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6Abstract: We develop a staged-structured population model that describes the competitive 7

dynamics of two functionally similar, congeneric invasive species: zebra mussels and quagga 8

mussels. The model assumes that the population survival rates are functions of temperature 9

and turbidity, and that the two species compete for food. The stability analysis of the model 10

yields conditions on net reproductive rates and intrinsic growth rates that lead to competitive 11

exclusion. The model predicts quagga mussel dominance leading to potential exclusion of zebra 12

mussels at mean water temperatures below 20◦C and over a broad range of turbidities, and a 13

much narrower set of conditions that favor zebra mussel dominance and potential exclusion of 14

quagga mussels at temperatures above 20◦C and turbidities below 35 NTU. We then construct 15

a two-patch dispersal model to examine how the dispersal rates and the environmental factors 16

affect competitive exclusion and coexistence. 17

Keywords: Zebra mussel, quagga mussel, competition models, temperature, turbidity. 18

1 Introduction 19

Biological invasion - the spread of non-native species - is recognized as a threat to biodiversity, 20

ecosystem function, and regional economies [24, 30]. Two invasive Eurasian species that have 21

caused substantial economic and ecological impacts in North America inland waters are the 22

zebra mussel (Dreissena polymorpha) and the quagga mussel (Dreissena rostriformis bugensis). 23

Both species are fouling pests of municipal and industrial water supply systems, thus incurring 24

substantial management costs [26]. They are also ‘ecosystem engineers’ that can alter nutrient 25

and contaminant cycling, habitat structure and water quality, so that they disrupt food webs 26

and transform biotic communities of invaded systems [27, 28, 33]. 27

Zebra and quagga mussels possess similar morphologies, life cycles and functional ecologies, 28

and were apparently introduced to the Great Lakes perhaps a few years apart during the mid- 29

1980s [8, 29]. In both Europe and North America, quagga mussels often replace zebra mussels 30

as the dominant bivalve in invaded systems over time (reviewed by [22] and [32]). Typically, 31

the zebra mussel is the first dreissenid species to invade a body of water. When quagga mussels 32

invade the same body of water, they initially colonize soft substrates of deepwater areas and 33

subsequently spread into littoral zones occupied by zebra mussels. After several years, the quagga 34

mussel may become more abundant than the zebra mussel system-wide and may even exclude 35
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the zebra mussel from local areas where it was previously dominant [32]. There are also bodies 1

of water, and local habitats within bodies of water, in which the two species either coexist, or 2

the zebra mussel persists as the dominant mussel [32, 39, 40]. For example, in the Soulanges 3

Canal (Quebec, Canada), quagga mussels replaced the zebra mussel on the canal bottom and on 4

lower portions of the canal wall, but zebra mussels remain dominant on the upper wall [32]. In 5

the Don River, Russia, both species have coexisted for over 25 years and, after replacing zebra 6

mussels as the dominant mussel, the proportion of quagga mussels declined into a minority 7

[40]. In portions of the Mississippi and Ohio Rivers, quagga mussels still comprise less than 1% 8

of all dreissenids after a dozen years of coexistence [17]. These cases suggest that patterns of 9

relative dominance and competitive exclusion amongst these species may vary over space and 10

time, presumably under the influence of environmental variables. 11

It is of heuristic and applied importance to understand the factors mediating such interac- 12

tions, because the two species have some significant ecological differences and impacts [8, 22]. 13

The goal of this study is to investigate how the persistence and relative dominance of zebra and 14

quagga mussels are mediated by two critical factors, water temperature and turbidity, which 15

are known to affect dreissenid growth and abundance [7, 14, 23]. We develop a stage-structured 16

competition population model, based on the fecundity, survival rates and the proportion of indi- 17

viduals moving from the juvenile stages to adult stages over time. In our model, the population 18

survival rates are functions of temperature and turbidity, and the species compete for food. We 19

use the model to calculate net reproductive values and intrinsic growth rates. The conditions 20

that lead to persistence, extinction, and competitive exclusion among dreissenid species are 21

obtained. 22

Our competition model assumes that two species occupy the same environment and com- 23

pete for the same food resource. Both theoretical and numerical results indicate that one species 24

excludes the other; that is, sympatric populations of zebra and quagga mussels cannot coex- 25

ist. However, as observed in some aquatic ecosystems, both species may coexist in the same 26

ecosystem but different locations [32, 40], perhaps reflecting the inflluence of local conditions 27

in heterogeneous systems. This motivates us to extend the single-patch model to a two-patch 28

dispersal model by including two patches of different environmental conditions. Populations in 29

different patches are connected and interact with each other through juvenile dispersal. Based 30

on the two-patch competition model, we examine how different dispersal rates and environ- 31

mental factors affect the competitive outcomes. The numerical results indicate that indeed the 32

two-patch dispersal model allows for both coexistence and competitive exclusion outcomes. 33

The rest of the paper is organized as follows. In Section 2, we develop a stage-structured 34

model that describes the competitive interactions between zebra and quagga mussels. In Section 35

3, we present a qualitative analysis for the model. We analyze the existence and stability of 36

extinction and coexistence equilibria. In Section 4, we connect the model to data via model 37

parameterization. In Section 5, the results of model parameterization are used to numerically 38

calculate exclusion results. In Section 6, we construct a two-patch competition model and show 39

some numerical results. Finally a brief discussion section completes the paper. 40

2 A dreissenid mussel competition model 41

We begin by formulating a stage-structured competition model based on the shared life cycle 42

of zebra and quagga mussels. Like many aquatic organisms, zebra (Z) and quagga (Q) mussels 43

have a sessile adult (a) stage that reproduces annually and a juvenile (j) stage that disperses 44

before setting and can be represented as follows: 45
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Zj Za sazϕ ,

sjzϕ

bzϕ
1

where sjz and s
a
z are the basal survival rates for juvenile and adult zebra mussels, respectively, bz is 2

the number of juveniles produced per adult, and ϕ is a function accounting for density-dependent 3

survival of juvenile and adults. A stage-structured model that describes the temperature- and 4

turbidity-dependent competitive interactions between zebra and quagga mussels is given by 5





Zj(t+ 1) = bzZ
a(t)ϕ(t)

Za(t+ 1) = [sjz(T, τ)Z
j(t) + saz(T, τ)Z

a(t)]ϕ(t)

Qj(t+ 1) = bqQ
a(t)ϕ(t)

Qa(t+ 1) = [sjq(T, τ)Q
j(t) + saq(T, τ)Q

a(t)]ϕ(t),

(2.1) 6

where Zj(t) and Za(t) are the number of juvenile zebra mussels and the number of adult zebra 7

mussels, respectively at time t, Qj(t) and Qa(t) are the number of juvenile quagga mussels 8

and the number of adult quagga mussels, respectively at time t, bq is the number of juvenile 9

quagga mussels produced per adult, sjq and s
a
q are the basal survival rates for juvenile and adult 10

quagga mussels, respectively. The population survival rates are functions of temperature (T ) 11

and turbidity (τ). ϕ(t) is a density-dependent survival term due to competition for resources. 12

Next, we derive a specific expression of the survival term ϕ(t). We assume that individuals 13

compete for food (for example, model simulations link population changes to food limitation in 14

[35]). We use F (θ, t) to represent the food level at time θ (0 ≤ θ < 1) in year t. A balance 15

equation for food resource is given by 16

dF

dθ
= F0 − γF − [cjzZ

j(t) + cazZ
a(t) + cjqQ

j(t) + caqQ
a(t)]F, (2.2) 17

where F0 represents the food input, γ denotes the food decay rate, the food consumption rates 18

by the populations are modeled according to the Law of Mass Action and are proportional to 19

both the population levels and the food level, where cjz , c
a
z , c

j
q, and c

a
q represent the consumption 20

coefficients by juvenile zebra mussels, adult zebra mussels, juvenile quagga mussels, and adult 21

quagga mussels, respectively. 22

Setting dF/dθ = 0, we obtain the stable food level

F̄ (t) =
F0

γ + cjzZj(t) + cazZ
a(t) + cjqQj(t) + caqQ

a(t)
.

We assume that the survival rate of juvenile zebra mussels, denoted by Sj
z(t), depends linearly

on the stable food level, that is,

Sj
z(t) = kjzF̄ (t) =

kjzF0

γ + cjzZj(t) + cazZ
a(t) + cjqQj(t) + caqQ

a(t)

=
kjzF0/γ

1 + 1

γ
[cjzZj(t) + cazZ

a(t) + cjqQj(t) + caqQ
a(t)]

.
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Admittedly, our assumption of linearity is probably simplistic. Mussel survivorship to food 1

limitation may involve threshold effects [35]. 2

We let the basal survival rate of juvenile zebra mussels sjz = kjzF0/γ and the survival term 3

due to competition for food 4

ϕ(t) =
1

1 + 1

γ
[cjzZj(t) + cazZ

a(t) + cjqQj(t) + caqQ
a(t)]

. (2.3) 5

Studies on functionally similar marine mussels demonstrate that mussel growth may be severely 6

impeded by crowding, especially amongst small individuals [16]. Moreover, larger individuals 7

have higher filtration capacities [18] and therefore a food acquisition advantage. We refer to 8

cjz/γ, c
a
z/γ, c

j
q/γ, and caq/γ as the competitive abilities of juvenile zebra mussels, adult zebra 9

mussels, juvenile quagga mussels, and adult quagga mussels, respectively. We assume that the 10

competitive abilities are proportional to a phenotypic trait ℓjz, ℓ
a
z , ℓ

j
q, and ℓ

a
q , which we take to 11

be the shell lengths of juveniles and adults of both species, hence we let cjz/γ = βℓjz, c
a
z/γ = βℓaz , 12

cjq/γ = βℓjq, and caq/γ = βℓaq , where β is the competition coefficient that is assumed to be 13

the same for each species and life-history stage. Hence variation in competitive ability among 14

species and stages is accounted for in ℓjz, ℓ
a
z , ℓ

j
q and ℓaq . Thus, we choose the following modified 15

Beverton-Holt density-dependent survival term ϕ(t) in (2.1) 16

ϕ(t) =
1

1 + β[ℓjzZj(t) + ℓazZ
a(t) + ℓjqQj(t) + ℓaqQ

a(t)]
. (2.4) 17

The authors of [6] conducted laboratory studies to compare the growth, survival, and feeding 18

biology of zebra and quagga mussels and found no significant differences in per capital clear- 19

ance rate, functional responses, or feeding behavior between zebra and quagga mussels. This 20

is consistent with our assumption that both species have the same survival term ϕ(t) due to 21

competition for food. For simplicity we assume a mass-action functional response in (2.2) and 22

(2.3). Moreover, [6] found that at a low food level the assimilation efficiency of quagga mussels 23

was significantly higher than that of zebra mussel. We incorporate this in (2.3) by assuming 24

that assimilation efficiencies are proportional to their shell lengths. The results of model pa- 25

rameterization in Section 4 shows that the average shell length of quagga mussels is longer than 26

that of zebra mussels. 27

3 Model analysis 28

To simplify the problem and facilitate model analysis, in this section we set sjz(T, τ) = sjz, 29

and similar notations for other survival rates. We rescale the system (2.1) as follows. Let 30

Z̃j = βℓjzZ
j, Z̃a = βℓazZ

a, Q̃j = βℓjqQ
j , Q̃a = βℓaqQ

a,

b̃z =
ℓjz
ℓaz
bz, b̃q =

ℓjq
ℓaq
bq, s̃jz =

ℓaz

ℓjz
sjz, s̃jq =

ℓaq

ℓjq
sjq, s̃az = saz , s̃aq = saq .

(3.1) 31
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Dropping the tildes for notational simplicity, we rewrite the system (2.1) in the form 1





Zj(t+ 1) =
bzZ

a(t)

1 + Zj(t) + Za(t) +Qj(t) +Qa(t)

Za(t+ 1) =
sjzZj(t) + sazZ

a(t)

1 + Zj(t) + Za(t) +Qj(t) +Qa(t)

Qj(t+ 1) =
bqQ

a(t)

1 + Zj(t) + Za(t) +Qj(t) +Qa(t)

Qa(t+ 1) =
sjqQj(t) + saqQ

a(t)

1 + Zj(t) + Za(t) +Qj(t) +Qa(t)
.

(3.2) 2

Note that the model (3.2) has a trivial equilibrium E0 = (0, 0, 0, 0) at which both species 3

become extirpated. The associated linearized system of model (3.2) at E0 is 4





Zj(t+ 1) = bzZ
a(t)

Za(t+ 1) = sjzZ
j(t) + sazZ

a(t)

Qj(t+ 1) = bqQ
a(t)

Qa(t+ 1) = sjqQ
j(t) + saqQ

a(t).

(3.3) 5

Thus, in the absence of competition, system (3.3) describes the dynamics of two species that do
not interact with each other. The first two difference equations of (3.3) for zebra mussels are
expressed in matrix form as:

(
Zj(t+ 1)
Za(t+ 1)

)
=

(
0 bz
sjz saz

)(
Zj(t)
Za(t)

)
:=M

(
Zj(t)
Za(t)

)
.

The dominant eigenvalue of the projection matrix M is the intrinsic growth rate [9, 11, 12] of 6

zebra mussels, denoted by rz. Hence, 7

rz =
saz +

√
(saz)

2 + 4bzs
j
z

2
. (3.4) 8

Similarly, we denote the intrinsic growth rate of quagga mussels by rq, then 9

rq =
saq +

√
(saq)

2 + 4bqs
j
q

2
. (3.5) 10

To calculate the net reproductive value, we divide the projection matrix M into transition
and fecundity components, M = T + F , where

T =

(
0 0

sjz saz

)
and F =

(
0 bz
0 0

)
.

The net reproductive value for zebra mussels, denoted by Rz
0, is the positive, simple, and strictly 11

dominant eigenvalue of the next generation matrix F (I − T )−1 [9, 11, 12]. Thus, we have 12

Rz
0 =

bzs
j
z

1− saz
. (3.6) 13
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Similarly, the net reproductive value for quagga mussels is given by 1

Rq
0
=

bqs
j
q

1− saq
. (3.7) 2

It is well known that rz = 1 if and only if Rz
0 = 1. The population grows when rz and Rz

0 3

are greater than 1 and shrinks when rz and Rz
0 are less than 1. Similar results hold for rq and 4

Rq
0
. 5

In the rest of this section, we study the existence and the local stability of the equilibria of 6

the nonlinear model (3.2). As we will see, all conditions on the existence and stability are given 7

by the values of the population growth rates, rz and rq, or the net reproductive values, Rz
0 and 8

Rq
0
, which are determined by the linearized system (3.3). 9

3.1 Existence of equilibria 10

To investigate the long-term behavior of system (3.2), we look for the steady states (equilib- 11

ria) where neither, one, or both species survive. An equilibrium of system (3.2) is a nonnegative 12

solution of the equilibrium system 13





Zj =
bzZ

a

1 + Zj + Za +Qj +Qa

Za =
sjzZj + sazZ

a

1 + Zj + Za +Qj +Qa

Qj =
bqQ

a

1 + Zj + Za +Qj +Qa

Qa =
sjqQj + saqQ

a

1 + Zj + Za +Qj +Qa
.

(3.8) 14

We first consider the existence of boundary equilibria. Clearly, system (3.8) always has a 15

trivial solution (0, 0, 0, 0). Hence, system (3.2) always has an extirpation equilibrium E0 = 16

(0, 0, 0, 0). 17

Denote a zebra-only equilibrium by E1 = (Zj
∗
, Za

∗
, 0, 0). Then (Zj

∗
, Za

∗
) is a positive solution 18

of the subsystem 19



Zj =
bzZ

a

1 + Zj + Za

Za =
sjzZj + sazZ

a

1 + Zj + Za
.

(3.9) 20

From the first equation of (3.9), we see that 21

1 + Zj + Za =
bzZ

a

Zj

. (3.10) 22

Substituting (3.10) into the second equation of (3.9), we obtain 23

sjz

(
Zj

Za

)2

+ saz
Zj

Za
− bz = 0. (3.11) 24

6



This quadratic equation with respect to Zj/Za has only one positive solution 1

Zj

Za
=

√
(saz)

2 + 4bzs
j
z − saz

2sjz
:= ξ1. (3.12) 2

Substituting Zj = ξ1Za into the first equation of (3.9), we have 3

bz − ξ1 = ξ1(1 + ξ1)Z
a. (3.13) 4

Since ξ1(1 + ξ1) > 0, (3.13) has a positive solution Za
∗
= (bz − ξ1)/[ξ1(1 + ξ1)Z

a] if and only if
bz − ξ1 > 0. Simple calculation shows that bz − ξ1 > 0 is equivalent to Rz

0 > 1. Thus, when
Rz

0 > 1, system (3.2) has a boundary equilibrium E1 = (Zj
∗
, Za

∗
, 0, 0) with

Zj
∗
=
bz − ξ1
1 + ξ1

and Za
∗
=

bz − ξ1
ξ1(1 + ξ1)

.

Similarly, when Rq
0
> 1, system (3.2) has a boundary equilibrium E2 = (0, 0, Qj

∗
, Qa

∗
) with

Qj
∗
=
bq − ξ2
1 + ξ2

and Qa
∗
=

bq − ξ2
ξ2(1 + ξ2)

,

where

ξ2 =

√
(saq)

2 + 4bqs
j
q − saq

2sjq
.

(Note that Rq
0
> 1 is equivalent to bq > ξ2.) 5

Next, we discuss the existence of an interior equilibrium, which is a positive solution of 6

system (3.8). From the first equation of (3.8), we see that 7

1 + Zj + Za +Qj +Qa =
bzZ

a

Zj

. (3.14) 8

Substituting (3.14) into the second equation of (3.8), again we obtain (3.11) and (3.12). 9

Similarly, from the third and fourth equations of (3.8) it follows that Qj/Qa = ξ2. Substi-
tuting this and (3.12) into the first and third equations of system (3.8), we have





bz
ξ1

− 1 = (1 + ξ1)Z
a + (1 + ξ2)Q

a

bq
ξ2

− 1 = (1 + ξ1)Z
a + (1 + ξ2)Q

a.

Note that (3.9) has a positive solution if and only if bz/ξ1 = bq/ξ2 > 1. (Note that bz/ξ1 > 1 10

is equivalent to Rz
0 > 1 and bq/ξ2 > 1 is equivalent to Rq

0
> 1.) Thus, when the conditions 11

Rz
0 > 1, Rq

0
> 1, and bz/ξ1 = bq/ξ2 are satisfied, system (3.2) has a positive equilibrium 12

E3 = (Zj
⋆ , Z

a
⋆ , Q

j
⋆, Q

a
⋆) that satisfies Z

j
⋆ +Za

⋆ +Qj
⋆ +Qa

⋆ = 1− bz/ξ1. Note that if E3 exists, then 13

it is not unique and there is a continuum of interior equilibrium. However, an interior equilibrium 14

of system (3.2) does not exist in practice because the necessary condition bz/ξ1 = bq/ξ2 rarely 15

holds in reality. 16

Based on the above discussion, we summarize the existence of equilibria and corresponding 17

conditions required in Table 1. 18
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Table 1: Existence of equilibria of system (3.2).

Conditions Equilibria Biological interpretations

Rz
0 < 1, Rq

0
< 1 E0 = (0, 0, 0, 0) At E0, both species extirpate

Rz
0 > 1, Rq

0
< 1 E0, E1 = (Zj

∗
, Za

∗
, 0, 0) At E1, zebra excludes quagga

Rz
0 < 1, Rq

0
> 1 E0, E2 = (0, 0, Qj

∗
, Qa

∗
) At E2, quagga excludes zebra

Rz
0 > 1, Rq

0
> 1, bz/ξ1 = bq/ξ2 E0, E1, E2, E3 = (Zj

⋆ , Z
a
⋆ , Q

j
⋆, Q

a
⋆) At E3, both species coexist

3.2 Stability of equilibria 1

To analyze the stability of an equilibrium, we may use the Jacobian matrix. Setting

ψ(t) =
1

1 + Zj(t) + Za(t) +Qj(t) +Qa(t)
,

the Jacobian of (3.2) is

J =

(
J11 J12

J21 J22

)
,

with

J11 =

(
−bzZ

aψ2 bzψ − bzZ
aψ2

sjzψ − sjzZ
jψ2 − sazZ

aψ2 −sjzZ
jψ2 + sazψ − sazZ

aψ2

)
,

J12 =

(
−bzZ

aψ2 −bzZ
aψ2

−(sjzZ
j + sazZ

a)ψ2 −(sjzZ
j + sazZ

a)ψ2

)
,

J21 =

(
−bqQ

aψ2 −bqQ
aψ2

−(sjqQ
j + saqQ

a)ψ2 −(sjqQ
j + saqQ

a)ψ2

)
,

and

J22 =

(
−bqQ

aψ2 bqψ − bqQ
aψ2

sjqψ − sjqQ
jψ2 − saqQ

aψ2 −sjqQ
jψ2 + saqψ − saqQ

aψ2

)
.

If at least one of the net reproductive values is less than 1, we could make the following 2

conclusions regarding the stability of equilibria. 3

Theorem 1 i) If Rz
0 < 1 and Rq

0
< 1, then the extirpation equilibrium E0 is globally asymptot- 4

ically stable. 5

ii) If Rz
0 > 1 and Rq

0
< 1, then E0 is unstable and the zebra-only equilibrium E1 is locally 6

asymptotically stable. 7

iii) If Rz
0 < 1 and Rq

0
> 1, then E0 is unstable and the quagga-only equilibrium E2 is locally 8

asymptotically stable. 9

Proof. i) At E0, both species become extirpated, and the Jacobian is

J(E0) =




0 bz 0 0

sjz saz 0 0
0 0 0 bq
0 0 sjq saq


 .

8



Notice that since 2 × 2 matrix in the left-upper corner of the matrix J(E0) is nonnegative, 1

irreducible, and primitive, the famous Perron-Frobenius Theorem implies that it has a posi- 2

tive, simple, and strictly dominant eigenvalue λ1. Since Rz
0 < 1, we have λ1 < 1. Similarly, 3

the 2 × 2 matrix in the right-lower corner of the matrix J(E0) has a positive, simple, and 4

strictly dominant eigenvalue λ2 < 1. Hence, the matrix J(E0) has a dominant eigenvalue 5

λ = max{λ1, λ2} < 1. It follows from [15] (Corollary 3.24, p.145) that limt→∞(J(E0))
t = 0. 6

Let X(t) = [Zj(t), Za(t), Qj(t), Qa(t)]T . Then from (3.2), we find that for any initial value 7

X(0) ≥ 0, we have 0 ≤ X(1) ≤ J(E0)X(0), where the vector and matrix inequalities hold 8

componentwise. Repeating this gives 0 ≤ X(t) ≤ (J(E0))
tX(0). Since limt→∞(J(E0))

t = 0, we 9

obtain limt→∞X(t) = 0. Therefore, E0 = (0, 0, 0, 0) is globally asymptotically stable. 10

ii) If Rz
0 > 1, the dominant eigenvalue of the matrix J(E0) is greater than 1, hence E0 is 11

unstable. At the zebra-only equilibrium E1, where zebra mussels replace quagga mussels, the 12

Jacobian is 13

J(E1) =




−bzZ
a
∗

(1 + Zj
∗ + Za

∗
)2

bz(1 + Zj
∗)

(1 + Zj
∗ + Za

∗
)2

−bzZ
a
∗

(1 + Zj
∗ + Za

∗
)2

−bzZ
a
∗

(1 + Zj
∗ + Za

∗
)2

sjz + (sjz − saz)Z
a
∗

(1 + Zj
∗ + Za

∗
)2

saz + (saz − sjz)Z
j
∗

(1 + Zj
∗ + Za

∗
)2

−(sjzZ
j
∗ + sazZ

a
∗
)

(1 + Zj
∗ + Za

∗
)2

−(sjzZ
j
∗ + sazZ

a
∗
)

(1 + Zj
∗ + Za

∗
)2

0 0 0
bq

1 + Zj
∗ + Za

∗

0 0
sjq

1 + Zj
∗ + Za

∗

saq

1 + Zj
∗ + Za

∗




To prove that E1 is locally asymptotically stable, we show that the eigenvalues of the matrix 14

J(E1) are less than 1 in magnitude. Denote the 2 × 2 matrix in the upper left corner and the 15

2 × 2 matrix in the lower right corner of J(E1) by J11(E1) and J22(E1), respectively. Then it 16

suffices to show that the eigenvalues of both J11(E1) and J22(E1) are less than 1 in magnitude. 17

We first show that the eigenvalues of J11(E1) are less than 1 in magnitude. By Jury test 18

for stability of a discrete-time system, we need to show that the following inequalities hold (see 19

Theorem 2.37 and Eq. (4.3.9) in [15]): 20





1− tr(J11(E1)) + det(J11(E1)) > 0
1 + tr(J11(E1)) + det(J11(E1)) > 0
det(J11(E1)) < 1,

(3.15) 21

or, equivalently, 22

|tr(J11(E1))| < det(J11(E1)) + 1 < 2. (3.16) 23

Simple calculation gives 24

det(J11(E1)) =
−bzZ

a
∗
[saz + (saz − sjz)Z

j
∗ ]− bz(1 + Zj

∗)[s
j
z + (sjz − saz)Z

a
∗
]

(1 + Zj
∗ + Za

∗
)4

=
−bzs

j
z − bzs

j
zZ

j
∗ − bzs

j
zZa

∗

(1 + Zj
∗ + Za

∗
)4

= −
bzs

j
z

(1 + Zj
∗ + Za

∗
)3
< 0 < 1.

(3.17) 25

9



This means that the third inequality in (3.15) is true. Also, det(J11(E1)) < 0 implies that the 1

two eigenvalues of J11(E1) are real and of opposite sign. In what follows, we show that the first 2

and second inequalities in (3.15) are true. Note that E1 = (Zj
∗
, Za

∗
, 0, 0) satisfies (see (3.9)) 3

{
bzZ

a
∗
= Zj

∗
(1 + Zj

∗
+ Za

∗
)

sjzZ
j
∗
+ sazZ

a
∗
= Za

∗
(1 + Zj

∗
+ Za

∗
).

(3.18) 4

Solving (3.18) for Zj
∗
+ Za

∗
, we obtain 5

Zj
∗
+ Za

∗
=
saz +

√
(saz)

2 + 4bzs
j
z

2
− 1 = rz − 1. (3.19) 6

Thus, we have 7

tr(J11(E1)) =
−bzZ

a
∗
+ saz + (saz − sjz)Z

j
∗

(1 + Zj
∗ + Za

∗
)2

=
−Zj

∗(1 + Zj
∗ + Za

∗
) + saz(1 + Zj

∗ + Za
∗
)− Za

∗
(1 + Zj

∗ + Za
∗
)

(1 + Zj
∗ + Za

∗
)2

=
saz − (Zj

∗ + Za
∗
)

1 + Zj
∗ + Za

∗

.

(3.20) 8

From (3.18), we also find that Zj
∗
+ Za

∗
satisfies 9

bzs
j
z

(1 + Zj
∗ + Za

∗
)2

+
saz

1 + Zj
∗ + Za

∗

= 1. (3.21) 10

Using (3.17), (3.20), and (3.21), we obtain

1− tr(J11(E1)) + det(J11(E1))

=
bzs

j
z

(1 + Zj
∗ + Za

∗
)2

+
saz

1 + Zj
∗ + Za

∗

−
saz − (Zj

∗ + Za
∗
)

1 + Zj
∗ + Za

∗

−
bzs

j
z

(1 + Zj
∗ + Za

∗
)3

=
bzs

j
z

(1 + Zj
∗ + Za

∗
)2

(
1−

1

1 + Zj
∗ + Za

∗

)
+

Zj
∗ + Za

∗

1 + Zj
∗ + Za

∗

> 0.

On the other hand, using (3.17), (3.19), and (3.20), we have

1 + tr(J11(E1)) + det(J11(E1)) > 0

⇔
1 + saz

1 + Zj
∗ + Za

∗

−
bzs

j
z

(1 + Zj
∗ + Za

∗
)3
> 0

⇔(1 + saz)(1 + Zj
∗
+ Za

∗
)2 > bzs

j
z

⇔(1 + saz)


s

a
z +

√
(saz)

2 + 4bzs
j
z

2




2

> bzs
j
z

⇔saz

√
(saz)

2 + 4bzs
j
z > 2bzs

j
z

(
1

1 + saz
− 1

)
− (saz)

2,

10



which is true. Therefore, all inequalities in (3.15) hold. Thus, the eigenvalues of J11 are less 1

than 1 in magnitude. 2

We now apply Jury test to the 2× 2 matrix J22(E1). Noting that

tr(J22(E1)) =
saq

1 + Zj
∗ + Za

∗

> 0 and det(J22(E1)) = −
bqs

j
q

(1 + Zj
∗ + Za

∗
)2
< 0,

we have

|tr(J22(E1))| − det(J22(E1))− 1 =
saq

1 + Zj
∗ + Za

∗

+
bqs

j
q

(1 + Zj
∗ + Za

∗
)2

− 1

< saq + bqs
j
q − 1 < 0,

since Rq
0
= bqs

j
q/(1 − saq) < 1. Hence, the inequalities (3.16) hold. By the Jury test, the 3

eigenvalues of J22(E1) are also less that 1 in magnitude. Therefore, the eigenvalues of J(E1) are 4

less that 1 in magnitude, hence E1 is locally asymptotically stable. 5

iii) Follows by similar arguments as in ii). 6

Next, we assume that Rz
0 > 1 and Rq

0
> 1 and consider the competitive exclusion. The 7

following theorem indicates that when the net reproductive values of both species are greater 8

than 1, the species that has a higher growth rate excludes the species that has a lower growth 9

rate. 10

Theorem 2 Assume that Rz
0 > 1 and Rq

0
> 1. Concerning the system (3.2) we have the follow- 11

ing conclusions: 12

i) If rz > rq, then E1 is locally asymptotically stable and E2 is unstable. 13

ii) If rz < rq, then E2 is locally asymptotically stable and E1 is unstable. 14

Proof. i) Since Rz
0 > 1, it follows by arguments as those in the proof of Theorem 1 that

the eigenvalues of J11(E1) are less than 1 in magnitude. Also, from Theorem 1, we see that
det(J22(E1)) < 1 and

|tr(J11(E1))| − det(J11(E1))− 1 =
saq

1 + Zj
∗ + Za

∗

+
bqs

j
q

(1 + Zj
∗ + Za

∗
)2

− 1 =
saq
rz

+
bqs

j
q

(rz)2
− 1.

Similarly as shown by (3.21), we have that Qj
∗
+Qa

∗
satisfies

saq

1 +Qj
∗ +Qa

∗

+
bqs

j
q

(1 +Qj
∗ +Qa

∗
)2

=
saq
rq

+
bqs

j
q

(rq)2
= 1.

Since rz > rq, we have

saq
rz

+
bqs

j
q

(rz)2
− 1 <

saq
rq

+
bqs

j
q

(rq)2
− 1 = 0.

Hence, |tr(J11(E1))| − det(J11(E1))− 1 < 0. Therefore, the eigenvalues of J22(E1) are less than 15

1 in magnitude. Thus, E1 is locally asymptotically stable. 16

11



We now show that E2 is unstable. At the quagga-only equilibrium E2, where quagga mussels
replace zebra mussels, the Jacobian is

J(E2) =




0
bz

1 +Qj
∗ +Qa

∗

0 0

sjz

1 +Qj
∗ +Qa

∗

saz

1 +Qj
∗ +Qa

∗

0 0

−bqQ
a
∗

(1 +Qj
∗ +Qa

∗
)2

−bqQ
a
∗

(1 +Qj
∗ +Qa

∗
)2

−bqQ
a
∗

(1 +Qj
∗ +Qa

∗
)2

bq(1 +Qj
∗)

(1 +Qj
∗ +Qa

∗
)2

−(sjqQ
j
∗ + saqQ

a
∗
)

(1 +Qj
∗ +Qa

∗
)2

−(sjqQ
j
∗ + saqQ

a
∗
)

(1 +Qj
∗ +Qa

∗
)2

sjq + (sjq − saq)Q
a
∗

(1 +Qj
∗ +Qa

∗
)2

saq + (saq − sjq)Q
j
∗

(1 +Qj
∗ +Qa

∗
)2




We denote the 2× 2 matrix in the left-upper corner of the matrix J(E2) by J11(E2). Then, we
get

|tr(J11(E2))| − det(J11(E2))− 1 =
saz

1 +Qj
∗ +Qa

∗

+
bqs

j
q

(1 +Qj
∗ +Qa

∗
)2

− 1

=
saz
rq

+
bzs

j
z

(rq)2
− 1

>
saz
rz

+
bzs

j
z

(rz)2
− 1 = 0,

which implies that there exists an eigenvalue of J11(E2) with magnitude larger than one. Thus, 1

E2 is unstable. 2

ii) Follows by similar arguments as in i). 3

As we mentioned in Section 3.1, the interior equilibrium E3 hardly exists; hence we are not 4

interested in its stability. 5

4 Model parametrization 6

In this section, we connect model (2.1) to experimental data via model parametrization. We 7

consider the dependence of population survival rates on temperature (T ) and turbidity (τ). The 8

results of model parameteriazation are then used to illustrate the impacts of these two abiotic 9

variables on competitive exclusion in the next section. Although juveniles and adults may have 10

different sensitivities to temperature and turbidity, we assume that juveniles and adults have 11

the same survival rates because data are lacking. 12

4.1 Survival rates: sj
z
(T, τ ), sa

z
(T, τ ), sj

q
(T, τ ), and sa

q
(T, τ ) 13

We assume that the survival rates for zebra mussel are continuous functions with respect to
temperature and turbidity, which are given by

sjz(T, τ) = saz(T, τ) = σzs
a
z(T )s

a
z(τ)

12



plus our simplifying assumption that sjz = saz , where 0 < σz < 1 is a coefficient that represents
the survival rate of population under ideal circumstances (i.e., when saz(T ) and s

a
z(τ) reach their

maximum values). Similarly, for quagga mussels, we assume that

sjq(T, τ) = saq(T, τ) = σqs
a
q(T )s

a
q(τ),

where 0 < σq < 1. 1

The effects of temperatures on survival of zebra and quagga mussels in Lake Erie were studied 2

in [38]. Therein, the maximum survival rates of zebra and quagga mussels were estimated, which 3

are 0.79 and 0.91, respectively. Thus, we let σz/σq = 0.79/0.91 = 0.87, and 4

sjz(T, τ) = saz(T, τ) = 0.87σsaz(T )s
a
z(τ), sjq(T, τ) = saq(T, τ) = σsaq(T )s

a
q(τ). (4.1) 5

Next, we estimate the dependence of population survival rates on temperature and turbidity, 6

respectively. 7

4.1.1 The dependence of survival on temperature: sjz(T ), saz(T ), sjq(T ), and saq(T ) 8

Thermal and turbidity tolerance limits for dreissenid survival were estimated by averaging 9

experimental and empirical data reported in the literature. These data suggest that the lower 10

and upper thermal threshold limits for quagga mussels are below those for zebra mussels, and 11

that the upper thermal limit of the quagga mussel appears to be near 25◦C, whereas that of 12

the zebra mussel is near 30◦C (reviewed by [26]). The lower threshold limits for zebra mussel 13

survival and and quagga mussel survival are 10◦C and 5◦C, respectively [26]. Based on these 14

threshold values, we let 15

sjz(10) = sjz(30) = 0. (4.2) 16

We assume that the basal survival rate for juvenile zebra mussels are related to temperature T 17

by the quadratic logistic regression 18

sjz(T ) =
exp(a1T

2 + a2T + a3)

1 + exp(a1T 2 + a2T + a3)
. (4.3) 19

Employing Matlab routine LSQCURVEFIT to fit the function (4.3) to the data (4.2), we obtain 20

parameter estimates a1 = −0.064, a2 = 2.57, and a3 = −22.52. Therefore, we assume that the 21

basal survival rates for zebra mussels are related to temperature T by 22

sjz(T ) = saz(T ) =
exp(−0.064T 2 + 2.57T − 22.52)

1 + exp(−0.064T 2 + 2.57T − 22.52)
, (4.4) 23

plus our simplifying assumption that sjz(T ) = saz(T ). 24

Similarly, fitting a function (replacing z by q in (4.3)) for quagga mussels to the data sjq(5) = 25

sjq(25) = 0, we assume that the basal survival rates for quagga mussels are related to temperature 26

T by the quadratic logistic regression 27

sjq(T ) = saq(T ) =
exp(−0.064T 2 + 1.93T − 11.27)

1 + exp(−0.064T 2 + 1.93T − 11.27)
. (4.5) 28

(left panel of Figure 1). 29

13



4.1.2 The dependence of survival on turbidity: sjz(τ), s
a
z(τ), s

j
q(τ), and saq(τ) 1

Turbidity is the cloudiness or haziness of water caused by solid particles in suspension. The 2

instrument used for measuring it is called a nephelometer or turbidimeter, which measures the 3

intensity of light scattered at 90◦C as a beam of light passes through a water sample. Kits 4

such as the 2100P Hach Turbidimeter are used to measure turbidity in nephelometric turbidity 5

units (NTU) [26]. Turbidity is important as a physiological stressor not only because energy 6

is required to process inorganic seston, but also because food quality is diluted by seston [32]. 7

Turbidity (suspended particles) limits the filtration capacity of mussels and imposes energetic 8

costs [6, 37]. Turbidity levels < 5 NTU are considered optimal for zebra mussel population 9

growth; 5-20 NTU will support moderate population growth; 20-80 NTU will support little 10

growth, whereas 80 NTU are lethal and will not support long-term zebra mussel survival [26]. 11

Based on these conclusions, in a similar way as we estimate sjz(T ) in section 4.1.1, we assume 12

that the basal survival rates for zebra and quagga mussels are related to turbidity by the linear 13

logistic regressions 14

sjz(τ) = saz(τ) =
exp(−0.11τ + 3.65)

1 + exp(−0.11τ + 3.65)
. (4.6) 15

As little information exists on the effects of suspended solids on quagga mussel survival or 16

even metabolic activities, some researchers assume that the criteria used for zebra mussels also 17

apply to quagga mussels [26]. However, although clearance rates of zebra and quagga mussels 18

are reduced when exposed to natural suspended sediments of up to 12mg/L, quagga mussels 19

maintain higher filtration rates than similarly sized zebra mussels, regardless of season [14]. 20

Moreover, quagga mussels appear to be better able than zebra mussels to process food when 21

it is diluted by suspended inorganic particles, as they have a higher assimilation efficiency and 22

lower respiration cost [6, 37]. Thus, we assume that the survival rates of quagga mussels are 23

slighter higher than those of zebra mussels, and the basal survival rates for quagga mussels are 24

related to turbidity τ by the linear logistic regression 25

sjq(τ) = saq(τ) =
exp(−0.11τ + 4.46)

1 + exp(−0.11τ + 4.46)
(4.7) 26

(right panel of Figure 1). 27

4.2 Fecundity rates: bz and bq 28

Annually, female zebra mussels can produce up to a million eggs, and males produce up to 29

nearly 10 million sperm [34]. Since fertilization occurs externally in the water column, release 30

of eggs and sperm must be concurrent. Our estimate of fecundity is based on a mean number of 31

eggs released by female mussels; given variability in this parameter, we choose a number from 32

525 to 300,000 eggs per female estimated in [36]. As for the proportion of fertilized zebra mussel 33

eggs, authors of [31] expect values between 0.01 and 0.1. By assuming 1:1 female-male ratio 34

and choosing the mean value of the above quantities, we estimate that the number of larvae 35

produced per adult is 4218. In [25], 0.1% of larvae are assumed to survive to settle on the lake 36

bottom. Hence, we estimate that bz = 0.001 · 4218 = 4.128. 37

Reproduction in sympatric populations of zebra and quagga mussels was compared in western 38

Lake Erie [37]. The results suggest no difference in the percentage of spawning mussels or the 39

number of sperm released by individuals (Table 3 and Fig. 4 in [37]), although zebra mussels 40
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Figure 1: The dependence of survivor rates for zebra and quagga mussels on temperature (left
panel) and turbidity (right panel).

generally released more eggs and a greater mass of gametes than did quagga mussels. Thus, we 1

choose bq = bz in this study. 2

4.3 Shell lengths: ℓj
z
, ℓa

z
, ℓj

q
, and ℓa

q
3

Adult zebra mussels typically range from 2-2.5 cm in length, whereas adult quagga mussels 4

may grow larger than their congeners and often exceed 3 cm in length [29]. We choose ℓaz = 2.5 5

cm, ℓaq = 3 cm, ℓjz = 1.25 cm, and ℓjq = 1.5 cm. 6

The parameter estimate for model (2.1) are listed in Table 2. Based on the above parameter 7

estimates, we are able to calculate the non-dimensional parameters in the model (3.1)-(3.2). 8

Observing that the non-dimensional model (3.1)-(3.2) has the same long-term dynamics as the 9

original model (2.1), we will make numerical simulations based on model (3.1)-(3.2), instead of 10

model (2.1). By doing so, we avoid having to estimate the competition coefficient β, for which 11

data are lacking. 12

5 Numerical results 13

In this section, the resulting parameter estimates are used to calculate Rz
0(T, τ), R

q
0
(T, τ), 14

rz(T, τ), and rq(T, τ), according to (3.4)-(3.7), for the range of temperatures (5◦C ≤ T ≤ 30◦C) 15

and turbidities (0 ≤ τ ≤ 80 NTU). We assume that two species share the same environment. 16

We apply the results of stability analysis in Section 3 to determine the competitive outcomes in 17

terms of temperature and turbidity (Figure 2). 18

As shown by Figure 2, the temperature-turbidity space is divided into five regions by the 19

contour lines Rz
0 = 1, Rq

0
= 1, and rz = rq. In other words, these lines divide the range of 20

temperatures and turbidities into five environmental niches. In the niche where the temperatures 21

are very low or very high, or the turbidities are high, both species become extirpated since their 22

net reproductive values, Rz
0 and Rq

0
, are both less than 1. In the other four niches, one species 23

excludes the other due to their different tolerances to temperature and turbidity. The results 24

indicate that quagga mussel dominance leading to potential exclusion of zebra mussels at mean 25

15



Table 2: Parameter estimates for the model (2.1)-(2.4).

Symbols Definitions Estimate values

bz Reproduction rate of zebra mussels 4.128/year
bq Reproduction rate of quagga mussels 4.128/year

ℓjz Shell length of juvenile zebra mussels 1.25 cm

ℓaz Shell length of adult zebra mussels 2.5 cm

ℓjq Shell length of juvenile quagga mussels 1.5 cm

ℓaq Shell length of adult quagga mussels 3 cm

sjz(T, τ) Survival rate of juvenile zebra mussels See Eqs (4.3),(4.4), and (4.6)

saz(T, τ) Survival rate of adult zebra mussels See Eqs (4.3),(4.4), and (4.6)

sjq(T, τ) Survival rate of juvenile quagga mussels See Eqs (4.3),(4.5), and (4.7)

saq(T, τ) Survival rate of adult quagga mussels See Eqs (4.3),(4.5), and (4.7)

water temperatures below 20◦C and over a broad range of turbidities, and a much narrower set 1

of conditions that favor zebra mussel dominance and potential exclusion of quagga mussels at 2

temperatures above 20◦C and turbidities below 35 NTU. 3

The temperature-turbidity niche space over which quagga mussels are predicted to outcom- 4

pete zebra mussels is much larger than the space in which they are outcompeted by zebra 5

mussels. This result is in accord with field observations that suggest that the quagga mussel 6

more frequently dominates dreissenid communities, especially in turbid waters [7, 40]. 7

To see how one species excludes the other when the net reproductive values of both species 8

are greater than 1, as an example, we choose temperature T = 15◦C and turbidity τ = 20 NTU 9

(square marked in Figure 2). Calculation shows that Rz
0 = 1.54, Rq

0
= 3.02, rz = 1.2, and 10

rq = 1.55. We consider the case where quagga mussels invade a body of water already colonized 11

by zebra mussels, and solve the competition model (3.1)-(3.2) (Figure 3). As observed in some 12

ecosystems, when the zebra mussel is the first species to invade a body of water, it grows up to 13

its carrying capacity. Once the quagga mussel invades the same body of water, it will grow and 14

become more abundant than the zebra mussel, eventually the quagga mussel excludes the zebra 15

mussel. 16

6 A two-patch dispersal model 17

The Dreissena competition model (2.1) assumes that both species share the same living 18

conditions and compete for the same resource (food). It does not consider spatial heterogeneity, 19

and ignores population dispersal. Therefore, both theoretical and numerical results support the 20

“competitive exclusion principle”- that is, two similar species that live in the same environment 21

and compete for the same resources cannot coexist [10]. However, it is widely believed that both 22

species exist in ecosystems composed of many local patches with heterogeneous environmental 23

conditions (e.g., [13, 21]). This motivates us to extend the single-patch model (2.1) to a two- 24

patch dispersal model toward better understanding the effects of environmental heterogeneity 25

and dispersal on the competitive dynamics. As we will see, the two-patch competition model 26

does allow coexistence. 27

We consider an aquatic ecosystem composed of two patches, say patch 1 and patch 2. A 28
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model that describes the competitive dynamics of two species in these two patches is given by 1





Zj
1
(t+ 1) = [(1− αz

12)b
z
1Z

a
1 (t) + αz

21b
z
2Z

a
2 (t)]ψ1(t)

Za
1 (t+ 1) = [sjz1Z

j
1
(t) + saz1Z

a
1 (t)]ψ1(t)

Qj
1
(t+ 1) = [(1− αq

12
)bq

1
Qa

1(t) + αq
21
bq
2
Qa

2(t)]ψ1(t)

Qa
1(t+ 1) = [sjq1Q

j
1
(t) + saq1Q

a
1(t)]ψ1(t)

Zj
2
(t+ 1) = [(1− αz

21)b
z
2Z

a
2 (t) + αz

12b
z
1Z

a
1 (t)]ψ2(t)

Za
2 (t+ 1) = [sjz2Z

j
2
(t) + saz2Z

a
2 (t)]ψ2(t)

Qj
2
(t+ 1) = [(1− αq

21
)bq

2
Qa

2(t) + αq
12
bq
1
Qa

1(t)]ψ2(t)

Qa
2(t+ 1) = [sjq2Q

j
2
(t) + saq2Q

a
2(t)]ψ2(t)

(6.1) 2
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of quagga mussels Qj(t) + Qa(t) (dashed line). We use the results of parameter estimates in
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where

ψ1(t) =
1

1 + Zj
1
(t) + Za

1
(t) +Qj

1
(t) +Qa

1
(t)
,

ψ2(t) =
1

1 + Zj
2
(t) + Za

2
(t) +Qj

2
(t) +Qa

2
(t)
,

Zj
1
(t) is the number of juvenile zebra mussels in patch 1 at time t, bz1 is the number of juvenile 1

zebra mussels produced per adult zebra mussel in patch 1, sjz1 is the basal survival rate of 2

juvenile zebra mussels in patch 1. αz
12 is the proportion that juvenile zebra mussels, reproduced 3

by adult zebra mussels in patch 1, live in patch 2 due to dispersal. Similar meanings for other 4

notations (Z,Q represent zebra and quagga mussels, respectively, j, a represent juveniles and 5

adults, respectively, 1 and 2 represent patch 1 and patch 2, respectively). ψ1(t) and ψ2(t) are 6

density-dependent competition terms for populations living in patch 1 and patch 2, respectively. 7

Model (6.1) assumes that two species compete for food within the patch they live, and 8

populations living in different patches do not compete. The populations in different patches are 9

assumed to be connected and interact with each other through dispersal. Clearly, if αz
12 = αz

21 = 10

αq
12

= αq
21

= 0, then model (6.1) is decoupled into two single-patch models in the form of (3.2). 11

We say that two species coexist in the overall ecosystem if each species eventually exists at 12

least one of the two patches, more precisely, if there exists a positive constant δ such that 13

lim inf
t→∞

min{Zj
1
(t) + Za

1 (t) + Zj
2
(t) + Za

2 (t), Q
j
1
(t) +Qa

1(t) +Qj
2
(t) +Qa

2(t)} ≥ δ, (6.2) 14

where we take the infimum in time, but minimize over the two population sizes. 15

We say that two species coexist in patch 1 if there exists a positive constant δ1 such that 16

lim inf
t→∞

min{Zj
1
(t) + Za

1 (t), Q
j
1
(t) +Qa

1(t)} ≥ δ1. (6.3) 17
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Figure 4: The solutions of model (6.1) for different dispersal rates (Top row: αz
12 = αz

21 = αq
12

=
αq
21

= 0.01, Bottom row: αz
12 = αz

21 = αq
12

= αq
21

= 0.2). Temperatures are 15◦C and 20◦C
in patch 1 and patch 2, respectively, turbidities in both patches are the same (τ = 15 NTU)
(diamond and cross marked in Figure 2). Other parameters are the same as those in Figure 2.

Similarly, we say that two species coexist in patch 2 if there exists a positive constant δ2 such 1

that 2

lim inf
t→∞

min{Zj
2
(t) + Za

2 (t), Q
j
2
(t) +Qa

2(t)} ≥ δ2. (6.4) 3

Intuitively, if one species excludes the other in both patches when the two patches are isolated 4

(αz
12 = αz

21 = αq
12

= αq
21

= 0), then the first species excludes the second one in both patches for 5

any positive dispersal rates (i.e., 0 < αz
12, α

z
21, α

q
12
, αq

21
< 1) when the two patches are connected 6

through dispersal. We are interested in the following question: if the two patches are isolated 7

(αz
12 = αz

21 = αq
12

= αq
21

= 0), and quagga mussels exclude zebra mussels in patch 1 while zebra 8

mussels exclude quagga mussels in patch 2, then when 0 < αz
12, α

z
21, α

q
12
, αq

21
< 1, how do the 9

dispersal rates affect the competitive outcomes? To answer this question, we solve the two-patch 10

dispersal model (6.1) using the results of model parameterization in Section 4. As an example, we 11

consider two patches with the same turbidity level (say τ = 15 NTU) but different temperatures 12

(say temperatures are 15◦C and 20◦C in patch 1 and patch 2, respectively)(diamond and cross 13

marked in Figure 2). Then the population survival rates can be calculated according to (4.1)- 14
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Figure 5: Stable population levels when the bifurcation parameter α ∈ [0, 0.1]. We let αz
12 =

αz
21 = αq

12
= αq

21
:= α, other parameters are the same as those in Figure 4. When αz

12 = αz
21 =

αq
12

= αq
21

= 0, quagga mussels exclude zebra mussels in patch 1 (since rq,1 = 1.59 > rz,1 = 1.27)
while zebra mussels exclude quagga mussels in patch 2 (since rq,2 = 1.34 < rz,2 = 1.41). Both
species coexist in both patches if 0 < α < 0.065. Quagga mussels exclude zebra mussels in both
patches if α > 0.06 (since rq,1 + rq,2 > rz,1 + rz,2).

(4.7). If there is no dispersal (αz
12 = αz

21 = αq
12

= αq
21

= 0), calculation shows that, in patch 1

1, the net reproductive values of zebra and quagga mussels are Rz
0,1 = 1.75 and Rq

0,1 = 3.25, 2

respectively, and the intrinsic growth rates of zebra and quagga mussels are rz,1 = 1.27 and rq,1 = 3

1.59, respectively. Therefore, quagga mussels exclude zebra mussel in the patch 1 (Theorem 4

2). In patch 2, the net reproductive values of zebra and quagga mussels are Rz
0,2 = 2.29 5

and Rq
0,2 = 2.04, respectively, and the intrinsic growth rates of zebra and quagga mussels are 6

rz,2 = 1.41 and rq,2 = 1.34, respectively. Therefore, zebra mussels exclude quagga mussels in 7

patch 2 (Theorem 2). 8

To see how the population dispersal affects the competitive outcome, we choose two different 9

dispersal rates and we plot the solutions of the model (6.1) (Figure 4). From Figure 4, we see 10

that different dispersal rates lead to different competitive outcomes. When the dispersal rates 11

are low (top row of Figure 4), both species coexist in both patches according to (6.3) and (6.4), 12

although quagga mussels dominate in patch 1 and zebra mussels are more abundant in patch 13

2. In other words, both species co-occur and are co-dominant. This pattern of co-dominance 14

reflects different advantages of each species under different environmental conditions. However, 15

if the dispersal rates are high (bottom row of Figure 4), quagga mussels exclude zebra mussels in 16

both patches, hence quagga mussels exclude zebra mussels in the whole ecosystem, they cannot 17

coexist according to (6.2). This is because the growth rate of quagga mussels is much higher 18

than that of zebra mussels (rq,1 = 1.59 > rz,1 = 1.27) in patch 1, although the growth rate of 19

quagga mussels is slightly lower than that of zebra mussels (rq,2 = 1.34 < rz,2 = 1.41) in patch 20

2. Thus, when the dispersal rates are high, the two patches are strongly connected, quagga 21

mussels will ultimately exclude zebra mussels in the whole ecosystem. 22

We complete this section by making some mathematical conjectures as answers to the above- 23

mentioned questions. To do so, we choose the same parameters, except αz
12, α

z
21, α

q
12
, and αq

21
24

as those in Figure 4. We let αz
12 = αz

21 = αq
12

= αq
21

:= α and plot the bifurcation dynamics 25

of the two-patch dispersal model (6.1) with respect to α (Figure 5). Based on the numerical 26

results shown by Figure 5, we make the following conjectures: if the two patches are isolated 27

20



(αz
12 = αz

21 = αq
12

= αq
21

= 0), and quagga mussels exclude zebra mussels in patch 1 while zebra 1

mussels exclude quagga mussels in patch 2, then there exists a positive constant α ∈ (0, 1) such 2

that: 1) Both species coexist in both patches when 0 < α < α. 2) Zebra mussels exclude quagga 3

mussels in both patches if α > α and rz,1 + rz,2 > rq,1 + rq,2. 3) Quagga mussels exclude zebra 4

mussels in both patches if α > α and rq,1 + rq,2 > rz,1 + rz,2. 5

7 Discussion 6

In this paper, we developed a dynamic model that describes the competitive interactions 7

between zebra and quagga mussels. The stability analysis of the model yields the conditions 8

on net reproductive rates and intrinsic growth rates that lead to either extirpation of both 9

species or the dominance of one species coupled with the potential competitive exclusion of the 10

other. We then estimated the model parameters by connecting the model to experimental data. 11

The estimates of the dependence of the population survival rates on temperature and turbidity 12

result in temperature- and turbidity dependent net reproductive values and intrinsic growth 13

rates. Combining the theoretical results and numerical ones, we plotted environmental niches 14

in which both species become extirpated or one species excludes the other. As predicted by 15

“competitive exclusion principle”, our single-patch model in which two species compete for food 16

does not lead to coexistence. Extending the single-patch model to a two-patch dispersal model, 17

the numerical results indicate that both competitive exclusion and long-term coexistence may 18

occur, depending on dispersal rates. Moreover, when both species coexist in an ecosystem, they 19

may dominate at different areas [32, 39, 40], owing to their different sensitivities to environmental 20

conditions. 21

Based on the life cycle of the species consisting of a juveniles stage that disperses before 22

settling and an adult stage that reproduces annually, we developed a stage-structured one- 23

patch competition model. On the qualitative side, unlike an unstructured model in which 24

all individuals in a population are treated as identical (hence all individuals have the same 25

reproduction rate and survival rate), our stage-structured models assumed that only adults 26

reproduce and adults and juveniles have different survival rates. Also, we assumed that juveniles 27

and adults have distinct competitive abilities that are proportional to their shell length. On the 28

quantitative side, when we connected the model to data, we assumed that juveniles and adults 29

have the same survival rates because data are lacking. In reality, juveniles and adults may 30

have different sensitivities to temperature and turbidity; therefore, more data is needed to yield 31

more precise quantitative results. It is worth mentioning that having stage structure is clearly 32

crucial in the two-patch model, since only juveniles disperse, in this sense, our stage-structured 33

two-patch model is a natural extension of the stage-structured one-patch model. 34

In our competition model (2.1), we chose the same competition-induced survival term with 35

the same competition coefficient for different species and different stages; thus, the resulting 36

dynamics of the model is competitive exclusion, which is analogous to the classical continuous 37

two-dimensional Lotka-Volterra model [3] and to its discrete version studied in [10] for the 38

case where the nullclines do not intersect. It is possible to obtain different dynamics, such as 39

coexistence and bistability, if we choose different competition coefficients for different species. 40

Temperature and turbidity impose important constraints on the growth and abundance 41

of zebra and quagga mussels. Here we assume that reproduction rates and individual shell 42

lengths are constant. More data is needed to estimate the dependence of reproduction rates 43

and shell lengths on temperature and turbidity. In addition, we assume that temperature and 44

turbidity affect the population survival rates independently (for example, sjz(T, τ) = sjz(T )s
j
z(τ)). 45
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However, there is often a complex co-relationship between the two factors, where temperature 1

can modify the mussel’s response to turbidity, thereby changing its turbidity tolerance range, 2

and turbidity can similarly modify the effects of temperature (e.g., [23, 38]). Moreover, while 3

this study relates competitive interactions to temperature and turbidity, other factors (such as 4

oxygen, calcium, and food quality and quantity) may differentially affect the abundance and 5

distribution of dreissenid mussels [20, 23, 37]. 6

It should also be noted that the results of the effects of temperature and turbidity on com- 7

petitive exclusion are only applicable to habitats where all seasonal temperatures and turbidities 8

are constant or averaged, which would force the net reproductive values to be greater than 1 9

or less than 1, and the intrinsic growth rate of one species is greater than the intrinsic growth 10

rate of another species. However, we cannot make clear predictions on competition outcomes 11

in habitats where temperature fluctuates seasonally, or daily, forcing the net reproductive rates 12

greater than 1 in one period but less than 1 in another period. Yet, we could presume that a 13

habitat to be more unfavorable to a species when the seasonal fluctuations of a factor forces 14

over a long period of the year, and vice versa. It may be useful to incorporate the effects of 15

short-term and seasonal temperature fluctuations on (see [4, 5]). 16

Steps toward further model development include the following: 1) It is most likely that 17

we are able to prove that the local stabilities (see Section 3.2) are indeed global, by using a 18

similar approach as in [1, 2]. 2) Given that the two-patch dispersal model (6.1) is a system 19

that includes eight difference equations, the theoretical analysis of model (6.1) is challenging, so 20

we leave this for future mathematical development. 3) We also plan to extend the competition 21

model (2.1) to a spatially explicit benthic-drift model [19] for zebra and quagga mussels in 22

rivers, by including larval dispersal in the drift and juvenile and adult competition on the 23

benthos. We could conceivably use net reproductive rate theory for source-sink dynamics [25] to 24

understand the interactions between growth and dispersal, environmental conditions, and river 25

flow in determining upstream invasion success of zebra and quagga mussels. 26
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