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Abstract

This thesis details the implementation of a brain tumour imaging database. The 

database server necessity is two-fold: it must support researchers seeking to 

determine the growth patterns and other properties exhibited by brain tumours, and 

must support physicians requiring data to formulate treatment plans as well. This 

project is undertaken as part of the Brain Tumour Analysis Project, whose members 

will be the first to benefit from the database server, gaining easy access to data for 

theory validation. The system presented follows the client-server model and provides 

secure encrypted transmission of data between the two ends to maintain medical 

record security. An easy-to-use front-end client has been created to abstract away any 

implementation details and allow a physician (the target user) to intuitively find data 

applicable to their treatment plan. A new data structure, called the Volume 

Distribution Tree, for the efficient processing of Jaccard queries is described.
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Chapter 1: Introduction

1.1 Motivation
The general location of a brain tumour is discemable on an MRI scan, but the true 

extents of the cancerous cells are undeterminable using current imaging technology 

[6]. Cancerous cells not showing up as part of the tumour are called occult cells and 

must be destroyed to avoid re-growth of the tumour after treatment. Physicians must 

therefore treat (kill the included cells using conformal radiation) a larger volume than 

that apparent with imaging in order to properly mitigate the risk of relapse. The 

accepted rule of thumb is to take a 2-centimetre margin around the volume segmented 

from an MRI scan.

The problem with this strategy is that tumours do not tend to grow spherically and 

thus the treatment is likely to destroy healthy cells contributing to the patient’s 

functionality and quality of life. Occult cells having grown beyond the treatment 

margin also present a high risk of relapse. Based on evidence from many years of 

radiation treatments, physicians allow limited radiation doses to patients, measured in 

gray (Gy), a measure of radiation energy absorption per unit mass (1 Gy = 1 J/kg). 

This limit implies that there is a budget of radiation treatment available and that 

savings in one area that we can determine does not need treatment can correspond to 

a higher allowance of treatment of a higher risk area.

A major goal of the Brain Tumour Analysis Project (BTAP) at the University of 

Alberta is to predict the growth pattern of tumours such that the treatment focuses on 

high-probability cancer-containing areas and ignores areas where it is almost 

impossible for cancerous cells to have infiltrated. A physician having noted a few 

instances of tumours in a certain location and none of which grew beyond a certain 

membrane or in a certain direction may predict the same to occur with a new patient, 

but may not be confident in that assumption due to the limited cases upon which to 

base the assumption. The work detailed in this thesis aims to augment such estimates 

using a large collection of data, rendering more statistically significant predictions.

1
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1.2 Problem Definition and Scope
An oncologist planning a patient’s treatment will sometimes edit the common 2-cm 

margin based on prior experience. These edits are generally cuts to the treatment 

edges due to impassable barriers like bones and the Falx line. Having a human sort 

through thousands of MRI studies to find similar cases is unfeasible and 

unmanageable. A database is the natural choice for the storage and management of 

large datasets, but the tables will have to be well laid-out for efficient retrieval. The 

oncologist will generally be looking for cases similar to the one in question in order 

to get a sense of how this tumour is likely to grow and where the best chance of 

finding occult cancer cells are. Finding similar data necessitates similarity measures 

conducive to the retrieval of what expert oncologists would agree is relevant. Once 

the similarity measures are implemented, a reasonably efficient manner of indexing 

the data with respect to that measure must be defined and implemented to avoid 

linearly scanning the whole database to resolve each query.

Researchers coming up with theories regarding the growth of tumours will also 

want data to back up or refute their theories. Postulating a theory involving a drug or 

therapy would take several years to complete, and even then would have a small 

dataset due to the shortage of volunteers, ethics approvals and other obstacles. There 

are, however, theories that can be validated using existing data, such as tumours not 

being able to grow through certain regions or preferentially growing through certain 

classes of brain matter. With some data, say the data from a few years at a hospital, a 

small amount of results can provide support for a theory. With a very large amount 

of data, collected from hospitals all over the world, researchers can place much more 

confidence in their results. Thus the long-term goal for this database is for medical 

research centers worldwide to contribute brain imaging of tumour-stricken patients 

via internet communication. These research centers would also make use of the 

database to aid in their cancer research. The short-term goal is to use and contribute 

to the system locally within the Cross Cancer Institute and the University of Alberta.

Predicting the growth of tumours is beyond the scope of the current database 

project. This project is limited to setting up a database to house the data and provide 

the necessary facilities to access relevant data without any SQL knowledge and to do

2
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so remotely without compromising patient privacy. This will lay the groundwork for 

further research by the BTAP and act as its common repository for data, avoiding 

copies in multiple locations. New data will be able to be seamlessly integrated into 

the query system without the user having to update any software. New members to 

the group can be given Matlab and Java connection modules to be abstract away from 

the data storage, enabling them to focus on their scope of work. The work presented 

here does not focus on improving a specific technique such as modelling tumour 

growth; the goal is instead to create a solid software base to provide others with an 

invaluable tool for their research. Now a researcher modelling tumour growth has 

access to a queryable data repository and can focus on inventing and testing models 

rather than spending time finding data and on system implementation details.

1.3 Introduction to the Technical Terms in this Document
This document uses some acronyms and scientific terms, so this subsection will give 

a little background on these. A glossary is also available on page 86 as a quick 

reference when reading the text.

1.3.1 Brain Tumour Anatomy

Cancerous tumours growing in the brain are called gliomas and have several common 

hallmarks. The live tumour cells have a metabolic rate much higher than normal 

cells; the outer part of the tumour uses up too much of the available oxygen and 

nutrients, causing cells deeper into the tumour to die. This portion of the tumour is 

called the necrotic core as it is a cluster of dead cells. The tumour cells’ very large 

division rate causes it to increase in size, putting pressure on the rest of the brain as 

the space available is confined by the skull. This causes swelling of the brain tissue, 

called edema, around the tumour.

1.3.2 Brain Imaging Techniques

When suspected of having any abnormalities, a patient’s brain is generally imaged 

using MRI (Magnetic Resonance Imaging) and sometimes MRS (Magnetic 

Resonance Spectroscopy), PET (Positron Emission Tomography) and DTI (Diffusion 

Tensor Imaging). All of these are non-invasive means for a physician to see parts of 

the patient’s brain anatomy and chemistry to help with diagnosis and treatment.

3
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Although the future plan for the database involves storing all of these types of images 

and more, the current system only deals with MRI images. MRI really only shows 

the macroscopic brain anatomy as opposed to the more refined DTI which traces 

nerve tracts and MRS which shows the distribution of brain chemicals. This however 

generally suits the purpose of finding tumours as these show up (for the most part) in 

MRI.

An MRI machine houses a large electromagnet capable of creating a very strong 

(usually 1.5 Teslas or greater) and uniform magnetic field. The imaged patients are 

primarily composed of water and thus, there are vast quantities of hydrogen protons 

inside their tissues. Each hydrogen proton spins about its own axis, and this spinning 

proton creates a small electric field and thereby produces a perpendicular magnetic 

field. While the orientation of these small magnetic fields is usually random, once in 

the bore of an activated MRI machine’s magnet the rotation axes line up with the 

magnetic field. When a radio frequency (RF) pulse at a precisely calculated 

frequency is then delivered, this forces the hydrogen protons to precess about the 

magnetic field axis. When the RF pulse is stopped, the precession of the protons 

gradually decays as the protons once again align their spins with the magnetic field. 

During this decay, the protons move to a lower energy state and in doing so emit 

energy in the form of an RF signal which can be detected and measured. The rate of 

decay is dependent upon the relative chemical composition of the tissue imaged. This 

information can be used to render a depiction of the tissues imaged.

There are 3 modalities in which MRI images are taken, T1-weighed, TIC- 

weighed, and T2-weighed. T1 images show water as dark and lipids brightly, making 

white matter appear white, grey matter appear in various intensities of gray and brain 

fluids to appear black. T2 images show the opposite response, with lipids appearing 

dark and fluids showing up brightly. Bones are dark in both cases; although there 

appears to be a skull outline to both sets of images, this bright outline is actually the 

skin covering the skull containing both lipids and water. TIC imaging is just T1 

imaging performed after the patient has been injected with the contrast agent 

gadolinium. This agent causes only the tumour to have an increased intensity, greatly 

helping tumour segmentation.

4
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1.4 Outline
A database of brain imaging and patient data is being assembled both to aid clinical 

treatment planning and for research use. This document outlines the status of the 

database work as it stands, the current similarity queries supported by the system, and 

the client software provided to the clinicians, as well as the security permitting client 

access without compromising sensitive data.

The primary contributions of this project are:

• Simple segmentation procedures.

• New similarity measures:

o Depth Jaccard 

o Ray Trend 

o MidSim

o Eigen Decomposition 

o Elongation and Flatness 

o Growth Direction

• A new tree structure to more efficiently support Jaccard-type queries.

• A working set of database tables and a secure client-server implementation 

including client software that is easy-to-use by physicians.

• A means of easily testing tumour growth hypotheses on a large quantity of 

data.

• A remote, encrypted query system that is extensible by non-expert 

computer users with only Matlab programming knowledge.

The remainder of this document is organized as follows:

• Chapter 2 summarizes and comments upon literature related to this work.

• Chapter 3 discusses simplified segmentation approaches devised to help 

the influx of data.

5
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• Chapter 4 goes over the numerous similarity measures used in data 

retrieval as well as the methods used to efficiently support queries 

employing these similarity measures.

• Chapter 5 gives a detailed explanation of the Volume Distribution Tree.

• Chapter 6 gives a high-level overview of the system architecture followed

by a focus on each major component.

• Chapter 7 presents experimental results.

• Chapter 8 discusses future work ideas.

• Chapter 9 summarizes the work performed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Chapter 2: Related Work

The system detailed in this thesis encompasses technology fitting into several 

research fields -  tumour segmentation, object similarity measures, and spatial 

database indexing. Other work that can be compared and contrasted with ours is the 

topic of this chapter. Commentary regarding the works’ relation to and influence on 

this project is provided.

2.1 Tumour Segmentation
2.1.1 Automatic Brain Tumour Segmentation

The segmentation algorithm currently used by the BTAP group is discussed in the 

paper “Segmenting Brain Tumors using Alignment-Based Features” [25] and as part 

of a pipeline including intensity standardization and registration in the Master’s thesis 

related to the aforementioned paper [24]. Although the segmentation ideas presented 

in Chapter 3 do not supersede this work as the group’s standard segmentation 

algorithm, they are presented in this thesis as simple ideas that could be used in a 

registration framework that avoids warping the original data. Here we summarize 

Schmidt’s work as it not only contrasts with the segmentation ideas presented here 

but actually serves as the accepted method of segmentation, providing the tumour 

labels currently stored in the database.

Schmidt et al. employ machine learning to perform automatic brain tumour 

segmentation. The feature sets used for the machine learning task are alignment- 

based features. The four features extracted from the training images were the brain 

mask (B set), the a priori tissue type probabilities (P set), average intensities (A set), 

and left-to-right symmetry (S set). The features were all extracted at multiple 

resolutions to include neighbourhood information along with voxel-level (localized) 

information. The segmentations provided on the test cases after training are 

compared with human expert-drawn labels using the Jaccard measure, with a higher 

score denoting a better automatic segmentation as it corresponds well with the human 

expert labelling, which is as good a ground truth as is available. All combinations of

7
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the four feature sets were tested to see which would provide the best segmentations, 

and these experiments found the multi-scale PAS features to provide the best score, 

tied with the multi-scale BP AS features. The PAS features would therefore be 

declared the best option as adding the B feature to this set did not help the final result. 

In the current incarnation of the automatic segmentation program described in 

Schmidt’s thesis, the alignment-based, or coordinate-based, features are 

supplemented by image-based features, registration-based features, and feature-based 

features. Image-based features are extractions of brain structures, textures, the 

intensities of pixels and their neighbourhoods, and image histograms. Registration- 

based features include using information from prior segmentations of the same patient 

and warping fields calculated during registration with a template. Feature-based 

features involve using multiple resolutions, gaining neighbourhood information, or 

using a subset of other features as a feature.

2.2 Object Similarity Measures
2.2.1 The Jaccard Coefficient

A popular similarity measure is the Jaccard coefficient [12]. To obtain the similarity 

between two sets, the number of intersecting elements is divided by the number of 

total unique elements in the two sets combined. Disjoint objects have no intersection 

and thus score a 0 on the Jaccard measure. Any intersection raises the Jaccard score. 

For two identical objects, both the intersection and union are equal to either object’s 

volume, yielding a maximal similarity measure of 1. The Jaccard coefficient is 

within the range [0,1] with increasing values denoting higher similarity.

2.2.2 Shape Histograms

From the centerpoint of an object, the object is split into sectors and shells, with the 

volumes in each division being inserted in a histogram used to describe the shape [2], 

The center could be defined in many ways, but the object’s center of mass is used to 

locate the center in [2], Sectors are pie-shaped divisions like dividing a pie into 12 or 

16 sections, whereas shells are divisions made at specified radii (see Figure 2.1). 

Combining these two puts a 2D grid resembling a spider web over an image of the 

object.

8
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4 shell bins 12 sector bins 48 combined bins

Figure 2.1: Shape Histogram Shells and Sectors [2]

This grid can be extended to 3 dimensions by splitting into sectors all 360 degrees 

around one axis, again splitting into sectors for 180 degrees around an orthogonal 

axis, and having 3D shells which are now splits along a spherical shell of a given 

radius. This is a discretized version of continuous spherical coordinates, with one set 

of divisions along the 360° azimuth range, one set along the 180° zenith range, and 

finally one set along the linearly outward radius range. The volume occupied by the 

object in each grid cell is entered as one element of a feature vector, leading this
'y

vector to be of length (sectors)(shells) /2.

The distance from other vectors is found using quadratic form distance instead of 

Euclidean distance, in order to take into account that the last sector around a circle is 

actually very close to the first. The form of this distance measure is

dA2(x, y) = ( x -  y)A(x -  y f , which would be Euclidean in the case where the 

weighing matrix A is the identity matrix, or would be weighed Euclidean if it is 

diagonal with the diagonal values being the weights. By having nonzero values 

outside the diagonal, these weigh in a bin’s neighbours along with itself. The weight 

matrix used and suggested by the Shape Histogram creators is the matrix A with 

elements atJ = e~ad{,'j) with a  between 1.0 and 10.0 and d being the distance between

bins (for example with 16 divisions, sectors 1 and 16 are neighbours and thus have a 

distance of one between them). A higher cris closer to the identity matrix I and 

therefore closer to Euclidean distance. We actually implement the shape histogram 

idea with 3 shells, 16 sectors and <7=1.0 as one of our similarity measures for similar 

tumour retrieval.
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2.2.3 Other Similarity Measures

Although we only implement the Jaccard measure and Shape Histograms in this 

work, many other object similarity (and distance) measures exist in the literature. In 

[10], the similarity between solid objects is computed by comparing their Reeb 

graphs’ R-node lengths and areas. In [5], objects are recursively decomposed into 

smaller components, yielding a tree where the leaves are the smallest decomposition 

done by the algorithm and a parent is the union of its children before comparing these 

components’ Reeb graphs. Oriented bounding boxes, which are bounding boxes 

aligned with the principal axes of an object, are organized into OBB (Oriented 

Bounding Box) trees in [13]. A distance measure can be obtained using two objects’ 

OBB trees by computing the sum of the Euclidean distances between the (x,y,z) 

positions indexed by the nodes. In [1], a model is meshed and then one node is put 

into a first group, its neighbours are put into a second group, and so forth with each 

group forming a conical ‘wavefront’. The Cone-Curvatures’ Euclidean distance is 

taken as a distance metric separating the objects. In [19], a solid object is 

decomposed into positive and negative polyhedrons which make up the original 

object by addition. The distance measure is taken as the norm of 7 distances: mean 

value and standard deviation of gaps between matched vertices projected on a sphere 

around the object, distance between matched components’ centroids, difference in 

volumes, and difference in angle between the x, y, and z directions of the 

components. 3D models are posed from 42 different viewpoints in [20]. These each 

lead to a ‘depth image’ which is then converted to a polar coordinate image (each 

pixel (x,y) is instead plotted in its (r,0) coordinate), which is then Fourier 

transformed. This creates a 2D matrix of values for each image, and the distance 

metric is the sum of differences between matrices.

2.3 Spatial Database Indexing
2.3.1 The R-Tree and its Variants

The R-Tree is an index structure originally meant for low-dimensional spatial data; 

generally 2-4 dimensions [9]. The objects in a database are amalgamated in a 

hierarchical manner. That is, objects that are close together are grouped together into

10
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one rectangular area encompassing them all; this is the combined objects’ minimum 

bounding rectangle. A larger rectangular area R2 groups together several smaller 

rectangles Rla, R ib ... to make a more generalized node acting as the parent to these 

R l ’s (see Figure 2.2). Continuing this strategy, the root node of an R-Tree contains 

the whole space of objects in the dataset, whereas each of its children’s rectangles 

only contains part of the set of objects. Note however that rectangles on the same 

level are not necessarily disjoint; they may overlap and thus one extended object may 

be partly covered by more than one rectangle.
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Figure 2.2: R-Tree: Object Groupings and Corresponding Tree [9]

A query using the R-Tree would typically be a two-dimensional window along 

with a desired relationship, such as that the query window touches the objects 

returned or that it entirely contains them. A query could also be a small window or 

point to be contained within an object in the database. At each node expanded, only 

the children whose MBRs meet the query criteria need be examined further, with the 

rest being pruned.

A variation of the R-Tree is the R+-Tree [26], where overlap between nodes is 

disallowed. Due to this property, when descending an R+-Tree with a point query no 

more than one path needs to be followed (whereas in a regular R-Tree, the point may 

be covered by several sibling nodes’ rectangles). This makes R+-Trees advantageous 

for point queries despite the added complexity inherent in keeping the rectangles 

disjoint while still indexing all objects in a dataset.

Another variant is the R*-Tree, which is effectively an R-Tree with a revised node 

splitting strategy [3]. During the insertion of a new object into any R-Tree variant,
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the node housing the new object may overflow (have more children than allowable by 

design). When this overflow occurs, the strategy taken by the R*-Tree is to re-insert 

selected rectangles in the overfull group in order to optimize the placement of 

rectangles to get better performance out of the tree. The authors identify the primary 

criteria for optimizing the R-Tree structure: minimizing the dead space within a 

rectangle, minimizing the dead space between rectangles, minimizing the perimeter of 

a rectangle, and maximize the number of children for each node, although this last 

goal competes with the first three. Although in construction of an R-Tree these 

parameters could be optimized, in a dynamic update situation the R-Tree tends to lose 

some performance due to suboptimal organization and this is where the modifications 

in the R*-Tree help.

Although the R-Tree can technically handle data of higher than 2 dimensions 

using hyper-rectangles, its performance rapidly degrades with increasing data 

dimensionality due to the hyper-rectangles naturally intersecting each other by large 

amounts due to the ‘curse of dimensionality’. An early R-Tree modification to help 

with multidimensional indexing issues was the Similarity Search Tree (SS-Tree) [29]. 

The SS-Tree directory nodes contain children clustered within ellipsoids rather than 

hyper-rectangles. Rather than nodes spanning a range of values in each dimension 

like R-Trees, the SS-Tree nodes hold objects within a set threshold distance from its 

representative point. This would make spherical regions for a Euclidean distance 

metric but the authors instead use a weighed-Euclidean scheme resulting in 

ellipsoidal regions having principal axes that are aligned with the space’s dimensional 

axes.

To further improve the ability of databases to index higher-dimensional data 

(above about 5 dimensions), the X-Tree (extended node tree) was created by 

extending the R-Tree [4], The X-tree permits ‘supemodes’ to form, meaning that 

overfull nodes are allowed to remain that way in order to avoid splits that would 

cause large overlaps. In the X-Tree, splits are only allowed if they cause no more 

than a preset amount of overlap. The authors prove that an overlap-free split (for 

point data) is possible if and only if there exists at least one dimension that no MBR 

spans. This is because if all dimensions have at least one spanning MBR each, for
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each dimension an MBR other than the spanning one has some length in that 

dimension, overlapping the spanning one. A split-history tree is maintained to keep 

track of the splits, as shown in Figure 2.3.

split tree

0
;s

A* B A’ B*’ C  D A” B“ C D B

Figure 2.3: Split History Tree Example [4]

Examining this tree we instantly know that C is the result of splits along dimensions 2 

and 5. Now when we want to split set S {A” B” C D E }  into subsets SI & S2, it 

would be advantageous for them to have as many common splits as possible. 

Logically then, the best split is the overlap-free one into the subtrees rooted by nodes 

4 (containing {A” E}) and 5 (containing {B” C D}). The anti-overlapping measures 

are what allow the X-Tree to extend to higher dimensions without suffering immense 

time increases.

2.3.2 The GSS Tree

One main contribution of this thesis is in the spatial database indexing field, using the 

Volume Distribution Tree to efficiently access 3D objects not resembling any 

geometric primitives. A similar application to this one is tracking the shape of the 

hippocampus in medical imaging. The spatial indexing demonstrated by Keim is the 

Geometric Similarity Search (GSS) tree, grouping together closely located objects in 

a tree using the objects’ minimum included volume (MIV) and maximum 

surrounding volume (MSV) [14]. Figure 2.4 displays the MIV and MSV concepts.

a. MIV Approximation b. MSV Approximation

Figure 2.4: MIV and MSV Example [14]
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The GSS tree uses hierarchical approximations, with the directory nodes deeper 

down the tree being closer approximations of the objects below them; parent nodes 

are lower resolution amalgamations of their children. Many algorithms could 

hierarchically determine the MIV & MSV as do the two instances given in the paper, 

the Cuboid and Octree GSS trees. The Cuboid version keeps finding the largest 

rectangular box available to add to the MIV and subtract from the MSV in order to 

give a closer approximation to the exact volume indexed, while the Octree version 

recursively deems any octants of the space containing some object volume as full and 

others empty. An example of the Cuboid GSS tree is provided in Figure 2.5.

search object
entry 1 entry!

□
MTV MSV

MIV
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i
□□
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t t
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Figure 2.5: Cuboid GSS Tree Example [14]

We can see in this example the increasingly accurate geometric representations when 

descending the tree and that the construction and insertion try to keep similar 

representations grouped together for effective pruning.

The strategy carried over to the Volume Distribution Tree is to represent a group 

of volumes with a small set of numbers and to set reasonably tight mathematical 

bounds on the attainable similarity score of a group based on those numbers.
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2.3.3 The P-Tree

The P-Tree (Peano Count Tree) is effectively a Quad Tree [8] with counts of the l ’s 

in its quadrant included in each node; the l ’s being the binary high pixels in a black 

and white Boolean image[7]. Each node either has 0 or 4 children -  if the node’s 

quadrant contains some white voxels and some black ones it is recursively divided 

into its quadrants, giving 4 children and otherwise the node has 0 children as it is a 

uniform color and thus no more information is required to explain it. Any node’s 

value is the number of white pixels in its quadrant, so white pixels are summed for 

each leaf node, and then the directory node values are simply the sum of their 

children’s values. A P-Tree then contains all of the information necessary for 

reconstructing the image. An example of a P-Tree is shown in Figure 2.6, with the 

left box containing an array of ones and zeros which can be the representation of a 

black and white image, and the right box containing the corresponding P-Tree with 

the left-to-right node order being the Z-Order of the picture (NW,NE,SW,SE).

11 11 11 00
11 11 00 00
11 1 1 1 1 00
11 11 1 1 10
11 1 1 0 0 00
11 11 00 0 0
00 1 1 00 00
01 1 1 00 00

F-tree 36
/ A  \

/ / \ \
/ / \ \

16 7 1 r ©
/ / 1 \ / 1 \  \

2 0 4 1 4 4 1 4
# //|\ / #

1100 0010 0001

Figure 2.6: P-Tree Example [7]

In contrast to our Volume Distribution Tree which is global, one P-Tree is created 

for each image. The Volume Distribution Tree employs the idea of denoting the 

number of white voxels in each section, but only using a forced 1-level representation 

with a user-defined grid rather than variable levels with quadrants. That is, whereas a 

P-Tree would recursively decompose a single object into volume octants, the Volume 

Distribution Tree is an index structure where the leaves are single-level volume 

distributions. There is no recursion in the VD-Tree’s volume distributions and the 

partitioning is defined according to the application rather than always being octants. 

By avoiding variable levels, the Volume Distribution Tree allows easier comparisons 

between objects, sacrificing accuracy however, and allows objects to be listed in 

nodes which can be grouped together to form a global tree indexing all objects in a
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database. To clarify, by taking a P-Tree, expanding its divisions from octants to an 

application-defined scheme, and then taking the values from its first level below the 

root we have one VD-Tree leaf node. The VD-Tree structure is built to index these 

leaf nodes.

2.3.4 The RI-Tree

The Relational Interval (RI) Tree was designed for range overlap queries [16]. That 

is, given an interval, to be able to return all intersecting stored intervals. This is 

achieved with a tree where nodes contain sorted lists L & U being the lower and 

upper bounds respectively, of the ID intervals represented by that node. Instead of 

stored intervals being held exclusively in leaf nodes, they are each held in the highest 

node where the stored interval entirely contains the node’s range. This node is 

deemed the interval’s ‘fork node’. A query starts by determining the query range’s 

fork node and then travelling down to its parent from the root of the tree. Since the 

descent is to one level above the fork node (recall that the fork node is the highest 

node entirely contained within the query range), each node explored has necessarily 

had an extension to the left or right of the query range. For the left ones, their upper 

range can be examined and if  not meeting the query’s lower range, they can be 

pruned, as can nodes right of the range whose lower bounds are also to the right of the 

range. The intervals directly stored within the fork node can be reported since they 

definitely intersect the query range. The search continues below the fork node first to 

the left, where if  that node’s lower bound is above the query’s lower bound all results 

contained in that node’s subtree can be reported, and otherwise the node must be 

linearly scanned for intersecting intervals. Processing for the right side of the fork 

node is analogous. Part of a tree and its processing during a query is shown in Figure 

2.7 with the labels ‘lower’ and ‘upper’ denoting the query range.
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root

scan U{w) 
scan L{W) 
 ̂report all

lower upper

Figure 2.7: RI-Tree Query Processing [16]

A method of indexing 3D spatial data using this structure is necessary to make it 

relevant to our work, but [17] does just that by encoding 2D and 3D objects into ID 

by means of space-filling curves. The objects are turned into multiple intervals in the 

space filling curve, and these intervals are indexed by the RI-Tree.

A further extension to permit more efficient use of the RI-Tree is proposed in 

[15]. The main problem with the decomposition of objects into intervals is the shear 

amount of intervals necessary to compose an object. This huge amount of intervals 

causes poor retrieval performance. In an effort to reduce this burden [15] uses gray 

intervals, which are intervals covering many black intervals (the ones directly 

extracted from the space-filling curve). One gray interval being able to represent 

many black intervals reduces the burden of storing and finding so many intervals, at a 

cost of lower accuracy representation requiring more post-processing. The authors 

create the Grouplnt algorithm to take advantage of the gray intervals. The 

representation of data in that algorithm is hierarchical, with the top level using only 

one big gray interval to encode an object, and at the next level splitting this interval 

along the largest gap between black intervals. This strategy continues by giving a 

better approximation to the object in each level down, allowing a search to stop after 

only a few levels by determining that there is already no potential for this object to be 

relevant to the query.
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Chapter 3: Segmentation

The database and surrounding system described in this work assume a working 

segmentation technique providing an enhancing vs. non-enhancing label matrix for 

database entry. Segmentation’s purpose, whether done manually by an expert or 

automatically by a computer program, is to segment the region that enhances on the 

TIC imaging, as this corresponds to the visible edema region housing the tumour. 

Any good segmentation technique, consistently used across studies in the database, is 

valid and can be used as a replaceable module without changing the database work. 

The accuracy of similar tumour retrieval from the database is however tied to the 

segmentation quality and thus improving the segmentation is advantageous to the 

database project.

3.1 Motivation
Ideally, medical imaging should be automatically segmented into enhancing and non­

enhancing regions. Clinicians simply do not have the time to segment every MRI 

image, and there has been shown to be significant variation in segmentation not only 

between clinicians but between the same clinician at different times [18]. Image 

segmentations are stored in the database and then are used as a fundamental part of 

the query process, and as such must be precise.

The current pre-processing of MRI imaging includes automatic segmentation, but 

its time-consumption, inaccuracy and mistakes have prompted investigation into new 

methods. Since the idea of the database is to supply data for processing, the data 

itself should be clean and free from harmful pre-processing. Currently the raw 

imaging in DICOM format is converted to a series of PNG images via a pipeline 

performing spatial registration and intensity standardization [24]. Although this 

pipeline provides a common intensity and coordinate system, it locally warps the 

data. In order to place a brain image in a standardized position, the system minimizes 

the difference from the template brain Colin27 [11], In doing so the system however
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performs local deformations, changing the shape of the tumour and therein distorting 

any morphological study. An effort has thus been made to circumvent the pipeline, 

replacing it with an affine registration based on placing the Falx line on the center 

plane and new segmentation procedures whose internals are transparent and easily 

understood.

3.2 Projection onto Eigenbrain Space
Principal components analysis (PCA) was suggested for the compression of 

images to a set of weights, a concept known as eigenfaces due to the mapping of face 

images into a space defined by the eigenvectors of a training set of faces [28]. An 

idea derived from this paper is that a face vastly different from the training set or 

having a new feature (glasses, beard if these were not in the training set) would likely 

be poorly reconstructed, and thus casting an unhealthy brain into a space created via 

only normal brains would yield errors at a much higher rate in the tumour region. 

The plot of absolute reconstruction error could then be a basis for automatic 

segmentation. Since the segmentation of the error plot is well defined as getting a 

region best encompassing the large values, it should be an easier problem to solve 

than the original segmentation problem where we need to segment an area that is 

somehow different from the rest.

Due to the nature of our studies and collaborations, our brain imaging database 

consists only of brains with tumours rather than normal, healthy brains. Since a set of 

normal brains is required to form a healthy image basis, the set was created from the 

right halves of exclusively left-side tumour patients and left halves from exclusively 

right-side tumour patients. With this trick we can avoid the cardinality of the set of 

tumour images from greatly surpassing the cardinality of the set of normals.

PCA is used to create a basis in v dimensions, where v is the number of voxels 

used in each original image or 3D matrix describing a normal brain. By reshaping 

each brain image into a 1 x v vector and stacking all of these together, we get an n x v 

matrix (n being the number of training brains) containing the whole training set 

information. With PCA we replace this matrix by its eigenvectors, forming an 

orthonormal basis that is still of size n x v. To eliminate high-frequency noise as well
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as obtain better compression, we only use the eigenvectors corresponding to the 

highest 40 eigenvalues (this value selected after looking at the rapid drop in 

eigenvalues, as these represent the variance). See Figure 3.1 for the eigenvalue trend.

x 109
8 ---------------------;-------------------- , ---------------   --  :------------------- r----------------------------   .

7

6 i
i

5 - \
<v

Eigenvalue #

Figure 3.1: Eigenvalues of the brain space, sorted in descending order 

The eigenbrains each represent some intensity component of the brain such that 

any brain can be expressed (with lossy compression) by a set of 40 weights meaning 

the brain can be said to be wr eigenbraini + W2 -eigenbrain2 + ... + w 4o-eigenbrains 

where the Wj’s are the weights. Our 1st and 9th eigenbrains’ 40th slice are displayed in 

Figure 3.2 as an example of what the different eigenvectors can focus on. Projection 

of unhealthy brains onto the normal brain space somewhat localized reconstruction 

error to the tumour, but this was marred by much noise.
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Figure 3.2: Eigenbrain Examples 

One suggestion that has been implemented here to reduce this noise is to use a 

robust fitting technique which iteratively reconstructs the brain, with each iteration 

putting lower weight on high-error voxels. The idea is that the normal part of the 

unhealthy brain is the part that should be well-reconstructed without interference 

from trying too hard to fit the bad parts. This raised the ratio of average intensity 

inside the tumour to that outside the tumour, indicating more focus on highlighting 

the tumour compared with other artefacts.

To see an example, refer to Figure 3.3, which shows the original brain to the far 

left, as segmented by our current segmentation program, next the map of the 

reconstruction error, clearly highest in the tumour region, next is the reconstruction 

error thresholded to provide a clear segmentation, and to the right the post-processed 

segmentation overlaid onto the brain image.

Figure 3.3: Segmentation Using Eigenbrains
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3.3 Finding High Z-Scores
An even simpler means of locating the tumour is to find out which voxels are far out 

of tolerance compared with the normal set. The mean and standard deviation of every 

voxel for normal brains is kept in two 3D matrices, keeping a low memory footprint. 

Any brain to be segmented has its z-score map computed by dividing the absolute 

difference between this brain and the mean for the set by the set’s standard deviation. 

High z-scores indicate variation from the mean that is much higher than usual, and 

therefore abnormal. This map can therefore be used as a basis for segmentation in the 

same way as the eigenbrain projection. Note that due to the lack of a large enough set 

of normals, the training set was split into a left half using patients with a right-side 

only tumour and a right half in the same manner, as explained in Section 3.2.

This procedure can be done with T1 and TIC images compared to the normal 

statistics for T l ’s, as well as T2 images compared to normal T2 values. Combining 

the results of these two filtered out much of the noise since the tumour is found in 

approximately in the same place with either modality while the noisy bits did not 

match up very often. The combination was done by segmenting only the voxels 

whose average Z-Score (in TIC and T2) was above a set threshold.
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a) Original Brain Image b) Z-Scores Above 115

c) After Post-Processing d) Final Segmentation

Figure 3.4: Z-Score Segmentation Process 

What is left of the noise is filtered out by keeping only the deepest white section, 

since erroneous segmentations generally appear as tiny blobs and larger but thin 

shells. Matlab’s bwlabel function labels all disjoint white segments with different 

integers, allowing easy separation of all segments such that they are alone in their 

own matrices. The depth of each of these segments is then taken as its maximal 

Euclidean distance transform value. This distance transform is a morphological 

operation where each white voxel is replaced by a real number equal to its distance to 

the closest black voxel, and is performed by Matlab’s bwdist function. Figure 3.4 

helps explain the procedure of segmenting by Z-Scores; in (a) we see one slice of a 

TIC-weighed brain image to be segmented and in (b) the location of the voxels being 

1.5 standard deviations away from the norm. In this figure we can see that the 

thresholding of Z-Scores to above 1.5 mostly focuses on the tumour region. The
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smaller regions identified are later filtered out by post-processing as shown in (c). 

The final segmentation is shown in (d) with the red outline denoting the segmentation 

extents overlaid onto the original brain image. The reader may note from Figure 3.4 

(b) that the segment with the largest volume could more simply be selected than the 

one with the largest depth. The selection by depth however avoids selecting long thin 

membranes instead of the tumour. A lot of noise, joined with a thin but large area of 

high z-scores can make up a larger contiguous volume than a small tumour, leading to 

obviously poor results.
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Chapter 4: Similarity Measures

4.1 The Notion of Similarity
What it means for two objects to be ‘similar’ is subjective and as such no concrete 

true value of similarity is available for comparison with the presented similarity 

measures’ outputs. In this case we wish to predict a tumour’s growth based upon 

similar tumours in the past and through experience with the query system presented, 

physicians can pick the similarity measures whose results turn out to be most 

conducive to this purpose.

Several similarity measures will be defined in this section, each of which 

describes a subset of the following aspects of similarity: location, shape, volume, 

extents, texture, and orientation. Efficiency-increasing implementations will also be 

discussed here.

Note that the imaging data has been registered to a template in order to maintain a 

consistent coordinate system between brains. Each brain image is a 258 x 258 x 88 

voxel matrix (due to the template brain being of this size) with each voxel containing 

an 8-bit greyscale value.

4.2 Supported Similarity Measures
4.2.1 The Jaccard Measure

The classic similarity between two sets of voxels in a common space is the Jaccard 

measure, which is the intersection of the sets divided by their union volume [12]. A 

simple but very effective optimization for this calculation is obtained by noticing that 

the union is simply the sum of the two volumes minus the intersection. Since the 

volumes remain constant between queries, each tumour’s volume is stored, ready for 

quick access during queries. Thus only the intersection must be computed, but this 

still requires accessing the tumour image from disk, which makes a linear scan too 

costly. To save on I/O and computational costs, instead of storing each segmentation 

in a 258 x 258 x 88 matrix they are stored in smaller matrices the size of their
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Minimum Bounding Rectangle (MBR). Thus if a segmentation only resides within 

100-120 in the x-axis, 145-185 in the y-axis and 40-51 in the z-axis, its MBR field 

will list [100 120 145 185 40 51] and the segmentation matrix will be of size 21 x 41 

x 12; the rest is known to be full of 0’s (empty). Despite the gains from this storage 

strategy, the linear scan is still too slow so a specialized data structure is applicable 

here. A tree structure has been created to quickly filter out the distant tumours and 

provide a short list of candidates to check thoroughly. This structure, the Volume 

Distribution Tree, is the topic of the 5th chapter of this thesis.

4.2.2 Depth Jaccard

Although the Jaccard measure captures the intersection of two bodies, it ignores the 

differences in volume distribution between the bodies. For example, two bodies only 

differing in that one of them has a thin protrusion from its main mass may get a lower 

score than bodies who intersect a lot but whose core parts are not that close.

To capture the depth of a tumour, we use the Euclidean distance transform (3D 

version of [21]), which approximately indicates how far a tumour voxel is from the 

outside of the tumour. Figure 4.l ’s upper set of images shows an example tumour 

shape in 3D on the left and a 2D slice of this shape on the right, along with their 

analogous distance transform images on the lower set of images. Note that the 2D 

picture of the distance transform has uneven contours since it is only a slice of the 3D 

distance transform, not a distance transform of the 2D slice.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26



Figure 4.1: Euclidean Distance Transform of a Tumour in 2D and 3D 

To capture the degree to which the objects’ cores are intersecting, for each voxel 

that intersects instead of adding 1 to the intersection count as the Jaccard measure 

does we add (l - 1dx -  d21) where di and d2 indicate the normalized distance transform

values for the voxels from tumour 1 and tumour 2 respectively. That is, after the 

Euclidean distance transform is computed for a segmentation it is normalized, 

meaning that all values are divided by the maximal distance transform value obtained. 

What is added to the intersection sum is one minus the difference in normalized 

depths of the intersecting voxels. For example a point near the core of tumour 1 may 

have a depth of 0.9 while its intersecting voxel is near the edge of tumour 2 with a 

depth of 0.2, in this case their intersection would be counted as (l -  J0.9 -  0.2|) = 0.3 

instead of 1.

This method of counting intersection means that tumours whose cores are at each 

other’s edges but still intersect at 30% will be given a much lower than 30% score. 

For example consider one shape intersecting with two others, shown in Figure 4.2.
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Figure 4.2: Depth Jaccard Intersection Example 

Here compare the left-side case where the two objects share the same core and have 

similar extensions in different directions to the intersection shown in the right-hand 

case where there is a sizeable intersection between somewhat dissimilar shapes. Now 

instead of purely finding the intersection each intersecting voxel is weighed down 

according to the difference in depth. The result of this modification is that the right- 

side example’s score will suffer far more than the left-side example due to the left 

one’s lining up of the cores. This would be a desirable modification for a user 

wishing to find tumours growing from the same structure of the brain, or wanting to 

ignore small fringes on the edges of tumours in favour of the bulk of each tumour.

Since each intersecting point adds one or less to the intersection and we count the 

union exactly like the regular Jaccard case, the Depth Jaccard scores are always equal 

to or lower than the corresponding Jaccard scores. Therefore we can use the VD-Tree 

(detailed in Chapter 5) created to support the Jaccard measure to also support the 

Depth Jaccard variant since any branch excluded due to not meeting the Jaccard quota 

can definitely be excluded from meeting the same Depth Jaccard quota since the latter 

cannot be larger than the former.

4.2.3 Finding the Center Point o f a Tumour

The next few similarity measures require a definition of the center point of a tumour. 

Here we discuss three central measures, each of which can be used to define the 

center point (thus each similarity measure requiring a center point naturally has three 

variants). The easiest to compute is to simply take the center of the tumour 

segmentation’s minimum bounding rectangle (MBR). This point can however be
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heavily swayed by a long appendage to a tumour and may not actually reside inside 

the tumour outline (although in general for good segmentations it does). The second 

means of picking the center is to pick the center of volume, which is the point at 

which half of the volume resides on each side of any plane that includes this point. 

The third method used (and the one used in the current database system) is to pick the 

core as defined by the Euclidean distance transform. With the distance transform 

applied, only the set of maximum values is kept, with the center of this volume being 

deemed the center point. This method has the advantage that it is not only definitely 

within the tumour volume, but is actually at the deepest point. Thus this point 

indicates the middle of the largest mass and is unaffected by protrusions at the edge 

of the tumour. Figure 4.3 shows an example tumour slice and its center as defined by 

the three methods discussed above, along with the distance transform map on the left 

showing why the red point on the right was picked as the core point.

Legend

«» Carter of MBR

•  Carter of Volume 

X Core Point

Figure 4.3: Center Point Measures

4.2.4 Ray Trend

The similarity measures thus far only take into account the Boolean tumour 

segmentation; i.e. whether a voxel is or is not cancerous. To take into account the 

texture of the tumour, the Ray Trend measure uses the actual greyscale values of the 

MRI image which are located within the segmented region. From the centerpoint of 

the tumour, we take a vector in each of the 26 directions (there are 26 combinations 

of (right, left, center) for 3 dimensions other than (center, center, center) which is the
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origin). Each vector comprises the greyscale values along the straight line path from 

the center to the tumour edge in the specified direction. This serves as a set of feature 

vectors, whose Euclidean distance to other tumours’ rays is taken and summed up 

into a distance. The smaller the distance, the more similar the two tumours are said to 

be. This is an extension to Vranic and Saupe’s use of the extents of a shape from its 

center in the sense that it uses values defining the interior texture of the tumour as 

well as a simplification in the sense that we use only 26 standard directions rather 

than defining continuous functions [23].

4.2.5 Shape Histogram

This technique developed by Ankerst et al. is described in Section 2.2.1. It was 

implemented here since it provides an innovative means of describing the shape of a 

tumour, which is important in finding similar tumours. In our work the center of the 

tumour was found using the core point as opposed to the original work, which used 

the center of mass as the center of the object.

4.2.6 MidSim

To create a similarity measure targeting the shape of the tumour, we start by finding 

the center of volume. Using this center as the origin, the three standard planes 

partition the volume into 8. A recursive application of this to each partition a preset 

number of times yields a group of 3D points describing the shape of the tumour. 

These points can be normalized with respect to the extents in each dimension to 

provide invariance to the size of the tumour. The sum of the Euclidean distance 

between the points describing two tumours is used as the distance between the 

tumours for queries.

4.2.7 Eigen Decomposition

As described in Section 3.2, the important information can be extracted from a brain 

image by projecting it into a well-made standard space. By using the voxels where 

the brain can actually be present (i.e. excluding the huge always black section outside 

the head), we get a much smaller representation of the brain image (1,397,314 voxels 

instead of 5,857,632). This makes it possible to perform an eigen decomposition of 

the whole dataset. Thinking of each imaging session as a long vector, we can find the 

eigenvectors making up a new basis set for these vectors. Although the new basis has
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the same dimensionality as the original set, many of the dimensions contain very little 

variability compared with others and thus can be discarded with very little effect on 

the information carried. After plotting the eigenvalues, it was decided that the 40 

rows corresponding to the 40 highest eigenvalues would be kept since after 40, the 

eigenvalues are significantly lower than the first few eigenvalues. That is, the 40 

dimensions of the dataset with the most variability would be kept.

Each MRI image is then projected onto this space, being compressed into a 40- 

length vector representing the image’s weights in the 40 most important directions 

according to PCA. The distance between two images’ weight vectors can be used as 

a distance metric to assess their similarity with respect to the group.

4.2.8 Elongation, Flatness and Sphericity

As an easy-to-understand pure shape descriptor, we approximate the aspect ratio of

the tumour. This is invariant to the tumour location, volume and orientation. The

actual quantities calculated are the eigenvalues corresponding to the principal

components of the tumour. Ratios close to 1 indicate a somewhat spherical tumour

while larger ratios indicate a more elongated ellipsoid-like shape. Note that the

eigenvalue indicates the variance of all of the voxels comprising the tumour in a

particular direction. Although the ratio of eigenvalues is not proportional to the

aspect ratio, a larger eigenvalue ratio generally corresponds to a larger aspect ratio.

The ratios maintained in the database are that of the first to the second eigenvalues

(Elong), indicating elongation and the second to the third eigenvalues (Flat),

indicating flatness. Since some tumours have quite concave faces, dividing the Elong

ratio by the tumour depth is a good idea to minimize this nonlinear effect.

Another scalar value kept in the database is the sphericity H*, calculated as

i 1 
7t3(6V)3

*¥  ------------ , where A is the object’s surface area and V its volume [27]. This
A

value lies in the range (0,1], with 1 indicating a perfect sphere and low values 

indicating an elongated or highly folded structure.

4.2.9 Growth Direction

Since a main goal of the BTAP is to predict tumour growth, an important piece of 

information to find the growth pattern of tumours similar to the one we wish to
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predict. Given a current patient with a brain tumour it would be advantageous to find 

similar tumours in the database with the later stages of their growth also documented 

in the database. The further growth of past tumour cases in other patients may guide 

physicians in predicting the growth of a current tumour whose future cannot be seen. 

How do we find similar growth patterns efficiently though? One way is to index 

growth between two visits by a vector pointing out from the core of the tumour in the 

direction of greatest growth.

The natural choice for picking the primary direction of data is PCA. By 

subtracting the older tumour from the newer one, a ‘shell’ representing the growth is 

left and this can be run through principal components analysis. An uneven growth all 

around a spherical tumour should align the principal axis in the direction of the 

largest growth. We may however be looking at a growth shell that is empty on one 

side instead of a full volume and thus PCA may not be the best choice. For a 2D 

example, a round tumour with a purely right-side growth should be pointed to by a 

vector in the positive x-direction but may actually have its main principal axis in the 

y-direction (see Figure 4.4).

The alternative used is the vector sum of the growth voxels’ normalized vectors 

originating at the core. Each voxel appearing in the later timestamp that does not in 

the earlier timestamp is tagged as a growth voxel. These are all indexed by their 

vector from the first timestamp’s tumour core. The set of vectors are projected onto a 

unit sphere around the tumour core to avoid skewing of the resultant by further points 

since we are only concerned with the direction of growth, not how far away from the 

core it happens. The resultant of all these vectors is converted to spherical 

coordinates (p,(|),0). The radius p has a [0,1] range with a value close to 1 denoting

Original
Tumour

Growth
PCA First
Principal
Direction

Figure 4.4: Problem With Finding Growth Direction By PCA
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very directed growth with altitude <|> above the x-y plane and rotation 0 around the z- 

axis, while a radius of 0 denotes equal and opposite growth on each side of the 

tumour.

4.3 Other Relevant Information Queries
Many standard pieces of data are put into the database and may well be required by 

someone wanting to study only the subset of the population where a certain property 

applies or is within a defined range. One such example is the sex of the patient -  this 

is stored as a column and may be used as a predicate when querying the database. 

The only other stored patient data is their birth date; no other patient information is 

available after anonymization due to ethical guidelines preserving anonymity of the 

patient. The image time is stored, as well as the MRI machine used since 

specifications such as magnet strength can be important. Stored quantities derived 

from imaging are the Gross Tumour Volume (GTV) in units of voxels, and the center 

point of the tumour as defined in three ways: by the center of its volume, by the 

center of its Minimum Bounding Rectangle, and by the center of the peak of its D26- 

distance transform. The extents of the tumour in its 3 primary directions are listed 

since physicians often discuss tumour size by these measures in addition to the GTV. 

The box created by these extents can also be compared with the other ones in the 

database by a routine giving the Jaccard score between two boxes aligned and 

centered together. The tumour contrast enhancement is listed in a column and 

therefore a user can easily query for enhancements in a certain range. The 

enhancement number is defined here as the mean intensity growth within the 

segmented tumour region between the T1 image and the TIC image taken on the 

same day. A proposed additional column is whether or not the tumour enhancement 

has a sharp contour, or perhaps a measure of the sharpness of the enhancement’s 

contour. Other data that may be added to the database include the survival (time from 

when a study was done until the patient passed away), types and dates of treatments, 

and tumour grade.
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4.3.1 Growth Through Regions

Physicians often want to know if tumours can cross a certain barrier or membrane. 

We provide two simple means of asking that query of the database. The simplest 

being for the user to provide 2 points, a and b, to find the tumours that grew from a to 

b. This is simply achieved by finding all tumours intersecting (a & —ib) and finding 

their further timestamps who intersect b. Since the interface provides drawing 

facilities, the user can easily pick two points to query for tumours which have grown 

from the first to the second point. When the user chooses ‘Growing A to B’ from the 

similarity measure drop-down list, two boxes for entering coordinates appear, but the 

user can just pick the points while looking at brain images by clicking on the desired 

spots.

4.4 Comparison of the Similarity Measures
How do the similarity measures complement each other? Table 4.4.1 gives a succinct 

rundown of the aspects of similarity each similarity measure (including its variants) 

takes into account. The blank spots therefore denote aspects with respect to which a 

particular similarity measure is invariant.

Similarity M easure Location

T akes Into Account This A spect of Similarity 

S h ap e  Volume Extents Texture Orientation

Jaccard ■ M m /m H H I Y |
Jaccard  (Centered by Volume) ■ H ■ H B ! Y W.
Jaccard  (Centered by MBR) ■ H S i l l f f l H Y I P
Jaccard  (Centered by Core)

■ i S J

■ H ■ H I Y | | |

Depth Jaccard W gt ■ E B ■ ■ ■ ■ I Y B

Depth Jaccard  (C entered  by Volume) f l H H g H B g R B E j Y | | i
Depth Jaccard  (C entered by MBR) I B s
Depth Jaccard  (C entered by Core) 8 f l p | ■ m s h s e Y j | |

Ray Trend (Appended with 0's) B B b b 1 |
Ray Trend (Appended with Out of Tumor
Values) I f l B I H 9 | I 8 H B
Ray Trend (Vector Stretched) M at ■ H n
Shape Histogram I B j i llliM I S l i l K g H E f l B
Shape Histogram (Sectors Only) lllllllli M B

Shape  Histogram (Rings Only) iiBllj
3D Shape  Histogram (Bin, GrayValue) I X f l I s H K g R i ilipiiSIKH
Distance Between C enters  (By C enter of 
Volume)

Distance Between C enters  (By MBR Center) 

D istance Between C enters  (By Core)

Volume Difference

MidSim (Recursive Division of Volume into 8)

Y

(ll■fii
V

Table 4.4.1: Similarity Measure Dependence Comparison
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The above table can be used as a quick reference, summarizing the aspects of 

similarity integral to each similarity measure. Ideally, we would like each similarity 

measure to represent only a single aspect of similarity such that there is no cross­

coupling between measures when used together. This perfect decomposition is not 

easily achieved and instead Table 4.4.1 represents the actual coupling involved in 

weighing together the results of several similarity measures. Since the similarity 

measures shown naturally cross-couple shape and volume, we differentiate these 

using the volume as a number and the MidSim measure which is independent of the 

volume as a quantity.
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Chapter 5: The Volume Distribution Tree

Since queries using the Jaccard coefficient as a similarity measure (see Section 4.2.1) 

are so frequently used to retrieve similar tumours, an efficient implementation of this 

query was in order. Linearly searching the whole database is very inefficient and 

slow due to the large size of the matrices to be intersected. Organizing the tumour 

minimum bounding rectangles (MBR’s) into an R-Tree allows a query script to 

efficiently target objects in the database with MBR’s intersecting the query object’s 

MBR but this unfortunately does a poor job of narrowing down the list of possible 

candidates to be exactly checked. The Volume Distribution Tree, or VD-Tree, is our 

solution to this problem.

5.1 Volume Distribution Concept
The base idea involves dividing the space into n-by-n-by-n blocks and computing 

their filled-in volumes since this can provide information bounding the maximum 

possible Jaccard measure while taking up little space. Figure 5.1 shows the division 

of the volume into a 4-by-4 grid (for a 2D example). In this work the matrix of 

numbers is flattened into a vector for storage, and this vector is what will be referred 

to by “volume distribution”.
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volDiv =

0 0 822 55
0 0 605 0
0 0 337 0
0 0 0 0

Figure 5.1: Division of Volume for the Volume Distribution Tree 

At Left: A standard brain image showing that the grid is concentrated toward 

the middle since the head only covers that part.

Middle: A graphical 2D example of a 4x4 division of a tumour segmentation.

At Right: The matrix showing the volume (in number of pixels) of the tumour in 

each division.

Note that the divisions are set up closer to the middle instead of evenly distributed -  

this is meant to somewhat equalize the space in each section. The two lines beside 

the middle are each placed at 35% of the maximum distance from the middle to the 

outside of the brain since this is the half-volume point in an ellipsoid modelling the 

head. Note that the maximum extents of a head are located in a lower slice than that 

shown in Figure 5.1, so despite the lines shown being 35% of the distance to the true 

extents they appear too be about 50% of the way to the edge since at this height, the 

head is narrower than its maximal width. Note that the grid cells can be set up to be 

anywhere so long as all volumes in the database are split in the same way, making 

this structure easily adaptable to other applications. A guideline to set up a grid for a 

specific application is to make each cell approximately equally likely to contain part 

of an object. In other words, for a grid of N total cells, each cell should be sized to 

hold an expected value of 1/N of a random object’s voxels. In this way we spread the 

information over all the cells, avoiding any cells whose value is always zero (which 

would provide no information gain for that cell).

The volume distribution concept is analogous to the feature vector of volumes 

employed in shape histograms as both divide the volume of an object into cells and 

use it as a vector conducive to their respective purposes (see Section 2.2.2) [2], The
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volume distribution in the shape histograms is used to compare shapes using a quasi- 

Euclidean distance metric to get dissimilarity between object shapes. In contrast, the 

VD-Tree does not use any distance metric between distributions to obtain similarity 

or distance. Rather, the VD-Tree employs volume distributions to compute bounds 

on the intersection and union of spatial objects, and uses this in a hierarchical manner 

(a tree of volume distributions) to efficiently index objects for similarity search 

employing the Jaccard measure. To achieve this end, the volume distributions for the 

VD-Tree must be taken on a grid consistent to the whole dataset rather than each 

object’s center. The partitioning method employed in creating shape histograms 

could certainly be used as the grid in creating a VD-Tree, although the grid’s center 

would have to always be at the center of the full space. For the brain tumour 

similarity search application, the spherical shells would also have to be modified to be 

ellipsoidal to take the brain shape into account; since the brain is not spherical, there 

would be many cells that hardly contain any of the volume.

5.2 Volume Distribution Tree Properties
The VD-Tree is a tree designed to index objects with spatial extents for Jaccard 

measure queries. The VD-Tree query processing strategy guarantees 100% recall as 

it can never exclude a valid result when pruning branches. Recall is a measure 

denoting the percentage of the relevant documents in a database that are actually 

retrieved by query processing.

Leaf nodes index exactly one study each (a single patient visit) and thus contain 

the patient number, study number along with their own node number (to be pointed to 

by other nodes), their parent’s node number and the volume distribution vector for the 

tumour segmentation done for the study indexed. A directory node contains its own 

node number as well as its parent’s and children’s and two vectors to indicate volume 

distribution. A directory node roots a subtree and the directory contains element-wise 

maximum and minimum vectors of the volume distributions in this subtree. 

Directory nodes index a group of 2 to M children (either leaves or other directories), 

where M is the node capacity defined by the administrator prior to tree construction 

(in this work we use M=6). Using a large value for M would cause the max / min
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bounds to be too wide leading to following many branches during a query, and also 

increasing the cost of a split due to the number of pair-wise distances computed 

increasing exponentially with M. Small M values would cause the tree to be very 

deep as well as requiring frequent splitting of nodes.

All leaves appear on the same level of the tree. As will be shown, each node (leaf 

or directory) permits the calculation of an upper bound on the Jaccard score for the 

subtree it roots. This upper bound allows branches to be pruned during queries, 

saving computational and 10 effort.

The tree structure is created bottom-up either by bulk-loading or by insertions, 

trying to cluster similar volume distributions together. The volume distribution 

vectors are the leaves of the tree. A set of vectors clustered together are aggregated 

into a node carrying the minimum and maximum volume for each cell, rendering 

directory nodes roughly twice as large for storage as leaves. This process is recurred 

and higher-level directory nodes stay the same size as lower-level ones since they still 

simply carry the maximum and minimum bounds for any node below them. A 

miniature example of a VD-Tree is displayed in Figure 5.2, and it will be used as a 

running example later in this chapter.
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Figure 5.2: Sample Volume Distribution Tree

5.3 Establishing Jaccard Score Bounds
Following from Figure 5.1, the 258 x 258 picture has now been compressed to 16 

numbers so how does the loss of information affect the Jaccard measure? We never 

want to exclude a result within the query range (i.e. we demand 100% recall), so the 

maximum possible Jaccard value (given only the volume distribution) is computed 

and the node being examined can be discarded if this best case scenario cannot meet 

the query threshold. The maximal Jaccard measure occurs when the intersection is 

maximized, thereby also minimizing the union. The maximum intersection within 

each cell occurs when the smaller volume is entirely included in the larger and thus 

the actual objects’ intersection within each cell is upper bounded by the smaller 

volume. The union cannot sink below the larger volume’s value since any of the 

smaller volume sticking out from the larger could only add to the union, and therefore 

the actual objects’ union within each cell is lower bounded by the larger volume.
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Equations 1 -3 formalize these notions for the whole group of cells (in a vectorized 

way).

Let Q be the query object and X a leaf node’s indexed object.

Let V q  =  (qi, ... , qn) be the query object’s volume distribution.

Let Vx = (xi, ... , xn) be a leaf node.

Then,
n

An upper bound for the intersection is: \Q ^  X\ ^ X mm(qi yxt ) (])
i

n
A lower bound for the union is: \q  u  x \ > X  maxfo,. jct) (2)

i

Hence an upper bound on the Jaccard score between Q and X is:
nX min (qirXi)

Jaccard (Q,X)< —n--------------- (3 )
X m axC ^T )

i

What happens when we want to obtain an upper bound for the Jaccard score of 

any node that is a child of a given directory node? To calculate the upper bound on 

intersection we can use the vector of maximum volumes in place of the exact set of 

volumes available in a leaf node. For example if the child node volumes are [3 6 5 2] 

and [7 5 1 3] the matrix of maximums would be [7 6 5 3] as this is the matrix where 

each element indicates the maximum value, for that position of the matrix, in any of 

its children’s distributions. Matrices representing minimums and maximums will be 

used for pruning branches during descent of the VD-Tree. Using the matrix of 

maximum values does not allow underestimation of the true maximum Jaccard score 

as we show in Theorem 5.1.

Lemma 5.1: The upper bound on intersection calculated using the vector of

maximum volume distribution values cannot be lower than that calculated using the 

volume distribution values of any node under it.

Proof:
n

From (1), |g  ^  A| < X  mm(qi jc.)
i
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Let Dmx = (dniXi), ... , dmX)n) be directory D ’s upper bound.

Dmx > any of the leaves X in its subtree.

Since a minimum value cannot decrease by increasing the numbers considered, we 

know that min(g;., dmx i) > min(c/(, x -).

Since the sum of a vector cannot decrease by increasing its components, we can see
n n

that: Y  minfe  4 naj) £ Y  min(<?(- S i) ■
i

n

Therefore ^ m i n ^ , . , ^  ,.) > |g n X |,  \/X  e subtree(D); the maximum intersection
i

calculated using the maximum of the range of a directory node is equal to or greater 

than the maximum intersection calculated using any node below this directory node.

Since there can be no underestimation, the upper bound calculated using the 

vector of maximums is definitely the highest intersection possible between the query 

node and any child (no matter how many levels below) of the directory node D. By 

the same logic using the vector of minimums in place of the node volume distribution 

in Equation 2’s union lower bound calculation cannot cause overestimation of the 

union, thereby keeping a conservative estimate of the union lower bound.

Lemma 5.2: The lower bound on union calculated using the vector of minimum 

volume distribution values cannot be higher than that calculated using the volume 

distribution values of any node under it.

Proof:
n

From (2 ), \ Q u X \ > Y  max(g; jc,)
i

Let Dmn = (dmnj ,  ... , dmnjl) be the directory lower bound.

Dmn < any of the leaves X in its subtree.

Since a maximum value cannot increase by decreasing the numbers considered, we 

know that max(^;, dmn i) < max(q.,xi).
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Since the sum of a vector cannot increase by decreasing its components, we can see
n n

that: £  max(c/, ,) < £  max(?, ).
/ i

n

Therefore ^  max(^i 4 mrtti) ^ \Q ^  2 f |, VX e subtree(D); the minimum union
/

calculated using the minimum of the range of a directory node is less than or equal to 

the minimum union calculated using any node below this directory node.

Theorem 5.1: The Jaccard coefficient between an object Q and a directory node D 

obtained using the maximum volume distribution values to calculate intersection and 

the minimum vales to calculate union cannot be exceeded by any node in the subtree 

rooted by D.

Proof:
n

^ m i n  ( q i jci )

Recall (3): Jaccard(Q,x)< —n---------------
E nia x (^ T )

i

Per Lemmas 5.1 and 5.2, the intersection is the highest possible for the subtree rooted 

by D when the directory’s maximum vector is used in place of any of the actual 

volume distributions and the union is the lowest possible for any node in this subtree 

when the directory’s minimum vector is used in place of any of the actual volume 

distributions.

max (Jaccard(Q, X)) = max
Xesubtree(D ) X esubtree(D )

min(c/( yx[)
i___________________

n

^  max(g; rxi)
\  i

^ m i n ( 4 ; / / „ « , , )

< - ^ --------------------
n

£ m a x(qiJ mnJ)

Obtaining a maximum Jaccard score below the query threshold is therefore 

justification to eliminate all children of the tested node from contention without 

sacrificing the 100% recall criterion. Equations 4-6 formally define the upper bound 

on Jaccard score for any node in the subtree when examining a directory node.
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Let Q be the query object and X be any object indexed within the subtree of a 

directory node D.

Let V q = (qi, ... , qn) be the query object’s volume distribution.

Let Dmn -  (dmivi, ... , dmn;n) be a directory node’s volume distribution lower 

bound and Dmx = (dmXj), ... , dmx,n) be that node’s volume distribution upper 

bound.

Then,

An upper bound for the intersection is:
n

IQnX Lsublree{D)  ̂X (4)
i

A lower bound for the union is:
n

\Qn X L subtree{D) * Z  (5)
i

Hence an upper bound on the Jaccard score between Q and D is:
n

Z m in  ( q i d ^ t )

Jaccard (Q, X ) < —------  (6 )
VX esubtree(D ) J L ,

2^max(qndmni)
i

Theorem 5.1 justifies the use of the bound provided by Equations 4-6 for pruning

branches. Note that these equations generalize Equations 1-3 since the element-wise

maximum and minimum set for only one distribution are identical to the distribution 

itself. Equations 4-6 merely substitute the maximums for the exact volumes in the 

intersection calculation and the minimums instead of the exact volumes in the union 

calculation. We therefore can use Equations 4-6 to test both directory nodes and leaf 

nodes if we see the leaf node maximums and minimums as one and the same, the 

actual volume distribution for that leaf. From a bound-checking perspective, a leaf 

node is just a directory node encompassing the subtree it roots, which for a leaf node 

is only itself.

5.4 Range Query Processing
This subsection examines the process of performing a range query with the VD-Tree. 

A range query is one where the desired return set is the set of objects in the database
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having a value within a specified range for a specified field. Instead of a field, the 

result of an algorithm using any database object as an argument can be used. This is 

the case here, where the user desires to know which tumour segmentations in the 

database have a Jaccard score in the range [x,l] (0<x<l) with the query tumour.

Equations 1 through 6  are the basis for querying using the VD-Tree structure. 

Starting at the root, the volume distribution representation of the query is tested for 

maximum Jaccard score using Equation 1 for leaf nodes and Equation 2 at the 

directory nodes. Directory nodes getting at least the query threshold for a score are 

expanded into their children; others are discarded as even their guaranteed upper 

bound is not high enough to be accepted by the query. Leaf nodes passing the test 

denote a single study that must be examined to determine the exact Jaccard score. So 

the end of the crawl down the tree yields a shortlist of studies to be examined further, 

saving considerable time over checking each study linearly. The algorithm yielding 

this shortlist is displayed in Figure 5.3.
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Algorithm VectorNode GetCandidateList
Input: Query object’s volume distribution Q, minimum Jaccard score required for

an object to be returned (Threshold)
Output: List of candidates to check exactly by performing matrix-wise intersections

Queue[l] = pointer to root node of VD-Tree 
While queue not empty

X = extract head of the queue 
intMax = min(Q,X.max) 
unionMin = max(Q,X.min)
JaccardMax = intMax / unionMin 
If JaccardMax > Threshold 

If X.children == directories 
Append X.children to queue 

Else
Append X.children to leafQueue 

End If 
End If 

End While

For Y = each member of the leaf queue 
intMax = min(Q,Y.volDist) 
unionMin = max(Q,Y.volDist)
JaccardMax = intMax / unionMin 
If JaccardMax > Threshold 

Append X.study to studies 
End If 

End For

Return studies
Figure 5.3: Candidate List Algorithm 

An example should help clarify matters. Say we have 2D binary images and to 

make things even simpler we make the volume distribution only a 2  x 2  grid.

If we have the following 3 volume distributions:

"5 8 ' ' 8  1 '4  8 ’
Cl = ,C  2 = ,C3 =

2  0 2  0 2  0

all stored under a directory node DN, this directory would have the following 

properties (obtained by maximizing and minimizing all indices individually):

DN =mx

8 8 
2 0

>DNm
4 7 
2 0
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Now that the grouping of nodes is obvious, a query example is in order. Say we have 

the following query object and tree root (note that directory nodes are displayed here 

with the maximums on the left and minimums on the right), with threshold 0 .6 :

Query: '5  O' , Root: '9 8 ' '4 0 "
! 0  1 _ 8 0 2 0

The maximum intersection and minimum union are calculated as:
/n ___

E m in (qi,dmx,i)=  £  min
elements

"5 O' '9 8 '

V 10 1
5

_ 8 0 )

elements

5 0 
8 0/ elen

n

'Y_irnm(qi4 mxi) = 13
i

n____________________________ ___

Z ma< q i4 mn,i)=  X  max
i elemen

n____________________________ ____

2 > a  < q i4 mn,i) =  2
i elements

n

I m a x (g „ J )M,.) = 16

r '5 O' '4 0 "

V ! 0 1
5

2 0 7
5 0 

10 1

The maximum Jaccard score we can attain in the subtree below this node is therefore:
n

E m m ^ , ^ , . )

Jaccard (Q, X ) < —
VXesubtree(D ) n

Jaccard (Q, X ) <
XfX^subtree(D ) 16
Jaccard (Q , X ) < 0.8125

VX  esubtree(D)

Zmax(?y ,MJ
i

13
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Since this upper bound is above the query threshold we must expand this node and 

perform the same procedure on its children:

Root: 9 8 4 0 Sim 0.8125
8 0 2 0

Sim 0.7222
9 1 
8 0

7 0 8 8 4 7 
2 0 Sim 0.3043

For both children we calculate the upper bound on the Jaccard similarity measure but 

this time the right branch can be pruned since the upper bound does not meet the 

query threshold. We continue with only the left branch, revealing leaf nodes:

Root: 9

1---00 '4 O'

1...
.

00
o

' 2

o

Sim 0.8125

Sim 0.7222 9 1 
8 0

7 0 8 8 4 7 
2 0

Sim 0.3043

Sim 0.5789 7
6

Sim 0.6500

Patient = 3, Study = 6  

We get the upper bound on a leaf using its only volume distribution in both the 

intersection and union calculations per Equation 1 and obtain an unsatisfactory result 

(below threshold) for the left node and a satisfactory one for the right node. We 

therefore want to know which imaging is referred to by the right node. The patient 

and study numbers are contained within the node as fields in the LeafNodes table (see 

Section 6.2). Each leaf node showing an upper bound that is higher than the query

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



threshold is put into a list to be checked exactly after the tree has been processed. 

The advantage of the tree is that the list to be checked is typically only a small 

fraction of the whole list that a linear scan must check. As we show in the results 

section, even an R-Tree cannot help shorten the list nearly as well as the VD-Tree.

It is worth noting that a k-nearest neighbour search is possible with the VD-Tree. 

Due to the provable upper bounds given at any node in the tree, a best-first approach 

would be a good strategy to obtain the nearest neighbour or the few nearest 

neighbours if we keep the kth best value as our bound in the best-first search. Best- 

first search is an algorithm where the best-looking path (the one with the highest 

upper bound) is followed to get a potential nearest neighbour, and other paths are 

only followed is their upper bound lies above the closest neighbour found to date. 

See Section 5.5.1 for one example of best-first search.

As a side note to this indexing for the Jaccard measure, the Volume Distribution 

Tree could be used to index any measure exclusively requiring some combination of 

volumes and the maximum or minimum of either intersection or union. Previously 

we showed how to obtain the minimum union and maximum intersection, but their 

counterparts can also be quickly computed from stored values. The maximum union 

and the minimum intersection occur when the volumes are as disjoint as possible; that 

is when they fill up different portions of the volume in each cube, intersecting only 

when no empty space is left. Equations 7 and 8  are the mathematical formulation of 

this idea.
n

\Q n  X\ > ̂  max(<7, +xt — fullvolumesj ,0) (7 )
i

n

\Q c\X \<  mm(qi +xt, fullvolumesi) ^

Each of the grid sections in the volume division has a constant volume up to which it 

could be filled, and this is what is listed in the fullvolumes variable above. For 

example if one of the grid cells is of dimension 5 x 5 x 5 it has a volume of 125 

voxels so if we have 2 tumours with volumes 70 and 80 we still cannot have a

maximum union of 150 voxels in this cell as there is no more than 125 voxels

available to be fdled. The fullvolumes variable thus is a vector of length equal to the 

number of cells in the grid, with each element being equal to the volume capacity of
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the cell it denotes. Note that the cell volume is not necessarily equal in all divisions -  

in our case we unevenly divided the brain to get a more meaningful set of values, but 

in any case the set of full volumes is constant and can be stored as one small constant 

vector.

To set up a tree using the lower bound on intersection and the upper bound on 

union by using volume ranges like the VD-Tree directory nodes do, the minimum 

intersection formulation requires the use of the minimum volumes to avoid

overestimation of the lower bound on intersection. Technically the set of minimum 

volumes could all belong to a single object, so using any values above the minimums 

would only heighten the computed lower bound, excluding this small-volume object 

despite that it may be a valid result. This potential exclusion of a valid result must 

never be allowed to happen. By the same logic, the maximum union requires the use 

of the large end of the volume range to avoid underestimation of the upper bound. 

Equations 9 and 10 summarize these two points.
n

IQ n  X Lsubtrees ~ Z  m ax^,: ~  fullvolumes, ,0) (9)
i

n

IQ n  A x  .subtrees ~ Z  m m ^  , fullvolumes,,) (10)
i

It is also worth noting that the Volume Distribution Tree structure is trivially 

extensible to any number of dimensions; a 4 x 4 x 4 grid is used in this work but

could easily be a 3 x 3 x 3 x 3 x 3 grid of hypercubes if desired for another

application.

5.5 Construction, Deletion and Insertion
A VD-Tree can be constructed by bulk-loading, insertion or bulk-loading followed by 

insertion. For bulk-loading, the all-pairs Manhattan distances between the volume 

distributions are taken, and in a loop the lowest distance between nodes where at least 

one is unassigned to a group is chosen. If one of the two nodes are unassigned, it is 

assigned to the other one’s group and if  they are both unassigned, they form a new 

group together. The upper triangular all-pairs distance matrix is updated to show 

infinite distances from all nodes to any node already in a full group. Once the loop 

has completed, the groups of leaves are completed. Each group is assigned a parent, a
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new directory node whose maximum and minimum volume distribution vectors are 

then filled in using the group members’ volume distributions. These new directory 

nodes are then clustered in the same manner, but since there are necessarily less of 

these nodes than there were in the previous clustering, there will be less groups. Each 

of these groups is assigned a parent directory node as before. This process continues 

until only one group can be formed. This singular group’s parent becomes the root of 

the tree. The bulk-loading algorithm is shown in pseudo code in Figure 5.4.

Algorithm BulkLoad
Input: Matrix VD where each row is one volume distribution, and the maximum 

nodes to be put into each group, GroupSize.
Output: Grouping hierarchy and directory node bounds.

//Group the distributions we have together 
numObjects = number of rows in VD 
[G[l],Mx[l],Mn[l]] = GroupSimilars(VD,GroupSize)
//Now cluster the dir. nodes representing the lower-level groups
i = l;
While G[i] has more than 1 element 

i = i + 1
MxMn = concatenate Mx[i-1] with Mn(i -1) (i.e. [Mx Mn])
[G[i], Mx[i],Mn[i]] = GroupSimilars(MxMn,GroupSize)

End While
//G[last] is the roof N children,
// G[last-1] will have groups 1 to N, with the kth group 
// representing the level above’s kth node’s children

Algorithm GroupSimilars
Input: Matrix VD where each row is one volume distribution, and the maximum 

nodes to be put into each group, GroupSize.
Output: Clusters of volume distributions and their max and min bounds.

NumObjects = number of rows in VD 
Cells = number of columns in VD 
If not(leaves)

Cells = Cells / 2 
End If

For i = 1 to NumObjects 
For j = (i+1) to NumObjects 

D[i j]  = Z |VD[row i] -  VD[row j]|;
End For
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End For
The rest of D is set to Inf

While any nodes unassigned 
[i,j] = min(D)
D[i,j] = Inf
If i & j are unassigned

Append group [i j] to G as a new row 
Elseif i is in group x, and j is unassigned 

Add i to group x 
Elseif i is in group x, and j is unassigned 

Add i to group x 
End If

If group x was just filled
D[involving members of x] = Inf 

End If 
End While

NumGroups = number of groups formed 
For i = 1 to NumGroups 

NumElems = elements in group i 
For j = 1 to NumElems 

Ifleaves 
VDmax[row j] = VD[row i]
VDmin[row j] = VD[row i]

Else
VDmax[row j] = VD[1st half of row i]
VDmin[row j] = VD[2nd half of row i]

End If 
End For
For k = 1 to Cells 

Mx[i,k] = max(VDmax[column k])
Mn[i,k] = min(VDmin[column k])

End For 
End For

Return G, Mx, Mn
Figure 5.4: Bulk Loading Algorithm 

When deleting a node, delete its parent’s pointer to this node and re-calculate the 

parent’s volume distribution. Propagate this volume distribution recalculation up the 

tree until it does not change or the root has been found. If the node deletion has 

caused its group to be reduced to only a single node, that node is also deleted and then
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re-inserted into the tree. In this case its parent is no longer useful and thus it is also 

deleted; the node and its parent are deleted and then the node is re-inserted.

Insertion begins with a nearest-neighbour search as we would like to insert the 

new node below the same directory as its nearest neighbour. The node is inserted into 

its nearest neighbour’s group as a child of this neighbour’s parent, which can cause 

overflow (in this work we allow a maximum of 6 children per parent but this can be 

adjusted). In an overflow situation, the parent node is split with the children being re­

grouped into two not necessarily equal-sized groups. The insertion algorithm, 

including the nearest-neighbour algorithm and the node-splitting algorithm, is listed 

in Figure 5.5.

5.5.1 Finding the Most Similar Volume Distribution

The Manhattan / city block distance metric is used to determine the nearest neighbour 

instead of the Euclidean metric. The Euclidean distance metric emphasizes uneven 

distance distributions such as a large difference in one dimension over many small 

distances spread over many dimensions, for example a distance of 4 spread over 4 

dimensions has a Euclidean distance of 2 or half of the score of the case where the 

difference of 4 is in a single dimension. For insertion into the tree we want the least 

stretch to the directory max/min volume bounds regardless of the spread of these 

stretches.

To find the most similar volume distribution, a Roussopoulos-type nearest 

neighbour algorithm is used since it quickly finds the nearest neighbour, is easy to 

implement, and needs no global variables [22]. We only search nodes where it is 

possible to find a neighbour closer to the inserted node than the current best one 

found. We thus start with an effectively infinite bound such that any node is a 

potential candidate, but we quickly update this. The search starts off by looking at 

the root’s children and calculating the new node’s lowest possible distance to the 

subtrees rooted by each. The lowest distance from a new node A to any node in a 

subtree rooted by node D is the sum of the distances of A’s vector outside the bounds 

of D’s max and min vectors. That is, for A’s volume distribution Va and D’s 

maximum and minimum volume distributions {Dmx, Dmn}, the distance from A to D 

is taken as the minimum Manhattan distance between multidimensional point Va and

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



multidimensional bounding box {D ^, Dm,,}. For example with a volume distribution 

of [2 6 4], A cannot be any closer than a distance of 3 from any child of D with max 

[7 5 6] and min [4 3 3] since A’s first element is at least 2 lower than any child of D 

and its second element at least 1 above any child of D.

With the best distances to all of the root’s children calculated we expand the best 

one. This process is recursive, meaning that the first few expansions will be the root, 

then its ‘best’ node, then that one’s ‘best’ node and so forth until a leaf node is found. 

With leaves we do not need to set bounds on the best possible distance, we directly 

calculate it and return that value back up the chain of recursive calls. This proceeds 

as follows: when a ‘best leaf value is received by the program instance checking that 

leafs parent and its siblings, the instance updates its bound to reflect the new ‘best 

node’ and now will not search any nodes that don’t have a possibility of yielding a 

lower distance. This instance now sends new recursive calls to check any still- 

promising nodes on the same level and once done returns the best node bound up to 

its caller, who then continues with the same process. In the end, the original instance 

of the nearest neighbour function called returns the best node and its distance from 

the inserted node.

5.5.2 Overfilled Nodes

When we add the node to a group of children, it may cause that group to become too 

large and thus we have to split it. If not, the new node is added as a leaf, its nearest 

neighbour’s parent adds the new node number to its child list and update the parent’s 

min and max bounds, propagating this update up the tree. The overfilled node 

situation is handled by splitting the parent node into two. Note that this splitting 

process can be recursively carried out up the tree if necessary.

To maintain the performance of the tree, we need to form two close-knit groups as 

the child sets of the two parents after the split. To this end, we start by getting the 

pair-wise distances between each pair of nodes which for a capacity of 6 nodes i.e. 7 

nodes at overfill we need to compute (7 choose 2) — 21 distance combinations. The 

furthest two should definitely be in different groups and thus are chosen to be the first 

members of each group. Next, the closest node to either group is added to its closest 

group and the other group gets its closest node as a second member. Each group now

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



has two members and this is the minimum allowed for a group per this procedure and 

this tree implementation. The groups’ maximum and minimum bounds are now 

computed. The nodes that are still unassigned to any group will now be assigned in a 

loop. In each iteration of this loop, the amount by which each node would stretch the 

current bounds of each group is computed. The node causing the lowest amount of 

stretch for either group is added to this best group. For example, adding a node with 

volume distribution [2 6 4] to group 1 with max [5 5 6] and min [3 4 3] would stretch 

the group’s max to [5 6 6] and its min to [2 4 3], i.e. a stretch of 1+1+0 = 2. If the 

stretch to group 2 is larger than 2 and no other node could be inserted into either 

group without stretching them by less than 2, this node would be added to group 1. 

The max and min bounds of the group with the new member are updated where 

necessary and the next iteration is set to add another node. The iteration stops once 

all nodes have been placed in a group. Note that the groups can be quite different in 

size, with the minimum of two nodes in each group being the only size constraint.

Through recursive splits we may increase the height of the tree (if splitting the 

root), but can never cause leaves to become on different levels. Each split maintains 

the two parents at the same level as the single one before the split and retains the 

children at the level below these.

Algorithm Nodeinsertion
Input: One study s and its volume distribution VD.
Output: A database row is written.

Node NN = NearestNeighbour()
Int ID = Next Unused Value in LeafNodes table 
Insert into database (LeafNodes):

(Node = ID 
Study = s
Parent = NN.parent 
VolDist = VD)

AddChild(True, ID, NN.parent, VD, null)

Algorithm NearestNeighbour
Input: A volume distribution VD (single or [max min] concatenated), the number of 
______ cells, the subtree root and the current nearest neighbour acting as a bound.
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Output: The volume distribution’s nearest neighbour in the subtree rooted by
Root, and this nearest neighbour’s Manhattan distance from the given volume 
distribution.

Best = Bound 
BestNode = null

If Children Are Leaves 
For each child C 

//Calculate how far it is from the node’s distribution 
D(C) = 0;
For i = 1 to Cells 

D(C) = D(C) + |VD(i) -  C.VolDist(i)|
End For 

End For
Return Root.children(index of lowest D)

Else 
For each child C

//Calculate how much it is out of the node’s bounds 
D(C) -  0;
For i = 1 to Cells 

If VD(i) > C.Mx(i)
D(C) = D(C) + VD(i) -  C.Mx(i)

Elseif VD(i) < C.Mn(i)
D(C) = D(C) + C.Mn(i) - VD(i)

End If 
End For 

End For

D = Sort(D) in descending order 
For each child C in ascending order of distance D 

If D(C) >= Best 
//Stop looking down this branch 
Return [BestNode, Best]

End If

[Candidate, Dist] = NearestNeighbour(VD, Cells, C, Best)
IfD ist<B est 

Best = Dist 
BestNode = Candidate 

End If 
End For
Return [BestNode, Best]

End If
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Algorithm AddChild
Input: A node to be added to the tree, its new parent node, whether or not the child is 

a leaf node, the child’s volume distribution (single or range).
Output: A child is added to a directory node.

Append child to Parent’s children vector 
NumChildren = Cardinality of Parent’s children 
If NumChildren > MaxChildrenPerNode

int D(,) = Upper triangular matrix where D(i,j) = manhattan dist 
between Child(i) & Child (j)

[i,j] -  argmax(D(D<inf))
Set Child(i) as Group 1 ’s only member 
Set Child(j) as Group2’s only member 
k = Child with smallest distance to either Child(i) or Child(j)
If Child(k) closer to Child(i) than to Child(j)

Append Child(k) to Group 1
Append to Group2 the unassigned node nearest to Child(j)

Else
Append Child(k) to Group2
Append to Group 1 the unassigned node nearest to Child(i)

End If
Calculate element-wise Max/Min bounds for the 2 groups 
While there are still unassigned nodes

stretch 1 = manhattan distance from group 1 ’s bounds to each 
remaining node 

stretch2 = manhattan distance from group2’s bounds to each 
remaining node 

Append node with min stretch to either group to that group g 
Update group g’s Mx & Mn bounds 

End While

Node NewNode = new node housing group 2 
//Append NewNode to Parent’s children 
addChild(False, NewNode, Parent.parent, Group2.Mx,

Group2.Mn)
End If
Update Parent’s Mx & Mn Bounds__________________________________________

Figure 5.5: Node Insertion Algorithm

5.6 Implementation-Specific Details
For the query of brain tumours in a database, we have implemented the Volume 

Distribution Tree on top of a Relational Database Management System (RDBMS).
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The tree structure is actually two simple database tables with PL/SQL functions 

controlling the querying and management of data within the tables.

The two tables are LeafNodes and DirectoryNodes, keeping track of leaves and 

directories respectively. As remarked earlier, the min and max volume range for a 

leaf node are equal, and actually by using Equation 2, we can compare a query with a 

node without needing to know what type of node it is if we redundantly store leaves’ 

volume distributions twice as a max and min. In this case, only one table would be 

required instead of two, but we opted for the two-table design to avoid redundant 

storage and null values for properties that one kind carries and the other does not.

Each LeafNodes row houses a node ID, a parent ID, the represented (patient, 

study) pair, and the vector of volumes of the cells. A DirectoryNodes row also 

contains a node number and a parent number, but there are two vectors for the 

volumes -  a maximum and a minimum volume division for its children, as well as a 

child pointer vector (has the node numbers of the children). The directory nodes have 

positive ID’s and the leaves have negative ID’s to make it easy to discern which kind 

of node a pointer is referring to.

A query proceeds down the tree using SQL select statements to pick up nodes, 

where each node is a row from one of the two tables. A queue of nodes to be 

examined is kept, starting out with only the root in it. Each time around a loop, the 

head of the queue is extracted and used as the node to expand for the duration of that 

loop. This node is used to compute the upper bound for the Jaccard score between 

the set of objects it represents and the query object. If the upper bound meets or 

exceeds the query threshold its children are either added to the back of the queue if 

they are directory nodes or to the leaves queue if they are leaves. The loop can now 

begin again, ending when it checks for a new node and instead finds an empty queue. 

Once this has occurred, we simply have a list of leaves to check. First the leaves are 

checked for their upper bound on Jaccard score to see if there is any reason to load 

their actual matrices. The ones with an upper bound meeting or exceeding the query 

threshold are exactly checked by having their binary tumour label matrices retrieved 

from the database and checking for intersection of the intersecting part of their 

minimum bounding rectangles. Thus, once a query has made its way down a tree, we
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have a shortlist of real imaging studies to be closely examined and then possibly sent 

to the user.
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Chapter 6: System Architecture

6.1 Overall System Component Connection
Before going into how each component works, we shall look from high above at the 

communication between these parts. Figure 6.1 displays the interconnections 

between the primary components of the system as well as the components’ locations. 

The server machine runs Oracle lOg and Matlab R2007a with the Image Processing 

and Database toolboxes on Red Hat RHAS4.

Client (PC)

Results Comparison 
Interface

webpage.java W ebpage

VBIistener.javasrvEntry.java

client. Java
Matlab Permissions java

MatlabControl.java
RSA.javt

Figure 6.1: High-Level System Architecture 

The front-end is a Windows form providing an easy-to-use interface to the user. 

The form has been implemented in Visual Basic.NET to facilitate development and 

rapid addition of new user-desired features. As we will explore shortly, the front-end 

communicates with java components by passing strings over a port and thus this
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front-end could later be modularly replaced with a program written in another 

language or even a web interface.

The user logs into the server, via the front-end, to create a session. During this 

session, the user poses queries and views the results until deciding to terminate the 

session. A session will be defined here as the entirety of interaction between the 

client and server to provide the user with query results and visualizations, from login 

to closing the client and connections.

When a user wants to use the Results Comparison tool, they can simply double­

click on it as is the norm (after installation of course). At the start of the session 

(during launch of the interface window), the Results Comparison Interface starts the 

VBlistener class (stored inside javaclient.jar as its main class) and connects to it via a 

local port. The VBlistener class’ purpose is to listen to a local port for instructions 

from the VB interface to pass to send along to the server, as well as returning strings 

from the server to the interface. VBlistener instantiates a single Client class when 

starting up and this establishes a connection to the server’s srvEntry class via the RSA 

class. The srvEntry class provides a single point of entry to the server and sets up the 

actual session with the Server class upon checking the client’s credentials; i.e. 

srvEntry is the receptionist and security checkpoint for the server. The RSA class 

merely encapsulates the RSA encryption and decryption along with send and receive 

capabilities. The client’s job is to handle the communication with the server such that 

after authentication and delegation of a port by srvEntry the VB program can 

effectively communicate with server .java, which can locally access both Matlab and 

the database. If srvEntry approves the user, the first available port is allocated to this 

user -  client.java is notified and the user information is listed along with the port in 

the singleton permissions.java class. If there are no immediately available ports, the 

user is placed in queue until there is room. The server’s opening webpage is a simple 

list updated by srvEntry to show the queue such that the user gets a sense of how long 

the wait might be.

The number of users that can simultaneously use the system is limited to the 

number of Matlab licences on the server, as each user requires a unique instance of 

Matlab to have their own variable set in a workspace. Each instance is running one
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instance of the server .java class listening to one specific port. Using the open-source 

Octave as a replacement for Matlab would only be possible with open-source 

equivalents to the database toolbox and the image processing toolbox, and even then 

the number of open instances would have to be limited to maintain acceptable 

performance from the server. An alternative, now that Matlab is becoming 

multithreaded, may be to have one instance of Matlab run all the commands with 

each user’s variable names being appended with their own hash code.

In any case once the user’s information has been entered into Permissions and the 

client has been notified, the client disconnects from srvEntry and establishes a new 

connection with server.java, this time via DES.java. The connection details are 

examined in-depth in Section 6.5. From the connection to the Server class until the 

user disconnects, the specific instance of Matlab (and server.java) connected to are 

considered checked-out and only usable by this user, therefore not accepting requests 

from anyone else. Upon starting communication with a user, the first order of 

business is to set up the database connection objects in Matlab. These are the 

Matlab’s database toolbox ODBC-JDBC connection as well as oracleBlob and 

plsqlRunner, which handle requests for BLOBs, user-defined types such as vectors of 

integers, PL/SQL functions, and any other functionality where Java was more suitable 

for implementation than Matlab. Now that the user interface can securely 

communicate with server.java, the user interface can echo the user’s commands to 

this java class, who in turn relays the commands to either oracleContact.java or 

MatlabControl.java if the command is one of the listed allowable commands and is in 

the right form. The oracleContact module is just an API for easy access to the 

database, in this case usually to obtain a specific image from the database in png form 

to be shown to the user. Similarly, the MatlabControl module (created by Kamin 

Whitehouse while a PhD student at the University of California at Berkeley) is just an 

API to allow server.java to call Matlab functions as though it were typing into 

Matlab’s command line. Matlab typically obtains some data from the database 

through its own ODBC-JDBC module and then performs manipulations on it before 

returning results to MatlabControl. The information can be passed back along the
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same chain of components as far as need be. The current list of permitted Matlab 

calls is:

• PutlntoCell / PutlntoMat (amalgamates several variables into a cell array 

or matrix, checking that each input is a workspace variable to ensure that 

no dangerous commands could be issued using this name change as a 

circumvention method)

• DBlogin (logs this Matlab instance into the main database)

• query (runs a database query to find similar tumours to a specified 

instance, which must be previously put into the workspace using another 

command)

• notlnRes (replaces the query results list with the list of studies not 

retrieved by the query; this is used to fulfill the NOT operator in Boolean 

queries)

• multiQueryDB (runs a few queries, with the end result being the 

application of the user-supplied Boolean operations to the set of queries; 

for example a user may create a drawing and ask for all tumours 

intersecting it at least 30% but not touching the left side of the brain)

• intersectionMapPostQueryDB (uses the query results to make a 3D matrix 

where each voxel’s value is the number of tumours intersecting there)

• volumePcts (finds the percentage of the aggregated tumour volume that is 

taken up by 1 or more tumours, 2 or more, 3 or more... such that the 

colormap below the aggregated picture can show what percent of the 

volume is taken up by x number of results or more)

• writeAggregatesFromDB (retrieves the T1-weighed modality imaging 

from the database as a 3D matrix, overlays the aggregation of tumours 

(from intersectionMapPostQueryDB) onto it and writes the slices as png 

images to the filesystem for pickup by the user interface)

• createOverlaySet (amalgamation of intersectionMapPostQueryDB, 

volumePcts, writeAggregatesFromDB)

• makeColorChart (creates the correct image to display the mapping 

between color and represented value)
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• resultsetTouchingXYZ (finds all tumours in the current result set that 

touch the voxel (x,y,z)

• removeRow (removes the specified result from the set)

• makeStruct (amalgamates tumour information into a Matlab ‘struct’ for 

processing by scripts such as query)

• amendMat (adds points to a polygon describing the user-drawn query 

region)

Also note that each expected number is extracted by parselnt or parseFloat in Java to 

avoid any user-defined strings from getting through and issuing illegal commands. 

Note that the workspace variables are preserved during a session, so having x=4; at 

one point means the variable x is still 4 later unless overwritten by another user 

function. Because of this workspace, operations can be defined using string variables 

in the VB program thereby avoiding the need to transfer large matrices back and forth 

through a network.

At the end of each session, Matlab’s workspace variables (other than the server 

java object) are automatically cleared such that users cannot feel effects from the last 

user nor spy on them. The permissions class is given back permissions to allocate 

that Matlab instance to another user; i.e. the server class loses the user’s public key 

and the port number re-enters the srvEntry class’ allocation queue.

An administrator must start the Matlab instances and the single srvEntry for the 

system to be ready to accept client requests. An easy way to perform these tasks and 

keep them running after disconnecting from them is to use VNC (Virtual Network 

Computing). With the vncserver process started, a remote VNC client just watches a 

screen output rather than connecting like SSH, so after graphically starting the 

required processes the VNC client can be closed without affecting the server. The 

srvEntry process is started simply by entering “java srvEntry” at the command line 

while each instance of Matlab needs to have “srv = server(port);” entered into it after 

start-up -  each with a different port number selected from the list inside of 

srvEntry .java. The simplified Matlab interface available with the nojvm option 

cannot be used since creating Java objects, which requires an active JVM (Java 

Virtual Machine), is necessary for the operation of the command-receiving subsystem
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as well as the database query subsystem. Trying to start the server with the UNIX 

nohup option did not work as Matlab would not keep listening for commands upon 

closing up the SSH terminal. VNC allows the administrator to graphically use Matlab 

as well as later return to view and modify the current state of affairs. Thus the 

recommendation here is to use a VNC terminal, but any means of starting and 

checking the Matlab instances that is convenient to the administrator will allow the 

system to work and be transparent to the end-user.

6.2 Database Subsystem
The backbone of the system is the database, wherein lies alfthe data to be viewed via 

the front-end. The database must not only be a large repository for imaging and 

patient data but must also be organized in such a way to provide efficient access to 

the data and be extensible. The database chosen was Oracle lOg due to its features 

and its large user base. More users would mean more accessible support for issues in 

setup and maintenance via web forums.

Patient data and their imaging are stored in one main table, where each row 

corresponds to one study, i.e. one day that the patient came in to be imaged. The 

table has the (patient #, study #) pair as its primary key although the RowID also 

provides a unique key for the table. The other columns are:

• ToneOOl -  088 (88 slices of T1 images stored as BLOBs)

• ToneCOOl -  088 (88 slices of TIC images stored as BLOBs)

• TtwoOOl -  088 (88 slices of T2 images stored as BLOBs)

• SegOOl -  088 (88 slices of segmented images stored as BLOBs)

• OutlinedOOl -  088 (T1 images with red-outlined segmentations as 

BLOBs)

• T1 (T1 image as a BLOB holding a 3D matrix of 8-bit integers)

• TIC (TIC image as a BLOB holding a 3D matrix of 8-bit integers)

• T2 (T2 image as a BLOB holding a 3D matrix of 8-bit integers)

• Mat (segmented image matrix, but only the section within the minimum 

bounding rectangle is stored here)
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• MBR (the segmentation’s minimum bounding rectangle as a vector)

• Vol (segmented tumour volume in voxels)

• DMap (distance transform map in 3Dmatrix form)

• Depth (maximum value of the tumour segmentation’s distance transform)

• Core (core point; the point with maximal distance transform value)

• Mids (2Dmatrix where each row is a point in the recursive mid splitting -  

see Section 4.2.6)

• OctVol (2x2x2 division of volume for the VD-Tree, as a vector)

• VolDiv4 (4x4x4 division of volume for the VD-Tree, as a vector)

• Date (day the imaging took place)

• Wts (eigenweights found by eigen decomposition)

• ShapeHist (shape histogram values flattened to a vector)

• Elong (ratio of the 1st to the 2nd eigenvalues from PC A of the

segmentation)

• Flat (ratio of the 2nd to the 3rd eigenvalues from PCA of the segmentation)

• Sphericity (Sphericity value of the binary tumour segmentation)

• Enhancement (average intensity level increase from T1 to TIC within the 

segmented region)

• Diaml/Diam2/Diam3 (the diameter of the tumour along its 3 principal 

directions)

Note that some of the columns contain redundant information to improve 

performance. Tumour imaging is kept in picture form for viewing with any image 

display application, as well as in 3D matrices meant for Matlab. Matlab technically 

could pull up each slice of an MRI image and construct a 3D matrix and could 

conversely take the matrix and write each slice’s image to disk but both of these 

would be very computationally wasteful. The red-outlined tumour images are 

produced by a Matlab function using the T1 image and the binary segmentation, but 

the result would be the same every time the outlined image is created for a study so 

why not just perform the manipulation offline and store the resulting pictures for 

viewing by the user interface? Although this takes up more disk space, hard drives
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are now inexpensive to upgrade and the server won’t have to recreate the images on 

demand every time a user wants it (which will likely be quite often). Note that a 

‘metadata’ table exists in the database to include an explanation of each field of each 

table created. A user can therefore query by table and/or column to get textual 

descriptions of the fields selected.

Trees supporting queries are implemented in PL/SQL, a procedural language 

version of the standard database Structured Query Language (SQL). These scripts are 

entered into the database and generally use their own tables for support. For example, 

the Volume Distribution Tree implementation described in Section 5.6 keeps all of its 

nodes as rows in one of two tables: DirectoryNodes and LeafNodes. The directories 

and leaves could technically be stored in one table together, but in that case would 

leave plenty of null values in the columns unused by that data type.

6.3 Matlab-Based Subsystem
The mathematical manipulations performed on the data are almost entirely done by 

Matlab. Matlab has been proven a wonderful mathematical tool, providing a high- 

level language while remaining efficient for vector operations (i.e. so long as 

operations on a large group of numbers are called on a vector / matrix containing 

these numbers as opposed to writing a nested loop construct). The Matlab language 

not only allows for rapid development of programs but greatly decreases the 

difficulties in code maintenance. Due to the constant turnover of graduate students 

graduating and moving on, the code must be maintained and improved upon by 

people that have perhaps not even worked with the last person doing so.

A large percentage of the code for this project is in Matlab, and much of the Java 

and Visual Basic code don’t need to change to add functionality to the system. For 

example, the encryption and inter-machine communication system can stay as a static 

package while changing which results are pulled up and what similarity measures are 

implemented. Coding new similarity measures can be done exclusively in Matlab 

with the database abstracted away by some Matlab functions created for this project. 

Matlab functions have been implemented to allow retrieval of numbers, strings, and 

even vectors and matrices whether stored as user-defined array types of BLOBs
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(Binary Large OBjects) with no pre-requisite database knowledge. Thus, even 

though the Volume Distribution Tree query and insertion are implemented in 

PL/SQL, they could have been implemented exclusively in Matlab only possible 

sacrificing some of the performance and nothing else. A Matlab routine could just as 

well query the DirectoryNodes and LeafNodcs tables, compute the maximum 

possible intersection, query the next children and at the end load the actual matrices 

from the database and perform Boolean comparisons. Since we have created Matlab 

functions to create and drop tables, add and delete rows and columns, and utilities to 

get the list of tables and their schemas including field descriptions and hints, there is 

generally no need for most users to even login to the SQL prompt. Since the 

scientific community outside computing science is generally much more comfortable 

with Matlab programming than C + +  or Java, this is very attractive for the multi­

disciplinary research aspect of the BTAP group. All of the PL/SQL functions are 

implemented as such for tight integration leading to efficiency, but could more easily 

be programmed in Matlab.

The Matlab functions created can be put into a few categories; data conversion, 

pre-processing of raw data to ready it for entry into the database, interface to the 

database, query support, visualization tools, and utility programs to perform often- 

used sets of commands much like macros.

Although the functions created for this project are far too many to list, a specific 

one whose strategy should be discussed is multiQueryDB. This is the main function 

handling one or more query criteria joined together. For example, how do we handle 

a user asking for all tumours having a shape histogram within a set Euclidean distance 

from a specified one, along with at least a 0.3 Jaccard score with the query object and 

having a volume of less than 15000 voxels? The naive strategy would be to execute 

the queries in the order given and to intersect the results. In that case, we would 

linearly scan the whole database for shape histogram vectors within the threshold 

from the specified one (since large-dimensional indexing suffers from the curse of 

dimensionality), and then have the VD-Tree find the few Jaccard results, a simple 

SQL query could find the volumes above 15000, and then we intersect the results. It 

may be noted that the later intersection is wasteful and that the volume query could
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ask for volume > 15000 AND within the current list of candidates. The main 

inefficiency however here is linearly scanning the whole database for vectors since 

there is a better way. The strategy is to always start with the tree(s) to efficiently find 

a short list of results. Using trees anytime later would be wasteful since the trees 

would have a hard time using the information provided by the other queries’ results. 

Now that we have reduced the set of return candidates, we further reduce this set by 

applying the standard database query criteria such as number relations and string 

matching, in this example’s case the volume query. Finally the most inefficient 

queries are run only on the set of return candidates, in the example this means the 

shape histogram query. This query will be run by linearly scanning only the 

(presumably short) list of candidates instead of the full database.

6.4 Front-End Client
A large portion of the expected user base for the tumour data repository are 

oncologists, as this will help them with treatment planning. The front-end must 

therefore allow them to pull up relevant data with ease and without any computer / 

database training. Database queries as well as handshaking with the server and 

encryption must be hidden from the user.

The client designed is a Windows multiple-document interface (MDI), created in 

Visual Basic.NET. Users can either choose an example from the database to use as a 

query object, upload a new segmentation, or even freehand draw their query. A query 

form can be started simply by clicking Run > Query. An example of this form is 

shown in Figure 6.2.
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Figure 6.2: Query Form 

The top half contains a choice of query objects. Most (but not all) queries 

necessitate a query object, which is either a segmented brain imaging session or a 

user-supplied drawing indicating the region of interest. The patient and study lists are 

obtained from the database, and the list of studies is always narrowed to only the 

available ones for the chosen patient. A user may well want to draw a region, 

wondering what tumours are present in that region -  by clicking on the ‘Draw the 

Query’ button that becomes an option, popping up the ‘Draw Your Own Query’ form 

shown in Figure 6.3.
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Figure 6.3: Draw-Your-Own-Query Form

Here the user can draw upon any brain image in the database, with the brain in the 

background being but a template such that users can orient themselves to draw in the 

right place. Once one slice is drawn, the user may hit the ‘Add Slice’ button to keep 

going, creating a 3D object with which to query. The ‘This Area on All Slices’ 

checkbox shortens the drawing time to find say all tumours in the medial region, by 

just copying the same drawing to all slices, analogously to the process of turning a 

circle into a cylinder. The drawing can even have regions desired and regions not 

desired, which can be combined using the Boolean operators AND, OR, and NOT; 

for example the drawing in Figure 6.3 is asking for all tumours intersecting the red 

area and not intersecting the purple area. The drawings can be loaded from or saved 

to files for later use (which is useful for reproducible results). Note that the OK 

button can be hit after any [positive] number of operations (slices, Boolean...) to 

return to the query form with the object created to date as the query object, while 

Cancel returns to the query form as if nothing had happened.
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The bottom half of the query form serves to actually pose the query, now that we 

have a query object. Each time the ‘Add Measure’ button is pressed, a row for 

imposing a similarity measure appears below the rest. Any row can be removed by 

pressing its delete button (with an X in it) on its left side. For each row, choose a 

similarity measure from the list and enter the parameters desired for that measure. 

While many measures will simply restrict the results by discarding those that do not 

meet the required threshold, some return a degree of similarity ranging from 0  (not 

similar at all) to 1 (exactly the same). The measures returning degrees of similarity 

will have activated boxes for entering a weight -  this is in order to rank the results 

with different importance placed on different queries. The weights are always 

internally normalized, so there is no need for the user to ensure that they add up to 1 ; 

rather it is recommended to keep one of the weights at 1 and to change the others -  

for example setting the next one to 2  to reflect it being twice as important as the first. 

The ‘Query Object’ box is activated for all similarity measures requiring an object -  it 

can be set to a user-defined number or set of numbers, but is generally set to “above” 

to use the query object set in the top of the form.

Once returned, query results are displayed within the MDI, as small windows 

containing a thumbnail of slice 40 of this result’s T1 image and the patient and study 

numbers are displayed in the title bar along with the similarity score. The results are 

ordered with respect to similarity from left to right in rows from most to least similar. 

Figure 6.4 displays a typical set of results returned from a query.

Figure 6.4: Typical Display of Query Results 

Note that the last few results are in orange-coloured boxes -  this indicates that they 

are not true results of the query in the sense that they do not meet all of the query 

criteria (e.g. do not meet a specified similarity threshold) but instead are present as
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the future timestamps of at least one of the retrieved results. The idea behind this is 

that the user wants to study the growth of tumours and thus needs to see what later 

happened with the relevant tumours. For example take a tumour that meets a 30% 

Jaccard score with the query but later grows in another direction and thus no longer 

meets that 30% threshold (see Figure 6.5) -  in this case the user would still likely 

want to see the latter case to know that that sort of growth pattern can happen to the 

tumours retrieved.

Double-clicking on any window brings up that result in a larger window 

comparing full-size images of the query on the left and the chosen result on the right. 

The two images’ type can be toggled between three types: pure T l, segmentation, and 

overlay (Tl with a red outline representing the segmentation). These three forms are 

displayed in the screenshots of Figure 6 .6 .

New Tumour Bounds

New Intersection
Query Object

Original Tumour,

Original Intersection

First Timestamp Second Timestamp

Figure 6.5: Future Timestamp Justification Example
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B: Segmented Images
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Figure 6 .6 : Side-By-Side Result Comparison 

The ‘Side-By-Side’ form permits easy scrolling through the slices to visually assess 

the similarity of the particular result as well as the quality of its segmentation. The 

user may at their own discretion press a button to discard this study from the result 

set, so as not to be distracted by it nor have it be shown in any aggregate statistics. A 

great opportunity for improving the query system would be to collect data regarding 

which results were excluded by physicians and to use machine learning to gradually 

optimize the retrieval of relevant studies.

When faced with a group of results, instead of looking at them all individually, it 

may be advantageous to see an aggregate picture of the set (this feature was requested 

by an oncologist in our group). By choosing the Aggregate option from the Run 

menu, a form similar to the single result comparison form is opened. It shows the 

query image on the left, but the right now has this query image overlaid with coloured 

regions much like heat on a weather map. The red areas are those where all tumours 

in the dataset intersect whereas much of the brain should not be overlaid with any 

color as areas untouched by color contain no tumours in the dataset. A screenshot of 

this form is displayed in Figure 6.7.
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G rayscale Brain Results Aggregation Overlay

Figure 6.7: Results Aggregation Form

The mapping between color and number of intersecting tumours is displayed in a box 

below the aggregation picture. This color map has a slider bar underneath, which is 

used to clip off results below a chosen threshold. This can be useful to focus 

attention on a narrower region when there are a large number of results. Clicking on 

any pixel in the aggregate image populates a list with the tumours which include that 

pixel. Not only does this inform the user, but it can be used to immediately bring up 

the single result comparison form of a chosen member. This renders the exclusion of 

a small number of non-belonging results very easy. That is, some results that 

although technically meeting the query criteria didn’t turn out to be relevant to the 

user’s questions (in the same way as not every Google search result is relevant to you 

when posing a question) can be quickly and easily excluded from the dataset.
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6.5 Secured Internet Connectivity
Care must be taken to ensure that the brain tumour database is not compromised. It 

must be secured such that an attacker cannot view sensitive data and cannot delete or 

modify the data in any way. Ethics approvals allowing us the use of brain imaging 

data prohibits these images from being shown to the public to ensure patient 

confidentiality. Deletion of data would be an obvious problem due to needing to 

restore the data from backup, and modification of data is even more threatening as it 

may not be noticed and can sway query results.

A human-reviewed list of allowed users is maintained on the BTAP server, with 

each user being associated with a password. Obviously the connection between the 

client and this server must be encrypted prior to password transmission until the 

connection is terminated to prevent both decryption of packets by snoopers and 

snooping of the password (which subsequently allows the snooper to log into the 

system as a standard user). All communication between the client and server is done 

by writing byte arrays to sockets. So any communication is converted to a byte array, 

encrypted, and then sent to a pre-specified port to be picked up by another 

component.

Sending information back and forth can most efficiently be done using 

symmetric-key cryptography. The Data Encryption Standard (DES) encryption 

algorithm implemented in Java was chosen to provide an easy-to-use and efficient 

interface for writing and reading streams of bytes that would travel encrypted 

between two components. By piping the output of a Java DatalnputStream into the 

input of a CipherlnputStream, the programmer can transparently write to a stream as 

if it were not encrypted.

Symmetric key algorithms have the obvious weakness that both parties require the 

same key, so after the server generates this key (one generated per session), it is 

wrapped by RSA encryption and sent to the client. Since RSA is an asymmetric key 

algorithm, the client is able to decrypt any byte arrays that the server has encrypted 

with the client’s public key. RSA could be used for the entire session if time was not 

important but encrypting and decrypting a 1MB picture takes on the order of minutes
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even for state of the art hardware on both the server and client side, whereas this takes 

only part of a second using DES.

The full procedure is as follows:

1. Both client and server only possess their own set of RSA keys (1 public, 1 

private) as files in a private folder.

2. Client connects to server’s main port, sending its public key in the clear as 

its first message.

3. If the server finds no error opening this key, the server replies with its 

public key in the clear. The client receiving this knows that the server is 

now expecting its password, and thus reacts by encrypting the password 

with the server’s public key and sending it. The string sent is of the form 

“ip address//usemame//password”.

4. The server checks the password and if  correct, sends back (encrypted with 

the client’s public key) a string indicating which port to connect with for 

this session. The server entry class also writes to the local static 

permissions class for said port to only accept connections from this same 

“ip//user//pass” combination.

5. Upon receiving this number, the client disconnects from the server entry 

point to connect to the port specified, sending its “ip//user//pass” 

combination encrypted with the server’s public key as a first message.

6 . The server class handling this session checks the password and sends an 

encrypted pass or fail message to the client.

7. If passing the password test (which should be the case if  steps 1-4 have 

been followed), the client generates a DES key, wraps it using the server’s 

public key and sends it over.

8 . The server unwraps the DES key and sets up a cipher stream to 

communicate with the client. All further communication is performed 

over this DES stream.
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Chapter 7: Experimental Results

In this section we analyze the performance of the record retrieval done by the Matlab 

and PL/SQL scripts. All tests were run on the database server oyen.cs.ualberta.ca, 

having an Intel Xeon 5130 (dual-core 2.0GHz CPU, 1333MHz FSB, Core® 

microarchitecture, 4MB shared cache), 8 GB of DDR2-667 ECC memory, hardware 

Raid-0, running Red Hat RHAS4 with Oracle lOg EE. For experiments, each of the 

320 tumour segmentations in the database was used one-by-one as the query object. 

The grid used for the volume distribution was a 4 x 4 x 4 grid, covering the voxel 

ranges:

x =  1-84, 85-123, 124-162, 163-258 
y =  1-95,96-129, 130-163, 164-258 
z =  1-27, 28-42, 43-57,58-88.

For a given query object, the Jaccard score threshold was taken as one of the 

following values: 0.01, 0.1, 0.2, and 0.3 with the reason being that lower thresholds 

result in higher numbers of returned results. For each query object and Jaccard score 

threshold combination, we performed 2 0  runs of the query, interleaving the two query 

methods being compared in order to minimize caching effects. Each of the 20 

runtimes for each method was then averaged to give a mean time for an object and 

dataset percentage combination. The runtime for a given percentage of the dataset 

was then taken as the mean runtime for all queries which returned that percentage of 

the dataset.

We first quantify the speedup gained by using the Volume Distribution Tree as 

compared to a linear scan of the database which checks the intersection of minimum 

bounding rectangles before checking the actual intersection of the tumour volumes.

In this way the linear scan discards large portions of the MBR and often prevents a 

check of the actual intersection (in cases where the MBRs don’t intersect) to be 

effectively as efficient a linear scan as possible. Figure 7.1 shows the time to return 

the query as a function of the portion of the database returned, comparing the Volume 

Distribution Tree to a linear scan of the dataset.
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Figure 7.1: VD-Tree Speedup with Increasing Fraction of the Database Returned

As the fraction of the dataset returned becomes higher, the narrowing down done 

by the tree becomes less significant, and for the case where the full dataset is 

returned, no pruning is possible, so any work done by the tree is pure overhead above 

the subsequent sequential scan. The increasing trend in the sequential scan plot 

shows this decrease in effectiveness of the Volume Distribution Tree as a large 

portion of the database is retrieved. Different query objects are what causes the 

variation in the percentage of the dataset returned, and intuitively the MBR’s of the 

objects returning more query results are likely to have a higher average intersection 

with the MBR’s of the tumours in the database. This is the reason for the linear scan 

graph having an increasing trend despite checking a constant amount of objects. The 

Volume Distribution Tree shows a clear advantage until at least 25% of the database 

is returned, and additionally outperforms a linear scan at every point tested (tests up 

to 64% of the database returned).

Oracle Spatial has a built-in R-Tree in 2 to 4 dimensions, so it can quickly sort 

through the 3D MBR’s to come up with a shortlist to check exactly. As we can see in 

Figure 7.2, MBR intersection is a rather poor filter when compared with volume
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division. It is due to the tighter filtering done by the Volume Distribution Tree that 

this tree can easily outperform even an efficiently-implemented R-Tree.
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Figure 7.2: Volume Distribution Tree vs. 3D R-Tree 

By using each tumour image in the database as a query object with a Jaccard 

score threshold of 0.3, the mean number of results is 10.8. The Volume Distribution 

Tree gives us an average short list length of 19.5 to check while the R-Tree only 

narrows things down to 177.6 on average. Since it is the exact checking that takes 

much more time than the trees, trees that can provide the least amount of useless 

items to check while still being efficient perform best. The Volume Distribution Tree 

running time was only 16.5% more than the R-Tree’s on average (0.0965s vs. 

0.0876s), and with an average total query time of 22.8s with the R-Tree, the exact 

checking time clearly dominates the running time of the tree itself, rendering the 

Volume Distribution Tree easily faster than the R-Tree for this problem.

The resolution of the Volume Distribution Tree (i.e. changing it from 4 x 4 x 4 to 

n x n x n) can be optimized experimentally, mitigating the trade-off between tree 

processing length and exact checking length but this would be valid only for a given 

data table length and number of retrieved results. The number of records will
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continue to increase as new patients are imaged which will increase the tree 

processing time, and user queries have result sets with wildly different cardinalities.
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Chapter 8: Future Work

The database will keep expanding as new requirements are placed upon it as well as 

with the influx of new data. Users will be the greatest source of new feature requests 

as they will find things they would like to do that the system does not allow or is too 

difficult to understand at which point the software should be modified to meet the 

users’ needs. This section will detail possible routes for improvement as seen by the 

author.

A major area for future work is the machine learning of relevant results based 

upon which results are discarded by the oncologists using the system. The users of 

this system will be highly-qualified individuals whose opinion of what tumours are 

relevantly similar is very valuable to our research. The system as built enables 

collection of this data while improving the user experience rather than impeding 

them.

Recall the Z-Score segmentation technique from Section 3.3: a mean value matrix 

and a standard deviation matrix computed offline give for each voxel an expected 

value and a standard deviation. Outliers, i.e. voxels falling abnormally far away from 

the mean, are labelled to create an easy-to-segment map generally highlighting the 

tumour region. The segmentation by Z-score suffers from noise in terms that an area 

of bright voxels being slightly moved from the usual similar area (e.g. a normal brain 

fold being slightly off from its standard location) can cause an outline of high Z- 

scores. To combat this, for each voxel the surrounding voxels’ expected values 

should be considered rather than just the voxel in question. A multi-resolution 

strategy would also be in order for dealing with small displacements between images.

As for an implementation detail that needs work, the crash recovery needs to be 

improved to keep the system responsive when widely available. A client-side crash 

or disconnection should result in the instance of Matlab being used on the server to 

free itself from the client connection after a reasonable reconnection period. 

Currently a crash will generally cause a disconnection, cutting off the current user and 

causing them to re-start at the back of the line. Even worse, occasionally
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disconnections are unregistered by the server, keeping Matlab locked in to the 

disconnected user. Upon reconnecting, the user a new Matlab instance while the old 

one stays unused until reset by an administrator.

An extension to the Volume Distribution Tree would be for each node to contain 

multi-resolution volume distributions. For example when obtaining the upper bound 

for Jaccard score from a node and the query object, instead of only calculating this 

using the 64-length vector we do now we could first calculate the bound with an 8 - 

length vector made by just using the middle planes to separate the space into octants. 

When at a node we would check the Jaccard upper bound using the coarse grid and if 

above threshold then check it again with the fine grid and if still above threshold then 

explore the branch. The idea is that sometimes we can prune branches with just the 

coarse resolution and not even have to use the finer one, saving on computation. An 

optimization should be done to find the optimal set of resolutions for the dataset we 

use and again when much new data comes in, to check if the optimal set is heavily or 

lightly changing.

We have explored here some avenues for improvement that have not yet been 

implemented for shortage of time and/or uncertainty about the usefulness of the 

improvements until the use patterns can be analyzed.
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Summary

This document has outlined the data accessibility work performed for the Brain 

Tumour Analysis Project. The traditional Jaccard measure describing similarity is 

now only one of a set of similarity measures designed to provide more flexibility to 

the user, especially in terms of choosing the applicable aspects of similarity. Data 

structures have been implemented in the database where necessary to speed-up the 

query process.

A computing science department server, oyen.cs.ualberta.ca, now houses both 

Matlab and the database, as well as the middleware necessary to communicate with 

the custom client software on the user end. The questions the user asks the interface 

are transformed into short encrypted strings and sent to the server. The server 

decrypts questions from allowed clients and sends these to the database, generally via 

Matlab. Processed and encrypted results are sent back to the client for the user’s 

viewing and analysis.

Functionality can be added to the system using almost exclusively Matlab 

programming, yielding an easily extensible system for non-computer scientists. This 

makes working on this project more attractive and feasible for medical students 

wishing to get into research.

Finding the optimal treatment envelope for brain tumours is far from solved, but 

the groundwork laid out in this thesis is a good base for research leading to this.
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Glossary

BLOB: Binary Large OBject; long binary array loaded into a database. This 

array can be anything, so the retriever must have a way of knowing the 

type of the data to make it useful. For example, matrices and pictures 

can be stored in this way.

DES: Data Encryption Standard.

Distance Transform: Image processing technique for binary images that 

assigns each Boolean high pixel a value indicating its distance to the 

nearest Boolean low pixel.

Edema: Abnormally large concentration of fluid around the tumour;

swelling.

GTV: Gross Tumour Volume. The tumour visible in MRI images, including 

the necrotic core and edema.

JVM: Java Virtual Machine.

MRI: Magnetic Resonance Imaging.

Pixel: Elementary point in a picture, usually displayed as a single-coloured 

square.

RSA: Popular public-key encryption algorithm invented by Rivest, Shamir, 

and Adleman.

SQL: Structured Query Language, the standard syntax for using a database 

management system.

SSH: Secure Shell; UNIX program allowing one machine to control a UNIX 

machine via a virtual terminal.

Study: A set of images of a patient’s brain, all taken in one session.

T l: MRI image modality showing fat locations (such as white matter and 

gray matter) more brightly than non-fat locations.

TIC: Tl image taken after patient is injected with a contrast agent

(gadolinium) to more clearly differentiate the tumour from the rest of 

the brain.
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• T2: MRI image modality highlighting water-filled locations (such as the

ventricles) more brightly than fat locations.

• VB: The Visual Basic.NET programming language a high-level compiled

language, executable on systems running the .NET framework.

• VD-Tree: Volume Distribution Tree, a structure to index solid objects,

described in this document.

• VNC: Virtual Network Computing; allows a user to remotely view and affect

another machine’s screen output. As opposed to SSH terminal 

sessions where each SSH session is a new UNIX session analogously 

to logging in to a machine, each VNC session just connects to an 

already running UNIX session analogously to turning on a computer 

monitor.

• Volume Distribution: Used in the VD-Tree. It is the vector or matrix whose

elements are equal to a segmentation’s volume in the element’s 

corresponding grid cell.

• Voxel: 3-dimensional version of a pixel.
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