than there were in the previous clustering, there will be less groups. Each

of these groups is assigned a parent directory node as before. This process continues

until only one group can be formed. This singular group’s parent becomes the root of

the tree. The bulk-loading algorithm is shown in pseudo code in Figure 5.4.

Algorithm BulkLoad
Input: Matrix VD where each row is one volume distribution, and the maximum

nodes to be put into each group, GroupSize.
Output: Grouping hierarchy and directory node bounds.

//Group the distributions we have together
numObjects = number of rows in VD
[G[l],Mx[l],Mn[l]] = GroupSimilars(VD,GroupSize)
//Now cluster the dir. nodes representing the lower-level groups
i = l;
While G[i] has more than 1 element

i = i + 1
MxMn = concatenate Mx[i-1] with Mn(i -1) (i.e. [Mx Mn])
[G[i], Mx[i],Mn[i]] = GroupSimilars(MxMn,GroupSize)

End While
//G[last] is the roof N children,
// G[last-1] will have groups 1 to N, with the kth group
// representing the level above’s kth node’s children

Algorithm GroupSimilars
Input: Matrix VD where each row is one volume distribution, and the maximum

nodes to be put into each group, GroupSize.
Output: Clusters of volume distributions and their max and min bounds.

NumObjects = number of rows in VD
Cells = number of columns in VD
If not(leaves)

Cells = Cells / 2
End If

For i = 1 to NumObjects
For j = (i+1) to NumObjects

D[i j] = Z |VD[row i] - VD[row j]|;
End For

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End For
The rest of D is set to Inf

While any nodes unassigned
[i,j] = min(D)
D[i,j] = Inf
If i & j are unassigned

Append group [i j] to G as a new row
Elseif i is in group x, and j is unassigned

Add i to group x
Elseif i is in group x, and j is unassigned

Add i to group x
End If

If group x was just filled
D[involving members of x] = Inf

End If
End While

NumGroups = number of groups formed
For i = 1 to NumGroups

NumElems = elements in group i
For j = 1 to NumElems

Ifleaves
VDmax[row j] = VD[row i]
VDmin[row j] = VD[row i]

Else
VDmax[row j] = VD[1st half of row i]
VDmin[row j] = VD[2nd half of row i]

End If
End For
For k = 1 to Cells

Mx[i,k] = max(VDmax[column k])
Mn[i,k] = min(VDmin[column k])

End For
End For

Return G, Mx, Mn
Figure 5.4: Bulk Loading Algorithm

When deleting a node, delete its parent’s pointer to this node and re-calculate the

parent’s volume distribution. Propagate this volume distribution recalculation up the

tree until it does not change or the root has been found. If the node deletion has

caused its group to be reduced to only a single node, that node is also deleted and then

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

re-inserted into the tree. In this case its parent is no longer useful and thus it is also

deleted; the node and its parent are deleted and then the node is re-inserted.

Insertion begins with a nearest-neighbour search as we would like to insert the

new node below the same directory as its nearest neighbour. The node is inserted into

its nearest neighbour’s group as a child of this neighbour’s parent, which can cause

overflow (in this work we allow a maximum of 6 children per parent but this can be

adjusted). In an overflow situation, the parent node is split with the children being re

grouped into two not necessarily equal-sized groups. The insertion algorithm,

including the nearest-neighbour algorithm and the node-splitting algorithm, is listed

in Figure 5.5.

5.5.1 Finding the Most Similar Volume Distribution

The Manhattan / city block distance metric is used to determine the nearest neighbour

instead of the Euclidean metric. The Euclidean distance metric emphasizes uneven

distance distributions such as a large difference in one dimension over many small

distances spread over many dimensions, for example a distance of 4 spread over 4

dimensions has a Euclidean distance of 2 or half of the score of the case where the

difference of 4 is in a single dimension. For insertion into the tree we want the least

stretch to the directory max/min volume bounds regardless of the spread of these

stretches.

To find the most similar volume distribution, a Roussopoulos-type nearest

neighbour algorithm is used since it quickly finds the nearest neighbour, is easy to

implement, and needs no global variables [22]. We only search nodes where it is

possible to find a neighbour closer to the inserted node than the current best one

found. We thus start with an effectively infinite bound such that any node is a

potential candidate, but we quickly update this. The search starts off by looking at

the root’s children and calculating the new node’s lowest possible distance to the

subtrees rooted by each. The lowest distance from a new node A to any node in a

subtree rooted by node D is the sum of the distances of A’s vector outside the bounds

of D’s max and min vectors. That is, for A’s volume distribution Va and D’s

maximum and minimum volume distributions {Dmx, Dmn}, the distance from A to D

is taken as the minimum Manhattan distance between multidimensional point Va and

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multidimensional bounding box {D ^, Dm,,}. For example with a volume distribution

of [2 6 4], A cannot be any closer than a distance of 3 from any child of D with max

[7 5 6] and min [4 3 3] since A’s first element is at least 2 lower than any child of D

and its second element at least 1 above any child of D.

With the best distances to all of the root’s children calculated we expand the best

one. This process is recursive, meaning that the first few expansions will be the root,

then its ‘best’ node, then that one’s ‘best’ node and so forth until a leaf node is found.

With leaves we do not need to set bounds on the best possible distance, we directly

calculate it and return that value back up the chain of recursive calls. This proceeds

as follows: when a ‘best leaf value is received by the program instance checking that

leafs parent and its siblings, the instance updates its bound to reflect the new ‘best

node’ and now will not search any nodes that don’t have a possibility of yielding a

lower distance. This instance now sends new recursive calls to check any still-

promising nodes on the same level and once done returns the best node bound up to

its caller, who then continues with the same process. In the end, the original instance

of the nearest neighbour function called returns the best node and its distance from

the inserted node.

5.5.2 Overfilled Nodes

When we add the node to a group of children, it may cause that group to become too

large and thus we have to split it. If not, the new node is added as a leaf, its nearest

neighbour’s parent adds the new node number to its child list and update the parent’s

min and max bounds, propagating this update up the tree. The overfilled node

situation is handled by splitting the parent node into two. Note that this splitting

process can be recursively carried out up the tree if necessary.

To maintain the performance of the tree, we need to form two close-knit groups as

the child sets of the two parents after the split. To this end, we start by getting the

pair-wise distances between each pair of nodes which for a capacity of 6 nodes i.e. 7

nodes at overfill we need to compute (7 choose 2) — 21 distance combinations. The

furthest two should definitely be in different groups and thus are chosen to be the first

members of each group. Next, the closest node to either group is added to its closest

group and the other group gets its closest node as a second member. Each group now

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has two members and this is the minimum allowed for a group per this procedure and

this tree implementation. The groups’ maximum and minimum bounds are now

computed. The nodes that are still unassigned to any group will now be assigned in a

loop. In each iteration of this loop, the amount by which each node would stretch the

current bounds of each group is computed. The node causing the lowest amount of

stretch for either group is added to this best group. For example, adding a node with

volume distribution [2 6 4] to group 1 with max [5 5 6] and min [3 4 3] would stretch

the group’s max to [5 6 6] and its min to [2 4 3], i.e. a stretch of 1+1+0 = 2. If the

stretch to group 2 is larger than 2 and no other node could be inserted into either

group without stretching them by less than 2, this node would be added to group 1.

The max and min bounds of the group with the new member are updated where

necessary and the next iteration is set to add another node. The iteration stops once

all nodes have been placed in a group. Note that the groups can be quite different in

size, with the minimum of two nodes in each group being the only size constraint.

Through recursive splits we may increase the height of the tree (if splitting the

root), but can never cause leaves to become on different levels. Each split maintains

the two parents at the same level as the single one before the split and retains the

children at the level below these.

Algorithm Nodeinsertion
Input: One study s and its volume distribution VD.
Output: A database row is written.

Node NN = NearestNeighbour()
Int ID = Next Unused Value in LeafNodes table
Insert into database (LeafNodes):

(Node = ID
Study = s
Parent = NN.parent
VolDist = VD)

AddChild(True, ID, NN.parent, VD, null)

Algorithm NearestNeighbour
Input: A volume distribution VD (single or [max min] concatenated), the number of
______ cells, the subtree root and the current nearest neighbour acting as a bound.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Output: The volume distribution’s nearest neighbour in the subtree rooted by
Root, and this nearest neighbour’s Manhattan distance from the given volume
distribution.

Best = Bound
BestNode = null

If Children Are Leaves
For each child C

//Calculate how far it is from the node’s distribution
D(C) = 0;
For i = 1 to Cells

D(C) = D(C) + |VD(i) - C.VolDist(i)|
End For

End For
Return Root.children(index of lowest D)

Else
For each child C

//Calculate how much it is out of the node’s bounds
D(C) - 0;
For i = 1 to Cells

If VD(i) > C.Mx(i)
D(C) = D(C) + VD(i) - C.Mx(i)

Elseif VD(i) < C.Mn(i)
D(C) = D(C) + C.Mn(i) - VD(i)

End If
End For

End For

D = Sort(D) in descending order
For each child C in ascending order of distance D

If D(C) >= Best
//Stop looking down this branch
Return [BestNode, Best]

End If

[Candidate, Dist] = NearestNeighbour(VD, Cells, C, Best)
IfD ist<B est

Best = Dist
BestNode = Candidate

End If
End For
Return [BestNode, Best]

End If

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm AddChild
Input: A node to be added to the tree, its new parent node, whether or not the child is

a leaf node, the child’s volume distribution (single or range).
Output: A child is added to a directory node.

Append child to Parent’s children vector
NumChildren = Cardinality of Parent’s children
If NumChildren > MaxChildrenPerNode

int D(,) = Upper triangular matrix where D(i,j) = manhattan dist
between Child(i) & Child (j)

[i,j] - argmax(D(D<inf))
Set Child(i) as Group 1 ’s only member
Set Child(j) as Group2’s only member
k = Child with smallest distance to either Child(i) or Child(j)
If Child(k) closer to Child(i) than to Child(j)

Append Child(k) to Group 1
Append to Group2 the unassigned node nearest to Child(j)

Else
Append Child(k) to Group2
Append to Group 1 the unassigned node nearest to Child(i)

End If
Calculate element-wise Max/Min bounds for the 2 groups
While there are still unassigned nodes

stretch 1 = manhattan distance from group 1 ’s bounds to each
remaining node

stretch2 = manhattan distance from group2’s bounds to each
remaining node

Append node with min stretch to either group to that group g
Update group g’s Mx & Mn bounds

End While

Node NewNode = new node housing group 2
//Append NewNode to Parent’s children
addChild(False, NewNode, Parent.parent, Group2.Mx,

Group2.Mn)
End If
Update Parent’s Mx & Mn Bounds__

Figure 5.5: Node Insertion Algorithm

5.6 Implementation-Specific Details
For the query of brain tumours in a database, we have implemented the Volume

Distribution Tree on top of a Relational Database Management System (RDBMS).

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The tree structure is actually two simple database tables with PL/SQL functions

controlling the querying and management of data within the tables.

The two tables are LeafNodes and DirectoryNodes, keeping track of leaves and

directories respectively. As remarked earlier, the min and max volume range for a

leaf node are equal, and actually by using Equation 2, we can compare a query with a

node without needing to know what type of node it is if we redundantly store leaves’

volume distributions twice as a max and min. In this case, only one table would be

required instead of two, but we opted for the two-table design to avoid redundant

storage and null values for properties that one kind carries and the other does not.

Each LeafNodes row houses a node ID, a parent ID, the represented (patient,

study) pair, and the vector of volumes of the cells. A DirectoryNodes row also

contains a node number and a parent number, but there are two vectors for the

volumes - a maximum and a minimum volume division for its children, as well as a

child pointer vector (has the node numbers of the children). The directory nodes have

positive ID’s and the leaves have negative ID’s to make it easy to discern which kind

of node a pointer is referring to.

A query proceeds down the tree using SQL select statements to pick up nodes,

where each node is a row from one of the two tables. A queue of nodes to be

examined is kept, starting out with only the root in it. Each time around a loop, the

head of the queue is extracted and used as the node to expand for the duration of that

loop. This node is used to compute the upper bound for the Jaccard score between

the set of objects it represents and the query object. If the upper bound meets or

exceeds the query threshold its children are either added to the back of the queue if

they are directory nodes or to the leaves queue if they are leaves. The loop can now

begin again, ending when it checks for a new node and instead finds an empty queue.

Once this has occurred, we simply have a list of leaves to check. First the leaves are

checked for their upper bound on Jaccard score to see if there is any reason to load

their actual matrices. The ones with an upper bound meeting or exceeding the query

threshold are exactly checked by having their binary tumour label matrices retrieved

from the database and checking for intersection of the intersecting part of their

minimum bounding rectangles. Thus, once a query has made its way down a tree, we

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have a shortlist of real imaging studies to be closely examined and then possibly sent

to the user.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: System Architecture

6.1 Overall System Component Connection
Before going into how each component works, we shall look from high above at the

communication between these parts. Figure 6.1 displays the interconnections

between the primary components of the system as well as the components’ locations.

The server machine runs Oracle lOg and Matlab R2007a with the Image Processing

and Database toolboxes on Red Hat RHAS4.

Client (PC)

Results Comparison
Interface

webpage.java W ebpage

VBIistener.javasrvEntry.java

client. Java
Matlab Permissions java

MatlabControl.java
RSA.javt

Figure 6.1: High-Level System Architecture

The front-end is a Windows form providing an easy-to-use interface to the user.

The form has been implemented in Visual Basic.NET to facilitate development and

rapid addition of new user-desired features. As we will explore shortly, the front-end

communicates with java components by passing strings over a port and thus this

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

front-end could later be modularly replaced with a program written in another

language or even a web interface.

The user logs into the server, via the front-end, to create a session. During this

session, the user poses queries and views the results until deciding to terminate the

session. A session will be defined here as the entirety of interaction between the

client and server to provide the user with query results and visualizations, from login

to closing the client and connections.

When a user wants to use the Results Comparison tool, they can simply double

click on it as is the norm (after installation of course). At the start of the session

(during launch of the interface window), the Results Comparison Interface starts the

VBlistener class (stored inside javaclient.jar as its main class) and connects to it via a

local port. The VBlistener class’ purpose is to listen to a local port for instructions

from the VB interface to pass to send along to the server, as well as returning strings

from the server to the interface. VBlistener instantiates a single Client class when

starting up and this establishes a connection to the server’s srvEntry class via the RSA

class. The srvEntry class provides a single point of entry to the server and sets up the

actual session with the Server class upon checking the client’s credentials; i.e.

srvEntry is the receptionist and security checkpoint for the server. The RSA class

merely encapsulates the RSA encryption and decryption along with send and receive

capabilities. The client’s job is to handle the communication with the server such that

after authentication and delegation of a port by srvEntry the VB program can

effectively communicate with server .java, which can locally access both Matlab and

the database. If srvEntry approves the user, the first available port is allocated to this

user - client.java is notified and the user information is listed along with the port in

the singleton permissions.java class. If there are no immediately available ports, the

user is placed in queue until there is room. The server’s opening webpage is a simple

list updated by srvEntry to show the queue such that the user gets a sense of how long

the wait might be.

The number of users that can simultaneously use the system is limited to the

number of Matlab licences on the server, as each user requires a unique instance of

Matlab to have their own variable set in a workspace. Each instance is running one

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

instance of the server .java class listening to one specific port. Using the open-source

Octave as a replacement for Matlab would only be possible with open-source

equivalents to the database toolbox and the image processing toolbox, and even then

the number of open instances would have to be limited to maintain acceptable

performance from the server. An alternative, now that Matlab is becoming

multithreaded, may be to have one instance of Matlab run all the commands with

each user’s variable names being appended with their own hash code.

In any case once the user’s information has been entered into Permissions and the

client has been notified, the client disconnects from srvEntry and establishes a new

connection with server.java, this time via DES.java. The connection details are

examined in-depth in Section 6.5. From the connection to the Server class until the

user disconnects, the specific instance of Matlab (and server.java) connected to are

considered checked-out and only usable by this user, therefore not accepting requests

from anyone else. Upon starting communication with a user, the first order of

business is to set up the database connection objects in Matlab. These are the

Matlab’s database toolbox ODBC-JDBC connection as well as oracleBlob and

plsqlRunner, which handle requests for BLOBs, user-defined types such as vectors of

integers, PL/SQL functions, and any other functionality where Java was more suitable

for implementation than Matlab. Now that the user interface can securely

communicate with server.java, the user interface can echo the user’s commands to

this java class, who in turn relays the commands to either oracleContact.java or

MatlabControl.java if the command is one of the listed allowable commands and is in

the right form. The oracleContact module is just an API for easy access to the

database, in this case usually to obtain a specific image from the database in png form

to be shown to the user. Similarly, the MatlabControl module (created by Kamin

Whitehouse while a PhD student at the University of California at Berkeley) is just an

API to allow server.java to call Matlab functions as though it were typing into

Matlab’s command line. Matlab typically obtains some data from the database

through its own ODBC-JDBC module and then performs manipulations on it before

returning results to MatlabControl. The information can be passed back along the

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same chain of components as far as need be. The current list of permitted Matlab

calls is:

• PutlntoCell / PutlntoMat (amalgamates several variables into a cell array

or matrix, checking that each input is a workspace variable to ensure that

no dangerous commands could be issued using this name change as a

circumvention method)

• DBlogin (logs this Matlab instance into the main database)

• query (runs a database query to find similar tumours to a specified

instance, which must be previously put into the workspace using another

command)

• notlnRes (replaces the query results list with the list of studies not

retrieved by the query; this is used to fulfill the NOT operator in Boolean

queries)

• multiQueryDB (runs a few queries, with the end result being the

application of the user-supplied Boolean operations to the set of queries;

for example a user may create a drawing and ask for all tumours

intersecting it at least 30% but not touching the left side of the brain)

• intersectionMapPostQueryDB (uses the query results to make a 3D matrix

where each voxel’s value is the number of tumours intersecting there)

• volumePcts (finds the percentage of the aggregated tumour volume that is

taken up by 1 or more tumours, 2 or more, 3 or more... such that the

colormap below the aggregated picture can show what percent of the

volume is taken up by x number of results or more)

• writeAggregatesFromDB (retrieves the T1-weighed modality imaging

from the database as a 3D matrix, overlays the aggregation of tumours

(from intersectionMapPostQueryDB) onto it and writes the slices as png

images to the filesystem for pickup by the user interface)

• createOverlaySet (amalgamation of intersectionMapPostQueryDB,

volumePcts, writeAggregatesFromDB)

• makeColorChart (creates the correct image to display the mapping

between color and represented value)

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• resultsetTouchingXYZ (finds all tumours in the current result set that

touch the voxel (x,y,z)

• removeRow (removes the specified result from the set)

• makeStruct (amalgamates tumour information into a Matlab ‘struct’ for

processing by scripts such as query)

• amendMat (adds points to a polygon describing the user-drawn query

region)

Also note that each expected number is extracted by parselnt or parseFloat in Java to

avoid any user-defined strings from getting through and issuing illegal commands.

Note that the workspace variables are preserved during a session, so having x=4; at

one point means the variable x is still 4 later unless overwritten by another user

function. Because of this workspace, operations can be defined using string variables

in the VB program thereby avoiding the need to transfer large matrices back and forth

through a network.

At the end of each session, Matlab’s workspace variables (other than the server

java object) are automatically cleared such that users cannot feel effects from the last

user nor spy on them. The permissions class is given back permissions to allocate

that Matlab instance to another user; i.e. the server class loses the user’s public key

and the port number re-enters the srvEntry class’ allocation queue.

An administrator must start the Matlab instances and the single srvEntry for the

system to be ready to accept client requests. An easy way to perform these tasks and

keep them running after disconnecting from them is to use VNC (Virtual Network

Computing). With the vncserver process started, a remote VNC client just watches a

screen output rather than connecting like SSH, so after graphically starting the

required processes the VNC client can be closed without affecting the server. The

srvEntry process is started simply by entering “java srvEntry” at the command line

while each instance of Matlab needs to have “srv = server(port);” entered into it after

start-up - each with a different port number selected from the list inside of

srvEntry .java. The simplified Matlab interface available with the nojvm option

cannot be used since creating Java objects, which requires an active JVM (Java

Virtual Machine), is necessary for the operation of the command-receiving subsystem

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as well as the database query subsystem. Trying to start the server with the UNIX

nohup option did not work as Matlab would not keep listening for commands upon

closing up the SSH terminal. VNC allows the administrator to graphically use Matlab

as well as later return to view and modify the current state of affairs. Thus the

recommendation here is to use a VNC terminal, but any means of starting and

checking the Matlab instances that is convenient to the administrator will allow the

system to work and be transparent to the end-user.

6.2 Database Subsystem
The backbone of the system is the database, wherein lies alfthe data to be viewed via

the front-end. The database must not only be a large repository for imaging and

patient data but must also be organized in such a way to provide efficient access to

the data and be extensible. The database chosen was Oracle lOg due to its features

and its large user base. More users would mean more accessible support for issues in

setup and maintenance via web forums.

Patient data and their imaging are stored in one main table, where each row

corresponds to one study, i.e. one day that the patient came in to be imaged. The

table has the (patient #, study #) pair as its primary key although the RowID also

provides a unique key for the table. The other columns are:

• ToneOOl - 088 (88 slices of T1 images stored as BLOBs)

• ToneCOOl - 088 (88 slices of TIC images stored as BLOBs)

• TtwoOOl - 088 (88 slices of T2 images stored as BLOBs)

• SegOOl - 088 (88 slices of segmented images stored as BLOBs)

• OutlinedOOl - 088 (T1 images with red-outlined segmentations as

BLOBs)

• T1 (T1 image as a BLOB holding a 3D matrix of 8-bit integers)

• TIC (TIC image as a BLOB holding a 3D matrix of 8-bit integers)

• T2 (T2 image as a BLOB holding a 3D matrix of 8-bit integers)

• Mat (segmented image matrix, but only the section within the minimum

bounding rectangle is stored here)

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• MBR (the segmentation’s minimum bounding rectangle as a vector)

• Vol (segmented tumour volume in voxels)

• DMap (distance transform map in 3Dmatrix form)

• Depth (maximum value of the tumour segmentation’s distance transform)

• Core (core point; the point with maximal distance transform value)

• Mids (2Dmatrix where each row is a point in the recursive mid splitting -

see Section 4.2.6)

• OctVol (2x2x2 division of volume for the VD-Tree, as a vector)

• VolDiv4 (4x4x4 division of volume for the VD-Tree, as a vector)

• Date (day the imaging took place)

• Wts (eigenweights found by eigen decomposition)

• ShapeHist (shape histogram values flattened to a vector)

• Elong (ratio of the 1st to the 2nd eigenvalues from PC A of the

segmentation)

• Flat (ratio of the 2nd to the 3rd eigenvalues from PCA of the segmentation)

• Sphericity (Sphericity value of the binary tumour segmentation)

• Enhancement (average intensity level increase from T1 to TIC within the

segmented region)

• Diaml/Diam2/Diam3 (the diameter of the tumour along its 3 principal

directions)

Note that some of the columns contain redundant information to improve

performance. Tumour imaging is kept in picture form for viewing with any image

display application, as well as in 3D matrices meant for Matlab. Matlab technically

could pull up each slice of an MRI image and construct a 3D matrix and could

conversely take the matrix and write each slice’s image to disk but both of these

would be very computationally wasteful. The red-outlined tumour images are

produced by a Matlab function using the T1 image and the binary segmentation, but

the result would be the same every time the outlined image is created for a study so

why not just perform the manipulation offline and store the resulting pictures for

viewing by the user interface? Although this takes up more disk space, hard drives

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are now inexpensive to upgrade and the server won’t have to recreate the images on

demand every time a user wants it (which will likely be quite often). Note that a

‘metadata’ table exists in the database to include an explanation of each field of each

table created. A user can therefore query by table and/or column to get textual

descriptions of the fields selected.

Trees supporting queries are implemented in PL/SQL, a procedural language

version of the standard database Structured Query Language (SQL). These scripts are

entered into the database and generally use their own tables for support. For example,

the Volume Distribution Tree implementation described in Section 5.6 keeps all of its

nodes as rows in one of two tables: DirectoryNodes and LeafNodes. The directories

and leaves could technically be stored in one table together, but in that case would

leave plenty of null values in the columns unused by that data type.

6.3 Matlab-Based Subsystem
The mathematical manipulations performed on the data are almost entirely done by

Matlab. Matlab has been proven a wonderful mathematical tool, providing a high-

level language while remaining efficient for vector operations (i.e. so long as

operations on a large group of numbers are called on a vector / matrix containing

these numbers as opposed to writing a nested loop construct). The Matlab language

not only allows for rapid development of programs but greatly decreases the

difficulties in code maintenance. Due to the constant turnover of graduate students

graduating and moving on, the code must be maintained and improved upon by

people that have perhaps not even worked with the last person doing so.

A large percentage of the code for this project is in Matlab, and much of the Java

and Visual Basic code don’t need to change to add functionality to the system. For

example, the encryption and inter-machine communication system can stay as a static

package while changing which results are pulled up and what similarity measures are

implemented. Coding new similarity measures can be done exclusively in Matlab

with the database abstracted away by some Matlab functions created for this project.

Matlab functions have been implemented to allow retrieval of numbers, strings, and

even vectors and matrices whether stored as user-defined array types of BLOBs

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Binary Large OBjects) with no pre-requisite database knowledge. Thus, even

though the Volume Distribution Tree query and insertion are implemented in

PL/SQL, they could have been implemented exclusively in Matlab only possible

sacrificing some of the performance and nothing else. A Matlab routine could just as

well query the DirectoryNodes and LeafNodcs tables, compute the maximum

possible intersection, query the next children and at the end load the actual matrices

from the database and perform Boolean comparisons. Since we have created Matlab

functions to create and drop tables, add and delete rows and columns, and utilities to

get the list of tables and their schemas including field descriptions and hints, there is

generally no need for most users to even login to the SQL prompt. Since the

scientific community outside computing science is generally much more comfortable

with Matlab programming than C + + or Java, this is very attractive for the multi

disciplinary research aspect of the BTAP group. All of the PL/SQL functions are

implemented as such for tight integration leading to efficiency, but could more easily

be programmed in Matlab.

The Matlab functions created can be put into a few categories; data conversion,

pre-processing of raw data to ready it for entry into the database, interface to the

database, query support, visualization tools, and utility programs to perform often-

used sets of commands much like macros.

Although the functions created for this project are far too many to list, a specific

one whose strategy should be discussed is multiQueryDB. This is the main function

handling one or more query criteria joined together. For example, how do we handle

a user asking for all tumours having a shape histogram within a set Euclidean distance

from a specified one, along with at least a 0.3 Jaccard score with the query object and

having a volume of less than 15000 voxels? The naive strategy would be to execute

the queries in the order given and to intersect the results. In that case, we would

linearly scan the whole database for shape histogram vectors within the threshold

from the specified one (since large-dimensional indexing suffers from the curse of

dimensionality), and then have the VD-Tree find the few Jaccard results, a simple

SQL query could find the volumes above 15000, and then we intersect the results. It

may be noted that the later intersection is wasteful and that the volume query could

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ask for volume > 15000 AND within the current list of candidates. The main

inefficiency however here is linearly scanning the whole database for vectors since

there is a better way. The strategy is to always start with the tree(s) to efficiently find

a short list of results. Using trees anytime later would be wasteful since the trees

would have a hard time using the information provided by the other queries’ results.

Now that we have reduced the set of return candidates, we further reduce this set by

applying the standard database query criteria such as number relations and string

matching, in this example’s case the volume query. Finally the most inefficient

queries are run only on the set of return candidates, in the example this means the

shape histogram query. This query will be run by linearly scanning only the

(presumably short) list of candidates instead of the full database.

6.4 Front-End Client
A large portion of the expected user base for the tumour data repository are

oncologists, as this will help them with treatment planning. The front-end must

therefore allow them to pull up relevant data with ease and without any computer /

database training. Database queries as well as handshaking with the server and

encryption must be hidden from the user.

The client designed is a Windows multiple-document interface (MDI), created in

Visual Basic.NET. Users can either choose an example from the database to use as a

query object, upload a new segmentation, or even freehand draw their query. A query

form can be started simply by clicking Run > Query. An example of this form is

shown in Figure 6.2.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Draw The Query

*1 | 03 (a»«HBd “ 3 I S o w " TIkMkM J a T ‘ . , ‘ - ’

A r~T— laSaSS" 3 f*" [T a*i# flT «*#» ',fT pit
A ! " ;" " , r>""' ' jaowngAto B 3 p " ' " ™ ' " PotoA | 105H053 $ « * 8 , 1 105 130~53~ ' ‘ 'i

■ J • , .r" • 1 •' ? Cyeal ,1 m®m I

Figure 6.2: Query Form

The top half contains a choice of query objects. Most (but not all) queries

necessitate a query object, which is either a segmented brain imaging session or a

user-supplied drawing indicating the region of interest. The patient and study lists are

obtained from the database, and the list of studies is always narrowed to only the

available ones for the chosen patient. A user may well want to draw a region,

wondering what tumours are present in that region - by clicking on the ‘Draw the

Query’ button that becomes an option, popping up the ‘Draw Your Own Query’ form

shown in Figure 6.3.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.3: Draw-Your-Own-Query Form

Here the user can draw upon any brain image in the database, with the brain in the

background being but a template such that users can orient themselves to draw in the

right place. Once one slice is drawn, the user may hit the ‘Add Slice’ button to keep

going, creating a 3D object with which to query. The ‘This Area on All Slices’

checkbox shortens the drawing time to find say all tumours in the medial region, by

just copying the same drawing to all slices, analogously to the process of turning a

circle into a cylinder. The drawing can even have regions desired and regions not

desired, which can be combined using the Boolean operators AND, OR, and NOT;

for example the drawing in Figure 6.3 is asking for all tumours intersecting the red

area and not intersecting the purple area. The drawings can be loaded from or saved

to files for later use (which is useful for reproducible results). Note that the OK

button can be hit after any [positive] number of operations (slices, Boolean...) to

return to the query form with the object created to date as the query object, while

Cancel returns to the query form as if nothing had happened.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The bottom half of the query form serves to actually pose the query, now that we

have a query object. Each time the ‘Add Measure’ button is pressed, a row for

imposing a similarity measure appears below the rest. Any row can be removed by

pressing its delete button (with an X in it) on its left side. For each row, choose a

similarity measure from the list and enter the parameters desired for that measure.

While many measures will simply restrict the results by discarding those that do not

meet the required threshold, some return a degree of similarity ranging from 0 (not

similar at all) to 1 (exactly the same). The measures returning degrees of similarity

will have activated boxes for entering a weight - this is in order to rank the results

with different importance placed on different queries. The weights are always

internally normalized, so there is no need for the user to ensure that they add up to 1 ;

rather it is recommended to keep one of the weights at 1 and to change the others -

for example setting the next one to 2 to reflect it being twice as important as the first.

The ‘Query Object’ box is activated for all similarity measures requiring an object - it

can be set to a user-defined number or set of numbers, but is generally set to “above”

to use the query object set in the top of the form.

Once returned, query results are displayed within the MDI, as small windows

containing a thumbnail of slice 40 of this result’s T1 image and the patient and study

numbers are displayed in the title bar along with the similarity score. The results are

ordered with respect to similarity from left to right in rows from most to least similar.

Figure 6.4 displays a typical set of results returned from a query.

Figure 6.4: Typical Display of Query Results

Note that the last few results are in orange-coloured boxes - this indicates that they

are not true results of the query in the sense that they do not meet all of the query

criteria (e.g. do not meet a specified similarity threshold) but instead are present as

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the future timestamps of at least one of the retrieved results. The idea behind this is

that the user wants to study the growth of tumours and thus needs to see what later

happened with the relevant tumours. For example take a tumour that meets a 30%

Jaccard score with the query but later grows in another direction and thus no longer

meets that 30% threshold (see Figure 6.5) - in this case the user would still likely

want to see the latter case to know that that sort of growth pattern can happen to the

tumours retrieved.

Double-clicking on any window brings up that result in a larger window

comparing full-size images of the query on the left and the chosen result on the right.

The two images’ type can be toggled between three types: pure T l, segmentation, and

overlay (Tl with a red outline representing the segmentation). These three forms are

displayed in the screenshots of Figure 6 .6 .

New Tumour Bounds

New Intersection
Query Object

Original Tumour,

Original Intersection

First Timestamp Second Timestamp

Figure 6.5: Future Timestamp Justification Example

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B: Segmented Images

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Query Tumor Com parison Tumor

P036 S04 - biT l iC * i

ET5s‘ P*"j]

5hw uid/sca-e Ranvw \ nr*

C: Outlined Images

Figure 6 .6 : Side-By-Side Result Comparison

The ‘Side-By-Side’ form permits easy scrolling through the slices to visually assess

the similarity of the particular result as well as the quality of its segmentation. The

user may at their own discretion press a button to discard this study from the result

set, so as not to be distracted by it nor have it be shown in any aggregate statistics. A

great opportunity for improving the query system would be to collect data regarding

which results were excluded by physicians and to use machine learning to gradually

optimize the retrieval of relevant studies.

When faced with a group of results, instead of looking at them all individually, it

may be advantageous to see an aggregate picture of the set (this feature was requested

by an oncologist in our group). By choosing the Aggregate option from the Run

menu, a form similar to the single result comparison form is opened. It shows the

query image on the left, but the right now has this query image overlaid with coloured

regions much like heat on a weather map. The red areas are those where all tumours

in the dataset intersect whereas much of the brain should not be overlaid with any

color as areas untouched by color contain no tumours in the dataset. A screenshot of

this form is displayed in Figure 6.7.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G rayscale Brain Results Aggregation Overlay

Figure 6.7: Results Aggregation Form

The mapping between color and number of intersecting tumours is displayed in a box

below the aggregation picture. This color map has a slider bar underneath, which is

used to clip off results below a chosen threshold. This can be useful to focus

attention on a narrower region when there are a large number of results. Clicking on

any pixel in the aggregate image populates a list with the tumours which include that

pixel. Not only does this inform the user, but it can be used to immediately bring up

the single result comparison form of a chosen member. This renders the exclusion of

a small number of non-belonging results very easy. That is, some results that

although technically meeting the query criteria didn’t turn out to be relevant to the

user’s questions (in the same way as not every Google search result is relevant to you

when posing a question) can be quickly and easily excluded from the dataset.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5 Secured Internet Connectivity
Care must be taken to ensure that the brain tumour database is not compromised. It

must be secured such that an attacker cannot view sensitive data and cannot delete or

modify the data in any way. Ethics approvals allowing us the use of brain imaging

data prohibits these images from being shown to the public to ensure patient

confidentiality. Deletion of data would be an obvious problem due to needing to

restore the data from backup, and modification of data is even more threatening as it

may not be noticed and can sway query results.

A human-reviewed list of allowed users is maintained on the BTAP server, with

each user being associated with a password. Obviously the connection between the

client and this server must be encrypted prior to password transmission until the

connection is terminated to prevent both decryption of packets by snoopers and

snooping of the password (which subsequently allows the snooper to log into the

system as a standard user). All communication between the client and server is done

by writing byte arrays to sockets. So any communication is converted to a byte array,

encrypted, and then sent to a pre-specified port to be picked up by another

component.

Sending information back and forth can most efficiently be done using

symmetric-key cryptography. The Data Encryption Standard (DES) encryption

algorithm implemented in Java was chosen to provide an easy-to-use and efficient

interface for writing and reading streams of bytes that would travel encrypted

between two components. By piping the output of a Java DatalnputStream into the

input of a CipherlnputStream, the programmer can transparently write to a stream as

if it were not encrypted.

Symmetric key algorithms have the obvious weakness that both parties require the

same key, so after the server generates this key (one generated per session), it is

wrapped by RSA encryption and sent to the client. Since RSA is an asymmetric key

algorithm, the client is able to decrypt any byte arrays that the server has encrypted

with the client’s public key. RSA could be used for the entire session if time was not

important but encrypting and decrypting a 1MB picture takes on the order of minutes

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

even for state of the art hardware on both the server and client side, whereas this takes

only part of a second using DES.

The full procedure is as follows:

1. Both client and server only possess their own set of RSA keys (1 public, 1

private) as files in a private folder.

2. Client connects to server’s main port, sending its public key in the clear as

its first message.

3. If the server finds no error opening this key, the server replies with its

public key in the clear. The client receiving this knows that the server is

now expecting its password, and thus reacts by encrypting the password

with the server’s public key and sending it. The string sent is of the form

“ip address//usemame//password”.

4. The server checks the password and if correct, sends back (encrypted with

the client’s public key) a string indicating which port to connect with for

this session. The server entry class also writes to the local static

permissions class for said port to only accept connections from this same

“ip//user//pass” combination.

5. Upon receiving this number, the client disconnects from the server entry

point to connect to the port specified, sending its “ip//user//pass”

combination encrypted with the server’s public key as a first message.

6 . The server class handling this session checks the password and sends an

encrypted pass or fail message to the client.

7. If passing the password test (which should be the case if steps 1-4 have

been followed), the client generates a DES key, wraps it using the server’s

public key and sends it over.

8 . The server unwraps the DES key and sets up a cipher stream to

communicate with the client. All further communication is performed

over this DES stream.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: Experimental Results

In this section we analyze the performance of the record retrieval done by the Matlab

and PL/SQL scripts. All tests were run on the database server oyen.cs.ualberta.ca,

having an Intel Xeon 5130 (dual-core 2.0GHz CPU, 1333MHz FSB, Core®

microarchitecture, 4MB shared cache), 8 GB of DDR2-667 ECC memory, hardware

Raid-0, running Red Hat RHAS4 with Oracle lOg EE. For experiments, each of the

320 tumour segmentations in the database was used one-by-one as the query object.

The grid used for the volume distribution was a 4 x 4 x 4 grid, covering the voxel

ranges:

x = 1-84, 85-123, 124-162, 163-258
y = 1-95,96-129, 130-163, 164-258
z = 1-27, 28-42, 43-57,58-88.

For a given query object, the Jaccard score threshold was taken as one of the

following values: 0.01, 0.1, 0.2, and 0.3 with the reason being that lower thresholds

result in higher numbers of returned results. For each query object and Jaccard score

threshold combination, we performed 2 0 runs of the query, interleaving the two query

methods being compared in order to minimize caching effects. Each of the 20

runtimes for each method was then averaged to give a mean time for an object and

dataset percentage combination. The runtime for a given percentage of the dataset

was then taken as the mean runtime for all queries which returned that percentage of

the dataset.

We first quantify the speedup gained by using the Volume Distribution Tree as

compared to a linear scan of the database which checks the intersection of minimum

bounding rectangles before checking the actual intersection of the tumour volumes.

In this way the linear scan discards large portions of the MBR and often prevents a

check of the actual intersection (in cases where the MBRs don’t intersect) to be

effectively as efficient a linear scan as possible. Figure 7.1 shows the time to return

the query as a function of the portion of the database returned, comparing the Volume

Distribution Tree to a linear scan of the dataset.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60 ;\
Volume Tree j
Linear Scan

A
50 i

10

0
0 10 20 30 40 50 60

Percentage of the Dataset Returned (%)
70

Figure 7.1: VD-Tree Speedup with Increasing Fraction of the Database Returned

As the fraction of the dataset returned becomes higher, the narrowing down done

by the tree becomes less significant, and for the case where the full dataset is

returned, no pruning is possible, so any work done by the tree is pure overhead above

the subsequent sequential scan. The increasing trend in the sequential scan plot

shows this decrease in effectiveness of the Volume Distribution Tree as a large

portion of the database is retrieved. Different query objects are what causes the

variation in the percentage of the dataset returned, and intuitively the MBR’s of the

objects returning more query results are likely to have a higher average intersection

with the MBR’s of the tumours in the database. This is the reason for the linear scan

graph having an increasing trend despite checking a constant amount of objects. The

Volume Distribution Tree shows a clear advantage until at least 25% of the database

is returned, and additionally outperforms a linear scan at every point tested (tests up

to 64% of the database returned).

Oracle Spatial has a built-in R-Tree in 2 to 4 dimensions, so it can quickly sort

through the 3D MBR’s to come up with a shortlist to check exactly. As we can see in

Figure 7.2, MBR intersection is a rather poor filter when compared with volume

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

division. It is due to the tighter filtering done by the Volume Distribution Tree that

this tree can easily outperform even an efficiently-implemented R-Tree.

40 i----------------- ,----------------- ,------------------,---------------- , -----------------1-----------------r --------------n------------------!-----------------t -

35

30

25
<D
E

CD
O

20

15

10

Volume Tree
R-Tree

/\

A . A ft \ / v v

r\
i \

/

2 3 4 5 6 7 8
Percentage of the Dataset Returned (%)

10

Figure 7.2: Volume Distribution Tree vs. 3D R-Tree

By using each tumour image in the database as a query object with a Jaccard

score threshold of 0.3, the mean number of results is 10.8. The Volume Distribution

Tree gives us an average short list length of 19.5 to check while the R-Tree only

narrows things down to 177.6 on average. Since it is the exact checking that takes

much more time than the trees, trees that can provide the least amount of useless

items to check while still being efficient perform best. The Volume Distribution Tree

running time was only 16.5% more than the R-Tree’s on average (0.0965s vs.

0.0876s), and with an average total query time of 22.8s with the R-Tree, the exact

checking time clearly dominates the running time of the tree itself, rendering the

Volume Distribution Tree easily faster than the R-Tree for this problem.

The resolution of the Volume Distribution Tree (i.e. changing it from 4 x 4 x 4 to

n x n x n) can be optimized experimentally, mitigating the trade-off between tree

processing length and exact checking length but this would be valid only for a given

data table length and number of retrieved results. The number of records will

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

continue to increase as new patients are imaged which will increase the tree

processing time, and user queries have result sets with wildly different cardinalities.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8: Future Work

The database will keep expanding as new requirements are placed upon it as well as

with the influx of new data. Users will be the greatest source of new feature requests

as they will find things they would like to do that the system does not allow or is too

difficult to understand at which point the software should be modified to meet the

users’ needs. This section will detail possible routes for improvement as seen by the

author.

A major area for future work is the machine learning of relevant results based

upon which results are discarded by the oncologists using the system. The users of

this system will be highly-qualified individuals whose opinion of what tumours are

relevantly similar is very valuable to our research. The system as built enables

collection of this data while improving the user experience rather than impeding

them.

Recall the Z-Score segmentation technique from Section 3.3: a mean value matrix

and a standard deviation matrix computed offline give for each voxel an expected

value and a standard deviation. Outliers, i.e. voxels falling abnormally far away from

the mean, are labelled to create an easy-to-segment map generally highlighting the

tumour region. The segmentation by Z-score suffers from noise in terms that an area

of bright voxels being slightly moved from the usual similar area (e.g. a normal brain

fold being slightly off from its standard location) can cause an outline of high Z-

scores. To combat this, for each voxel the surrounding voxels’ expected values

should be considered rather than just the voxel in question. A multi-resolution

strategy would also be in order for dealing with small displacements between images.

As for an implementation detail that needs work, the crash recovery needs to be

improved to keep the system responsive when widely available. A client-side crash

or disconnection should result in the instance of Matlab being used on the server to

free itself from the client connection after a reasonable reconnection period.

Currently a crash will generally cause a disconnection, cutting off the current user and

causing them to re-start at the back of the line. Even worse, occasionally

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

disconnections are unregistered by the server, keeping Matlab locked in to the

disconnected user. Upon reconnecting, the user a new Matlab instance while the old

one stays unused until reset by an administrator.

An extension to the Volume Distribution Tree would be for each node to contain

multi-resolution volume distributions. For example when obtaining the upper bound

for Jaccard score from a node and the query object, instead of only calculating this

using the 64-length vector we do now we could first calculate the bound with an 8 -

length vector made by just using the middle planes to separate the space into octants.

When at a node we would check the Jaccard upper bound using the coarse grid and if

above threshold then check it again with the fine grid and if still above threshold then

explore the branch. The idea is that sometimes we can prune branches with just the

coarse resolution and not even have to use the finer one, saving on computation. An

optimization should be done to find the optimal set of resolutions for the dataset we

use and again when much new data comes in, to check if the optimal set is heavily or

lightly changing.

We have explored here some avenues for improvement that have not yet been

implemented for shortage of time and/or uncertainty about the usefulness of the

improvements until the use patterns can be analyzed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

Summary

This document has outlined the data accessibility work performed for the Brain

Tumour Analysis Project. The traditional Jaccard measure describing similarity is

now only one of a set of similarity measures designed to provide more flexibility to

the user, especially in terms of choosing the applicable aspects of similarity. Data

structures have been implemented in the database where necessary to speed-up the

query process.

A computing science department server, oyen.cs.ualberta.ca, now houses both

Matlab and the database, as well as the middleware necessary to communicate with

the custom client software on the user end. The questions the user asks the interface

are transformed into short encrypted strings and sent to the server. The server

decrypts questions from allowed clients and sends these to the database, generally via

Matlab. Processed and encrypted results are sent back to the client for the user’s

viewing and analysis.

Functionality can be added to the system using almost exclusively Matlab

programming, yielding an easily extensible system for non-computer scientists. This

makes working on this project more attractive and feasible for medical students

wishing to get into research.

Finding the optimal treatment envelope for brain tumours is far from solved, but

the groundwork laid out in this thesis is a good base for research leading to this.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Glossary

BLOB: Binary Large OBject; long binary array loaded into a database. This

array can be anything, so the retriever must have a way of knowing the

type of the data to make it useful. For example, matrices and pictures

can be stored in this way.

DES: Data Encryption Standard.

Distance Transform: Image processing technique for binary images that

assigns each Boolean high pixel a value indicating its distance to the

nearest Boolean low pixel.

Edema: Abnormally large concentration of fluid around the tumour;

swelling.

GTV: Gross Tumour Volume. The tumour visible in MRI images, including

the necrotic core and edema.

JVM: Java Virtual Machine.

MRI: Magnetic Resonance Imaging.

Pixel: Elementary point in a picture, usually displayed as a single-coloured

square.

RSA: Popular public-key encryption algorithm invented by Rivest, Shamir,

and Adleman.

SQL: Structured Query Language, the standard syntax for using a database

management system.

SSH: Secure Shell; UNIX program allowing one machine to control a UNIX

machine via a virtual terminal.

Study: A set of images of a patient’s brain, all taken in one session.

T l: MRI image modality showing fat locations (such as white matter and

gray matter) more brightly than non-fat locations.

TIC: Tl image taken after patient is injected with a contrast agent

(gadolinium) to more clearly differentiate the tumour from the rest of

the brain.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• T2: MRI image modality highlighting water-filled locations (such as the

ventricles) more brightly than fat locations.

• VB: The Visual Basic.NET programming language a high-level compiled

language, executable on systems running the .NET framework.

• VD-Tree: Volume Distribution Tree, a structure to index solid objects,

described in this document.

• VNC: Virtual Network Computing; allows a user to remotely view and affect

another machine’s screen output. As opposed to SSH terminal

sessions where each SSH session is a new UNIX session analogously

to logging in to a machine, each VNC session just connects to an

already running UNIX session analogously to turning on a computer

monitor.

• Volume Distribution: Used in the VD-Tree. It is the vector or matrix whose

elements are equal to a segmentation’s volume in the element’s

corresponding grid cell.

• Voxel: 3-dimensional version of a pixel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

Bibliography

[1] A. Adan, and M. Adan. A Flexible Similarity Measure for 3D Shapes
Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence.
Volume 26, No 11, p i507-1520, 2004.

[2] M. Ankherst, G. Kastenmuller, H.P. Kriegel, and T. Seidl. 3D Shape
Histograms for Similarity Search and Classification in Spatial Databases.
Advances in Spatial Databases, 6 th International Symposium (SSD’99). Volume
1651, p207-228, 1999.

[3] N. Beckmann, H. P. Kriegel, R. Schneider, B. Seeger. The R*-tree; an efficient
and robust access method for points and rectangles. Proceedings of the 1990
ACM SIGMOD international conference on Management of data, p322-331,
Atlantic City, New Jersey, May 23-26, 1990.

[4] S. Berchtold, D.A. Keim, and H.P. Kriegel. The X-tree: An Index Structure for
High-Dimensional Data. Proceedings of the 22nd International Conference on
Very Large Databases (VLDB 96), p28-39, Bombay, India, 1996.

[5] D. Bespalov, A. Shokoufandeh, W.C. Regli, and W. Sun. Scale-Space
Representation o f 3D Models and Topological Matching. SM ’03, Seattle, WA.
p208-215, 2003.

[6] Brain Tumour Analysis Project (BTAP) website (Online). BTAP,
http://www.cs.ualberta.ca/~btgp/.

[7] Q. Ding, M. Khan, A. Roy, and W. Perrizo. The P-Tree Algebra. Proceedings
of the 2002 Symposium on Applied Computing, Madrid, Spain. p426-431,
2002.

[8] R. A. Finkel and J. L. Bentley. Quad Trees: A Data Structure For Retrieval on
Composite Keys. Acta Informatica. Vol. 4, No. 1, pl-9. 1974.

[9] A. Guttman. R-Trees: A Dynamic Index Structure fo r Spatial Searching.
Proceedings of the 1984 ACM SIGMOD International Conference of
Management of Data. Boston, MA. P47-57, 1984.

[10] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Kunii. Topology Matching for
Fully Automatic Similarity Estimation o f 3D Shapes. ACM SIGGRAPH, Los
Angelas, CA. Vol.3, p203-212, 2001.

[1 1] C. Holmes, R. Hoge, L. Collins, R. Woods, A. Toga, and A. Evans.
Enhancement o f MR Images Using Registration for Signal Averaging. Journal
of Computer Assisted Tomography. Vol. 22(2), p324-333. 1998.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~btgp/

[12] P. Jaccard. Bulletin de la Societe Vaudoise des Sciences Naturelles. Vol. 37,
p241-272.

[13] K. Kaku, Y. Okada, and K. Niijima. Similarity Measure Based on OBBtree for
3D Model Search. Proceedings of the International Conference on Computer
Graphics (CGIV ’04). 2004.

[14] D. A. Keim. Efficient Geometry-based Similarity Search o f 3D Spatial
Databases. ACM SIGMOD, p419-430, 1999.

[15] H. P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Effective Decompositioning
o f Complex Spatial Objects into Intervals, Proceedings of the IASTED
International Conference on Databases and Applications (DBA 2004),
Innsbruck, Austria, 2004.

[16] H.P. Kriegel, M. Potke, and T. Seidl. Managing Intervals Efficiently in Object-
Relational Databases. Proc. 26th VLDB Int. Conf. on Very Large Data Bases
(VLDB'00), Cairo, Egypt, p407-418, 2000.

[17] H.P. Kriegel, M. Potke, and T. Seidl. Interval Sequences: An Object-Relational
Approach to Manage Spatial Data, Proceedings of the 7th International
Symposium on Spatial and Temporal Databases (SSTD'01), Redondo Beach,
CA, in: Lecture Notes in Computer Science, Springer, Vol. 2121, p481-501,
2001.

[18] G. Mazzara, R. Vlthuizen, R. Pearlman, J. Greenberg, and H. Wagner. Brain
Tumor Target Volume Determination fo r Radiation Treatment Planning
Through Automated MRI Segmentation. International Journal of Radiation
Oncology • Biology • Physics. Vol. 59(1), p300-312, 2004.

[19] S. Mukai, S. Furukawa, and M. Kuroda. An Algorithm fo r Deciding Similarities
o f 3D Objects. SM ‘02. p367-375, 2002.

[20] R. Ohbuchi, M. Nazakawa, and T. Takei. Retrieving 3D Shapes Based On
Their Appearance. M IR ‘03. p39-46, 2003.

[21] A. Rosenfeld and J. L. Pfaltz. Distance Functions on Digital Pictures. Pattern
Recognition. Vol. 1, p33-61, 1968.

[22] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest Neighbor Queries.
Proceedings o f ACM Sigmod. P71-79. 1995.

[23] D. Saupe, and D. V. Vranic. 3D Model Retrieval With Spherical Harmonics
and Moments. DAGM ‘01, p392-397, 2001.

[24] M. Schmidt. Automatic Brain Tumor Segmentation. Master’s Thesis.
University of Alberta, 2005.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[25] M. Schmidt, I. Levner, R. Greiner, A. Murtha, and A. Bistritz. Segmenting
Brain Tumors Using Alignment-Based Features. The Fourth International
Conference on Machine Learning and Applications. Los Angeles, CA. Dec.
2005.

[26] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: A Dynamic
Index for Multi-Dimensional Objects. Proceedings of the 13th International
Conference on Very Large Databases (VLDB ’87). p507-518, 1987.

[27] Sphericity (Online). Wikipedia, http://en.wikipedia.org/wiki/Sphericity.

[28] M. Turk, and A. Pentland. Eigenfaces for Recognition. Journal of Cognitive
Neuroscience, Vol. 3, No. 1, p71-86, Winter 1991.

[29] D. A. White, and R. Jain. Similarity Indexing with the SS-Tree. Proceedings of
the Twelfth International Conference on Data Engineering. p516-523, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

http://en.wikipedia.org/wiki/Sphericity

