i+ stonal Library
of Canada - 1)

Canadian Theses Service Service des thiees canadiennes

Otawe,
K1A Gi8

NOTICE

The quality of this microform is heavily dependent upon the
%:ality of the original thesis submitted for microfilming.

very effort has been made to ensure the highest quality of
reproduction possible.

i are missing, contact the university which granted
the gegree.

SOm:aFaoes may have indistinct prit especially i the
) typed with a poor typewrit
m un%?ggy?é':t us an inter?or pho(ocopy.“ nor

R ion in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-330 ¢.8000) ¢

AVIS

La Txalilé de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'l manc:e des pages, veuiliez communiquer avec
l’univers?l%qﬂacoﬂérélegmde.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont é1é dactylogra-
phiées A raide d'un ruban usé ou si luniversité nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est
soumise 2 la Loi ca nne sur le droit d’auteur, SRC
1970, c. C-30, et ses amendements subséquents.

The University of Alberta

Search Strategies for Conspiracy Numbers

by

Norbert L. Klingbeil

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Master of Science

Department of Computing Science

Edmonton, Alberta
Spring, 1989

Permission has been granted
to the National Library of
Canada to nmicrofila this
thesis and to 1lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a &té accordée

4 1la Bidliothique nationale

du Canada de nmicrofilmer

cette thise et de priter ou

:; vendre des exemplaires du
1m.

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;
ni la thidse ni de longs
extraits de celle-ci ne
doivent &tre imprimés ou
autrement reproduits sans son
autorisation écrite.

ISBN 0-315-52837-0

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Norbert L. Klingbeil
TITLE OF THIESIS: Search Strategies for Conspiracy Numbers
DEGREE FOR WHICH THIS THESIS WAS PRESENTLED: Master of Science

YEAR THIS DEGREE GRANTED: 1929

Permission is hereby granted to The University of Alherta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly or
scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or otherwise reproduced without the author’s written
permission.

(Signed) ..o I AT
Permaneunt Address:

10524-154 Avenue

Edmonton, Alberta

Canada T5X 5A9

Dated 21 December 1988

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the
Faculty of Graduate Studies and Research, for acceptance, a thesis entitled Search
Strategies for Conspiracy Numbers submitted by Norbert L. Klingbeil in par-

tial fulillment of the requirements for the degree of Master of Science.

Date VD¢ oo b PR A

ABSTRACT

McAllester's Conspiracy Numbers algorithm is an exciting, new minimax search
procedure that builds game trees to a variable depth without application-dependent
knowledge. The algorithm selectively expands nodes in the tree trying to narrow the
range of likely minimax values at the root of the search tree. The likelihood of the root
achieving a value is expressed as that value's conspiracy number: the minimum
number of leaf nodes required to conspire. by changing their values together, to cause
the root to change to that value.

The main issue involved in implementing this algorithm is a space-time trade-off.
Three implementation versions vere tesied that demonstrate this trade-off. These ver-
sions are distinguished by the number of conspiracy numbers each stores at nodes. It is
shown that storing conspiracy numbers at nodes significantly improves the algorithm's

performance.

Initial experience with using the algorithm in a chess program indicated several
problems with it. The main problem is that the algorithm places too much emphasis on
depth rather than breadth of search. Several variaticns of the algorithm are demon-
strated. cach adding an increasing degree of breadth to the search. Experiments
showed that the new algorithms are capable of solving up to 41 more chess positions

than MecAllister's original proposal.

v

Acknowledgements

I would like to thank my supervisor, Jonathan Schaefler, for his guidance,
encouragement. and constant prodding without which this thesis never would have
been completed. 1 would also like to thank my parents, Assar and Anni Klingbeil, for
their patience and support throughout this endeavor. And finally. special thanks to
Yobert FLuns, who co-suthored the three implementation versions of the Conspiracy
Numbers Algorithm. to Daniel Lanovaz, who proof-read and provided valuable feed-
back on parts of this thesis, and to the members of my examining committee, Dr. Wlo-
dee Dobosiewicz, Dr. Tony Marsland, and Dr. Ted Lewis, for their valuable time and

14 . i \
sunggestions.

Table of Contents

Chapter Page
Chapter 1: Introductionccoociiiiiiiiiiiiiiiiie e e 1
1.1, Seareh Trees .ooooeii i e ettt et et e e e 2
1.2. Search Algorithms ... 3
1.3. Thesis DeSCRIPUION .oooiiiiiiiiiii i e e 8
1.4, Thesis QU ime oo et et reeerr et et e a et e et e e aeae e eneaeas 8
Chapter 2: The Conspiracy Numbers Algorithm PP PORRPTN 10
2.1. An Overview of the Algorithin 10
2.2. Computing Conspiracy Numbers L 12
2.3. Computing the Range of Likely Root Values ... s 15
2.4. Terminating the Search ... 16
2.5. Strategies for Narrowing the Range of Likely Root Values. 16
2.6. Selecting a Leaf Node for EXpansion ..., 17
2.7. An Example e 20
D R, COMEMCTIIS oottt et e ettt e e eaeer s e e et s e mt e e ebe s bt ee e eaen e eansasrae e s aaienas 22
Chapter 3: Implementing Conspiracy Numbers PP 25
3.1. A Basic Implementation ..o e o eeeeeeirenaeenas 26
1.1, The Data SUFMCTUTES oo i e eere et e ree et e e reeeeene 26
3.1.2. Allowable Minimax Values PO PP PO 27
313, The ROWIIDCS oottt oo et et ete et eret e eeei e eeiri e e e e re e aeaeeans 28
3.1.4. Calling the Top Level Routine ... 32
3.2. A Storage Intensive lmplementation ... 32
3.2.1. The Data Structures ..., PP PPN 33
3.2.2. Maintaining the Conspiracy Numbers ... 36
3.3. A Compromise Implementationooooiiiiii it e 37
3.3.1. Which Conspiracy Numbers 10 StOFeoooooiiiiiiiii i 37
3.3.2. Maintaining the Copnspiracy Numbers PN 39
3.3.3. Updating the Conspiracy Numbers when Vmin or Vmax Change 40
3.3.4. Updating the Conspiracy Numbers after an Expansionccceee. 42
B4, CONEIUSIOM ettt e e e e e ettt s e et et e e be e erab e seaan e s an e rai e s bt saaassees 15
Chapter 4: Results for Random Trees ... i 47
4.1. Performance Resultsoooiiiiiiiiiiiiiiiieii i et et s e 47
4.2, General Results .oooov i et r s e e e 54
.3, COMOIUSION «eetiiin et eie et e e et et ettt e et e et tn s ants s b ean sttt sanerne et arassasanns 56
Chapter 5: Incorporating Conspiracy Numbers in a Chess Program 58
5.1. Implementing Conspiracy Numbers in Tactical Chesscccccoeiiiiin, 59
5.1.1. Integrating Chess Knowledge into the Algorithmocccciiiiiinii 59
5.1.2. Basic Control Mechanismc.cooiivvimiiiiiiiiiiiiiiiiiiin e 61

vi

5.1.3. PrODI OIS .oooniieiiiieintere it ieieeiieeitetratererarttsraarssnoctrstiersastsrabisantastantanseirsans 63

5.1.4. ADEDDancementooooviiiiiiiiiiiiiii e e 65
5.2. Experimenting with Conspiracy Numbers ip Tactical Chessc... 65
5.2.1. The PROIamooooviiiiiiiiiiei ittt e ettt e s s ae s ee e s snane 66
5.2.2. The Test DAA .oooiviniiiiiiiiiiie e e e e eecs e rei s eees b e are s teeseraaasenannes 68
5.2.3. Initial Results .o oo 08
5.2.4. Search Behavior et eeeeteeueeeeestabeaeeetbae e tah et aanas 72
5.2.5. Adjusting Parameters ...t =
5.2.6. Summary of Results ..)
Chapter 6: Improving the Search Strategy ... 76
6.1. Alternative Rules for Choosing a Branch ... TR
6.1.1. Rules Requiring No Additional Computed Information 79
6.1.2. Rules Requiring Additional Computed Information ...]2
6.2. An Alternative Definition to CoOnvergenceot R7
6.3. Considering Conspiracy Set for Alternative Values ... 90
6.4. Ordering the New Leal Nodes ... 91
0.0, B esUlIS o et 92
0.0, COMCIUSION oo et e eeet rtee i e e e e e et et 99
Chapter 7: Conclusions and Further Work ... 100
Tl enU S e 100
T2 Further WPk o o e e 101
B O P eI ON e e e e e e e e 103
Appendix 1: The Basic Implementation Version e 101
Appendix 2: The Storage Intensive lmplementation Version ... 100
Appendix 3: The Compromise Implementation Version ... 1114

vii

List of Figures

Figure Page
1.1 A Generic Search Algorithm. ... 4
2.1 Outline of Conspiracy Numbers Algorithm.coooiiiiiiiii 11
2.2 Ascarchtree. ... PPN 12
2.3 CODSPIFAIOPS. ..oooviiiiiiniiieiiee e e ere e ere ettt et e eee it bara e aaaas 13
2.1 Conspiracy Numbers for the searchtree. ... 14
2.5 ChLOOSIE & SIPATEEN . oot ittt i et e et e e 17
2.6 I'rocedures for finding leaf nodes. ... 19
2.7 The imtwal tree. T TSP SO PPPPPPP 20
2R The tree after ONe XPANSION. oo e e .20
2.9 The tree aflter 1Wo eXPADSIONS . i e v 2]
2.10 The tree after three exXpansions. ... 2.
2.11 Alternative rule for choosing a sStPaAtegy. ..o it e 23
3.1 A ~earch tree in the Basic Implementation. ... 27
3.2 The TopJ.evel Routine 29
3.3 A scarch tree in the Storage Intensive Implementation. ..o, 35
1.1 Initial Performauce COMPATISODS. oot e N
1.2 Profiles of the Implementations. ...l 48
1.3 Performances for different Pange S1ZES. oo 50
1.1 Performances for different branching factors. ..o 51
1.5 Performances for different average depths. 52
1.6 Storage Requirements of the three versions. ... 51
4.7 Number of expansions until total convergence occurs. ... 55
5.1 Overview of our chess program. e T e T 59
5.2 Number of problems solved. ... 6R
5.3 Conspiracy thresholds of solved problems. ... 69
5.4 Final conspiracy thresholds of unsolved problems. ... 70
5.5 Storage requirements for search trees. .. 71
5.6 Distribution of noddes. e 72
5.7 Results for different range SIZES. oo e P
5.8 Resulis for different depth limits. ..o T
6.1 Results for different ordering methods. ... 02
6.2 Results for the round robin version.ocoooiiiiiiiiiiiiiiii e i
6.3 Initial results for the likelihood version.coooiiiii 914
6.4 Results for variants of the likelihood version.c.cnn 90
6.5 Results for the Best Move Cutoff enbancement. ..., 97
6.6 Results for the Minimum Windows enhancement. ... 99

viii

Chapter 1

Introduction

We are interested in two-player adversary games like chess. More specifically, we
are interested in programs that play such types of games. Games appear to be a good
domain in which to explore machine intelligence because they provide a structured
task in which success or failure is easily measured. To further limit the type of games
we are interested in. assume that each player must function with complete information
about what may hzppen (i.e. there is no element of "chance” in the game). and that
the search space is large enough so that a player can only examine a small portion of it

before he hias to make a move.

This 1ype of game-playing program has one basic goal: to choose the best move to

make during its turn. To do this, it perforins a sequence of three actions:
1) generate all the legal moves,

2) evaluiate each move.

3) choose the best move.

The most eritical .nd difficult portion of the nrogram is the evaluation of each move.
In its simplest form. the program can examine the game states resulting from each
move in order to evaluate them. However. a program that looks at a series of addi-
tional moves to predict a likely outcome will be able to play a much better game.
Therefore. many programs that play gnmes examine as many future states as time per-

mits in order to better evaluate its available moves.

several algorithms. such as Alpha-Beta [KnM75], were developed for systemati-
cally exploring future game states. These algorithms are often referred to as scarch
algorithms. They are typically application independent and form the backbone of
many game-playing programs. This thesis examines a new search algorithm called

Conspiracy Numbers [McA88].

1.1. Search Trees

A search algorithm starts with an initial state and builds a search tree. Each
node in the search tree corresponds to a game state. The root node corresponds to the
initial state. Each node will contain several pieces of information including the move
that must be applied to its parent .a order to reach it and a raluc representing an

evaluation of its corresponding state.

The levels in a search tree ar~ pumbered in ascending order beginning with zcro.
The root node is the only node that appears on level zero. Nodes on the same level all
require the same number of moves to be made (starting from the root node) in order to

reach them.

Nodes can be classified according to whose turn it is. For example, the root node
corresponds to a game state where it is the program’s turn to make a move, and its
sons correspond to states where it is the opponent’s turn to make a move. In fact, all
nodes on even numbered levels represent states where it is the program’s turn and all

nodes on odd numbered levels represent states where it is the opponent’s turn.

A slatic evaluator function evaluates individual game states, using whatever
application-dependent information it bas, by estimating the likelihood of that state
eventually leading to a win. The function return values are typically from a range
[{. u]. where the values from the upper end of the range (u) indicate that the state
favors the program and the values from the lower end (!) indicate that the state favors

the opponent.

The static evaluation function is only applied at leaf nodes in the search tree.
States that correspond to the various leaf nodes represent possible “target” states that
a player may try to "travel” (i.c. move) towards or try to avoid. States that correspond
to the various interior nodes represent states that will only be passed through. At inte-

rior nodes, the program is pot interested in the static evaluation of the states they

represent, but rather in their eventual outcomes (i.e. the most likely leal state that
will be reached). The value assigned to an interior node usually indicates the most

li! cly outcome and is therefore a function of the values of the leaf nodes beneath it.

For the search algorithm that we will be studying, the node values that arc stored
at interior nodes are called minimez values. Computing the minimax values is simple.
Recall that game states are evaluated from the program’s perspective. At nodes where
it is the program’s turn to move, the mave corresponding to the son with the max-
imum value is chosen. A* nodes where it is the opponent’s turn to move, the move
corresponding to the son with the minimum value is choxen.! In other words. each
player chooses the move that will lead to a game stute that is most favorable to him-
«elf. The minimax value is simply the value of the corresponding chosen move. In this
way. the minimax value of an interior node is identical to the value of the most likely

reachable leaf state.

1.2. Search Algorithms

Figure 1.1 provides a description of a generic search algorithm. Its main task is to
grow (or extend) a search tree. Assume here that a search tree was initialized I cfore-
hand (i.e. it already exists). The algorithm consists of one main loop that first checks
for a completed search. If the search is not complete, a leaf node will be selected for
expansion by the function select_node(). In electing such a node, the algorithm forms
a scarch path consisting of an ordered set of nodes from the root node to the wode
selected for expansion. When a node is placed in this search patl, it is said to be in the
process of being ezplored. In expanding a leaf node, the function ezpand_node() gen-
erates the set of moves that will be considered from the state coiresponding to this
pode. It then creates a set of new nodes, assigns the moves to them, and evaluates

thcir corresponding states. Finally, the new values have to be propagated up the

1 These nodes are often referred to as a “minimizing node” or "maximizing node”.

search path by the function beckup_velues(). That is, the node values at nodes along
the search path must be recomputed in order to reflect the new information provided
by these mew nodes. If the search is finished, a move is selected by the function
best_move(). Typically, this move corresponds to the node on level 1 with the max-
imum value. This move is then returned by the procedure to the game-playing pro-

gram.

generic_search()
while not done() do {
n = select_node();
expand_node(n);
backup_values();

return{ best_move());

}

Figure 1.1 A Generic Search Algorithm.

We will now examine some actual algorithms. The focus will mainly be on the ter-
mination decision and the node selection decision because they provide most of the dis-

tinction between the algorithms.

The most basic of the algorithms is the mix ‘maz scarch algorithm. It grows a
search tree in a depth-first manner to a preselected depth and computes minimax
values for all interior nodes. The search is terminated when all possible nodes up to the
preselected depth have been generated. If the average branching factor for a search
tree is w, the computing time of this algorithm is O(w?) where d is the depth of the
search. Therefore, it is impossible to grow such a tree to an arbitrary depth and a rea-
sonable depth limit must always be applied. However, a program that can search
d + 1 moves (called "ply” in game-playing literature) deep should play better than a

program that only searches d moves deep.2 Hence techniques for increasing the depth

2 Except in pathological trees. See [Nau79).

]
achievable should be sought.

The Alpha-Beta search algorithm is an enhanced version of the minimax search
algorithm. Since the minimax search procedure is deptb-first, its efficiency can be
improved by using branch-and-bound techniques. In the Alpha-Beta search procedure,
exploration of a branch is abandoned early if it is proven that the move it represents is
worse than a previously explored move. This results in a significant saving in search

effort: in a best case scenario. the computing time of Alpha-Beta is O(w?) [KuM75}.

There are two problems with the Alpha-Beta algorithm. The first is that Alpha-
Beta wastes a considerable amount of time exploring subtrees that have only a small
chance of success, but must be considered to be certain Alpha-Beta returns the correct
result. The sccond problem is that Alpha-Beta cannot follow promising lines of play
because they are cut off whenever the depth limit is reached. However, a new aligo-

rithm for searching minimax trees elegantly solves both of these problems.

McAllsster's Conspiracy Numbers algorithm grows a search tree in such a way
that leads to a reasonable confidence in the accuracy of the root's minimax value. By
the term "reasonable confidence™ we mean that the root’s value has become stable and
that it would not change much if the tree were expanded further. By selectively
expanding only certain parts of the search tree, this algorithm grows trees that are

shaped in non-uniform ways.

Conspiracy numbers provide a measure of the difficulty of changing a node’s
value to some other value. Specifically. they measure the minimum number of leaf
nodes that must change their value appropriately (by being searched deeper) to cause
this node to change to that value. Conspiracy numbers at the root node, combined
with a ihreshold value, are used to compute a range of likely root values. This range is
denoted Sy |Vmin, Vmaz] where Vmin is the lower bound value and Vma: is the

upper bourd value. Values outside this range are considered unlikely because their

corresponding conspiracy numbers were greater than the threshold, whereas values
inside this range are considered likely root values because their conspiracy numbers
were less than the threshold. This range includes the current root value and represents

the "accuracy” of the root value.

The algorithm extends the search tree in such a way that quickly narrow: this
range. By cxploring those leaf nodes that must "conspire” to change the root node to a
likely root value3 the algorithm either succeeds in changing the root’s value or
succeeds in increasing that va.lue's corresponding conspiracy number beyond the thres-
bold. This results in greater exploration of branches that are more likely to affect the
root value, especially along interesting lines of play. The algorithm terminates when
the range becomes small enough (i.e. when the root value is judged to be accurate
cnough).

The amount of confidence in the final root value is primarily a function of the
threshold. Assume that the search was terminated when the curreut root vaiue was the
only member of the range. A higher threshold will mean greater confidence in that

value because of the increased effort required to change it to another value.

Berliner's B* Search Algorithm [Ber79,Pal82] also selectively expands nodes in
order to grow a search tree. However, it is different from the Conspiracy Numbers
algorithm. The biggest difference is that in B* the value associated with each node a
range whereas in Conspiracy Numbers it is a single number. In B* the static evaluation
function at leaf nodes returns two values, a pessimistic value and an optimistic value,
which are propagated up the tree in order to compute interior node values. However,
the B* algorithm relies on the true value of each node always being within the given

range.

3 Usually one of the endpoint values is chosen (i.e. Vmin or Vmax).
4 In most applications one would like to continue the search until the current root value is the
only member of this range.

The object of the B* search algorithm is to find a move at the root that is proven
better than all others. In other words, the algorithm searches until it has found a move

shose pessimistic value is at least as good as all other moves’ optimistic value.

The E* algorithm relies on two strategies to "separate” out the best move. The
ProveBest strategy tries to raise the pessimistic value of the best move above the
optimistic values of the other moves by further exploring the sub-tree corresponding to
the best move. The DiaproveRcsl strategy tries to lower the optimistic value of one of
the other moves to below the pessimistic value of the best move by further exploring
the sub-tree corresponding to one of these other moves. The decision regarding which
strategy to apply followed by the decision on which leaf nodes to expand is made solely
on the basis of probabilities. These probabilities measure the likelihood of changing
the bounds on the intervals and hence are a function of the amount of change desired.
the probability distribution over the interval, and the size of the interval. Basically the
algorithm wants to "separate” out a best move at the root by performing the least
amount of work and therefore chooses to perform those strategies and to expand those

leafl nodes that are most likely to succeed.

A deficiency of the B* algorithm is that it relies on the true value of each node
always being within the given range, putting tremendous onus on the accuracy of the
static evaluation function. If the function fails to compute an encompassing range. the
algorithm may be unsuccessful. In the Conspiracy Numbers algorithm, ranges can also
be computed at each node using conspiracy pumbers and thresholds. '+ fact, one can
view the algorithm as using these ranges, but in a different way than B* does. How-
ever, a major difference between these two algorithms is on what they base their
ranges on. In Conspiracy Numbers, the range at a leaf node is completely open (i.e.
[-e®,+x]). It only closes when the leal node is explored. In other words, ranges in
Conspiracy Numbers are based completely on the search tree grown below a node. In

B*, ranges are based on the limited knowledge inside an evaluation function.

1.3. Thesis Description
As stated earlier, this thesis examines the Conspiracy Numbers algoTithm. Initial
work on this algorithm started shortly after the technical report descr.bing jt became
available. At that time, no known implementation of the algorithm had existed. There-
fore. considerable effort was initially put into developing an efficient implemeptation of
the algorithm and testing it in an application.
Specifically. this is a practical study of the Conspiracy Numbers algorjtpm. The
objectives of this thesis are to:
® cxamine implementation issues of the algorithm,
® examine issues of implementing it in a practical domain, in this case the game of
chess,
o understand its behavior in searching chess trees as well as randomly genpr::ted
trees,

® und to test modifications to the algorithm in chess.

1.4. Thesis Outline

The Conspiracy Numbers algorithm is described in Chapter 2. This degcription is
based on McAllester's original technical report [McA85]. A later article oy the algo-
rithm by McAllester [McA88] differs slightly in its use of the conspiracy threshold for
computing Vmin and Vmar.

Chapter 3 examines the implementation of the algorithm. The puin iscue
involved in implementing it is the space-time trade-off. To investigate thiy trade-off.
three implementation versions are presented.

Chapter 4 compares the performances of the three implementation yersions on

randomly generated trees. It also examines the factors that affect their Performances

and studies the algorithm's behavior in searching randomly generated trees,

Chapter 5 describes how the algorithm was adapted for implementation in a pro-
gram that solves tactical chess problems. Experiments compare the performance of this
program to the performance of a similar program that uses the Alpha-Beta search

algorithm.

Chapter 6 describes several performance enhancing modifications to the algo-
ritbm. These modifications are tested in the above chess program and the experiment

results are reported.

Finally. chapter 7 presents the conclusions and further work.

Chapter 2

The Conspiracy Numbers Algorithm

This chapter presents the Conspiracy Numbers algorithm. The first section is an
overview of the algorithm; it identifies the major aspects of the algorithm. Subsequent
sections explain in more detail the major parts of the algorithm. An example of how a
tree is grown using this algorithm along with some comments about the algorithm con-

clude the chapter.

2.1. An Overview of the Algorithm

The new tree-growth procedure presented here is based on a measure of the accu-
racy of the minimax value of a search tree. A root value is said to be accurate if
further scarch is unlikely to change that value. Search trees are grown so that the

minimax root values become accurate.

Figure 2.1 provides an outline of the Conspiracy Numbers algorithm. Assume that
the search tree has been initialized beforehand, so that it consists of at least a root
node. The algorithm takes two parameters: a range parameter & which states the accu-
racy to which the root value is to be determined, and a conspiracy threshold C'T which
states the degree of confidence we would bike in our answer. The answer this algorithm

returns is the root value (Vroot).

A range of likely root values, denoted by [Vmin, Vmaal, is used to represent the
accuracy of the root value. Here Vmin denotes a lower bound on the root value and
V'mar denotes an upper bound. Conspiracy numbers computed at the root node, com-

bined with the conspi: ucy threshold CT, are used to determine Vmin and Vmaz.

The algorithm consists of a main loop that first checks whether the search has

been completed. The search is terminated when the accuracy of the root value is such

that Vmaz — Vmin < A.

10

11

CN_Search(A, CT)

{
compute conspiracy numbers at root node
compute Vmin, Vmax
vhile (Vmax - Vmin > 4) do (
choose to rule out Vmax or Vmin
select appropriate leaf
expand leaf node
compute minimax values along search path
compute conspiracy numbers at root node
compute Vmin, Vmax
}
return(Vroot)
}

Figure 2.1 Outline of Conspiracy Numbers Algorithm.

The algorithm extends the search tree in such a way so that it quickly narrows
the range of likely root values. To do this, the algorithm relies on two strategies:
rule_out_Vmin and rule_out_Vmaz. Having selected a strategy. the algorithm then

selects an appropriate leaf node to expand.

After a leaf node is expanded, the minimax values along the search path are
recomputed. And finally, in preparation for the next iteration, V'min and Vmaz are

also recomputed.

12

2.2. Computing Conspiracy Numbers

(>
/N

Conspiracy numbers provide a measure of the difficulty to change the current

Figure 2.2 A search tree.

minimax value of a node. In Figure 2.2, assuming the root is a maximum node, how
many leaf nodes in the tree have to change their value, as a result of being searched
deeper. to cause the value at the root (Vroot) to become 2? The simplest way would be
if pode J's value changed to 2. Another way would be for both nodes F and G to
change their values appropriatcly. Nodes F and G form a set of conspirators for
increasing V'rool to 2; both have to conspire to achieve this result. Node J also form<
a set of conspirators for increasing Vroof to 2; in this case the minimal set. The
minimum number of leaf nodes that must conspire to change Vroot to a specific value
is called the conspiracy number (CN) for that value. Figure 2.3 shows the conspiracy
pumbers for node A, along with the minimal set of conspirators, for several possible

node values,

13

Value | CN Nodes to Change
-3 2 (E and (F or G))
-2 2 (E and (F or G))
-1 2 (E and (F or G))
0 1 (E or J)
1 0
2 1 (J or K)
3 2 (E and (J or K)) or (F and G

Figure 2.3 Conspirators.

It turns out that there are simple recursive relations for calculatizg the con-
spiracy numbers of a node from the conspiracy numbers of its descendant- Iu what
follows. let m denote the minimax value of a node and v denote the value we would

like to change m to.

At a leaf node. changing m to any other value requires a conspiracy of only that
node itself. and hence has a conspiracy number of 1. If we do not want to change the
node’s valve, then no conspiracy is required and the conspiracy number is 0. If the leaf
node is also a terminal node.® then there is no way to change its value and a con-

spiracy number of ® is assigned. Hence, the conspiracy numbers for a leaf node are:

0 if v=m
CN(v)= {1 if ¢#m
o if terminal node

At a maximizing interior node. to increase the value to v requires only one son to
change its value to v. If the conspiracy number for each son has already been calcu-
lated, then the minimum number of conspirators required to increase the node to v,
1CN(v), is just the minimum number of conspirators to increase one of the sons to v.

This yields the following relation:

oN 0 for ell vsEm
tCN(v) = 1 MIN tCN(v)for all v>m

all sons 3

5 A terminal node represents the end of a game and therefore cannot have any successors.

14

To decrease the node's value to v, $CN(v), requires all sons whose value is greater than
¢ to decrease their value to v. Given the minimal set of conspirators for decreasing
eac, son to v. all members of each of these sets must conspire together to decrease the

pode's value to v. Therefore:

' 0 for all v2zm
ICN(v) = S CN(v)for all v<m

all sone +

For a minimizing interior node, the following dual relations apply:

(

CN(v) = for all v<Sm
1CN) = 1§ 1ON(v)for all v>m

kall sons s
N 0 for all v2m
MOV = Y AN eN(e)for all v<m
all sons 1

Figure 2.4 shows the conspiracy numbers for node values in the range [-3. 3] at
each node. For convenience. conspiracy numbers for increcasing and decreasing the
pode’s value appear merged into one vector. This can be done because LCN(v) is zero
for those node values where tCN(v) is non-zero and tCN(v) is zero for those node
values where 3$CN(r) is non-zero. It is worth noting that if v <w then
tC'N(r) S 1CN(w) and $CN(w) < $CN(r). Also, given a set of conspirators for chang-
ing the value of a node to v, (v # m), this same set can conspire to change the node to

any value between m and v.

15

(]
GO O 0O G
[SEX-T I LSt M)
1

WO Dot
(P Y-L

G DO
e) e s e e

S =) -
—— e

1
PO el s)
[
WDt

—litltD

T

[
[

S e Dt
—— S

Figure 2.4 Conspiracy Numbers for the search tree.
2.3. Computing the Range of Likely Root Values

Conspiracy numbers at the root node, combined with a conspiracy threshold
(CT). are used to compute a range of likely root values. A conspiracy threshold
specifies the minimum pumber of conspirators required before we consider it unlikely a
node can take on that value. The range of likely root values is denoted by
[Vmin. Vmaz] where Vmin is the lower bound value, Vmaz is the upper bound value,
and Vroof is a member of this range. Values outside this range are considered unlikely
because their corresponding conspiracy numbers are greater than or equal to CT.
whereas values inside this range are considered likely root values because their con-

spiracy numbers are less than CT.

T» compute a value for V'maz, the algorithm must find a node value v such that:

tCN(v) < CT and tCN(v+1) 2 CT.

Similarly, to compute a value for Vmin, the algorithm must find a node value v such

that:

16

ICN(v) < CT and ¢CN(v=1) 2 CT.
It is important to potice that when CT=1, Vmaz = Vroot = Vmin (i.e. the
range of likely root values consists of exactly one valu- which is Vroot). That is
because the only value for which a conspiracy number is 0 is the current node value. It

is thercfore only practical to consider conspiracy thresholds of at least 2.

2.4. Terminating the Search

The algorithm continues to search until it has narrowed the range of likely root
values to the point where Vmar — Vmin < & In practice. we usually continue
searching until all but one root value has been ruled out (i.c. & = 0): at this point.
further search i< unlikely to change the root’s minimax value. When A = 0 and the
algorithm’s condition for terminating the search evaluates to true, we often say that

the algorithin has converged on a single root value.

Of course, this does not guarantee the root's minimax value to be correct, but the
confidence in it can be measured by the conspiracy threshold: the higher the threshold.
the greater the confidence in the root's minimax value. But one side effect of a higher
threshold is that the amount of work required to narrow the range of likely values is

lirger because the initial range will be wider.

2.5. Strategies for Narrowing the Range of Likely Root Values.

Given a range of likely root values, how do we rule out all but one of them? The
obvious way is to rule them out one by one, starting with either Vmaz or Vmin. To
rule out Vmin or Vmaz. the algorithm tries to increase the corresponding conspiracy
pumber to at least CT. This is done by "proving” that a member ot the minin 1! con-
spiracy set will not conspire with the other members of the set to help change the

value of the root node to either Vmin or Vmaez.

During each step of the tree growth procedure, the algorithm must choose to

17

cither rule_out_Vmaz or rule_out_Vmin. Faced with these two alternatives, it chooses
to attempt to rule out the value that is furthest from Vroot. If both are equidistant
from the root value, it then arbitrarily chooses to rule_out_Vmin. Figure 2.5 summar-

izes the above decision.

if (Vmax - Vroot) > (Vroot - Vmin)
rule_out_Vmax

else
rule_out_Vmin

Figure 2.5 Choosing a strategy.

2.6. Selecting a Leaf Node for Expansion

Having made a decision to rule_out_Vmaz. for example, a leal node from the
minimal set of conspirators must be found to search one ply decper (or crpanded). To

find this node, the algorithmn descends from the root using the following procedure:
a) at a maximizing node

Only one successor node must increase its value to Vmaz for the root node to do
likewise. The most likely branch is the one requiricg the least number of conspira-
tors to increase it to Vmaz. After computing ('N(Vmaz) of each successor,
choose the successor node requiring the minimum conspirators. If more than one

branch has the minimum, arbitrarily choose the left-most one.
b) at a minimizing node

Here there may be many descendant nodes that have to increase their value to
ipcrease this node to Vmaz. Each such branch contains conspirators which
together form the set of conspirators to increase this node to Vmaz. Agasin the
algorithm can choose to traverse any of the appropriate branches and we arbi-

trarily choose to take the left-most one.

18

Having reached a leaf node, that node is expanded (i.e. searched one ply deeper). Since
each des ~endant may yield a favorable or unfavorable assessment, the descendants are
ordered according to the results of their evaluation. By putting the more favorable
descendants first, this increases the chances that the left-most descendant is the best,
justifying the above choices. The minimax value and conspiracy numbers are passed
back up the tree, resulting in new numbers along the path from the root to the leaf

node.

\What is being accomplished by expanding this node? If we are successful at
increasing the value of this node to Vmar, then the number of conspirators in this set
has been decreased by one and therefore other members of the set can be expanded to
see if they will conspire successfully. If the value is less than Vmaz and the expanded
node is minimizing. then we may have been successful at increasing the number of con-
spirators at the root (i.e. increased the minimal set of conspirators). The number of
conspirators may have reached C'T. resulting in a narrowing of the range of likely
values at the root. At a maximizing expanded node with a value less than Vmar.

nothing has been accomplished towards ruling out V'mar.

A dual strategy exists for ruling out Vmin. This tree growth procedure was
McAllester's original proposal. Figure 2.6 illustrates the procedures for finding a leaf
node when ruling out Vmin and when ruling out Vmaz. The procedures, called

rule_oui_Vmin and rule_out_Vmaz, find and return one leaf node for expansion.

19

rule_out_Vmax(Vmaz)
{
current_node = root_node
add root_node to search path
node_type = MAX
while (current_node is not a leaf node) do {
1f (node_type = MAX) {
compute CN(Vmaz) for each son
determine left-most son with minimum such value
current_node = this son
add current_node to search path
node_type = MIN
} else {
determine left-most son where ('N(Vmaz) >0
current_node = th = son
add current_node to search path
node_type = MAX
}
}
return(current_node)

}

rule_out_vmin(Vmm)
{
current_node = root_node
add root_node to search path
node_type = MAX
while (current_node is not a leaf node) do {
11 (node_type = MAX) {
determine left-most son where C'N(Vmin) >0
current_node = this son
add current_node to search path
node_type = MIN
} else {
compute C'N(Vmin) for each son
determine left-most son with minimum such value
current_node = this son
add current_node to search path
node_type = MAX
}
}
return(current_node ;

Figure 2.6 Procedures for finding leaf nodes.

20

2.7. An Example

For this simple example, let the conspiracy threshold CT be 2 and let the range
parameter A be 0. Also assume a maximum legal pode value of 3 and a minimum legal
pode value of -3. For convenience though, all nodes in this example will be assigned a

value of 0. Figure 2.7 illustrates the initial tree which consists of only the root node.

W= O™ OW
o G bt e

Figure 2.7 The initial trec.

The algorithm begins by computing Vmin and Vmaz. Since there is only one node
in the tree (i.c. a leaf node). the conspiracy number for each legal node value other
than zero is 1. Hence Vmin is -3 and Vmaz is 3. Since the algorithm has not converged
on a single root value yet, it must continue expanding the tree. It chooses to rule out
Vmin. even though both Vmin and Vmaz are equidistant from the current root value.
The routine rule_out_\'min obviously chooses node A for expansion. Searching 4 1-ply
deeper yiclds 2 new states (B. (). each of which are given a static evaluation score of 0.

The resulting tree after node A is expanded is depicted in figure 2.8.

21

W~ O 0D
st et O et bt s

PR = O e W
— st D et s e

Figure 2.8 The tree after one expansion

The algorithm now recomputes Vmin and Vmaz, which become 0 and 3 respec-
tively. This time it chooses to rule out Vmaz. The routine rule_out_Vmax starts at
pode 4. and since this node is already expanded. it must choose to descend down to
one of its sons. Since the conspiracy number for Vmaz is 1 at both sons, it arbitrarily
rhooses to descend down to node B (i.e. the left most son). Since node B is a leaf node,
rule_out_Vmax returns it. Node B is then expanded. giving 2 new nodes D and E.

The resulting search tree is depicted in figure 2.9.

32

23

12

11
3 21 23
-11 =11
00 00
12 11
22 31
2 31

t1t
W = O
——— S —
WO DD W
—— 2 ot ot

Figure 2.9 The tree after two expansions.

The algorithm again recomputes Vmin and Vmaz, which remain 0 and 3 respec-

22

tively. Since Vmaz is further from Vroot than Vmin is, the algorithm chooses to rule
out Vmax. The routine rule_out_Vmax again starts at node A and must again decide
which son to descend to. This time the conspiracy numbers for Vmaz at nodes B and
C' are 2 and 1 respectively. Therefore rule_out_Vmax chooses to descend to node C,
and since node C is a leaf node, rule_out_Vmax returns it. Node C is finally expanded.

giving 2 new nodes F and G. The resulting search tree is depicted in figure 2.10.

D= Ot 3G
L1 S

Lt

[RY ST YTy
P20 e e o

[~ ST Y= Py LY XY
RO

WO+t Qe £ D0
ottt) . et et

R C et 0
st et e

POty
ot s et D) et et st
WO Db
et ot D) s ea et

Figure 2.10 The tree after three expansions.

The algorithm again recomputes Vmin and Vmaz, which now become both 0.
This time. the termination condition is true, the algorithm has converged on a single
root value of 0. and the search is stopped. Note that if a minimax algorithm with a

depth limit of 2 would have been used here, the same tree would have resulted.

2.8. Comments

A few comments about the Conspiracy Numbers algorithm are in order now.
First. conspiracy numbers are not probabilities nor should they be thought of as
representing probabilities. This may have been confusing because of the terminology
used to describe the algorithm. A conspiracy number is simply a measure of the
difficulty to change the current minimax value of a node to another value. To compute

the probability of this occurring, one would have to consider all the different

23

conspiracy sets for changing the current minimax value of the node to this other value

along with the probability distributions at the leafl nodes.

Sccondly, the algorithm seems to assume that all leaf nodes within a conspiracy
set have an equal chance of changing their value to the desired value. In other words,
when the algorithm computes conspiracy numbers, it does not take into account that
some leal nodes (i.e. conspirators) are highly unlikely to change their value from, for
example, an extremely low value to an extremely high value. Conspiracy numbers can
better reflect the difficulty to change the current minimax value of a node if conspiracy

numbers at leaf nodes better reflect the difficulty of changing their values.

In deciding which strategy to pursue (i.e. rule_put_Vmax or rule_put_Vmin),
there is no real good reason why the algorithm chooses to rule out the value furthest
from Vroof: it just seems to be a good heuristic. A better rule may be to rule out the
value that has the highest conspiracy number (see figure 2.11). This way the algorithm
alwayvs chooses the value that is easiest to rule out. However, when the algorithm is to
«earch until it bas ruled out all but one likely root value, it probably does not matter

which rule for choosing a strategy we use.

if tCN(Vmaz) > ¢CN(Vmin)
rule_put_Vmax

else
rule_out_Vmin

Figure 2.11 Alternative rule for choosing u strategy.

Finally. it should be apparent that this is a depth-first algorithm that does not
use a depth limit. When the algorithm descends the tree in search of a leaf node to
expand and bas a choice as to which son to descend to, it always chooses the left most
one. For the algorithm to function efficiently, it requires that the more favorable sons
appear first. But even then there may be a considerable amount of wasted effort. For

example. the algorithm may spend a considerable amount of time to find out that the

24

first two sons do mot change their values to Vmaz, whereas the third son achieves this

value much quicker. That is, more breadth in the algorithm may be beneficial in some

circumstances.

Chapter 3

Implementing Conspiracy Numbers

At the heart of the Conspiracy Numbers algorithm are values we call conspiracy
pumbers. As we saw in Chapter 2, these numbers are used in two aspects of the algo-
rithm: traversing the search tree to find a leaf node to expand, and computing values

for Vmar and Vmin.

To do either of these tasks, we must compute conspiracy pumbers for different
node values at many nodes in the tree. But when the tree becomes large, computing
them at a node near the top of the tree (eg. the root node) may become an expensive
operation. This is true because the conspiracy number at a node is a function of the
conspiracy numbers at each son which, in turn, are a function of conspiracy numbers
of their sons. and so on. In other words, the entire tree must be traversed in order to

compute one such value at the root.

Traversing the entire tree to compute a conspiracy number is Decessary when
pone are stored at any nodes. It is however possible to store conspiracy numbers at
cach node and thus significantly reduce the time required to recompute them. One
such scheme would require that we store a conspiracy numbers for each legal node

value at each node. The problem then becomes one of maintaining them efficiently.

The main issue involved in implementing this algorithm is the space-time trade-
off. If no conspiracy numbers are stored at the nodes, the amount of memory required
to store the search tree is minimized. Assuming that a major factor affecting the per-
formance of the algorithm is the time it takes to compute these pumbers, it is not ye
obvious whether storing them at all nodes will have a positive impact on its perfes

mance because they must be continuously updated as the search tree grows.

To nvestigate this tradeoff, three implementation versions are presented in thi

chapter. The first version is called a Basic Implementation; it is probably the simplest

25

26

because it does not store any conspiracy numbers at the nodes. The second version is
called a Storage Intensive Implementation; it saves conspiracy numbers for all possible
node values at each node. The third version is called a Compromise lmplementation;
it stores conspiracy numbers for some important node values at all nodes. Experimen-

tal results involving these implementations will be included in the next chapter.

3.1. A Basic Implementation

The primary motivation for this implementation version is the concern for space.
Since search trees for some games (such as chess) tend to get very large. minimizing
the memory requirements can be important. However, another reason for implement-
ing this version first is because it is the simplest and provides a basis for the other

implementations to build and improve on.

A pseudo-code description of this version appears in Appendix 1. It is written

using C-like programming constructs.

3.1.1. The Data Structures

There are two major data structures needed by this algorithm: one representing a
node, and another representing a path in the search tree from the root to a leafl node.
The minimal data requirements for a node are its mimimax value and a pointer to its

sons. The structure of our node is as follows:

struct Node {
short int value;
short int numSons;
struct Node *sons;

}

In this structure, the variable sons is a pointer to the first element of an array of
Nodes. and the size of this array is specified in the variable numSons. This allows us to
create arrays of various sizes, and permits us to store a variable number of son nodes

efficiently in memory. Figure 3.1 provides an illustration of a simple tree that uses

27

this data structure.

Root Node

value = 5 value = 5 value = §

numSons = 3 numSons = 2 numSons = 0
v

sons sons 7 sons = Q

B L — sons = N |
value = 4 value = 6

numSons = 0 numSons = 0
Lsons = ®Q | sons = Q
value = 3

numSons = 0

sons =

Figure 3.1 A search tree in the Basic Implementation.

To store a path between two nodes in the search tree, we will use an array of

pointers to nodes:

struct Node *SearchPath [MAXDEPTH];
int PathDepth;

Typically. this structure is used for storing the path from the root to a leafl node,
where the leaf node is the next node that the algorithm will expand. The global vari-
able PPathDepth is for storing the depth of this leaf node within the search tree, as well
as its index in the array SearchPath. The main purposc in providing this structure is

to allow the efficient updating of minimax values after cach iteration.

3.1.2. Allowable Minimax Values

Even though there is no need to put a lower or upper bound on minimax values in
this implementation version, we will nevertheless impose one. The main reasons for
doing so are that the storage intensive version needs to provide space in each node for
a consp'racy number for each possible node value, and for experimental purposes we
would prefer that all three versions be as similar as possible. The upper bound will be

denoted by the constant UB; the lower bound by LB.

28

Terminal nodes must also be flagged somehow. Since terminal nodes usually
represent game states where a player has won, they will usually receive a score of UB
or LB. To avoid introducing another field in the node structure just for flagging a ter-
minal node, we will let these two values (i.e. UB and LB) function as flags. This also

means reserving the use of these values to only terminal nodes.5

3.1.3. The Routines

The top level routine is shown in figure 3.2. It takes the conspiracy threshold
(CT) as a parameter. The conspiracy threshold indicates the desired degree of
confidence in the root node’s value we wish to achieve before the search is terminated.
This routine bas only one minor difference wit'y the top level algorithm presented in
Chapter 2. The algorithm of Chapter 2 takes a second parameter. called the range
parameter A, and terminates the search when Vmaz = Vimin s A. In this routine. we
have simply fixed A so that it is zero. The result is that the algorithm searches until it
has converged on a single root value. The resulting focus is then on finding a single
accurale root value and not on finding a small enough range of plausible root values.
This is especially necessary in game situations where alternative branches have to be
narrowed down to as few choices as possible, and by firding only one root value cer-
tainly belps attain that goal. Note that narrowing down to one value does not mean

that the algorithm has narrowed the choices down to one branch.

8 Some terminal nodes also correspond to game states representing draws. Such nodes will typi-
cally receive a value of (UB - LB)/2 and must therefore be flagged differently. For simplicity, this
case will be ignored here; it will however be dealt with in a later chapter.

29

Top_Level (CT)

int CT;

{
int Vroot, Vmin, Vmax:
gtruct Node *aNode,

i1t (RootNode == NULL)
Initialize-root();

Vmin = Compute_Vmin (Vroot,CT):
Vmax = Compute_Vmax (Vroot,CT):
Vroot = RootNode -> value;

while (Vmin ! = Vmax) do (
/* find a path to a node to expand */
1f (vmax - Vroot) > (Vroot - Vmin)
aNode = Rule_out_Vmax (Vmax);
else
aNode = Rule_out_Vmin (Vmin);

/* descend to the node and expand it */
Expand (aNode, PathDepth):

/* recompute the minimax values, */
/* along with Vmin, and Vmax */
Update minimax_values():

vmin = Compute_Vmin (Vmin,CT);

vmax = Compute Vmax (Vmax,CT);

Vroot = RootNode -> value;

}
return (Vroot) ;

Figure 3.2 The Top_Level Routine.

Since this implementation does not store conspiracy pumbers at the nodes, we
must recompute them every time they are needed. The function CN. which appears in
Appendix 1. does this. This routine incorporates all the expressions for computing
conspiracy numbers which were described in Chapter 2. It is a recursive function that
traverses the entire sub-tree below a node in order to compute a conspiracy number for
t{Lat node. It uses the value of two parameters, direction and node_type, to identifly

which of the four expressions to apply: direction can take on either INCREASE or

30

DECREASE, indicating whether we wish to increase or decrease the node’s value, and
node_type can take on either MAX or MIN, indicating whether the node is a maximiz-
ing or minimizing node.

The routines for finding a leal node to expand (i.e. Rule put_Vmax () and
Rule_out_Vmin()) are virtually identical to their algorithms which were presented in
Chapter 2. They do, however, perform one additional task: they save the path from

the root node to the leaf node in the global array SearchPath.

Recall that in order to compute a value for Vmazs. we must find a node value v
such that:
t1CN(r) < CT and tCN(e+1) 2 CT.
Finding such a value ¢ is actually a simple procedurc. Suppose we start with any
value ¢. Then.
° if *CN(r) € CT. compute tCN(¢”") for each v'=v+1, v+2, ... until we find one
that is 2 CT. When such a v is found, we then know that v’-1 is the new value

for Vinar.

® if *CN(r) 2 CT. compute tCN(v") for each v’= v-1, ¢-2. ... until we find one that

is < CT. Whep such a v” is found. it becomes the new value for Vmar.

This is how the routine Compute_Vmax() finds a new V'mar. Computing a new Vmin

can be done similarly.

But what is a good starting value for v? The objective in choosing a starting
value is to minimize the time required to find a new Vmin or Vmaz. To accomplish
this, we must find a v which is as close to the new Vmin or Vmaz as possible, because
only then can we minimize the number of v’ tested. From observations, we have
poticed that both Vmin and Vmaz change gradually. In fact, we have also noticed
that Vmin and Vmaz often do not change from one iteration to another. So a good

starting value would be the old Vmsn or Vmez.

31

The function Expand() illustrated in Appendix 1 is just a simple expansion rou-
tine that generates a number of sons and assigns them a value. The important thing
here is that these sons have to be sorted so that the "best sons” appear at the begin-

pning. That is:

® if a MAX node was expanded, then the sons should be sorted in descending order

according to their value.

® if a MIN node was expanded, then the sons should be sorted in ascending order

according to their value .

The prime motivation for this is that when the algorithm traverses the search tree
looking for a new leaf node to expand. it always traverses the left most branch when
alternative branches could have been taken. Putting the “best sons”™ near the begin-
ning enhances their chances of being searched deeper, increasing the algorithm's

chances of finding a winning move.

Updating minimax values can be done in an efficient manper. When a node
changes its minimax value. the only nodes that are affected are its ancestor nodes.
When a leaf node is expanded. 1ts minimax value may change, which means the
minimax value for its ancestors may need updating. A simple approach for updating
these minimax values, which is employed by the routine Update_minimax_values(). i«
to compute the minimax value of each node along the search path starting at the

expanded node. working our way up towards the root node.

32

3.1.4. Calling the Top Level Routine

Obviously the routine that calls Top_Level will be some sort of driver routine.
When calling Top_Level, the driver must supply it with a conspiracy threshold (CT).
Two factors will influence the value which should be chosen for CT. These factors are
the time required for the algorithm to converge onto a node value for a certain CT,
and the confidence in this node value given the CT that was used to find it. Generally,
the higher the conspiracy threshold that is used, the longer it takes for the algorithm
to converge on a single nodé value. Also, the higher the conspiracy threshold. the

more confidence we can have in the final root value.

It is difficult to balance these two factors because it is impossible to predict the
time it will take the algorithm to converge for a certain CT and because it is impossi-
ble to quantify the degree of confidence based on a CT. However, there is an approach
that allows the degree of confidence in the root value to increase over time. It starts
out by assigning C'T a low value such as 2. Once the algorithm converges for this con-
spiracy threshold, it is bumped up to 3, and continues so forth until a specified time
limit is reached. This makes it easier for the algorithm to converge in the specified
time limit, as well as allow us to comparatively quantify degrees of confidence with
respect to CT. This method is analogous to iterative deepening which is used for the

alpha-beta and A* search algorithms [Kor85,SIA83].

3.2. A Storage Intensive Implementation

The primary motivation for this implementation is to see if we can increase the
performance of the algorithm if conspiracy numbers are stored at each of the nodes.
This implementation differs from the basic implementation in that it stores conspiracy
pumbers for each pode value at all nodes. These conspiracy numbers have to be con-
tinuously updated as the minimax tree grows and changes, and hence increases the

complexity and difficulty of implementing this version.

33
A pseudo-code description of this version appears in Appendix 2.

3.2.1. The Data Structures

The structure of a node now must include fields for storing conspiracy numbers.
But what is the best way for storing all these conspiracy numbers? One way would be
to have two vectors, call them increaseCN and decreaseCN, which store the con-
spiracy numbers for all possible node values. The vector increaseCN would then con-
tain conspiracy numbers for increasirg a node's value to each of the possible node
values. whereas the vector decreaseC’N would contain the conspiracy numbers for

decreasing the node’s value. However, if the node’s value is V', then:
® 1CN(r)=20ifvs)
® WN(v)=0ifcv2V

so that more than half the total values in snereaseCN and decrease'N combined are 0.
specifically. all conspiracy numbers in increaseCN which are to the left of the con-
spiracy number corresponding to V' will be 0, and similarly all conspiracy numbers in
deereaseC'N which are to the right of the conspiracy number corresponding to V' will
be 0. It is therefore more efficient to store conspiracy numbers in a single vector; we

will call this new vector CN. The structure of Node is enhanced as follows:

struct Node {
short int value;
short int numSons;
struct Node *sons
} unsigned char CN[UB-LB+1]:

Geiting the correct conspiracy number from this node involves checking two things:
the direction we wish to change the node’s value in, and the relationshir between the
pod~'s value and the value we wish to change it to. Specifically, let V = the node’s

value; then

34

e if we wish to increase the node's value to v, where v < V, then the conspiracy

pumber is 0

® if we wish to decrease the node's value to v, where v 2 V, then the conspiracy

number is 0,
® otherwise use v to index the vector CN stored at the node.

Note from the structure above that we are only allotting one byte for each con-
spiracy number. In previous discussions, it was mentioned that the algorithm con-
verges slower for larger conspiracy thresholds (CT) than it does for smaller ones. In
our experiments, rarely did we have the algorithm converge for conspiracy thresholds
larger than 20. Since we are working with such small conspiracy thresholds, there is
no need to store large conspiracy numbers and a byte, which provides a range of 256

possible values, is more than a sufficient amount to store conspiracy numbers in.

\We can make additional savings on storage by reducing the amount of informa-
tion stored in a leaf node. Recall that the conspiracy numbers at leaf nodes can only
take on the value 0 or 1. The vector CN at leaf nodes will contain 1's for all entries
except for the conspiracy number corresponding to the leaf node’s value (which is 0).
Since computing conspiracy numbers at leaf nodes is simple and quick, we can elim-
inate the vector CN from leaf nodes. To do this, the node structure will be broken

into two parts as follows:

struct Node {
short int value;
struct Extension *part 2;

}

struct Extension{

short int numSons;

struct Node *sons;

unsigned char CN[UB-LB+1]:
}

Leaf nodes will only consist of the first structure (i.e. Extension = NULL), whereas

interior nodes will obtain the second part as an extension (at the time it is expanded).

35

Since most nodes in a minimax tree are leaf nodes, significant storage savings can be
obtained using the above structure. Figure 3.3 provides an illustration of a simple tree

that is identical to the tree of figure 3.1, but uses the data structure for this implemen-

tation.
Root Node
value = 5 / numSons = 3
Extension p Sons -
CN’s
value = 5 numSons = 2
: sons —
Extension - 1
0 e N’'s
value = 4 CN
Extension = g
value = 3
Extension = W
]
value = 5
Extension =
value = 6
Extension = W

Figure 3.3 A search tree in the Storage Intensive Implementation.

Getting the correct conspiracy number from a node now involves one additional
task: checking if the node is a leaf node. If the node is a leal node. then the expres-
sions presented in Chapter 2 for computing conspiracy numbers at leaf nodes must be
applied. If the node is not a leaf node, then the previous procedure for getting the

correct conspiracy number must be applied.

36

3.2.2. Maintaining the Conspiracy Numbers

All routines used in the Basic Implementation version can be carried over with
some modifications needed because of the new node structure. However, an additional
routine that updates the conspiracy numbers is required. This routine will be called
Update_CN(); it is called from the Top_Level routine, immediately after the minimax

values have been updated.

Whenever a node's conspiracy numbers change, the only other comspiracy
numbers that this may affect are those of its ancestor nodes, as was the case with
minimax values. Since the expanded node will certainly have its conspiracy numbers
change, its ancestor nodes may require their conspiracy numbers be updated. As was
the case with updating minimax values, updating conspiracy numbers starts at the
expanded node and works its way up toward the root node. At each node, conspiracy
pumnbers are recomputed for all possible node values, before proceeding to the next

node.

Traversing the search tree to find a leaf node to expand can be made more
eflicient now that conspiracy numbers are stored at each node. For example, consider
the routine Rule_out_Vmax() which relies on the conspiracy numbers of Vmar for
traversing the tree. At maximizing nodes, the conspiracy number for Vmaz, which is
stored at the node. is the minimum of the conspiracy numbers for V'mazr at each son.
Comparing the conspiracy number for Vmaz with each of the sons’ conspiracy number
for Vmazr, the left most branch to be traversed next can be identified quicker. A simi-

lar case exists for the routine Rule_out_Vmin().

37

3.3. A Compromise Implementation

This version, which we call a compromise implementation, will combine several
features from the previous two implementation versions. It will store conspiracy
pumbers for only some pode values at each node, which means that conspiracy
pnumbers for other node values must be recomputed whenever they need to b: used.
Obviously we want to store the most often used conspiracy numbers at each node, and
thereby look for a balance in the tradeoff between space and time. To implement this
version, we must look at two. issues: for what node values should we store conspiracy

pumbers, and how do we maintain these conspiracy numbers.

A pscudo-code description of this version is appears in Appendix 3.

3.3.1. Which Conspiracy Numbers to Store

Before proceeding. note that the routine that computes conspiracy numbers in the
Basic Implementation traverses the entire search tree. When the conspiracy number
for Vinar is computed at the root node, this routine visits every node and computes its
conspiracy number for Vmaz. Conspiracy numbers, for a value of Vmaz, can be stored
at each node and then updated when necessary. If Vmaz rarely changes. then occa-
sionally updating these numbers may be more efficient than recomputing them every
time.

The goal in choosing a set of values to store conspiracy numbers for is to reduce
the amount of rccomputation of them during each iteration. In deciding what node
values to store conspiracy numbers for, it is best to look at how they are used in the
algorithm. It turns out that conspiracy numbers are used in performing only two types

of tasks: traversing the search tree, and computing values for Vmaz and Vmin.

W.en the routine Rule_put_Vmax() traverses the search tree, it relies on the con-
spiracy number for Vmaz. If the conspiracy number for Vmaz were stored at each

pode. it would eliminate the necessity of recomputing this value at many nodes as

38

Rule_out_Vmax() traverses the tree. Similarly, storing the conspiracy number for
Vmin at each node would make Rule_out_Vmin() more efficient. Therefore, two
values for which conspiracy numbers should be stored for at each node are Vmaz and
Vmin.

Recall that when computing a value for Vmaz, the routine Compute_Vmax()
finds a value ¢ such that tCN(v) < CT and tCN(v+1) = CT. The first value of v that
is tested by this routine is always the current value of Vmaz, and once such a v is
found it becomes the new Vmaz. Therefore, the minimum number of conspiracy
numbers that are tested by Compute_Vmax() is two. This case occurs when Vmaz
does not change. and the two conspiracy numbers are those for the current values of
Vinar and Vmar+1. If Vmaz does not change too often, storing conspiracy numbers
for Vinar and Vmar+1 at nodes will make Compute_Vmax() more efficient. Similarly,
Compute_Vmin{) can be made more efficient if conspiracy numbers for Vmin and
Vmin-1 are stored at the nodes. Therefore, in addition to storing conspiracy numbers
for Vmar and Vmin at the nodes. conspiracy numbers for Vmaz+1 and Vmin-1 should

also be stored at the nodes.

lLet Vmarl = Vmar+1 and Vminl = Vmin-1, and let the conspiracy numbers
for the values of Vminl, Vmin., Vmaz, Vmazl be denoted by CNvminl, CNvmin,

C'Nvmar, CNvmazl, then the structure of a node for this implementation version is:

struct Node {
short int value;
short int numSons;
struct Node *sons;
unsigned char CNvmin, CNvminl;
unsigned char CNvmax, CNvmaxl;

}

A diagram illusirating a search tree using this data structure would be similar to figure

3.1 and is therefore omitted here.

39

3.3.2. Maintaining the Conspiracy Numbers

When computing conspiracy numbers, it rarely happens that the entire search
tree has to be traversed. For example. when computing the conspiracy number for
increasing a node's value to Vmaz, if the node’s value is already greater than or equal
to Vmaz the answer is already known to be 0, and hence the nodes below it need not
be examined (i.e. traversed any further). In what follows, call those nodes which need
to be examined by a routine that computes a conspiracy number "relevant” nodes, and
the others "irrelevant” nodes. Note that the same node may be both irrelevant and

relevant with respect to different node values (such as Vmin and Vmaz).

There are two choices available in maintaining the conspiracy numbers at the
nodes. The first choice is making sure that all conspiracy numbers at all nodes are
correct. The second choice is allowing conspiracy numbers for some values to be

incorrect at those modes that are irrelevant with respect to these values.

Keeping all conspiracy numbers at all nodes correct is the least complex to imple-
ment. However. it may also be the least efficient one. Suppose that Vmaz changes.
This means that the conspiracy numbers for Vmaz and Vmazl must be changed for all
nodes in the tree. If the tree becomes large, we may want to avoid making changes to
conspiracy numbers at irrelevant nodes and therefore allow incorrect conspiracy
pnumbers to exist at these nodes. Although more complex, we believe that the second

alternative is more efficient and therefore worthwhile to implement.

Both this version and the Storage Intensive version store conspiracy numbers at
the nodes. and therefore appear to be similar in their implementation. However, since
this version only stores the conspiracy numbers for a subset of node values, they do
have scme differences. This version differs primarily by how it has to update the con-

spiracy rumbers of the nodes.

40

3.3.3. Updating the Conspiracy Numbers when Vmin or Vmax Change

Recall that the values for Vmin and Vmaz can only be altered through the rou-
tines Compute_Vmin() and Compute_Vmax(). Note that one way in which the con-
<piracy numbers that are stored at the nodes can change is if either Vmin or V'mar
change. Therefore, these two routines must also be responsible for initiating the com-
putation of pew conspiracy numbers that will be stored at the nodes when Vmin or
V'maz change. Specifically, Compute_Vmin() will be responsible for initiating the
updating of CNrmin and CNvminl at all nodes, while Compute_Vmax() will be
responsible for initiating the updating of CiNvmar and CNrmazl. 7o examine how
updates are initiated and how updates can be done efficiently, we will examine what
happens when Vmaz changes inside the routine Compute_Vmax(). Updates to

C'Nemin and CNeminl are handled similarly in Compute_Vmin() when Vmin changes.

Initially. assume that C'Nvmar is correct at all nodes that are relevant with
respect to the value of V'maz, and similarly CNvmazl is correct at all nodes that are
relevant with respect to the value of Vmazl. Also, assume that CNevmazl is less than
C'T at the root node. and therefore Vinaz must increase. What are the sequence of

steps that must be taken in order to find a new Vmaz!

First. Vmaz is increased by one to the old value of Vmazl, and Vmazl is impli-
citly increased by onme. This should prompt a recomputation of CNvmar and
C'Nemazl for all relevant nodes below the root node. Since the new Vmaz is equal to
the old Vmazl, the new value for CNvmaz at any node will be equal to the old value
of CNrmazl at that node. Therefore, while computing new values for CNvmazl, the
old value of CNvmazl can be copied to CNumaz at each node that is visited and avoid
a separate computation for CNvmaz. This is what the routine CN_Vmax1() does.
This whole process repeats itself until a Vmezl whose conspiracy number is greater

than or equal to CT is found.

11

Will CNvmaz and CNvmazl be correct at all relevant nodes after this process is
completed? Note first that the set of relevant nodes with respect to Vmaz is a subset
of the set of relevant nodes with respect to Vmazl. In other words, when the routine
that computes the new CNvmazl traverses the tree, it will also visit all relevant nodes
with respect to the new value of Vmaz (which used to be the old Vmaz1) and copy the
each old C'Nvmazl (which were assumed to be correct at these nodes) to CNvmar.
Since all relevant nodes are going to be visited, and the appropriate action will be per-
formed at these podes. we k'now that CNvmaz and CNvmazl will be correct at all

relevant nodes after this process is completed.

What happens when (‘Nvmmaz is greater than or equal to CT? Compute_Vmax
must decrement Vmaz in this situation until a CNvmaz that is less than CT is found.
The process is similar to the above process but, instead of incrementing Vmaz, we
decrement it and instead of computing new values for CNvmaz1 (and copying the old
values to ('Nvmaz) we compute new values for (' Nvmaz (and copy the old values to

CNrmarl).

But there will be one problem here. When computing C'Nvmaxz for a new value of
Vmar. only podes that are relevant to the value of Vmaz will be visited. and these
podes form only a subset of the set of relevant nodes with respect to the value of
Vmasl. Obviously we have to visit the remaining nodes that are relevant to the value
of Vmazrl. but not to the value of Vmaz, and copy CNvmaz to (‘Nvmazl. Note that

no new ('\'rmazr must be computed at these remaining nodes.

Findirg these nodes is <imple. When computing CNvmaz, a node whose value is
equal to Vmarz is normally not traversed any further, whereas when computing
C'Nvmarl it would be traversed. It is under such nodes that the rest of the relevant
nodes vith respect to the value of Vmazl can be found. When nodes whose minimax

value is equal to Vmaz are encountered, simply traversing the trce to all relevant

42

podes v h respect to only Vmazl and copying the old CNvmaz (which is assumed to
be correct) to CNvmazl will solve this problem. Again, it can be shown the C'Nvmar

and CNvmazl are correct at all relevant nodes.

3.3.4. Updating the Conspiracy Numbers after an Expansion

The only other time updates to conspiracy numbers can occur is after the expan-
sion of a leaf node. Only those nodes along the path from the root node to the
expanded node, as well as the newly created sonms, have to get their conspiracy
numbers updated. This is done by the routine Update_CN(). This routine first com-
putes the conspiracy numbers at the newly created sons, and then updates the con-
spiracy numbers for those nodes along the path, starting from the expanded node and
working its way up toward the root node. At each node, conspiracy numbers for Vmin,

Vminl. Vmar. and Vmazl are computed before proceeding to the next node.

Since conspiracy numbers at irrelevant nodes are not kept correct, there is one
major problem that can occur when updating the conspiracy numbers in the manner
described above. To illustrate this problem. assume that the algorithm is at a point
where it has decided to try to rule out Vimaez and has chosen a leaf node to expand. We
know that all node values along the path from the root node to the leaf node must be
less than Vmazr before this leaf node is actually expanded. In fact, some of these nodes
may have a minimax value that is less than or equal to Vmin. Let’s assume that there
is one node along this path whose minimax value is less than or equal to Vmin, and
let's call it node A. [If more than one such node exists, choose as node A the one that is
closest to the root node]. Recall that all nodes that are descendants of this node A are
irrelevant with respect to the value of Vmin. Now suppose the leaf node is expanded,
and this results in node A's minimax value increasing to above Vmin. This will result
in descendants of node A becoming relevant with respect to the value of Vmsn. How-

ever, these "new relevant” nodes will have incorrect values for CNvmin, and when the

43

above update procedure is applied these incorrect values may propagate up and cor-
rupt the conspiracy numbers at previously relevant nodes. The only way to fix this is
to find these "new relevant” nodes and correct their conspiracy numbers before the

update procedure is started.

The occurrences of "new relevant” nodes can only result from the expansion of a
leaf node. When expanding a leaf node while trying to rule out V'maz, we must be con-
cerned about "new relevant” .nodes with respect to Vmin and Vminl occurring. Simi-
larly, when expanding a leaf node while trying to rule out Vmin, we must be concerned
about "new relevant” nodes with respect to Vimaz and V'mazl occurring. Since the pro-
cedures for handling the cases dexling with "new relevant” nodes with respect to either

Vmnin, Vminl, Vmaz, or Vmazl are identical, only one of them will be discussed.

The routine fixup_CNvmin() bandles the case where "new relevant” podes with
respect to Vmin occur as a result of a leaf node being expanded while the algorithm
tries to rule out Vmar. What this routine does is find where these "new relevant”

podes are and call the appropriate routines to correct their values for C'Nvmin.

Finding these "new relevant™ nodes is simple. The routine fixup_CNvmin()
traverses the path from the root node to the expanded node. When it comes across a
node whose old (‘Nrmin is 0. it knows that the algorithm for computing new values for
C'Nemin did not traverse any of this node's descendants and therefore their values for
C'Nemin are incorrect. It is at such a node that "new relevant” nodes may occur
ander. If the value of this node increases to a value that is greater than Vmin. "new
relevant” nodes will appear under it and a routine for recomputing their conspiracy

number for Vmin must be called.

Wlore specifically, suppose that fixup_CNvmin() traverses to a node whose value
for CN-min was 0. Depending on what the node’s new minimax value is, two possible

cases aris.:

44

® if the node’s new value is less than or equal to Vmin, all descendant nodes remain
irrelevant with respect to Vmin and therefore no further action needs to be

taken. and

® if the node’s new value is greater than Vmin, fixup_CNvmin() must call a routine

which will recompute the corspiracy numbers for Vimnin below this node.

As a result of this, conspiracy numbers for Vmin at all "new relevant”™ nodes below it
will be correct. and conspiracy numbers for Vmin at irrelevant nodes will be incorrect
{which does not matter anyhow). At this point, further traversal is not necessary and

hence fixup_CNvmin() returns.

When the conspiracy numbers at "new relevant” nodes have been corrected. the
procedure for updating the conspiracy numbers along the path from the root node to
the expanded node can be safely started. The only nodes with incorrect conspiracy
numbers are nodes that are irrelevant with respect to a value, but these conspiracy
numbers can be simply prevented from propagating up and corrupting the conspiracy
numbers at relevant nodes. To see why this is true, assume that there is a node along
this path that is relevant with respect to Vmin, but whose descendants are irrelevant
with respect to Vmin. Since this node’'s minimax value must be less than or equal to
Vinin, the conspiracy number for Vmin at this node is automatically known to be 0,
and does not depend on the conspiracy numbers of its irrelevant descendants. There-
fore the conspiracy numbers at rolevant nodes will be correct when the update routine

finishes.

45

3.4. Conclusion

Three implementation versions which demonstrate the trade-off between speed
and space were presented here. From our experience, we learned that computing con-
spiracy numbers represents the most computationally intensive part of the algorithm,
and that conspiracy numbers were often needlessly recomputed. In order to reduce the
recomputation of conspiracy numbers, it was decided that storing conspiracy numbers

at cach node may be of benefit.

The Basic Implementation and the Storage Intensive Implementation represented
two extremes from opposites ends of the spectrum. The Basic Implementation stores
no conspiracy numbers at the nodes whereas the Storage Intensive Implementation
stores conspiracy numbers for each vossible node value at the nodes. However. the
Basic Implementation spends a lnt 0! - e recomputing conspiracy numbers necdlessly,
and the Storage Intensive Imple « .on spends a lot of time updating conspiracy
pumbers for several needless node vaiues along the path of expansion. When the range
of node values becomes large. the Storage Intensive Implementation may actually per-
form worse because updating all the conspiracy numbers along the path of expansion
will consume a large amount of time. Also, limited memory will certainly affect the
performance, as well as applicability. of the the Storage Intensive Implementation

more than the Basic Implementation.

The Compromise Implementation tries to find a middle ground between the two
previous implementations. Instead of storing conspiracy numbers for all node values, it
only stores conspiracy numbers for the most important node values (i.e. Vmin, Vminl,
Vmaz. Vmazl). This reduces the amount of updating of comspiracy numbers that is
performed along the path of expansion, reduces the amount of needless recomputation
of conspiracy numbers, and reduces the memory requirements for storing large

minimax trees. This implementation version depends on the assumption that Vmin

46

and Vmaz remain fairly stable for improved performance over the Basic Implementa-

tion.

But which implementation version is preferable? If the assumption about Vmin
and Vmazr remaining fairly stable is true, then the Compromise Implementation would
be superior to the Basic Implementation. If the range of node values is large, the
Compromise Implementation is preferable to the Storage Intensive Implementation
because it requires less memory and the updating cost of conspiracy numbers aloug the
path of expansion is less. If t.he range of node v-:lues is small. then the Storage Inten-
sive Implementation may be preferable because it will probably perform faster th.n
the others. As can be scen, several factors will influence our choice of a particular
implementation. It is our experience, however, that there are onmly two practical

choices: the Storage Intensive Implementation and the Compromise Implement ation.

Chapter 4

Results for Random Trees

Initial experiments with the conspiracy numbers algorithm were done on ran-
domly generated search trees. In our random trees, the number of sons that are created
when a node is expanded and the node values of the leaf nodes will both be a function
of random values. The reasons for using random trees is that they are easy to imple-
ment and are flexible, which gllows us to do a variety of experiments. The objectives of
these experiments were threefold: to compare the performances of the three implemen-
tation versions of the algorithm. to understand how some factors affect the perfor-
mance of these versions, and to learn something about the algorithm’s bebavior. This

chapter summarizes the results of our experiments.

4.1. Performance Results

How do the performances for the three implementation versions of the conspiracy
numbers algorithm compare? Figure 4.1 illustrates the performances of these three ver-
sion~.7 In this graph. the number of nodes generated is plotted against time. The trees
that they generated cach had a constant branching factor of 5 and node values were
integers in the range [-20.20]. Based on these results, we can conclude that the Basic
Implementation version of the algorithm is inferior to the other two versions. The per-
formances of the Storage Intensive implementation and the Compromisc implementa-
tion are fairly close and require further experiments to differentiate between them

more precisely.

7 All experiments reported in this chapter where done on a SUN 3/75

47

48

600
Peaac
[}
500 !
'
]
[}
'
|
'
'
1
'
Time 300~ : .-+ Compromse
(Seconds) X ’
!
'
200 !
'
: Storage
' Intensive
100 1
'
'
0 R RN i | LA
0 10 20 30 40 50 60

Nodes Generated (X 1000)

Figure 4.1 Initial Performance Comparisons.

Figure 4.2 shows for each implementation the breakdown of the total time that
was spent searching one particular minimax tree. The breakdown of the total time ix
according to the type of task. performed in each version. What this confirms is that
the computation of conspiracy numbers accounts for the largest proportion of the total
time. By concentrating improvements in this one area of the implementation (eg. sav-

ing conspiracy nurabers at the nodes) w« can significantly increase its performance as

shown by the : ssults in figure 4.1.

Basic Implementation

Task Time (sec.) { Percentage
Compute CNs 7427.63 99.2
Compute Vmin, Vmax 56.08 0.7
Rule_put_Vmax 5.55 0.1
Rule_out_Vmin 0.44 0.0
others 1.31 0.0
Totals 7191.01 100.0

Storage §vsasive Implementation
ook Time (sec.) | Percentage
Update CNs 8.82 41.9
Accessing CNs 6.24 29.6
Rule_put _Vmax 3.58 17.0
Rule_out _Vmin 0.38 1.8
others 2.05 9.7
Totals 21.07 100.0

Compromise Implementation

Task Time {scc.) | Percentage
Update CNs 27.20 767
Accessing CNs 307 Y
Jule_owt _Vmax 316 .9
Yule_out_NVmin 0.16 0.5
Compute new CNs 0.12 0.3
others 1.67 17
Totals 35,48 100.0

Freure 1.2 Profiles of the lmplementations

There 1x one minor flaw in these performance comparisons. they are not totally
fair becanse each version was probably not optimally implemeoted. Tmprovements may
be possible in each implementation that can increase these performances. Overall, the
ineplementations that were used to derive the results an this chapter were roughly o
the same levei of optimization, and therefore the performance comparisons should be

ressonably fr

sinee the Storage Intensive version and the Compromise version are the only two

practical alternatives, let us focus our attention on only them. Factors that will affect

50

the performance of that part of the implementation that maintains the conspiracy
numbers will obviously affect the overall performance of the implementation a great
deal. Since the way each of these two versions maintains its conspiracy numbers at
each node differs. these factors will also have different affects on each version and
bence help differentiate them. The primary factors that affected these versions' perfor-
mances were: the size of the range of legal node values, the average branching factor in

a minimax tree. and the arverage depth of nodes in a particular tree.8

Figure 4.3 compares lhel performances for the Storage Intensive version and the
Compromise version for several different range sizes. To generate these particular
results, each version was run on several hundred different search trees. In this graph.
the number of nodes expanded per second is plotted against the range size. These
results clearly show that varying the range size affects the performance of the Storage
Intensive version much more than the performance of the Compromise version. The
Storage Intensive version has to maintain conspiracy numbers for the entire range of
node values whereas the Compron:ise version has to only maintain conspiracy numbers
for four node values (i.e. a const.nt number of conspiracy numbers regardless of the
range size). In addition, these results also show that there is a range of size for which
the Storage Intensive version has superior performance and a complementary range of
size for which the Compromise version has superior performance. The boundary
between these two ranges will of course vary because other factors (i.e. the branching
factor and the average depth of nodes) will affect the performance of each version in

different ways.

¥ \We define the average depth of nodes in a particular tree as: (2 depth V#nodee.

alt modes t

51

250

225
200
175
150—
Expansions 125

Per
Second 1004

Compromise

§ =
Storage
Intensive
504
25
0

1 Ul | -l | | 1] N |
0 10 20 30 40 50 60 70 80 90 100 110 120
Range Size (#values)
Figure 4.3 Performances for different range sizes.

Figure 1.4 shows the performance comparisons of the two versions for different
branching factors. It will obviously take longer to compute comspiracy numbers at
parcnt nodes with a larger number of sons, and hence it 1s not surprising that there is
a performance degradation for larger branching factors. For the experiments that pro-
duced the results for figure 4.4. the range size aud average depth were deliberately
chosen 1o show that the performances and performance degradations of the two ver-
sions can be about equal. A different set of values for these two parameters will affect

the performance and performance degradation for each version differently.

52

100

Expansions 50—

Per
Second 40
30
20 fv‘n:e':g:w
o - Compromise
0

| | | AN | | |
0 10 20 30 ;{) 50 60 70 80 90

Branching Factor

Figure 4.4 Performances for different branching factors.

Figure 4.5 shows the performance comparisons of the two versions for different
average depths. It will obviously take longer to update the conspiracy numbers along
longer paths (i.e. when the nodes that being expanded are deeper in the tree). There-
fore we can expect a performance degradation for trees that have a relatively high
average depth. which the results confirm. But note that although the Compromise
Implementation’s performance is degrading faster in figure 4.5. this situation can be
easily reversed by altering the other two parameters (i.e. the branching factor and the

range size).

53

100

90—

80

70—

Storage
Intensve

60—
Expansions 50

Per
Second 40—

30— ...""Compvomuc
20—

10

T T - T) T
10 20 30 40 50 60 70 80 90

Average Depth
Figure 4.5 Performances for different average depths.

A final matter of interest is the storage requirements of the three versions. Figure
4.6 shows the amount of memory required to store different sized trees for each ver-
<ion. It should be noted here that the storage requirements by each node in the Basic
and Compromise versions are fixed. but vary in the Storage Intensive version depend-
ing on the type of node (i.e. leaf nodes and interior nodes have different storage
requirements because leaf nodes do not have conspiracy numbers stored at them). Two
factors that can alter the average memory requirements per node for the Storage
Intensive version are the branching factor, which affects the proportion of leaf nodes
that tlno;'o’ are in a tree, and the range size. It should therefore uot be surprising that
for a small range size and large branching factor that the Storage Intensive version

requires less memory that the Compromise version to store identically sized trees.

54

Version Rafnge Branching Nodes Memory (bytes
Size Factor Total | Average
Basic 10 40 10001 80008 8
Storage Int. 10 40 10001 64006 6.4
Compromise 10 40 10001 | 120012 12
Basic 60) 10001 80008 8
Storage Int. 60) 10001 | 192006 19.2
Compromise 60 5 10001 | 120012 12

Figure 4.6 Storage Requirements of the three versions.

4.2. General Results

This section summarizes general observations made in our experiments with the
Conspiracy Numbers algorithm.

First. 2 word about the static evaluation function (i.e. the function that assigns a
new leafl node its initial value). The observed behavior of the algorithm differs accord-
ing to the type of static evaluation function used. An initial version of this function
assigned totally random node values to new leaf nodes. This however caused situations
where a newly expanded node. that had a good value before, ended up receiving a bad
minimax value. In games. situations like this do not occur often (i.e. most minimax
values of nodes usually remain fairly stable). So in order to approximate game trees.
the leaf node evaluator function was altered so that the node values of the new leaf
nodes caused less variation in their parent node’s value. This should give us a more

accurate idea of how the algorithm will bebave in real game situations.

It is clear that the Compromise version's performance is comparable to the
Storage Intcnsive version's performance. The main reason the Compromise version
does so well is that Vmin and Vmaz remain stable. Observations of various types of
runs showed that Vmin and Vmaz change their value during less than 0.5% of the
iterations. and when they do change, the difference between the old and new value is

on average about 1.25.9 This is ap indication that the rate at which convergence occurs

9 This average excludes the relatively large changes that occur at the beginning of the search

55

will be slow.

Usually when Vmin or Vmaz do change, Vmin tends to increase more often than
it decreases and Vmaz tends to decrease more often than it increases. In other words,
Vmin and Vmaz move towards each other more often than apart from each other. If
this were not the case, convergence on a single root value would be nearly impossible.
However. in our experiments. Vmin and Vmar did diverge about 25€¢ of the time
changes to cither one occurred, which is a concern because it slows down the rate at

which the algorithm converges on a root value.

The rate of convergence is indeed slow. Figure 4.7 shows the average number of
expansions it takes to reach total convergence (i.e. Vmin = Vmaz) at several con-
spiracy thresholds. These results show that tot al convergence takes longer to achieve
at both higher thresholds and for larger range sizes. The main reason for this is that
the range of likely root values starts out larger for higher conspiracy thresholds as well
as for larger sizes of the range of legal node values. Note that the results in figure 4.7
depend. to a certain degree, on the static evaluation function and how random the

values that it assigns t¢ new leaf nodes are.

Yange | Branching | Conspiracy Ex . Nodes
Size Factor Threshold XPansIons | ¢ enerated
40 10 2 1265 50600
40 40 3 2289 91560
40 40 4 3804 152160
40 10 5 6330 253200
200 10 2 2569 102760
200 40 3 9145 365800

Figure 4.7 Number of expansions until total convergence occurs.

The Conspiracy Numbers algorithm chooses to rule out Vmaz on average about
the same number of times it chooses to rule out Vmin. However, this is an average

over ma 1y runs. On single runs there is a great variation largely due to two factors:

when the tree is first being grown.

56

1) that Vmin and Vmazr change slowly and as a result the algorithm chooses the

same strategy for many consecutive iterations,
2) and that there are a relatively small number of iterations in a single run.

There are several consequences due to Conspiracy Numbers being a depth-first

algorithm without a depth limit. Those that may concern us are:

1) The algorithm explores some branches too deep For example, many small search

trees had maximum depths exceeding 50!

2) The algorithm spends too much time exploring only the first few branches at the
root, so that when the search is arbitrarily halted (i.e. before it has converged on
a single root value but has run for a reasonable amount of time) many branches

at the root remain unexplored.

This may cause some problems in an actual application, such as chess, where time lim-
its exist. By putting too much search effort into the first few branches, other branches
are being overlooked. If however a depth limit can be incorporated into the Conspiracy
Numbers algorithm, the amount of exploring that is done on these few branches can be

himited. resulting in more exploration of some of the other "overlooked” branches.

4.3. Conclusion

In this chapter, we learned about Conspiracy Number's performance and
behavior. When choosing an implementation version, we now know that there are
only two practical choices: the Storage Intensive version and the Compromise version.
Factors that will ultimately influence our choice are: the range size, the branching fac-
tor. and the average depth of the tree that wil! be grown. Probably the most important
of these factors to consider is the range size, because it affects mainly the Storage

Intensive version whereas the other two factors affect both versions roughly the same.

Of considerable concern is that the rate of convergence is slow. When using the

57

Conspiracy Numbers algorithm in an application, small range sizes and small con-
spiracy thresholds should be used to ensure that it has a chance to converge within a
reasonable amount of time. Also a concern are the possible problems that may result
because Conspiracy Numbers is a depth-first algorithm that functions without a depth
limit. Before the algorithm is actually put into an application, it is probably a good
idea to first incorporate a depth limit into it to alleviate the problems that wili le

caused.

Chapter 5

Incorporating Conspiracy Numbers in a Chess Program

The objective in this chapter is to test the conspiracy numbers algorithm in an
application. The game of chess was chosen as the candidate applicatiou for several rea-
sons: 1) because of its popularity as an application for research in minimax search
algorithms. 2) because there are problems in chess that conventional alpha-beta
searches can never hope to solve, and 3) because the results from our experiments can

be readily compared to the work of others.

A major concern in any application that will use the conspiracy numbers algo-
rithm is speed. The goal of any reasonable chess program is to generate a good
responsc in under three minutes (tournament conditions). From previous experiments
on randomly generated trees. we know that the algorithm converges slowly because
usually a large number of nodes must be generated. This problem may be compounded
by a node evaluator that requires a lot of knowledge and will therefore slow down the

rate of node expansions.

Tactical chess is a simpler form of chess which is mainly concerned with the win-
ning and losing of material. A program that solves tactical chess problems requires less
knowledge in its leaf node evaluator than a program that can also solve positional
chess problems, and hence will be able to generate nodes at a faster rate. ln addition,
such a program does not require the fine-grained scale of node values needed for posi-
tional chess (i.e. a smaller range of node values is sufficient) which means that conver-
gence will be faster. It is for these reasons that our initial program will only solve tac-

tical chess problems.

This chapter consists of two main sections. The first section describes how to
implement the Conspiracy Numbers algorithm in a chess program. The second section

presents the experimental results.

58

59

5.1. Implementing Conspiracy Numbers in Tactical Chess

In our approach to this implementation, there are two parts: an implementation
of the « :nspiracy numbers algorithm, and an implementation of the application depen-
dent data structures and routines. The task of implementing a chess program then
becomes one of combining these two parts. To simplify things even further, we will
assume that there is no data sharing between these two implementations, and all
interactions are done through procedure calls. Since the conspiracy numbers algorithm
directs the search. it is actually in control of the total process and calls on the chess
implementation part to change its state or provide it with certain information.

Schematically. the relationship between these two parts looks something like this:

Conspiracy Requests #| Chess
Numbers Routines and
, Information
Algorithm [Data Structures

Figure 5.1 Overview of our chess program.

5.1.1. Integrating Chess Knowledge into the Algorithm

Introducing application dependent knowledge into a search algorithm basically
involves deciding where and how it will be used, and what information needs to be
stored at the nodes. In the conspiracy numbers algorithm, application knowledge is
only needed to generate new moves and evaluate them. The geperation and evaluation
of moves will obviously take place in the routine Expand(). All other phases of the
algorithm don't require application dependent knowledge; they are driven primarily by
the node values or conspiracy numbers. As for what information needs to be saved at

each node, we will only add one new field to store a move.

60

Storing only the move at each node minimizes the amount of chess information
that each node needs to carry. Associated with each node in the search tree is the
state information of the game. This state information includes such things as the
arrangement of pieces on the board, whose turn it is. the material balance, and many
other picces of information. Such information is maintained strictly by the chess side
of the implcmentation. If we associate an snitial state with the root node. we can gen-
erate the state corresponding to any other node in the tree by making the series of
moves stored at each node along the path from the root node to that node. Similarly.
we can undo such states and restore the initial state by undoing these moves, in

reversc order though.

To expand a node involves interacting with the chess side of the implementaiion.
First. the program generates the game state corresponding to the leaf node that is to
be expanded. The Expand() routine then asks the chess side of the program to generate
all the moves that can be made from this game state and assigns each move to a new
node. The moves are then evaluated by another application dependent routine that
takes a single move as a parameter and returns a value. Finally. after all the moves

have been evaluated. the initial state is restored.

The interface between the conspiracy numbers algorithm and the chess implemen-
tation appears to be simple. It requires four routines and a move representation. The
set of routines consist of: make_move(), unmake_move(). generate_moves().
evaluate_position(). The move representation can be Liandled as an abstract data type.

since it is of no concern to the conspiracy numbers algorithm.

61

5.1.2. Basic Control Mechanism

Another important implementation issue is bov ‘"¢ conspiracy numbers algo-
rithm is to be controlled. This involves two thipnc . .ding what conspiracy thres-
holds to pass the algorithm, and deciding when and how to halt the algorithm. But
first it may be useful to review the control mechanism used for a different search algo-

rithm.

The driver routine for llhe Alpha-Beta search algorithm uses an enhancement
called itcrative deepening [SIAR3). This driver routine repeatedly calls the Alpha-Beta
algorithm. each time asking it to build a search tree that is one ply deeper thun the
previous one. One of the main reasons for using iterative decpening is that when the
program runs out of time and has not completed building the current search tree. it
can at least use the result from the previous search tree it built.10 For this search algo-
rithwo. the level of confidence one has in the final answer can be gauged by the depth
the algorithm managed to search 1o. So one way of viewing the driver routine’s goal is
that it tries to increase the level of confidence each time it calls on the search algo-

rithm to grow a tree one level deeper.

A similar idea can be used for the driver routine for the conspiracy numbers algo-
rithm. Here the conspiracy threshold is used to gauge ome’s confidence in the final
answer. Generally. the higher the conspiracy threshold that a problem is solved for.
the higher our confidence in the final apswer. But remember that a problem is harder
to solve for higher conspiracy thresholds. Like the driver routine for the Alpha-Beta
search algorithm, this driver will increase the level of confidence in the final an-wer by
repeatedly calling the conspiracy numbers algorithm, each time with a bigher con-
spiracy threshold. Except here. the search algorithm will not build a new search tree

each time it is called. but simply extend the tree from the previous call. The

16 Another reason for using iterative deepening is tha' it improves the move ordering at the
root for each suecessive call to Alpha-Reta and therefore improves the efficiency of Aipha-Beta.

62

thresholds used will start at 2, which is the lowest possible, and be incremented by one
each time. The main reason for using an iterative increase to the conspiracy threshold
is that wuen the program runs out of time and has not converged for the current thres-

hold. it can at least use the result from the previous completed search.

There are primarily two ways used to halt the algorithm: a time limit, or a node
count limit. Using a maximum conspiracy threshold as a consistent criteria to deter-
mince when to stop the algc ithm is impossible. Assuming that the rate of node expan-
<ions is consistent among different problems (i.e. search trees). experiments showed
that the number of nodes required to be generated by the algorithm in order to reach
given maximum conspiracy threshold was not consistent among the different problems.
Therefore. the conspiracy threshold attained for different problems in a given time
limit (or node count limit) will vary.

There are two additional methods of determining when to balt the algorithm. but
the conditions for using either one occur less often. Either of these two methods results
in the ordinary search time limit being cut short. The first is to use a maximum con-
spiracy threshold. When the program reaches this threshold. the confidence in the root
value is high enough and it is believed that further search will not change that value.
Therefore it is reasonable to stop the search after - - program has solved the problem
at this maximum threshold. The second method is to detect whether one of the
players can force a win. Recall that the values LB and UB at leaf nodes are rescrved
for flagging terminal node (i.e. end of game states where either player looses his king).
Whenever the minimax value of the root node is equal to LB or UB, we know that a
player can force a series of moves that eventually leads to a game state where he is the

winner. Whenever such a situation is detected, further search is unnecessary.

63

5.1.3. Problems

With the experience obtained through the testing of our original implementation,
we were able to identify two major problems. Both of these problems resulted from the
depth-first behavior which is characteristic of this algorithm. The conspiracy numbers
algorithm always explores one line of play (i.e. a single path in the tree) at a time,
expanding it deeper and deeper until no more appropriate conspirators can be found
there. The two problems lhif causes are: exploring some lines of play to ridiculous
tepths. and repetitive game states along a single path throwing the program intc an

infinite loop.

The danger of permitting the algorithm to search as deep as it wants to is that it
may not be able to explore adequately certain parts of the tree in a given amount of
time. In one case the algorithm may not have enough time to explore other moves at
the root that may actually turn out to be better. In another case the algorithm may
concentrate on a line of play that appears promising. but runs out of time to explore
all the opponent s alternatives adequately enough along this line of play. leaving open
the possibility that this move may actually lead to a win by the opponent. To prevent
some hnes of play from being searched too deeply, a depth restriction can be
emploved. Its result is that it puts a bit more breadth into the algorithm. which
allows for increased exploration of the other parts of the tree. Note that this type of

depth limit is in no way the same as an Alpha-Beta type of depth limit.

The danger of repetitive game states along a single path in the tree is that it
causes the program to go into an infinite loop. To show how this can happen, suppose
the algorithm is exploring a line of play and a new leaf node is created which
represents the same game state as an ancestor node. For convenience, lets call this
ancestor node A. and this leaf node B. Suppose there comes a time in the search when

node B is explored further. The subtree that will be grown below pode B will | identi-

64

cal to the subtree that was grown below node A. That is, another node whose game
state is identical to node A and B will be created, and it too will be eventually
rxplored resulting in another identical subtree being grown, and so on. This cycle will
continue. with no convergence possible. and hence we call it an infinste loop sstuation
in the algorithm. It is of course possible to short circuit this infinite loop using a depth
limit. but this does not prevent the wasteful regeneration of these subtrees. Prefer-
ably. we would like an appiication dependent routine that could detect s move that

will regencrate a recently seen game state.

But how should the conspiracy numbers algorithm handle these problems?
Preferably. we would like to treat such problems in an application independent way
within the conspiracy numbers algorithm. Our solution treats nodes that are too deep
or represent repetitive game states as terminal node~. <o that the algorithm automati-
cally avoids exploring theu ny deeper.

To indicate that these nodes must be treated as terminal nodes, a flag field must
be added 1o each node. The setting of this flag will be done by the routine Expand().
where such nodes are first detectable. The only other minor change to the search algo-
rithm occurs in the routine that computes the conspiracy number of a node. wher this
flag bhias to be tested first. If the flag is set. the conspiracy number of this node is com-

puted as follows:

N\ 0 if v = node’s value
CNe) = 1 otherwsse

This will conveniently force the routines that search for nodes to expand to avoid

choosing these flagged nodes.

85

6.1.4. An Enhancement

When the conspiracy numbers algorithm grows a minimax tree, it will always gen-
erate all the nodes in the first two ply. To see why this is the case, let's assume that
the program is given a middlegame problem to solve. The first node to be expanded is
obviously the root node. which generates all the nodes in the first ply. As of this point,
('N(Vmar) is equal to one because only one node in the first ply needs to conspire in
order to change the root’s value to Vinar. In fact. CN(Vmar) will remain equal to one
as long as there remains an unexpanded node in the first ply and no other single con-
spirator. which successfully causes the root value to change to Vmar, has been found
before all nodes in the first ply have been expanded. Since this is the case most often,
all nodes in the first two ply will usually be generated before the algorithm even has

the chunce to converge once.

Normally the algorithm goes through some computation in choosing the nodes
that need to be expanded. To produce all the nodes in the first two ply, the algorithm
must expand the root node plus all the nodes in the first ply. Instead of having the
alzorithin find these nodes. it is more efficient to expand them before the algorithm
actually <tarts. This enhancement is implemented as a gener ol extension to the con-

spiracy number algorithm, because it is application independent in nature.

5.2. Experimenting with Conspiracy Numbers in Tactical Chess

With this being the first implementation of the conspiracy numbers algorithm in
a chess program. to the best of our knowledge, there are obviously no prior results
available. Thercfore. there will be three basic objectives to our experiments. The first
objective is to compare the performance for such a program to a similar progran: :::l-
izing a different search algorithm. The second objective is to try to understand the
algorithm's bebavior, particularly identifying any problems it may bave in such an

application. The last objective is to exs« iue how seve- | -ameters can affect the

66

performance of this algorithm. Based on these experiments, it should be possible to

fairly evaluate the performance of this algorithm for chess.

5.2.1. TheY rogram

Recall that our chess program consists of two parts: an implementation of the
conspiracy numbers algorithm. and an implementation of the chess routines and data
<tructures. For the Conspiracy Numbers algorithm. the storage intensive implementa-
tion version will be used because it will give us the best performance possible. Rou-
tines and data structures for the chess side of the implementation will come from the
chess program Phoenix [SchR6]. a frequent competitor in the World Computer Chess
Championships.

There are several reasons for using parts of Phoenin for the chess side of the
implementation. One of them is that the program itself has been run in numerous
chess tournaments and therefore is well debugged. Phoenix is also a performance
oricnted program: it is currently one of the best computer chess programs in the world.
But most importantly, by using a large portion of Phoenix in our program means that
both programs will be similar. and therefore results from both programs can be com-
pared fairly. In other words. the comparisons can be focused on the two search algo-
rithms employed by these programs (i.e. conspiracy nurrbers versus Alpha-Beta).

Of particular interest is the static evaluator function. To evaluate a new leaf
pode. this function builds a tree of capture moves to an arbitrary depth using the
Alpha-Beta search algorithm. At the root of the tree, it considers checking moves in
addition to the capture moves. The results of the search is the expected material bal-
ance of the root.

Since the range of values rc-v-ped by the static evaluator function will usually be
different from the range of node values used by our program, each value returned !

this function will have to be appiopriately scaled so it fits into our program's rz::

L 7]

However. the values LB and UB are resti _.ed to terminal nodes that represent the end
of a game (i.e. for game states where one of the players takes the opponent's king).

Therefore. the effective range we will be scaling into is [LB + 1, UB - 1].

Our range of node values will be centered around 0 so that UB = —LB. In this
specification. positive values will indicate that the move will lead to a gain of material
for the plaver whose turn it is at the root pode, whereas negative values indicate aloss
of material. 0 will obviously indi-ate equality, where no win or loss of material is

expected.

A< it turns out. there is no need for a large range of node values. Because there
are only a few type of pieces in chess, we require only a limited number of values to
indicate the net amount of material a move wins or loses. However, there is a risk in
choosing a range that is too small in that we may not be able to distinguish between
two moves that have the same value but are otherwise tactically different by a small
amount (i.e. if a larger range of values were used. their difference would be more dis-

lill{.‘,Hi\llul)l(‘).

But how small of a range arc we thinking of? A range of 31 values (i.e UB = 15
= value of a hing) is probably the largest we would be considering.!! Since we will also
try many smaller sized ranges, we will choose the storage intensive implementation
version of the conspiracy numbers algorithm because it will give use the best possible
performance. However, choosing what the appropriate range size should be is a pro-
cess of striking a balance between being able to generate more nodes per time unit
when the range size is smaller and being able to better distinguish between moves

when the range size is larger.

1 In this scheme, the value of a pawn will be 1.

68

5.2.2. The Test Data

Many experiments with chess programs have used the 300 position test set taken
from the book Win 4t Chess [Rei45]). However, the problems in this set are not difficult
and is does not take much effort to solve more than 80¢¢ of the problems. So in addi-
tion to this test set, a set of 95 problems were takeu from the Encyclopedia of
Middlegame Combinations [Inf&3). Many of these problems. on the other hand. are
difficult, even for a human!

We will assume that the correct moves have been predetermined for each of these
probleme<. The criteria for correctly solvinz a problem is that it find the move that
wins the most material without, in the case of 2 or more correct moves. having to
decide which is positionally best. However, if there are 2 or more correct moves. the
program does not have to find all of them in order for the problem to be considered

solved.

5.2.3. Initial Results

How well does our program perform? Figure &.2 illustrates our initial results, com-
paring the number of problems solved by our program. called Conspire, and Phocnix.
These experiments were done on a SUN 3/50 using the problems from the books Win
At Chess { 1C) and Encyclopedia of Middl: game Combinations (EMC). Admittedly.
the results are not impressive, but they do provide some interesting insight in how +he

conspiracy numbers algorithm behaves in this application.

Win At Chess
Time Conspire P hocnix
(minutes} ! Correct Max Depth | Correct. Depth
3 157 12.1 256 6.1
10 208 1¥.4 253 6.9
30 223 20.6 209 7.6
60 231 20.9 272 R.1

Encvelopedia of Middlegame Combinations
Time Couspire Phoenix
(minutes) | Correct Max Depth | Correct Depth
3 15 13.2 13 6.0
10 27 17.5 19 6.9
30 35 20.3 D7 7.1
60 3R 2.8 HR 7.8

Figure 3.2 Number of problems solved.

)

39

One interestinz statistic is the average imtial conspiracy threshold of correctly

o

dlustrates the value of ierative deepening on the conspiraey threshold.

salved probiems. For problems solved in under 60 minutes, this average is about 2.1
On the other hand, the averagze number of nodes expanded when these problem are
finally ~olved is about 62.000 which indicates that wost of these problems are solved
early i the search. As figure 5.3 shows, the additional effort in reaching an average of

530,000 Cvpansions results in answers achieving an average threshold of about 11 This

Win At Chess
Time When Solved Iinish
{minntes CT Nodes | CT Nodes
3 2.1 12,013 5.2 31,129
10 2.2 25,962 7.1 113,816
30 2.3 40,962 9.7 336,135
60 2.4 59,521 11.1 0638 935

Faucvelopedia of Middlegame Combinations

Time

When Solved

Finish

(minutes T Nodes | CT Nodes

3 2.0 10,184 | 5.1 3719
10 2.3 24,097 | 6.6 102,121
30 2.5 52,681 | 82 312,605
() 2.5 60.1900 | 9.5 597.014

Figure 5.3 Conspiracy thresholds of solved problems.

Of additional interest as the average conspiracy threshold of incorrectly solved
problems over time, Figure 3 1 shows these statistics. These averages are considerably
higher than the average conspiracy threshold when the other problems are solved at.
which indicates that these jucarreetly solved problems are more difficult to <olve

correctly.

WAC [EMC
Fime
{imnutes) T T
3 1.2 K
10 5T 1.6
30 7.9 5.8
6()) 6.6

Figure 5.1 Final conspiracy thresholds of unsolved problems

As Figure 5.2 elearly indicates, Phoenix solves more problems than Conspire does
by hmning v depth of search to a fraction of what Conspire achieves. Of the 395
problems that both programs were tested on, Phoemy and Conspire could both solve
219 of them. On the other hand, Conspire solved 20 of the problems that Phoenix

could not solve, indicating that these problems required more depth than that what

"hoenix was capable of reaching, and Phoeniy solved 81 of the problems that Conspire
could not solve, indicating that for these problems Conspire does a lot of searching
deep in the tree that is unproductive. Notice that after 30 minutes, the average max-
imum depth levels off at about 20.5. This is because the maximum depth that the
alrorithm was allowed to search to was 21. Without the depth limit, there may have
been o considerably greater wasted effort by Conspire in searching even deeper an the
tree.

Finaliv. two major concerns of the algorithm are its spice reguirements and rate
of node generations. Figure 5.5 compares the space requirements and number of nodes
sencrated over time by Conspire with that of Phoenix. Here Phoenix generates i
significantly greater amount of nodes per time unit than Conspire does. However, Con-
<pire does generate fewer nodes i order to correctly solve about the same number of
problems. and hence can be judged superior in this respect. In other words, Phoecmx
expands many podes that Conspire may find unnecessary to expand. But even if we do
stznificantly speed up Counspire, its memory requirciments can easily exceed the
memory available to the system because it stores the search tres in memory: Phoenix
on the other hand does not expheitly store the search tree hut does use fixed sized

tables to store information about the successive search trees it bwlds.

Time Conspire Phoenix
(minutes) nodes byvtes nodes byt e~ |
3 2h62 177830 112531 !

10 90969 6$3:3:3370 3013114 ¢
30 291906 2039333 1019293 -
60 ANBARS BRTHGT2 | 2001220 .

Figure 5.5 Storage requircments for search trees

72

5.2.4. Search Behavior

As was noted once before, the algorithm consistently explores one branch until
there are no appropriate conspirators below that son. When there are no conspirators
below that branch, and there are alternative branches with appropriate conspirators
beneath them, then the algorithm explores the left most one of these alternative sons.
Often. however, these alternative sons do not get much (if any) chance for considera-
tion of being explored. This results in circumstances where about 80% of the nodes

below a certain node can be found below just one son as is illustrated in figure 5.6.12

10%

80%

Figure 5.6 Distribution of nodes.

A more detailed examipation of how the search effort was being distributed was
done on 93 problems. Of the 40 problems that were solved, 37 had the son correspond-
ing to the correct move explored much more often than the other sons. For the remain-
ing 3 problems, the exploration effort was spread more evenly across several sons of the

root node and the son corresponding to the correct move was not explored the most.

12 This is approximately how it looks like beneath nodes on level 0 and 1 of the search tree.

73

Of the 53 problems that were incorrectly solved, 31 had the son corresponding to
the correct move appearing too far down the lir* because of a low initial evaluation,
which meant that this son bad to wait a long time before being considered for explora-
tion. Ip fact, in the majority of these 31 problems, the correct move was bardly
explored at all! In 19 other problems, the correct move was explored much more than
the other moves. However, some of the other moves had minimax values that were
equal to or bigher than the minimax value of the correct move. Here the problem
appears to be that the algorit'hm may not have put any effort into trying to lower the
other moves' minimax values. For the remaining 3 problems, the search «ffort was on

moves that appeared further down in the list than the correct move.

There may be two methods we can use to rectify the above problems. The first
ope is to enhance the static evaluation function so that we can improve the ordering of
the sons.13 A second and more significant improvement would be to modify the algo-
rithm so that it spreads the exploration effort more evenly across the alternative sons

(i.c. introduce more breadth at the nodes).

Another problem with this algorithm is that its focus is on finding the most accu-
~ate root value and not on finding the best move at the root. This leads to situations
where a best move is already obvious, but the algorithm bas not converged yet. To see
how this cap occur, suppose a local Vmin and Vmez can be computed at each son of
the root, using the current conspiracy threshold. If one of these son’s local Vmin is
greater than ali other sons' local Vmaz, this son is clearly the best. In fact, it can be
shown that the values for the global Vmin and Vmaz are the same as the values of this
son’s local Vmin and Vmaz. The consequent of this is that the algorithm will only con-

sider exploring this son, trying to find its true value, until it converges. In situations

13 Alpha-Beta also has an ordering problem. Its efficiency depends on how good the ordering is
at the interior nodes. The minimal tree is only possible when the best move is placed first at all in-
terior nodes. In Conspiracy Numbers, ordering may not only determine how efficient the algo-
rithm is, but may also determine whether it is possible for the algorithm to find the solution.

74

like this. we can either balt the search altogether, or we can increase the conspiracy
threshold high enough so that more than a single branch has a chance of being con-

sidered and the algorithm can again separate out this best move.

5.2.5. Adjusting Parameters

There are primarily two parameters to the algorithm that may affect the number
of problems Conspire can solve correctly. The first such parameter is the size of the

¢ Je values. Figure 5.7 shows how many problems are solved when the size of

rar
the range is varied. These results are about what was expected. The table shows that
too small of a range does not provide enough distinction between moves (i.e. not
enough exact information of what is being won or lost) and therefore the number of
problems solved is lower. It also shows that incveasing the size beyond a particular
point does not help solve any more problems. The increase in the time to complete the
search as the range size is increased is due to the Storage Intensive implementation

version of - conspiracy numbers algorithm that was used. Choosing an appropriate

range size finally involves striking an appropriate balance between time and problems

solved.
Encvclopedia of Middlegame Combinations
Range Nodes Expanded Average Time
to Completion
Size 100,000 | 200,000 | 300.000
(seconds)
correct correct correct
5 23 27 32 1207
9 27 31 33 1457
13 26 31 35 1677
17 27 33 34 1751
21 29 35 35 1930
25 29 39 35 1987
| 29 29 35 35 2055

Figure 5.7 Results for different range sizes.

The second parameter is the maximum depth we allow the algorithm to search.

Figure 5.8 shows how many problems are solved for a few different maximum depths.

Here the program appears to do better for maximum depths less than 21, which was
used for all experiments this far. Since decreasing the maximum depth increases the
breadth of the search, it seems to confirm our belief that there is too much depth and
not enough breadth in the conspiracy numbers algorithm used for this particular appli-
cation. However. these results do not show that there is a clear relationship betwecn
decreasing maximum depths and an increasing number of problems solved indicating
that some problems need more depth to be solved whereas others need more breadrh to

be solved.

Encyclopedia of Middlegame Combinations

Maximum Nodes Expanded Average Time
to Completion
Depth 100.000 | 200,000 | 300.000 ‘
(seconds)
correct | correct | correct

21 29 35 35 1930

16 31 37 40 1910

15 32 36 37 1976

12 32 37 38 1910

Figure 5.8 Results for different depth limits.

5.2.6. Summary of Results

These initial results are somev _at disappointing. This is mainly due to the wide
gap between the number of problems solved by Phoenix and Conspire. But from these
experiments we were able to identify some of the problems that the comspiracy
numbers algorithm has in this particular application. Problems dealing with the cni-
teria by which leaf nodes are ordered. or the fact that there is too much depth and not
enough breadth in the algorithm, or the fact that the focus of the algorithm is too
much on finding ‘he right root value, can all be somewhat rectified. These problems
give us some direction for further work on this algorithm as well as a hope that at least

some improvements to it are possible.

Chapter 8

Improving the Search Strategy

How can we improve the conspiracy number algorithm? The goal is to improve
the speed at which convergence occurs, as well as the speed at which the best answer
may be discsvered. This can be done by altering the order in which nodes are exam-
ined as well as the set of nodes that are explored over a single run. In other words, we
want to change the search strategy without altering the basis of the algorithm. In
order 1o see where and how improvements can be made, we must first re-examine the
parts of the algorithm that directly or indirectly influence the set of nodes that it

explores.

One way to view the algorithm is that it tests sets of leaf nodes to see if they will
conspire to change the root node’s value. I the #!gorithm is testing the possibility of
the root node taking on a certain value. it should obviously first test the smallest sets
of leaf nodes that could cause such a result (i.e. the minimal conspiracy zet) because
conspiracies among fewer nodes are more likely than conspiracies among many leaf
nodes. The assumption here i« that the probabilities of leaf nodes changing their value
to any other value are approximately equal. In reality though, we sometimes know
which leaf nodes are more likely to change their value appropriately, and hence we
could test sets containing these nodes first and hopefully achieve the desired result
more quickly. Conspiracy numbers play ap essential role in guiding the search pro-
cedure down the tree in order to locate the leaf nodes that are members of these
minimal copnspiracy sets. This forms the basis for the algorithm and cannot be

changed.

During each iteration the algorithm must choose one leaf node, which must be a
member of 3 minimal conspiracy set, for expansion. There are parts of the algorithm

tkat influence this particular process, and it is these parts that we want to consider

76

changing. By changing these parts, we can change the set of nodes that are examined

by the algorithm as well as the order in which the nodes are examined.

To find such a leaf node, we must traverse the tree using conspiracy numbers as a
guide. At any interior node we traverse through, several sons may have an appropri-
ate leaf node below them. A rule is used to choose the order in which alternative
branches are considered. McAllester's original rule required that the left most such son
be chosen. From initial experiments (Chapter 5). the resulting depth first behavior
docs not produce good results. Obviously this is the place where we can change such

behavior.

T'he order in which the nodes are placed in also has an effect on the order in which
nodes ure explored as w-i" »< the set of nodes explored. Originally. the nodes were
ordered according to thi . wiral value so that the better ones appear first and there-
forc ure explored first. But, in the application of tactical chess, this value does not
reflect the pot. atial value of a node if it were explored further so that there cannot be
a guarantee that the first node is the best. Maybe if we can use additional knowledge.
without affecting the node values. we can place nodes with a better potential f~st and

get better results,

At any one time. the algorithm will only consider choosing leal nodes from
minimal conspirator sets for changing the root value to either Vmn or Vinar. Since
values outside the range [Vmin, Vimas) are considered unlikely. it makes no sense test-
ing conspirator sets for them. The reason we specifically choose only sets for Vmin
and Vmar is because the algorithm tries to narrow this range gradually by proving
that the leaf nodes in these minimal conspirator sets do not conspire. But conspirator
set~ ;ur other values in this range can also be considered. if another approach for nar-

rowing this range is desired.

If we consider using minimal conspirator sets for Vmin and Vmaz only, we should

R

also identify what influences their value. Both Vmin and V'maz are a function of the
conspiracy threshold (CT). Recall that the sequence of values that CT can take on is
fixed (i.e. CT = 23,...,MazCT). Also recall that the value of CT is incremented
whenever the algorithm converges on a root value (i.e. when Vmin = Vmarz). To
change the sequence of values that Vi and Vmazr take on during a run. we can
change the definition of convergence for the algorithm (i.e. allow it to occur earlicr) so

that we alter the soints. 1o a particular run, whep CT is incremented.

For the four sections in the algorithm that were identified as candidates for
improvements, examples of alterations that wo examined will be presented. The
~osults of applying these alterations will be preser | at the end of this chapter. An

. wbrevimed 1 orsion of this material appears in [KIN&R].

8.1. Alternative Rules for t*hoosing a Branch

How can we improve on the original rule 1 -:d for choosing among alternative
branches” Obviously any new rule should = .dress some of the nroblems that the old
rule may have caused. One such problem is that McAllester's original rule produced
an algorithm with a depth-first behavior that had difficulty finding the correct answer
quickly. It was suggested that more breadth would spread the exploration eflort more
evenlv in the tree and therefore probably find the solution more quickly. Another
problem is that the rule does not result in the ideal node being picked for expansion.
For example. if it were possible, it would make more sense to first test those minimal
conspirator sets that are more likely to cause a particular change in the root value. To
a certain degree it would be possible to identify the leaf nodes of such sets if we had a
bit more knowledge about the possibility of a leaf node changing its value and how it

would change its value.

In an attempt to correct these two problems, several new rules were devised.

These rules fall into one of two categories according to whether they require additional

9

computed information to determine which branch should be descended. lnterestingly
enough, the rules that introduce more breadth into the algorithm all fall into t*e
category of not requiring additional computed information to make this decision
whereas the rules that try to pick the "ideal” node to expand do require computed
information in addition to that which is currently provided in the data structures and

hence falls into the other category.

6.1.1. Rules Requiring No Additional Computed Inforaatics

In order to provide more breadth. we will usc aro. « ~ohir a proach for spread-

ing the exploration effort among more of the altern» .- o~ In McAllester's
approach. the seareh for whicl - . descend down always started at the first son
and stopped when an approps -h was found. When the algorithm traversed
through a node many times. t, vally resulted in the same son being chosen many

times in succession. In a round robin approach. the search always starts at the branch
immediately adiacent to the one that was previously chosen and cycles around until an
appropriate branch is found. If there are ~everal appropriate branches that can be des-

cended. this approach then gives them each a ..er opportunity of being chosen.

To help deseribe and name the various types of round robin we intend to use, new
terminology will be i vtroduced. Thi: new terminology relates to how 1odes are viewed
by the search routines Rule_out_Vmax and Rule_out_Vmin. Basically, we want 1o

classily a node as being either an OR node or an AND node.

Suppose the goal is to find a leaf node that is a member of a minimal conspiracy
sct for increasing the root value to Vmax. The routine that traverses the tree in
search of such a leaf node (1.e. Rule_put_Vmax) will visit alternating maximizing
(MAX) and mn mizing (MIN) nodes. At MAX nodes, at most one son has to increase
its value to Vmax in order to cause the MAX node to do likewise. In this instance, the

algorithm needs to show only that one of these son’s value will increase to Vmax. and

RO

that is why we will call MAX nodes OR nodes. At MIN nodes, one or more sons have
to increase their value to V'max in order to cause the MIN node to do likewise. In this
in~tance, the algorithm must prove that all the necessary sons' values do increase to
Vimax. and that is why we will call MIN nodes AND nodes.!4 So another way of view-

ing the traversal is that of visiting alternating OR nodes and AND podes.

The routine Rule_out_\Vmin traverses the tree in search of a leaf node that i~ a
member of a minimal conspirator set >r decreasing the root value to Vmin. It views
AMIN and MAX podes oppositely: M\ nodes are instead viewed as AND nodes and

MIN nodes are viewed as OR nodes, but for the same rea<ons as before.

Breadth can be added to the search by simply altering the search strategy at OR
and AND nodes. One simple modification is to hay - a round robin approach for select-
ing among alternative branches to descend at either the OR nodex, or the AND nodes.
or both.

At OR nodes. several sons may have the minimum number oi conspiracy nodes
beneath them. Round robin will change the behavior at OR node- that if one of
these sons is explored once (1.e. has a leaf node beneath it expanded) ' - his expanded
node fails to "conspire successfully”, another son will be chosen to be explored the next
time (even if this son still bas the minimum number of conspiracy nodes beneath ir).
By spreading the exploration effort over more sons, we hope that a son “hat achieves
the desired value more quickly than the others will be found. and we hope that on
average the number of explorations of Oil nodes that it takes to achieve the desired

value is reduced.

At AND nodes, all sons that have conspiracy nodes beneath t-m, that are neces-

sary for achicving a desired value, must be eventually explored. There is no advantage

14 Alternatively, we could have renamed MAX/MIN nodes as MIN/SUM nodes respectively, ac-
cordirg to the operations that were used to compute the conspiracy numbers for changing their
value to Vmax.

81

that can be gained by spreading the exploration eflort across these sons, and therefore

it would be useless to apply round robin at AND nodes.

ln ad.dition. we could apply forms of limited round robin to these podes. For
example. we can do a round robin among alternative brarches if they are in the firv
55, of the son~. This would spread the exploration cffort among only the best sons.
Another example is that of exploring all the alternative branches an equal number of
: < (i.e. ap:'v round robin for only a fixed number of rounds) and then revert to
another rule (eq. MeAllester's original rule. or a rule limiting the round robin to the
it "5 ¢ ol the branches). This would give each eligible son an equal chance of reduc-
ing the number of conspirators it requires to change its value appropriately. and after

this the exploration effort may be concentrated on only the best of the sons.

As can be seen. there are many rules that can be made up and tested. The rour

robin rules that we tested include:

o applying round obin (RR) at the OR nodes and applyving McAllester’s rule at the
AND We call this version OR RR.

e applying round robin at both OR and AND podes. This represents a breadth first

approach to the algonithm. We call 'us OR RR + AND RR.

® applying a partial round robin at (/' nodes where only the first 25¢¢ of the sons
will be considered in the round robin (but if the only alternative branches are not
i the first 259 . then McAllister's rule will apply) and applying McAllester’s rule

at AND nodes. We eall this version OR PRR (Partial Round Robin).

e applying round robin at OR nodes, but limiting it to one round and then revert-
ing back to McAllester's rule, and applying McAllester’s rule at AND nodes. 'f'his
is interesting because it provides the minimum breadth possible and hence we will
call this version Minimal Breadth. Also interesting is that as a result of giving

each son at least one chance of being explored, many of them will be expanded

82

much sooner than previously under McAllester’s rule.

Since breadth is being added to the algorithm, we do expect an improvement over our
original version by all the above versions in the pumber of problems solved correctly.
Of the above versions. the one that may out-perform the others is the OR PRR version
because it concentrates more exploration effort on the best sons. The Minimal Breadth
version mayv have the worst performance of the above versions mainly because it has

the lei amouns of breadtl.

To impicm 1t tiese round robin rules involves only a few simple modifications to
the dota irvctures and scarch routines. Basically we just need to store an index at
each node that indica es which son was most recently explored. In the search routines,
the search o which branch to descend down begins at the son adjacent to the most
recently cxtior-d son (but only at those types of nodes where round robin is to be
implemonted o). In addition. an extra field may be required to count the number of
rounds mad. through all the sons for those versions that limit the round robin to a

fixed nutmber of eycles.

6.1.2. Rules Req! iring Additional Computed Information

What is the "ideal” node to expand? Suppose we are interested in finding a leaf
node that i+ a member of a miniwral conspiracy set for changing the root value to
Voar and suppese there are several such minimal conspiracy sets. If we -- | com-
pute the probability that each leaf node has of changing its value to Viiasz, we can
then compute the probability that each minimal conspiracy set has of changing the
value of the root node to Vmar. Our definition of the ideal leaf node to expand is the
one that has the highest probability of changing its value appropriately and is a
member of the minimal conspiracy set that has the highest probability of changing the

root value to Vmar.

83

Wby would this be the most idea! leaf node to expand’ Ope way to view this is
that if the algorithm is trying to rule out Vmaz, then it should test the most likely
minimal conspiracy sets for changing the root value to Vmazr first. Another slightly
different angle to view this from is to assume the objective is to change the root value
to Vinn-. and te do this the algorithm should explore the leaf nodes of the most likely
minimal conspiracy sets for changing the root value to Vinaz first. For similar reasons
we want to choose the leaf node that has the highest probabit v of changing its value

appropriately andis @ member of the chosen minimal conspiracy set first,

If there is o function that estimates the probabilities of a leaf node changing its
value 1o cach legal node value, it would be simple to compute the probabilities of a
minimal conspiracy set being successful at achieving a certain value at the root (i.c.
just multiply together the probabilities that the member leaf nodes change their value
appropriately). However. there are several reasons why we may not want to work with
probabilities. Working with probabilities wonld mean that we have to use floating
point arithmetic and store floating point values at podes which could be expensive.
Also. depending on how much knowledge is put into the function that estimates theae
probabilitics. they are just a guess at best. Therefore. to reduce computing and
«torage costs, we will use ‘ntegers and only approximate the meaning and computing of

probabilitics,

At leafl podes. the likelihood of a leaf node achieving a certain value will be
represented by an integer that is in the range [0.MazLike], where the low end of this
range represents a low likelihood of the node achieving that value. To compute the
likelihood of a set of leaf nodes conspiring successfully to change the root value, we will
sum together the probabilities that the member leaf nodes change their value
appropriately. Normally, a multiplication operation would be used in such a cir-
cumstance. but since we are working with integers we chose to use a summation opera-

tion so that the resulting numbers do not become too large.!> To compare the

16 The multiplication operation will very quickly produce large numbers, especially in chess
where the branching factor is about 40,

LE]

likelihood values between sets of different sizes then < uld be based on the average

likelihood value per member.

There are some simple recursive relations that we would like to use for computing
likelihood values of a node from the likelihood values of its descendants. In what fol-
lows. let m denote the minimax value of a node, v the value we would like to change
m to. «:d J an intericr node. Let tLIKE(r) denote the likelihood of increasing a

node’s value to ¢ and $LINE(r) denote the likelihood of decreasing it to v.

At a Jeaf node. the omputation of the likelihood values is handled by a functi .
Generally. this function will return a value from the range [0.MasLike] 1o indicate how
likely it is for the leaf wede’s value to change to another value by being scarched
deeper. There are many methods available for computing likelihood values at leaf

nodes. An example of one such method will be p- -ented at the end of this section.

At a maximizing interior node. to increase the value t -~ +uires only one son to
change its value to v. The number of conspirators to chan. wde to vis juct the
winimum number of conspirators to increase one of the sons to v. Nince the algorithm
is only interested in those sons that have this minimum number, the likelihood of
increasing the node to v is simply the maximum likelibood of increasing one of these

sons to r. This vields the following relation:

. 0 for all v=m
WAKE,(v) = MAX tLIKE(v) for all ¢>m

all sons k ¢

where

KN = {I:I ke SONS, and tCN(v) = tCN (v) }

To decrease the node's value 1 v requires all sons whose value is greater than ¢ to
decrease their value 1o v. Given the minimal set of conspirators for decr--sing each

son to v. all members of each of these sets must conspire together to decrease the

85

node's value to v. The likelihood of this occurring is simply the sum of the likelihoods

of each of these sons decreasing their value to v. Therefore:

- 0 for all vzm
JLII\E’(P)- E ILIKE(v) for all v<m

oll gons k<« K
where
N = {H k€ SONS, and v < m }
For minimizing interior nodes. the following dual relations apply:

for all vSm

o 0
VLINE (v) = Y tLIKE(v) for all v>m
all sons ke K

where
N = {,‘:i k€ SONS, and v > m]
and
” _ 0 for all v2m
LN L) = MAX SLIKNE(r) for all v<m
all <ons k «
where

N o= [kl k€ SONS and $3CN(v) = 1N (r) }

How will the search routines use these likelihood values? At OR nodes, where
these likelihood values are computed using the MAX operation, the algorithm will
traverse down the branch that has the lowest conspiracy number and highest
corresponding likelibood value. At AND nodes, where these likelihood values are com-
puted using the summation cperation, the algorithm will descend down the "ran-}

that has a non-zero conspiracy number and the highest corresponding average lineli-

86

hood value per conspirator. Note that this procedure will not always find the leaf node
with the highest likelibood value if it is a member of a larger conspiracy set. But it
should always pick a leaf node with one of the higher likelihood values from such set«
Overall though, this procedure does approximate our objective of finding the ideal I~ .1

node to expand. We will call this enhancement simply Lskelihoods.

Since we are already using the storage intensive implementation version of
spiracy numbers in our chess application, we will use an identical approach for 1}
mentine Likelihoods. That is. we will store a likelihood value for each legal ne alue
at all the nodes. and update them in a similar fashion. We will initially allocate two
bytes per likelihood value. which may be excessive but allows us to experiment with
this enbancement more freely. One byte would be sufficient if MazLske is low enough
(cg. Martike = &), especially considering that the size of the vast majority of con-
spiracy sets it considers exploring if fairly small (i.e. recall that from previous cxperi-
ments the maximum threshold reached was only 26, so with VarLike = & the mix-
imum livelihnod the algorithm may be looking at when it searches for a leaf node may
he 25 x ® o= 2004

The likelihood estimation function we will use to compute the likelihoods ut a leaf
node in our experiments is going to be simple. The values that will be used at the leaf
node~ for this will be in the range [0.8). They will reflect the accuracy of the leal node’s
current value so that values further from the current value are assigned lower likehi-
hoods because they are less likely to be achieved quickly by being explored further.

specifically. the following relations were used to compute the likelihood values at leaf

nodes:

&8 f e=m
7 i (e-m)>0 and (v = m) =< 0.1 * Rasze
5 if (v—m)>0.1 *Rasize and (v — m) = 0.2 * Ras:ze

tLIKF(v) =4 3 if (v=m)>02*Rsize and (v — m) s N.35 * Raize
1 if (v-=m)>035*Razeand (v — m)=< 05 * Raize
0 if (v-=m)>05*Rau:ze
0 if v<m

\

87

and
g8 if m=y
7 if (m-¢)>u and (m = v) € 0.1 * Rasze
5 if (m=v¢)>0.1 "*Rsze and (m = v) € 0.2 * Raize
\LIKE(v)= { 3 if (m— v)>02*Rsze and (m = v) £ 035 * Raize
1 if (m = v)>035"* Razeand (m — v)< 05 * Rosze
0 if (m=v)>05"*Rsze
L 0 if mc<uv

where Ilsize is equal to the size of the range of legal node values. The numbers in
these relations should be taken as initial numbers only: they are based strictly on

intuition and not on experimentation.

What kind of results can we expect by using this enhancement? We can expect at
least an increase in the pumber of correctly solved problems because of the (hopefuliy)
improved selection eriteria. But one thing that is certain is that. unlike the round
robin enhancements deseribed earlier. its is difficult to predict how this enhancement

will affect the algorithin’s behavior.

6.2. An Alternative Definition to Convergence

A problem with this algorithm is that its focus is on finding the most accurate
root vilue and not on finding the best move at the root. This leads to situations where
a best move is already obvious. but the algorithm wastes valuable time because it has
not converged vet. To understand this problem more. we will first look at how such «
situation can be detected and why it is felt exploration effort is being wasted when this

OCcCurs.

Suppose that a local Vmen and Vmaz can be computed for each son of the rot
node using the current conspiracy thresaold (CT). Assuming that one of these son’s
local Vmin is greater than all the other sons’ iocal Vmaz (i.e. this son's pessimistic
value is greater than the optimistic value of all other sons), clearly this son would be

the best. Assume that we have such a situation, where one son is clearly the best, and

88

the algorithm has not converged yet (i.e. Vmin # Vmaz). What would the behavior of

the algo. *hm be like at such a time?

To understand what the algorithm will try to accomplish, we will first try to find
the relationship between the best son's local Vmin/Vmaz and the global Vmin/V'maz.
For convenience, let us call the best son's Vmin best_Vmin and the best son's
Vmar best_Vmar. Recall that V'maz is the largest value whose conspiracy number is
less than CT und the conspiracy number for increasing a maximizing node is computed
using the MIN operation. We know that at the best son the conspiracy number for
best_Vmar is less than CT and tlat at all other sons the conspiracy numbers for
besi_Vmar is greater than or equal to CT. In addition. the conspiracy numbers for
best_Vimar + 1 at all sons is greater than or equal to CT. Thercfore we have at the
root that CN(best_Vmar) < CT and CN(best_Vmar + 1)2 CT. and hence
Vimar = best_Vmar. Vmin, on the other band is the smallest value whose conspiracy
number is less than CT and the operation used for computing it at the root node is the
SUM operation. We know that at the best son the conspiracy number for best_Vmin
is less than CT and that at all other sons the conspiracy number for best_Vmin is 0
(because all their node values are less than best_Vmin). In addition, the conspiracy
nunmber for best_Vinin — 1 obviously is greater than or equal to C'T at the best son.
Thercfore, we have at the root that CN(best_Vmin) < ¢CT and

CN(best_Vmin = 1) 2 (T, and hence Vi = beat_Vmin.

How will this situation affect the search routines that find leaf nodes to expand’
Clearly the minimal conspiracy sets for the values in the range [Venin, Vmaz] will all
appear under the best son. The result is that the search routines will only pick leaf
nodes from under the best son to expand. The best son will continue to be explored
until the algorithm converges. at which point we do not only have Vmin = Vmar but
also best_Vmin = best_Vmaz. ln other words, the focus of the algorithm has becn

shifted to finding an accurate value for the best son, or the best move that the

89

opponent can make if we made the initial move.16

It is probably wasteful exploring the best son any further. Instead it may be
better to try to prove that this is the best son for a higher conspiracy threshold. At a
bigher conspiracy threshold. the range of likely node values of some of the other sons
may overlap the range of likely node values of the best son, and this would mean that

other sons must eventually be considered for exploration.

So what changes to tue algorithm are necessary? What we will propose to do is
extend the ¢: nition of convergence. Currently convergence is defined as occurring
when Vmin becomes equal to Vmaz. We will loosen this condition by allowing conver-
gence also to occur when one son at the root becomes clearly better than than the
other son<. If convergence occurs because one son is clearly better than the other sons.
but Vimin does not yet equal Vmaz. the top level routine will return control to the
basic contrcl routine which in turn will increment the conspiracy threshold, and this is

exactly what we want to accomplish under such a circumstance.

To implement this is simple. The algorithm needs to only keep track of the
current local Vmar for each of the sons of the root node. To do this, the algorithm
computes the local Vmar fi: each son before entering the main loop of the top level
routine. and updates the local Vmar corresponding to the son that was explored after
each iteration. To check if one son is clearly the best, the algorithm needs to only
count the number of local Vmaz's greater than Vinin, and if this count is equal to one

then the condition is true because Vmin = best_Vmin and best_Vmaz > best_Vmin.

We will call this enhancement Best Move Cutoffs. But what kind of results can we
expect from it? First, the goal of this enhancement is to find the best son earlier and

try to “reprove” it at higher conspiracy thresholds. Therefore we expect that problems

18 Note that it is possible for Vmin and Vmax to diverge. This could lead to a state where other
sons may be considered for exploration. However, the probability of Vmin and Vmax diverging is
small.

90

will on average be solved to a higher threshc!d. But if there will be an increased
number of correctly solved problems is not obvious. One could imagine that if less
effort is wasted on trying to find the accurate value of the best son that the likelihood
of finding a better son. which may turn out to be the "correct” one, may increase.
Thercfore, we can hope for a marginal improvement in the number of problems solved

correctly.

Note that now the algorithm is in effect using a range of likely node values at
cach of the root node’s sons to detect which son is clearly the best. This feature makes
it similar 1o the B* search algorithm. Still the overall procedure used to grow the
search trees are entirely different. but we have moved one step closer towards a hybrid

of the two algorithms.

6.3. Considering Conspiracy Set for Alternative Values

Currently the algorithm only considers choosing leaf nodes from minimal con-
spiracy sets for changing the root value to either Vmin or Vinaz. Among the set of
conspiracy numbers corresponding to the values in the range [Vmi. Vmaz], the largest
one corresponds to either Vmin or Vmar. Since the conspiracy number for Vmmin and
Vinar are also the closest to the conspiracy threshold. these values represent the most
likely 1o rule out. Therefore the objective of the current procedure is to narrow the
range of likely root values by trying to .now that the values which represent the ena

points of this range are unlikely to occur.

We can change this general procedure by altering the overall objective. Instead
of trying to rule out a particular value, let's have the algorithm try to more success-
fully change the root value. The most likely value to change the root value to is either
l'rool + 1 or Vroot — 1, whichever has the lowest corresponding conspiracy number.
To implement this change is simple because it only involves altering the condition that

determines which search routine to call and also altering the parameters to these

91

routines. In other words, the altered portion will (approximately) appear as:

if CN(Vroot=1) € CN(Vroot+1)
Rule_out_Vmin (Vroot-1);
else
Rule_out_Vmax (Vroot+1);

We will call this alteration Minimum Windows because it is analogous to minimal win-

dow searches of minimax trees [MRS87].

As for the results, there should be more frequent changes in the root value
because of this alteration. But what is not at all clear is the effect that this may have

on the number of problems it correctly solves.

6.4. Ordering the New Leaf Nodes

One problem we currently have in our program is that there may not be coough
distinction between nodes due to the small range of node values we use. The result of
this is that when it comes to ordering new leaf nodes based on these values, all what is
occurring is that they are being grouped together according to their value. In other

words. there is limited ordering of nodes within these groups themselves.

To provide some type of ordering within these groups. we will assign a secondury
value to each node o which to base this ordering on. Application dependent
knowledge will be required to compute a secondary value. So in chess, for example, we
could give each move bobnus points for such things as moving in a forward direction.
capturing a picce, or putting the opposing king in check. These bonus points will be
stored in the secondary value. It is boped that this will overall improve the ordering of
the nodes. by putting the better ones in front. and hence should lead to a marginal

improvement in the results.

92

8.5. Results

All enhancements presented in this chapter were applied to the Conspiracy
Numbers algorithm in the program Conspire (see chapter 5). Experiments were done
using the smaller set of problems taken from the Encyclopedia of Middlegame Combina-
tions. The programs, each representing a different version of the algorithm, were run
on each problem until they had generated a search tree of 300,000 nodes (approai-
mately 30 minutes on a SUN 3/50). The emphasis in the analysis of the results from

these experiments is on the number of problems each program correctly solved.

Figure 6.1 illustrates the performance of two programs that differ only in the way
they order new leaf nodes. The first program, which is the original Conspire, employs
the original ordering method which is based completely on the sons' values. The
second program employs the enhanced ordering method described earlier in this
chapter. Although the difference in performances is insignificant, these results do sug-
gest that our enhanced ordering method is inferior to the original. More importantly,
these results show that it is difficult to estimate which move is better, without more
extensive knowledge, when there is no difference in the evaluation of the resulting
bouard positions and that the algorithm should perhaps rely to a lesser extent on the

ordering of nodes.

93

60

50—

40—

Onginel
Enhanced

.........

Solved 30 —

20—

10

1
60 130 1 éO 240 360 360
Nodes Generated (X 1000)

Figure 6.1 Results for different ordering methods.

Figure 6.2 illustrates the performance of the four round robin variants of the
Conspiracy Numbers algorithm along with the performance of the original algorithm
proposed by McAllester. The results clearly show the advantage of adding some
breadth to the search and that the round robin versions all have comparable perfor-
mances. The round robin versions here gave more sons a better chance of being

explored, thus increasing the chances of finding the best move more quickly.!?

In comparing the problems solved by each, all algorithms were able to solve 32
common problems while 43 were not solvable by any. Of the remaining 20, 1 required

the depth possible only through McAllester’s version, and 4 required the breadth of the

17 Experiments with the Minimal Breadth version were also done using the problem set taken
from the book Win at Chese. The results of these experiments are reported in [Sch88)].

94

round robin schemes. Among only the round robin versions, 39 problems were solvable

by all while 44 were not solvable by any.

60

50—
Min Breadth

==_ 2R KR ano rH
OR PRR

40—

Solved 30§~

20
10—
0 —
60 120 180 240 300 360

Nodes Generated (X 1000)
Figure 6.2 Results for the round robin version.

Figure 6.3 illustrates the performance of a program using the likelihood version of
the Conspiracy Numbers algorithm. These results show that there is a small, but con-
sistent improvement in the number of correctly solved problems over a program using
the original version of the algorithm. The problem with the likelihood version appears
to be that it has too much of a depth-first behavior: it always chooses to descend down
to the left-most son that has the appropriate conspirators beneath it as well as the

maximum likelihood for causing the desired result.

60
50
. -<ORRR
- - - - -
40— -7
lkelhoods
Mc Allester

Solved

204

10—

60 1 '50 1 2&0 25 330 360

Nodes Generated (X 1000)

Figure 6.3 Initial results for the likelihood version.

Two simple enhancements. which add more breadth. were made to this likelihood
version. The first enhancement involved applying a round robin technique for choosing
which branch to descend down. We will call this new version simply lskelshoods + RR.
The second enhancement involved altering the likelihood estimation function at leaf
nodes so that more nodes have a better chance of being explored. Specifically. the

relations that are used to compute the likelihood values at leaf nodes will be:

2 if e=4q
. 1 if (v=-m)>0 and (v — m) < 0.35 * Ras:ze
ILIKE(v) = 0 if (v—=m)>035"* Rs:e
0 if v<m

and

2 if mm=y
.. 1 if (m=-1v¢)>0 and (m - v) £ 0.35 * Ras:ze
WIKE()= 1 o it (m - v) >0.35 * Raize
0 if m<v

where f2siz¢ is equal to the size of the range of legal node values and m is equal to the

node’s currept mimimax value. We will call this npew version likelihoods’ + RR.

Figure 6.4 illustrates the performance of these likelihood variants. These results
clearly show that adding breadth allows the algorithm to solve more problems. How-
ever, we were only able to raise the algorithm's performance to that of the round robin
version~. But at what cost do we achieve this? The additional overhead in using and
computing likelibood values resulted in an increase in the average amount of time
required 1o search such a tree by 36¢. For comparison purposes, the round robin tech-
nigues increased the average time by less than 2°¢. Certainly the additional costs of
using likelihood values is not worth the increased performance we were able to get

through .

60

50—

R KR
______ ~hkelhoods’ ¢ RF

..................... hkelihoods ¢ RK

104 e
solved
20

10—

60 JO 110 2}0 ?% 360

Nodes Generated (X 1000)

Figure 6.4 Results for variants of the likelibood version.

The best move cutuff enhancement was added to a program that was already
using the OR RR version of the Conspiracy Numbers algoritbm. Figure 6.5 compares
the performance of the program before and after this enbancement was added. \With
the enhancement. the program was able to solve 4 new problems in addition to the 47
problems it could solve before. On the 47 original problems. the cutoff was applied an
average of 3.7 times per problem causing an increase in the average attained con-
spiracy threshold from 9.1 to 9.6. On the 4 new problems, the cutoff was applied an
average of 2.25 times resulting in the program finding their correct solutions quicker.
Overall, this enhancement can be viewed as a significant improvement to the algo-

rithm.

98

60
50 + ch(RMcw
....... OR RR
Y
......... McAllenter
Sohed 304 .
L .

20
10~

0

60 120 180 210 % 250

Nodes Generated (X 1000)

Figure 6.5 Results for the Best Move Cutoff enhiancement.

The minimum windows cnhancement was added to a program that was already
using the mimimal breadth version of the Conspiracy Numbers algorithm. Figure 6.6
compares the performance of the program before and after this enhancement was
added. The minimum window enhancement definitely has a negative impact on the
algorithm’s performance. One rcason for the decrease may be that the algorithm is
never trying to find the bighest root value achievable. For example, when the original
algorithm is trying to rule out Vmaz, it is alsc *~<ting ii Vmaz is achievable. In order
to achieve Vmazr, one of the root's moves (i.e. sons) must also achieve a value of
Vmar. Yo by putting more emphasis on trying to achieve the highest plausible root
value, it is actually trying to find the "best” move possible, rather than just a slightly

"better” move.

60—
504
...... Min Breadth
RSN A dih
16— /.\I:: ,P""::dua

oo mem==tAllester

Solved 30~

20—
10+
0 T T
60 120 180 240 300 360

Nodes Generated (X 1000)

Figure 6.6 Resul's for the Minimum Windows enhancement.

8.8. Conclusion

This chapter bhas <hown that significant improvements to the Conspiracy
Numbers algorithm can be made. The two main improvements that were discussed
here were 10 add more breadth to the algorithm. through round robin techpiques, and
to increment the conspiracy threshold immediately after a move is found to be clearly
better than the others instead of waiting until convergence occurs. Experiments
showed that with these improvements, the algorithm was capable of solving up to 41¢¢
more problems than McAllester’s original proposal. This chapter also showed that we
were less successful in using likelibood values and not at all successful in using

minimum windows to improve the search.

Chapter 7

Conclusions and Further Work

Conspiracy Numbers is an exciting new approach to minimax search. It has
several advantages over conventional Alpha-Beta seaich approaches, notably the abil-
ity to grow trees to variable depth in an application independent manner without any
enbancements to the static evaluation function. However, its disadvantages include
the question of algorithw conve iy ~ /it is not guaranteed to converge) and the prob-

lem of determining a satisfactory termination threshold.

There were three major topics discussed in this thesis. The first topic was an
examination of the various ways to implement the Conspiracy Numbers algorithm as
well as an examination of their relative performances. The second topic was an exami-
naticn of the algorithms performance in a program that solves tactical chess problems.
The last topic was an examination of several alierations to the algorithm where the

goal was to improve its performance in chess.

7.1. Results

The main issue involved in implementing the algorithm is the space-time trade-
ofl. To investigate this trade-off, three implementation version were tested. These ver-
sions can be distinguished by the pumber of conspiracy numbers they store at nodes:
the Basic version stores no copspiracy numbers at nodes, the Compromise version
stores 4. and the Storage Intcnsive version stores 1 for each legal node value. It was
shown that storing conspiracy numbers at nodes significantly improved the algorithm"s
performance because it reduced the large amount of time spent recomputing them.
Hence. the only practical choices turn out to be the Storage Intensive version and the
Compromise version. Although several factors affect these two versions' performance,
the most important factor to consider when choosing one is the range size; for small

ranges, the Storage Intensive version usually outperforms the Compromise version,

100

101

whereas for larger ranges the opposite is true.

When the algorithm was implemented in a program thag solves tactical chess
problems. it was found to perform not as well as a similar pProgsts using the Alpha-
Beta search zlgorithm. Several problems were identified here which included: the cri-
teria by which leaf nodes are ordered, that there is too much depth apd not enough
breadth in the algorithm. and that the focus of the algorithm j4 100 much on finding

the right root value instead of the best move.

It was also shown that significant improvements to the algyfithm can be made.
These improvements included adding more breadth to the algo#i(bm, through round
robin techniques, and incrementing the conspiracy threshold imediately after a move
is found to be clearly better than the others (i.e. Best Move Lgtofls). Experiments
showed that with these improvements the algorithm was capable ¢f solving 417 more
problems. Less successful was the use of likelibood values: cofipared to the perfor-
mance of other improvements. the increased pumber of probl¢ys solved using this

enhuancement does not appear to justify the large overhead in ccmbﬂting these valucs,

7.2. Further Work

The Conspiracy Numbers algorithm is still in its infancy gyd there is plenty of
room for ecnhancements. In the area of search strategies, a bybrid 3/goritbm combining
both B* and Conspiracy Numbers looks promising. The B* algoyithm. with its notion
of optimistic and pessimistic values, is an elegant proof procedyst. A serious defect
with it has been the use of artificially constructed probabilitiex (8 guide the search.
However, conspiracy numbers provide a means .of generating these probabilities
directly from the searci tree.

In a related topic, work can also be doue in the area of desigy/ug and implement-
ing parallel versions of this algorithm. Since all strategies that ywefe discussed ip this

thesis are sequential in nature, new strategies that are more yajtable for a parallel

102

version must be created. One interesting example of a search strategy that may work
well here is another B*-Conspiracy Numbers hybrid. In this strategy, each move from
the root state would be assigned to a single Exploration processor. A Master process
would then be responsible for cloosing the local strategies, such as
Rule_out_Jocal_Vmax or Rule_out_Jocal_Vmin, for each Exploration process. Such a
version would help alleviate the problem that some sons of the root were not being
explored adequately enough and also put the focus of the algorithm on “"separating”

out a best move.

And finally. results were disappointing when Conspiracy Numbers was used in a
chess program that plays positional chess as weil as tactical chess [Sch88]. It was sug-
gested there that the cause of the problem was with the stability of the static evalua-
tion {anction and that this results in the root having difficulty converging to a value.
However. experiments on randomly generated trees do not appear to support this view.
The speed at which convergence occurs at seems to he more a function of the range
size than the stability of the static evaluation function. Since such a program requires
a larger runge size, due to the fine-grained scale of node values needed, it will experi-
ence slower convergence. Overall though, the exact cause is not definite yet, but if
Conspiracy Numbers is to Le a viable alternative to Alpha-Beta for chess, this problem

must be solved.

(Ber79]
[Inf85]

[K1s88]

[KnM75)
[Korg&3)
[MRS&T]

[\McARS)

[McAry]
[Nau79)
[Pal&2]

[Rei 15]
[Schxo)

[Schas]

[S1AR3)

References

H.J. Berliner, The B* Tree Search Algorithm: A Best First Proof Procedure,
Artificial Intelligence 12, 1 (1979), 23-40.

Chess Informator, ed., Encyclopedia of Middlegame Combinations, Sahovski
Informator, Beograd, 1985.

N. Klingbeil and J. Schaeffer, Search Strategies for Conspiracy Numbers.
Proceedings of the 7th Biennial Conference of the Canadian Society for
Computatsonal Studses of Intelligence, 1988, 133-139.

D.E. Knuth and R.W. Moore, An Analysis of Alpha-Beta Pruning, Artificial
Intelligence 6, (1975). 293-326.

Richard Korf. Depth-First lterative-Deepening: An Optimal Admissible Tree
Search. Artificial In'elligence 27, (1985), 97-109.

T.A. Marsland. A. Reinefeld and J. Schaeffer, Low Overhead Alternatives to
SSS* Artificial Intelligence 31, 1 (1987). 185-199.

D.A. McAllester. A New Procedure for Growing Mini-Max Trees. Technical
Report. Artificial Intelligence Laboratory, Massachusetts Institute of
Technology. 1985,

D.A. McAllester. Conspiracy Numbers for Min-Max Search, Artificial
Intelligence 35. 3 (19&R), 287-310.

D.S. Nau. Quality of Decision Versus Depth of Search on Game Trees. Ph.D.
thesis, Dept. of Computer Science, Duke University, 1979.

A.J. Palay. The B* Tree Search Algorithm - New Results, Artificial
Intclligence 19, 2 (1932). 145-163.

F. Reinfeld. Win At Chess. Dover Books, 1945.

J. Schaeffer. Ezperiments in Search and Knowledge, Ph.D. thesis, Department
of Computer Science. University of Waterloo, 1986.

1. Schaefler. Conspiracy Numbers, Artificial Intelligence, 1988. In press.
Also to appear in Advances in Computer Chess V', D. Beal and H. Berliner
(ed.). Elsevier Press, 1988,

D.I. Slate and 1..R. Atkin, Chess 4.5 - The Northwestern University Chess
Program, in Chesa Skill in Man and Machine, FreyP.\W. (ed.), Springer-
Verlag. New York. second edition 1983, 82-118.

103

Appendix 1

The Basic Implementation Version

The following is a pseudo-code description of the Basic Implementation version of
the Conspiracy Numbers algorithm The main feature of this version is that it does not
store any conspii acy numbers at the nodes of the tree and therefore has to traverse an

entire search tree in order to compute a consp;racy number.

A R e e e e e R e s/
/* Some constants used by the prograa */
A R e et e DD R et bt s/
#define LB -40 /* lover bound on node values */
#define UB 40 /% upper bound on node values =/
#define MAX 0 /% for indicating type of node */

ftdefine MIN 1

#define DECREASE © /* for purpose of computing CN'ss/
#define INCREASE 1 /* indicates direction of changes*/
#define INFINITY 2565 /% maximum conspiracy number »/
VA R e it et R P P */
/* Info siored at all nodes of the tree */
i b e T R ./
struct Node {

short int value; /* minimax value of this node s/

short int numSorns, /% number of sons */

struct Node #*sons; /* pointer to array of sons */
}.
A R e e e e R it s/
/% Structure for storing a path betwveen two nodes »/
e e i e e e PR +/
st-uct Node *SearchPath{ MAXDEPTH];
int PathDepth; /* index of last n10de 1in path =/
struct Node s*RootNode; /* pointer to ruot node s/
A R et e E R et L L s/
/* Main routine for the Conspiracy Numbers Algorithm. Takes a s/
/* conspiracy threshold as parameter. s/

104

i e e it et T

Top_Level(CT)

{

11 (

RootNode == NULL)
Initialize_root();

Vroot = RootNoda->value;

Vein
Vmax

= Compute_Vmin(Vroot, CT);
= Compute_Vmax(Vroot, CT);

vhile (Vein 'z Vvmax) {

/* find a path to a node to expand

*/

it ((Vmax - Vroot) > (Vroot - Vmin))

aNode = Rule _out Vmeax(Vmax);
else
aNode = Rule_out_Vmin(Vein);

/% descend to the node and expand it
Expand(aNode, PathDepth);

/% Tecompute the minimax values along
/* path. Also recompute Vein and Vmax.
Update_minimax_values();

Vein = Compute Vmin(Vein, CT);

Vmax = Compute_Vmax(Vmax, CT);
Vroot = RootNode->value;

return(Vroot);

/% threshold as parameters.

Compute_Vmax(Vmax, CT)

{

/% use old Vmax as a starting point.
/% make sure Vmax 1s >= to current root value

1f (RootNode->value > Vmax)

Vmax = RootNode->value;

*/

*/
*/

s/
*/

/% CN() computes the conspiracy number of a node #/

1f (CN(INCREASE, RootNode, Veax, MAX) >= CT)

do
Veax = Vmax - 1;

wvhile (CN(INCREASE, RootNode, Vmax, MAX) >= CT).

else {

do
Veax = Veax + 1;
vhile ((Vmax <= UB) and

105

/+ Computes a nev value for Veax. Takes the old Vmax and the conspiracy */

./

106

(CN(INCREASE., RootNode, Vmax, MAX) < CT));

/s CN(Vmax) 18 >= CT s/

Vpax = Veax - 1; /* 8o decrement it ./
}
return(Vmax);
}
Y e e i b s/
/+* Computes a nev value for Vein. Takes the old Vmin and the conspiracy s/
/* threshold as parameters. ./
F R e i et et */
Compute_Vmin(Vain, CT).
{
/* similar to Compute_Vmax() =/
}
R it et et s =/
/% Update the minimax values along the search path. */
R i e e T T ./
Update_minimax_values()
{
/* starting from the expanded node */
for (each node along the search path)
1f (node is a MAX type node) {
Find son wvith highest minimax value;
node->value = paxValue;
}
else { /* node is a MIN type node »/
Find son «ith lowest minimax value,;
node->value = minValue;
}
}
F R bt e e e s/
/% Finds a leaf node for expansion. This leaf node is a member of the */
/* minimal conspiracy set for increasing the root node to Vaax. s/
R e it btk T T ./
struct Node *Rule_out Vmax(Vmax)
{
current_node = RootNode,
PathDepth = O, /* add RootNode to search path */
SearchPath{ PathDepth] = current_nods;
node_type = MAX; /* RootNode 18 & MAX type node */

while (current_node 1s not a leaf node) {
1t (node_type == MAX) {
/% determine left-most son with minimums CN ./
minSon = first son;
mi INFINITY;
for (each son) {

temp = CN(INCREASE, son, Vmax, MIN);
1f (temp < min) {

»in = temp;

ainSon = son;

}
}
/* add this gon to the search path s/
/* and smake 1t the current_node s/

current_node = minSon;
PathDepth = PathDepth + §;
SearchPath(PathDepth] = current_node;

/* current_node 1s nov a MIN type node s/
node_type = MIN;

}
else { /* node_type == MIN s/
for (each son) {
/+ find first son vhose CN > 0 s/
1f (CN(INCREASE, son, Vmax, MAX) > 0) {
/* add this son to search path s/
/+ and make 1t the current_node */
current_node = son;
PathDepth = PathDepth + 1;
SearchPath(PathDepth] = current_node;
/% current_node 1s a MAX node +/
node_type = MAX;
break;
}
}
}

}
/% current_node 1s the leaf node chosen for expansion

return(current_node);

/* Finds a leaf node for expansion. This leaf node is a membdber of the
/* minimal conspiracy set for decreasing the root node to Vain.

L R D L EEL LR PP PP
ftruct Node *Rule_out_Vain(Vain)
{
/+ Simpilar to Rule_out_Vaax(). The rules for deciding wvhich
/+ branch to descend down st MAX and MIN nodes are reversed.
}
A R et e LT T,

/+ Expand a leaf node. Takes a pointer to the leaf node and the depth
/* of the leaf node as paraseters.

Expand(aNode, depth)

{
Generate-the-successor-nodes();

Evaluate-each-node();

107

%/

/# Compute a conspiracy nusber at a node. The parameters sare:

/*
/*
/*
/*
/=

/+ sort the sons appropriately s/

1f (depth & 1) /s MIN node vas expandeds/

sort-in-ascending-order();

else /% MAX node vas expandeds/

sort-in-descending-order();

aNode ! a pointer to the node

value : the value we want to change the nosde to
direction : the direction the change 1is to go (either INCREASE

or DECREASE).

node_type . the type of this node (either MIN or MAX)

CN(direction, aNode., value, node_type)

{

1f (aNode 1s a leaf node) {
/% apply formulas for leaf nodes s/

}

/+ else aNode 1s an interior node so
apply one of the formulas for computing
the CN's. Note that there are recursive

calls to CN() that

eise if ((node_type
(direction ==

}
else 1f ((node_type
(direction ==

}
else 1f ((node_type
(direction ==

}
else { /* (node_type
(direction

occur here. */
== MAX) and
INCREASE)) (

== MAX) and
DECREASE)) {

== MIN) and
INCREASE)) (

== MIN) and
== DECREASE) s/

s/
*/
s/
./
*/
*/

108

Appendix 2

The Storage Intensive Implementation Version

The following is a pseudo-code description of the Storage Intensive Implementa-
tion version of the Conspiracy Numbers algorithm. The main feature of this version is
that it stores conspiracy numbers for all the legal node values at all the interior nodes
of the tree and therefore does not have to traverse the entire tree in order to comput »
a conspiracy number. However it has to update them at nodes along the search path

each tite a node is expanded.

F e i e L TP P s/
/* Some constants used by the program */
F R e e D it T U R */
#define LB -40 /* loser bound on node values =/
#define UB 40 /% upper dbound or node values =/
#define MAX O /% for indicating type of node =/

#define MIN 1

#define DECREASE O /+ for purpose of cosputing Ci'sx/
8define INCREASE 1 /* indicatos direction of changes*/
#define INFINITY 285 /* maximum conspiracy number »/
A R R T T R R PP x/
/* Info stored at all nodes of the tree */
[®%--=~---- Rt i e s/
struct Node {
short int value, /* minimax value of this node */
struct Extension spart?2; /* pointer to second part */
}.
/* Additional info stored at all interior nodes ./

struct Extension {

short int numSons; /* number of sons */
unsigned char CN[UB-LB+1]; /* conspiracy numbers s/
struct Node ssons; /* pointer to array of sons ./
)
A R e i e Tt T T TP . s/

109

/* Structure for storing a path detveen tvo nodes

A R e ki L Ll bt e
struct Node sSearchPath[MAXDEPTH];

int PathDepth; /% index of last node in path
struct Node *RootNode, /* pointer to root node

A R e e e R LR LT L P
/* Maln routine for the Conspiracy Nusbers Algorithm. Takes a

/* conspiracy threshold as parameter.

A R e ittt et R e L
Top Level(CT)

{

/+ ldentical to Top_Level() in Basic Implementation except thsat
there 1s a call to the nev routine Update CN() that 1s made
after the call to Update_minimax_values()

}
/‘ ...

/+ Computes a ne. value for Vmax. Takes the ©ld Vmax and the conspiracy

/* threshold as parameters
R R R i T TR P D S
Compute_Vmax(Vmax, CT)
{
/+ Identical to Compute_Vsax() in Basic Implementation
}
A R e R i R T R P R (P R

/% Computes a ne: value for Vmin. Takes the old Vein and the conspiracy
/* threshold as parameters.

R e et ek ek R PEp AP RPD R,
Compute_Vmin(Vmin, CT)
{

/» Identical to Compute_Vsin() in Basic Implementation
}
et it R it ettt P A
/#* Update the minimax values along the search path.
A R e T TR PR,
Update_minimax_values()
!

/+ ldentical to Update Binimax_values() in Basic Implementation
}
R i R e bttt e T T,

Update CN()

{
/+* starting fros the expanded node s/
for (each node along the search path)

v/
./

./

*/

v/
s/
s/
s/

s/

s/
s/
s/
s/

»/

s/
s/
s/
s/

s/

»/
s/
*/

s/
»/

110

1f (node 1s a MAX type node)
node_type = MAX;

else
node_type = NMIN;

for (esch value v from LB to UB) (
12(v < node->value)
direction = DECREASE;
elsge

dairection = INCREASE;

/% spply one of the formulas for computing
s CN at an interior node. s/

1f ((node_type == MAX) and
(direction == INCREASE)) {

¢lse 1f ((node_type == MAX) and
(dairection == DECREASE)) {

else 1f ((node_type == MIN) and
(direction == INCREASE)) {

}

olse /+ (node_type == MIN) and s/
/#+ (direction == DECREASE) */ {

}

/* store result in node. s/

node->part2->CN[v - LB]} = answver;

}
}

}
F R et et T T S I ./
/* Finds a leaf node for expansion. This leaf node is a memdber of the s/
/+* minimal conspiracy set for increasing the root node to Vmax. */
F e et bt T RN s/
struct Node *Rule out_Vmax(Vmax)
{

current_node = RootNode;

PathDepth = 0; /% add RootNode to search path &/
SearchPath[PsthDepth] = current_node;

node_type = MAX; /+* RootNode is & MAX type node s/

111

vhile (current_node is not s leaf node) {
1f (pode_type == MAX) {
CN_Vmax = CN(INCREASE, current_node, Veax, MAX);

/% find first son vhose CN is equal to CN_Veax s/
/+ this 1s also the son vith minimum CN o/
for (each son)
1f (CN(INCREASE, son, Veax, MIN) == CN_Vmax){
/* 3dd this son to search pa*h s/
/+ and wsske 1t the current_nod. s/
current node = son;
PathDepth = PathDepth +
SearchPath(PathDepth] = current_node;
/% current_node 1s a MIN node o/
node_type = MIN,

break;
}
}
else { /* node_type == MIN #/
for (each son)
/¢ find first son vhose CN > 0 s/
1t (CN(INCREASE, son, Veax, MAX) > 0) {
/* add thils son to search path s/
/+ and make 1t the current_node s/
current node = son;
PathDepth = PathDepth + 1,
SearchPath(PathDepth] = current_node;
/* current_node 1s a MAX node s/
node_type = MAX,
break,
}
}

}
/% current_node 1s the leaf node chosen for expansion
return(current_node);

/* Finds a leaf node for expansion. This leaf node 15 a aemdber of the
/* minimal conspiracy set for decreasing the root node to Vain.

F R e ik L bt T NP Y
struct Node *Rule out_Vsin(Vmin)
{
/+ Similar to Rule out _Vmax(). The rules for deciding vhich
/* branch to descend dovn at MAX and MIN nodes are reversed.
}
L e et Rttt T T AR PRI

/* ¥xpand a leaf node. Takes a pointer to the leaf node and the depth
/# of the leaf node as paraseters.

Expand(aNode, depth)

112

s/

./
s/

-./

s/
s/

-‘/

./
s/

113

{

/% ldentical to Expand() in Basic Isplementation s/
}
e ittt T Ty I ./
/% Get a conspiracy nuaber from s node. The parameters are: s/
/s aNode : & pointer to the node s/
/[value : the value ve vant to change the node to s/
/e direction : the direction the change 18 to go (either INCREASE ¢/
/e or DECREASE). ./
/e node_type : the type of this node (either MIN or MAX) */
L R D et e i s/
CN(direction, aNode, vaiue. node_type)
{

1f (aNode 15 a leaf node) (
/* apply fcrmulas for le..f nodes ./
}

/+ @lse@ aNode 1s an interior node so retrieve
Lhe conspiracy number from 1ts structure s/

eise if ((node_type == MAX) and
(direction == INCREASE)) {
1f (aNode->value >z value)
return(0);
else
return{ aNode->part2->CN[value-1LB]);
}
else 1f ((node type == MAX) and
(direction == DECREASE)) (

}
else 1f ((node_type == MIN) and
(direction == INCREASE)) {

}
¢lse { /» (node_type == MIN) and =/
/+ (direction == DECREASE) s/

Appendix 3

The Compromise Implementation Version

The following is a pseudo-code description of the Compromise Implementation
version of the Conspiracy Numbers algorithm. The main feature of this version is that

it stores conspiracy numbers for 4 node values at all the nodes of the tree.

R R R e s/
/+ Some constants used by the progras o/
F R e e it i e T T P s/
#define LB -40 /* lover bound on node values ¢/
#define UB 40 /% upper bound on node values s/
#define MAX © /+ for indicating type of node s/

#define MIN 1

#define DECREASE 0 /% for purpose of computing CN°'gs/
%define INCREASE 1 /% 1ndicates diraction of changes/
#define INFINITY 285 /* maximum conspiracy number */
F e ik i s/
/* Info storsd at all nodes of the tree »/
A R i R D e T D T T TP ./
struct Node {
short int valuye; /+ minimax value of this node s/
short int numSons; /+ numdber of sons */
struct Node =*sons; /* pointer to array of sons s/
unsigned char CNvein, CNvaini; /s CNs for Vmin and Vain - 1 4
unsigned char CNvaax, CNvmaxl; /s CNs for Veax and Veax - 1 s/
}.
F R it e g s/
/* Structure for storing a path betveen two nodes s/
F A R e ittt it TR NP R R, s/
struct Node *SearchPath(MAXDEPTH];
int PathDepth; /+ index of last node in path s/
struct Node sRootNode; /% pointer to root node ./
f A ki ittt el Dl Tt T T R s/
/* Vmax, Vmin, Vroot should be global in this version s/
A R et et Lt T L PR P PP s/

114

int Vsax, Vain, Vroot;

/% conspiracy threshold as parameter.

Y D e e et LT
Top_Level(CT)
{
1f (RootNode == NULL) {
Initialize ¢ . t();
Vain = Veax - Vroot = RootNode->value;
RootNode->CNvein = RootNode->CNvmini
RootNode->CNvmax = RootNode->CNveaxi
}
Vroot = RootNode->value;
vein = Compute Vmin(Vmin, CT);
Vmax = Compute_Vmax(Vmax, CT);
while (Vmin !'= Vmax) {
/# 1dentical to the while loop of the
Top_Level () routine in the Storage
Intensive Version.
}
return{ Vroot);
}
A R et e T PRI

/* Main routine for the Conspiracy Numbers Algorithm. Takes a

115

s/
s/
s/

/+ Computes a nes value for Vmax. Takes the old Vmax and the conspiracy =/

/% threshold as parameters.

Y LR i LT T TR RPN
Compute_Vmax(Vmax, CT)
{
i1f (RootNode->value > Vmax)
Vmax = RootNode->value;
1f (CN(INCREASE, RootNoda, Veax, MAX) >= CT)
a0
Vmax = Vmax - §;
while (CN_Vmax(RootNode, Veax, MAX) >= CT):
else 1f (CN(INCREASE, RootNode, Vmax+l, MAX) < CT)
do
Vmax = Vmax + 1;
while (CN_Vmaxi(RootNode, Vmax+i, MAX) < CT);
return(Veax);
}
A R et D ittt TSP PR

*/

------------------ v/

/+ Computes a nev value for Vein. Takes the old Vain and the conspiracy =/

/% threshold as parameters.

s/

116

J A R it b Dl Db bt L et s/
Compute_Vmin(Vain, CT)
{
/% Similar to Compute_Vsax() =/
}
A e bl el i D D R DL s/

/* Compute the conspiracy nusber corresponding to Vmax at aNode and at »/
/+* all relevant nodes belovw it. Here 1t 1s agsumed that the nev Vmax 1g &/

/* equal to "old_Vmax - 1* and the nev Vmaxi is equal to old_Vmax. */
/* Therefore, to avoid recomputing conspirscy numsbers for the nev Vmaxi,s/
/% the old conspiracy number for Vaax 1s simply copied to CNvmaxl. s/
A R e et e s/
CN_vVmax(aNode, Veax, node_type)

{

1f (aNode 1s a leaf node) {
/% apply CN forrulas for leaf nodes =/

}
else 1f (node_type == MAX) {
1f (aNode->value == Veax) {

answer = 0;

/* relevant nodes wrt Vaaxl Bust be vis‘ ad */

copy_CNvmax(aNode, Vmax);

}
else {

/» apply CN formula for increasing value to Veax
at 2 MAX interior node. Here the function
must be recursively called for each son. */

}

}

else /* (node_type == MIN) #/ {
1f (aNode->value == Vmax) {

answer = 0,

/+ relevant nodes vrt Vmaxl must be visited */

copy_CNvmax(aNode, Vmax);

}
else {

/* apply CN formula for increasing value to Vmax
at a MIN interior node. Here the function
must be recursively called for each son. */

}

/% the 0ld CNvmax becomes the nev CNvsaxi =/
aNode->CNvmaxi = aNode->CNvmax;
aNode->CNveax = ansver;

return(ansver);

/* Copy the old value for CNvmax to CNvmaxi at all relevant nodes delow s/

co
{

/*
/*
/%

CN
{

/%
/*
/%

CN
{

/*
/*
/%
/%
CcN
{

/%
/%
up
{

“node”. These nodes are not visited by the routine CN_Vmax(). s/
-- s/
py_CNvpax(node, Vmsax)

for (each son) {
son->CNveaxi = son->CNveax;
1f (son's value <= Vmax)
copy_CNvmax(son, Vsax);
}
-- s/

Compute the conspiracy nusber corresponding to Vmin at aNode and at s/

211 relevant nodes belor it. Also, coples the conspiracy number for s/

the old Vmin to CNvmint. s/
-- ./

_Vvmin(aNode, Vmin, node_type)

/+ Similar to CN_Vmax(). /

-- s/

Compute the conspiracy nusber corresponding to Vmaxl at aNode and at s/
all relevant nodes below it. Also, coples the conspiracy number for =/
the old Vmaxi to CNveax. x/
--- s/

_Vmax1(aNode, Vmaxi, node_type)

/* Similar to CN_Vmax() except that it does not call
a function similar to copy CNvmax because vhen 1t
StOps traversing the tree at a node, there are no
relevant nodes wrt Vmax or Vesaxi belov it. x/

Compute the conspiracy number corresponding to Vmini at aNode and at =/
all relevant nodes below 1t. Also, copies the conspiracy number for =/
the old Vmini to CNvein. s/
-- +/

_Vmini1(aNode, Vmini, node_type)

/+ Similar to CN_Vmax() except that it does not call
a function similar to copy_CMvmax because vhen it
§10ps traversing the tree at a node, there are no

relevant nodes vrt Vsin or Vasini belov 1it. */
-- s/
Update the minimax values along the search path. s/
-- s/

date_minimax_values()

/+ Identical to Update_minimax_values() 1in Basic Implementation s/

HIR

}
[E e e e Ty
/+ Update iLxe conspiracy numbers along the search path ./
e s T U o/
Update CN()
{
/+ first check for ®*nev relevant® nodes
ard If1x thelr conspiracy numbers ./
1f (the Rule _out_Vmax strategy vas used) {
fixup CNvmin(Vmin };
fixup CNvaint("-tn - {);
}
olsa ¢
fixup CNvpax(. ..x },
fixup CNveax1(Voax ¢ 1)
}
/+ nov update the coasplracy nuambers
corresponding to Vmax, Vmax + 1,
Vmin, and vmin - ¢ s/
Upcato CNvmax:{ Vmax + {)
Update CNvoax(Vmax),
Update CNvein(Valn)
Update CNvmini{ Vmin - 1),
}
/% - T T T T e o s e e e e e e e e s e e e el e e — e — el - - -e/
/+ Check if nev rTeievant nodes with Tespect to Vmin have occurred as a s/
/+ result of a lea! node being expanded. If there are any, make sure «/
/* that tney have thelr consplracy number corresponding to Vmin */
/s recomputed s/
/e - S - e e e s/

fixup CNvain{ vVain)
{
/* starting at the root node s/
for (each node along the search path) {
if { the node's cld CNvmin == 0) {
$f { node’'s nev value > Vmin)
recompute CNvmin(node, Vmin, noce type);

break,
}
I

}

e -~ - - - . - e e m e e, - o/
/+ Reconpute the conspiracy numbers corresponding to Vmin at eacn s/
/+ relavant node belos the parameter node *aNode® Jther parametars are s/
/o veln the current value for Vmin s/
/s node_type . the type of node aNode 1s (either MIN or MAX) o/
e R et it U S ./

recompute_CNvmin(aNode, Vein, node_type)

119

{
1f (aNode 1s & leaf node) {
/+ apply CN formulas for leaf nodes s/
}
else 1f (node_type == MAX) {
/* apply CN formula for decreasing value to Vein
at 3 MAX 1interior node. Here the function
aust be recursively called for each son. */
}
alse /* (node_type == MIN) »/ {
/* apply CN formula for decressing value to Vmin
at a MIN intérior node. Here the function
Bust be recursively called for each son. */
}
aNode->CNvmin = answver;
return(ansver);
}
A R e R bt e e */
/* These routines check 1f nev relevant nodes vith respect to vmin - 1, &/
/% Vmax, Vmax + 1 have occurred as a result of a leaf node being */
/% expanded. If there are any, they make sure that these nodes have x/
/* thelr conspiracy number recomputed. s/
A R et et i Tt T PR, */

fixup CNvmini(Vmini)
fixup CNvmax(Vmax)
fixup CNvmaxi{ Veaxi)

{
/* Similar to fixup CNvmin() #/

}

A R e ittt PP R s/
/* These routines recompute the conspiracy numbers corresponding to s/
/% Vmin - 1, Vmax, and Vmax + 1 at each relevant node below the */
/* parameter node "aNode". »/
J A R e e D et */

recompute_CNvmini(aNode, Vmini, node_type)
recompute_CNvmax(aNode, Vmax, node_type)
recompute_CNvmaxi(aNode, Vmaxi, node_type)

{

/* Similar to recompute CNvein() =/
}
L R it itk D ettt T s/
/* Update the conspiracy numbers corresponding to Vaax at each new leaf =/
/* node and at each node along the current search path. +/
A R D et it T T T TR PR s/
Update _CNvmax(Veax)
{

for (each nev leaf node)

120

/* apply CN formula for increasing value
to Vmax at a leaf node ./

/% starting froe the expanded node s/
for (each node along the search path) {

1f (node 1s of type MAX) {
/* apply CN formula for increasing value
to Vmax at a MAX interior node s/

else /* node 1is of type MIN =/ {
/* apply CN formula for increasing value
to Vmax at a MIN interior node »/

node->CNvmax = ansver;

r
}
A R it e ittt */
/+ These routines update the conspiracy numbers corresponding to */
/* Veax + 1, Vmin, and Vmin - 1 at each nev leaf node and at each node =/
/» along the current search path. */
e e e s/

Update CNvuaxi(Vmaxi)
Update CNvair{ Vmin)
Update CNvmini(Vmini)

{
/* Similar to Update CNVmax() =/

}
Y R i R il e T T s/
/* Finds a leaf node for expansion. This leaf node is a member of the s/
/* minimal comspiracy set for increasing the root node to Vmax. x/
f R e e et it s/
struct Node *Rule_out_Vmax(Veax)
{

/* Identical to Rule_out_Vmax() in Storage Intensive Version */
}
A e i e x/
/* Finds a leaf node for expansion. This leaf node is a memder of the */
/* minimal conspiracy set for decreasing the root node to Vamin. s/
A R e D i T S PP s/
struct Node *Rule_out_Vein(Vamin)
{

/% ldertical to Rule_out Vmin() in Storage Intensive Version */
}
A R D bl it e ittt L ¥

/* Expand a leaf node. Takes a pointer to the lesaf node and the depth s/

/* of the leaf node as parameters

L R b ittt e
Expand(aNode, depth)
{
/* ldentical to Expand() in Storage Intensive Version
}
A R e Lt LD e LR LR e R et TR
/* Retrieve a conspiracy number fros & node. The parameters are:
/* aNode . 2 pointer to the node
/% value : the value ve want to change the node to. The
/* prograe never calls this routine for any value
/% other than Vein, Vain - 1, Vemax, Vmax + 1.
/* direction the direction the change 1s to go (either INCREASE
/0 or DECREASE).
/* node_type . the type of this node (either MIN or MAX)
R e e et e et

CN(direction, aNode, value, node_type)

{

1

else

else

else

(value == Vmin - 1) and (direction == DECREASE))
return(aNode->CNvmini);

if ((value == Vmin) and (direction == DECREASE))
return(aNcde->CNvain);

1f ((value == Vmax) and (direction == INCRCZASE))
return(aNode->CNvmax);

/* (value == Vmax + 1) and (direction == INCREASE)
return{ aNcde->CNvmaxl);

*/

./
s/

s/

*/
*/
s/
s/
»/
s/
./
*/
s/

121

