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Abstract

Helicopter Unmanned Aerial Vehicles (UAVs) present a challenging control problem

since their dynamics are nonlinear, underactuated and non-minimum phase. Al-

though it is inherently an applied research field, due to the difficulty of building and

maintaining an experimental platform relatively few experimental results exist in

the literature. The approach followed in this thesis is to combine rigorous analysis

with thorough experimental testing. This testing ensures validity of the designs.

We present our experimental platform which is designed to be flexible so that it can

accommodate nonlinear control research. Existing accounts of helicopter testbeds

focus on hardware details. Since autopilot software design and development also

requires a significant investment, we describe our implementation which has been

released as open source for the benefit of the community. Due to the intractability of

existing helicopter models, many control designs use non-physical inputs. We pro-

pose simple, invertible expressions relating the non-physical inputs to the physical

inputs. In particular, modelling of the main rotor typically results in complicated

expressions with extensive state dependence. While it is unlikely that angular ve-

locity has a significant influence on the thrust, we show using experimental results

that previous attempts to simplify this expression using a hover assumption are

invalid during vertical flight. The platform is validated using a model-based PID

control law. This control is derived using passivity to ignore nonlinear terms which

do not affect stability. Among the class of vehicles with similar flight capabilities,

helicopters possess a coupling between the rotational inputs and translational dy-

namics which is unique. This coupling is sometimes referred to as the Small Body

Force (SBF) and is ignored in the literature for controller synthesis. We derive an



experimentally-validated control design which accounts for the effect of the tail rotor

in the SBF. In addition, we show why the contribution of the main rotor flapping

in the SBF cannot be compensated using the same approach, and give a robustness

analysis of their effect on the closed-loop. Finally, based on recent results we pro-

pose a control design which accounts for state constraints by enforcing bounds on

translational velocity and roll-pitch travel.
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Chapter 1

Introduction

A helicopter is modelled as a nonlinear, underactuated mechanical system with

four independent inputs and six degrees of freedom. Therefore, it poses a challeng-

ing control problem which is of wide interest to researchers due to the helicopter’s

flight capabilities. In this thesis, the term helicopter refers to a small-scale version

of the aircraft [1]. Small-scale helicopters are commercially available for hobby-

ist R/C pilots to fly recreationally. These helicopters are characterized by a large

thrust-to-weight ratio which allows them to perform flight manoeuvres not possi-

ble for full-scale helicopters [2]. When flown autonomously, it is common to use

the term Unmanned Aerial Vehicle (UAV), or more recently, Unmanned Aircraft

System (UAS) [3]. In order to use a commercial R/C helicopter as a research appa-

ratus, it must be outfitted with navigation sensors and an autopilot computer. Our

experimental platform is the Applied Nonlinear Controls Lab (ANCL) Helicopter

which is shown in Figure 1.1. This platform has been used to conduct navigation

research [4, 5] as well as the control validation described in this thesis.

Helicopters are among a class of aircraft which possess flight capabilities such as

vertical takeoff and landing, and hover. Other such aircraft include multirotors and

ducted fans. See [6] for a recent survey. These flight capabilities make helicopters

ideal for surveillance or inspection tasks. For instance, high voltage transmission

line networks require regular inspection. This inspection is currently conducted

using manned aircraft, however, it is well-suited for a helicopter UAV. Transmission

towers are often located in remote areas where the terrain is rugged, as shown

in Figure 1.2a. Since a helicopter does not require a runway, it can be deployed

remotely regardless of terrain. Additionally, as shown in Figure 1.2b defects can be

subtle. Thus, the ability to hover near a defect to allow close-up images to be taken

from multiple angles is beneficial.

Many control methods have been applied to helicopters in the past. Designs

based on linear approximations can be found in [2, 3, 7–10]. Our primary focus

is nonlinear control, and some examples of existing work are given in the follow-
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Figure 1.1: ANCL Helicopter in flight at Bergen R/C Helicopters in Cassopolis, MI,
October 12, 2012.

(a) Transmission tower located in a remote
region of British Columbia, Canada.

(b) Example of a conductor defect on a high
voltage transmission line.

Figure 1.2: Example pictures taken during inspection of the transmission line net-
work in British Columbia, Canada. Images courtesy of BC Hydro, Vancouver,
Canada.
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ing. However, rather than attempt an exhaustive list we will focus on work which

has been particularly influential in this thesis. Input-output feedback linearization

is performed in [11]. The complete dynamics are shown to have critically stable

tracking dynamics. Therefore an approximate model is used to define the control.

A backstepping control is designed in [12, 13] using a model similar to [11]. As

compared to the linearization approach, the backstepping design avoids parame-

terizing the rotation matrix. Another example of a backstepping approach where

singularities arising from a parameterization of the orientation are avoided is [14].

However, the orientation of a rigid body cannot be globally stabilized by a contin-

uous control [15]. The backstepping control design in [9] uses a high order model

which includes actuator dynamics as well as exact thrust modelling. However, due

to the complexity of the input expressions the control requires a numerical solution

to be applied. Experimental results are provided for this control. In [16] a nonlinear

control is designed which addresses the problem of input saturation, and experi-

mental results are given. Input saturation is also addressed in [17] where the design

uses columns of the rotation matrix to avoid a parameterization of the orientation.

Other nonlinear approaches to helicopter control include [18–20].

In general, a mathematical model of the helicopter can be very complicated [21].

Therefore, it is necessary to determine which aspects of the model will be consid-

ered for the purpose of control design. This choice cannot be made absolutely.

Instead, simplifications should be made in the context of the control objective. For

example, many high-order effects exist such as flapping dynamics [1] and gyroscopic

moments [22] may become relevant during aggressive 3D manoeuvres. However,

practical trajectories used for surveillance, inspection or waypoint navigation can

be flown accurately without compensating for such effects. Alternatively, helicopters

are often operated in variable and uncertain environments. In particular, the effect

of wind gusts can be considered as in [23, 24] and more generally in the context of

parameter and other uncertainty [25]. Although feedback such as PID will generally

react to wind with a small tracking error, this type of work can further improve the

response to these disturbances especially during non steady-state conditions. For

the purpose of the work herein, we will choose a model which allows for the analysis

of the principal manner in which the helicopter is actuated yet retains tractability

for control design.

The designs proposed in this thesis make use of the hierarchical nature of heli-

copter dynamics. In this respect the helicopter dynamics are similar to multirotors

where the horizontal motion is forced by reorienting the aircraft to direct the thrust.

Since the orientation acts as an input to the control it is natural to treat the transla-

tional and rotational dynamics as two subsystems in cascade. In fact, this approach

has become standard [3, 7, 16, 26, 27]. There is also practical benefit to dividing the
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control design into subsystems. The implementation and testing can be performed

independently. For example, we have used a PID inner-loop which is tuned and

known to work to test a nonlinear outer-loop control. Furthermore, the rotational

state measurements can be performed independently of position measurements. This

independence allows us to handle a loss of GPS by regulating the trim attitude.

1.1 Thesis Overview

Although helicopter control research is an applied field, relatively few experimental

results exist in the literature. One possible explanation for the lack of experimental

work is the challenging nature of platform development and maintenance. Most

outdoor testbeds use GPS and inertial sensors for state measurement, an on-board

computer for an autopilot, and a modem for communication with a ground sta-

tion. Early accounts of experimental helicopter platforms are [2, 7]. More recent

descriptions include [10, 28]. In general platform descriptions focus on the hardware.

Indeed, hardware selection is an important aspect of platform development and de-

tailed knowledge of working hardware configurations is valuable [29]. In Chapter 2

we describe the ANCL Helicopter. Over the lifetime of the project we have made

several changes to the hardware components and configuration. These changes often

occur as the result of a crash or other problem, and we therefore describe the rea-

soning in order to provide more insight into the platform than is commonly available

in the literature. Software implementation also poses a significant implementation

challenge. Therefore, we provide a detailed description of our software design, fo-

cusing on key aspects such as modularity and error-handling. The source for our

autopilot software is available for download [30]. This contribution to the helicopter

research community is expected to provide future benefits from interaction with

other groups.

In this thesis we focus on model-based control. A control design based on a model

allows for a rigorous statement of performance. Developing an accurate model for

a helicopter is the subject of many references. An encyclopedic treatment of full-

scale helicopter modelling is [21]. Small-scale helicopter modelling can be found in

e.g., [1, 3, 5, 9, 28]. Due to complexity, general aerodynamic models are intractable

for control design using exact methods. A linear approximation can be used to

simplify these general expressions. However, this approach is likely to result in a

control which compensates insignificant effects. For example, the main rotor disk

can be reoriented with respect to the airframe in order to cause its thrust to act as a

lever-arm about the center of mass. The dynamics which govern this reorientation

are fast and unlikely to be important in the main rotor thrust model. On an R/C

helicopter the physical inputs are servo motors. Servos also possess dynamics which
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are included in e.g., [9]. However, their dynamics are unlikely to have a significant

effect for applying a control law. Due to the complexity of modelling the actuation,

it has become common practice to design controls using the main and tail rotor

thrusts, and the main rotor flapping angles as inputs [13]. These inputs simplify

control design by separating the structural nonlinearities which are fundamental

to the helicopter dynamics from the complex aerodynamic modelling of the applied

forces and torques. In fact, when actuator dynamics are neglected the inputs appear

in the same expression as the nonlinearieties arising from the aerodynamics. Thus,

if the input expressions are invertible the dynamics can easily be accounted for

exactly. The approach followed for the presentation of the helicopter model in

Chapter 3 is to separate the dynamics and the input modelling. In particular,

Section 3.1 provides an overview of the helicopter dynamics with the inputs used for

control design. Rather than focusing on absolute accuracy, in Section 3.2 we present

a simplified mapping between the inputs used for control and the physical inputs

which is experimentally justified. The goal of this simplified model is to improve

on e.g., [16] where the physical inputs are related by gains. The control design

in Chapter 4 follows this same philosophy. When the inputs are the thrusts and

flapping angles, the linear approximation about hover becomes double integrators

for the translational and rotational dynamics. Therefore, PID control is justified

by the model and not applied heuristically as suggested in some references (see for

instance [31] among many others). Furthermore, we use Lyapunov analysis to show

the nonlinear terms which arise in the translational dynamics when the states are

considered in the body-fixed frame are passive and therefore do not affect stability.

Results are given for simulations and experimental testing. The flight tests include

hover as well as time varying trajectory tracking.

The relative orientation of the main rotor disk with respect to the airframe is

used to force the rotational dynamics. This orientation is parameterized by the

flapping angles. Additionally, the tail rotor is used to control the heading. Since all

three of these inputs are linear forces they also influence the translational dynamics.

This coupling between the translational and rotational dynamics is often referred

to as the Small Body Forces (SBF) [12]. In the literature the SBF are neglected

for control design. See for instance [11, 13]. However, an analysis of their effect on

the closed-loop is performed in [11]. A more detailed robustness analysis showing

ultimate boundedness is performed in [12, 14]. In Chapter 5 we derive a control

which compensates the contribution of the tail rotor to the SBF. Additionally, we

show how including the SBF due to the flapping angles results in unstable dynamics

for the reference roll and pitch. While these dynamics preclude direct compensation

of the effect of the flapping angles a robustness analysis is conducted which shows

uniform ultimate boundedness of the closed-loop tracking error in their presence.
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As mentioned above, helicopters are an ideal platform for inspection tasks. How-

ever, depending on sensor type it may be necessary to limit translational velocity in

order to allow adequate sampling coverage. Furthermore, a rotational control which

satisfies bounds on roll and pitch would be useful in a situation where a camera is

fixed to the aircraft or mounted with limited pan and tilt. The envisioned mission

is to track waypoints over a target area (e.g., along a transmission line). For this

type of flight, translational velocity bounds could be roughly satisfied by using a

reference trajectory which is compatible with these limits. However, based on expe-

rience gained performing flight tests for the controls described above we have found

that it is desirable to implement waypoint navigation using setpoint regulation. In

particular, setpoint regulation is simpler for implementation, and simpler designs

are preferable in practice. With this motivation, we propose a design in Chapter 6

which is based on recent work [32, 33] and satisfies translational velocity constraints

as well as bounds on roll and pitch travel.

1.2 Contributions

The contributions of this thesis may be summarized as follows:

• Platform development and software framework [34, 35]. A complete experi-

mental platform requires careful design. Documentation of hardware config-

urations including the relevant design decisions is provided. In addition to

hardware details, we have released the source for our autopilot software, and

provide a detailed description of its design which focuses on modularity and

error-handling.

• Experimentally justified model simplification [36, 37]. General aerodynamic

models are intractable for control design using exact methods. We propose

simple expressions to relate the physical inputs to the inputs commonly used

in the control literature.

• Model-based PID control [38, 39]. This simple linear control design is derived

based on the model using an approximation as well as Lyapunov analysis to

neglect some nonlinear terms. Experimental results are provided for hover,

line, and circle trajectories.

• Nonlinear control which compensates the contribution of the tail rotor to the

SBF [40, 41]. The inputs to the rotational dynamics also force the translational

dynamics. In the literature this effect is ignored for control design. We derive

a control which compensates for the effect due to the tail rotor and provide a

robustness analysis which addresses the remaining terms.
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• Nonlinear control design which satisfies state constraints. Specifically, the

satisfaction of translational velocity and orientation bounds is addressed. The

motivation for this design is based on experience gained from field tests and

it is expected to be a valuable control technique to use in practice.
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Chapter 2

Experimental Platform

The ANCL Helicopter experimental platform consists of the airframe and electronic

hardware described in Section 2.1, and the autopilot software described in Sec-

tion 2.2. The purpose of this platform is to facilitate applied helicopter control

research. Therefore, component selection and design decisions are based on recon-

figurability as well as reliability. The hardware configuration of this platform has

undergone an evolution. As problems are discovered and addressed, components are

replaced, relocated, or modified. A preliminary configuration of the hardware was

presented in [4]. Updates made in order to obtain initial control results along with a

detailed description of the software were described in [35]. Most recently, hardware

modifications were described in [39]. In this chapter we will present the current

hardware configuration, however, we will describe the more significant differences

from these references.

Software design and implementation also requires an extensive effort. We present

our autopilot software framework which is designed to be modular with an emphasis

on error-handling. As mentioned above hardware changes are necessary as the

platform evolves. By designing the autopilot using a modular architecture, new

code can easily be inserted to accommodate new hardware. Error-handling is also

an important aspect of an autopilot. Examples of errors include unreliable state

estimates and controller malfunctions such as division by zero. If state measurements

are used which are unreliable, the helicopter is likely to crash. In fact, during the

early stages of controller testing our helicopter crashed when the controller used an

attitude measurement which had an error of over 60◦. Therefore, even for a research

platform it is important to test for error conditions and take appropriate action. For

example, if the translational state estimate is known to be invalid the control could

be switched to attitude regulation only. Alternatively, if the entire state estimate is

invalid the control could be deactivated and the servos could be commanded with

neutral positions [10]. We have made our autopilot software available publicly [30]

in order to allow other groups to benefit from the implementation work we have
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Avionics Box

DGPS Antenna

Takeover Switch

Microstrain 3DM-GX3-45

Futaba GV-1

Duralite Battery

Stator Gator
Speed Sensor

Novatel

Figure 2.1: Platform diagram showing the mounting location of the system compo-
nents. The cables are loose in order to avoid occluding the connections. When the
helicopter is prepared for flight these cables are secured using velcro straps.

done. Additionally, we envision future benefit from communication with these other

groups.

2.1 Airframe and Electronic Hardware

The ANCL Helicopter includes the Bergen R/C Industrial Twin helicopter, the

avionics box, navigation sensors, the Takeover Switch (TS), and a ground station

laptop. A diagram of the complete platform is shown in Figure 2.1.

The Industrial Twin is powered by a two cylinder 52 cc gasoline engine with

a flight endurance of 30-45 minutes depending on payload, it has a 1.8 m main

rotor diameter, and is capable of lifting a 10 kg payload. It has five control inputs

which are actuated by five servos: main rotor lateral and longitudinal cyclic pitch,

main and tail rotor collective pitch, and engine throttle. We remark that these

five servos correspond to actuation in only four independent degrees of freedom

since the collective pitch and the throttle together influence the thrust. When the

helicopter is in its stock configuration the tail rotor collective pitch is controlled by

a Futaba GY-401 gyro which stabilizes the yaw angle by tracking a pilot reference.
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In order to circumvent the need to identify the gyro, it can be bypassed allowing

direct computer control of the tail collective. For manual control a Futaba T9CHP

radio is used with a Futaba R149DP receiver.

The avionics include an embedded computer, a GPS-aided inertial navigation

system, a DGPS receiver, and a radio modem. The embedded computer is an Ampro

ReadyBoard 800 single board computer with a Pentium M 1.4 GHz CPU, 1 GB

RAM, and an 8 GB CF card for storage. The Microstrain 3DM-GX3-45 (referred

to as the GX3) provides a Kalman filter for state estimation which is referred to

as the navigation filter and is a GPS-aided INS. The GX3 additionally provides

an Attitude and Heading Reference System (AHRS). The navigation filter provides

estimates of position, velocity, attitude and gyro bias; whereas the AHRS provides

attitude estimates only. The rotational state estimates are updated at 100 Hz and

the translational states are updated at 20 Hz. Since the GPS receiver which is

shipped with GX3 does not provide sufficient accuracy, a Novatel OEM4 FlexPak

DGPS receiver (referred to as the OEM4) with 2 cm CEP position accuracy is used

as an external input to the GX3. These position measurements are sent to the GX3

at 4 Hz. Although the GX3 is logically included as a part of the avionics, it is

no longer mounted inside of the avionics box. As shown in Figure 2.1 the GX3 is

mounted directly to the airframe. The reason for this change is to rigidly attach

the inertial sensors to the airframe. Indeed, the avionics box is now coupled to the

airframe using the elastic straps visible in Figure 2.1. This loose coupling prevents

destructive resonance which results from the extended skids. Moving the GX3 out of

the avionics box was done as a result of analyzing the experimental results presented

in this thesis. Finally, the radio modem is a 2.4 GHz Microhard VIP2400 modem

(referred to as the VIP) which provides RS-232 communication for the OEM4, and

an Ethernet link for ground station communication. The ground station laptop is

a Panasonic Toughbook CF-53 running the Linux operating system. The above

avionics hardware is mounted in a custom made avionics box shown in Figure 2.2.

Comparing the configurations in [35] and [39], the antenna for the OEM4 has been

moved forward on the tail boom from its original location attached to the vertical

stabilizer fin. This change was made after vibrations from the tail rotor caused the

aluminum mounting bracket to break during flight.

The TS, which is shown in Figure 2.3, allows the pilot to select the source of

the servo commands as either those from the radio control receiver (Pilot Manual

Mode), or the ones generated by the embedded computer (Computer Control Mode).

The TS is based on the Microbotics SSA20024 Servo Switch controller which sends

commands to the servos and reads the pilot commands at 50 Hz. The TS also

includes a custom designed PCB which provides connections to the receiver and the

helicopter servos. Analog low pass filters have been integrated into the PCB in order
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Common Ground Connection
Between Avionics and TS

Wired Ethernet
for Debugging

Ampro ReadyBoard 800

Microhard VIP2400

Duralite
Battery

Figure 2.2: ANCL Helicopter avionics. Visible components include the Ampro
Readyboard on the left and the Microhard VIP Modem on the right.

to eliminate the noise induced by the engine in the input and output channels of the

TS. Additionally, a heavy-gauge ground cable was added to create a common ground

bus between the TS and the avionics box. Without this ground connection, the

servos were observed to move erratically. This connection is indicated in Figures 2.2

and 2.3. As shown in Figure 2.1 a Stator Gator speed sensor has been integrated

into the system to measure the engine speed. This speed measurement is used by

control algorithms to compute the main and tail rotor speeds which are related to

the engine speed by a gear ratio. The Stator Gator connects to the TS using one of

the servo connectors visible at the top of Figure 2.3. This connection is configured

in the SSA20024 as an input.

2.2 Autopilot Software

As stated above, the purpose of the experimental platform and in particular the

autopilot software is to facilitate control research for a helicopter UAV. Since this

research requires frequent changes to the control algorithm as new designs are devel-

oped, a software framework is needed which allows controller implementation to be

performed in an efficient manner. One possible approach would be to use Mathworks

Real-Time Workshop (RTW) which generates C-code from Simulink diagrams and

provides a familiar environment for developing control algorithms (see e.g., [42, 43]).

In fact, a prior version of our platform used a RTW package [4], however we found it

to be insufficiently reliable, and cumbersome for hardware integration and upgrades.

Furthermore, Simulink diagrams are not well-suited for collaboration (either by in-

ternal team members or the open-source community). Therefore, in order to achieve
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Figure 2.3: Takeover Switch (TS) packaged with power regulator and custom-built
PCB for servo connectors.

maximal flexibility as well as reliability we have chosen to develop our own software

framework.

2.2.1 Operating System and Development Environment

The main consideration for the choice of operating system is real-time performance.

While the only way to guarantee real-time performance in software may be to pro-

gram a microcontroller in assembler, this approach is very labour intensive and does

not scale easily to large programs. Therefore, we selected a so-called real-time oper-

ating system which provides the convenience of task scheduling and a general layer

of abstraction from the hardware, but also provides features which aid the developer

in meeting timing deadlines not commonly available in desktop operating systems.

In particular, we chose QNX 6.5.0 [44] since it is well documented, mature and

already proven in the UAV field (see for instance [45]).

Another key benefit of using an operating system is access to a modern compiler

suite. Since code footprint is not an issue for our hardware configuration, and

the requisite compiler was provided with QNX we chose to write the autopilot in

C++. Indeed, this language provides convenient high level features which promote

code reuse and modularity but can also be used for low-level programming using C

syntax and libraries. In addition, there are many mature libraries for performing

common yet sophisticated tasks (e.g., thread handling and linear algebra). In our

implementation we make extensive use of the Boost C++ Libraries, many of which

are slated to be included in upcoming C++ standards [46].

In addition to language and library dependency considerations, a development

environment was devised to facilitate team collaboration. This environment includes

a revisioned source repository; online HTML documentation available on the local
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network; and the QNX Momentics IDE which can be used to develop, compile, de-

bug, and execute code. Indeed, an autopilot is not a trivial piece of software to

design and develop, and substantial long-term benefit is envisioned by simplifying

the task of contributing to the source. For example, a single centralized code repos-

itory, including revision history, allows current and future contributors to review

what changes are being made to which source files and by whom. The Git source

control management software [47] provides a solution for local development, and is

also used to update the publicly available source. Documentation of the autopilot

source is written using Doxygen markup [48]. This functionality ensures online doc-

umentation is always current and allows the documentation to be viewed without

requiring a copy of the source.

2.2.2 Architecture

A governing principle of the software design is that it should be modular. This

approach helps facilitate portability and simplifies major code changes (e.g., control

algorithm changes or rewriting a hardware interface when a component of the ex-

perimental platform is changed). From a high level, the software employs standard

object-oriented programming techniques insofar as the code is logically divided into

classes. Although there are at present many classes implemented, there are only a

few main ones: a main class for high level program management and control compu-

tation timing, a class to provide a public interface for the control implementation,

and a class for each piece of external hardware which contains the code used to

communicate with the device.

One method employed to provide modularity in the system is use of the Boost

Signals2 library. This library defines a signal type which can be dynamically con-

nected to one or more functions, and these functions are executed whenever the

signal is emitted. An example of how signals are used to improve modularity, is to

report status changes received from the GX3. Among other things, the GX3 re-

ports several error conditions such as large covariances for its estimated quantities.

Currently, these error conditions emit signals from the class handling communica-

tion with the unit. Since it was not possible to know which functions should be

called in future controllers to handle estimate errors, the only alternative to using

signals which does not require future modification of the GX3 class, would be to

constantly poll the GX3 class. Polling for information which is unlikely to change

is inefficient (estimate errors are expected to be infrequent), however their inclusion

in the public interface means that these error conditions can be handled without

requiring modification of the GX3 class.

Data logging is another important aspect of the autopilot. The logging is im-
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plemented in a way which is flexible with respect to data type.1 In addition, the

logs are flushed to disk regularly to prevent memory from being entirely consumed,

and to also prevent a software crash from causing a complete loss of data. The

timing of these disk writes is chosen to minimize the amount of data in memory

which would be lost in the event of a system failure, but also to ensure they are not

interfering with overall system performance. Message logging is also available with

varying levels of severity to provide insight into the sequence of events occurring

within the autopilot. This logging facility has proven essential not only for identi-

fying sources of failure, but also as a record of the experimental procedure during

successful flights.

2.2.3 Controller Implementation

Since the autopilot is being developed to research advanced control designs, it must

accommodate several different algorithms, possibly generating output from multi-

ple controllers simultaneously for comparison by the operator. In order to stan-

dardize the implementation of these algorithms, all of the controller classes are

derived from an abstract class named ControllerInterface which declares the

main functions related to control computation. For instance, the control presented

in Section 4.6, uses an inner-outer hierarchical approach. Therefore, two controllers

have been implemented: an inner loop attitude controller and an outer loop posi-

tion controller. Figure 2.4 shows the relationship between the control classes and

the ControllerInterface abstract class.2 The reset and runnable functions are

used to reinitialize any controller states, and test whether a controller is capable

of running (e.g., whether sufficient state measurements are available), respectively.

The operator() function performs the control computation and is distinct from the

get control effort function since it may contain an integration step (as is the case

for PID control). Therefore, operator() should only be called once per iteration

of the autopilot main loop whereas get control effort can be called many times

(e.g., for logging and transmitting to the ground station in addition to updating the

servo commands). This approach was chosen to reflect the design philosophy of

implementing each function to perform a single, clearly defined task. The result is

modular code which is easier to use and maintain.

The Control class is used to provide the rest of the autopilot with access to

the controllers. It manages the various controllers by keeping track of a mode

1It is implemented using a template function which only assumes a container type with support
for a Forward Iterator, and that the data in the container can be converted to std::string using
boost::lexical cast.

2The vector type used by ControllerInterface is in fact
boost::numeric::ublas::vector<double> but is abbreviated to vector for presentational
clarity.
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reset() : void
runnable() : bool
operator()(in reference : vector) : void
get_control_effort() : vector

ControllerInterface

attitude_pidControl translation_outer_pid

Figure 2.4: UML Inheritance Diagram showing the relationship between the conr-
toller classes and the abstract ControllerInterface class.

that determines which controllers to call. In addition, this class performs ancillary

functions such as maintaining an XML file to store configuration parameters and

generating a list of parameters which can be exchanged with the ground station.

Indeed, all configuration data in the autopilot is stored using the XML format. This

format is used because it provides a flexible syntax for manual editing. In addition,

many libraries for interfacing with XML files exist. One example is RapidXml [49]

which is currently used in the autopilot.

2.2.4 Overview of Program Flow

An overview of the main program loop is shown in Figure 2.5. This loop is executed

at 100 Hz and is contained in a class named MainApp which is spawned as a thread

upon program initiation. The decisions in this loop are strictly high level in nature,

and in particular relate to selecting the source of the servo commands and waiting

for threads to exit cleanly upon program termination. This clean thread termination

is performed by allowing threads to register themselves in a list. When the autopilot

receives a kill command (from the operator) the MainApp class emits a terminate

signal, the list of threads is then iterated and each element of the list is joined

by the MainApp thread. This joining allows the registered threads to perform any

final operations before ending. In practice, examples of thread cleanup include

flushing remaining data logs and closing the log files, or sending on-board hardware

commands to stop transmitting data and releasing serial ports.

The control computation is performed by calling the Control class. The deci-

sions made by the Control class are shown in Figure 2.6. This operation can throw

a bad control exception which is handled by giving control of the servos directly

to the pilot. Although this method of handling an error may not be successful in

averting a disaster (e.g., the pilot may not be aware he has taken control), it should

only be encountered upon a complete failure of all possible control modes. Indeed,

it is preferable to use the pilot commands even without his knowledge rather than

allowing an unhandled exception to cause the process to be terminated by the op-
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Figure 2.5: UML Activity Diagram showing how the servo command source is cho-
sen.

erating system or continuing to attempt control computation when it is no longer

possible (e.g., when state estimates are no longer reliable). This approach to error-

handling is similar to [10, Sec. 4.2.4] where the proposed method is to command all

servos to their trim value.

The details of how the control effort is computed based on the control mode

are shown in Figure 2.6. Of particular interest is the built in error handling. An

exception thrown by the position controller is handled by changing the mode to

attitude stabilization only. The attitude control mode attempts to regulate the ori-

entation which is tuned by the ground station operator, and should be set as closely

as possible to the trim orientation. Thus, upon failure of the position controller

the helicopter will attempt to stabilize to a hover. In practice the intention is that

the pilot would observe an apparent failure in position control and regain manual

control using the TS. However, this error handling allows the autopilot to give the

pilot a chance to react by sending stabilizing commands to the servos.
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Figure 2.6: UML Activity Diagram showing an overview of the control computation.

17



2.2.5 Communication with On-board Hardware

The autopilot communicates with the GX3, OEM4, and TS (see Section 2.1) using

RS-232. The majority of the communication with the on-board hardware involves

the reception of data. Therefore in all cases a thread is spawned which reads data

from the respective serial port. For the case of the OEM4, a command is only

sent once when the program starts, to request that data transmission begins, and

once when the program finishes to request that data transmission ceases. These

commands are therefore simply implemented as part of the receiving thread. For

the case of the TS, data is continually being sent as well as received. Therefore, a

second thread used for sending data is executed in parallel with the receive thread.

Sending commands to the GX3 is implemented slightly differently because we found

that it was convenient to allow the ground station operator to have some direct

control of the navigation filter. In particular, we implemented the ability for the

operator to reset the navigation filter and initialize the attitude estimate based on

the current AHRS measurement computed by the GX3. Since these user commands

are asynchronous to the execution of the autopilot and could happen at any time

(e.g., if the operator observes divergence of the state estimate he could request the

pilot briefly land the helicopter while the filter is reinitialized), we designed the

autopilot to spawn a thread for each command sent to the GX3. These threads do

not contain a loop, instead they terminate after an acknowledgement is received from

the GX3 indicating successful transmission of the command. Sequential writing to

the serial port is ensured using a mutex.

Although the hardware communication essentially consists of reading and in-

terpreting incoming serial data, along with the ground station communication it

accounts for roughly 80% of the source code. This is the main reason that we chose

C++ over a Simulink/RTW implementation. As is evidenced by the distribution

between the code related to the control and the code related to hardware commu-

nication, in terms of implementation effort it is the software framework and not the

control which requires the focus. Therefore, it is most efficient to use a development

environment that allows direct access to the operating system.

2.2.6 Ground Station

Rather than write our own ground control software we chose to modify, and con-

tribute to, the existing open source project QGroundControl (QGC) [50]. QGC

natively supports an application layer message protocol called MAVLink [51], an

implementation of which is distributed alongside QGC. It is outside the scope of

this document to detail QGC, however we will describe the three main modifica-

tions we made which have particular relevance to our work. The operator screen

used during flight tests is shown in Figure 2.8.
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Figure 2.7: Window for reading pilot radio calibration parameters which are used
to map normalized cyclic inputs to servo pulse commands.

The first addition we made to QGC is a window for reading the radio calibration

parameters and is shown in Figure 2.7. These parameters define the transformation

between the pilot stick position and the raw pulse width delivered to the servos. Due

to environmental factors such as changes in temperature or wind conditions the pilot

will often make adjustments to the radio calibration in the field. By using the radio

calibration window, these changes can be read and updated in the autopilot without

requiring recompilation of the source code, or manual configuration file editing. In

practice we have found this feature invaluable during field experiments. As described

in Chapter 3, correct measurements of servo travel and centers are critical to map

normalized cyclic inputs to servo pulse widths. This window was integrated with

the official QGC source.

The second addition we made to QGC was to add a dockable window which

provides an overview of the state of the autopilot. This custom widget, shown on

the right of Figure 2.8, is used to monitor and control aspects of our autopilot

which are unique to our implementation. For example, this window allows the

operator to view and change the servo command source, control mode, and attitude

estimate source. The attitude estimate source refers to a selection between the

AHRS and the navigation filter, both of which are provided by the GX3. This

widget also allows the operator to view and change the location of the origin used to

transform position measurements into the local navigation frame. Another function

provided by this widget is to provide the interface mentioned in Section 2.2.5 which

allows the operator to reset the navigation filter and initialize its attitude estimate

from the AHRS. Additionally, the reference trajectory used for the control can be

selected from a drop-down box. Finally, the operator can send a kill command to
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Figure 2.8: Screenshot of QGC. The UAlberta Autopilot Control widget on the
right shows an overview of the autopilot’s status. The Radio Control widget shows
the output of the pilot’s radio. The Curve Selection widget allows the operator to
select which quantities are plotted in the Diagram widget. The current selection is
the roll angle estimate provided by the navigation filter.

the autopilot, the result of which is described in Section 2.2.4.

The exchange of MAVLink messages between the autopilot and QGC is per-

formed using UDP socket communication. This socket is accessed by a send and a

receive thread which are implemented using the Boost Asio library. This link is fault

tolerant in the sense that whenever possible, error conditions are detected and data

retransmission is attempted. As much as is possible we make use of the existing

MAVLink messages, however in order to fully support our extensions to QGC it was

necessary to create custom messages. In QGC, the common message set is handled

by the UAS class. The final modification we made to QGC was to specialize the UAS

class in order to handle our custom messages.

2.3 Conclusions

The ANCL Helicopter experimental platform has been developed to facilitate ap-

plied control research. The hardware platform consists of a Bergen R/C Industrial

Twin helicopter, an avionics box, navigation sensors and the Takeover Switch. Hard-

ware problems have been solved by replacing and relocating components. Examples

include the antenna for the OEM4 which was moved and the TS which replaced

the previous Takeover Board [4]. The autopilot software was developed modularly

to allow for changes to hardware components and control algorithms. In addition,
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error-handling was built into the software in order to react to problems such as an

unreliable state estimate. The QGC ground station software was extended to incor-

porate unique aspects of our autopilot and to record the calibration stored in the

pilot’s radio. This ground station development has proven invaluable in the field

during flight testing.
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Chapter 3

Helicopter UAV Modelling for

Control Design

Our motivating interest in helicopter UAV research is to investigate nonlinear control

methods. The first necessary step in this pursuit is to specify a model. Typically

model specification is approached with the goal of maximizing accuracy [3, 7, 9].

However, the difficulty in establishing a model for the helicopter is to find expressions

for the forces and torques. A helicopter is actuated by two rotors, referred to as the

main and tail rotors. The aerodynamic modelling used to derive the form of this

actuation typically results in complex expressions [1, 3, 5, 28] which are intractable

for use in a control law. For example, the main rotor thrust typically depends on the

flapping dynamics which describe the motion of the main rotor disk with respect to

the airframe. However, the thrust is unlikely to be influenced in a significant way by

the flapping angles or their derivatives and can reasonably be ignored [31]. Treating

the actuator dynamics provides insight into the helicopter model, and improves the

accuracy of simulators. However, in order to perform a control design a tractable

model is required. Other dynamics also exist in the actuators due to effects such as

motion of the servos and the flybar. In particular, the flybar dynamics have been a

main focus of small helicopter models since they are unique to this variation of the

aircraft. However, the action of the flybar is stabilizing which means its dynamics do

not require any control action. Additionally, the flybar does not prevent aggressive

manoeuvring as evidenced by acrobatic flight capabilities [2]. Furthermore, most

new models of R/C helicopters do not have flybars. Given these considerations, our

approach is to maintain a minimal model order and to focus on model aspects which

a significant effect.

We begin our exposition of the model in Section 3.1 where we establish reference

frames and notation, provide expressions for the orientation, and present the model

used for control design. Section 3.2 presents the mappings used to relate the physical
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Figure 3.1: Diagram of the helicopter showing the coordinate systems used for
navigation, the Euler angles, and the approximate location of the center of mass
without a payload.

inputs to the inputs used for control design. This section includes original results in

which experimental data is used to justify a simplification of aerodynamic modelling

found in the literature. This simplified modelling provides mappings which are

appropriate for implementation since they can be described analytically and have

an explicit inverse.

3.1 Helicopter Dynamics

To describe the dynamics of the helicopter, we use a navigation coordinate frame

N which is assumed inertial, has its origin fixed to the surface of the earth, and

whose basis is the orthonormal set of vectors {e1, e2, e3} which are oriented north,

east, and down respectively. Remark, that N is assumed inertial since this frame is

fixed to the earth and therefore it is actually rotating slowly. The body-fixed frame

B has its origin located at the helicopter’s center of mass, and its basis {e′1, e′2, e′3}
oriented forward, right and down respectively. These frames are shown in Figure 3.1.

The navigation and body-fixed frames are related by a rigid body transformation

which includes a translation and a rotation. The rotation is of particular interest

since it is used to transform the coordinate expressions of state vectors between

reference frames, and it evolves on a non-Euclidean manifold which is discussed in

the following section.

3.1.1 Representation of the Orientation

In order to present vectors precisely in the context of rotating reference frames, we

must make explicit the distinction between what the vector represents physically,
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and its coordinate representation with respect to a reference frame. Among many

references on mechanics, see for example [52] where this concept is described rig-

orously. For example, the velocity of the helicopter, which for the purpose of this

discussion we denote by ~v, is an absolute physical quantity which exists independent

of the notion of reference frames. Indeed, in the most general sense of a vector space

a scalar product need not exist, and therefore a coordinate expression cannot be de-

fined. Since this level of abstraction is not useful for our purpose we will use the

usual definition of the scalar product in a Euclidean space to establish a coordinate

representation of ~v. Thus we have

~v = v1e1 + v2e2 + v3e3,

where

vi = ~v · ei, i ∈ {1, 2, 3}.

Since in the above expression we have used the basis of N which is inertial, its

basis vectors have constant directions. A similar expression using B is also possible,

however the directions of the basis vectors depend on time. The position of the

helicopter, which we define as the position of the origin of B with respect to the origin

of N , can be thought of similarly. This definition is independent of its coordinate

expression in either frame, and it is an absolute physical quantity. Furthermore, its

representation in the two frames is related by the rotation matrix R : B → N given

by

pn = Rpb (3.1)

where pn is the position vector expressed in N , and pb is its expression in B. Thus,

the orientation of the helicopter is described by the relative rotation from B to N .

This rotation belongs to the special orthogonal group SO(3) whose elements are the

real-valued 3 × 3 invertible matrices characterized by orthogonal rows and having

a determinant of +1. Although SO(3) is a three dimensional manifold, no three

parameter coordinate chart of SO(3) is globally defined [53]. The unit quaternions

provide a nonsingular parameterization of SO(3), however they form a double cover

which leads to unwinding [54]. Indeed, many attitude representations exist in the

literature [55]. Here, in addition to using R directly we will use the so-called ZYX

Euler angle representation

R = RzRyRx =

cψ −sψ 0

sψ cψ 0

0 0 1


 cθ 0 sθ

0 1 0

−sθ 0 cθ


1 0 0

0 cφ −sφ
0 sφ cφ

 (3.2)
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R =

cθcψ sφsθcψ − cφsψ cψsθcφ+ sψsφ

cθsψ sψsθsφ+ cψcφ cφsθsψ − sφcψ
−sθ cθsφ cθcφ

 (3.3)

where φ is roll, θ is pitch, ψ is yaw which we will consider to be synonymous with the

heading, sφ = sin(φ), and cφ = cos(φ). The Euler angles are shown in Figure 3.1.

For a detailed discussion of the Euler angles see e.g., [56]. We now consider the

coordinate representation for the derivative of a vector in B. Continuing from the

example of the position vector defined above, we differentiate (3.1) to obtain

ṗn = Ṙpb +Rṗb. (3.4)

Thus, we need an expression for the derivative of R. Since this expression is standard

in the literature (see e.g., [53] among many others) we will not derive it here. Indeed,

the rotational kinematic equation is

Ṙ = Rω̂b

where ωb is the (absolute) angular velocity of B represented in B, and ·̂ : R3 → so(3)

or (·)∧ : R3 → so(3) is the isomorphism between vector spaces R3 and the 3 × 3

skew-symmetric matrices. We will denote its inverse by (·)∨ : so(3)→ R3. Thus, we

expand (3.4) as

ṗn = Rω̂bpb +Rṗb

which when combined with the identities RRT = I and ω̂bpb = ωb × pb, as well as

the fact that when represented in an inertial frame ṗn = vn, we obtain

ṗb = −ωb × pb + vb

where vb = RT vn is the coordinate representation of the velocity in B. Although

this kinematic expression was derived specifically for the position, the derivative of

any vector in B is expressed similarly.

In the sequel, no distinction will be made between a physical vector and its

coordinate representation, and the~· notation will not be used. A superscript n will

indicate a vector expressed in N , and a superscript b denotes a vector expressed in

B.

3.1.2 Model for Control Design

As discussed in the previous section, state vectors can be represented in either N
or B. However, a particular choice of coordinate frame is usually more convenient

for a given application. The helicopter is modelled as a rigid body using either the
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Euler-Lagrange equations of motion or the Newton-Euler formulation [13]. Since

the former requires a parameterization of the configuration manifold, we choose the

Newton-Euler expression of the dynamics [53]. When the states are expressed in N
the dynamics are

ṗn = vn (3.5a)

mv̇n = mge3 +Rf (3.5b)

Ṙ = ω̂nR (3.5c)

Jnω̇n = −ωn × Jnωn +Rτ (3.5d)

where pn is the position, vn is the velocity, m is mass, g is acceleration due to gravity,

f is applied force, ωn is the angular velocity, and τ is the applied torque. The inertia

matrix Jn is expressed relative to N and therefore it is time-varying. Indeed, it is

related to the inertia matrix expressed in the body frame by the similarity transform

Jn = RJbRT . Since the actuators have fixed positions in B, it is convenient to

always express the applied forces and torques in the body-fixed frame. Thus, we

must rotate these terms into the navigation frame in (3.5). Alternatively, when the

states are expressed in the body-fixed frame the dynamics become

ṗb = −ωb × pb + vb (3.6a)

mv̇b = −ωb ×mvb + f +mgRT e3 (3.6b)

Ṙ = Rω̂b (3.6c)

Jbω̇b = −ωb × Jbωb + τ (3.6d)

where pb is the position, vb is the velocity, ωb is the body-fixed angular velocity,

and Jb is the inertia matrix. In practice, a combination of the above is usually

employed. Of note is the ‘cross’ term appearing in the rotational dynamics when

the inertia is computed in N (3.5d). This term creates a nonlinearity in state similar

to when the inertia and angular velocity are expressed in B (3.6d). Therefore, since

both expressions for the rotational dynamics are nonlinear and Jn is time-varying,

we will always consider the inertia expressed relative to B, and denoted J = Jb.

In addition, the angular velocity will be expressed in the body frame, and denoted

ω = ωb. However, we will express the translational states in whichever frame proves

convenient. We will also make use of the Euler angle kinematic expression

η̇ = W (η)ω (3.7a)

W (η) =

1 sφtθ cφtθ

0 cφ −sφ
0 sφ

cθ
cφ
cθ

 (3.7b)
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a
TM

xT

zM
QT

(a) Main rotor thrust, tail rotor countertorque,
main and tail hub offsets, and longitudinal flap-
ping angle.

b

TT

QM

(b) Lateral flapping angle, tail ro-
tor thrust, and main rotor counter-
torque.

Figure 3.2: Front and side views of the helicopter showing the parameters relevant
to actuation.

where η = (φ, θ, ψ)T and tφ = tan(φ).

A generally accepted model of the applied force and torque has been established

in the literature (e.g., [11, 13]) and can be expressed as

f =

 −TMa
TMb− TT
−TM

 (3.8a)

τ = lT ×

 0

−TT
0

+ lM ×

−TMaTMb

−TM

+

 0

−QT
−QM

 (3.8b)

where TM and TT are the main and tail rotor thrusts respectively, a and b are the

longitudinal and lateral main rotor flapping angles respectively, g is the acceleration

due to gravity, lM and lT are the positions of the main and tail rotor hubs respectively

expressed in B, and QM and QT are the main and tail countertorques respectively.

The countertorque is non-negative and oriented in the appropriate direction for the

ANCL Helicopter. These parameters are shown in Figure 3.2 where zM is the vertical

offset of the main rotor hub, and xT is the tail rotor hub offset in the e′1 direction.

Note the appearance of a, b, and TT in (3.8a). This coupling between the rotational

and translational inputs is unique to helicopters among the class of vehicles with

similar flight capabilities and is referred to as the Small Body Forces (SBF). From a

mechanical perspective, the SBF are the result of actuating the rotational dynamics

using linear forces acting on lever-arms. Some authors e.g., [11, 17] include additional

terms in (3.8b) which account for restorative moments applied on the body by the

rotor. These moments are due to the hingeless main rotor hub and are proportional

to the flapping angles. In this work we have neglected these terms for simplicity

similar to e.g., [13].
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3.2 Physical Input Modelling and Identification

A straightforward control based on the modelling presented in Section 3.1 relies on

our ability to use TM , TT , a, b as inputs and to know QM . In practice, these inputs

cannot be actuated directly. Indeed, servo motors are used to control blade pitch

and engine throttle which are the physical inputs. These servos are controlled by

a PWM-like waveform wherein the orientation of the output shaft is proportional

to the positive width of the pulse. However, unlike PWM, the period of the wave

does not affect the encoded value. For example, a 1.5 ms pulse commands the same

orientation in a 50 Hz or 70 Hz signal. We define δM and δT to be the pulse widths of

the main and tail rotor collective pitch servos respectively. Furthermore, we define δr

and δp to be the normalized cyclic inputs (i.e., swashplate tilt angles) which force the

lateral and longitudinal flapping angles respectively. We now proceed by modelling

the relationships between those used for control design TM , TT , a, b and the physical

inputs δM , δT , δr, δp.

3.2.1 Mapping from Main Rotor Thrust to Collective Pitch Servo

The main rotor thrust is typically modelled using an expression derived from first

principles. Examples of such derivations can be found in [1, 28]. However, without

further simplification these models are structurally complex and possess a depen-

dence on several physical quantities which is unlikely to be practically significant.

This complexity renders the model intractable for control design. Therefore, we

must simplify the model while retaining the principal structure and dependence.

Here we will use the general model given in [5, p. 162] as the starting point for this

simplification. This model is expressed as

TM =
ρaMcMRMNb

24

{(
4(RMΩM )2 + 6(u2 + v2)

)
ΘM + 6RMΩM (w − vi − va+ ub)

−3RM

(
u(p+ ḃ) + v(q + ȧ)

)}
(3.9)

where ΘM is the main rotor collective pitch; u, v, and w are the velocities in the

e′1, e′2, and e′3 directions respectively; p, q, and r are the angular velocities in the e′1,

e′2, and e′3 directions respectively; ΩM is the main rotor speed; ρ is the air density;

RM is the radius of the main rotor disk; Nb is the number of blades; aM is the main

rotor lift curve slope; cM is the main rotor blade chord length; we have neglected

the rotor coning angle; and vi is the induced velocity

vi =
TM

2ρπR2
M

√
(V cosα)2 + (V sinα+ vi)2

(3.10)
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Figure 3.3: Results of the hover model validation experiment. The solid line shows
the thrust predicted by (3.11) and the measured values are shown by the x’s.

where V is the air flow speed and α is the angle of the airstream with respect to the

rotor disk. Based on the mechanical configuration of the helicopter we expect the

principal dependence of the main rotor thrust to be on collective pitch and rotor

speed. For example, by ignoring all of the terms in (3.9) except the one containing

ΘM and ΩM we obtain the thrust model used in [16]. The caveat to this approach

is it ignores the effect of the induced velocity. A modification to this approach

is derived in [5] which includes the effect of the induced velocity, but makes the

assumption that the helicopter is in hover (all velocities are zero) to obtain a closed

form expression for TM . Indeed, when the general expression for the induced velocity

is used an algebraic solution does not exist. A numerical solution can be used to

overcome this obstacle [9]. However, we seek an analytical expression which allows

for a rigorous statement of performance. In [35] we proposed a control design using

the hover thrust model from [5]

TM = CMΩ2
MΘM +

D2
MΩ2

M

4πρR2
M

− DMΩM√
2πρRM

√
CMΩ2

MΘM +
D2
MΩ2

M

8ρπR2
M

(3.11a)

CM =
ρaMcMR

3
MNb

6
(3.11b)

DM =
ρaMcMR

2
MNb

4
. (3.11c)

In an attempt to validate this model we performed flight tests where the pilot would

apply step inputs by hovering then quickly moving the stick up (or down) and

holding the collective constant for as long as possible. Our expectation was that

we would measure constant accelerations in response to these inputs. Figure 3.3
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shows the results where the measured thrust is computed by differentiating the

velocity. Except at hover (roughly 6◦ collective pitch), the model does not match

the measured values. Indeed, the measured values contradict the assumption that

the only important dependence is on collective pitch. Figure 3.4 shows the response

when a step input is applied. We observe that the vertical velocity quickly saturates.

Therefore, we propose the inclusion of vertical velocity dependence in our thrust

model. To proceed we simplify (3.9) by assuming u = v = p = q = 0 and obtain

TM = CMΩ2
MΘM +DMΩM (w − vi). (3.12)

Then taking either of the special cases α = π
2 and V = −w for climb, or α = −π

2

and V = w for descent we obtain the same simplification of (3.10)

v2
i − wvi −

TM
2ρπR2

M

= 0

which can be solved to obtain

vi =
w

2
±

√
w2

4
+

TM
2ρπR2

M

. (3.13)

Combining (3.13) with (3.12) we obtain the relationship between collective pitch

and main rotor thrust

TM = CMΩ2
MΘM +

DMΩMw

2
∓ DMΩM√

2ρπRM

√
TM +

ρπw2R2
M

2
. (3.14)

We choose a solution by enforcing ΘM = 0 when TM = 0 which leads to

ΘM =
1

CMΩ2
M

TM − DMΩMw

2
+


DMΩM√
2ρπRM

√
TM +

ρπw2R2
M

2 w ≥ 0

− DMΩM√
2ρπRM

√
TM +

ρπw2R2
M

2 w < 0

 . (3.15)

However, for our current purpose we desire the inverse relationship which gives main

rotor thrust in terms of collective, thus we rearrange (3.14) as a quadratic and obtain√
TM +

w2ρπR2
M

2
= ∓ DMΩM√

2ρπRM

±

√
CMΩ2

MΘM +
D2
MΩ2

M

8ρπR2
M

+
DMΩMw

2
+
ρπw2R2

M

2
(3.16)
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Figure 3.4: Example step response showing velocity saturation.
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Figure 3.5: Comparison of thrust models (3.14) (solid line) and (3.11a) (dashed
line), and the measured force (dotted line).

and thus

TM = CMΩ2
MΘM +

D2
MΩ2

M

4ρπR2
M

+
DMΩMw

2

− DMΩM√
2ρπRM

√
CMΩ2

MΘM +
D2
MΩ2

M

8ρπR2
M

+
DMΩMw

2
+
ρπw2R2

M

2
. (3.17)

Remark that when w = 0 we obtain (3.11a). In Figure 3.5 we see the differ-

ence between the above thrust models. Equation (3.14) captures the saturation

behaviour observed at times 38 s and 48 s evidenced by a transient net acceleration,

whereas (3.11a) predicts a steady-state net acceleration which is not supported by

the results of the experiment. Between 80 s and 90 s there is an error in both

models as compared to the measurements. This error is likely the result of a wind

gust, which is equivalent to horizontal velocity. If the horizontal velocity causes

additional thrust to be generated and the pilot reacts by decreasing collective to

maintain altitude, it is expected that the models would predict a decreased thrust

since they do not account for this effect. In order to help clarify the relationship of

TM to ΘM and w, Figure 3.6 shows plots of (3.17) over practically relevant ranges

of ΘM and w. Remark that both families of curves are nearly linear. As mentioned

in [7] the vertical velocity in the thrust model provides a stabilizing effect on the

vertical velocity dynamics. Indeed, if we assume level, vertical flight we can express
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Figure 3.6: Illustration of the dependence of main rotor thrust on collective and
vertical speed.
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Figure 3.7: Identified mapping from collective pitch to servo pulse width. The circles
show measurements made while the pitch was being decreased, while the x’s show
increasing pitch. The solid line shows the least squares fit.

these dynamics as

mẇ = mg − TM .

Since TM is strictly increasing in w (as shown in Figure 3.6b), the w-dynamics will

stay bounded due to this effect.

Finally, we must establish a mapping between the collective pitch and its cor-

responding servo pulse width since this is the actual physical input. This mapping

must be identified for the particular mechanical configuration used, and the results

for the ANCL Helicopter are shown in Figure 3.7. The servo was found to exhibit a

hysteresis resulting in different measurements if the pitch was sequentially increased

as compared to when it was decreased. However, this difference is not expected to

be significant in practice and so we fit the line

δM = αMΘM + βM (3.18)

to the entire data set. The parameter values are given in Table A.1.

3.2.2 Mapping from Main Rotor Flapping Angles to Normalized

Cyclic Inputs

In order to treat the cyclic inputs precisely, we must model the flapping angles as

a dynamics system which is actuated cyclic inputs as well as a stabilizing effect

from the flybar [1, 5, 28, 57]. However, both the main rotor flapping dynamics and

the flybar dynamics are fast and stable. Since our goal is a simplified model which

allows us to focus on the fundamental coupling present in the helicopter dynamics,
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Figure 3.8: Cyclic input identification data. The pilot inputs are normalized and
therefore dimensionless.

we choose to ignore these additional dynamics. We therefore take a steady-state

approximation of the mapping between the flapping angles and the cyclic inputs by

using flight data where the pilot forced the rotational dynamics using a sinusoidal

input to the cyclics. The pilot inputs and the system response in the roll and pitch

directions for this experiment are shown in Figure 3.8. We expand the rotational

dynamics in the roll and pitch directions as

Jxṗ =qr(Jy − Jz) + zMTMb

Jy q̇ =pr(Jz − Jx) + zMTMa

and since r = 0 during this flight, we are able to isolate the flapping angles as

b =
Jxṗ

zMTM
(3.19a)

a =
Jy q̇

zMTM
(3.19b)
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which results in the plots shown in Figure 3.9. We used a linear fit to approximate

the mapping by the identified functions

a = kpδp (3.20a)

b = krδr (3.20b)

where the values of the gains are given in Table A.1. We remark that the gains differ

by an order of magnitude. If we did not identify this relationship control would still

be possible since these values would be lumped into the controller gains. However,

by isolating this effect from the controller gains it allows for a more consistent tuning

between channels.

3.2.3 Tail Rotor Thrust and Main Rotor Countertorque

We treat the tail rotor thrust modelling similarly to the main rotor thrust. Once

again we begin by using the hover model from [5], however this model neglects

negative collective pitch. Whereas for non-inverted flight considering negative main

rotor collective pitch is not practically relevant, for the tail rotor it must be included

in the modelling. We include the negative collective pitch by defining TT piecewise

as

TT =

(
CTΩ2

T |ΘT |+
D2
TΩ2

T

4πρR2
T

− DTΩT√
2πρRT

√
CTΩ2

T |ΘT |+
D2
TΩ2

T

8ρπR2
T

)
·

1 ΘT ≥ 0

−1 ΘT < 0

(3.21a)

CT =
ρaT cTR

3
TNb

6
(3.21b)

DT =
ρaT cTR

2
TNb

4
(3.21c)

where ΩT is the tail rotor speed, ΘT is the tail rotor collective pitch, aT is the tail

blade lift curve slope, cT is the tail blade chord length, and RT is the radius of the

tail rotor disk. This function is shown over a practical range of values in Figure 3.10.

Due to the presence of the main rotor countertorque in the yaw dynamics, measuring

the angular acceleration about the e′3 axis does not give a direct relationship to the

tail rotor thrust. Indeed, in the absence of rolling and pitching motion the dynamics

are

Jz ṙ = xTTT −QM . (3.22)
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Figure 3.9: Identification results for cyclic input to flapping angle mapping.
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is operated at or close to zero under normal flight conditions.

Thus we must consider the tail rotor thrust and the main rotor countertorque models

simultaneously. We use the countertorque model given in [5, Eq. 5.40]

QM = CQM
(TM )

ΩM

(3/2)

+DQ
MΩ2

M (3.23a)

CQM =
1√

2ρπRM
(3.23b)

DQ
M =

ρcMR
4
MCDNb

8
(3.23c)

where CD is the drag coefficient. When ΩM is assumed constant (3.23) is the same

model as the one used in [11].

As is widely discussed in the literature, it is common practice for a pilot to

control the heading of a helicopter by providing a velocity reference to a gyro which

controls the collective pitch of the tail rotor. Some authors (e.g., [1, 7, 10]) choose to

leave the gyro in the loop during automatic control and therefore must identify the

dynamics of the gyro and invert them in order to achieve tail rotor collective control.

The standard argument for leaving the gyro in the loop is to allow the human pilot

to take control in an emergency. Indeed, it is necessary for the gyro to be in the loop

for the pilot to safely fly the helicopter. However, we have chosen a configuration

such that the output of the gyro passes through the takeover switch (see Chapter 2)

allowing our autopilot direct control of the tail collective while retaining the ability

for the pilot to regain control. Using this configuration, we only require a mapping

from ΘT to δT (which is analogous to the main rotor)

δT = αTΘT + βT (3.24)
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Figure 3.11: Identified mapping between tail rotor collective pitch and servo pulse
width. The circles show measurements made while the pitch was being decreased,
while the xs show increasing pitch. The solid line shows the least squares fit.

which is found by fitting data measured directly from the ANCL Helicopter and

shown in Figure 3.11. The parameter values are given in Table A.1.

The thrust model (3.21) and countertorque model (3.23) are plotted using flight

data where the pilot hovered the helicopter at a constant altitude and rapidly

changed the heading using a large amplitude motion. The intention of the ex-

periment was to leave QM constant while varying TT . In order to calibrate QM for

the period of constant heading, CD was decreased from 0.016 as given in [5] to 0.005.

The results are shown in Figure 3.12 where the measured torque is computed by

differentiating the heading. Observe the discrepancy between the measured torque

and the torque due to TT at approximately time t = 55. This abrupt increase in

TT is due to a corresponding increase in ΘT . However, we do not measure any

resulting motion which indicates this thrust is due to an external disturbance such

as a wind gust being rejected by the gyro. To further validate our model we use a

vertical climb flight which provides a variation in QM (without removing the gyro it

is impossible to perform and experiment where TT remains constant). As shown in

Figure 3.13, the results using (3.23) provided a poor prediction of the countertorque

during the climb. As we did for TM we return to the general model of QM in [5]

and preserve the vertical translational velocity terms while removing the effects of

the lateral and angular velocities, as well as the flapping and coning angles. The
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Figure 3.12: Tail thrust model validation data showing a hover flight with fast large
amplitude yaw motion. In the bottom plot the dotted line shows the measured net
torque while the solid shows the difference between the predicted torque due to the
tail rotor and the main rotor countertorque.
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Figure 3.13: Tail thrust and main rotor countertorque model validation data showing
large variation in QM during fast vertical climb flight. In the bottom two plots the
solid line uses the countertorque model with velocity dependence and the dashed
line uses the hover model. In the bottom plot the dotted line shows the measured
net torque.
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Figure 3.14: Illustration showing how QM depends on TM and w.

resulting expression is

QM = −
ρaMcMR

2
MNb(w − vi)2

4
−
ρaMcMR

3
MNbΩM (w − vi)

6
ΘM+

ρcMR
4
MCDNbΩ

2
M

8

which when combined with (3.12) and (3.13) gives

QM =

(
−w

2
+

√
w2

4
+

TM
2ρπR2

M

)
TM
ΩM

+DQ
MΩ2

M . (3.25)

This function is plotted as a family of curves over practical ranges of TM and w in

Figure 3.14. Figure 3.13 shows that this model provides a much better fit for the

climb data while reducing to (3.23) when w = 0 (as is the case for the flight shown

in Figure 3.12).

3.3 Conclusions

The rigid body dynamics can be treated with states represented in either the body-

fixed or navigation frames. For the purpose of control, considering the translational

states in either of these frames can be useful for a given application. However, the

rotational states do not have a similar benefit and are therefore only considered in

B. When aerodynamic effects are included, the complexity of the expressions of the

helicopter dynamics renders them intractable for control design. In order to design

controls it is helpful to define non-physical inputs which can then be related to the

physical inputs to apply the control. We define the control inputs TM , TT , a, b

and consider QM to be known. These inputs can then be mapped to the physical

inputs δM , δT , δr, δp using simple relationships we have proposed which can be

easily implemented in practice.
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Chapter 4

Model-Based PID Control

Before proceeding to the nonlinear control development in Chapters 5 and 6, it is

desirable to derive a simple linear control to be used for platform validation. The

helicopter dynamics in (3.6) or (3.8) are naturally divided into two subsystems in

cascade [16, 27, 58]: an inner-loop system which tracks an orientation reference, and

an outer-loop system which tracks a position reference. This hierarchical approach

transforms the underactuated open-loop dynamics into two fully actuated subsys-

tems by assuming the outer-loop has direct control of the orientation. An overview

of the complete closed-loop system is shown in Figure 4.1. The control objective is

to track a position reference pnd : R→ R3 and a heading reference ψd : R→ R. Both

reference trajectories are of class C4. The inner-outer approach is used throughout

this thesis and provides the practical benefit of allowing controls to be tested mod-

ularly. For instance, the PID control derived in this chapter was the first design to

be tested and tuned in flight. The modularity of the control allowed us to use the

working PID inner loop with the outer-loop control from Section 5.2.2 resulting in

a more incremental approach to experimental testing.

The organization of this chapter is as follows. Section 4.1 presents the system

modelling and explains the assumptions we use to perform the design. The inner-

Helicopter

Inner-Loop

Controller

Outer-Loop

Controller

ΘM

ΘT ,δp,δr

η,ω

pn,vn,η

pnd

ηd,η̇d,η̈d

Figure 4.1: Block diagram of the closed-loop dynamics.
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loop rotational control is designed in Section 4.2 where, as discussed in Chapter 3,

we will only consider the rotational states in the body-fixed frame. We will present

the design of the outer-loop control in Sections 4.3 and 4.4 using both the body-fixed

and navigation frame representations of the translational states respectively. Simu-

lation results are presented in Section 4.5 which investigate the effect of the velocity

dependence in the main rotor thrust and countertorque models. Modifications made

to the control design for implementation on the ANCL Helicopter are described in

Section 4.6 and experimental results for hover as well as line and circle trajectory

tracking flights are given.

4.1 Modelling

As mentioned above, we will perform the translational control design twice by con-

sidering the position and velocity in both N and B. Since the actuation of the

translational dynamics appears differently in these coordinate representations, we

will not present the model generally.

The objective of the control is to track a position and heading reference. Al-

though the control is computed using two coordinate frames, the reference position

pnd is always defined in N . We also define a heading reference ψd to be tracked by

the rotational control. To perform the design, we will use the inputs TM , TT , a, b.

However, the feedback computed using these inputs will be transformed to the phys-

ical inputs ΘM , ΘT , δr, δp using the modelling in Chapter 3. In addition, we make

the following assumptions: the SBF and QT are negligible, and lM ≈ (0, 0, −zM )T

and lT ≈ (−xT , 0, 0)T where zM and xT are the distances between the center of

mass and the main and tail rotors in the e′3 and e′1 directions respectively.

4.2 Inner-Loop Control

The inner-loop rotational controller will track reference orientation ηd = (φd, θd, ψd)
T

which consists of the heading reference given in the problem statement and the ori-

entation reference provided by the outer-loop control. The rotational dynamics are

η̇ = W (η)ω

Jω̇ = −ω × Jω +

 zMTMb

zMTMa

xTTT −QM


where η is the Euler angle parametrization of R (as in (3.3)); W (η) is the trans-

formation from the body-fixed angular velocity to the Euler rates; TT , a, b are the

inputs; and QM and TM are considered to be known time-varying parameters. We
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define the input transformation

ur = J−1(zMTMb, zMTMa, xTTT −QM )T (4.1)

and take a linear approximation about the equilibrium ω = 0, φ = θ = 0, which

results in the simplified second order dynamics

η̇ = ω

ω̇ = ur.

Introducing the error coordinates η̃ = η − ηd and an integrator state, we obtain the

error dynamics

ξ̇r = η̃ (4.2a)

˙̃η = ω̃ (4.2b)

˙̃ω = ur − η̈d. (4.2c)

The dynamics (4.2) are stabilized by

ur = η̈d −Kr
d

˙̃η −Kr
p η̃ −Kr

i ξ
r (4.3)

where we have chosen the gain matrices to be diagonal. This choice is made since

there is no intuitive benefit to coupling the feedback. From (4.3), we remark that in

addition to ηd we require the outer-loop control to provide the first two derivatives

of the orientation reference in order to track a time-varying trajectory.

4.3 Outer-Loop Control in the Navigation Frame

When the translational states are expressed in the navigation frame and the orien-

tation is assumed to be the reference Rd, the open-loop dynamics are

ṗn = vn

mv̇n = Rd

 0

0

−TM

+mge3

where the inputs are φd, θd, and TM . Since the value of ψd is not constrained by

the open-loop equilibrium set of the complete dynamics (i.e., there is no expectation

for ψ to be small), we wish to approximate the functional dependence on the in-

puts without making an assumption regarding the heading. Indeed, while practical

trajectories require small variations in φd and θd, ψd can take any value. We thus
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define the input force vector

ν = RydRxdf

where we have used the fact that the orientation can be decomposed into three

rotations (3.2). Expanding this product we have

ν = −TM

cosφd sin θd

− sinφd

cos θd cosφd

+mge3 (4.4)

which is approximated by

ν ≈

 −mgθd
mgφd

−TM +mg

 . (4.5)

Finally, we define the input transformation

utn = Rzdν, (4.6)

introduce the error states p̃n = pn− pnd and ṽn = vn− ṗnd , and include an integrator

state in the control which results in the triple integrator error dynamics

ξ̇tn = p̃n (4.7a)

˙̃pn = ṽn (4.7b)

m ˙̃vn = utn −mp̈nd . (4.7c)

We stabilize these dynamics using the feedback

utn = mp̈nd −Kt
dṽ
n −Kt

pp̃
n −Kt

i ξ
tn (4.8)

where the gain matrices Kt
j , j ∈ {d, p, i} are symmetric positive definite. Remark

that if we make the stronger (practical) assumption that the gain matrices are

diagonal we obtain three decoupled SISO third order systems which are known to

be stable for (scalar) kdkp > ki. However, for the sake of generality we will show

stability for the former case. Consider the possible Lyapunov Function Candidate

(LFC)

V =
1

2

 ṽ
n

p̃n

ξtn


T  mI αmI 0

αmI Kt
p + αKt

d Kt
i

0 Kt
i αKt

i


 ṽ

n

p̃n

ξtn

 (4.9)

which is based on [59]. In order to establish V is an LFC we must show that it is

positive definite. To proceed we make use of the following lemmas whose proofs can

be found in the respective reference.
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Lemma 4.1 ([60]). Given a real symmetric matrix which is partitioned as(
A B

BT C

)

where A and C are square. This matrix is positive definite if and only if A is positive

definite and C > BTA−1B.

Lemma 4.2 ([59]). If N , P , and Q are positive definite symmetric matrices and

α > 0 then

N − P − 1

α
Q > 0

implies

(a) N − P > 0

(b) αQ−Q(N − P )−1Q > 0.

Following [59] if we take A = mI, B =
(
αmI 0

)
, and C =

(
Kt
p + αKt

d Kt
i

Kt
i αKt

i

)
then since mI is trivially positive definite we only need

C −BTA−1B =

(
Kt
p + αKt

d − α2mI Kt
i

Kt
i αKt

i

)

to be positive definite. Invoking Lemma 4.1 a second time with A = Kt
p + αKt

d −
α2mI, B = Kt

i , and C = αKt
i we are left with the requirements

Kt
p + αKt

d − α2mI > 0 (4.10)

αKt
i −Kt

i (K
t
p + αKt

d − α2mI)−1Kt
i > 0. (4.11)

Conditions which ensure (4.11) holds are found using Lemma 4.2 with N = Kt
p +

αKd
t , P = α2mI, and Q = Kt

i which results in the condition

Kt
p + αKt

d − α2mI − 1

α
Kt
i > 0.

Therefore, if we choose

αKt
d − α2mI > 0 (4.12)

then (4.10) is satisfied, and if in addition we choose

Kt
p −

1

α
Kt
i > 0 (4.13)

we also satisfy (4.11). Since we have now established the LFC in (4.9) is positive

definite, it remains to compute the derivative of V along the closed loop trajectories
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of (4.7)

V̇ = (ṽn)T (−Kt
dṽ
n −Kt

pp̃
n −Kt

i ξ
tn) + α(p̃n)T (−Kt

dṽ
n −Kt

pp̃
n −Kt

i ξ
tn)

+ αm(ṽn)T ṽn + (p̃n)T (Kt
p + αKt

d)ṽ
n + (p̃n)TKt

i p̃
n + (ξtn)TKt

i ṽ
n

+ α(ξtn)TKt
i p̃
n

= − (ṽn)T (Kt
d − αmI)ṽn − (p̃n)T (αKt

p −Kt
i )p̃

n.

Thus, we see V̇ < 0 as long as (4.12) and (4.13) are satisfied. In order to make the

control law explicit we will solve for the inputs. From (4.5), (4.6), and (4.8) we find φd

θd

TM

 =

 0 1
mg 0

− 1
mg 0 0

0 0 −1

RTzd
(
mp̈nd −K

t
dṽ
n −Kt

pp̃
n −Kt

i ξ
tn
)

+mge3. (4.14)

We remark that due to the appearance of the desired heading the expressions for φd

and θd it is necessary for ψd to be class C4.

4.4 Outer-Loop Control in the Body-Fixed Frame

The control design in the body-fixed frame will follow a similar approach to the

design in the navigation frame presented in Section 4.3. Beginning with the transla-

tional dynamics presented in (3.6) and using the assumptions stated in Section 4.1,

we have

ṗb = −ω × pb + vb

mv̇b = −ω ×mvb +

 0

0

−TM

+mgRTd e3

where the last term is the orientation of gravity in the body-fixed frame and can be

expressed using the Euler angles as

mgRTd e3 = mg

 − sin θd

cos θd sinφd

cos θd cosφd

 ≈ mg
−θdφd

1

 .

We make the input transformation

utb =

 0

0

−TM

+mg

−θdφd
1

 , (4.15)
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which is the same as (4.4). Next, we define the error coordinates p̃b = pb − pbd and

ṽb = vb − vbd where pbd = RT pnd , vbd = RT ṗnd and p̈bd = RT p̈nd , and introduce an

integrator state to obtain

ξ̇tb = −ω × ξtb + p̃b (4.16a)

˙̃pb = −ω × p̃b + ṽb (4.16b)

m ˙̃vb = −ω ×mṽb + utb −mp̈bd. (4.16c)

We choose the control law

utb = mp̈bd −Kt
dṽ
b −Kt

pp̃
b −Kt

i ξ
tb, (4.17)

and the LFC

V =
1

2

 ṽ
b

p̃b

ξtb


T  mI αmI 0

αmI RT (Kt
p + αKt

d)R RTKt
iR

0 RTKt
iR αRTKt

iR


 ṽ

b

p̃b

ξtb

 .

By employing the fact that for x ∈ {R3 : x 6= 0}, xTMx = 0 if M is skew symmetric,

and the vector identity a · (b× c) = c · (a× b) for a, b, c ∈ R3, V̇ can be found to be

V̇ = −(ṽb)T (Kt
d − αmI)ṽb − (p̃b)TRT (αKt

p −Kt
i )Rp̃

b.

Therefore, V > 0 and V̇ < 0 if (4.12) and (4.13) are satisfied. We remark that the

ω× terms in (4.16) do not affect stability. This result is due to the fact that these

terms are passive [61]. We complete the body-fixed frame design by solving for the

inputs using (4.15) φd

θd

TM

 =

 0 1
mg 0

− 1
mg 0 0

0 0 −1

 (mp̈bd −Kt
dṽ
b −Kt

pp̃
n −Kt

i ξ
tb) +mge3. (4.18)

As a comparison between the designs given in the two coordinate frames, we

can approximate the orientation by R ≈ Rzd and relate the gain matrices by K̃t
j =

RTKt
jR, j ∈ {d, p, i} then (4.17) becomes ubt = RTzd(p̈

n
d − K̃t

dṽ
n− K̃t

dp̃
n− K̃t

i ξ
tn) and

the inputs are φd

θd

TM

 =

 0 1
mg 0

− 1
mg 0 0

0 0 −1

RTzd(mp̈
n
d − K̃t

dṽ
n − K̃t

pp̃
n − K̃t

i ξ
tn) +mge3

which is the same as (4.14). Therefore, the translational control laws designed in N
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and B are locally equivalent. We note that the desired heading is used as a result of

the inner-outer approximation which assumes the orientation is tracking its reference

perfectly.

4.5 Simulation Results

The system response using the control law given above is simulated to ensure validity

of the design. For clarity, we present a summary of the control law which is used and

how the physical inputs are calculated. Since the control laws (4.14) and (4.18) are

approximately equivalent, we only need to perform simulations using one of them to

verify the design. Furthermore, from a practical perspective they require the same

amount of code to implement. The principal difference between the controls is the

coordinate system in which the gains are chosen. Since we will use diagonal matrices

in our implementation, each non-zero entry of the gain matrix represents a scaling

along a particular coordinate axis. However, it is more intuitive to choose these

gains along the body-fixed axes. Therefore we use (4.18) to define the outer-loop

control φd

θd

TM

 =

 0 1
mg 0

− 1
mg 0 0

0 0 −1

 (mp̈bd −Kt
dṽ
b −Kt

pp̃
b −Kt

i ξ
t) +

 0

0

mg

 (4.19)

where the subscript d denotes reference quantities for the rotational control, ξt = ξtb,

and we will also use the notation ut = utb. In order to fully define the reference

orientation we must compute two derivatives of φd and θd. These derivatives are

easily computed using the first two coordinates of (4.15). Thus, we must compute

two derivatives of ut. The first derivative is

u̇t = m(pbd)
(3) + ((Kt

d)
2 −Kt

p)ṽ
b + (Kt

dK
t
p −Kt

i )p̃
b +Kt

dK
t
i ξ
t, (4.20)

and the second derivative is

üt = m(pbd)
(4) + (−(Kt

d)
3 + 2Kt

dK
t
p −Kt

i )ṽ
b + (−(Kt

d)
2Kt

p +Kt
dK

t
i + (Kt

p)
2)p̃

+ (−(Kt
d)

2Kt
i +Kt

pK
t
i )ξ

t. (4.21)

Then given ηd and its derivatives we can evaluate the inner loop control using (4.1)

and (4.3) to obtain a

b

TM

 =

 0
Jy

zMTM
0

Jx
zMTM

0 0

0 0 Jz
xT

 (η̈d −Kr
d

˙̃η −Kr
p η̃ −Kr

i ξ
r) +

 0

0
QM
xT

 .
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r0 7 m
T0 60 s
α0 −0.1 m/s2

Table 4.1: Reference trajectory parameters used for simulation.

We can now compute the physical inputs. From (3.20a), the cyclics are simply

δp =
a

kp

δr =
b

kr
.

The main rotor collective pitch is given in (3.15) as

ΘM =
1

CMΩ2
M

TM − DMΩMw

2
+


DMΩM√
2ρπRM

√
TM +

ρπw2R2
M

2 w ≥ 0

− DMΩM√
2ρπRM

√
TM +

ρπw2R2
M

2 w < 0

 ,

and the tail rotor collective pitch is from (3.21) to be

ΘT =
1

CTΩ2
T

(
|TT |+

DTΩT√
2πρRT

√
|TT |

)
·

1 TT ≥ 0

−1 TT < 0
. (4.22)

For implementation on the helicopter, the main and tail rotor collective pitch is then

converted to a servo pulse width using (3.18) and (3.24) respectively. However, for

the purpose of the simulation we use collective pitch angle as the input to the plant

since it carries intuitive meaning. In addition, we assume a constant main rotor

speed ΩM = 1500 RPM which implies a tail rotor speed ΩT = 7000 RPM. These

rotor speeds correspond to the ANCL helicopter as in Figures 3.4 and 3.12. The

reference trajectory is helical with a constant upwards acceleration

pd = RT


r0 cos

(
2π
T0
t
)

r0 sin
(

2π
T0
t
)

α0t2

2

 (4.23)

where r0 is the radius, T0 is the period, and α0 is the vertical acceleration. The values

of the parameters are given in Table 4.1. The heading reference was the constant

ψd = 0 which requires time-varying rotational inputs in steady-state as opposed to

the case when the heading is always tangent to the circle. The controller gains used

for the simulation are given in Table 4.2. The results of the simulation are shown

in Figure 4.2. These results show the system response when the controller uses

the exact main rotor thrust and countertorque models (including vertical velocity
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Kr
i 0.1I s−3

Kr
p diag(10, 10, 7) s−2

Kr
d 5I s−1

Kt
i 0.1I kg/s3

Kt
p 2I kg/s2

Kt
d 3I kg/s

Table 4.2: Controller gains used for simulation.

dependence) and when the controller uses the hover approximation. When the

hover approximation is used, the countertorque disturbs the yaw dynamics with a

time-varying magnitude which prevents the integrator states in the controller from

removing the effect. The errors in the vertical position and velocity are shown in

Figure 4.2d. In Figure 4.2e the same errors are shown except for simulations where

the integrator states have been removed from the control. We observe that without

the help of the integrators the position error is unbounded when the hover model is

used. However, as expected the control using the exact model is able to track the

reference.

4.6 Experimental Results

While simulation is a useful first step in testing a design, it is necessary to conduct

flight experiments to fully validate the autopilot. For safety, the autopilot is pro-

grammed to control the cyclic inputs while allowing the pilot to control the main

and tail collective pitch as well as the engine throttle. Therefore, we only consider

the first two components of the position, velocity, orientation, and angular velocity.

Consequently, the dimension of the gain matrices and inputs used in the control

laws is reduced. Let η = (φ, θ)T be the reduced dimension orientation, ηd and η̃

be the corresponding references and errors respectively, and ξ be the reduced di-

mension integrator state. For implementational simplicity we assume η̇
d

= η̈
d

= 0.

Indeed, this assumption is reasonable for slow time-varying trajectories and reduces

the potential for software bugs by simplifying the control law. We then rewrite the

control law for the rotational subsystem (4.3) as

ur = −Kr
d η̇ −Kr

p η̃ −Kr
i ξ
r (4.24)

where ur is the reduced dimension control input and we have slightly abusively used

the previous notation for the reduced dimension gain matrices. To complete the

control implementation we must use the physical inputs. By assuming the pilot will
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(a) Translational states. The solid line shows the response to the control using the exact
models, the dashed line shows the hover models, and the dotted line shows the reference.
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Figure 4.2: Simulated system response for the control including the physical input
mappings. Two simulations were run: one using the exact thrust and countertorque
models in the control and the other using the hover thrust and countertorque models
in the control. In both cases the plant was simulated using the exact models.
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K̄r
d 0.3I s/rad

K̄r
p 0.8I rad−1

K̄r
i 0.1I rad−1s−1

K̄t
d 0.2I rad s/m

K̄t
p 0.05I rad/m

K̄t
i 0.005I rad/m s

Table 4.3: Controller gains used for experimental flight testing.

maintain a close to constant altitude we use TM = mg and obtain(
δr

δp

)
= −K̄r

d η̇ − K̄r
p η̃ − K̄r

i ξ
r (4.25)

where

K̄r
j =

1

zMmg

(
Jx
kr

0

0
Jy
kp

)
Kr
j , j ∈ {d, p, i}.

Similarly, let pb, vb be the first two components of pb, vb, and pd and p̃b be its

corresponding references and errors respectively. Then the translational control

law (4.19) becomes (
φd

θd

)
= −K̄t

dv
b − K̄t

pp̃
b − K̄t

i ξ
t (4.26)

in terms of the physical inputs where

K̄t
j =

1

g

(
0 1

−1 0

)
Kt
j , j ∈ {d, p, i}.

In order to prevent the controller’s integrator states from diverging, they were pro-

grammed to reset when an upper bound was reached. The bounds were |ξrj | ≤
10 rad s and |ξtj | ≤ 10 m s where j ∈ {1, 2} denotes the component.

The testing was performed over several flight sessions wherein the authority

of the autopilot was mixed in slowly while the controller gains were tuned. The

final gains used for the validation flights are given in Table 4.3. During the flights

described in the following, there was a 25 km/h wind coming from the north-west

with strong gusts.

The first reference we used to validate the control was a constant setpoint

(i.e., hover). This reference was implemented to record the position when the pilot

engaged the autopilot, thus minimizing initial condition error. Figure 4.3a shows

the translational states and inputs, Figure 4.3b shows the rotational states and in-

puts, and Figure 4.3c shows the heading and height measurements. We observe that

the control behaves as expected with translation tracking error of a few meters (ap-
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proximately one rotor diameter). This performance is achieved despite a constant

change of heading as the pilot performs two rotations. This rotation emphasizes

the dependence of φd and θd on the heading measurement, but it also causes the

direction of the wind expressed in B to change, which forces the integrator states

to oscillate as they attempt to compensate for the disturbance. This inability for

the integrator states to converge is responsible for the steady state error evident in

Figure 4.3d. The general drift to the south-east is likely due to the effect of the

wind disturbance.

The second reference is a line trajectory which is implemented as follows. The

operator specifies an initial hover duration, speed, and displacements in the e′1 and

e′2 directions. When the autopilot is engaged, the initial position is recorded and

the reference remains constant for the hover duration. The displacements set by the

operator in B is transformed into N to obtain a final position. A linear trajectory is

then computed with the speed configured by the operator and passed as a reference

to the autopilot. When the reference reaches the final position it remains constant

for all time. This procedure gives a natural coordinate frame for the operator to

specify the trajectory. However, once the trajectory begins it is not affected by

changes in heading. If the trajectory is generated in B, changes in heading would

warp the resulting trajectory which would not give the expected result from the

point of view of the operator. The results are shown in Figure 4.4, where Figure 4.4a

shows the response of the translational subsystem, Figure 4.4b shows the response of

the rotational subsystem, Figure 4.4c shows the heading and height measurements,

and Figure 4.4d shows the position in N plotted parametrically. These results once

again show tracking error within a few meters. At 22 s the pilot yawed the aircraft

by more than 100◦. This significant change of heading caused the error evident near

the end of the trajectory in Figure 4.4d. The probable cause of the error is the

integrator states requiring time to converge to the new wind direction, similar to

the effect observed during hover stabilization.

The third and final reference trajectory used for validation is a circle which is

implemented as follows. Similar to the line, the operator specifies an initial hover

duration, radius, and tangential speed. When the autopilot is engaged the initial

position is recorded. The location of the center of the circle is computed by adding

a vector to the initial position whose length was the radius of the circle and has the

same direction as the heading of the helicopter (i.e., the helicopter is initially always

facing the center of the circle). Once again, since the reference is envisioned with

respect to the orientation of the helicopter, the reference is transformed into N to

prevent warping if the heading is changed during the flight. Therefore, the initial

position must be converted into an initial angle in the e1-e2 plane. After the initial

hover, this angle is varied to provide the desired tangential reference speed. The
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(a) Translational states, errors and control effort. The reference position is shown by the
dashed line.
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(b) Rotational states, errors and control effort. The reference is shown by the dashed line.

57



0 10 20 30 40 50

−2

0

2

p
n 3
[m

]

0 10 20 30 40 50

−200

0

200

ψ
[◦
]

Time [s]

(c) Heading and height measurements for
setpoint regulation with full yaw rotation.

−0.5 0 0.5 1 1.5 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

p
n

2 (East) [m]

p
n 1
(N

or
th
)
[m

]

(d) Parametric plot of the horizontal po-
sition in N .

Figure 4.3: System response for setpoint regulation with a full yaw rotation. The
reference location is the origin of the navigation frame.

results are shown in Figure 4.5. Figures 4.5a and 4.5b show the translational and

rotational controller responses respectively, Figure 4.5c shows the heading and height

measurements, and Figure 4.5d shows a parametric plot of the horizontal position.

As in the case of the line tracking, the integrator reset is reached more frequently

than in the case of hover regulation. A likely explanation for this difference is due

to the time-varying reference. Since the control assumes a constant reference, as

the reference velocity increases some amount of error is expected. However, despite

any additional disturbance, we remark that the performance is consistent between

the two complete periods of the circular trajectory and the error remains within

approximately 2-3 m.

4.7 Conclusions

We have derived a simple model-based linear control law and successfully used it in

experimental flight tests. The simulation results presented in this chapter empha-

size the importance of including an accurate thrust model in the control. Overall,

the experimental results showed good tracking performance despite a strong wind

disturbance. The flight tests also show correct hardware and software functionality.

Furthermore, this control is not only useful for platform validation but can also

serve as a basis of comparison for other control methods.
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Figure 4.4: System response for line tracking experiment with a 15 m travel in the
e′1 direction and a −15 m travel in the e′2 direction at a speed of 1 m/s.
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(a) Translation states, errors, and control effort. The reference is shown by the dashed line.
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(b) Rotational states, errors and control effort. The reference is shown by the dashed line.
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Figure 4.5: System response for circle tracking experiment with a 7 m radius a
tangential speed of 2.5 m/s.
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Chapter 5

Nonlinear Control with Small

Body Force Compensation

The generally accepted dynamic model of a helicopter with actuation (3.8) includes

a coupling between the rotational inputs a, b, TT and the translational dynamics.

These coupling forces are the so-called Small Body Forces (SBF). We remark that the

SBF are particular to the traditional helicopter and do not appear in other vehicles

such as multirotors [13]. In fact, the reason SBF arise is due to the rotational inputs

being linear forces acting on a lever-arm about the center of mass. The flapping

angles parameterize the tilting of the main rotor disk and are shown in Figure 3.2.

This relative orientation between the main rotor thrust and the vertical body-fixed

axis creates a moment about the vehicle’s center of mass. However, this lever-arm

also creates a horizontal force and hence translational motion. A similar effect

occurs due to the tail rotor thrust. The SBF coupling makes the control problem

challenging. For example, in [11] SBF result in unstable tracking dynamics making

input-output linearization not possible. It is therefore common practice to neglect

SBF in the control, e.g., [13, 16, 17]. In [12] the SBF are neglected to derive a

control, however, their effect is analyzed as a disturbance. Ultimate boundedness

of the trajectory tracking error is concluded. A similar analysis and conclusion is

obtained in [11].

The contribution of this work is to derive a control law which compensates the

SBF associated with the tail rotor, and to provide an analysis of the stability in the

presence of the remaining SBF. The robustness analysis leads to specific statement

about the performance tradeoffs of the proposed design. Section 5.1 presents the

model of the helicopter, and establishes the relevant notation. In Section 5.2 the

proposed control is designed by treating the translational and rotational dynamics as

two subsystems in cascade, and deriving a stabilizing feedback using an inner-outer

control scheme. As described in [58] the design principle is to treat the rotational
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subsystem as an actuator for the translational dynamics. Therefore, we do not

consider the state of the rotational dynamics in the translational control design.

For an example of a quadrotor control which uses an inner-outer approach see [27].

We note that the principal difference between the quadrotor and helicopter models is

the absence of the SBF appearing in the quadrotor model (see [13] for a description

of both models). Since our approach does not compensate the SBF associated with

the main rotor flapping angles, we analyze their effect on the closed loop stability

in Section 5.3 and show that the system remains uniformly ultimately bounded.

Simulation results are presented in Section 5.4, and in Section 5.5 experimental

results are given.

5.1 Modelling

In this chapter we express the translational dynamics in N . From Section 3.1 we

have

ṗn = vn (5.1a)

mv̇n = mge3 + f (5.1b)

Ṙ = Rω̂ (5.1c)

Jω̇ = −ω × Jω + τ (5.1d)

where f and τ are given by (3.8).

Next, we make practically reasonable model assumptions which simplify the

derivation of a control which compensates the SBF. In particular, we consider the

tail rotor countertorque to be negligible QT = 0, the inertia matrix is diagonal

J = diag(Jx, Jy, Jz), and the rotor hub positions as lM = (0 0 −zM )T and lT =

(−xT 0 0)T . Therefore (3.8b) simplifies toτ1

τ2

τ3

 =

 zMTMb

zMTMa

xTTT −QM

 (5.2a)

which is a bijective mapping with inverse a

b

TT

 =


τ2

zMTM
τ1

zMTM
τ3+QM
xT

 . (5.2b)
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Figure 5.1: Block diagram showing the closed loop system.

Hence, we can use (5.2b) to obtain

f = R

 − τ2
zM

τ1
zM
− τ3

xT
− QM

xT

−TM

 . (5.3)

From (5.3) we see the SBF is in part due to the applied torque and in part due to

the countertorque. Finally, we assume the main rotor countertorque is linear in the

main rotor thrust QM = σMTM for some σM > 0.

The assumptions made in this section are practically reasonable and consistent

with current designs in the literature. The tail countertorque is not considered

in [17, 62]; and in [13] similar assumptions are made regarding the rotor hub offsets.

Furthermore, based on the geometry of the helicopter it is reasonable to expect

that the body-fixed frame B is aligned with the principal axes, which justifies the

diagonal inertia matrix.

5.2 Control Design

The goal of the controller is to track class C4 reference trajectories denoted pnd : R→
R3 for position, and ψd : R→ R for heading. We perform the control design using an

inner-outer hierarchical approach. As shown in Figure 5.1, the inner-loop controls

the orientation, while the outer-loop controls the position. In order to perform the

outer-loop design we make the assumption that the orientation reference generated

by the outer-loop is tracked perfectly by the inner-loop.

5.2.1 Inner-Loop Control

Control of the rotational dynamics can be performed by applying an existing design

from the literature. Our design is based on [63] which is further refined in [64].

This design is chosen since it does not suffer from singularities or other topological

problems such as unwinding [15], and it provides almost global stability. To begin,

we define error coordinates R̃ = RTdR where Rd is the desired orientation. The
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desired angular velocity ωd is defined to be compatible with the attitude kinematics

Ṙd = Rdω̂d. Therefore, the error kinematics are found to be

˙̃R = ṘTdR+RTd Ṙ

= RTdRω̂ − ω̂dRTdR

= R̃(ω − R̃Tωd)∧

which implies ω̃ = ω − R̃Tωd. We remark that ω̃ is a vector expressed in B while

ωd is expressed in the desired frame (whose orientation is Rd). Thus we have ˙̃ω =

ω̇ − R̃ω̇d + ω̂R̃Tωd and therefore the open-loop error dynamics are

˙̃R = R̃ ˆ̃ω (5.4a)

J ˙̃ω = −ω × Jω̃ + τ − JR̃T ω̇d + Jω̂R̃Tωd. (5.4b)

We will show that these dynamics are stabilized by using torque feedback

τ = − skew(Kr
pR̃)∨ −Kr

dω̃ − Jω̂R̃Tωd + JR̃T ω̇d + (R̃Tωd)
∧Jω̃ (5.5)

where Kr
p and Kr

d are diagonal, positive definite gain matrices; and skew(A) =
1
2(A − AT ) projects a matrix onto the skew-symmetric subspace. In order to show

stability we require a potential function for the attitude error which we define in the

following proposition.

Proposition 5.1 ([64]). The function

V1 =
1

2
tr(Kr

p(I −R)) (5.6)

is an LFC since V1(R) = 0 when R = I and V1(R) > 0 otherwise.

Proof. The property V1(R) = 0 for R = I is obvious. When R 6= I all of the diagonal

elements of I −R are nonnegative and at least one is positive.

Next we derive the relevant properties of V1.

Proposition 5.2 ([64]). The derivative of V1 given by (5.6) is

V̇1 = skew(Kr
pR)∨ · ω.

Proof. From (5.6) we compute

V̇1 = −1

2
tr(Kr

pṘ)

= −1

2
tr
((

skew(Kr
pR) + sym(Kr

pR)
)
RT Ṙ

)
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where sym(A) = 1
2(A + AT ) and we have used the fact that any matrix can be

decomposed as A = skew(A) + sym(A) [65]. Since symmetric and skew-symmetric

matrices are orthogonal under the trace norm, and ω̂ = RT Ṙ we have

V̇1 = −1

2
tr
(
skew(Kr

pR)ω̂
)
.

Finally, since for a, b ∈ R3, a · b = −1
2 tr(âb̂) we have the result.

Note that · in Proposition 5.2 denotes the usual inner product on R3. We are

now ready to present our Lyapunov stability proof.

Proposition 5.3. The equilibrium (R̃, ω̃) = (I, 0) of the error dynamics (5.4) with

the torque feedback (5.5) is asymptotically stable.

Proof. To begin we compute the closed-loop dynamics to be

˙̃R = R̃ ˆ̃ω

J ˙̃ω = −ω̃ × Jω̃ − skew(Kr
pR̃)∨ −Kr

dω̃.

We choose the LFC

V =
1

2
tr
(
Kr
p(I − R̃)

)
+

1

2
ω̃ · Jω̃

whose derivative is

V̇ = skew(Kr
pR̃)∨ · ω̃ + ω̃ · (−ω̃ × Jω̃ − skew(Kr

pR̃)∨ −Kr
dω̃)

thus

V̇ = −ω̃ ·Kr
dω̃.

Following [66] we note that any smooth function on SO(3) has at least 4 critical

points. This result can be obtained by Lusternik-Schnirelmann Category theory,

which states that any smooth function on a manifold M with cat(M) = n will

have at least n + 1 critical points [67]. Furthermore, from [68, Table 1] where we

see that cat(SO(3)) = 3. Critical points are where the gradient field is zero and

therefore a feedback using the gradient of V1 will not provide global stability. In

fact, no continuous feedback can provide global stability on SO(3) [15]. In order to

compute the critical points of (5.6) we use the following lemma. This lemma makes

use of the quaternion formulation of R. For details on this parametrization see for

example, [53, 69].

Lemma 5.4 (Critical points of V1 [64]). Let V1 be given by (5.6) where Kr
p is positive

definite and Kr
p = diag(kp1 , kp2 , kp3), kpi 6= kpj for each i 6= j. Then, the critical
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points of V1 are the identity and the rotations by 180◦ about the coordinate axes.

Proof. Let q = (q0, qv) be the quaternion representation of R where q0 = cos(θ/2),

qv = sin(θ/2)n, and R is a rotation by θ about the fixed axis n. First, we will show

V1(R) = qTv K̄qv (5.7)

where K̄ = diag(kp2 + kp3 , kp1 + kp3 , kp1 + kp2). Using Rodrigues’ formula, R =

I + 2q0q̂v + 2q̂2
v gives

V1(R) = − tr(Kr
pq0q̂v)− tr(Kr

p q̂
2
v)

= −tr(Kr
p q̂

2
v)

= −tr
((

skew(Kr
p q̂v) + sym(Kr

p q̂v)
)
q̂v
)

= −tr
(
skew(Kr

p q̂v)q̂v
)

= 2 skew(Kr
p q̂v)

∨ · qv

and by direct computation we have (5.7). Then, recalling the kinematic expression

q̇v =
1

2
(q0ω + qv × ω)

we have

V̇1 = ωT (q0K̄qv − q̂vK̄qv)

= (q0K̄qv − q̂vK̄qv)∧ · ω̂.

The gradient of V1 is therefore

dV1 = (q0K̄qv − q̂vK̄qv)∧.

Clearly the identity q = (±1, 0, 0, 0) is a critical point. The other critical points

are more interesting. Since the eigenvalues of K are distinct, the critical points are

where q0 = 0 and qv × K̄qv = 0. To see where this latter condition holds we use

qv = (q1, q2, q3)T and expand the cross product

qv × K̄qv =

−q3(kp1 + kp3)q2 + q2(kp1 + kp2)q3

q3(kp2 + kp3)q1 − q1(kp1 + kp2)q3

−q2(kp2 + kp3)q1 + q1(kp1 + kp3)q2


which is only zero when qv is one of the basis vectors (note qv is of unit length when

q0 = 0).

Remark 5.5. In the context of a Riemannian manifold, the gradient of V1 is not the
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covector dV1 [70]. A more precise statement is to say the gradient of V1 is the vector

field

gradV1 = dV ]
1

= M−1dV1

where M is the metric. However, this distinction does not affect the result since the

critical points remain the same.

Remark 5.6. The requirement that the eigenvalues of Kr
p be distinct prevents the

critical points of V1 from being a connected submanifold of SO(3). For example, if

we assume Kr
p = kpI then

dV1 = q0K̄qv

which is zero whenever q0 = 0. This condition characterizes the rotations by 180◦

about any axis.

5.2.2 Outer-Loop Control

To design the outer-loop control we will treat the translational dynamics as an

independent subsystem forced by the desired roll φd, pitch θd and main rotor thrust

TM . To begin we consider the dynamics (5.1a)-(5.1b) where f is taken as the input.

These dynamics are essentially three double integrators, and therefore stabilization

is trivial. However, to apply such a control requires its expression in terms φd, θd,

TM . Writing this expression leads to unstable dynamics for φd, θd. Hence, we must

make a model approximation in order to define a control which does not depend on

dynamics.

The first step in the design is to define the error states p̃n = pn − pnd and

ṽn = vn − ṗnd which results in the error dynamics

˙̃pn = ṽn (5.8a)

m ˙̃vn = mge3 −mp̈nd + f. (5.8b)

We therefore choose the feedback

f = mp̈nd −mge3 −Kt
dṽ
n −Kt

pp̃
n (5.9)

where Kt
d and Kt

p are symmetric positive definite gain matrices. If we consider the

LFC

V =
m

2
(ṽn)T ṽn +

1

2
(p̃n)TKt

pp̃
n
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then the derivative of V along the trajectories of (5.8) is

V̇ = −(ṽn)TKt
dṽ
n

and thus without further qualification the closed loop is globally asymptotically

stable. In Section 5.2.2 we attempt to apply the feedback (5.9) where f is given

as in (5.3). We will then approximate f in Section 5.2.2 to obtain a control which

compensates the SBF due to the tail rotor while treating the SBF due to the flapping

angles as a disturbance.

Unstable Reference Dynamics

Next, we derive the differential equations for φd and θd which must be satisfied

to apply (5.9). We deduce the instability of these differential equations from their

linearization. In order to isolate φd and θd we define a transformed input

ν = RTzdf (5.10)

where the subscript d denotes a desired quantity, and f is given in (3.8a). We must

now relate the stabilizing force given by (5.9) to the outer-loop inputs: φd, θd, and

TM

ν1 = sφdsθd

(
τ1

zM
− τ3

xT
− QM

xT

)
− cθd

τ2

zM
− TMcφdsθd (5.11a)

ν2 = cφd

(
τ1

zM
− τ3

xT
− QM

xT

)
+ sφdTM (5.11b)

ν3 = sθd
τ2

zM
+ cθdsφd

(
τ1

zM
− τ3

xT
− QM

xT

)
− cφdsφdTM . (5.11c)

Thus, in order to evaluate (5.11) we require an expression for the applied torque.

This expression is found by evaluating (5.5) when the rotational dynamics are track-

ing the reference

τ = Jω̇d. (5.12)

To express τ in terms of the reference roll and pitch, we begin with the rotational

kinematics from (3.7)

ωd =

1 0 −sθd
0 cφd sφdcθd

0 −sφd cφdcθd


φ̇dθ̇d
ψ̇d

 (5.13)
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then we differentiate (5.13) to obtain

ω̇d =

1 0 −sθd
0 cφd sφdcθd

0 −sφd cφdcθd


φ̈dθ̈d
ψ̈d

+

 0 0 −cθd
−sφd cφdcθd −sφdsθd
−cφd −sφdcθd −cφdsθd


 φ̇dθ̇dφ̇dψ̇d

θ̇dψ̇d

 .

(5.14)

Furthermore, we assume an approximation of QM |w=0 which is linear in TM and

passes through the origin. Figure 3.14 shows that such an approximation is qual-

itatively reasonable in the practically relevant region of TM ≈ mg. Thus, QM is

denoted

QM = σMTM . (5.15)

Using the above, the expressions in (5.11) can be solved to obtain

TM = cφdν2 − sθdcφdν1 − cφdsθdν3 (5.16a)

θ̈d = − tφdcθdψ̈d + tφdφ̇dθ̇d − cθdφ̇dψ̇d + tφdsθdθ̇dψ̇d −
cθdzMν1

cφdJy
+
sφdzMν3

cφdJy

(5.16b)

φ̈d = − zMJztφdsφdφ̇dθ̇d
JxxT

− cφdzMJzφ̇dθ̇d
JxxT

+

(
z2
MJztφdcθd
JxxTJy

− zMσMcφdsθd
JxxT

+
zMsφdsθd

Jx

)
ν1

+

(
zMσMsφd
JxxT

− zMsφdtφd
Jx

+
zM
Jxcφd

)
ν2

+

(
zMsφdcθd

Jx
− cφdcθdzMσM

JxxT
−
z2
MJztφdsθd
JxxTJy

)
ν3

+

(
cθdθ̇d −

tφdsφdsθdθ̇dzMJz
JxxT

− cφdsθdθ̇dzMJz
JxxT

)
ψ̇d

+

(
zMJztφdsφdcθd

JxxT
+
sθd + cφdzMcθdJz

JxxT

)
ψ̈d (5.16c)

where tφ = tan(φ). The right hand side of these dynamics is completely defined,

therefore, they could be integrated in a controller to define the reference for the

rotational dynamics. However, we will show that the dynamics (5.16) are unsuitable

for a control law since they have a linearization which is not asymptotically stable

for at least a practically relevant special case.

Proposition 5.7. Consider a constant position and heading reference. Suppose the

dynamics (5.8) are initialized on the reference. In other words ψ̇d = ψ̈d = ν1 =

ν2 = 0 and ν3 is constant. Let ζ1 = φd, ζ2 = θd, ζ3 = φ̇d, and ζ4 = θ̇d. Then, the

reference dynamics (5.16) have a linearization which is not asymptotically stable.

Proof. Under the assumptions of the proposition, the reference dynamics (5.16)
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become

ζ̇1 = ζ3 (5.17a)

ζ̇2 = ζ4 (5.17b)

ζ̇3 = zMν3

(
sζ1cζ2

Jx
− cζ1cζ2σM

JxxT
− zMJztζ1sζ2

JxJyxT

)
− zMJzζ3ζ4

JxxT
(tζ1sζ1 + cζ1)

(5.17c)

ζ̇4 = tζ1ζ3ζ4 +
sζ2zMν3

cζ1Jy
. (5.17d)

The equilibrium of (5.17) is ζ1 = arctan
(
σM
xT

)
, ζ2 = ζ3 = ζ4 = 0. The Jacobian

of (5.17) evaluated at the equilibrium is

A =


0 0 1 0

0 0 0 1
zMν3
√
σ2
M+x2T

JxxT
− z2MJzσMν3

Jxx2T Jy
0 0

0
zMν3
√
σ2
M+x2T

JyxT
0 0


The eigenvalues of A are two repeated pairs

λ(A) = ±

√√√√zM

√
σ2
M + x2

T

2xTJxJy

(
ν3(Jx + Jy) +

√
ν2

3(Jx − Jy)2

)
where zM , xT , Jx, Jy are positive by definition.

Main Result: Tail SBF Compensation

Since we cannot apply a control law which is based on the critically stable dynam-

ics (5.17), we partition (5.3) in order to derive an orientation reference. In particular,

we treat any terms in f with dependence on derivatives of φd or θd as a disturbance

in the design. Effectively, we break f into two terms f = Rzdν+Rdτ̄ where we have

redefined ν and defined a disturbance τ̄ . That is

ν = RydRxd

 0

− cφdcθdJzψ̈d
xT

− σMTM
xT

−TM

 , (5.18)

and

τ̄ =


− τ2
zM

τ1
zM

+ Jz
xT

(
sφdθ̈d + cφdφ̇dθ̇d + sφdcθdφ̇dψ̇d + cφdsθdθ̇dψ̇d

)
0

 , (5.19)
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where we have used (5.12) to express τ as a function of φd, θd, ψd, and their deriva-

tives. In other words, we have neglected the effect of the SBF due to the flapping

angles as well as the coupling of the roll and pitch into the expression for the tail

rotor thrust in the SBF. However, we have retained the principal effect of the SBF

due to the tail rotor. Indeed, for many practical trajectories only constant steady-

state roll-pitch speeds are required (e.g., hover, constant velocity forward flight, and

circles where the heading is tangent to the position trajectory), however, the main

rotor countertorque is always present, and ψ̈d is used to change the heading at low

velocity and hover. To complete the control design, we expand (5.18)

ν1 = sφdsθd

(
−cφdcθdJzψ̈d

xT
− σMTM

xT

)
− cφdsθdTM

ν2 = cφd

(
−cφdcθdJzψ̈d

xT
− σMTM

xT

)
+ sφdTM

ν3 = cθdsφd

(
−cφdcθdJzψ̈d

xT
− σMTM

xT

)
− cφdcθdTM

and solve to obtain

TM = −(cθd)
2sφdcφdJzψ̈d + ν3xT

cθd(sφdσM + xT cφd)
(5.20a)

θd = arctan

(
ν1

ν3

)
(5.20b)

φd = arctan

Jzψ̈dν3 −
√
ν2

1 + ν2
3

(
σM
√
ν2

1 + ν2
3 + xT ν2

)
√
ν2

1 + ν2
3

(
σMν2 − xT

√
ν2

1 + ν2
3

)
 (5.20c)

where we have assumed ν3 < 0. We note that for practically relevant trajectories

|ν1| � |ν3| and |ν2| � |ν3| since the force of gravity will be applied mainly in the e′3
direction. We formally summarize the control design in the following proposition.

Proposition 5.8. Let pnd and ψd be the position and heading references respectively,

and the outer-loop subsystem be

ṗn = vn (5.21a)

mv̇n = mge3 +Rzdν (5.21b)

where the inputs are (φd, θd, TM ) as given by (5.18). Then the control

ν = RTzd
(
mp̈nd −mge3 −Kt

pp̃
n −Kt

dṽ
n
)
, (5.22)

which is applied using (5.20), will cause (5.21) to track the reference with globally
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asymptotically stable error dynamics on the domain where ν3 < 0.

Proof. Following the above derivation, we use the Lyapunov function

V =
1

2
(p̃n)TKt

pp̃
n +

m

2
‖ṽn‖2.

The derivative of V along the trajectories of the closed loop system (5.21) is given

by

V̇ = −(ṽn)TKt
dṽ
n. (5.23)

Remark 5.9. The restriction of the state space to the domain where ν3 < 0 is

necessary in order to prevent TM from crossing zero. If TM = 0 the helicopter

becomes uncontrollable which is a situation we do not consider in this work. In

practice, for non-inverted flight this case is not relevant. Indeed, experimental data

we have collected during an investigation of main rotor thrust modelling where the

pilot attempted to maximize downward acceleration while retaining control showed

TM > mg
2 [36].

5.3 Robustness Analysis

As part of the control design we neglected some of the terms in the SBF. The purpose

of this section is to determine if conditions exist where stability can be guaranteed

in the presence of the disturbance τ̄ . We will show that for a general reference the

dynamics are uniformly ultimately bounded, and for a constant-velocity, constant-

heading reference the result specializes to asymptotic stability.

The undisturbed closed loop error dynamics are a stable linear system ξ̇ = Aξ

where

A =

(
0 I

−Kt
p −Kt

d

)
,

and

ξ =

(
p̃n

ṽn

)
.

Therefore we know for any symmetric positive definite Q there exists a symmetric

positive definite P such that

V = ξTPξ (5.24)

is a Lyapunov function with derivative V̇ = −ξTQξ. When the effect of τ̄ is included,

we have

V̇ = −ξTQξ + 2ξTP

(
0

Rdτ̄

)
. (5.25)
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In (5.25) we see that the first term is stabilizing while the second is indefinite.

Therefore, we seek a comparison of the magnitude of these terms. Let λmin(M)

(λmax(M)), M ∈ Rn×n be the minimum (maximum) eigenvalue of a matrix M ,

then

V̇ ≤ −λmin(Q)‖ξ‖2 + 2λmax(P )‖ξ‖‖τ̄‖. (5.26)

In order to determine whether this inequality can guarantee stability we must com-

pute an upper bound on τ̄ in terms of the magnitude of the error states.

The relationship between τ̄ and the error state ξ is defined by the composition

τ̄(ξ) = τ̄ ◦ ω̇d ◦ ν ◦ f(ξ)

where τ̄(ω̇d) is found using τ = Jω̇d, ω̇d(ν) is a differential operator from (5.20b)-

(5.20c), ν(f) = RTzdf , and f(ξ) is given by (5.9). Therefore, to derive a growth bound

on τ̄ in terms of ‖ξ‖ we proceed by deriving a bound on each of these functions. Since

two derivatives of the control are necessary for ω̇d, beginning with f we compute

ḟ = m(pnd )(3) +

(
1

m

(
Kt
d

)2 −Kt
p

)
ṽ

f̈ = m(pnd )(4) +
1

m

(
2Kt

dK
t
p −

1

m
(Kt

d)
3

)
ṽ +

1

m

((
Kt
p

)2 − 1

m

(
Kt
d

)2
Kt
p

)
p̃

where we have assumed Kt
p and Kt

d are diagonal. Then, we have the bounds

‖f‖ ≤ m‖p̈nd‖+mg + (k̄d + k̄p)‖ξ‖ (5.27a)

‖ḟ‖ ≤ m‖(pnd )(3)‖+ (k̄2
d + k̄dk̄p + k̄p)‖ξ‖ (5.27b)

‖f̈‖ ≤ m‖(pnd )(4)‖+ (k̄3
d + 2k̄dk̄p + k̄2

dk̄p + k̄2
p)‖ξ‖ (5.27c)

where k̄d = λmax(Kt
d) and k̄p = λmax(Kt

p). Next, we compute two derivatives of

ν(f)

ν = RTdzf

ν̇ = RTzdḟ − ω̂zdRTzdf

ν̈ = RTzdf̈ − 2ω̂zdR
T
zdḟ + (ω̂2

zd − ˙̂ωzd)R
T
zdf

and thus

‖ν‖ = ‖f‖ (5.28a)

‖ν̇‖ ≤ ‖ḟ‖+ |ψ̇d|‖f‖ (5.28b)

‖ν̈‖ ≤ ‖f̈‖+ 2|ψ̇d|‖ḟ‖+ (|ψ̇d|2 + |ψ̈d|)‖f‖. (5.28c)
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A bound on ω̇d(ν) is found using (5.20b) and (5.20c). However, these bounds are

complex to compute so we leave them until last. It easy to see ‖τ̄‖ ≤ ‖τ‖, and

from (5.12) we know ‖τ‖ ≤ ‖J‖‖ω̇d‖. From (5.14) we have

‖ω̇d‖ ≤
√

3
(
‖η̈d‖+ ‖η̇d‖2

)
(5.29)

where ηd = (φd, θd, ψd)
T . Thus

‖τ̄‖ ≤
√

3‖J‖
(
|φ̈d|+ |θ̈d|+ |ψ̈d|+ |φ̇d|2 + |θ̇d|2 + |ψ̇d|2

)
. (5.30)

Since ψd is defined as part of the problem statement (see Section 5.2) we need to

only compute expressions for the derivatives of φd and θd. The derivative of the

reference roll is found from the expression given in (5.20c) and is

φ̇d =
c1 + c2 + c3

d
(5.31a)

c1 = −
(
σ2
M + x2

T

) (
ν2

1 + ν2
3

) (
−ν̇2ν

2
3 + ν2ν̇3ν3 + ν2ν1ν̇1 − ν2

1 ν̇2

)
(5.31b)

c2 = ψ̈dJz

(
xT

√
ν2

1 + ν2
3

(
ν̇3ν

2
3 − ν2

1 ν̇3 + 2ν3ν1ν̇1

)
− σM

(
ν3ν̇2ν

2
1 − ν̇3ν2ν

2
1 + ν3ν2ν1ν̇1 + ν3

3 ν̇2

))
(5.31c)

c3 = −
(
ν2

1 + ν2
3

)
Jzν3ψ

(3)
d

(
xT

√
ν2

1 + ν2
3 − σMν2

)
(5.31d)

d =
√
ν2

1 + ν2
3

(√
ν2

1 + ν2
3

(
‖u‖2(σ2

M + x2
T )− 2ν3Jzψ̈d

(
xT ν2 + σM

√
ν2

1 + ν2
3

))
+ ν2

3J
2
z ψ̈

2
d

)
(5.31e)

where we have split up the terms in order to improve the presentation of the second

derivative. The second derivative φ̈d can be computed from the above expressions.

However, due to complexity we will not present the full expression, instead we will

use the derivatives of (5.31b)-(5.31e) directly to compute a bound on φ̈d. The

derivatives of c1 and c2 are

ċ1 =
(
σ2
M + x2

T

) (
ν̈2ν

4
3 + (3ν̇2ν̇3 − ν̈3ν2) ν3

3 +
(
3ν1ν̇2ν̇1 − 3ν̇2

3ν2 + 2ν2
1 ν̈2 − ν̇2

1 ν̈2

− ν1ν̈1ν2

)
ν2

3 +
(
−ν2

1 ν̈3ν2 − 4ν1ν̇1ν̇3ν2 + 3ν2
1 ν̇2ν̇3ν2 + 3ν2

1 ν̇2ν̇3

)
ν3 − ν3

1 ν̈1ν2

+ 3ν3
1 ν̇2ν̇1 − 3ν2

1 ν̇
2
1ν2 + ν̈2ν

4
1 − ν2

1 ν̇
2
3ν2

)
ċ2 =

JzxT√
ν2

1 + ν2
3

((
ν̈3ν

4
3 +

(
2ν1ν̈1 + 2ν̇2

1 + 3ν̇2
3

)
ν3

3 + 3ν1ν̇1ν̇3ν
2
3 +

(
ν̇2

3ν
2
1 + 2ν3

1 ν̈1

+ 4ν2
1 ν̇

2
1

)
ν3 − ν̈3ν

4
1 − ν̇3ν

3
1 ν̇1

)
ψ̈d +

(
ν4

3 ν̇3 + 2ν3
3ν1ν̇1 + 2ν3ν

3
1 ν̇1 − ν̇3ν

4
1

)
ψ

(3)
d

)
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+ JzσM

((
− ν3

3 ν̈2 − 3ν2
3 ν̇2ν̇3 −

(
ν2

1 ν̈2 + 3ν1ν̇2ν̇1 + ν̇2
1ν2 + ν1ν̈1ν2

)
ν3

+ ν2
1 ν̈3ν2 + ν1ν̇1ν̇3ν2

)
ψ̈d +

(
− ν3

3 ν̇2 −
(
ν2

1 ν̇2 + ν1ν̇1ν2

)
ν3 + ν̇3ν2ν

2
1

)
ψ

(3)
d

)
and the derivatives of c3 and d are

ċ3 = Jz

((
− ν4

3xT ν̇3√
ν2

1 + ν2
3

+

(
σM ν̇2 −

xT ν1ν̇1√
ν2

1 + ν2
3

)
ν3

3 +

(
3σMν2ν̇3 −

xT ν
2
1 ν̇3√

ν2
1 + ν2

3

− 3xT ν̇3

√
ν2

1 + ν2
3

)
ν2

3 +

(
σM ν̇2ν

2
1 −

xT ν
3
1 ν̇1√

ν2
1 + ν2

3

− 2ν1ν̇1xT

√
ν2

1 + ν2
3

+ 2σMν1ν̇1ν2

)
ν3 − xT ν̇3ν

2
1

√
ν2

1 + ν2
3 + σM ν̇3ν2ν

2
1

)
ψ

(3)
3 +

((
σMν2

− xT
√
ν2

1 + ν2
3

)
ν3

3 +
(
σMν2ν

2
1 − xT ν2

1

√
ν2

1 + ν2
3

)
ν3

)
ψ

(4)
d

)

ḋ = J2
z

((
ν̇3ν

3
3√

ν2
1 + ν2

3

+
ν1ν̇1ν

2
3√

ν2
1 + ν2

3

+ 2ν3ν̇3

√
ν2

1 + ν2
3

)
ψ̈2
d + 2ν2

3ψ
(3)
d ψ̈d

√
ν2

1 + ν2
3

)

+ Jz

(((
− 2ν̇3ν

4
3√

ν2
1 + ν2

3

− 2ν1ν̇1ν
3
3√

ν2
1 + ν2

3

−

(
6ν̇3

√
ν2

1 + ν2
3 +

2ν2
1 ν̇3√

ν2
1 + ν2

3

)
ν2

3

−

(
4ν1ν̇1

√
ν2

1 + ν2
3 +

2ν3
1 ν̇1√

ν2
1 + ν2

3

)
ν3 − 2ν̇3ν

2
1

√
ν2

1 + ν2
3

)
ψ̈d

− 2ν3

(
ν2

3 + ν2
1

) 3
2ψ

(3)
d

)
σM − 2

((
2ν2ν̇3ν

2
3 +

(
ν1ν̇1ν2 + ν2ν1ν̇1

+ ν̇2

(
ν2

1 + ν2
3

) )
ν3 + ν2ν̇3

(
ν2

1 + ν2
3

) )
ψ̈d +

(
ν2ν

3
3 + ν2

1ν2ν3

)
ψ

(3)
d

)
xT

)
+
√
ν2

1 + ν2
3

(
5ν̇3ν

3
3 + (5ν1ν̇1 + 2ν2ν̇2)ν2

3 +
((
ν2

1 + ν2
2

)
ν̇3 + 2

( (
ν2

1 + ν2
2

)
ν̇3

+ ν̇3ν
2
1

))
ν3 + 3

(
ν2

1 + ν2
2

)
ν1ν̇1 + 2ν2

1(ν1ν̇1 + ν2ν̇1)
) (
σ2
M + x2

T

)
Bounds on |φ̇d| and |φ̈d| can be readily computed using these expressions. However,

due to their complexity, explicit expressions will not be presented here since they

provide little insight. What is important to note is the independence of |φ̇d| and |φ̈d|
on the upper bound of |ν3|. Indeed, this component of the control has a constant

offset due to the force of gravity. If this constant were included in the bound it

would preclude asymptotic stability regardless of any conditions on the reference.

We clarify this idea using a special case for which we will also present a complete

analysis. Consider a constant-heading and constant-velocity reference. Since this

type of reference results in a significant simplification of (5.20c) and its derivatives,
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we compute the bounds for this case as well. When ψ̈d = 0 (5.20c) becomes

φd = − arctan

(
σM
√
ν2

1 + ν2
3 + xT ν2

σMν2 − xT
√
ν2

1 + ν2
3

)
.

The first derivative is

φ̇d =
ν̇2ν

2
1 + ν̇2ν

2
3 − ν1ν̇1ν2 − ν3ν̇3ν2

‖u‖2
√
ν2

1 + ν2
3

and

|φ̇d| ≤
3‖ν̇‖
|ν3|

. (5.32a)

The second derivative is

φ̈d =
1

‖u‖2
√
ν2

1 + ν2
3

(
− ν̇2

1ν2 − ν1ν̈1ν2 + ν1ν̇1ν̇2 − ν̇2
3ν2 − ν3ν̈3ν2 + ν3ν̇3ν̇2 + ν̈2ν

2
1

+ ν̈2ν
2
3 −

2
(
ν1ν̇1ν2 + ν3ν̇3ν2 − ν̇2ν

2
1 − ν̇2ν

2
3

)
(ν2ν̇2 + ν1ν̇1 + ν3ν̇3)

‖u‖2

−
(
ν1ν̇1ν2 + ν3ν̇3ν2 − ν̇2ν

2
1 − ν̇2ν

2
3

)
(ν1ν̇1 + ν3ν̇3)

ν2
1 + ν2

3

)

and

|φ̈d| ≤
6‖ν̇‖2

|ν3|3
+
‖ν̈‖
|ν3|

+
18‖ν̇‖
|ν3|3

+
3‖ν̇‖|ν1|
|ν3|3

(5.32b)

Remark that (5.32) is independent on the upper bound of |ν3|. Instead, we are only

concerned with a lower bound on |ν3|. Therefore, there is no constant term due to

the force of gravity. The derivatives of θd are found by differentiating (5.20b) to

obtain

θ̇d =
ν̇1ν3 − ν̇3ν1

ν2
3 + ν2

1

θ̈d =
(ν̈1ν3 − ν̈3ν1)(ν2

3 + ν2
1)− 2(ν3ν̇3 + ν̇1ν1)(ν̇1ν3 − ν̇3ν1)

(ν2
3 + ν2

1)2

which results in the bounds

|θ̇d| ≤
‖ν̇‖
|ν3|

+
‖ν̇‖|ν1|
ν2

3

(5.33a)

|θ̈d| ≤
‖ν̈‖
|ν3|

+
‖ν̈‖|ν1|
ν2

3

+
2‖ν̇‖2

ν2
3

+
4‖ν̇‖2|ν1|
|ν3|3

+
2‖ν̇‖2|ν1|2

ν4
3

(5.33b)

The main result of our analysis is to prove uniform ultimate boundedness of

the solutions to the error dynamics in the presence of τ̄ . The definition of uniform

ultimate boundedness is given in Definition 5.10. We further show that this re-
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sult specializes to asymptotic stability when the reference is constant-velocity and

constant-heading (e.g., hover).

Definition 5.10 ([71]). The dynamics

ẋ = f(t, x)

where f : [0,∞) × D → Rn is continuous in t and differentiable in x on D, and

D ⊂ Rn contains the origin, are uniformly ultimately bounded with ultimate bound

b if there exists b, c > 0, which are independent of t0 ≥ 0, such that for every

a ∈ (0, c), there exists T ≥ 0 where

‖x(t0)‖ ≤ a =⇒ ‖x(t)‖ ≤ b, ∀ t ≥ t0 + T.

Theorem 5.11. Let ψd be a heading reference and pnd be a position reference. If

|ψ(i)
d | ≤ l1 for i ≥ 1, ‖(pnd )(i)‖ ≤ l2 for i ≥ 2, and l = max{l1, l2}, then the

dynamics (5.8) with f = Rzdν and the inputs φd, θd and TM given by (5.20), are

uniformly ultimately bounded.

Proof. The bound on τ̄ is found to be of the form

‖τ̄‖ ≤
10∑
n=0

cn‖ξ‖n.

Following the method of proof found in [71, Thm. 4.7] we observe

lim
‖ξ‖→0

∑10
n=2 cn‖ξ‖n

‖ξ‖
= 0

which implies that for any ρ > 0 there exists r > 0 such that

10∑
n=2

cn‖ξ‖n ≤ ρ‖ξ‖.

Using the Lyapunov Function (5.24) whose derivative is bounded as in (5.26) it

follows that

V̇ ≤ −(1 + 2λmax(P )(c1 + ρ))‖ξ‖2 + 2λmax(P )c0‖ξ‖, when ‖ξ‖ < r

where we have chosen Q = I in order to maximize the ratio λmin(Q)
λmax(P ) [72]. Thus

V̇ < 0 for

ρ <
1

2λmax(P )
− c1
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and we can conclude uniform ultimate boundedness as long as

2λmax(P )c0

1− 2λmax(P )(c1 + ρ)
≤ r

which can always be satisfied by choosing l sufficiently small since c0 =
∑12

n=1 c
′
nl
n.

Next, we present the case of a constant-heading, constant-velocity reference tra-

jectory which is practically relevant.

Corollary 5.12 (Specialization to constant velocity, constant heading). Let pnd be a

reference trajectory with constant velocity, and ψd be a constant heading reference.

Then the dynamics (5.8) with f = Rzdν and the inputs φd, θd and TM given by (5.20)

are asymptotically stable.

Proof. Beginning with (5.30), we derive a growth bound on ‖τ̄‖ in terms of ‖ξ‖ by

simplifying (5.28) and (5.27) using the given assumptions regarding the reference

trajectory. Indeed, we obtain the bounds

|ν1| ≤ (k̄d + k̄p)‖ξ‖

‖ν̇‖ ≤ (k̄2
d + k̄dk̄p + k̄p)‖ξ‖

‖ν̈‖ ≤ (k̄3
d + 2k̄dk̄p + k̄2

dk̄p + k̄2
p)‖ξ‖

which we combine with (5.32) and (5.33) to obtain

‖τ̄‖ ≤
4∑

n=1

cn‖ξ‖n (5.34)

where

c1 = 2
√

3‖J‖

(
k̄3
d + 2k̄dk̄p + k̄2

dk̄p + k̄2
p

|ν3|
+

9k̄p + 9k̄2
d + 9k̄dk̄p
|ν3

3 |

)

c2 =
√

3‖J‖

(
19k̄2

dk̄
2
p + 22k̄2

dk̄p + 2k̄4
dk̄p + 11k̄4

d + 8k̄dk̄
3
p + 22k̄3

dk̄p + 23k̄dk̄
2
p + 10k2

p

ν2
3

+
2k6

d + 10k̄2
p + 4k̄2

dk̄
3
p + 4k̄5

dk̄p + 12k̄3
dk̄

2
p + 2k̄4

p + 2k̄4
dk̄

2
p + k̄3

p

ν2
3

+
6k̄2

dk̄
2
p + 6k̄4

d

|ν3
3 |

+
15k̄dk̄

2
p + 3k̄3

d + 9k̄2
p + 12k̄3

dk̄p + 3k̄dk̄p + 18k̄2
dk̄p

|ν3
3 |

)

c3 =
6
√

3‖J‖
(
k̄p + k̄d

) (
k̄2
d + k̄dk̄p + k̄p

)2
|ν3

3 |

c4 =
3
√

3‖J‖
(
k̄p + k̄d

)2 (
k̄2
d + k̄dk̄p + k̄p

)2
ν4

3

.
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In this case we have

lim
‖ξ‖→0

∑4
n=2 cn‖ξ‖n

‖ξ‖
= 0.

Thus

V̇ < − (1− 2λmax(P )(c1 + ρ)) ‖ξ‖2, ∀‖ξ‖ < r

where we have again used Q = I. Finally, we can conclude asymptotic stability by

choosing

ρ <
1

2λmax(P )
− c1. (5.35)

Remark 5.13. As an alternative to the latter part of the proof, if we restrict our

interest to ‖ξ‖ < 1 we can express the growth bound (5.34) as

‖τ̄‖ ≤ c̄‖ξ‖
3∑

n=1

‖ξ‖n

where c̄ = max{cn}. Thus,

V̇ ≤ −
(

1− 2λmax(P )c̄

1− r

)
‖ξ‖2 − 2λmax(P )c̄‖ξ‖5

1− r
, when ‖ξ‖ < r

which implies asymptotic stability for

1

2λmax(P )
≥ c̄

1− r
. (5.36)

Remark 5.14. For a particular choice of controller gains, the bounds (5.35) and (5.36)

provide a design trade-off between r and a lower bound on ν3. To clarify the re-

lationship consider a particular numerical example. If we choose Kt
d = k̄dI and

Kt
p = k̄pI where k̄d = 0.3 and k̄p = 0.2 then using the value of ‖J‖2 = 1.48, c̄ = c1,

and

c1 ≈
1.05

|ν3|
+

16.2

|ν3|3
.

In addition, when Q = I then 1
2λmax(P ) ≈ 0.0464. Thus (5.36) becomes

r < 1− 22.6

|ν3|
− 350

|ν3|3
.

Therefore, by increasing the lower bound on |ν3| we can increase the region for which

stability is ensured. For example, we can achieve stability for r = 1
4 if we assume

|ν3| > 30 ≈ mg
5 . From Figure 3.5 we see mg

2 is approximately the smallest measured

force during a test where the pilot was attempting to let the helicopter descend as

quickly as he could while maintaining control. Figure 5.2 shows this relationship
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Figure 5.2: Relationship between the region of attraction r and the lower bound on
ν3 given by (5.36) for k̄d = 0.3 and k̄p = 0.2.

Kr
p diag(20, 16, 18) s−2

Kr
d diag(7, 7, 6) s−1

Kt
p 3I kg/s

Kt
d 5.5I kg/s2

Table 5.1: SBF controller gains used for simulation.

over a range of lower bounds on |ν3|.

5.4 Simulation Results

The system is simulated using the dynamics (5.1) including the SBF (3.8a), where

QM is given by (5.15) in the torque expression (3.8b). The outer-loop control

is (5.20) where ν is from (5.10) and f is given by (5.9). The inner-loop control is

computed using (5.5) which is related to the inputs using (5.2b). In the following,

we refer to this control as the SBF control. For comparison, the response to the

PID controller described in Section 4.5 is also simulated, except the inputs are TM ,

TT , a, and b. The parameter values are given in Table A.1. Simulations were run

for setpoint, helix, and figure-8 trajectories. The SBF controller gains are given in

Table 5.1, and the PID controller gains are shown in Table 5.2.

Figure 5.3 shows the system response for the hover simulation. The initial con-

ditions were p0 = (0.2, −0.3, −0.1)T m, v0 = 0 m/s, η0 = (10◦, 5◦, 30◦)T , and

Kr
i 0.5I s−3

Kr
p diag(10, 10, 7) s−2

Kr
d 5I s−1

Kt
i 0.2I kg/s3

Kt
p 2I kg/s2

Kt
d 3I kg/s

Table 5.2: PID controller gains used for simulation.
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r0 10 m
T0 12 s
w0 1 m/s

Table 5.3: Helix and Figure-8 reference trajectory parameters.

ω0 = 0. The state response in Figures 5.3a and 5.3b shows both controls have sim-

ilar performance. This similarity is due to the SBF converging to constant values

in the steady state. We observe from Figure 5.3c that the integrator states in the

PID control converge to constants which allows the PID control to compensate the

effect of the SBF.

Figure 5.4 shows the response to the helical trajectory. This position trajectory

is circular with a constant vertical velocity

pnd =


r0 cos

(
2π
T0
t
)

r0 sin
(

2π
T0
t
)

w0t


and the heading is always tangent to the circle

ψd =
2π

T0
t+

π

2

where the parameter values are given in Table 5.3. The initial conditions were

p0 = (15, 0, −0.3)T m, v0 = (0, 5.23, 0)T m/s, η0 = (10◦, 5◦, 30◦)T , and ω0 = 0.

Figures 5.4a and 5.4b show the state response. These figures show both controllers

exhibit similar performance. However, once again the SBF converge to constants.

Indeed, recalling (5.3) we see that time-varying terms do not appear in the SBF

because only constant rotational velocities are necessary for this trajectory. In par-

ticular, comparing Figures 5.3b and 5.4b we see that the helical trajectory requires

non-zero pitching and yawing speeds in the steady-state, but in both Figures 5.3d

and 5.4d the inputs become constant which results in constant SBF. We remark that

if a different heading trajectory was used, such as a constant heading, the flapping

angle inputs would be time-varying which would disturb the translational dynamics

through the SBF.

The final trajectory which was simulated was a figure-8 given by

pnd =


r0 sin

(
2π
T0
t
)

r0
4 sin

(
4π
T0
t
)

0

 (5.37)
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Figure 5.3: Simulated system response to regulating the origin. The solid lines show
the SBF control, and the dashed-dotted lines show the PID control. The dotted lines
show the reference.
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Figure 5.4: Simulated system response to tracking a helical trajectory. The solid
lines show the SBF control, and the dashed-dotted lines show the PID control. The
dotted lines show the reference.
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with the heading always tangent

ψd = arctan

 cos
(

4π
T0
t
)

2 cos
(

2π
T0
t
)
 (5.38)

where the parameters are the same as those given in Table 5.3. The initial conditions

were p0 = (1, 0, 0)T m, v0 = (5.23, 2.61, 0)T m/s, η0 = (10◦, 5◦, 30◦)T , ω0 = 0.

Figure 5.5 shows the system response. This trajectory requires steady-state time-

varying inputs as seen in Figure 5.5d, and therefore the SBF do not converge. As a

result, the PID integrator states shown in Figure 5.5c do not converge which causes

the poor performance of the PID control evident in Figures 5.5a and 5.5b. The

performance of the SBF controller is superior to the PID controller, however it only

provides boundedness for this trajectory, as expected from Theorem 5.11.

In addition to simulating the closed-loop response, we investigate the results from

Section 5.3 using a numerical approach. Our interest arises since the bounds used for

the analysis are likely to be conservative and the dynamics may possess a region of

convergence larger than what is guaranteed. Using (5.25) we evaluate V̇ over a range

of errors in each degree of freedom independently. In other words, we compute V̇ in

the phase planes of the error coordinates along the e1, e2, and e3 directions using

different controller gains. Figure 5.6 shows the contours where V̇ = 0 in the phase

plane of the e1 direction when the reference has a constant velocity and heading,

and the errors in the other directions are zero. These contours show that choosing

gains less than one cause the region of convergence to be large but not global for

this choice of Lyapunov function. While simulating the closed-loop we found that

choosing gains larger than one improved the response (see Table 5.1). Therefore, we

computed V̇ using three multiples of the gains used for Figure 5.6. Figure 5.7 shows

the contours where V̇ = 0 for a constant-velocity, constant-heading reference where

the gains are Kt
d = 0.1γI, and Kt

p = 0.9γI, γ ∈ {4, 10, 14}. For the plots of the e1

and e2 directions, the errors in the other directions are zero. For the plot in the e3

direction the errors are p̃n1 = 5 m, p̃n2 = 10 m, ṽn1 = −3 m/s, and ṽn2 = 7 m/s. This

difference is due to the fact that the effect of the disturbance (5.19) does not enter

in the e3 direction when the errors in the other directions are zero. These plots show

that as the gains are increased the region of convergence decreases. Furthermore,

they suggest that the region of convergence could be made arbitrarily large by

decreasing the gains which is the necessary condition for semiglobal stability. Finally,

we consider the time-varying reference given by (5.37) and (5.38). In particular, we

choose the values of the reference derivatives when t = 8 s. The results are shown in

Figure 5.8 where for each plot the errors in the other directions are zero. As shown

in Figure 5.8, this reference creates a region where V̇ > 0 whose boundary includes
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Figure 5.5: Simulated system response to tracking a figure 8 trajectory. The solid
lines show the SBF control, and the dashed-dotted lines show the PID control. The
dotted lines show the reference.
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Figure 5.7: Contours where V̇ = 0 for a constant-heading, constant-velocity refer-
ence. The solid line shows contours for Kt

d = 0.4I, and Kt
p = 3.6I; the dashed line

shows contours for Kt
d = 1I, and Kt

p = 9I; and the dotted line shows contours for
Kt
d = 1.4I, and Kt

p = 12.6I.

the origin. These regions imply that ultimate boundedness is the strongest stability

condition which can be guaranteed for a general time-varying reference.

5.5 Experimental Results

Similar to the PID control in Chapter 4, the control derived in the present chapter is

tested in experiment using the ANCL Helicopter described in Chapter 2. For safety,

the autopilot is programmed to control the cyclic inputs while the pilot controls the

main and tail rotor thrusts. Since we are mainly interested in the outer-loop control,

we use the inner-loop PID control (4.25) for the attitude. For the outer-loop control

we compute φd and θd as in (5.20c) and (5.20b). However, we assume a constant

heading which simplifies (5.20c). Instead of (5.22) we compute ν using

ν = RTz
(
−mge3 −Kt

dv
n −Kt

pp̃
n −Kt

i ξ
t
)
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Kt
d 0.22I kg/s

Kt
p 0.5I kg/s2

Kt
i 0.009 kg/s3

Table 5.4: Controller gains used for experimental testing.

where we have introduced the integrator state ξt for robustness. In addition, we

assume the pilot maintains the reference altitude and therefore use ν3 = −mg. Fur-

thermore, the dimension of the gain matrices is reduced to 2×2. The values used for

the control gains are given in Table 5.4. Figure 5.9 shows the response to regulating

the origin while the pilot conducts two complete yaw rotations. These experiments

were conducted concurrently with those in Section 4.6 and were therefore subject

to same strong wind conditions which explains why the helicopter is pushed to the

south-east. Despite the disturbance it is clear from the results that the control is

working correctly. The integrator states shown in Figure 5.9a are computed in the

navigation frame and do not oscillate as the helicopter rotates, as opposed to those

in Figure 4.3a which computed in the body frame. The second reference was a line

in the horizontal plane. The parameters for the trajectory were 15 m travel in the

e′1 direction and a −15 m travel in the e′2 direction at a speed of 1 m/s. The results

for this trajectory are shown in Figure 5.10. Once again, it is clear that the control

is performing correctly. The final trajectory was circular with a 7 m radius and a

tangential speed of 2.5 m/s. The results of this experiment are shown in Figure 5.11.

It is possible that the translational tracking error resulted from the ultimate bound-

edness performance limitation of the control method. Overall, although the control

works, it is difficult to compare it with the PID control in Chapter 4. Experimental

helicopter flight is subject to many disturbances and unmodelled effects. There-

fore, as opposed to simulation, it is difficult to attribute the cause of performance
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Figure 5.9: System response for setpoint regulation with a full yaw rotation. The
reference location is the origin of the navigation frame.

differences.

5.6 Conclusions

The generally accepted model for small helicopters includes a disturbance to the

translational dynamics by the inputs to the rotational dynamics called the SBF.

Despite its acceptance, existing work neglects this effect for control design. We pro-

vide a design which compensates the contribution of the tail rotor to the SBF using

an inner-outer hierarchical approach. We further show that the closed-loop system

will remain uniformly ultimately bounded in the presence of the SBF due to the

main rotor flapping angles for a general reference. The specific statement of the dis-

turbance bounds given in the robustness analysis provides insight into performance

tradeoffs of the design. When the reference is constant heading, constant velocity

(e.g., hover) we show asymptotic stability.

The design presented in this chapter was validated by simulation and in flight

tests. The simulation results show our design has performance benefits over a clas-

sical PID solution for a figure-8 trajectory. In this case, the SBF control tracking

error remains bounded as predicted by the analysis. Although both controls had

bounded tracking errors, the SBF achieved a smaller bound.
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Figure 5.10: System response for line tracking experiment with a 15 m travel in the
e′1 direction and a −15 m travel in the e′2 direction at a speed of 1 m/s.

96



10 20 30 40

−20

0

20
p
n 1
[m

]

10 20 30 40

−50

0

50

p
n 2
[m

]

10 20 30 40

−20

0

20

p̃
b 1
[m

]

10 20 30 40

−5

0

5

v
b 1
[m

/
s]

10 20 30 40

−20

0

20

ξ
t 1
[m

s]

10 20 30 40

−20

0

20

φ
d
[◦
]

Time [s]

10 20 30 40

−20

0

20

p̃
b 2
[m

]

10 20 30 40

−5

0

5

v
b 2
[m

/
s]

10 20 30 40

−20

0

20

ξ
t 2
[m

s]

10 20 30 40

−20

0

20
θ
d
[◦
]

Time [s]

(a) Translation states, errors, and control effort. The reference is shown by the dashed line.
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(b) Rotational states, errors and control effort. The reference is shown by the dashed line.
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Figure 5.11: System response for circle tracking experiment with a 7 m radius a
tangential speed of 2.5 m/s.
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Chapter 6

Practically-Motivated Nonlinear

Control with State Constraints

Real-world flight is subject to constraints. Input constraints could be considered

since factors such as servo travel limit control authority. Examples of designs which

consider this effect are [16, 17]. Considering Figures 3.8, 4.5, and 5.11 where ag-

gressive manouevering is performed with relatively little control effort, we conclude

input saturation is not practically relevant for non-inverted flight. This conclusion

is also supported by manual flight wherein performance does not seem limited by

the controls. In this chapter we consider the problem of stabilizing the helicopter

subject to state constraints. The motivation for the design is to allow an operator

to use setpoints to guide the helicopter, while also being able to configure upper

bounds on velocity and roll-pitch. For instance, if the helicopter were carrying a

payload used for inspection or surveying (e.g., camera or Lidar), large translational

velocity may cause insufficient data coverage. In addition, if the sensor is fixed to

the airframe or mounted with a limited pan-tilt travel it would be desirable to be

able to prevent the roll and pitch of the aircraft from exceeding bounds. We apply

a recently published method found in [32] and originally applied to helicopter con-

trol in [33]. Their approach to helicopter control is based on the design presented

in [11] which uses a dynamic extension to decouple the inputs and an input-output

linearization. However, as discussed in [73] control algorithms which use dynamic

extension are not desirable in practice. Therefore, we exploit our hierarchical design

used throughout this thesis to remove the need for dynamic extension and construct

a control which is appropriate for practical implementation. The background for

the analysis is presented in Section 6.1. In Section 6.2 the model is given in order

make explicit the notation and parametrization used in this design. The outer-loop

control is developed in Section 6.3, and the inner-loop control is given in Section 6.4.

Finally, in Section 6.5 we present the simulation results and implementation details.
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6.1 General Approach

We base our method of satisfying state constraints on recent work [32] which was

expanded to the multivariable case in [33] and applied to the input-output lineariza-

tion of the helicopter dynamics given in [11]. The method can be roughly described

as follows. The first step is to define state constraints as fictitious outputs. The

dynamics can then be transformed to the tracking form found in [74]. Using these

coordinates, a backstepping approach is applied to derive conditions on the input

which will satisfy the original constraints.

We begin by defining some basic notation. Consider the system

ẋ = f(x) +
m∑
i=1

gi(x)ui (6.1)

where x ∈ Rn, u ∈ Rm is the input, and f and gi are smooth for 1 ≤ i ≤ m on some

domain of interest. We model the constraints as outputs

yj = hj(x), 1 ≤ j ≤ l (6.2)

where y ∈ Rl. We assume that each output has a well-defined relative degree ρj

LgiL
k
fhj(x) = 0, 1 ≤ i ≤ m, 0 ≤ k ≤ ρj − 2

LgiL
ρj−1
f hj(x) 6= 0, for some i ∈ {1, . . . ,m}

where Lifh is the ith Lie derivative of h along the vector field f (see e.g., [75] for a

general reference, among many others), and a transformation exists such that

ζj = (hj , . . . , L
ρj−1
f hj) (6.3)

results in the dynamics

ζ̇j,i = ζj,i+1 1 ≤ i ≤ ρj − 1

ζ̇j,ρj = L
ρj
f hj +

m∑
i=1

uiLgiL
ρj−1
f hj .

We are now ready to establish some useful results.

Lemma 6.1 (Comparison Lemma [71]). Given the scalar dynamics

v̇(t) ≤ f(t, v(t)), v0 = v(0)

100



where v : [0,∞)→ R and f : [0,∞)×R→ R is smooth, and the comparison dynamics

ẇ(t) = f(t, w(t)), w0 = w(0)

where w : [0,∞)→ R, if v0 ≤ w0 then v(t) ≤ w(t) for all t ∈ [0,∞).

Proof. See [71, Lem. 3.4].

Lemma 6.2 ([32]). Given the first order dynamics

v̇(t) = −α(v(t)) + β(t) (6.4)

where v : [0,∞)→ R, α is class K, and β(t) ≤ 0 for all t ∈ [0,∞); if v(0) ≤ 0 then

v(t) ≤ 0 for all t ∈ [0,∞).

Proof. The proof is to show that the solutions of (6.4) are always less than the solu-

tions of a globally asymptotically stable first order system. Consider the comparison

dynamics

ẇ(t) = −α(w(t)) (6.5)

where w : [0,∞) → R, and the Lyapunov function V = 1
2w

2. The derivatives of V

along the trajectories of (6.5) are

V̇ = −α(w)w

which implies global asymptotic stability. Since the dynamics are first order, there

will not be overshoot so if w(0) ≤ 0 then w(t) ≤ 0 for all t ∈ [0,∞). Therefore, by

Lemma 6.1 if v(0) ≤ w(0) then v(t) ≤ 0 for all t ∈ [0,∞).

The following theorem allows us to convert a state constraint of relative degree

ρj into ρj −1 conditions on the initial state and a new state constraint with relative

degree one. A control law can then be derived based on these new conditions which

satisfies the original state constraint.

Theorem 6.3 ([33]). Consider the dynamics (6.1). For each constraint hj(x) ≤ 0

which we treat as an output with a well-defined relative degree ρj we can derive ρj−1

additional inequality conditions on the initial state x(0) and a state constraint with

relative degree one. Satisfaction of the derived conditions implies the satisfaction of

the original constraint.

Proof. The proof follows a backstepping approach to finding the constraints. The

first condition on x(0) is ζj,1(x(0)) = hj(x(0)) ≤ 0. We know

ζ̇j,1(x) = ζj,2(x)
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so we can add and subtract a term αj,0ζj,1 to obtain

ζ̇j,1(x) = −αj,0ζj,1(x) + vj,1(x)

where αj,0 > 0 and vj,1(x) = ζj,2(x) + αj,0ζj,1(x). If we impose the constraint

vj,1(x) ≤ 0, from Lemma 6.2 we have that for any initial condition x(0) which

satisfies ζj,1(x(0)) ≤ 0 then ζj,1(x) ≤ 0 for all t ∈ [0,∞). We proceed in a similar

manner. The derivative of vj,1 is

v̇j,1(x) = ζj,3(x) + αj,0ζj,2(x)

= −αj,1vj,1(x) + vj,2(x)

where vj,2 = ζj,3(x) + αj,0ζj,2(x) + αj,1vj,1(x). Thus, as long as vj,2(x) is kept non-

positive, an initial condition satisfying vj,1(x(0)) ≤ 0 and ζj,1(x(0)) will guarantee

vj,1(x) ≤ 0 for all t ∈ [0,∞). The process continues until we reach vj,ρj−1(x). This

function will depend on ζj,ρj and therefore its derivative will contain the input. We

write this expression as

v̇j,ρj−1 = L
ρj
f hj +

m∑
i=1

uiLgiL
ρj−1
f hj + vj(x)

where vj(x) can be computed recursively. Thus we have ρj − 1 conditions on the

initial state ζj,1(x(0)), . . . , vj,ρj−2(x(0)) ≤ 0 and a state constraint with relative

degree one vj,ρj−1(x) ≤ 0.

In order to make use of Theorem 6.3 we must now construct an input which

will guarantee vj,ρj−1(x) ≤ 0. First, we define an active constraint to be one which

satisfies

−ε ≤ vj,ρj−1(x) ≤ 0

for some ε > 0 which provides appropriate resolution. Then we define the number

of active constraints c ≤ m and require there to be at least as many inputs as active

constraints. Let

C =


v1,ρ1−1

...

vc,ρc−1


be a vector of the active constraints, and define

Ċ , B(x) +A(x)u

where B : Rn → Rc and A : Rn → Rm×c. Let unom be the control which stabi-

lizes (6.1) inside the constraint admissible set. We will now define the control which
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renders the admissible set invariant. Following [33, 76] we choose the invariance

control to minimize the difference from the nominal control by moving the state

along the boundary

min‖W−1(uinv − unom)‖, such that A(x)uinv +B(x) = 0

where W is a chosen weighting matrix. This minimization has an explicit solution

defined using the generalized inverse [60]

uinv = (I −W (AW )†A)unom −W (AW )†B. (6.6)

We complete the definition of the invariant control by adding the case where the

nominal control already satisfies the constraints

uinv =

unom, A(x)unom +B(x) ≤ 0

(I −W (AW )†A)unom −W (AW )†B, A(x)unom +B(x) � 0

where ≤ indicates all elements of the vector are less than zero and � means at least

one element is greater than zero. Finally, we introduce a blending function to create a

smooth transition between controls when the system approaches a boundary. When

two constraints are active the control becomes

u = (1− σ1(x))(1− σ2(x))unom + σ1(x)σ2(x)uinv + (1− σ2(x))σ1(x)u1,inv

+ (1− σ1(x))σ2(x)u2,inv

where uinv is the invariance control for all active constraints, ui,inv is the invariance

control when only the ith constraint is active, and the σ terms are sigmoid functions

which provide a smooth transition between controls. These transition functions have

the property that they are zero for some ε distance from the boundary and one on

the boundary. When three constraints are active the control becomes

u = (1− σ1(x))(1− σ2(x))(1− σ3(x))unom + σ1(x)σ2(x)σ3(x)uinv+

+ σ1(x)(1− σ2(x))(1− σ3(x))u1,inv + (1− σ1(x))σ2(x)(1− σ3(x))u2,inv

+ (1− σ1(x))(1− σ2(x))σ3(x)u3,inv + σ1(x)σ2(x)(1− σ3(x))u12,inv

+ σ1(x)(1− σ2(x))σ3(x)u13,inv + (1− σ1(x))σ2(x)σ3(x)u23,inv

where uij,inv is the invariance control when the ith and jth constraints are active.
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6.2 Modelling

The model we consider here treats the translational dynamics in N and the orien-

tation parametrized by the Euler angles as in (3.7). This model is

ṗn = vn (6.7a)

mv̇n = mge3 −Rz

sθcφ−sφ
cθcφ

TM (6.7b)

η̇ = W (η)ω (6.7c)

Jω̇ = −ω × Jω +

 zMTMb

zMTMa

xTTT −QM

 (6.7d)

where we have neglected the SBF (see Chapter 5) and made the usual assumptions

on the lever arms and tail countertorque: lM ≈ (0, 0, −zM )T , lT ≈ (−xT , 0, 0)T ,

QT = 0 (see Chapter 4). The thrusts TM and TT are mapped to ΘM and ΘT

using (3.15) and (3.21). The flapping angle inputs a and b are mapped to normalized

cyclic δp and δr inputs using (3.20).

6.3 Outer-Loop Control

The objective of the outer-loop control is to track the position reference pnd subject

to constant velocity bounds. In order to perform the outer-loop control design we

will make use of the linearizing input transformation

νt = −Rzd

sθdcφd−sφd
cθdcφd

TM (6.8)

where the subscript d denotes a reference quantity. We remark that a similar map-

ping to (6.8) appears in [27]. Using this transformation, we are left with

˙̃pn = ṽn

m ˙̃vn = mge3 −mp̈nd + νt

where p̃n = pn − pnd and ṽn = vn − vnd . We must now express the velocity bounds

as fictitious outputs. We define the bounds vb∗ = (u∗, v∗, w∗)T > 0. Since these

bounds are defined in B, when they are transformed to the navigation frame, they
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are time-varying. The corresponding outputs are

hū = vn1 − vn∗1 hv̄ = vn2 − vn∗2 hw̄ = vn3 − vn∗3

hu = −vn1 − vn∗1 hv = −vn2 − vn∗2 hw = −vn3 − vn∗3

where vn∗ = Rvb∗. We remark that all of these outputs have relative degree one.

Since the translational dynamics have been linearized, the nominal control is

νtnom = mp̈nd −mge3 −Kt
dṽ
n −Kt

pp̃
n

where Kt
d and Kt

p are gain matrices. In order to illustrate the implementation of

the invariance control we will consider the case where vn2 approaches vn∗2 and vn3
approaches −vn∗3 . In this case

C =

(
vn2 − vn∗2

−v3 − vn∗3

)
,

and

Ċ =
1

m

(
0 1 0

0 0 −1

)
νt −

(
v̇n∗2

g + v̇n∗3

)
.

If we weight the inputs equally using W = I then we can compute the invariance

controls

νtinv =

 νtnom,1
mv̇n∗2

−mg −mv̇n∗3

 νt1,inv =

ν
t
nom,1

mv̇n∗2

νtnom,3

 νt2,inv =

 νtnom,1
νtnom,2

−mg −mv̇n∗3


where νtnom,i denotes the ith component of the nominal control. The final control is

then

νt = (1− σ1)(1− σ2)νtnom + σ1(1− σ2)νt1,inv + (1− σ1)σ2ν
t
2,inv + σ1σ2ν

t
inv.

6.4 Inner-Loop Control

The inner-loop control is designed to track an orientation reference ηd = (φd, θd, ψd)
T

subject to bounds on roll and pitch. The error dynamics are

¨̃η = Ẇ (η)ω +W (η)J−1

−ω × Jω +

 zMTMb

zMTMa

xTTT −QM


 (6.9)
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where TM and QM can be treated as known functions of time. Since the dynam-

ics (6.9) have been written as a double integrator we can perform a simple feedback

linearization

νr = Ẇ (η)ω +W (η)J−1

−ω × Jω +

 zMTMb

zMTMa

xTTT −QM


 . (6.10)

The nominal stabilizing control is

νrnom = η̈d −Kr
d

˙̃η −Kr
p η̃

whereKr
d andKr

p are controller gains. The fictitious outputs for the constant bounds

φ∗, θ∗ > 0 are defined as

hφ̄ = φ− φ∗ hθ̄ = θ − θ∗ (6.11a)

hφ = −φ− φ∗ hθ = −θ − θ∗ (6.11b)

Since these outputs are relative degree two, we must apply Theorem 6.3. Considering

hφ̄ we can define the linearized coordinates ζφ̄,1 = φ − φ∗ and ζφ̄,2 = φ̇. We then

have

ζ̇φ̄,1 = ζφ̄,2

= −αφ̄,0ζ1 + vφ̄,1

where vφ̄,1 = ζφ̄,2 + αφ̄,0ζφ̄,0. Thus for ζφ̄,1(0) = φ(0) − φ∗ ≤ 0 and vφ̄,1 ≤ 0 we

are guaranteed to satisfy hφ̄. Using the original coordinates and rearranging the

inequality, this condition is

φ̇ ≤ −αφ̄,0(φ− φ∗). (6.12)

Equation (6.12) provides intuition regarding the effect of the α terms. In particular,

a large value of αφ̄,0 will cause the control to avoid the bound more aggressively.

The complete set of relative degree one constraints are

vφ̄,1 = φ̇+ αφ̄,0(φ− φ∗) vθ̄,1 = θ̇ + αθ̄,0(θ − θ∗)

vφ,1 = −φ̇− αφ,0(φ+ φ∗) vθ,1 = −θ̇ − αθ,0(θ + θ∗)

where each expression must remain non-positive and the initial conditions must be

compatible with (6.11). For an illustration of the control, suppose φ approaches φ∗
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and θ approaches −θ∗. Then we have

C =

(
φ̇+ αφ̄,0(φ− φ∗)
−θ̇ − αθ,0(θ + θ∗)

)

and

Ċ =

(
1 0 0

0 −1 0

)
νr +

(
αφ̄,0φ̇

−αθ,0θ̇

)
.

Thus from (6.6) we have

νrinv =

−αφ̄,0φ̇−αθ,0θ̇
νrnom,3

 νr1,inv =

−αφ̄,0φ̇νrnum,2
νrnom,3

 νr2,inv =

ν
r
num,1

−αθ,0θ̇
νrnom,3


and finally

νr = (1− σ1)(1− σ2)νrnom + σ1(1− σ2)νr1,inv + (1− σ1)σ2ν
r
2,inv + σ1σ2ν

r
inv.

6.5 Simulation Results

The above design is verified in simulation by regulating the origin for the case of

bounded translational velocity, roll, and pitch. In particular, we are interested in the

behaviour when a reference approaches a state boundary. We choose the transition

function

σ(ξ) =
1

1 + e−
5
ε

(ξ+ ε
2

)

where ε is the distance from the boundary inside which the constraint becomes

active. We can compute the inputs to the translational system by inverting (6.8)

assuming TM > 0 to obtain

 φd

θd

TM

 =


arctan

(
cψdν

t
2−sψdν

t
1√

(cψdν
t
1+sψdν

t
2)2+(νt3)2

)
arctan

(
cψdν

t
1+sψdν

t
2

νt3

)
‖νt‖

 (6.13)

and the rotational inputs by inverting (6.10) which gives a

b

TT

 =

 0 1
zMTM

0
1

zMTM
0 0

0 0 1
xT

(ω × Jω̃ +QMe3 + JW−1(η)(νr − Ẇ (η)ω)
)
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where Ẇ (η) is computed to be

Ẇ (η) =

0 cφtθφ̇+ sφ
c2θ
θ̇ cφ

c2θ
θ̇ − sφtθφ̇

0 −sφφ̇ −cφφ̇
0 cφφ̇+sφtθθ̇

cθ
cφtθθ̇−sφφ̇

cθ

 .

In order to fully specify the reference for the rotational control we require two

derivatives of ηd. Since we have defined φd and θd using a composition, we begin by

computing the derivative of the first two components of (6.13). These derivatives

will depend on ν̇t and ν̈t. The expressions for the derivatives of the nominal control

are similar to (4.20) and (4.21). We must also include derivatives of the invariance

control. The complete set of outputs for the translational control can be written

Ht =

(
vn − vn∗

−vn − vn∗

)

where we have used H rather than C since we are including more constraints than

can be active simultaneously. We define

Ḣt =
1

m

(
I

−I

)
νt −

(
v̇n∗ + ge3

v̇n∗ − ge3

)
, AtHν

t +Bt
H .

If we let At (Bt) be the rows of AtH (Bt
H) corresponding to the active constraints,

then when the invariance controller is applied we can compute its derivatives to be

ν̇tinv = (I − (At)†At)ν̇t − (At)†Ḃt

ν̈tinv = (I − (At)†At)ν̈t − (At)†B̈t

where we have used the fact that in this case At is constant. Finally, we treat

the derivative of σi as negligible in order to prevent the expressions from becoming

intractable.

The simulation results are shown in Figure 6.1. The controller gains are given in

Table 6.1 and the physical parameters are given in Table A.1. The initial conditions

are p0 = (−40, 40, 10)T , v0 = η0 = ω0 = 0, and the gains used for computing

the rotational boundaries were αi,0 = 3 where i ∈ {φ̄, φ, θ̄, θ}. The simulation

time was chosen to focus on the system behaviour while constraints were active.

Therefore, it does not show complete convergence. However, once the system is

operating within all boundaries the control becomes standard and is known to work.

Figure 6.1a shows the position trajectory. This trajectory possesses a linear region

due to the saturation of the velocity. In Figure 6.1b we remark that the velocity

bounds have been violated. This overshoot is due to the inner-outer approximation.
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Kr
p diag(20, 20, 14) s−2

Kr
d 10I s−1

Kt
p 2I kg/s2

Kt
d 4.5I kg/s

Table 6.1: Controller gains used for simulation.

The control satisfies the velocity constraints by reducing the acceleration to zero as

the velocity approaches the boundary. In the plots to the right, the roll and pitch

references go to zero but the tracking error in the rotational dynamics requires time

to converge. This effect can be reduced by increasing the rotational controller gains.

However, in practice the overshoot is minimal and satisfies the design objective of

preventing the velocity from increasing proportionally to the initial position error.

Most importantly, the effect of the inner-outer approximation error is transient and

not destabilizing. Figure 6.1c shows the roll and pitch trajectories as well as the

flapping angle inputs. Since the inner-loop controller has direct control of the control

inputs, the constraints can be satisfied absolutely.

6.6 Conclusions

The design proposed in this chapter is motivated by practical experience gained

during autopilot testing. It provides the relative implementational simplicity of

setpoint regulation (as opposed to trajectory generation) and allows the operator

to configure velocity and orientation bounds. These bounds prevent the respective

states from becoming proportionally large due to initial condition error. For testing

purposes bounds could be used to prevent overturn or otherwise unsafe roll-pitch

as well as high velocity which may impede the pilot’s ability to recover control of

the aircraft in an emergency. From an application point of view, especially for any

type of survey or inspection task, limiting translational velocity and roll-pitch would

be very useful in practice. The simulation results show that the design functions

correctly and is appropriate for practical implementation.
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(b) Velocity trajectory and respective control inputs. In the left plots the dashed line shows
the bounds and on the right plot the dashed line shows the transition functions.
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(c) Roll and pitch trajectories and respective inputs. The dashed lines in the left plots show
the state constraints and the dashed lines in the right plots show the transition functions.

Figure 6.1: State response for simulated setpoint regulation subject to state con-
straints in translational velocity, roll, and pitch.
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Chapter 7

Conclusions and Future Work

Experimental helicopter UAV control research presents a challenging control prob-

lem due to nonlinear, underactuated dynamics and platform development. Chap-

ter 2 presents our hardware configuration and gives details regarding decisions made

to address problems which arose during field tests. Additionally, details are provided

regarding our software framework which is developed with an emphasis on modu-

larity and error handling. This design facilitates control research by allowing parts

of the code to be easily replaced. Another benefit of the modularity was realized

when hardware changes became necessary. For instance, both the servo switch and

IMU were replaced. The only code modifications necessary to interface with the

new hardware were inside the relevant classes. Since this new code provided the

same logical functionality, compatibility with the rest of the system was ensured.

Correct functionality of the platform is demonstrated by extensive flight testing.

The autopilot software is available to the community for download. Customizing

QGroundControl was another aspect of the development which required a signifi-

cant time investment. This effort also provided clear benefit during experimental

testing. Outdoor helicopter field work is subject to constraints such as weather and

daylight as well as pilot fatigue and vehicle maintenance. Therefore, once the sys-

tem is operating correctly and there is an opportunity to perform experiments, it is

critical to work efficiently. We found that the ability to monitor the autopilot status

and to adjust controller gains without landing the helicopter enabled us to achieve

the successful tests.

The helicopter dynamics is presented in Chapter 3. The actuation of a small

helicopter is well established in the literature. However, this modelling usually

assumes direct control of the main and tail rotor thrusts and the main rotor flapping

angles. Therefore, it is necessary to establish a relationship between these inputs

and the physically-controllable inputs. In particular, the thrust and countertorque

models available in the literature suffer from intractability due to complexity. We

derive a simplification of these general models based on experimental data. We
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remark that it is not necessary to use a model based on physics in order to apply

control laws in practice. Many of the system parameters will multiply the controller

gains which means they do not require identification. In addition, the helicopter

will often operate in a region where the model is approximately linear allowing PID

to effectively stabilize the system. However, when significant terms in the model

can be included in the control it will allow better performance since these effects

can be compensated directly in feedforward rather than creating a disturbance to

be countered by feedback. For example, the velocity terms in the thrust model are

practically significant and if they can be accounted for in the control they will allow

for better performance, especially for tracking aggressive trajectories.

In Chapter 4 we derive a PID control law which is justified by the model and in-

tended for platform validation. This control is applied using errors computed in the

body-fixed frame. This choice of frame is made to allow the operator to choose gains

intuitively. However, for disturbances such as wind which have a constant direction

in the navigation frame it is better to integrate the position error in the navigation

frame as is done in Chapter 5. The tradeoff occurs between compensating effects

such as the SBF which have a constant direction in B and effects such as wind. In

Chapter 5 we derive a control that compensates the coupling which occurs when

the translational dynamics are forced by the rotational inputs. In particular, this

control accounts for the SBF due to the tail rotor which is usually present due to the

main rotor countertorque. Both designs are validated in experiment for hover as well

as time-varying trajectory flights. The experimental results presented in Chapters 4

and 5 show good tracking performance. However, comparing these results is mis-

leading since the intention of the experiment was to demonstrate correct operation

of the control. This intention is in contrast to designing an experiment for compar-

ing the SBF design to PID. Probable reasons for differences in performance between

the controls include tuning variations, and rapidly changing wind conditions during

experimental testing. Indeed, many obstacles to acquiring experimental results exist

such as crashes and adverse environmental conditions endemic to northern Canada.

Ultimately, the helicopter and ground station were transported to Bergen R/C Heli-

copters in Cassopolis, MI in the fall of 2012 for repairs and testing. Although these

tests were successful, there was no further opportunity to extend the results once the

data had been analyzed. Although these controls were designed with the derivatives

of the reference incorporated into the feedback, the experiments were performed

assuming a constant reference. This simplification was made for simplicity and it is

expected that including the derivatives will improve performance, particularly for

curved trajectories. Additionally, it was assumed for the design that the reference

trajectories were of class C4. However, in practice it is expected that this differ-

entiability condition need only hold piecewise. Indeed, based on the experimental
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results were reasonable tracking was observed without including derivatives of the

reference anywhere, good performance can be expected by eliminating the reference

derivative terms only at isolated points.

Experience gained during experimental work provided the motivation for the

design in Chapter 6 which satisfies bounds on translational velocity as well as roll and

pitch. This control is expected to be useful for experimental testing. For instance, an

inner-loop control which satisfies roll and pitch bounds can guarantee the helicopter

will not rotate beyond a recoverable limit during tests of an outer-loop control. This

example also provides justification for the hierarchical approach used for control

design as well as the modularity of the autopilot software. The simulation results

of this control show that the inner-outer approximation causes the translational

velocity bounds to be violated. However, this error can be decreased by tuning the

rotational controller. In addition, it does not prevent the translational control from

achieving its objective. In practice, this error is expected to be insignificant and still

guarantees the velocity does not grow proportionally to the initial condition error.

Future work includes testing the control using the thrust inputs as well as the

cyclic. To enhance the safety of future tests the constrained control should be

included, particularly for the inner-loop which will help prevent a poorly tuned

outer-loop from overturning the helicopter. Additionally, experimental work is envi-

sioned which uses trajectories designed to excite the SBF. For example, an S shaped

curve provides a trajectory where the velocity continuously changes in direction and

magnitude. Whereas, a circle requires a constant change in direction only. This

trajectory would be essentially half of a figure-8. While a figure-8 provides a good

demonstration of the SBF for simulation, in practice it requires the pilot to be able

to recover the aircraft while it is facing nose-in. This orientation is challenging for

pilots during manual flights. Therefore, the flight tests should be designed with

the helicopter facing away from the pilot in order to provide a configuration which

facilitates recovery in an emergency.
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Appendix A

Model Parameters

Symbol Value Units Description

ANCL Helicopter and Environmental Parameters

Jx 0.36 kg m2 Moment of inertia about e′1 axis

Jy 1.48 kg m2 Moment of inertia about e′2 axis

Jz 1.21 kg m2 Moment of inertia about e′3 axis

m 15.5 kg Mass

ρ 1.2 kg/m3 Air density

zM 0.32 m Main rotor hub vertical offset from center of mass

xT 1.06 m Tail rotor hub horizontal offset from center of mass

g 9.81 m/s2 Acceleration due to gravity

σM 0.04 m Linearized countertorque model coefficient

Main Rotor Parameters

RM 0.89 m Rotor disk radius

Nb 2 Number of blades

aM 6.6 Lift curve slope

cM 0.066 m Chord length

CD 0.005 Coefficient of drag

αM -3490 µs/rad Slope of ΘM 7→ δM map

βM 1860 µs Intercept of ΘM 7→ δM map

kp 0.10 rad δp 7→ a gain

kr 0.013 rad δr 7→ b gain

Tail Rotor Parameters

RT 0.175 m Rotor disk radius

aT 6.4 Lift curve slope

cT 0.0325 m Chord length
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Symbol Value Units Description

αT -1590 µs/rad Slope of ΘT 7→ δT map

βT 1570 µs Intercept of ΘT 7→ δT map

Table A.1: Model parameters for the ANCL Helicopter.
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