
Investigating the Quality of Bindings for Machine Learning Libraries in
Software Package Ecosystems

by

Hao Li

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Software Engineering and Intelligent Systems

Department of Electrical And Computer Engineering
University of Alberta

© Hao Li, 2024

Abstract

Machine learning (ML) has revolutionized many domains, with developers often re-

lying on open source ML libraries to integrate ML capabilities into their projects.

However, these libraries primarily support a single programming language, limiting

their availability for projects in other languages. Bindings serve as bridges between

programming languages by providing interfaces to ML libraries. This thesis investi-

gates the quality of bindings for ML libraries in software package ecosystems, focusing

on their maintenance and software quality.

The first study presented in this thesis introduces BindFind, an automated ap-

proach to identify bindings and link them with their corresponding host libraries

across various software package ecosystems. By analyzing 2,436 bindings for 546 ML

libraries, we find that most bindings are community-maintained, with npm being the

most popular choice for publishing these bindings. The analysis reveals that these

bindings usually cover a limited range of releases from their host library and experi-

ence significant delays in supporting new releases.

In the second study, we investigate the usage and rationale behind release-level

deprecation in bindings for ML libraries within the Cargo and npm ecosystems. We

discover that bindings in Cargo have a higher percentage of deprecated releases com-

pared to general packages, while the percentages of deprecated releases and general

packages are similar in npm. The primary reasons for deprecation are package re-

moval or replacement and defects in both ecosystems. We also identify the issue of

implicitly deprecated releases in Cargo due to deprecation propagation through the

dependency network.

ii

The third study evaluates the impact of using different bindings on the software

quality of ML systems through experiments on model training and inference using

TensorFlow and PyTorch across four programming languages. The results show that

models trained with one binding perform consistently in inference tasks when utilized

with another binding. Furthermore, non-default bindings can outperform the default

Python bindings in specific tasks without sacrificing accuracy. We also find significant

differences in inference times across bindings, highlighting the benefits of choosing ap-

propriate bindings based on specific performance requirements to maximize efficiency

in ML projects.

The work presented in this thesis provides deep insights, actionable recommenda-

tions, and effective and thoroughly evaluated approaches for assessing and improving

the quality of bindings for ML libraries in software package ecosystems.

iii

Preface

The research work presented in this thesis has been conducted in the Analytics of Soft-

ware, GAmes, And Repository Data (ASGAARD) lab led by Dr. Cor-Paul Bezemer.

This thesis is an original work by Hao Li.

Chapter 2 has been submitted for review as: Hao Li and Cor-Paul Bezemer,

“Bridging the Language Gap: An Empirical Study of Bindings for Open Source

Machine Learning Libraries Across Software Package Ecosystems,” to the Empirical

Software Engineering journal. I was responsible for developing the research ideas, pro-

cessing and analyzing the data, creating the algorithms, and writing the manuscript.

Dr. Bezemer, as the supervisory author, was involved in concept formation and

manuscript composition.

The majority of Chapter 3 has been published as: Hao Li, Filipe R. Cogo and

Cor-Paul Bezemer, “An Empirical Study of Yanked Releases in the Rust Package

Registry,” in IEEE Transactions on Software Engineering journal, vol. 49, no. 1,

Jan. 2023, pp. 437–449, doi: 10.1109/TSE.2022.3152148. I was responsible for de-

veloping the research ideas, collecting and processing the data of the Rust package

registry, analyzing the data, and writing the manuscript. Dr. Cogo provided access to

the collected data of packages in npm and contributed to manuscript edits. Dr. Beze-

mer, as the supervisory author, was involved in concept formation and manuscript

composition.

Lastly, Chapter 4 has been accepted for publication as: Hao Li, Gopi Krishnan

Rajbahadur and Cor-Paul Bezemer, “Studying the Impact of TensorFlow and Py-

Torch Bindings on Machine Learning Software Quality,” to appear in the ACM Trans-

iv

actions on Software Engineering and Methodology journal, doi: 10.1145/3678168. I

was responsible for developing the research ideas, designing and conducting the ex-

periments, analyzing the results, and writing the manuscript. Dr. Rajbahadur was

involved in concept formation and contributed to manuscript edits. Dr. Bezemer, as

the supervisory author, was involved in concept formation and manuscript composi-

tion.

v

Acknowledgements

I would like to express my sincere gratitude to Prof. Cor-Paul Bezemer for all the

support, guidance, and encouragement throughout my PhD journey. I could not have

embarked on this journey or completed this thesis without his mentorship. I deeply

appreciate the freedom and opportunities Cor-Paul has provided.

I am also very thankful for the opportunity to collaborate with Dr. Filipe Roseiro

Cogo and Dr. Gopi Krishnan Rajbahadur. I have learned a lot from both of them.

I would like to thank the members of my examination committee, Prof. Lei Ma,

Prof. An Ran Chen, Prof. Sarah Nadi, Prof. Abram Hindle, Prof. Marek Reformat,

and Prof. Benoit Baudry, for their insightful feedback and valuable advice.

I am grateful to the ECE-Huawei Research Initiative (HERI) at the University of

Alberta for supporting the research presented in this thesis.

I would also like to thank my friends in the Analytics of Software, GAmes And

Repository Data (ASGAARD) lab. The discussions and shared moments of laughter

have been a supportive and enjoyable part of my research journey.

Last but not least, my deepest thanks go to my family for their unwavering love

and support. A special thanks to my wife, Suzhen Zhong, for being my cheerleader

and pillar of strength. I would not be the person I am today without your love and

support.

vi

Table of Contents

1 Introduction 1

1.1 Bindings and software package ecosystems 1

1.2 Motivation . 2

1.3 Thesis objectives . 2

1.4 Thesis outline . 7

2 Studying the Development and Maintenance of Bindings for Ma-

chine Learning Libraries 8

2.1 Abstract . 8

2.2 Introduction . 9

2.3 Background . 11

2.3.1 Software Package Ecosystems 11

2.3.2 Cross-Ecosystem Bindings for ML Libraries 12

2.4 Related work . 13

2.4.1 Empirical Studies of ML Libraries 13

2.4.2 Software Ecosystems . 15

2.4.3 Foreign Function Interfaces 16

2.5 Methodology . 17

2.5.1 Collecting Open Source ML Repositories 19

2.5.2 Collecting Bindings for Open Source ML Libraries 19

2.5.3 Collecting Releases of Popular ML Libraries and Their Bindings 23

2.6 Results . 25

2.6.1 RQ1: How effective is BindFind for identifying bindings, and

what are the identified bindings for ML libraries? 26

2.6.2 RQ2: How are ML libraries and their bindings distributed

across ecosystems? . 28

2.6.3 RQ3: How are cross-ecosystem bindings for popular ML li-

braries maintained? . 31

2.7 Implications . 39

vii

2.7.1 Implications for Developers 39

2.7.2 Implications for ML Package Owners 40

2.7.3 Implications for Researchers 41

2.8 Threats to Validity . 42

2.8.1 Internal Validity . 42

2.8.2 External Validity . 43

2.9 Conclusion . 43

3 Studying Release-Level Deprecation of Bindings for Machine Learn-

ing Libraries 45

3.1 Abstract . 45

3.2 Introduction . 46

3.3 Background . 49

3.3.1 Package management in Rust 49

3.3.2 Dependencies in Cargo . 49

3.3.3 Yanked releases . 50

3.4 Related work . 52

3.4.1 Software packaging ecosystems 52

3.4.2 Deprecated APIs and packages 54

3.5 Methodology . 55

3.5.1 Collecting basic package information 56

3.5.2 Mining GitHub repositories of packages with yanked releases . 56

3.5.3 Collecting historical data of yanked releases 58

3.5.4 Collecting package metadata from npm 58

3.6 Results . 58

3.6.1 RQ1: What is the prevalence of deprecated releases in bindings

for ML libraries compared to general packages? 59

3.6.2 RQ2: What is the rationale behind using release-level depreca-

tion in bindings for ML libraries compared to general packages? 62

3.6.3 RQ3: How many packages adopt yanked releases of bindings

for ML libraries compared to general packages in Cargo? . . . 69

3.7 Implications . 73

3.7.1 Implications for maintainers of package managers 73

3.7.2 Implications for package owners 74

3.7.3 Implications for Cargo maintainers 75

3.7.4 Implications for researchers 77

3.8 Threats to validity . 77

viii

3.9 Conclusion . 79

4 Studying the Correctness and Time Cost of Bindings for Machine

Learning Libraries 81

4.1 Abstract . 81

4.2 Introduction . 82

4.3 Background . 86

4.3.1 ML Frameworks . 86

4.3.2 Bindings for the ML frameworks 88

4.4 Study Design . 89

4.4.1 Environment setting . 89

4.4.2 Studied datasets and models 90

4.4.3 Studied ML frameworks . 91

4.4.4 Studied bindings . 92

4.4.5 Correctness evaluation . 92

4.4.6 Time cost evaluation . 93

4.4.7 Experimental setup . 95

4.4.8 Supported features in studied bindings 99

4.5 Correctness Evaluation . 101

4.6 Time Cost Evaluation . 109

4.7 Implications . 116

4.7.1 Implications for developers . 116

4.7.2 Implications for binding owners 118

4.7.3 Implications for researchers 118

4.8 Related work . 120

4.8.1 Impact of ML frameworks on ML software correctness 120

4.8.2 Impact of ML frameworks on ML software time cost 120

4.8.3 Impact of ML frameworks on ML software reproducibility . . 121

4.8.4 Empirical Studies of ML Frameworks 122

4.8.5 FFIs and Bindings in Software Engineering 123

4.9 Threats to Validity . 124

4.9.1 Construct validity . 124

4.9.2 Internal validity . 125

4.9.3 External validity . 125

4.10 Conclusion . 126

ix

5 Conclusion and Future Work 128

5.1 Conclusion . 128

5.2 Future Work . 130

Bibliography 133

x

List of Tables

2.1 Overview of the Libraries.io dataset 18

2.2 Basic information about the popular ML libraries that have cross-

ecosystem bindings. 24

2.3 Performance comparison of BindFind with different BERT models in

bindings classification and host name extraction on the test set. (U:

Uncased; C: Cased; Prec: Precision; Rec: Recall) 27

3.1 Five types of versioning specifications in Cargo 51

3.2 Key information in the database. 57

3.3 Identified rationales behind yanked releases in the card sort 65

3.4 Comparisons of the yanked mechanism in Cargo and the deprecation

mechanism in npm. 75

4.1 Our studied datasets and models. (Each model is paired with a dataset

for the experiments) . 89

4.2 Studied bindings for TensorFlow and PyTorch in software package

ecosystems. 91

4.3 Supported features of studied bindings for TensorFlow (TF) and Py-

Torch (PT). 94

4.4 Mean/Max DTW distances of training accuracy curves for bindings

in training models with the same random seed. (Highlighted numbers

indicate negligible DTW distance. Py: Python; JS: JavaScript; Rs:

Rust) . 102

4.5 The average test accuracy (Acc), F1-score (F1), and AUC-ROC (AUC)

for TensorFlow and PyTorch bindings. (Statistically significant differ-

ences between bindings are highlighted in bold. MD: Max Diff; ES:

Effect Size) . 105

4.6 Time costs (in seconds) of the subactivities in the training process

using PyTorch’s Python and Rust bindings on GPU. 111

xi

4.7 Time costs (in seconds) of the subactivities in the inference process

using PyTorch’s Python and Rust bindings on GPU. 115

xii

List of Figures

2.1 Overview of our methodology. 17

2.2 The model structure of BindFind for binding classification and host

name extraction, illustrated using an example. 22

2.3 The distribution of the number of software package ecosystems sup-

ported by ML libraries with bindings. 29

2.4 Combinations of software package ecosystems in which ML libraries

with bindings are available. The elements represent the number of

libraries that can be found in both ecosystems (i.e., ecosystems in the

row and column). 30

2.5 The process of identifying which version of the host library is supported

by a specific binding version. 32

2.6 Three examples of matching binding releases and host releases: (a) all

host releases are supported by the binding; (b) 2 out of 3 host releases

are supported; (c) no host releases are supported. 34

2.7 The distributions of the coverage of cross-ecosystem bindings for pop-

ular ML libraries across ecosystems. 36

2.8 The distributions of the delay between releases of popular ML host

libraries and their bindings. 37

2.9 Comparisons of the cross-ecosystem bindings for ML libraries which

are maintained by the official organization and the community: (a)

the distributions of the coverage; (b) the distributions of the delay

between a release of the host library and the corresponding release of

the binding. 38

3.1 Overview of our methodology. 56

3.2 The percentage of yanked releases in Cargo from November 2014 to

October 2020. 61

xiii

3.3 Five patterns of yanking: (1) A package yanked only one release; (2) A

package yanked all releases; (3) A package yanked back-to-back re-

leases; (4) A package yanked all releases except one; (5) A package

yanked nonadjacent releases. 63

3.4 Two scenarios of resolving dependencies: (a) The dependency require-

ment can be resolved; (b) The dependency requirement cannot be sat-

isfied because of yanking. 71

3.5 An example of yanking propagation of ring. 0.11.0 of rustls, 0.11.0 of

hyper-rustls, 0.0.1 of github-gql-rs, and 1.16.0 of fw became implicitly

yanked releases. 73

4.1 Bindings use the functionality of ML frameworks via foreign function

interfaces (FFIs) to train models and perform model inference. 87

4.2 Overview of the study design. 88

4.3 Mean training accuracy curves of LeNet-1, LeNet-5, VGG-16, LSTM,

and GRU on GPU in bindings for TensorFlow (first row) and Py-

Torch (second row). 103

4.4 All bindings load the trained models that are saved by the default

Python bindings for ML frameworks. 107

4.5 Results of reproducing the test accuracy of pre-trained models in Ten-

sorFlow and PyTorch bindings on the CPU and GPU (the results are

identical). Note: the failed cases in the PyTorch’s C# binding were

fixed in a newer version of the binding. 108

4.6 Training time distributions when training models in TensorFlow and

PyTorch bindings on the GPU. 110

4.7 Inference time distributions for pre-trained models in TensorFlow (TF)

and PyTorch (PT) bindings on the CPU and GPU. 113

xiv

Chapter 1

Introduction

Machine learning (ML) has transformed many industries, enabling advancements in

fields such as autonomous vehicles [62, 120], robotic surgery [4, 45, 148], and recom-

mendation systems [84, 87]. Developers often rely on open source ML libraries such

as TensorFlow [1] and PyTorch [124] to integrate ML capabilities into their projects.

These libraries provide high-level interfaces and offer several benefits, including read-

ily usable state-of-the-art algorithms, accelerated computing, and interactive visual-

ization tools for data [119]. However, a major limitation is that these libraries are

typically designed to primarily support a single programming language [57, 119, 133],

which can be a barrier for developers working with other programming languages.

1.1 Bindings and software package ecosystems

Bindings [113, 158] serve as the bridge between a host library and a target program-

ming language, thus allowing developers to utilize the functionality of the library

within their preferred development environment. This concept of bridging language

barriers is exemplified by bindings such as tfjs [152], which provides a JavaScript

interface to the well-known TensorFlow library.

In software development, software package ecosystems play a vital role in simpli-

fying the management and integration of open source libraries. Instead of manually

downloading and building libraries from source code repositories like Git [16], de-

1

velopers can use package managers and registries to easily resolve dependencies and

install libraries. Most modern programming languages have their own official package

manager and registry, which form the core components of a software package ecosys-

tem. Examples include Maven for Java, PyPI for Python, and npm for JavaScript.

These ecosystems host both ML libraries and their bindings, facilitating their use

across different programming languages.

1.2 Motivation

Although ML libraries primarily target Python due to its widespread adoption in the

ML community [7, 57, 133], this focus limits the availability for projects developed

in other languages. Through bindings, developers can leverage these state-of-the-

art ML techniques across programming languages. However, the characteristics and

challenges associated with bindings for ML libraries remain poorly understood. These

include understanding how the bindings keep up with the rapid release cycles of

ML libraries and how their releases are managed in software package ecosystems.

Additionally, the quality of bindings for ML libraries is critical as it directly affects

the quality of the software projects that depend on them.

1.3 Thesis objectives

This thesis investigates the quality of bindings for ML libraries in software package

ecosystems, with a focus on two primary aspects: maintenance quality and software

quality. The specific objectives are as follows:

• Objective 1: Examine the maintenance quality of bindings for ML libraries.

a. Investigate the extent to which bindings keep pace with the releases of

their host ML libraries.

b. Investigate how bindings for ML libraries deprecate releases compared to

general packages.

2

• Objective 2: Investigate the software quality of bindings for ML libraries.

a. Assess the correctness of models trained or utilized by different bindings

for the same ML library.

b. Assess the time costs of training and utilizing models across different bind-

ings for the same ML library.

To achieve these objectives, we conducted three research studies. The first study (tar-

geting Objective 1.a) proposed an approach to identify bindings and collected data

on bindings from 13 software package ecosystems to analyze their release coverage,

delay, and technical lag. The second study (targeting Objective 1.b) explored the

use and rationale behind release-level deprecation in bindings for ML libraries within

the Cargo and npm ecosystems. The third study (targeting Objective 2.a and 2.b)

performed experiments in model training and inference using bindings for Tensor-

Flow and PyTorch across four programming languages, aiming to assess the impact

of bindings on software quality in terms of correctness and time cost.

We summarize the motivation and findings of our research studies below:

Research Study 1: Studying the Development and Maintenance of Bind-

ings for Machine Learning Libraries (Chapter 2)

Motivation: As ML libraries mature, developers using different programming

languages may wish to leverage their capabilities. However, if the ML libraries do

not natively support a particular language, developers cannot find the libraries in the

corresponding software package ecosystem. Bindings operate as practical solutions to

make state-of-the-art ML tools available across languages and ecosystems for software

reuse. Nevertheless, the development and maintenance practices for library bindings

can differ from their host libraries. If a binding only supports a small proportion

of its host library’s releases and experiences substantial delays in receiving updates,

developers relying on the binding may be forced to use an outdated version for an

extended period. This situation can be problematic when bugs are fixed or new

3

features are added in the host library but not propagated to the binding in a timely

manner. Understanding the prevalence, distribution, and maintenance of bindings

for ML libraries across ecosystems is crucial for developers when selecting a binding

to use. On the other hand, identifying bindings for ML libraries and linking them

with their host libraries is a complex task, as bindings can have different names from

the host library and may not be maintained by the same organization. Therefore, an

automated approach is necessary to enable the large-scale study of bindings for ML

libraries in software package ecosystems.

Findings: Our proposed approach called BindFind can accurately identify bind-

ings (with a 0.97 F1 score) and their host library names (with a 0.89 F1 score) in

software package ecosystems. By using BindFind, we found that around 5% of ML

libraries have bindings in software package ecosystems. We identified 2,436 bindings

for 546 ML libraries across 13 software package ecosystems. Notably, 94% of these

bindings are maintained by the community, indicating a vast reliance on non-official

support. ML libraries with bindings typically span across more than two ecosystems,

with npm and PyPI being the most common pair. One reason behind it could be that

PyPI is the most popular ecosystem for ML libraries, while npm is the most popular

for their bindings. However, we found that most bindings cover only a limited range of

their host library’s releases, often experiencing considerable delays in supporting new

releases and widespread technical lag. The situation is generally worse for bindings

that are not maintained by the official library organizations.

Research Study 2: Studying Release-Level Deprecation of Bindings for

Machine Learning Libraries (Chapter 3)

Motivation: Some software package ecosystems (e.g., Cargo and npm) implement

a release-level deprecation mechanism that allows library maintainers to deprecate

published versions. This prevents others in the ecosystem from depending on depre-

cated releases. This mechanism is particularly relevant for bindings of ML libraries

since rapid iteration and updates are common in ML library usage [40]. Deprecating

4

a buggy or outdated version can alert developers and discourage its use, potentially

forcing them to migrate to newer versions or seek alternatives. However, the usage of

release-level deprecation and its impact, especially in the context of ML library bind-

ings, remains understudied. Cargo and npm have supported release-level deprecation

since their inception in 2014 and 2010 respectively, providing ample usage data for

analysis. Other ecosystems either lack this mechanism or introduced this mechanism

recently, resulting in insufficient data. By investigating the usage of deprecation and

the rationale behind it, we aim to understand the challenges faced by ML library

binding maintainers in managing releases and the factors influencing their decision to

deprecate certain versions.

Findings: Our analysis included a dataset of 48,823 packages from Cargo and was

compared with data from a prior study on npm [138]. We found that bindings for

ML libraries in Cargo have a higher percentage of deprecated releases compared to

general packages. In contrast, the percentage of deprecated releases of bindings for

ML libraries in npm is similar to that of general packages. We identified five pat-

terns of deprecated releases and eleven rationales behind the deprecation. Package

removal or replacement is the primary reason for deprecated releases in these bind-

ings within Cargo and npm. Furthermore, we discovered that deprecated releases in

Cargo can propagate through the dependency network, causing implicitly deprecated

releases. This issue does not occur in npm since its deprecation mechanism is not

forceful. Our analysis also shows that nearly half of all Cargo packages have adopted

yanked releases, leading to unresolved dependencies in 1.4% of all packages. However,

bindings for ML libraries contribute minimally to this issue. While the deprecation

propagation of general packages in Cargo is usually caused by partially deprecated

packages, the propagation among bindings for ML libraries is primarily caused by

fully deprecated bindings, as their dependents cannot automatically migrate to any

other versions. Our findings provide valuable insights into the usage of release-level

deprecation in bindings for ML libraries within software package ecosystems.

5

Research Study 3: Studying the Correctness and Time Cost of Bindings

for Machine Learning Libraries (Chapter 4)

Motivation: Bindings play a crucial role in integrating ML libraries into various

programming environments, making it essential to assess their impact on the soft-

ware quality of ML systems. Developers often choose bindings to utilize ML libraries

in their preferred programming languages. However, this raises important questions

about the correctness and time efficiency of models trained or utilized through these

bindings. Our research is driven by the need to evaluate whether ML models maintain

the same training accuracy when developed using different bindings and whether the

accuracy of pre-trained models is preserved during inference across different bindings.

These investigations are critical for developers to determine if bindings compromise

the training and operational accuracy of their ML systems. Furthermore, given the

resource-intensive nature of training and inference processes in ML libraries, it is cru-

cial to consider the impact of bindings on time cost. Prior studies have highlighted

variations in runtime efficiency and energy consumption across different program-

ming languages, which could extend to the performance of bindings [118, 126, 128].

Therefore, we aim to quantify the time costs associated with training and performing

inference using different bindings. These insights will help developers make informed

decisions about the trade-offs between computational resources and performance when

deploying ML models in production environments.

Findings: Our experiments with TensorFlow and PyTorch across bindings in C#,

Rust, Python, and JavaScript revealed several key findings. We revealed that bindings

can have different training accuracy curves under identical configurations. Remark-

ably, a model trained with one binding can be seamlessly used for inference with

another binding for the same ML library without sacrificing correctness. Further-

more, non-default bindings can outperform the default Python bindings for certain

tasks while maintaining the same correctness in both model training and inference

processes. One important factor influencing the training cost of bindings for ML

6

libraries was the batch data loading time. In addition, significant differences were

observed in inference times for the same pre-trained model across different bindings.

In some instances, performing inference for the same model using a binding on CPU

can be faster than using another binding for the same model on GPU. Variations

in inference time among bindings were attributed to differences in both batch data

loading and the speed of forward propagation. These results highlight the potential

of non-default bindings to enhance ML software quality by reducing time costs while

ensuring the preservation of model correctness.

Thesis Statement

Bindings for ML libraries enable developers to leverage state-of-the-art ML
techniques across different programming languages. This thesis investigates the
quality of bindings for ML in software package ecosystems, focusing on their
maintenance quality and software quality, to provide insights for improving the
development and utilization of these bindings.

1.4 Thesis outline

The remainder of this thesis is organized as follows: Chapter 2 presents a study on the

development and maintenance of bindings for ML libraries. Chapter 3 investigates

the release-level deprecation of bindings for ML libraries in Rust and npm ecosys-

tems. Chapter 4 compares the correctness and time cost of bindings for ML libraries

across different programming languages. Finally, Chapter 5 concludes the thesis by

highlighting the findings and contributions of our research studies and discussing

directions for future research.

7

Chapter 2

Studying the Development and
Maintenance of Bindings for
Machine Learning Libraries

2.1 Abstract

Open source machine learning (ML) libraries enable developers to integrate advanced

ML functionality into their own applications. However, popular ML libraries, such

as TensorFlow, are not available natively in all programming languages and software

package ecosystems. Hence, developers who wish to use an ML library which is not

available in their programming language or ecosystem of choice, may need to resort

to using a so-called binding library (or binding). Bindings provide support across

programming languages and package ecosystems for a host library. For example, the

Keras .NET binding provides support for the Keras library in the NuGet (.NET)

ecosystem even though the Keras library was written in Python. In this chapter, we

collect 2,436 cross-ecosystem bindings for 546 ML libraries across 13 software package

ecosystems by using an approach called BindFind, which can automatically identify

bindings and link them to their host libraries. Furthermore, we conduct an in-depth

study of 133 cross-ecosystem bindings and their development for 40 popular open

source ML libraries. Our findings reveal that the majority of ML library bindings are

maintained by the community, with npm being the most popular ecosystem for these

8

bindings. Our study also indicates that most bindings cover only a limited range

of the host library’s releases, often experience considerable delays in supporting new

releases, and have widespread technical lag. Our findings highlight key factors to

consider for developers integrating bindings for ML libraries and open avenues for

researchers to further investigate bindings in software package ecosystems.

2.2 Introduction

Machine learning (ML) has become extremely popular in the last decade. Nowa-

days, there exist many ML applications in our daily lives, such as email spam filters,

recommendation systems, and voice assistants. To provide ML features in an ap-

plication, most developers rely on well-developed open source ML libraries, such as

TensorFlow [1] or PyTorch [124]. These open source ML libraries provide easy-to-use

interfaces for software developers to use ML techniques in their projects. However,

these libraries often target only one programming language and publish to one soft-

ware package ecosystem. For example, scikit-learn [125], a popular ML library which

provides various ML algorithms, is written in Python and publishes to PyPI. Thus,

Python developers can directly use the published scikit-learn package through PyPI

but developers in other programming languages cannot use this library as easily.

There exist several workarounds that allow a developer to use a library that was

not written in their preferred language. First, they could choose an alternative but

similar library that is written in their preferred language. However, such a similar

library may not exist, and even if it does, it may only provide a subset of the required

functionality. Another workaround is to recode the library from scratch, but this

approach is error-prone and requires a large amount of work. Finally, the developer

can use a binding for the library in their preferred language, which would allow

the developer to use the original library’s functionality without recoding the library.

However, there is not much known about this type of reuse.

Our research aims to fill this gap by conducting a large-scale investigation into

9

open-source ML libraries and their bindings across the ecosystems of 13 programming

languages. Specifically, we seek to answer the following research questions (RQs):

RQ1. How effective is BindFind for identifying bindings, and what are the

identified bindings for ML libraries?

We introduce an approach called BindFind for identifying bindings in software

package ecosystems, which achieves a 0.970 F1 score in identifying bindings

and a 0.889 F1 score in extracting the host library names. Using BindFind,

we identified 2,436 bindings for 546 ML libraries across 13 software package

ecosystems.

RQ2. How are ML libraries and their bindings distributed across ecosys-

tems?

The most common combination of ecosystems that support an ML library is

npm with PyPI. While PyPI is the most popular ecosystem for ML libraries,

npm is the most popular ecosystem for the bindings of ML libraries.

RQ3. How are cross-ecosystem bindings for popular ML libraries main-

tained?

Cross-ecosystem bindings often offer low coverage of host library releases, and

they suffer from high delays in supporting new releases, and considerable tech-

nical lag. The situation is worse for bindings that are not maintained by the

official library organizations.

The main contributions of this chapter are as follows:

1. The first research to study bindings for ML libraries within software package

ecosystems.

2. A replication package [98] containing our dataset of 250,668 bindings (together

with their host library names) identified by BindFind. In addition, the replication

10

package includes details on 546 ML libraries and their 2,436 bindings, as well as

the results of our analysis in which we matched 3,277 versions of 133 bindings for

40 popular ML libraries (including 3,785 tags).

3. A framework for understanding how well the bindings of ML libraries are main-

tained. Our findings offer a foundation for developers to make informed decisions

when selecting bindings.

Chapter Organization. The rest of this chapter is organized as follows. Sec-

tion 2.3 gives background information about our study. Section 2.4 discusses related

work. Section 2.5 presents our methodology. Section 2.6 presents the findings of our

three RQs. Section 2.7 discusses the implications of our findings. Section 2.8 outlines

threats to the validity of our study. Section 2.9 concludes the chapter.

2.3 Background

In this section, we give background information about software package ecosystems

and cross-ecosystem bindings for ML libraries.

2.3.1 Software Package Ecosystems

Traditionally, developers of open source libraries published their source code in a

source code repository like Git [16]. Developers who wish to use those libraries could

then download them directly from the source code repositories. However, developers

had to resolve the library’s dependencies and build the library manually. To help

developers integrate a library more easily, the releases of software libraries can be

published to a software package ecosystem. Open source libraries generally select a

software ecosystem to publish their main package, making it the official distribution

channel for releases. Alternatively, open source libraries might continue to release

versions directly through their Git repositories.

11

Most modern programming languages come with an official package manager and

a package registry. This package manager, the package registry and all the packages

are the key components of a software package ecosystem. Usually, a package manager

helps developers to manage the dependencies of their applications, for example, by

downloading a specific version of a dependency when the application is installed. In

addition, package managers help developers publish their applications to the software

package ecosystem. Most software package ecosystems of programming languages

will provide a website for developers to search and browse the information of stored

packages. Some examples of software package ecosystems are Maven for Java, PyPI

for Python, and npm for JavaScript.

2.3.2 Cross-Ecosystem Bindings for ML Libraries

In software development, bindings serve as bridges between different programming

languages, enabling software written in one language to use functions and libraries

developed in another [73]. This concept is especially useful in the context of ML,

where libraries like TensorFlow and PyTorch are often tailored to specific languages

and ecosystems [7]. Through bindings, developers can access these state-of-the-art

ML tools across languages. This can be achieved through various mechanisms, includ-

ing wrapper libraries that act as intermediaries, software development kits (SDKs)

that bundle libraries with tools for development, or application programming inter-

faces (APIs) that facilitate interaction between different software components.

In our study, we use the term host library to refer to the original ML library, while

cross-ecosystem bindings denote packages that allow the host library to be utilized

in other software package ecosystems. For example, tensorflow in PyPI and tfjs in

npm [152] are cross-ecosystem bindings for the same ML library (TensorFlow), even

though they have different names and reside in different software package ecosystems.

Moreover, cross-ecosystem bindings can be maintained by the community or the offi-

cial organization of the host library. For instance, tensorflow in PyPI and tfjs in npm

12

are both maintained by the official organization of the TensorFlow host library (i.e.,

the owners of their source code repositories are the same), and we consider these two

bindings as officially-maintained bindings. In contrast, TensorFlowSharp in NuGet,

another binding for TensorFlow, is considered as a community-maintained binding

since its owner is different from that of TensorFlow. Although the owner of Tensor-

FlowSharp is an individual, the owner of a community-maintained binding can also

be an organization that is not the same as the official organization of the host library.

Host libraries and their cross-ecosystem bindings do not necessarily follow the

same release schedules and/or strategies. For instance, a cross-ecosystem binding

may choose to only support a portion of the releases of its host library. Also, after

the host library publishes a release, there may be a delay before a cross-ecosystem

binding supports that release (if at all). In addition, cross-ecosystem bindings might

lag in version compared to the latest release of the host library.

Cross-ecosystem bindings can be written in a different programming language (i.e.,

the primary supported language of the package ecosystem) than their host library.

These bindings are often built on top of the host library and call the host library

using a foreign function interface (FFI). For example, the tfjs-node binding in npm

calls the TensorFlow C binary in the backend. Alternatively, some bindings choose

to reimplement their host library in a different programming language. For instance,

tfjs in npm is written in JavaScript and does not rely on the TensorFlow host library.

2.4 Related work

In this section, we discuss prior empirical studies of ML libraries, and related work

on software ecosystems and foreign function interfaces.

2.4.1 Empirical Studies of ML Libraries

Many researchers have studied different concepts of ML libraries [40, 53, 58, 61, 63,

75, 95, 115, 167, 181]. However, this study is the first research to focus on bindings

13

for ML libraries.

The increasing popularity of ML has brought attention to the development and

usage patterns of ML libraries. Dilhara et al. [40] conducted a large-scale empirical

study, revealing a significant rise in ML library adoption and identifying common

usage patterns and challenges. Furthermore, to support research in ML software

reliability engineering, Morovati et al. [115] created a valuable benchmark of 100

reproducible ML bugs (originating from GitHub and Stack Overflow) in TensorFlow

and Keras. Further analysis by Gao et al. [53] focused on the supply chain structure

and evolution of the TensorFlow and PyTorch packages within PyPI, uncovering

domain specialization, community clusters, and the reasons for packages leaving the

supply chains.

Several studies focused on the problems that developers could face when using ML

libraries. Islam et al. [75] mined Q&A of ten ML libraries on StackOverflow, and

reported that three types of problems occurred frequently (i.e., type mismatch, data

cleaning, and parameter selection). Zhang et al. [181] extracted bugs of TensorFlow

applications from Q&A pages on StackOverflow and investigated the root causes of

these problems. They provided strategies for developers to locate bugs and fix them.

Wei et al. [167] introduced FIMAX to improve API recommendations for Python-

based ML libraries based on extracted questions from Stack Overflow related to six

popular ML libraries. Lei et al. [95] identified seven primary reasons why ML projects

built on TensorFlow and PyTorch often encounter compatibility issues due to library

version changes, causing code to fail in some projects even when using the same

library API.

Several researchers have conducted comparison studies of multiple ML libraries.

Grichi et al. [58] compared ten multi-language ML frameworks with ten multi-language

traditional systems and reported that maintainers of these ML frameworks need more

time to accept or reject a pull request than traditional systems. Guo et al. [61] com-

pared the development and deployment processes of four ML libraries under the same

14

configuration for training of the same models. They found that using different ML

libraries can lead to different levels of accuracy. Han et al. [63] collected projects

that depend on PyTorch, TensorFlow, and Theano on GitHub, and observed four fre-

quent applications (i.e., image and video, NLP, model theory, and acceleration). In

addition, most projects depend on these three libraries directly instead of transitively.

2.4.2 Software Ecosystems

“Software ecosystems” are studied from several angles and even using different def-

initions [50, 109, 114]. The “software package ecosystems” term covers a subset of

the software ecosystems term. In this chapter, we study ML libraries that can be

found across multiple software package ecosystems. This study is the first to focus on

cross-ecosystem bindings. Prior research has explored cross-ecosystem packages shar-

ing the same source code repository [29, 81]. However, these studies have not directly

addressed the concept of bindings. They might have unintentionally included some

officially-maintained bindings within the same repository, but would have overlooked

both community-maintained bindings and officially-maintained bindings hosted in

different repositories. Our findings in Section 2.6.1 demonstrate that 94% of the ML

libraries bindings are community-maintained, underscoring a key difference in our

work.

Many studies have focused on software package ecosystems. In our prior work [99],

we studied the release-level deprecation mechanism in Cargo (Rust) ecosystem and

found that the deprecated releases propagate through the dependency network and

lead to broken releases. German et al. [54] mined packages in CRAN and reported

that most dependencies point to a core set of packages in the ecosystem. This phe-

nomenon was also observed in another active software package ecosystem – npm [168].

Cogo et al. [27] studied dependency downgrades in npm and found three reasons

behind the downgrades: defects, unexpected changes, and incompatibilities. Con-

stantinou and Mens [30, 31] studied social aspects in ecosystems and found that the

15

developers are more likely to abandon an ecosystem if they do not participate in the

community, and the Ruby ecosystem is being abandoned. Kula et al. [90] proposed a

model for visualizing dependencies in ecosystems, and show that CRAN packages tend

to use the latest releases, but Maven packages stay with the older versions. Decan

and Mens [34] investigated package releases in three software package ecosystems and

observed that most pre-releases do not become ≥ 1.0.0 releases. Moreover, software

package ecosystems have different practices, policies, and tools for handling breaking

changes [10, 11].

In addition, researchers studied other types of software ecosystems. Blincoe et al. [8,

9] proposed a reference coupling method to identify software ecosystems in GitHub

as well as the dependencies in the ecosystems. Osman and Baysal [123] identified

the Bitcoin software ecosystem in GitHub and assessed it as a healthy ecosystem.

Furthermore, many researchers studied the health of software ecosystems [77, 150].

Kula and Robles [89] investigated four abandoned software ecosystems and observed

that all these ecosystems had a successor or their components were adopted by other

systems. Bavota et al. [6] found that projects in the Apache ecosystem get up-

dates when the dependencies published releases for breaking changes or bug fixes. de

Souza et al. [153] studied social aspects in proprietary mobile software ecosystems

and observed that most developers chose a specific ecosystem based on others’ rec-

ommendation. Researchers also studied information security and business factors in

mobile software ecosystems [155, 156].

2.4.3 Foreign Function Interfaces

Foreign function interfaces (FFI) bridge the gap between different programming lan-

guages and allow developers to reuse libraries written in other languages. To verify

the correctness of existing bindings, Furr and Foster [52] presented a static checking

system that analyzes both bindings and their host library. In addition, Lee et al. [94]

built bug detection tools for the FFI in Jave and Python by performing dynamic

16

3,277 versions
& 3,785 tags

Extract versions of
bindings for popular ML

libraries
Libraries.io:

22,457,711 versions
& 71,549,079 tags

Select non-toy
ML repositories

4.2 Collecting Bindings for Open Source ML Libraries

Libraries.io:
37,702,060
repositories

Binding classification and
host name extraction

4.1 Collecting Open Source ML Repositories

Libraries.io:
2,575,965 packages

Select popular ML
libraries and their

bindings

40 popular ML
libraries & 133

bindings

Identify bindings for ML
libraries

546 ML libraries
& 2,436 bindings

RQ1. How effective is BindFind for
identifying bindings, and what are
the identified bindings for ML
libraries?

RQ2. How are ML libraries and
their bindings distributed across
ecosystems

RQ3. How are cross-ecosystem
bindings for popular ML libraries
maintained?

4.3 Collecting Releases of Popular ML Libraries and Their Bindings

11,763 ML
repositories

250,668 bindings and
their host names

Figure 2.1: Overview of our methodology.

analysis. Nakata et al. [117] categorized link models and fault models of FFI and

proposed a logging framework to track the information flow for each model.

Moreover, wrapping up a function to call a library from another programming lan-

guage is not always applicable, Chiba [19] proposed a framework based on code migra-

tion to solve this problem. Besides writing the codes of FFI manually, Finne et al. [49]

used an interface definition language to allow Haskell to communicate with both C

and COM. In addition, Reppy and Song et al. [135] developed a tool to generate

foreign interfaces for high-level languages to use the libraries written in C.

2.5 Methodology

In this section, we introduce the methodology of our study on popular ML libraries

and their cross-ecosystem bindings. Figure 2.1 gives an overview of our methodology.

17

Table 2.1: Overview of the Libraries.io dataset

(a) Repositories and tags in Git hosts

Platform # Repos # Tags

GitHub 36,567,566 58,296,891

GitLab 864,563 12,248,518

Bitbucket 269,931 1,003,670

Total 37,702,060 71,549,079

(b) Packages and versions in software package ecosystems

Ecosystem Language # Packs # Versions

npm JavaScript 1,277,221 11,400,714

Packagist PHP 313,575 1,766,576

PyPI Python 232,050 1,752,770

NuGet C# 199,671 2,445,003

Maven Java 184,890 2,799,513

RubyGems Ruby 161,650 1,055,874

CocoaPods Objective-C 68,085 365,782

CPAN Perl 37,496 290,847

Cargo Rust 35,695 195,011

Clojars Clojure 24,295 116,945

CRAN R 16,710 94,716

Hackage Haskell 14,484 98,572

Pub Dart 10,143 75,388

Total 2,575,965 22,457,711

18

2.5.1 Collecting Open Source ML Repositories

We used the Libraries.io dataset [82] which was updated on January 12, 2020 as our

primary data source. This dataset contains information (e.g., tags, owners, keywords)

on 37,702,060 repositories from three prominent Git hosting services. These services

host the actual code of open-source ML libraries and facilitate version control, de-

veloper collaboration, and other functions. Since these hosts are widely used, they

may also contain personal projects, documentation, and experimental code. Table 2.1

outlines the distribution of repositories and tags among these Git hosts.

Following the keyword-matching approach proposed by Ben Braiek et al. [7] to ex-

tract ML projects from GitHub, we employed a similar approach to identify ML repos-

itories. This approach involved scanning the “Description” and “Keywords” fields of

repositories in the dataset for the following keywords: “machine learning”, “deep

learning”, “statistical learning”, “neural network”, “supervised learning”, “unsuper-

vised learning”, “reinforcement learning”, and “artificial intelligence.” We crafted

regular expressions to accommodate variations in keyword formatting, including the

presence of underscores, hyphens, and commas (e.g., “machine learning”). To exclude

toy repositories, we filtered out those with fewer than 5 stars, marked as inactive in the

“Status” field, or indicated as forks. Ultimately, we extracted 11,763 ML repositories

from the dataset.

2.5.2 Collecting Bindings for Open Source ML Libraries

The Libraries.io dataset includes information (e.g., released versions, creation dates,

dependencies) on 4,612,919 packages from 38 software package ecosystems. As de-

scribed in Section 2.3, ML libraries typically have their source code managed on

Git hosts and publish packages to these ecosystems. Our analysis focused on 13 se-

lected ecosystems, excluding ecosystems that: (1) focus on a specific domain, such

as Sublime and WordPress, (2) those with a very small number of packages, such as

Shards (33 packages) and PureScript (384 packages), and (3) those that do not store

19

information about releases, such as Go. Also, we excluded ecosystems that contain

duplicated packages of other ecosystems, for example, most packages in Bower can

be found in npm. Table 2.1 shows the supported programming language, the number

of packages, and the number of releases in these 13 ecosystems.

Binding classification and host name extraction

To automatically identify bindings in package ecosystems and extract their corre-

sponding host names, we propose BindFind. BindFind employs natural language

processing (NLP) techniques, specifically leveraging BERT (Bidirectional Encoder

Representations from Transformers) models [39]. As shown in Figure 2.2, we con-

ceptualize the problem as an extractive question-answering (QA) task, akin to the

methodology used in the Stanford Question Answering Dataset (SQuAD) v2.0 [131].

In this framework, the description of a package serves as the context for querying

the model about the package’s host library name, requiring the model to determine

the precise locations (i.e., the start and end positions) of the host name within the

context. Notably, all the inputs are tokenized before being fed into the model, and

the start and end positions refer to the tokens instead of the original input. If the

start and end positions point to the [CLS] token, or if the positions are invalid (e.g.,

the start position is after the end position), we conclude that the model did not

identify the repository as a binding. This approach adeptly handles both scenar-

ios where questions are answerable and unanswerable, reflecting real-world scenarios

where some packages might not be bindings and thus not have a host name to extract.

Studied models. We selected several variations of BERT models, including the

original BERT [39], DistilBERT [141], ALBERT [91], and RoBERTa [105]. These

models were chosen for their proven efficacy in QA benchmarks [131, 132].

Data preparation. We manually labeled 2,546 packages to determine whether

they are bindings and, if so, to identify their host names. The dataset was split into

20

training, validation, and test subsets. The training set included 2,346 samples, with

1,954 (83%) not being bindings and 392 (17%) identified as bindings (annotated with

their host names). Both the validation and test sets were balanced, each containing

100 samples with an equal distribution of 50 (50%) bindings and 50 (50%) non-

bindings. During the training process, we trained the studied models on the training

set and used the validation set for hyperparameter tuning and model selection. After

training, the performance of the models was evaluated on the test set.

Evaluation metrics. To assess the effectiveness of BindFind, we used the F1

score, precision, and recall [56] to evaluate the performance of classifying whether

a package is a binding. For the extraction of host names within identified bindings, we

applied exact match (EM) accuracy and (macro-average) F1 score specific to QA

tasks [131]. EM is a strict metric where any deviation from the exact answer results

in a score of 0 for that sample. The F1 score evaluates performance by considering

predictions and ground truths as collections of tokens. The reported results are

averaged over all of the samples.

EM =
Number of exact matches

Number of examples that are bindings
(2.1)

F1 =
2× Precision×Recall

Precision+Recall
(2.2)

where

Precision =
Number of accurately identified tokens

Number of tokens in the prediction
(2.3)

Recall =
Number of accurately identified tokens

Number of tokens in the ground truth
(2.4)

21

BERT-Like Model

Project Description:
Rust language bindings for TensorFlow

Feed Forward Neural Network

Start

End

[CLS] Token 1 Token K Rust bindings for T ensor Flow[SEP]...

Fixed Question:
What is the host name?

Rust bindings for T ensor Flow

Rust bindings for T ensor Flow

[CLS] Token 1 Token K [SEP]

[CLS] Token 1 Token K [SEP]

...

...

Figure 2.2: The model structure of BindFind for binding classification and host name
extraction, illustrated using an example.

Identify bindings for ML libraries

We processed 2,575,965 packages from the 13 studied software package ecosystems and

identified a total of 250,668 bindings with their corresponding host names. To identify

bindings for the 11,763 ML repositories, we deployed a string-matching algorithm that

compared the names of ML repositories with the extracted host names, resulting in

3,360 matches between bindings and 983 ML repositories. We manually reviewed

these matches, removing repositories containing only tutorials or experimental code,

and filtering out duplicate repositories of the same ML library. After refinement, we

identified a total of 2,436 bindings for 546 ML libraries.

It is important to note that some of the 546 ML libraries might publish official

packages into ecosystems. These published packages can be either normal packages

or bindings (already identified by BindFind). For example, PyTorch publishes its

22

main package torch in PyPI,1 which is not considered a binding as stated in their

documentation [129]. To study the distribution of ML libraries and their bindings

across ecosystems in RQ2, we included officially published packages alongside identi-

fied bindings. We used two criteria: (1) they specified the ML library’s Git repository

as their source code repository, and (2) they shared the same homepage URL as the

ML library. Using these criteria, we identified 775 packages officially published pack-

ages by 202 out of the 546 ML libraries.

2.5.3 Collecting Releases of Popular ML Libraries and Their
Bindings

To focus our analysis in RQ3 on widely adopted libraries, we filtered the 546 ML

libraries with 2,436 bindings based on the number of stars and selected 127 ML

libraries with more than 1,000 stars. Though we acknowledge that stars do not

provide a complete picture of real-world usage, they are commonly seen as a proxy

for the popularity of a project within the software engineering domain [12, 47, 64,

170, 172]. For instance, TensorFlow’s binding tfjs has gained over 17,000 stars on

GitHub,2 suggesting significant attention from developers. For further analysis, we

manually reviewed these libraries and their bindings to perform several refinements.

We excluded supporting packages for the actual bindings within the same ecosystem,

along with bindings that are either work-in-progress or have only placeholder/invalid

releases, e.g., OpenCV’s binding in Pub.3 Following these steps, we obtained a final

set of 40 popular ML libraries (as shown in Table 2.2) with 133 bindings.

1https://pypi.org/project/torch
2https://github.com/tensorflow/tfjs
3https://pub.dev/packages/flutter opencv plugin

23

https://pypi.org/project/torch
https://github.com/tensorflow/tfjs
https://pub.dev/packages/flutter_opencv_plugin

Table 2.2: Basic information about the popular ML libraries that have cross-
ecosystem bindings.

ML library # Eco # Stars Description

Alluxio 2 4,449 Data orchestration for ML in the cloud

BerryNet 1 1,150 Deep learning gateway on Raspberry Pi

bert-as-service 2 6,379 Sentence vector mapping with BERT

BigDL 2 3,177 Distributed deep learning library for
Apache Spark

Bullet 2 5,798 Physics simulation for RL

Caffe 3 29,655 Deep learning library

CatBoost 2 3,760 Gradient Boosting on Decision Trees

Deeplearning4j 2 11,328 Deep learning library for Java

DeepSpeech 4 12,710 A speech-to-text engine based on Tensor-
Flow

dlib 5 8,412 A toolkit for real-world ML applications

DyNet 2 2,867 Dynamic Neural Network Toolkit

H2O 3 4,513 A platform for distributed ML

ImageAI 2 4,252 A library for deep learning and computer
vision

Keras 3 45,995 A framework to provide human-friendly
APIs based on TensorFlow

libpostal 6 2,171 An NLP library for address parsing and
normalizing

LightGBM 3 10,242 A gradient boosting framework

MITIE 2 1,820 An NLP library for information extraction

MLflow 3 5,459 A ML lifecycle platform

mlpack 2 3,016 A library to provide ML algorithms

ncnn 1 7,930 Neural network inference

NLTK 3 8,498 An NLP library

NNPACK 1 1,085 Neural network acceleration

Continued on next page

24

Table 2.2 continued from previous page

ML library # Eco # Stars Description

NNVM 1 1,586 Compiler for neural nets

ONNX Runtime 4 1,561 A runtime engine for ONNX models

OpenAI Gym 7 19,351 A toolkit for developing and comparing RL
algorithms

OpenCV 10 41,126 A computer vision library

OpenFace 1 12,847 Face recognition with deep learning

OpenPose 1 15,532 Multi-person keypoint detection

Porcupine 3 1,853 A library for lightweight wake word detec-
tion

PredictionIO 8 12,226 A ML server for infrastructure manage-
ment

PyTorch 5 35,004 A ML framework

Rasa 2 7,436 A ML framework for automating conversa-
tions based on text and voice

scikit-learn 3 38,756 A framework to provide ML algorithms

Seldon Core 2 1,296 An MLOps framework based on Kuber-
netes

spaCy 2 15,161 An NLP library

TensorFlow 11 139,939 A ML framework

Tesseract OCR 8 32,078 An OCR engine that uses deep learning

Vowpal Wabbit 8 6,767 Techniques to solve interactive ML prob-
lems

Weld 2 1,261 A library for data analy

XGBoost 6 17,996 A gradient boosting framework

2.6 Results

This section presents the results of our three RQs. For each RQ, we present the

motivation, approach, and findings.

25

2.6.1 RQ1: How effective is BindFind for identifying bindings,
and what are the identified bindings for ML libraries?

Motivation. This research question investigates the effectiveness of BindFind in clas-

sifying bindings and extracting host names within software package ecosystems. In

addition, we aim to study the proportion of bindings for ML libraries and examine

whether these bindings are maintained by the official organization or by the com-

munity. The findings from this research question will provide an overview of the

prevalence of bindings for ML libraries in software package ecosystems.

Approach. We conducted a comparative analysis of various BERT models as de-

scribed in Section 2.5.2. Subsequently, the most effective model was selected and

utilized by BindFind to perform inference across all the packages in the 13 stud-

ied software package ecosystems. The distinction between officially-maintained and

community-maintained bindings was established through an automatic examination

of their association with the host ML libraries. Bindings sharing the same source

code repository, organization name, or homepage URL as the host ML library were

categorized as officially-maintained. Conversely, those lacking such affiliations were

categorized as community-maintained.

Findings. BindFind, powered by the RoBERTa base model, demonstrates

exceptional performance in the tasks of binding classification and host

name extraction, achieving F1 scores of 0.970 and 0.889 respectively. As

illustrated in Table 2.3, the RoBERTa base model exhibits superior performance in

both the binding classification and host name extraction tasks. Notably, all evalu-

ated models achieved an F1 score above 0.870 in binding classification, indicating

a generally high level of accuracy across different architectures. Furthermore, the

results demonstrate that larger models do not always guarantee better performance.

For instance, the BERT base (cased) model outperforms its larger variant, and the

RoBERTa base model surpasses the RoBERTa large model in both tasks.

26

Table 2.3: Performance comparison of BindFind with different BERT models in
bindings classification and host name extraction on the test set. (U: Uncased; C:
Cased; Prec: Precision; Rec: Recall)

Family Variant
Binding Classification Host Name Extraction

F1 Prec Rec F1 Exact Match

DistilBERT
Base (U) 0.903 0.977 0.840 0.806 0.780

Base (C) 0.936 1.000 0.880 0.802 0.740

BERT

Base (U) 0.925 1.000 0.860 0.770 0.760

Large (U) 0.925 1.000 0.860 0.799 0.760

Base (C) 0.947 1.000 0.900 0.803 0.760

Large (C) 0.936 1.000 0.880 0.767 0.720

ALBERT

Base 0.918 0.938 0.900 0.824 0.760

Large 0.925 1.000 0.860 0.818 0.800

XLarge 0.876 1.000 0.780 0.696 0.640

XXLarge 0.959 0.979 0.940 0.887 0.840

RoBERTa
Base 0.970 0.980 0.960 0.889 0.860

Large 0.969 1.000 0.940 0.869 0.840

27

5% of the ML repositories have bindings in software package ecosystems

and a vast majority (94%) of them are community-maintained bindings.

We found that 5% (546 out of 11,763) of the ML repositories are ML libraries with

bindings in software package ecosystems. Among the 2,436 identified bindings for

these ML libraries, a staggering 94% (2,292 out of 2,436) of the bindings are main-

tained by the community. Conversely, only 6% (144 out of 2,436) of the bindings

are maintained by the official organization. Notably, 58% (84 out of 144) of these

officially-maintained bindings share the same source repository as their host ML li-

braries, while 42% (60 out of 144) are hosted under the same organizational umbrella

but in separate repositories. For instance, PyTorch has officially published a bind-

ing [130] in Cocoapods for iOS, and tfjs-node serves as an official binding for Ten-

sorFlow within the NPM ecosystem [152], with its source repository is maintained

by the tensorflow organization on GitHub. Additionally, we observed the transition

of some community-maintained bindings to official organizations, such as the Python

binding for OpenCV [122].

Takeaway of RQ1

Bindings and their host library names can be very accurately identified in soft-
ware package ecosystems using BindFind, utilizing the RoBERTa base model.
The vast majority of bindings for ML libraries are maintained by the commu-
nity.

2.6.2 RQ2: How are ML libraries and their bindings dis-
tributed across ecosystems?

Motivation. As ML libraries mature, developers across various ecosystems may wish

to utilize them. To understand the distribution of ML libraries and their bindings

across different software package ecosystems, we conducted a comprehensive analysis.

This research question aims to unveil the availability of ML libraries to developers

working in various programming languages and ecosystems, highlighting the interop-

erability and reach of these libraries. Also, we aim to explore whether certain (com-

28

1 2 3 4 5 6 7 8 9 10 11 12
Number of ecosystems

Figure 2.3: The distribution of the number of software package ecosystems supported
by ML libraries with bindings.

binations of) ecosystems are favoured by the bindings for ML libraries.

Approach. We analyzed 2,436 bindings for 546 ML libraries, with a subset of 202

out of these 546 libraries having officially published packages (not bindings) across

ecosystems (as detailed in Section 2.5.2). Our analysis focused on their distribution

across 13 software package ecosystems. To better understand in which combinations

of software package ecosystems these libraries reside, we counted the ecosystem-pairs

for each library. An ecosystem-pair is counted for each pair of ecosystems supporting

the same library. For example, if a library is supported in PyPI, npm, and NuGet,

we count three ecosystem-pairs: PyPI-npm, PyPI-NuGet, and npm-NuGet. If an

ecosystem-pair appears more frequently than others, it implies that those two ecosys-

tems are more likely to be supported together by ML libraries.

Findings. ML libraries with bindings typically span across a median of

two software package ecosystems. Our analysis revealed that ML libraries with

bindings are typically supported across a median of two software package ecosystems.

As illustrated in Figure 2.3, 55% (302 out of 546) of the studied ML libraries extend

their reach by residing in multiple ecosystems. For example, the NLP library spaCy

has bindings available in both PyPI and npm. Notably, the library with the broadest

ecosystem presence is OpenCV which is available in 12 different ecosystems, followed

by TensorFlow which is available in 11 ecosystems. Among the ML libraries with

29

Pu
b

Cloja
rs

Coco
aPo

ds
CPA

N
CRA

N

Hack
ag

e
Mav

en np
m

Carg
o

Pac
kag

ist
NuG

et PyP
I

Clojars

CocoaPods

CPAN

CRAN

Hackage

Maven

npm

Cargo

Packagist

NuGet

PyPI

Rubygems

3

2 6

0 1 0

2 7 6 2

2 4 3 2 3

3 14 8 1 12 5

6 23 30 6 23 10 54

4 6 5 3 7 6 12 29

3 9 17 1 7 2 27 60 7

5 13 13 2 12 7 26 66 18 23

4 21 22 12 27 8 47 139 30 49 48

2 16 17 5 13 6 24 59 19 28 29 51
0

20

40

60

80

100

120

Nu
m

be
r o

f M
L

lib
ra

rie
s w

ith
 b

in
di

ng
s

Figure 2.4: Combinations of software package ecosystems in which ML libraries with
bindings are available. The elements represent the number of libraries that can be
found in both ecosystems (i.e., ecosystems in the row and column).

bindings that are found in a single ecosystem (244 out of 546 libraries), 71% (174

out of 244) consists of libraries with only community-maintained bindings, lacking

official packages or officially-maintained bindings. The remaining cases (70 out of

244) comprise libraries that have officially-maintained bindings.

Official organizations behind ML libraries with bindings prefer to focus

on a single ecosystem, with PyPI being the most popular choice. Among

ML libraries with bindings, 43% (236 out of 546) of them have official packages or

officially-maintained bindings. When examining the publication behavior of official

organizations behind these 236 ML libraries, we observed that 87% (205 out of 236) of

the libraries prefer to focus on a single ecosystem, with PyPI being the predominant

choice (69%). This preference aligns with prior research by Ben Braiek et al. [7],

which reports Python’s dominance in ML development.

npm is the leading ecosystem for hosting bindings for ML libraries and

the most common combination of bindings is npm with PyPI. Regarding

30

bindings for ML libraries, we found that 53% (292 out of 546) of the libraries have

bindings in npm. This is closely followed by PyPI in which bindings for 41% (225

out of 546) of the libraries are hosted. Figure 2.4 gives an overview of the ecosystem-

pairs of ML libraries with bindings across multiple ecosystems (302 out of 546). The

PyPI-npm pair is identified as the most prevalent combination, as it is supported by

139 out of 302 ML libraries with bindings. One reason could be that Python is the

most popular language for ML development [7] and JavaScript has been the most

commonly used programming language [154]. Hence, there could be a need for ML

in npm, resulting in more support for such bindings. Other notable ecosystem pairs

include npm-Packagist, Cargo-PyPI, and npm-Maven, reflecting a diverse landscape

of ML library availability and collaboration.

Takeaway of RQ2

55% of ML libraries with bindings are distributed across at least two software
package ecosystems, with npm being the most popular choice for publishing
these bindings. Moreover, the most popular combination of ecosystems to sup-
port is PyPI and npm.

2.6.3 RQ3: How are cross-ecosystem bindings for popular
ML libraries maintained?

Motivation. The popularity of certain ML libraries has led to increased development

of bindings across software ecosystems. However, the development and maintenance

practices for these bindings can be different from their host libraries. If a binding

only supports a small proportion of the releases of its host library and has a high

delay in getting an update, developers who rely on this binding might have to stick

with a version for a long time. This situation could be problematic when a bug is

fixed in the host library but not in the binding. As RQ1 showed, the vast majority

of bindings for ML libraries are dependent on community support. In this research

question, we investigate the releases of popular ML host libraries and their bindings

to understand the development and maintenance of these bindings. The results can

31

be helpful for developers when they are choosing a binding.

No

Yes Find evidence
in README?

Find the binding
release in the

ecosystem

Download files of
this release from
the ecosystem

No

Yes Find evidence
in build files or test cas-

es (if available)?

Yes

No

Is there a link
to the repository of this

binding?

Find this specific
release in the

repository

Find evidence
in README?

No

Find evidence
in submodules or

CI/CD config?

YesFind evidence
in build files or test cas-

es (if available)?

Record the result

Not found

No

Record the result

Yes

Yes

No

Start

Figure 2.5: The process of identifying which version of the host library is supported
by a specific binding version.

Approach. For libraries that primarily distribute their packages within a single soft-

ware package ecosystem or designate a specific package as their main release channel,

we considered the versions of these packages as the library’s releases. For instance, Py-

Torch adopts a “Python First” approach [129], positioning its torch package in PyPI

32

not merely as a binding but as the main package. On the other hand, for libraries

like OpenPose, which do not distribute packages through any specific package ecosys-

tem,4 we relied on source code repository tags as their releases. This method also

applies to bindings that span multiple ecosystems, particularly when no main package

is declared. In these cases, the source code repository tags often represent the most

reliable source of library releases, such as the tags for XGBoost.5 Subsequently, we

matched all releases of each binding with the corresponding host library releases by

searching for evidence of this matching in the following places of the binding releases:

1. README: When the supported version of the host library is mentioned explic-

itly.

2. Git Submodules [16]: When the source code of the supported version of the

host library is included as a submodule.

3. Build Files: When the supported version of the host library that is going to

be built for developers is mentioned explicitly, e.g., a binding might indicate the

supported version in CMakeLists.txt or Rakefile.

4. Test Cases: When the supported version of the host library is verified explicitly

by the tests.

5. Configurations of continuous integration or delivery (CI/CD): When the

supported version of the host library is indicated explicitly in the configuration

files, such as .travis.yml, to set up the CI/CD environment.

Figure 2.5 shows an overview of the identification process. For each release of

a cross-ecosystem binding, we inspected the README and downloaded the files of

this release from the software package ecosystem. If no evidence could be found, we

checked out the source code repository of this binding. To locate the corresponding

4https://github.com/CMU-Perceptual-Computing-Lab/openpose/issues/1250
5https://github.com/dmlc/xgboost

33

https://github.com/CMU-Perceptual-Computing-Lab/openpose/issues/1250
https://github.com/dmlc/xgboost

1.0.0

1.1.0

1.2.0

0.1.0

0.2.0

0.3.0

0.4.0

0.5.0

1.0.0

1.1.0

1.2.0

0.1.0

0.2.0

0.3.0

0.4.0

0.5.0

1.0.0

1.1.0

1.2.0

0.1.0

0.2.0

0.3.0

0.4.0

0.5.0

host host hostbinding binding binding

(a) (b) (c)

Figure 2.6: Three examples of matching binding releases and host releases: (a) all
host releases are supported by the binding; (b) 2 out of 3 host releases are supported;
(c) no host releases are supported.

checkpoint (i.e., a Git commit) of a specific release in the repository, we investigated

all tags of the repository and extracted the one that had the same version as the release

of the binding. However, some repositories do not have tags for published releases.

In this case, we tracked the modification history of the meta-data file (which stores

the version number) to locate the checkpoint. Some examples of meta-data files are

package.json in npm, setup.py in PyPI, and pom.xml in Maven. After locating the

checkpoint of the specific release, we inspected the files to find out which release of

the host library is supported. We performed this process for all releases of cross-

ecosystem bindings and matched them with the releases of the host library. The

matching results can be found in our replication package [98].

To quantitatively assess the alignment between binding and host library releases,

we extracted the delay between the matched releases and the host releases in days

and calculated the coverage for each binding b in software package ecosystem e as

follows:

34

coveragee,b =
#matched host releasese,b

#releasehost,b
(2.5)

where the numerator is the number of host releases that are supported by b and

the denominator is the number of releases of the host library. We only consider the

releases of the host library that were published since the binding started to provide

support. The coverage of a binding b will be 100% if we can find a matched binding

release for every host release. If we cannot find any matched release in b, the coverage

will be 0%. The coverage metric captures the overall support that a binding offers for

an ML library. Figure 2.6 presents three matching results, the denominators are 3 for

all three examples and the numerators are 3, 2, and 0 respectively. Hence, the coverage

values for these examples are 100%, 67%, and 0%. In addition, we investigated the

technical lag [157, 179] of the latest release of each binding. Technical lag occurs

when a binding does not support the most recent version of its host library. For

example, a major version lag exists when the latest version of a binding supports

version 1.1.0 of its host library, but the latest available version of the host library is

2.1.0. Similarly, minor and micro version lags exist when there are discrepancies in

the minor or micro version numbers respectively.

Next, we compared our findings between officially-maintained bindings and community-

maintained bindings by performing the Mann-Whitney U test [110] at a significance

level of α = 0.05 to determine whether the differences are significant. Also, we com-

puted Cliff’s delta d [106] effect size to quantify the difference. To explain the value

of d, we use the thresholds which are provided by Romano et al. [137]:

Effect size =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

negligible, if |d| ≤ 0.147

small, if 0.147 < |d| ≤ 0.33

medium, if 0.33 < |d| ≤ 0.474

large, if 0.474 < |d| ≤ 1

(2.6)

Findings. Developers in PyPI are more likely to find a matched release of a

35

Cargo
Clojars

CocoaPods
CPAN

CRAN
Hackage

Maven npm
NuGet

Packagist Pub PyPI

Rubygems
Overall

Ecosystem

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
of

 c
ov

er
ag

e

Figure 2.7: The distributions of the coverage of cross-ecosystem bindings for popular
ML libraries across ecosystems.

cross-ecosystem binding for popular ML host libraries than developers in

other software package ecosystems. Figure 2.7 shows that PyPI has the highest

coverage among the 13 studied ecosystems, with a median value of 46%. In contrast,

other ecosystems have relatively small coverage values. We observed that the main

reason for the low coverage of these bindings is that they only provide support for

a specific subset of the releases from their host libraries. For example, a binding

of dlib in RubyGems has 13 releases but only supports 2 out of 50 versions of the

host library. Specifically, releases 1.0.0 to 1.0.3 of this binding support version v18.13

of the host library, then it skipped nine versions (i.e., v18.14 to v19.3) of the host

library and published 9 releases to support v19.4. This phenomenon can also be

found in other bindings with low coverage. In addition, we noticed that the median

coverage values of CRAN, Hackage, npm, and Pub are below 5%. This phenomenon

may be attributed to a large portion of community-maintained bindings within these

ecosystems (e.g., 84% in npm), where many bindings stick with a single host library

version.

After a release of the ML library was published, their bindings in PyPI

36

Cargo
Clojars

CocoaPods
CPAN

CRAN
Hackage

Maven npm
NuGet

Packagist Pub PyPI

Rubygems
Overall

Ecosystem

0.0

1.0

10.0

100.0

1000.0

Da
ys

 o
f d

el
ay

Figure 2.8: The distributions of the delay between releases of popular ML host li-
braries and their bindings.

and Maven received a corresponding update more quickly than the ones in

other software ecosystems. Figure 2.8 shows that bindings within the PyPI and

Maven ecosystems tend to be updated to match new releases of ML libraries more

swiftly than those in other ecosystems, with median delays of less than 7 days. In

contrast, bindings in ecosystems like Packagist and Hackage may experience median

delays exceeding 365 days, indicating a slower pace of alignment with host library

updates.

Compared to community-maintained bindings for popular ML libraries,

the officially-maintained bindings have higher coverage, shorter delays, and

smaller technical lags. Among the 133 bindings for the 40 popular ML libraries, 36

are officially-maintained bindings while 97 are community-maintained bindings (27%

versus 73%). Figure 2.9 shows that the coverage of community-maintained bind-

ings is mostly below 0.2 and the delays with the host libraries are mostly between

29 and 275 days. In contrast, the officially-maintained bindings have much more

coverage (median of 11%) and less delay (median of 34 days). The Mann-Whitney

U test demonstrates significant differences in both coverage and delay distributions

37

Official Community
(a)

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
of

 c
ov

er
ag

e

Official Community
(b)

0.0
1.0

10.0

100.0

1000.0

Da
ys

 o
f d

el
ay

Figure 2.9: Comparisons of the cross-ecosystem bindings for ML libraries which are
maintained by the official organization and the community: (a) the distributions of
the coverage; (b) the distributions of the delay between a release of the host library
and the corresponding release of the binding.

between officially-maintained bindings and community-maintained bindings. In ad-

dition, the values of Cliff’s Delta d are 0.475 and −0.819 respectively, indicating

large effect sizes. Furthermore, 45% of the officially-maintained bindings experience

zero technical lag, compared to 24% of community-maintained bindings. Although

officially-maintained bindings show lower proportions of major (21% vs. 32%) and

minor (27% vs. 40%) technical lags compared to community-maintained bindings,

they have a slightly higher proportion of micro lags (7% vs. 4%).

69% of the cross-ecosystem bindings do not follow the version numbers

of their host library and 29% of cross-ecosystem bindings do not specify

the matching information anywhere. During the process of matching binding

releases with their host releases, we noticed that the majority (92 out of 133) of

bindings do not reuse any version number from their host libraries. This misalignment

in version numbers could lead to confusion for developers. Furthermore, our manual

review process revealed that 29% (38 out of 133) of the bindings do not provide

explicit matching information. Particularly, the absence of matching information in

community-maintained bindings (89% of those are without matching information)

creates an additional challenge, potentially forcing developers to resort to trial-and-

38

error methods to identify compatible versions.

Takeaway of RQ3

Generally, the release coverage of cross-ecosystem bindings for their host library
is low and the delay is large. Officially-maintained bindings for popular ML
libraries offer significantly better coverage, faster updates, and less technical
lag than community-maintained alternatives.

2.7 Implications

In this section, we discuss the implications of our findings for developers, owners of

ML host libraries and their cross-ecosystem bindings, and researchers.

2.7.1 Implications for Developers

Developers are not always limited to using the same source programming

language as a popular ML library when they wish to use this library. PyPI

is the most popular choice for ML libraries [7] and developers in PyPI are more likely

to find an ML library for their own projects. However, developers might prefer to

start a project in their most familiar ecosystem. Our findings show that 5% of the

ML repositories are libraries that can be found in multiple ecosystems (Secion 2.6.1)

and their bindings spread across different ecosystems, with npm being the most pop-

ular choice for bindings (Secion 2.6.2). Therefore, developers may find a binding of

their desired ML library in the chosen software package ecosystem. We suggest that

developers should put the choice of ecosystems into consideration before starting a

project.

Developers should consider the number of supported releases and the delay

of getting a corresponding update when choosing the binding for an ML

library. Usually, cross-ecosystem bindings for popular ML libraries do not support

all releases of their host library (Section 2.6.3). Our findings show that it is not

sufficient to look at the number of binding releases only. Bindings with low coverage

39

could publish many releases but only support one or two versions of their host library.

If developers are going to adopt such a binding, they should consider that it might not

support a needed version in the future. For a binding with high coverage, developers

should also consider how long it takes to update for a version of their host library and

whether such delays are acceptable to them. By checking the maintenance history

of the chosen binding, developers can have an expectation about the binding and

consider whether they wish to adopt it or not.

2.7.2 Implications for ML Package Owners

Owners of cross-ecosystem bindings for popular ML libraries should ex-

plicitly indicate the matching between releases of the binding and releases

of the host library. In Section 2.6.3, we found that some software package ecosys-

tems have median coverage rates below 5% for bindings of popular ML host libraries.

Such a low coverage indicates that either a small portion of the host releases are sup-

ported, or it is not possible to find out which versions are supported (even after our

thorough investigation). In addition, we noticed that only 31% of cross-ecosystem

bindings follow the version numbers of their host library. We recommend that own-

ers of cross-ecosystem bindings use the same version number as their host libraries

and indicate that in their README. For example, the binding of mlpack in CRAN

mentions that “the version number of MLPACK is used as the version number of

this package” [42]. Also, we recommend adding an extra number after the original

version number, for example, changing the version number from “1.2.3” to “1.2.3.0”.

This way, the owner can increase the extra number when fixing bugs in the binding

without causing confusion for developers.

Owners of popular ML host libraries should take notice of the communit

y-maintained bindings for their libraries. 73% of the cross-ecosystem bindings

for popular ML libraries are maintained by the community (Section 2.6.3). These

community-maintained bindings help developers to use the functionalities from their

40

host library in an ecosystem which the official organization does not support. We

recommend that official organizations keep an eye on the community-maintained

bindings. For example, the official organization could inform popular community-

maintained bindings about important updates, e.g., those that fix security vulnera-

bilities. We noticed that some libraries list the community-maintained bindings in

their README or the official website. Furthermore, we observed that OpenCV even

adopted a popular community-maintained binding [122].

2.7.3 Implications for Researchers

Researchers should expand research into bindings across software domains.

The efficacy of BindFind in identifying and analyzing bindings (Section 2.6.1) under-

scores a rich avenue for further exploration. We suggest researchers apply BindFind

in broader contexts, extending its use to examine areas such as web development

frameworks. This extension could provide valuable insights into how bindings en-

hance software library interoperability across various domains. Researchers can reuse

our replication package [98] which contains a dataset of 250,668 bindings and their

host names identified by BindFind.

Researchers should further investigate the differences between officially-

maintained bindings and community-maintained bindings. Our results show

that community-maintained bindings and officially-maintained bindings have different

coverages, delays, and technical lags (Section 2.6.3). Future studies should investi-

gate what causes these differences. One factor could be simply financial incentives

(e.g., because contributors to officially maintained bindings work for the company

driving the binding), but there could also be socio-technical factors. For example,

developers may be more motivated to contribute to officially-maintained bindings as

such contributions are considered more valuable or prestigious. In addition, future

studies should investigate how the communication between developers of community-

maintained bindings and the host library can be improved.

41

Researchers should study automatic matching tools for releases of ecosys-

tem bindings to match with releases of their host library. It is a complex and

tedious task to identify which host library release is supported by an ecosystem bind-

ing. Automatic version matching tools for ecosystem bindings can help developers to

find a suitable release without going through all the related files of a binding (like we

did in Section 2.6.3) or trying the releases one by one in their project.

2.8 Threats to Validity

In this section, we discuss the threats to validity of our study about popular ML

libraries and their cross-ecosystem bindings.

2.8.1 Internal Validity

We use release coverage as a metric to reason about the maintenance of a binding.

A low coverage value does not always mean that a binding has a bad support. For

example, a library can be forward-compatible, thereby making it easier to support

newer versions without changing the binding. However, developers have to manually

verify whether this binding will work for a specific version of the ML library that they

are going to use, as it is not indicated anywhere.

We classified cross-ecosystem bindings of popular ML libraries into officially-ma

intained bindings and community-maintained bindings. However, some community

-maintained bindings could be adopted by the official organization and become an

officially-maintained binding. In our study, we only consider the latest information

and do not take into account the history of ownership. In addition, the owner of

a community-maintained binding could be a member of the official organization of

the host library. If the binding is not owned by the official organization and there

is no evidence in its README, we consider such bindings as community-maintained

bindings.

Some software package ecosystems like PyPI allow the owner of a package to delete

42

a published release. Libraries.io does not record the history of releases of a package,

hence, we only consider the information of releases when the dataset was collected.

In addition, some ecosystems also support the owner of a package to deprecate a

release instead of deleting a release, e.g., npm and Cargo. In our study, we consider

all releases which also include the deprecated ones.

2.8.2 External Validity

In our empirical study, we studied cross-ecosystem bindings for ML libraries. The

results of our study might not apply directly to all cross-ecosystem bindings. Still, our

methodology can be applied to analyze other cross-ecosystem bindings for libraries in

other domains. In addition, we focused on open source ML libraries as many popular

ML libraries are open source. Future studies should investigate if our findings hold

for proprietary ML libraries.

2.9 Conclusion

In this study, we introduced BindFind, a novel approach for identifying bindings

and extracting host library names within software package ecosystems. Applying

BindFind to the libraries.io dataset allowed us to gather 2,436 bindings for 546 ML

libraries across 13 software package ecosystems. We analyzed the population of bind-

ings for ML libraries and the distribution of these libraries and their bindings across

various ecosystems. In addition, we identified 40 popular ML libraries along with

their 133 cross-ecosystem bindings, further examining their releases. Based on the

data from these popular ML libraries, we conducted an in-depth analysis to investi-

gate the development and maintenance of these cross-ecosystem bindings. We shared

the collected data in our replication package [98]. The most important findings of our

study are:

1. BindFind demonstrates high F1 scores in identifying bindings and extracting host

43

library names, indicating its robust capability to assist in the discovery of bindings

within software package ecosystems.

2. npm is the most popular software package ecosystem for bindings of ML libraries,

with npm and PyPI emerging as the predominant combination for publishing these

bindings.

3. The study highlights significant challenges in the maintenance of cross-ecosystem

bindings, including limited release coverage, delays in updating bindings to match

new releases, and prevalent technical lag, especially among community-maintained

bindings.

4. Most bindings do not follow their host library’s version numbers, and many lack

clear information on which host library versions they support.

Our findings show that developers who wish to use a popular ML library are not

limited to using the programming language the library was written in, as there exist

many cross-ecosystem bindings. However, they should carefully check the coverage,

delay, and technical lag of these bindings before they commit to using one. In addition,

we suggest that maintainers of cross-ecosystem bindings should follow the version

number of their host library and add an extra number after it, to account for bug

fixes, and make it easier for developers to identify which version of the host library

is supported by the binding.

44

Chapter 3

Studying Release-Level
Deprecation of Bindings for
Machine Learning Libraries

3.1 Abstract

Release-level deprecation is a mechanism used in software package ecosystems to mark

specific versions of packages as deprecated, thereby preventing other packages from

depending on them. Most prior studies focused on code-level (i.e., deprecated APIs)

and package-level deprecation (i.e., deprecated packages). However, few studies have

focused on release-level deprecation, especially for bindings of machine learning (ML)

libraries. In this study, we investigate release-level deprecation within the Cargo and

npm ecosystems, focusing particularly on bindings for ML libraries. Our study shows

that 12.6% of ML library bindings in Cargo have at least one deprecated release,

compared to 9.6% for general packages. In contrast, npm has a similar percentage

of deprecation between ML library bindings (3.6%) and general packages (3.7%).

Furthermore, package owners deprecate releases for other reasons than withdrawing

a defective release, such as indicating a package is removed or replaced. In Cargo,

deprecated releases propagated through the dependency network due to the forceful

deprecation mechanism, which leads to 1.4% of the releases in the ecosystem having

unresolved dependencies. However, ML library bindings have a negligible impact

45

on the adoption of yanked releases and the propagation of unresolved dependencies

compared to general packages.

3.2 Introduction

In a software ecosystem, deprecation can happen in APIs, releases, and packages.

Usually, the owner of a deprecated API plans to remove this API in the future and

attempts to warn the developers who are using these APIs. For example, the owner of

a package plans to remove a foo() function in one year, and adds a warning message

which will be printed when foo() is called, giving a developer time to deal with

the prospective deprecation. Usually, the deprecation of releases and packages takes

place unexpectedly. For example, when an owner of a package finds a critical bug in

a release which was published a year ago, the owner can immediately deprecate this

buggy release (without deleting the data) to make developers aware that the release is

buggy, if the package manager supports release-level deprecation. This is particularly

relevant in the context of ML libraries and their bindings since rapid iteration and

updates are common in ML library usage [40]. However, release-level deprecation,

particularly in the context of ML library bindings, remains understudied.

Prior studies have focused on the deprecation of APIs [136, 142, 162, 164, 171,

177] and packages [5, 15, 25, 26, 71, 85, 111]. Cogo et al. [138] studied the release-

level deprecation mechanism in npm,1 which has supported this mechanism since

2010.2 Cargo3 (for Rust) is another software packaging ecosystem that has supported

release-level deprecation from the very beginning of its creation (since 2014)4. We

also considered other five ecosystems that contain the largest number of packages,5

1https://www.npmjs.com/
2https://github.com/npm/cli/blob/v0.2.8/lib/deprecate.js
3https://doc.rust-lang.org/cargo
4https://github.com/rust-lang/crates.io/commit/663488fc0a0073d47402e61cf9cb999d054652c6
5http://www.modulecounts.com/

46

https://www.npmjs.com/
https://github.com/npm/cli/blob/v0.2.8/lib/deprecate.js
https://doc.rust-lang.org/cargo
https://github.com/rust-lang/crates.io/commit/663488fc0a0073d47402e61cf9cb999d054652c6
http://www.modulecounts.com/

namely Maven6 for Java, PyPI7 for Python, Packagist8 for PHP, NuGet9 for .NET,

and RubyGems10 for Ruby. We observed that Maven and Packagist do not support

release-level deprecation. RubyGems introduced release-level deprecation in 201211

but changed it to deletion in 2015 due to a too-heavy burden on the support team.12

NuGet and PyPI have started to support release-level deprecation in 201913 and

202014 but there is not much data available.

In this study, we explore release-level deprecation in Cargo and npm. Cargo im-

plements a forceful release-level deprecation (i.e., yanking). The yank mechanism in

Cargo will remove yanked releases from the registry index without deleting the data,

compared to the deprecation mechanism in npm which just provides warning mes-

sages for deprecated releases and continues to allow the package installation. This

forceful deprecation mechanism in Cargo can lead to unresolved dependencies of cer-

tain releases of a package. In addition, Cargo records the date on which a release was

yanked, which allows us to study how the number of deprecated releases evolves (in

contrast to the prior work [138] in which they had to estimate the date of deprecation).

To better understand how release-level deprecation is utilized, particularly for

bindings to ML libraries, we mine and analyze data from Rust’s official package

registry (crates.io15). We compare the results of bindings for ML libraries with gen-

eral packages within the same ecosystem to assess the impact and management of

deprecated releases. We collected data of all the 48,823 packages on crates.io for

our analysis. In addition, we replicate the analysis on the npm dataset from prior

6https://maven.apache.org
7https://pypi.org/
8https://packagist.org
9https://www.nuget.org/

10https://rubygems.org
11https://github.com/rubygems/rubygems/commit/6f99254adf19a35850b1a9b81eb5356ff45f6090#

diff-f1e136837461f7ea89d3c7442de42b0723bc7099fe3d77f76ba96823d8530378
12https://blog.rubygems.org/2015/04/13/permadelete-on-yank.html
13https://devblogs.microsoft.com/nuget/deprecating-packages-on-nuget-org/
14https://discuss.python.org/t/pep-592-support-for-yanked-files-in-the-simple-repository-api/

1629
15https://crates.io

47

https://maven.apache.org
https://pypi.org/
https://packagist.org
https://www.nuget.org/
https://rubygems.org
https://github.com/rubygems/rubygems/commit/6f99254adf19a35850b1a9b81eb5356ff45f6090#diff-f1e136837461f7ea89d3c7442de42b0723bc7099fe3d77f76ba96823d8530378
https://github.com/rubygems/rubygems/commit/6f99254adf19a35850b1a9b81eb5356ff45f6090#diff-f1e136837461f7ea89d3c7442de42b0723bc7099fe3d77f76ba96823d8530378
https://blog.rubygems.org/2015/04/13/permadelete-on-yank.html
https://devblogs.microsoft.com/nuget/deprecating-packages-on-nuget-org/
https://discuss.python.org/t/pep-592-support-for-yanked-files-in-the-simple-repository-api/1629
https://discuss.python.org/t/pep-592-support-for-yanked-files-in-the-simple-repository-api/1629
https://crates.io

work [138] for comparison. We aim to answer the following research questions (RQs):

RQ1. What is the prevalence of deprecated releases in bindings for ML

libraries compared to general packages?

While bindings for ML libraries have a higher percentage of packages with

deprecated releases compared to general packages in Cargo, the percentages

of packages with deprecated releases are similar in npm.

RQ2. What is the rationale behind using release-level deprecation in bind-

ings for ML libraries compared to general packages?

We identified five patterns of deprecated releases and the rationale behind

the deprecation. Notably, many releases are deprecated for reasons other than

being defective, with package removal or replacement being the main rationale

behind deprecated releases of bindings for ML libraries in both Cargo and npm.

RQ3. How many packages adopt yanked releases of bindings for ML li-

braries compared to general packages in Cargo?

Cargo implements a forceful deprecation mechanism, while the proportion of

deprecated releases is small in Cargo, a relatively large proportion of packages

adopt deprecated releases. Notably, the deprecated releases in bindings for

ML libraries account for a very small fraction of these adoptions.

Chapter Organization. The rest of this chapter is organized as follows. Sec-

tion 3.3 provides background information about the package manager of Rust and its

yank mechanism. Section 3.4 discusses related work. Section 3.5 presents the method

that we used in our study. Section 3.6 presents the findings of our three research

questions. Section 3.7 discusses the implications of our findings. Section 3.8 discusses

the threats to the validity of our study. Section 3.9 concludes this chapter.

48

3.3 Background

In this section, we describe how Rust manages packages, and we discuss the depen-

dency requirements and yank mechanism in Cargo.

3.3.1 Package management in Rust

Cargo is the official package manager of Rust. Most developers use Cargo to compile

their packages instead of using the compiler rustc16 directly. Before performing a

compilation, Cargo will resolve the dependencies and download specific versions of

packages to satisfy the dependency requirements. After that, developers can run their

package locally (as a standalone application) or publish their package to a package

registry (as a library) using Cargo.

The Rust community’s package registry is crates.io, which stores the packages on-

line and provides a platform to search and browse the information of uploaded pack-

ages. Usually, developers interact with crates.io through the command-line interface

of Cargo. For example, developers can use the cargo search17 command to find

packages in crates.io. In addition, package owners can publish releases to crates.io

and manage their packages through the command-line interface. For instance, cargo

publish18 will upload the current package to a registry (which is set to crates.io by

default). In this chapter, for simplicity we refer to crates.io as Cargo.

3.3.2 Dependencies in Cargo

Dependency requirements in Cargo are based on semantic versioning19 and Cargo

will determine the version of dependencies when developers build their projects. The

semantic versioning specification defines that a version number consists of three parts:

major, minor, and patch. For example, version number 1.2.3 has a major number 1,

16https://doc.rust-lang.org/rustc
17https://doc.rust-lang.org/cargo/commands/cargo-search.html
18https://doc.rust-lang.org/cargo/commands/cargo-publish.html
19https://github.com/steveklabnik/semver

49

https://doc.rust-lang.org/rustc
https://doc.rust-lang.org/cargo/commands/cargo-search.html
https://doc.rust-lang.org/cargo/commands/cargo-publish.html
https://github.com/steveklabnik/semver

a minor number 2, and a patch number 3. The packages should guarantee that patch

updates only introduce “backwards compatible bug fixes”, minor updates only add

features which are backwards compatible, and only the major updates can introduce

breaking changes. We refer to this guarantee as the semantic versioning guarantee in

our study.

The semantic versioning specification is used by Cargo.toml,20 a file under the

directory of a Rust project, to store the dependency requirements. The interpre-

tation of requirement statements is different across software ecosystems [36]. Ta-

ble 3.1 shows the versioning specifications which are used in Cargo. It is notable that

Cargo interprets 1.2.3 as a caret requirement (∧1.2.3) and the wildcard requirement

statement “⋆” (i.e., matching any version) was banned in January 2016.21 Cargo

searches the registry index to find versions which can satisfy the requirements and

downloads dependencies. If there are multiple versions available that satisfy a re-

quirement, Cargo will choose the version which has the largest version number. We

call the owner of a dependency requirement a client and the package to which the

dependency requirement points a provider. For example, a client package C has a

dependency requirement 3.0.1 for a release from a provider package P. Cargo will

choose the greatest version 3.5.1 from P which satisfies this requirement even though

there exists an exactly matched version 3.0.1 (since Cargo interprets the requirement

3.0.1 as a caret requirement).

3.3.3 Yanked releases

Cargo provides a command called cargo yank22 to deprecate a published release,

which can also be unyanked with the yank undo command. After a developer calls

the yank command for a certain release, this release will be indicated as yanked

and is no longer available from the registry index for Cargo. Thus, when Cargo

20https://doc.rust-lang.org/cargo/reference/manifest.html
21https://doc.rust-lang.org/cargo/faq.html
22https://doc.rust-lang.org/cargo/commands/cargo-yank.html

50

https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/faq.html
https://doc.rust-lang.org/cargo/commands/cargo-yank.html

Table 3.1: Five types of versioning specifications in Cargo

Types Statement Interpretation

Comparison =1.2.3 [1.2.3]

>1.2.3]1.2.3, +∞[

<1.2.3 [0.0.0, 1.2.3[

≥1.2.3 [1.2.3, +∞[

Compound >1.2.3, ≤ 2.3.4]1.2.3, 2.3.4]

Caret ∧1 [1.0.0, 2.0.0[

∧1.2 [1.2.0, 2.0.0[

∧1.2.3 [1.2.3, 2.0.0[

∧0 [0.0.0, 1.0.0[

∧0.1 [0.1.0, 0.2.0[

∧0.0.1 [0.0.1, 0.0.2[

∧0.1.2 [0.1.2, 0.2.0[

Tilde ∼1 [1.0.0, 2.0.0[

∼1.2 [1.2.0, 1.3.0[

∼1.2.3 [1.2.3, 1.3.0[

Wildcard ⋆a [0.0.0, +∞[

1.⋆ [1.0.0, 2.0.0[

1.2.⋆ [1.2.0, 1.3.0[

1.2.3 [1.2.3, 2.0.0[

a: removed in 2016

is trying to resolve dependencies for a project, it will automatically skip yanked

releases and choose the release which has the largest version number that still satisfies

the dependency requirement. For example, a client package C has a dependency

requirement ∼2.5.1 for a package P. The latest releases of P are 2.5.5 and 2.5.6.

However, the latter was yanked. Hence, Cargo will select release 2.5.5 of P. Due to

the deletion of yanked releases from the registry index, Cargo cannot download a

51

yanked release even if the dependency requirement uses the “=” operator.

Notably, the yank command does not completely delete any data from the package

registry, hence the yanked releases can still be downloaded through work arounds.

One approach is using the download API which is provided by the package registry,23

and another approach is through the locking mechanism of Cargo. Cargo will generate

a Cargo.lock24 file if the building process is successful. This file stores the versions

of dependencies that were used during the build. When the developer compiles the

project a second time, Cargo will reuse the versions of the dependencies that are

stored in Cargo.lock (as long as the developers did not change a required version in

Cargo.toml) even if the depended versions are yanked or a newer version is available.

A standalone application will usually upload both Cargo.toml and Cargo.lock to

its repository,25 which assures the reproducibility of the building process. In contrast,

a library will upload Cargo.toml but not Cargo.lock, so Cargo will help the clients

of this library to determine a suitable version to use. However, as we show in Sec-

tion 3.6.3, this could lead to unresolved dependencies when building a package that

depends on a yanked release.

3.4 Related work

In this section, we discuss related work about software packaging ecosystems and the

deprecation of APIs and packages.

3.4.1 Software packaging ecosystems

Most research on software packaging ecosystems has focused on npm [27, 37, 168,

178] of JavaScript, PyPI [72, 161, 166] of Python, and CRAN [23, 24, 33, 54] of R.

In this chapter, we study the yank mechanism in the Cargo ecosystem, the packaging

23https://doc.rust-lang.org/cargo/reference/registries.html
24https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
25https://doc.rust-lang.org/cargo/faq.html#why-do-binaries-have-cargolock-in-version-control-

but-not-libraries

52

https://doc.rust-lang.org/cargo/reference/registries.html
https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
https://doc.rust-lang.org/cargo/faq.html#why-do-binaries-have-cargolock-in-version-control-but-not-libraries
https://doc.rust-lang.org/cargo/faq.html#why-do-binaries-have-cargolock-in-version-control-but-not-libraries

system of Rust.

Few studies have focused on the Cargo ecosystem. Evans et al. [46] studied the

safety of packages in the Cargo packaging ecosystem of Rust. They found that 29%

of the packages directly use the unsafe keyword, which is provided by Rust to avoid

safety checking of the compiler. Furthermore, they observed that popular packages

use unsafe more frequently.

Many studies include Cargo as a subject when comparing multiple software pack-

aging ecosystems. Decan and Mens [35] investigated pre-releases of three packaging

ecosystems and observed that more than 90% of the packages in Cargo published a

pre-release as their latest release. In addition, they found that most dependencies

that point to pre-releases allow patch updates in Cargo [36], which does not follow

the semantic versioning specification. Constantinou et al. [29] studied packages which

are distributed across multiple packaging ecosystems and found that these packages

in Cargo have more stars on GitHub than in other ecosystems. Like other packaging

systems, a relatively small proportion of packages are depended on by most of the

packages in Cargo [38].

Many researchers have studied the npm ecosystem. In prior work [27], we inves-

tigated dependency downgrades in npm and observed that packages changed their de-

pendency constraints for migrating away from defective dependencies. Decan et al. [37]

also found that a proper dependency constraint can help a package migrate away

quickly from a vulnerable dependency. In addition, they found that most of the se-

curity vulnerabilities are fixed before they are published in npm. Wittern et al. [168]

studied dependencies in npm and found that the package dependencies keep increas-

ing. However, most of the dependencies point to a small proportion of packages in

the ecosystem. Zerouali et al. [178] analyzed various popularity metrics in npm and

found that the results of identifying popular packages can be different based on the

metrics used.

Imminni et al. [72] implemented a semantic search engine for the PyPI ecosystem

53

since PyPI has a limited ability to provide quality search results for developers. To

detect dependency conflicts in PyPI, Wang et al. [166] developed a tool to monitor

the ecosystem. Valiev et al. [161] built survival models for PyPI to analyze the risk

of a package become dormant.

German et al. [54] studied the CRAN packaging ecosystem of R. They found that

most dependencies point to popular packages and user-contributed packages need

more time to grow their community than core packages. Claes et al.[24] observed

that the time of fixing errors in CRAN packages differs across operating systems.

They also [23] developed a tool to analyze the maintainability of a package in CRAN,

which can visualize information such as release history, dependencies and namespace.

Decan et al. [33] found that packages in CRAN also manage their repositories on

Github, which can influence the dependency management.

3.4.2 Deprecated APIs and packages

Cogo et al. [138] studied the deprecation mechanism in npm. To the best of our

knowledge, that was the first study that focused on the release-level deprecation

mechanism of a software packaging ecosystem. This study focuses on the yank mech-

anism in Cargo and compares it with the deprecation mechanism in npm. The reason

is threefold: 1) The yank mechanism in Cargo is more forceful than the deprecation

mechanism in npm. 2) Cargo provides the date of yanking which supports a more

in-depth analysis. 3) “Comparative studies can be seen as a prerequisite for design-

ing successful domain-specific ecosystem solutions” [144]. Hence, the comparisons

across these two software ecosystems can help us better understand the design of a

release-level deprecation mechanism.

Many researchers have studied deprecated APIs at the code-level. Sawant et al. [142]

interviewed Java API producers and surveyed Java developers, and suggested Java

to provide a warning mechanism for developers. Wang et al. [164] investigated six

popular packages in Python and observed that developers did not have a consistent

54

strategy to deprecate an API, and that about 25% of the deprecated APIs are not doc-

umented. Robbes et al. [136] analyzed deprecated functions and classes in Smalltalk,

and found that about half of the deprecation messages cannot help the developers to

migrate away from the deprecation.

Few studies have focused on the deprecation of web APIs. Yasmin et al. [177]

analyzed 1,368 RESTful APIs and found that most of the removed APIs did not

deprecate the interface to inform their users before introducing the deletion.

Unlike deprecated APIs, it is not easy to identify whether a package is depre-

cated because the owner may not indicate deprecation in the documentation. Coelho

et al. [26] found that the important features to predict whether a package is dep-

recated or unmaintained include the number of commits and closed issue reports.

Khondhu et al. [85] introduced the maintainability index to identify whether a pack-

age is inactive or abandoned on SourceForge.net. In contrast, Maqsood et al. [111]

implemented eight machine learning algorithms to identify successful projects.

Many researchers conducted studies to understand the reasons behind the dep-

recated and abandoned packages. Coelho et al. [25] surveyed the owners of 104

deprecated GitHub packages, and showed that the reasons include environmental fac-

tors, project characteristics, and human factors. Iaffaldano et al. [71] interviewed

developers from the open-source software community, and also found the reasons be-

hind abandoned packages include human factors and project characteristics. Avelino

et al. [5] found that the loss of core developers can increase the risk of a package

becoming abandoned.

3.5 Methodology

In this section, we introduce the methodology of our study of yanked releases in the

Rust package registry. Figure 3.1 gives an overview of our study.

55

crates.io
Download database

dumps

4.1 Collecting basic package information

4.2 Mining GitHub repositories of packages with yanked releases

Select packages
with at least one
yanked release

4,674 packages

Extract repository status,
changelog files, issues,

and pull requests

GitHub data of
4,674 packages

48,823 packages

4.3 Collecting historical data of yanked releases

Historical data about
yanked releases

AP

YR

GH

Dependency
index

Extract historical data
from the commit history

HY

GitHub
repositories

npm
Obtain package.json

files

4.4 Collecting package metadata from npm

RQ2. What is the rationale behind
using release-level deprecation in
bindings for ML libraries compared to
general packages?

GH
HY

ND

RQ1. What is the prevalence of
deprecated releases in bindings for
ML libraries compared to general
packages?

AP YR
HY ND

metadata of
976,631 packages

ND

RQ3. How many packages adopt
yanked releases of bindings for ML
libraries compared to general
packages in Cargo?

AP YR
HY

Figure 3.1: Overview of our methodology.

3.5.1 Collecting basic package information

Cargo provides database dumps26 which contain all the information (e.g., depen-

dencies, downloads, creation date) exposed through the official API. The database

dumps are the primary data source of our study and we downloaded the dump that

contains the information of 48,823 packages with 294,801 releases on October 29th,

2020. Table 3.2 shows the database fields which store important information for our

study.

3.5.2 Mining GitHub repositories of packages with yanked
releases

As Table 3.2 shows, yanked flags are stored in the versions table. We retrieved

all entries that are indicated as yanked. Then, we selected the packages which have

at least one yanked release and collected the links to their repositories. For the

links which direct to a GitHub repository, we used the GitHub API27 to extract the

26https://crates.io/data-access
27https://docs.github.com/en/rest

56

https://crates.io/data-access
https://docs.github.com/en/rest

issue reports and pull requests of these repositories. In addition, we collected the

status of these repositories (active, archived or forked) through the GitHub API. If

the repository cannot be found, we marked its link as invalid. We distinguish general

packages and bindings for ML libraries based on the dataset from Chapter 2.

Furthermore, we collected the changelogs of the packages which have at least one

yanked release from their readme file and GitHub repository. The readme field of the

crates table in the database contains the content of the readme file. We identified

whether the readme contains a changelog by searching for the keywords “changelog”,

“change log”, “release notes”, and “release note” in the content, as well as searching

“news” and “history” in the headings. For packages which provide a valid link to their

GitHub repository, we queried the filenames in the root directory of the repository

and collected the file if the filename matches the same keywords which we used above.

Table 3.2: Key information in the database.

Field Description

versions.id The identifier of a release.

versions.num The semantic version number of a release such as 1.2.3
or 0.1.2-alpha.

versions.created at The creation date of a release.

versions.yanked A flag to indicate whether a release is yanked.

crates.id The identifier of a package.

crates.readme The content of the readme file in a package.

crates.repository The link to the repository of a package.

dependencies.version id The identifier of the release to which the dependency be-
longs.

dependencies.crate id The identifier of the package to which the dependency
points.

dependencies.req The dependency requirement (e.g., ∧1.2.3 or ∼1.2.3).

57

3.5.3 Collecting historical data of yanked releases

Cargo determines the dependencies based on the registry index which is managed in

a Git[16] repository. This index repository28 contains the information (e.g., depen-

dencies, version numbers, and yanking flags) of all published releases. The data of

each package is stored in separate files, and the information is updated automatically

whenever a change occurs (e.g., a new release is uploaded, yanked or unyanked). Be-

cause all the changes are managed in the Git repository, the commit history contains

the date of each change. We mined the commit messages to extract when a release

was yanked or unyanked.

However, we noticed that the commit history in the main branch is not complete

because the maintainer of Cargo regularly squashed commits into one to speed up the

cloning of the repository.29 These squashed commits are stored in snapshot branches,

hence we collected all the commits of these branches to obtain a complete historical

overview of (un)yanked releases.

3.5.4 Collecting package metadata from npm

We reused the dataset from the prior study [138] which contains the metadata of

976,613 packages from npm at May 5th, 2019. For each package, we collected the in-

formation of all releases and selected the dependencies in their latest releases. Finally,

we extracted 7,829,362 releases and 6,178,019 dependencies from 976,613 packages.

Similar as for Cargo, we group the packages as general packages and bindings for ML

libraries based on the dataset from Chapter 2.

3.6 Results

In this section, we present the motivation, approach, and findings for each of our

three research questions (RQs).

28https://github.com/rust-lang/crates.io-index
29https://internals.rust-lang.org/t/cargos-crate-index-upcoming-squash-into-one-commit

58

https://github.com/rust-lang/crates.io-index
https://internals.rust-lang.org/t/cargos-crate-index-upcoming-squash-into-one-commit

3.6.1 RQ1: What is the prevalence of deprecated releases in
bindings for ML libraries compared to general pack-
ages?

Motivation. Deprecation can happen at the code-level, release-level, and package-

level. Prior work [138] has studied the release-level deprecation mechanism in npm.

Similarly, Cargo has a yank mechanism for release-level deprecation to allow the

owner of a package to “remove a previously published crate’s version from the server’s

index”.30 In contrast to npm, Cargo records the date on which a release was yanked

or unyanked. Hence, we can study how often developers use the yank mechanism

in the history of Cargo. In this RQ, we investigate the prevalence of release-level

deprecation in bindings for ML libraries compared to general packages in the Cargo

and npm ecosystems. By understanding the frequency of deprecated releases, we gain

insights into how commonly this deprecation mechanism is employed.

Approach. To quantify the usage of the release-level deprecation mechanism, we

calculated the proportion of packages that have at least one deprecated release in

both Cargo and npm, distinguishing between bindings for ML libraries and general

packages. In contrast to npm, Cargo records the date on which a release was yanked

or unyanked. Hence, we can study how often developers use the yank mechanism in

the history of Cargo. To analyze the trend of usage, we investigated the historical

information of releases and yanked releases in Cargo. We collected the date on which

a release was published from the created at field of the versions table (as shown

in Table 3.2). In addition, to count the yanked releases in a certain period more

precisely, we also considered the date of unyanking a release. Finally, we calculated

the number of releases and the proportion of yanked releases from November 2014 to

October 2020.

Next, we calculated the deprecation rate (i.e., the percentage of deprecated releases

in a package) for every package. For example, the deprecation rate is 100% for fully

30https://doc.rust-lang.org/cargo/commands/cargo-yank.html

59

https://doc.rust-lang.org/cargo/commands/cargo-yank.htm

deprecated packages (i.e., packages of which all releases are deprecated), and 0%

for packages which do not have any deprecated release. Then, we compared our

findings between bindings for ML libraries and general packages in Cargo and npm

by performing the Mann-Whitney U test [110] at a significance level of α = 0.05 to

determine whether the differences are significant. However, the Mann-Whitney U

test only determines whether two distributions are different. Therefore, we computed

Cliff’s delta d [106] effect size to quantify the difference. To explain the value of d,

we used the thresholds which are provided by Romano et al. [137]:

Effect size =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

negligible, if |d| ≤ 0.147

small, if 0.147 < |d| ≤ 0.33

medium, if 0.33 < |d| ≤ 0.474

large, if 0.474 < |d| ≤ 1

Findings. In Cargo, bindings for ML libraries have a higher percentage of

packages with deprecated releases compared to general packages, but the

percentages are similar in npm. We identified 103 bindings for ML libraries in

Cargo and 1,251 in npm. In Cargo, 12.6% of these bindings have at least one yanked

release, which is higher than the 9.6% observed among general packages. In contrast,

the percentage of bindings for ML libraries with at least one deprecated release in

npm is similar to that of general npm packages (3.6% vs. 3.7% [138]). Overall, the

release-level deprecation mechanism is used more frequently in Cargo compared to

npm.

Between 2014 and 2020, the percentage of yanked releases of bindings

for ML libraries in Cargo has decreased from 7.2% to 4.4%, while the

percentage of yanked releases of general packages has gradually increased

from 1.4% to 3.7%. We found that unyanking only happened 725 times in the

history, which is relatively uncommon compared to 10,761 yanked releases in Cargo.

Figure 3.2a shows that the percentage of general packages with yanked releases in

60

2015 2016 2017 2018 2019 2020
Date

0%

1%

2%

3%

4%

5%

%
 o

f y
an

ke
d

re
le

as
es

(a) General packages

2015 2016 2017 2018 2019 2020
Date

0%

5%

10%

15%

20%

25%

%
 o

f y
an

ke
d

re
le

as
es

(b) Bindings for ML libraries

Figure 3.2: The percentage of yanked releases in Cargo from November 2014 to
October 2020.

Cargo initially decreased but has been gradually increasing since then. The Cox-

Stuart test [32] shows that the increasing trend of the number of releases is signifi-

cant (p ≪ 0.05). In contrast, Figure 3.2b shows that the percentage of bindings for

ML libraries with yanked releases in Cargo decreased at first, then sharply increased

to a peak of around 20% in mid-2016, and has been decreasing since then to 4.4%.

The peak around mid-2016 is due to the fact that there were only 13 bindings for

ML libraries at the time, and one of them yanked all releases (i.e., abandoned). The

Cox-Stuart test confirms that this decreasing trend is significant (p ≪ 0.05). This

61

trend suggests a maturing approach to the maintenance of bindings for ML libraries.

We cannot analyze the trend of the proportion of packages with deprecated releases

in npm because it does not provide historical information about deprecated releases.

The deprecation rates of bindings for ML libraries and general pack-

ages are not significantly different in Cargo, but they differ in npm. The

Mann-Whitney U test indicates that the distributions of the deprecation rate are

not significantly different between bindings for ML libraries and general packages in

Cargo. However, we observe that most (75%) of the general packages with deprecated

releases in Cargo are partially yanked, while the majority (54%) of the bindings for

ML libraries are fully yanked. In contrast, the results of the Mann-Whitney U test and

Cliff’s Delta |d| in npm reveal that the deprecation rate for bindings for ML libraries

is significantly lower than for general packages, with a small effect size (|d| = 0.181).

We also note that fully deprecating a package is less common among bindings for ML

libraries (49%) compared to general packages (80% [138]) in npm.

RQ1 Summary

In Cargo, bindings for ML libraries have a higher percentage of packages with
yanked releases compared to general packages, but their deprecation rates are
similar. In npm, the percentages of packages with deprecated releases are sim-
ilar, but fully deprecating a package is less common among bindings for ML
libraries.

3.6.2 RQ2: What is the rationale behind using release-level
deprecation in bindings for ML libraries compared to
general packages?

Motivation. Prior work by Cogo et al. [138] has studied non-forceful release-level

deprecation in npm. However, in Cargo, release-level deprecation (yanking) is forceful,

which means that releases are no longer accessible once they are deprecated. In this

research question, we investigate the usage and rationales behind deprecated releases

in packages within Cargo and npm, with a specific focus on comparing bindings for

ML libraries to general packages. The results can help us to understand the usage of

62

release-level deprecation from the developers’ point of view.

0.3.0

0.2.1

0.2.0

0.1.1

yanked release

package
(4)

0.1.0

0.3.0

0.2.1

0.2.0

0.1.1

package
(3)

0.1.0

0.3.0

0.2.1

0.2.0

0.1.1

package
(2)

0.1.0

0.3.0

0.2.1

0.2.0

0.1.1

package
(1)

0.1.0

0.4.0 0.4.00.4.00.4.0

package
(5)

0.3.0

0.2.1

0.2.0

0.1.1
0.1.0

0.4.0

Figure 3.3: Five patterns of yanking: (1) A package yanked only one release; (2) A
package yanked all releases; (3) A package yanked back-to-back releases; (4) A package
yanked all releases except one; (5) A package yanked nonadjacent releases.

Approach. To understand the usage of the yank mechanism, we looked for five

possible patterns in which releases are yanked in Cargo (as shown in Figure 3.3).

First, we collected the packages which have at least one yanked release and sorted

their releases based on the release date. Then, we went through the collected 4,674

packages to identify whether a package belongs to one of the five patterns.

In addition, we investigated the changelogs, issue reports, and pull requests from

the 4,674 packages to analyze the rationales behind yanking. We selected the packages

which contain the terms “yank” or “deprecate” in their changelogs, issue reports,

or pull requests. We went through the selected 638 packages and filtered out 380

packages which did not provide information that is related to the yanked release. After

that, we performed open card sorting together to identify the rationales behind the

yanked releases of the remaining 258 packages. We could not identify the rationales

for 9 out of 258 packages during the card sorting (i.e., 3.5% false positives of the

filtering process). Hence, our results cover the remaining 249 packages.

63

For bindings of ML libraries with deprecated releases in both Cargo and npm, we

followed the same approach to analyze the deprecation rationales. We compared the

results for Cargo with the card sorting results for general packages. Regarding npm,

we compared the results with the findings from prior work [138].

Findings. The usage of the yank mechanism among packages in Cargo

follows one of the five patterns in Figure 3.3. In addition, developers yanked

releases for 11 reasons (see Table 3.3). We summarize below the patterns that we

were able to identify, together with some examples and the rationales we categorized

in the card sort.

64

Table 3.3: Identified rationales behind yanked releases in the card sort

Rationale Description Pkg P1 P2 P3 P4 P5

Breaking SemVer The release introduces breaking changes and there-
fore does not follow the semantic versioning spec-
ification

43.0% 47.5% 25.0% 40.0% - 42.9%

Defect Release contains a defect/bug 36.9% 28.0% - 46.7% 100.0% 50.0%

Fixing “*” dependencies Release uses the wildcard dependency (“*”) which
has been prohibited since 2016

7.2% 4.2% 25.0% 8.3% - 8.9%

Package removed or replaced The whole package is removed or is replaced by
another package

5.2% 5.1% 50.0% - 33.3% -

Broken dependencies The release contains a broken dependency 4.8% 6.8% - 1.7% - 5.4%

Bump propagation A patch release that includes a minor/major up-
date of an existing dependency and therefore
should be a minor/major release as well

3.2% 5.1% - 1.7% - 1.8%

MSRV policy Upgrading the minimum supported rust ver-
sion (which is a breaking change) in a patch update

2.8% 0.8% - 6.7% - 3.6%

Yanked dependencies Dependencies are yanked 2.0% 3.4% - 1.7% - -

Placeholder release An initial release for holding the name in Cargo 1.2% 0.8% - 1.7% - 1.8%

License updated Forgetting to update the license 0.4% - - - - 1.8%

Unsupported Releases are no longer supported 0.4% - - 1.7% - -

Note: one package can have multiple rationales as it can have multiple yanked releases. We identified one rationale per yanked release. The “Pkg”
column presents the percentage of packages that contain the corresponding rationales. The “P1” to “P5” columns present the percentage of

packages that contain the corresponding rationales under the yanking patterns.

65

Pattern 1: Yanking only one release (40% of the packages). We found

this pattern in 1,879 packages and Breaking SemVer is the main rationale behind

this pattern (47.5%) in the card sort. One example is pyo331, an issue report of

this project mentions that “[v]ersion 0.5.1 breaks SemVer guarantees”32 because the

owner of pyo3 accidentally merged a new feature to this patch update for 0.5.0.

It introduced breaking changes and should be a minor or major update since the

semantic versioning guarantee requires that patch updates only introduce backwards-

compatible bug fixes. Hence, the owner yanked 0.5.1, backported the changes, and

published 0.5.2 which did not include the new feature.

In addition, we noticed that developers yanked a release for Broken dependen-

cies (6.8%) or Yanked dependencies (3.4%). One example of Broken dependencies

is diesel cli,33 which yanked version 0.99.0 to restrict the dependency of clap from

≥2.27.0 to ∧2.27.0 to prevent using 3.x.x versions of clap since major updates could

introduce breaking changes. For Yanked dependencies, one example is version 0.9.2

of winping.34 This version was yanked “due to a yanked dependency”35 and winping

had to update the dependency of the quote36 package from 1.0.2 (yanked) to 1.0.3 in

version 0.9.3.

Bump propagation (5.1%) is a notable rationale, which happens when updating

the existing dependencies of a package. For instance, sdl237 updated the requirement

of sdl2-sys from ∧0.7.0 to ∧0.8.0 and published a patch update 0.12.2 for 0.12.1.

Since another package sdl2 image depends on ∧0.12.1 of sdl2 and ∧0.7.0 of sdl2-

sys “which leads to conflicts”,38 sdl2 image was broken and sdl2 had to yank 0.12.2

and republished it as 0.13.0. The behaviour of bumping the required version of a

31https://crates.io/crates/pyo3
32https://github.com/PyO3/pyo3/issues/285
33https://crates.io/crates/diesel cli
34https://crates.io/crates/winping
35https://github.com/TyPR124/winping/blob/master/RELEASES.md
36https://crates.io/crates/quote
37https://crates.io/crates/sdl2
38https://github.com/Rust-SDL2/rust-sdl2/issues/478

66

https://crates.io/crates/pyo3
https://github.com/PyO3/pyo3/issues/285
https://crates.io/crates/diesel_cli
https://crates.io/crates/winping
https://github.com/TyPR124/winping/blob/master/RELEASES.md
https://crates.io/crates/quote
https://crates.io/crates/sdl2
https://github.com/Rust-SDL2/rust-sdl2/issues/478

dependency (sdl2-sys) in sdl2 broke its dependent (sdl2 image) and sdl2 had to bump

its version number as well.

Pattern 2: Yanking all releases (25% of the packages). We observed this

pattern in 1,172 packages, with 60% of these packages having only one release. The

main rationale behind this pattern (50.0%) in the card sort is Package removed or

replaced since developers cannot point a new dependency to a fully yanked package.

One example is ncollide,39 the owner explained that “the overly generic crate ncollide

has been replaced by two distinct crates: ncollide2d and ncollide3d which are dedi-

cated to 2D and 3D respectively.”40 Another example is c,41 which yanked all releases

to “kill”42 this package. We also identified Breaking SemVer (25.0%) and Fixing “*”

dependencies (25.0%) rationales under this pattern, however, the identified rationales

are not for the whole package, but for some specific releases.

Pattern 3: Yanking back-to-back releases (17% of the packages). There are

814 packages that followed this pattern and Defect (46.7%) is the most common ratio-

nale that we identified in the card sort under Pattern 3. We noticed that developers

often yanked multiple releases due to the same defect. For example, clap43 yanked the

versions from 1.4.0 to 2.21.0 since these versions are all affected by “an erroneous def-

inition of a macro”.44 In fact, one of the maintainers left a comment about Cargo not

supporting “yank[ing] everything from X.X.X to Y.Y.Y”. We also observed packages

that yanked older releases for security purposes, such as untrusted45 and bitvec.46

Moreover, the only instance of the Unsupported rationale in the card sort was found

under this pattern. Old releases of ring47 were yanked because the owner no longer

39https://crates.io/crates/ncollide
40https://github.com/dimforge/ncollide/issues/322
41https://crates.io/crates/c
42https://github.com/hilbert-space/c/issues/1
43https://crates.io/crates/clap
44https://github.com/clap-rs/clap/issues/2076
45https://github.com/briansmith/untrusted/issues/29
46https://github.com/bitvecto-rs/bitvec/issues/59
47https://crates.io/crates/ring

67

https://crates.io/crates/ncollide
https://github.com/dimforge/ncollide/issues/322
https://crates.io/crates/c
https://github.com/hilbert-space/c/issues/1
https://crates.io/crates/clap
https://github.com/clap-rs/clap/issues/2076
https://github.com/briansmith/untrusted/issues/29
https://github.com/bitvecto-rs/bitvec/issues/59
https://crates.io/crates/ring

supports these versions, even though they do not have any known vulnerabilities. In-

stead, the owner recommends that people only use the latest version.48 In addition,

we observed that packages yanked multiple releases due to the MSRV49 policy (6.7%).

For instance, block-buffer50 yanked versions 0.7.0 to 0.7.2 since these versions used an

interface that “was stabilized only in Rust 1.28”,51 hence, the dependents of block-

buffer will be broken if they used a lower version of Rust.

Pattern 4: Yanking all releases except one (11% of the packages). There

are 506 packages that follow this pattern and 94% of these packages left their newest

release unyanked. We only found three packages that explained the rationales under

this pattern in the card sort. All three packages explained that at least one of the

yanked releases contained a defect. battery-cli52 is the only package that explained

that the rationale for yanking was Package removed or replaced. This package left

the newest release unyanked to show the readme file which mentions that “this crate

was yanked and replaced by battop crate” instead of the default page on the website.

Pattern 5: Yanking nonadjacent releases (7% of the packages). There are

383 packages that do not belong to any patterns which we proposed. Similar to

Pattern 1 and Pattern 3, the two most common rationales that we identified in the

card sort are Defect (50.0%) and Breaking SemVer (42.9%). In addition, the only

instance of License updated we identified in the sort is from this group. Particularly,

sic53 yanked version 0.10.0 since the “dependency licenses [were] not updated”.54 sic

also yanked version 0.7.1 for a defect which “fails to build from crates.io”.55

Package removed or replaced is the main rationale behind deprecated

releases of binding for ML libraries in both Cargo and npm. We observe

48https://github.com/briansmith/ring/issues/774
49https://github.com/rust-lang/rfcs/pull/2495
50https://crates.io/crates/block-buffer
51https://github.com/RustCrypto/utils/issues/22
52https://crates.io/crates/battery-cli
53https://crates.io/crates/sic
54https://github.com/foresterre/sic/issues/193
55https://github.com/foresterre/sic/issues/50

68

https://github.com/briansmith/ring/issues/774
https://github.com/rust-lang/rfcs/pull/2495
https://crates.io/crates/block-buffer
https://github.com/RustCrypto/utils/issues/22
https://crates.io/crates/battery-cli
https://crates.io/crates/sic
https://github.com/foresterre/sic/issues/193
https://github.com/foresterre/sic/issues/50

that 61.5% of the bindings for ML libraries with yanked releases in Cargo fall under

this category, exceeding the overall percentage observed in the card sort (i.e., 5.2%).

50% of the bindings for ML libraries used Pattern 2 to cooperate with the rationale.

In contrast, for ML library bindings in npm, 60.0% of the deprecated releases are due

to Package removed or replaced, which is less common compared to the 80% observed

for general packages in prior work [138]. Defect remains a common rationale across

bindings for ML libraries in both Cargo (30.8%) and npm (28.9%), ranking as the

second most frequent rationale for the deprecation in bindings for ML libraries.

5.3% of the packages with at least one yanked release explain the ratio-

nales in their changelogs, issue reports, and pull requests. During the pattern

analysis, we observed that the proportion of packages which explain the rationales

behind yanked releases is relatively small, compared to 64% of the deprecation mes-

sages in npm which explain the rationales for deprecating a package or release [138].

Among the packages with yanked releases, 4.1% explain the rationale in their GitHub

issue reports or pull requests, while 1.5% include the explanation in a changelog.

However, the majority (79%) of these packages do not maintain a changelog. Hence,

it is not possible to identify the rationales behind all yanked releases.

RQ2 Summary

In Cargo, packages use the release-level deprecation for several reasons other
than just to indicate a release is defective, with breaking SemVer being the
most common rationale. For ML library bindings, package removed or replaced
is the primary reason for deprecated releases in both Cargo and npm.

3.6.3 RQ3: How many packages adopt yanked releases of
bindings for ML libraries compared to general packages
in Cargo?

Motivation. Cargo does not allow the owner of a package to delete their releases,

but it allows the owner to remove a release from the registry index by yanking.

Hence, packages cannot point a new dependency to a yanked release because Cargo

69

cannot find it in the registry index. Moreover, the yank mechanism in Cargo is more

forceful than the deprecation mechanism in npm. When npm resolves the dependency

requirements for a package, it will use a deprecated release if needed and provide a

warning message. However, Cargo will not choose a yanked release even if only this

yanked release can satisfy the dependency requirements, which leads to unresolved

dependencies. We call a release with unresolved dependencies an implicitly yanked

release, because Cargo cannot use this release to resolve the dependency requirements

of other packages (and hence build those packages) even though this release was not

yanked explicitly. In this research question, we focus on Cargo to study how often

packages directly adopted yanked releases, comparing the adoption rates between

bindings for ML libraries and general packages. We also investigate how many releases

have unresolved dependencies due to yanked releases in both categories.

Approach. We analyzed the dependencies table in the database (as shown in

Table 3.2) to collect packages which directly adopted at least one yanked release.

First, we selected the dependency requirements which can be satisfied by a yanked

release. Then, we collected the information about the owners (i.e., releases from

different packages) of these requirements, distinguishing between bindings for ML

libraries and general packages. For each yanked release d, we calculated the proportion

pd of direct adoptions of yanked releases [138]. The value of pd was calculated by:

pd =
ad∑︁

d∈yanked releases ad

where ad is the number of times that release d is directly adopted by a package.

For example, if packages directly adopted 100,000 yanked releases (sum of ad) and a

yanked release d accounts for 1,000 times of these adoptions (ad), the value of pd is

1%.

Next, we study how many releases have unresolved dependencies because of adopt-

ing yanked releases and compare the impact on bindings for ML libraries and general

70

1.3.0

1.2.1

1.2.0

...

~1.2.0
req

1.3.0

1.2.1

1.2.0

...

~1.2.0
req

yanked release

2.3.42.3.4

client provider client provider

unresolved dependency

(a) (b)

Figure 3.4: Two scenarios of resolving dependencies: (a) The dependency requirement
can be resolved; (b) The dependency requirement cannot be satisfied because of
yanking.

packages. Figure 3.4 shows two scenarios in which a dependency requirement of a

client package points to a provider package. In the first scenario, version 2.3.4 of

the client package has a requirement ∼1.2.0, and this requirement can be resolved by

1.2.0 or 1.2.1 of the provider package. In the second scenario, only versions 1.2.0 and

1.2.1 can satisfy the requirement ∼1.2.0 but these two versions are both yanked. We

investigated all the dependency requirements and collected the releases which have

unresolved dependencies, categorizing them into bindings for ML libraries and general

packages.

In addition, we study how yanked releases propagate through the dependencies in

the ecosystem. The propagation happens when yanked releases break dependency re-

quirements and cause implicitly yanked releases (i.e., releases with unresolved depen-

dencies). We collected the implicitly yanked releases which directly adopted yanked

releases. However, the propagation continues if those implicitly yanked releases cause

new unresolved dependencies. Hence, we performed the analysis recursively to collect

all implicitly yanked releases.

71

Findings. While 46% of all packages in Cargo directly adopted at least

one yanked release, bindings for ML libraries accounted for a very small

fraction of these adoptions. There are 22,277 packages that directly adopted at

least one yanked release of a partially yanked package, only 4 packages (less than

0.1%) adopted yanked releases from bindings for ML libraries. Similarly, among the

268 packages that directly adopted fully yanked packages, only 2 packages (0.7%)

were related to bindings for ML libraries. In contrast, a small subset (2.4%) of

the yanked releases from general packages accounted for 75% of all the adoptions.

Although such adoptions do not directly put a package at risk (since there could

be newer releases that satisfy a requirement), they could contribute to unresolved

dependencies if another release is yanked.

1.4% of the releases in Cargo have unresolved dependency requirements

which are related to yanked releases, with bindings for ML libraries hav-

ing a minimal impact. 4,158 releases in Cargo have unresolved dependency re-

quirements because it directly or transitively adopted a yanked release and these

releases became implicitly yanked releases. However, bindings for ML libraries were

involved in only 10 instances (0.2%) of these unresolved dependencies. We found that

65.2% (2,712 releases) of the implicitly yanked releases are caused by packages that

follow Pattern 3 (yanking back-to-back releases) in Section 3.6.2 and 39.2% (1,631 re-

leases) of the implicitly yanked releases are caused by the ring package which yanked

unsupported old releases (see the example in Figure 3.5). The few unresolved depen-

dencies caused by bindings for ML libraries were due to bindings following Pattern 2

with a rationale of Package removed or replaced. Furthermore, 54% of the implicitly

yanked releases were caused by direct adoption of yanked releases rather than tran-

sitive adoption, with all the implicitly yanked releases propagated from bindings for

ML libraries being caused by direct adoption.

72

^0.11
req

^0.12
req0.11.0

0.12.0

...

...

0.11.0

rustls

0.12.0

...

...
0.0.1

github-gql-rs

^0.11
req

^0.0.1
req

1.16.0

fw

0.13.0

0.12.1

0.12.0

...

ring

...

yanked releaseunresolved dependency

hyper-rustls

Figure 3.5: An example of yanking propagation of ring. 0.11.0 of rustls, 0.11.0 of
hyper-rustls, 0.0.1 of github-gql-rs, and 1.16.0 of fw became implicitly yanked releases.

RQ3 Summary

46% of packages in Cargo directly adopted yanked releases and 1.4% of the
releases that currently have unresolved dependencies due to the yanking propa-
gation. Compared to general packages, bindings for ML libraries had a minimal
impact on both the adoption of yanked releases and the propagation of unre-
solved dependencies.

3.7 Implications

In this section, we discuss our findings and implications for the maintainers of package

managers, the package owners, the maintainers of Cargo, and researchers.

3.7.1 Implications for maintainers of package managers

Package managers should implement a release-level deprecation mecha-

nism. The proportion of deprecated releases in Cargo and npm are 3.7% and 3.2%

respectively, and the percentage of deprecated releases has gradually increased from

2014 to 2020 in Cargo (Section 3.6.1). Since the release-level deprecation mechanism

has seen increased use in these two ecosystems, there is likely a need for it in other

ecosystems as well. In recent years, PyPI and NuGet saw the need and have started

to support release-level deprecation in April 2020 and September 2019. We suggest

other package managers also implement the release-level deprecation mechanism.

73

Package managers should provide features to support the various ways

in which developers deprecate releases. We observed five patterns of yanking

in Cargo (Section 3.6.2). To support Pattern 2, we suggest that the deprecation

mechanism of package managers should support package-level deprecation, which is

also used by 80% of the deprecations in npm [138]. However, package managers should

notice that deprecating packages can break the dependents of those packages if the

managers implement a forceful deprecation mechanism. To support other patterns, we

suggest package managers to support deprecating a single release or multiple releases

at the same time to offer flexibility for developers.

Package managers should allow package owners to decide whether a depre-

cation is forceful or not. A forceful deprecation mechanism like yanking in Cargo

can cause unresolved dependencies for releases of other packages (Section 3.6.3). We

suggest that package managers leave the choice of forceful deprecation to the package

owners. The package owners can deprecate a release forcefully (like in Cargo) when it

is necessary, such as if they found security vulnerabilities in a cryptography package.

Otherwise, the package owner can decide to deprecate a release non-forcefully (like in

npm) and allow developers to decide whether they still want to adopt the deprecated

release in their own packages. In addition, we suggest that package managers provide

a warning with information about how many packages would break (similar to our

analysis in Section 3.6.3) if a developer decides to deprecate forcefully.

3.7.2 Implications for package owners

Package owners should explain the rationales behind yanked releases in

the documentation. 94.7% of the packages that have at least one yanked release in

Cargo never explained the rationale behind yanking (Section 3.6.2). This percentage

is high compared to npm in which for 64% of the deprecated releases a rationale is

known [138]. Since Cargo does not support adding a message for a yanked release,

we recommend that package owners record the reason for yanking a release in the

74

package’s documentation. For example, package owners can create an issue report to

track a yanked release and put its link into the readme or changelog. The issue report

should contain detailed information about a yanked release, and provide a place for

developers to discuss this release, or to give advice on how to deal with the yanking.

In addition, we noticed that only 21% of the packages (Section 3.6.2) have a changelog

in Cargo. We suggest package owners maintain a changelog to tell developers about

the notable changes in each release, which can also be used to explain the rationale

behind yanked releases.

Package owners should avoid yanking old releases which are no longer

supported without providing an alternative release or migration guidelines.

We found that 39.2% of the implicitly yanked releases in Cargo are caused by the

ring package which yanked old unsupported releases (Pattern 3 in Section 3.6.2), even

though these packages had no known vulnerabilities (Section 3.6.3). For the packages

that insist on yanking unsupported releases, we recommend they indicate replacement

releases or provide guidelines for developers to migrate away from yanked releases.

3.7.3 Implications for Cargo maintainers

We compare the yanked mechanism in Cargo with the deprecation mechanism in

npm based on our findings. We summarize the difference in Table 3.4 for Cargo

maintainers.

Table 3.4: Comparisons of the yanked mechanism in Cargo and the deprecation
mechanism in npm.

Package
manager

Record dep-
recation
date

Describe ra-
tionale

Deprecate a
package

Ban yanked
releases

Cargo ✓ ✓

npm ✓ ✓

75

Cargo should allow the owner of a package to add a note to a yanked

release and provide a warning for packages that adopted it. We found that

the percentage of packages that explain the rationales behind yanked releases is low

in Cargo (Section 3.6.1) compared to npm (5.3% vs. 64%). One reason could be that

npm allows the package owners to add a message for deprecated releases while Cargo

does not. Moreover, we observed that it is much more common in Cargo to yank only

a few releases instead of the whole package (Section 3.6.2) and the owners of packages

yanked releases for various reasons. For fully yanked packages, at least developers

know that these packages will probably no longer be maintained. However, developers

who depend on a partially yanked package can hardly understand what is happening

since there is no mechanism for describing why a release was yanked. Hence, we

recommend that Cargo should allow the owner of a package to leave a message when

they are yanking a release. There is an issue report56 asking for the same functionality

since April 23, 2016, but it is still not implemented. With the increasing proportion of

yanked releases in the ecosystem (Section 3.6.1), more developers will be affected by

this issue. In addition, we recommend that Cargo should provide a warning message

for packages that adopted a yanked release.

Cargo should detect implicitly yanked releases and provide a warning for

these releases. We found that 1.4% of releases in Cargo are implicitly yanked (Sec-

tion 3.6.3). We recommend that Cargo should mention that a release is implicitly

yanked on the webpage of a package. For example, there could be an “unresolved”

label beside an implicitly yanked release on the webpage, hence developers can avoid

using this release. In addition, for a package which adopted an implicitly yanked

release, Cargo can show the dependency tree and indicate the release which breaks

the dependencies for developers.

Cargo should warn the owner of a package which adopts a yanked release

56https://github.com/rust-lang/cargo/issues/2608

76

https://github.com/rust-lang/cargo/issues/2608

in its lock file. Cargo.lock stores the information about dependencies locally for a

project if the project was compiled successfully. However, one of the dependencies can

be yanked after the compilation and Cargo does not inform the developer. Since the

proportion of packages which directly adopted yanked releases is 46% in Cargo (Sec-

tion 3.6.3), we recommend that Cargo should check up the package registry when

developers are building their project based on the Cargo.lock. Hence, Cargo can

give a warning message to developers if one of the dependencies was yanked.

3.7.4 Implications for researchers

Researchers should study automatic semantic versioning guarantee check-

ers to detect whether a release follows the guarantee. In Section 3.6.2, we

found that Breaking SemVer is the most common rationale behind yanking. This find-

ing indicates the difficulty for package owners to decide whether an update follows

the guarantee. Automatic semantic versioning guarantee checkers can help package

owners by analyzing the code before a release is published. In addition, these check-

ers can be used to analyze how packages in different software ecosystems follow the

semantic versioning guarantee.

3.8 Threats to validity

In this section, we discuss the threats to the validity of our study about yanked

releases in Cargo.

Internal validity: We analyzed the percentage of yanked releases from 2014 to

2020 based on the Git history of the registry index. Ideally, this index repository is

updated automatically by a program. However, we found eight records which show

that the maintainer edited the index manually to delete some packages. Since these

deletions are not considered, our results will include the yanked releases of these

deleted packages.

The identification of changelogs is based on searching keywords in readme and

77

matching filenames under the root directory of packages’ GitHub repository. It is

possible that the owner of a package did not use a word in our keyword list to

indicate their changelog. We randomly selected 341 readmes which correspond to a

95% confidence level and ±5% confidence interval. The manual analysis shows that

our heuristic approach achieves a precision of 91% and a recall of 91%.

In addition, we filter out changelogs, issue reports, and pull requests which do not

have “yank” and “deprecate” in the content. This filtering might exclude information

that explains why a release was yanked. We randomly selected 100 changelogs and

100 issue reports/pull requests from the excluded samples to manually verify whether

they contain the rationales for yanked releases. We found that the keywords searching

approach missed 3 of the 100 changelogs (2 for Package removed or replaced and 1

for Defect) and 0 of the 100 issue reports/pull requests. Since few packages main-

tained a changelog and most rationales are identified from issue reports/pull requests

(Section 3.6.2), the result of identifying rationales is considered reliable. Besides, we

selected 638 packages which have the keywords in changelogs, issue reports, or pull

requests and filtered out 380 out of the 638 for card sorting. The author who did

not participate in the card sorting independently analyzed 100 samples of the 380

packages and reported the false negative rate is 9%.

External validity: We studied yanked releases in the Rust and npm package reg-

istries, but the findings of our study may not generalize to the package managers

of other programming languages. One reason could be that other package managers

may not provide a release-level deprecation mechanism for developers, and the identi-

fication of whether a release is yanked could be complicated (or not possible). Future

studies should further investigate other software ecosystems with release-level depre-

cation.

We investigated the changelogs, issue reports, and pull requests of packages with

at least one yanked release. However, we only looked at packages which provide a link

to their GitHub repository. There are 15% of these packages that do not have a link

78

to their repository and 214 packages (4%) provide a link to other repository hosting

platforms such as Bitbucket57 and GitLab.58 Hence, future studies are necessary to

investigate if our results hold for packages that maintain their code outside of GitHub.

The results of our study might not apply directly to other software ecosystems,

because the community and the development model of the programming language

can also affect the results. However, our methodology can be applied to analyze

other software ecosystems.

3.9 Conclusion

In this study, we investigated the prevalence and rationale behind release-level depre-

cation in bindings for machine learning libraries, comparing them to general packages

in Cargo and npm ecosystems. We studied 48,823 packages in Cargo and utilized the

dataset from a previous study on npm [138] to understand the deprecation mecha-

nism. In particular, we studied the frequency in which the deprecation mechanism is

used, the patterns and rationales behind deprecation, and the adoption of deprecated

releases. The most important findings of our study are:

1. In Cargo, bindings for ML libraries have a higher percentage of deprecated re-

leases compared to general packages, while in npm, the percentages of deprecated

releases between the two are more similar. From 2014 to 2020, the proportion of

yanked releases for ML bindings in Cargo decreased from 7.2% to 4.4%, whereas

the proportion for general packages increased from 1.4% to 3.7%.

2. We observed 5 yanking patterns in Cargo and the rationales include withdrawing

a defective release or a release that broke the semantic versioning guarantee, in-

dicating a package is removed or replaced, or fixing dependencies. Notably, the

primary reason for deprecating releases of bindings for ML libraries in both Cargo

57https://bitbucket.org/
58http://gitlab.com/

79

https://bitbucket.org/
http://gitlab.com/

and npm is package removal or replacement.

3. 46% of packages in Cargo have adopted at least one yanked release. This widespread

adoption has led to a substantial propagation of yanked releases, resulting in 1.4%

of the releases in Cargo having unresolved dependencies. Although this issue is

pervasive across Cargo, it is notable that ML library bindings contribute minimally

to this problem.

Our findings provide valuable insights into the usage of release-level deprecation in

bindings for ML libraries within software package ecosystems. Based on our findings,

we suggest that Cargo should provide a package-level deprecation mechanism and

allow package owners to leave a reason for yanking a release, and we recommend that

other package managers integrate a release-level deprecation mechanism as well.

80

Chapter 4

Studying the Correctness and
Time Cost of Bindings for Machine
Learning Libraries

4.1 Abstract

Bindings for machine learning frameworks (such as TensorFlow and PyTorch) allow

developers to integrate a framework’s functionality using a programming language

different from the framework’s default language (usually Python). In this chapter, we

study the impact of using TensorFlow and PyTorch bindings in C#, Rust, Python

and JavaScript on the software quality in terms of correctness (training and test

accuracy) and time cost (training and inference time) when training and performing

inference on five widely used deep learning models. Our experiments show that a

model can be trained in one binding and used for inference in another binding for the

same framework without losing accuracy. Our study is the first to show that using

a non-default binding can help improve machine learning software quality from the

time cost perspective compared to the default Python binding while still achieving

the same level of correctness.

81

4.2 Introduction

The rapidly improving capabilities of Deep Learning (DL) and Machine Learning

(ML) frameworks have been the main drivers that allow new intelligent software

applications, such as self-driving cars [62, 120] and robotic surgeons [4, 45, 148].

These intelligent software systems all contain components that integrate one or more

complex DL and/or ML algorithms. Fortunately, over the past decade, the need for

coding these ML and DL algorithms from scratch has been largely eliminated by

the availability of several mature ML frameworks and tools such as TensorFlow [1]

and PyTorch [124]. These frameworks provide developers with a high-level interface

to integrate ML functionality into their projects. Using such ML frameworks has

several advantages including readily usable state-of-the-art algorithms, accelerated

computing, and interactive visualization tools for data [119].

ML frameworks are typically accessed using Python, which is now the most pop-

ular programming language for ML applications [7, 119, 133]. Gonzalez et al. [57]

show that more than 56% of the ML projects on GitHub are written in Python. How-

ever, many software projects do not use Python as their primary language1 and the

developers of these projects might be unfamiliar with Python. Since learning a new

language is a non-trivial task even for experienced developers [147], these develop-

ers have to use a workaround to use the Python ML frameworks in their preferred

programming language.

To help non-Python developers with the integration of an ML framework, 25% of

the popular ML frameworks offer one or more bindings for other programming lan-

guages [97]. These bindings expose the functionality of the framework in the binding’s

language. For example, TensorFlow provides a JavaScript binding2 that allows devel-

opers to integrate ML techniques directly in JavaScript. Because a binding adds an

additional layer around the ML framework, it is important to investigate how the qual-

1https://githut.info
2https://github.com/tensorflow/tfjs

82

https://githut.info
https://github.com/tensorflow/tfjs

ity of the ML software created using these ML frameworks is impacted. For instance,

different bindings may take different amounts of time to build a model.3 In addition,

bugs in the bindings can introduce inconsistencies for trained models. For example,

TensorFlow’s C# binding had different results than the Python binding when loading

an already trained model due to incorrectly handling ‘tf.keras.activations‘ functions.4

However, no one has systematically investigated the impact of using bindings for ML

frameworks on the ML software quality; typically, studies focus on the software qual-

ity of the ML frameworks themselves [18, 104, 149], or on the impact of the computing

device on which the model executes [61].

To illustrate the potential impact and importance of our study, consider the follow-

ing real-world scenario. Anna’s team uses JavaScript as the primary programming

language. Since the team lacks ML or Python expertise, they collaborate with the

company’s ML team to integrate DL techniques into their projects. They are now

considering using an ML framework’s JavaScript binding for their project. However,

they are concerned about how their developed ML software’s quality is impacted by

the binding; in particular, they are concerned about the correctness and time cost.

There are three possible scenarios for integration of the binding that our study can

assist with choosing the best option:

• Integration Scenario 1: The ML team develops and trains the DL models

and ships the pre-trained models to Anna. In this scenario, Anna needs to

use the JavaScript binding to load the pre-trained models and perform model

inference in her project.

• Integration Scenario 2: The ML team assists Anna in training DL models

in the project’s native language which is JavaScript, allowing Anna to alter and

maintain the code more efficiently. After training the DL models, Anna needs

3As can be seen in this GitHub issue for TensorFlow: https://github.com/tensorflow/tensorflow/
issues/55476

4https://github.com/SciSharp/TensorFlow.NET/issues/991 and https://github.com/SciSharp/
TensorFlow.NET/pull/1001

83

https://github.com/tensorflow/tensorflow/issues/55476
https://github.com/tensorflow/tensorflow/issues/55476
https://github.com/SciSharp/TensorFlow.NET/issues/991
https://github.com/SciSharp/TensorFlow.NET/pull/1001
https://github.com/SciSharp/TensorFlow.NET/pull/1001

to deploy the trained models to the production environment in JavaScript as

well.

• Integration Scenario 3: Since computational resources for the project are

very limited, Anna is also open to a third scenario, in which the ML team

assists her in selecting the most efficient combination of training and inference

bindings in any language. In this scenario, Anna is willing to hire an expert in

the chosen language(s) to help with the integration of the binding(s) as long as

the reduction in computational resources is large enough.

Therefore, in this chapter, we study the impact of bindings on two important ML

software quality aspects:

• Correctness: We evaluate if models trained using different bindings for a

given ML framework have the same accuracy. We study (1) training accuracy,

which captures the model’s classification performance on the train set during

the training process, and (2) test accuracy, which captures the classification

performance of the final trained model on the test set. In addition, we measure

whether the test accuracy is the same after loading a pre-trained model in a

binding that was not used to train the model (the cross-binding test accuracy).

• Time cost: We evaluate if models trained using different bindings for an ML

framework take similar time for training and making inferences. Bindings that

produce models with a high time cost are expensive (in terms of computational

resources), which limits their applicability.

We conducted model training and model inference experiments using bindings for

TensorFlow and PyTorch in C#, Rust, Python, and JavaScript. In the model train-

ing experiments, we trained LeNet-1, LeNet-5, VGG-16, LSTM, GRU, and BERT

models on the GPU in every binding (excluding BERT which is only trained on the

Python bindings) using the same data and as far as possible, the same framework

84

configuration. In the model inference experiments, we loaded pre-trained models and

performed inference using every binding on the CPU and GPU. We do so to address

the following research questions (RQs), with RQ1 and RQ2 focusing on correctness,

and RQ3 and RQ4 focusing on time cost:

RQ1. How do the studied bindings impact the training accuracy and test

accuracy of the studied DL models?

During the training process, bindings for the same ML framework can have

different training accuracies for the same model as well as varying test accuracy

values (2% difference) in the final trained models.

RQ2. How do the studied bindings impact the cross-binding test accuracy

of pre-trained models?

The cross-binding test accuracy of the pre-trained models was not impacted

by the bindings.

RQ3. How do the studied bindings impact the training time of the studied

DL models?

Non-default bindings can be faster than the default Python bindings for ML

frameworks. For instance, PyTorch’s Python binding has the slowest training

time for the studied models; PyTorch’s C# binding is more than two times

faster than the Python binding in training the LeNet-5 model.

RQ4. How do the studied bindings impact the inference time of pre-

trained models?

Bindings can have very different inference times for the same pre-trained

model, and the inference time of certain bindings on CPU can be faster than

that of other bindings on GPU. For example, TensorFlow’s Rust binding can

perform inference faster for an LSTM model on CPU than the JavaScript

binding on GPU (73.9 vs. 177.7 seconds).

85

The main contributions of our study are as follows:

1. We are the first to study the impact of using different bindings for ML frame-

works on the ML software quality in terms of correctness and time cost.

2. We found that using a non-default binding can help improve ML software quality

(from the time cost perspective) compared to the default Python binding of

the studied frameworks in certain tasks, while still achieving the same level of

correctness.

3. We provide a replication package [100], which consists of the implementation of

the studied ML models in the studied bindings, scripts for running the experi-

ments, and Jupyter Notebooks for analyzing the experiment results.

The remainder of this chapter is outlined as follows. Sections 4.3 provides back-

ground information. Section 4.4 describes the design of our study. Sections 4.5 and 4.6

present the results. Section 4.7 discusses the implications of our findings. Section 4.8

gives an overview of related work. Section 4.9 outlines threats to the validity of our

study and Section 4.10 concludes the chapter.

4.3 Background

4.3.1 ML Frameworks

Machine learning frameworks are software libraries that provide ML techniques to

developers for the development and deployment of ML systems. Most popular ML

frameworks are supported by large companies such as Google and Facebook [7]. As

shown in Figure 4.1, an ML framework provides interfaces to define the structure of a

model, train the defined model using a selected optimizer, and save the trained model

for later use. In addition, developers can deploy the trained models to the production

environment by loading a saved (or pre-trained) model and performing inference.

ML frameworks can load a pre-trained model using (1) the model parameters (e.g.,

86

ML
Framework

Core

FFIs

Bindings
(Python

included)

Defining
the model
structure

Training
the model

Saving
the model

Loading the
model via

serialization

Performing
model

inference

Defining
the model
structure

Loading
the model

parameters

Model inference

Model training

Figure 4.1: Bindings use the functionality of ML frameworks via foreign function
interfaces (FFIs) to train models and perform model inference.

weights and hyperparameters) or (2) serialization. If only the model parameters are

saved, developers first have to define the model structure before they can load the

stored parameters into the defined model. When loading a serialized model, the ML

framework can recreate the model from the saved file automatically since it contains

both the structure and the weights of the pre-trained model.

Modern ML frameworks, such as TensorFlow and PyTorch, have been built upon

a foundation that leverages parallel processing devices like GPUs. GPUs have proven

to be highly efficient for tasks that demand parallel computation, especially in the

realm of ML. Their architecture is inherently designed to handle multiple tasks simul-

taneously, allowing for massive parallelism. However, one significant characteristic of

GPU computations that needs emphasis is their asynchronous nature. When a task

is dispatched to a GPU, it does not always execute immediately. Instead, it often gets

scheduled in a queue.5 Consequently, a CPU might continue with its tasks believing

that a GPU job is complete when, in fact, it has not even started. This asynchronous

behaviour allows GPUs to optimize task execution but also necessitates careful syn-

chronization when precise timing or task ordering is crucial.

5https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/

87

https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/

Perform inference
using the trained

models

Record the inference
correctness and time

cost

Record the training
correctness, time
cost, and model

Pre-trained models

Train the studied
models using the
studied bindings

RQ1. How do the studied bindings impact the training
accuracy and test accuracy of the studied DL models?

RQ3. How do the studied bindings impact the training
time of the studied DL models?

RQ2. How do the studied bindings impact the cross-
binding test accuracy of pre-trained models?

RQ4. How do the studied bindings impact the
inference time of pre-trained models?

Studied
datasets

Figure 4.2: Overview of the study design.

4.3.2 Bindings for the ML frameworks

Python is the most popular programming language for ML applications [7, 119], but

developers in other languages also have the need for using ML algorithms. Developers

might choose an existing ML framework in their preferred language or they have to

create a new one from scratch (which requires a large amount of work and is error-

prone). Another alternative is to use a binding in their preferred language, which

provides interfaces to the functionality of an existing ML framework in the language

of the binding [97].

As shown in Figure 4.1, bindings access the functionality of the ML framework

through foreign function interfaces (FFIs) without recoding the library. FFIs bridge

the gap between programming languages, allowing developers to reuse code from

other languages. For example, TensorFlow’s Rust binding6 uses the FFI provided

by the Rust language7 to access TensorFlow functionality. Since the GPU support

is provided by the underlying C/C++ computational core of ML frameworks, bind-

ings typically leverage FFIs to access these functionalities. For example, the Python

bindings for TensorFlow and PyTorch make use of SWIG8 (Simplified Wrapper and

Interface Generator) and Pybind119 to generate FFIs for its Python binding to tap

into the C++ backend which includes the ability to access the GPU. However, the

efficiency in leveraging GPU resources may vary among different bindings.

6https://github.com/tensorflow/rust/tree/master/tensorflow-sys
7https://doc.rust-lang.org/rust-by-example/std misc/ffi.html
8https://www.swig.org/
9https://github.com/pybind/pybind11

88

https://github.com/tensorflow/rust/tree/master/tensorflow-sys
https://doc.rust-lang.org/rust-by-example/std_misc/ffi.html
https://www.swig.org/
https://github.com/pybind/pybind11

Table 4.1: Our studied datasets and models. (Each model is paired with a dataset
for the experiments)

Dataset
#Samples∗ Model

Train Test Name #Parameters

MNIST 60,000 10,000
LeNet-1 4,326

LeNet-5 61,706

CIFAR-10 50,000 10,000 VGG-16 33,650,890

IMDb 25,000 25,000
LSTM-based 4,665,537

GRU-based 4,250,817

SQuAD 87,599 10,570 BERT (base) 108,893,186

∗ The split of the training and test set is provided by the dataset.

4.4 Study Design

In this section, we first describe our experimental environment and the studied

datasets, models, ML frameworks, and bindings. Then, we discuss how we evalu-

ate the correctness and time cost in the model training and model inference experi-

ments. Finally, we introduce the experimental setup of our study. Figure 4.2 gives

an overview of our study design.

4.4.1 Environment setting

We set up our experimental environment on a dedicated laboratory server provided

by ISAIC10, where we can control the execution of other running tasks. The server

runs Ubuntu Linux 20.04 with Linux kernel 5.11.0. We used the CUDA 11.1.74 and

cuDNN 8.1.0 GPU-related libraries. The hardware specifications of the server are as

follows:

• GPU: 2x NVIDIA TU102 [TITAN RTX] (24 GB)

10https://isaic.ca/

89

https://isaic.ca/

• CPU: 3.30 GHz Intel(R) Core(TM) i9-9820X

• RAM: 100 GB

4.4.2 Studied datasets and models

Table 4.1 presents the datasets and models used in this study, specifically pairing

each model with the dataset used in the experiments. The datasets we studied are

MNIST [93], CIFAR-10 [88], IMDb review [108], and SQuAD [132]. These datasets

are widely used as benchmarks in ML research [61, 69, 86, 101, 102, 119, 165, 173].

The models we studied are LeNet [92], VGG [151], LSTM [66], GRU [21], and BERT

(the base model) [39] as all of them are typically paired with these datasets in various

research domains [2, 22, 51, 61, 67, 69, 146, 163, 165, 175, 176].

MNIST and CIFAR-10 are datasets for image classification tasks. MNIST contains

70,000 grayscale images of handwritten digits, serving as a benchmark for evaluating

classification models like LeNet-1 and LeNet-5. We used the CIFAR-10 dataset, which

contains 60,000 colour images of 10 different objects, to train the VGG-16 model. The

primary metric for these classification tasks is accuracy, reflecting the proportion of

correctly identified images out of the total dataset.

The IMDb review dataset is utilized for sentiment analysis (text classification).

The dataset contains 25,000 positive and 25,000 negative text reviews of movies. We

used it to train the LSTM and GRU models to analyze the sequential nature of

text data. Both LSTM and GRU models utilize a recurrent neural network (RNN)

structure for handling sequential data, and we integrated a word embedding [28] on

the IMDb dataset in our experiments. The performance is measured by accuracy

which indicates the model’s ability to correctly classify reviews.

SQuAD is a dataset for the extractive question-answering task. SQuAD contains

around 100,000 question-answer pairs, where the questions are posed by crowdworkers

on a set of Wikipedia articles and the answer to every question is a text span from

the corresponding reading passage. We used SQuAD to train the BERT-base model,

90

Table 4.2: Studied bindings for TensorFlow and PyTorch in software package ecosys-
tems.

Framework Name Ecosystem Language Version # Stars†

TensorFlow

tensorflow PyPI Python 2.5.0 177,149

TensorFlow.NET NuGet C# 0.60.4 2,906

tensorflow Cargo Rust 0.17.0 4,627

@tensorflow/tfjs-node npm JavaScript∗ 3.9.0 17,635

PyTorch

torch PyPI Python 1.9.0 70,021

TorchSharp NuGet C# 0.93.9 946

tch Cargo Rust 0.5.0 3,178

@arition/torch-js npm JavaScript∗ 0.12.3 252

∗ We wrote TypeScript code when using the JavaScript bindings.

† The number of stars on GitHub recorded as of August 24, 2023.

leveraging the model’s capability in language understanding. The task is to identify

the exact text span (i.e., start and end positions) within the given passage that

answers a question. The evaluation metric for SQuAD is the exact match score [132],

which calculates the percentage of questions for which the model’s answer exactly

matches the annotated answer.

4.4.3 Studied ML frameworks

We study the latest stable versions (at the time of starting our study) of Tensor-

Flow [1] (2.5.0) and PyTorch11 (1.9.0), since they are two of the most popular ML

frameworks. TensorFlow and PyTorch have recently grown in popularity as Caffe2

was merged into PyTorch in 201812 and Keras became “the high-level API of Tensor-

Flow 2” [83].

11https://github.com/pytorch/pytorch/releases/tag/v0.1.1
12https://caffe2.ai/

91

https://github.com/pytorch/pytorch/releases/tag/v0.1.1
https://caffe2.ai/

4.4.4 Studied bindings

The studied TensorFlow and PyTorch bindings are shown in Table 4.2. These bindings

are all based on the same version of the studied ML frameworks (i.e., TensorFlow 2.5.0

and PyTorch 1.9.0). Notably, TensorFlow and PyTorch both utilize the Python bind-

ings by default. The reason behind selecting bindings in these four software package

ecosystems is twofold: (1) Generally, PyPI (Python), npm (JavaScript), and NuGet

(C#) are the three most popular software package ecosystems for cross-ecosystem ML

bindings [97] and (2) specifically, the Cargo ecosystem (Rust) is popular (according

to the number of stars on GitHub) for both TensorFlow13 and PyTorch.14 As shown

in Table 4.2, the number of GitHub stars serves as a proxy for the popularity of a

project in the software engineering domain [12, 47, 64, 170, 172], with TensorFlow’s

JavaScript binding being particularly notable. Although the number of stars for C#

and JavaScript bindings for PyTorch may appear low, we included these to ensure a

fair comparison with TensorFlow bindings in respective ecosystems.

4.4.5 Correctness evaluation

Training correctness. During the training process, the correctness is measured in

each epoch using the training accuracy which is calculated byAcctrain = Ncorrect/Ntrain,

where Ncorrect is the number of correct predictions and Ntrain is the number of data

samples in the training set. For the final trained models, we use the test accuracy

Acctest = Ncorrect/Ntest as the evaluation metric for comparison, which is the accuracy

on the test set.

Inference correctness. When we finish training a model, we use the test accuracy

Acctest of this pre-trained model as a reference. Then, we perform inference with a

studied binding for the pre-trained model on the test set to obtain the cross-binding

test accuracy Acccross test = Ncorrect/Ntest using that binding. The difference between

13https://github.com/tensorflow/rust
14https://github.com/LaurentMazare/tch-rs

92

https://github.com/tensorflow/rust
https://github.com/LaurentMazare/tch-rs

Acctest and Acccross test is that the inference correctness is measured in the studied

binding. For BERT on SQuAD, we use the exact match score [132] instead of accuracy

as the metric to evaluate the correctness.

4.4.6 Time cost evaluation

Training time cost. The training time cost measures the time spent training a

model in seconds. Developers commonly train DL models on GPU rather than CPU

since the training can be time-consuming and GPU can considerably shorten the

training time [14, 96]. Hence, all model training experiments of bindings for ML

frameworks are conducted on GPU and we measure the training time cost on GPU

only.

Inference time cost. The inference time cost measures the time spent for per-

forming inference with a pre-trained model on the test set in seconds. Since developers

can deploy pre-trained models to a production environment which supports the CPU

or GPU, the inference time cost of a binding is measured on both CPU and GPU.

93

Table 4.3: Supported features of studied bindings for TensorFlow (TF) and PyTorch (PT).

Training
Supported interfaces Loading models

CNNs RNNs BERT Parameters Serialization

TF

Python ✓ ✓ ✓ ✓ ✓ ✓

C# ✓ ✓ ✗† ✗ ✓ ✗

Rust ✗∗ ✓ ✓ ✗ ✗ ✓

JavaScript ✓ ✓ ✓ ✗ ✗ ✓

PT

Python ✓ ✓ ✓ ✓ ✓ ✓

C# ✓ ✓ ✓ ✗ ✓ ✗

Rust ✓ ✓ ✓ ✗ ✓ ✓

JavaScript ✗ ✗ ✗ ✗ ✗ ✓

∗ Unlike other bindings, TensorFlow’s Rust binding does not support the API (Keras-like) of TensorFlow 2.

† TensorFlow’s C# binding has only recently introduced support for RNNs based on TensorFlow 2.10, however, our

study uses the C# binding for TensorFlow 2.5.0 for consistency across all bindings.

94

4.4.7 Experimental setup

In this section, we detail our experimental setup with a running example of how we

computed the correctness and time cost of LeNet-1 when trained and inferenced using

the studied bindings for the studied ML frameworks.

Step 1 – Train the studied models using the studied bindings: We con-

duct model training experiments for each supported model-dataset pair (as shown in

Table 4.1). For a given model-dataset pair, each binding that supports the model’s

interface and training features (as shown in Table 4.3) trains the model from scratch

on that dataset. For example, LeNet-1 and MNIST form one model-dataset pair and

each supported binding trains LeNet-1 on MNIST independently. We repeat this

process for each model-dataset pair in each binding that supports the model. For

consistency, we ensure the following across all bindings for a given model-dataset

pair:

• Model structure. We use interfaces that provide the same functionality in

bindings to build up each layer of the studied models. However, not all bindings

support model training, as indicated in Table 4.3. As a result, we do not conduct

training experiments with TensorFlow’s Rust binding, PyTorch’s JavaScript

binding, and RNNs in TensorFlow’s C# binding.

• Training set and test set. We use the provided split of the training set

and test set from studied datasets. Before conducting experiments, we perform

comprehensive data preprocessing, ensuring that all bindings can work with the

same processed data across all experiments.

• Hyperparameters. We use the same hyperparameters (e.g., the number of

epochs and batch size) and optimizers from prior research [61]. However, Ten-

sorFlow’s C# binding does not support setting the momentum and weight decay

hyperparameters for a stochastic gradient descent (SGD) optimizer. Hence, we

95

only set the learning rate for the SGD optimizer without enabling momentum

and weight decaying when training the LeNet-1, LeNet-5, and VGG-16 mod-

els to maintain consistency across all bindings. In addition, to mitigate the

risk of default hyperparameters influencing our results, we explicitly defined all

configurable parameters and kept them the same across bindings.

• Random seed. We fix the value of the random seed across bindings when

training the same model to control the randomness.

In addition, we repeat the same training process five times for each binding with

different random seeds (that are kept consistent across bindings) to reduce the impact

of seed selection on the results.

Running example. We train the LeNet-1 model in TensorFlow’s Python, C#,

and JavaScript bindings. These bindings all set the same random seed at the start of

the training process. To build up the same convolution layers of the model, we use

the “Conv2D” interface in Python, “Conv2D” in C#, and the “conv2d” interface in

JavaScript. In addition, we use SGD with a learning rate of 0.05 for all three bindings

to train the LeNet-1 model.

Step 2 – Record the training correctness and save the model: We record

the training accuracy in each epoch for all model training experiments. After the

training is completed, we compute the trained model’s test accuracy and save the

model for later use. Considering the impact of randomness, we repeat the training

process 5 times in each training experiment and analyze the distribution of the results

to draw conclusions.

Running example. During training the LeNet-1 model in PyTorch’s C# binding,

we calculate the training accuracy in each epoch and store the value. After finishing

the training, we save the trained LeNet-1 model.

Step 3 – Perform inference using the trained models and record the

inference correctness: For each model inference experiment, each binding loads

96

Procedure 1 Measuring Training Time Cost in PyTorch Bindings

1: model, optimizer ← initModelAndOptimizer() ▷ Model and optimizer
initialization

2: train set← loadDataset() ▷ Load pre-processed training set
3: start← getCurrentTime() ▷ Start the timer
4: for epoch← 1 to epochs do
5: while not isEndOfDataset(trainSet) do
6: inputs, labels← getNextBatch(train set) ▷ Batch data loading∗1

7: outputs← model(inputs) ▷ Start forward propagation∗2a

8: loss← calculateLoss(outputs, labels) ▷ Loss calculation∗2b

9: loss.backward() ▷ Start backward propagation∗3a

10: optimizer.step() ▷ Parameter update∗3b

11: end while
12: end for
13: training time cost← getCurrentTime()− start ▷ Compute elapsed time
14: return training time cost

∗1−3: Subactivities in the training process – forward propagation includes loss calculation and
backward propagation includes parameter update.

a pre-trained model via the supported model loading approach(es) (as shown in Ta-

ble 4.3) and performs inference on the test set on both CPU and GPU. In addition,

bindings for the same ML framework perform inference for the same pre-trained

model. We select the pre-trained models (which are saved in Step 2) from Tensor-

Flow and PyTorch’s default Python bindings since the default bindings tend to have

the best support and maintenance [97].

Running example. In TensorFlow’s Rust binding, we load the pre-trained LeNet-

1 model from TensorFlow’s default Python binding via serialization to perform model

inference on the test set and record the cross-binding test accuracy.

Step 4 – Measure and record the training time cost: Our primary focus

is on measuring the time cost of the entire training process on GPU and recording

it, as shown in Procedures 1 and 4. Due to the asynchronous nature of GPU com-

putations (as explained in Section 4.3), we only keep the code directly related to the

training process in this step to ensure accurate time measurements, excluding activ-

ities like calculating correctness metrics in each epoch (which is included in Steps 1

97

Procedure 2 Measuring Inference Time Cost in PyTorch Bindings

1: model← loadSavedModel() ▷ Load trained model
2: test set← loadDataset() ▷ Load pre-processed test set
3: start← getCurrentTime() ▷ Start the timer
4: while not isEndOfDataset(test set) do
5: inputs← getNextBatch(test set) ▷ Batch data loading∗1

6: preds← model(inputs) ▷ Inference forward propagation∗2

7: end while
8: inference time cost← getCurrentTime()− start ▷ Compute elapsed time
9: return inference time cost

∗1−2: Subactivities in the inference process.

Procedure 3 Measuring Time Cost of a Training/Inference Subactivity in PyTorch
Bindings

1: start← getCurrentTime() ▷ Start the timer
2: runSubactivity() ▷ Execute a subactivity of training/inference
3: cuda.synchronize() ▷ Wait for the subactivity to finish
4: time cost← getCurrentTime()− start ▷ Compute elapsed time
5: return time cost

and 2). We also do not include the time cost of initialization processes, such as model

initialization, optimizer initialization, and initial dataset loading.

Procedure 1 within PyTorch showcases its granular control over the training pro-

cess. It initiates by setting up the model and optimizer, loading the training dataset,

and iterating through the epochs for optimizing the model weights. For each epoch,

the process starts with loading a batch of the data. Following this, forward propaga-

tion is performed to produce outputs which are used for calculating the loss values.

Lastly, backward propagation is executed to calculate the gradients which guide the

optimizer for updating the model parameters. In contrast, as demonstrated in Pro-

cedure 4, TensorFlow offers less granularity since it encapsulates the entire training

process (i.e., batch data loading, forward propagation, and backward propagation)

within a single function to optimize performance.

As shown in Procedure 3, the granularity control in PyTorch is particularly helpful

in measuring time costs for specific subactivities using the “cuda.synchronize()” func-

98

Procedure 4 Measuring Training/Inference Time Cost in TensorFlow (TF) Bindings

1: model← initModelAndCompile(optimizer, loss function) ▷ Model initialization
2: train set, test set← loadDataset() ▷ Load pre-processed data
3: start← getCurrentTime() ▷ Start the timer
4: model.fit(train set, epochs)/model.predict(test set) ▷ TF’s single

training/inference function
5: time cost← getCurrentTime()− start ▷ Compute elapsed time
6: return time cost

tion to facilitate synchronization between the CPU and GPU. The “cuda.synchronize()”

function is only available in the Python and Rust bindings. Procedure 3 starts a timer,

runs a subactivity (e.g., forward propagation), waits for the subactivity to finish using

”cuda.synchronize()”, and then computes the elapsed time.

Running example. We train the LeNet-1 model with PyTorch’s Python binding

and employ Procedure 1 to record the training time cost. In addition, we rerun the

training experiment utilizing Procedure 1 with additional synchronization steps as

described in Procedure 3 to capture accurate time costs for individual subactivities.

Step 5 – Measure and record the inference time cost: Similar to Step 4,

we measure and record the time cost of the entire inference process on both CPU

and GPU following Procedures 2 and 4. For measuring the time costs of inference

subactivities (i.e., batch data loading and forward propagation), we rerun the infer-

ence experiments employing Procedure 3, but only for PyTorch’s Python and Rust

bindings on GPU.

Running example. In PyTorch’s Python binding, we use Procedure 2 to de-

termine the inference time cost for the pre-trained LeNet-1 model. Furthermore, we

rerun the inference experiment with additional steps from Procedure 3 to separately

record time costs for batch data loading and forward propagation.

4.4.8 Supported features in studied bindings

Table 4.3 outlines the supported features by each studied binding:

• Training support: A lack of training support in certain bindings means de-

99

velopers might have to use another programming language. This can be incon-

venient and result in additional overhead, especially if developers are unfamiliar

with the alternative language.

• Model interface support: When certain model types are not supported in a

binding, developers might still need to switch to another language to train their

models.

• Model loading approaches: Loading models via serialization provides flex-

ibility as developers don’t need to define the model structure. In contrast,

loading models via parameters requires the model’s structure to be pre-defined.

This can lead to challenges, especially when developers try to use pre-trained

models.

For our training experiments in Section 4.4.7, certain bindings are exempt due

to their limitations: TensorFlow’s Rust and PyTorch’s JavaScript bindings (which

don’t support training), TensorFlow’s C# binding for RNNs, and all bindings for

BERT. We acknowledged the recent inclusion of support for RNNs in TensorFlow’s

C# binding (aligned with TensorFlow v2.10).15 However, to maintain consistency

in our experimental framework, we focused on TensorFlow version 2.5.0 which is the

most commonly supported version of TensorFlow by the studied bindings.

For the inference experiments, all bindings are utilized in our work, with the excep-

tion of RNNs in TensorFlow’s C# and BERT in C# bindings for both ML frameworks.

The reason is that the C# bindings can only load models using parameters and lacks

support for RNN and BERT interfaces. Unlike PyTorch’s JavaScript binding which

despite not supporting CNNs, RNNs, and BERT, does offer loading via serialization

without the need for defining model structures.

15https://github.com/SciSharp/TensorFlow.NET/issues/640

100

https://github.com/SciSharp/TensorFlow.NET/issues/640

4.5 Correctness Evaluation

Motivation. Developers can use a binding for an ML framework in their preferred

programming language to train a DL model. We want to observe if the DL models

trained using a binding for a given ML framework have the same training accuracy

as the DL models trained using the ML framework’s default Python binding (RQ1).

These results can help developers understand if using a binding will achieve the same

model accuracy during training and provide the same model performance for the final

trained models.

In addition, it is important to ascertain if performing inference for these trained

models using different bindings for a given framework will impact the accuracy. Pre-

trained models have been widely used by the ML community [65, 169] and bindings

can help developers to run inference with pre-trained models in different program-

ming languages. Importantly, in high-stakes domains such as medical diagnosis and

autonomous driving, accuracy is particularly important when decisions are made by

ML systems [121]. Even a slight drop in accuracy can trigger erroneous decisions with

serious implications. Hence, it is vital that bindings have the capability to achieve the

same accuracy for pre-trained models as with the binding they were trained with. In

RQ2, we investigate the cross-binding test accuracy of pre-trained models using the

bindings for TensorFlow and PyTorch to understand whether the pre-trained models

perform as we would expect them to.

Together, the bindings’ impact on training correctness and inference correctness

will enable us to understand the impact on the correctness of the ML software quality.

RQ1: How do the studied bindings impact the training accu-
racy and test accuracy of the studied DL models?

Approach. We employ both dynamic time warping (DTW) [140] for analyzing training

accuracy curves and the Mann-Whitney U test [110] for comparing the performance

101

Table 4.4: Mean/Max DTW distances of training accuracy curves for bindings in
training models with the same random seed. (Highlighted numbers indicate negligible
DTW distance. Py: Python; JS: JavaScript; Rs: Rust)

(a) TensorFlow (mean/max DTW distance)

Model Py-C# Py-JS JS-C#

LeNet-1 0.005/0.006 0.000/0.000 0.005/0.006

LeNet-5 0.003/0.004 0.000/0.000 0.003/0.004

VGG-16 0.018/0.019 0.005/0.006 0.018/0.019

LSTM - 0.008/0.012 -

GRU - 0.010/0.012 -

(b) PyTorch (mean/max DTW distance)

Model Py-C# Py-Rs Rs-C#

LeNet-1 0.000/0.000 0.000/0.000 0.000/0.000

LeNet-5 0.000/0.000 0.000/0.000 0.000/0.000

VGG-16 0.007/0.010 0.002/0.003 0.008/0.010

LSTM 0.008/0.009 0.009/0.011 0.010/0.011

GRU 0.010/0.011 0.008/0.009 0.009/0.010

102

0 100 2000.90

0.95

1.00
LeNet-1

Python
C#
JS

0 100 2000.90

0.95

1.00
LeNet-5

Python
C#
JS

0 100 200

0.50

0.75

1.00
VGG-16

Python
C#
JS

0 10 20 30
0.60

0.80

1.00
LSTM

Python
JS

0 10 20 30
0.60

0.80

1.00
GRU

Python
JS

0 100 200
Epochs

0.90

0.95

1.00

Python
C#
Rust

0 100 200
Epochs

0.90

0.95

1.00

Python
C#
Rust

0 100 200
Epochs

0.50

0.75

1.00

Python
C#
Rust

0 10 20 30
Epochs

0.60

0.80

1.00

Python
C#
Rust

0 10 20 30
Epochs

0.60

0.80

1.00

Python
C#
Rust

Ac
cu
ra
cy

Figure 4.3: Mean training accuracy curves of LeNet-1, LeNet-5, VGG-16, LSTM, and
GRU on GPU in bindings for TensorFlow (first row) and PyTorch (second row).

metrics of the final trained models. We chose DTW due to its ability to analyze

time-series data, which allows us to investigate whether different bindings follow the

same trajectory during training. DTW calculates the distance between the training

accuracy curves of the bindings (e.g., between TensorFlow’s Python and C# binding)

for training the same model. DTW is widely used as a distance measurement for time

series data since it can manage time distortion by aligning two time series before

computing the distance, which is more accurate than the Euclidean distance [41]. We

normalize the calculated DTW distances between 0 to 1 to interpret the results. A

normalized DTW distance of 0 means that the difference between the two curves is

negligible.

In addition, we calculate the test accuracy, F1-score, and AUC-ROC for the final

trained models to compare their classification performance. For each metric, we

perform the Mann-Whitney U test [110] separately at a significance level of α = 0.05

to determine if the values obtained from different bindings are significantly different.

We computed Cliff’s delta d [106] effect size to quantify the difference based on the

following thresholds [137]:

103

Effect size =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

negligible, if |d| ≤ 0.147

small, if 0.147 < |d| ≤ 0.33

medium, if 0.33 < |d| ≤ 0.474

large, if 0.474 < |d| ≤ 1

(4.1)

Findings. Bindings can have different training accuracy curves when train-

ing DL models under the same configuration (i.e., model structure, train-

ing data, hyperparameters, and random seed). Table 4.4 reports the mean

and maximum DTW distances for the training curves between bindings. Moreover,

Figure 4.3 presents the mean training accuracy curves of the models (out of the five

training processes) that have the best test accuracy after the last epoch. The fig-

ure and table show that bindings can have quite different training accuracy curves

according to the DTW distance when using the same training configuration. For

example, the distances between the curves of TensorFlow’s C# binding and the other

two bindings are relatively large for LeNet-1, LeNet-5, and VGG-16 models. Another

example is that all PyTorch bindings have a relatively large distance between the

curves for the RNN models compared to the distances in the CNN models. One rea-

son could be the differential numerical precision across programming languages. For

example, Python supports arbitrary-precision arithmetic, while languages like Rust

and C# typically operate with fixed precision. These variations in numerical pre-

cision might spawn minor differences in mathematical computation outputs. These

minor differences might accumulate over numerous iterations during model training,

resulting in variations in the final model accuracy. In contrast, bindings can exhibit

nearly the same behaviour for training some DL models; the training accuracy curves

of the LeNet models differ negligibly between TensorFlow’s Python and JavaScript

bindings, as well as between PyTorch’s bindings.

104

Table 4.5: The average test accuracy (Acc), F1-score (F1), and AUC-ROC (AUC) for TensorFlow and PyTorch bindings.
(Statistically significant differences between bindings are highlighted in bold. MD: Max Diff; ES: Effect Size)

TensorFlow PyTorch

LN1 LN5 VGG LSTM GRU LN1 LN5 VGG LSTM GRU

Acc

Python 98.8 98.9 84.8 83.7 85.0 Python 98.8 98.9 86.2 86.5 87.9

C# 98.6 98.9 83.8 C# 98.8 99.0 86.2 87.3 85.5

JavaScript 98.8 99.0 85.6 84.2 84.7 Rust 98.8 98.9 85.6 87.4 87.0

MD 0.2 0.1 1.9 0.6 0.3 MD 0.0 0.1 0.6 0.8 2.5

p 0.01 0.40 0.01 0.10 0.15 p 0.68 0.31 0.03 0.10 0.01

ES large - large - - ES - - large - large

F1

Python 98.8 98.9 84.7 83.5 85.0 Python 98.8 99.0 86.3 86.7 87.9

C# 98.6 98.9 83.8 C# 98.8 99.0 86.1 87.2 85.1

JavaScript 98.8 99.0 85.6 83.8 84.7 Rust 98.9 98.9 85.6 87.2 86.9

MD 0.2 0.1 1.9 0.3 0.3 MD 0.1 0.1 0.7 0.5 2.8

p 0.01 0.42 0.01 0.22 0.15 p 0.06 0.01 0.01 0.10 0.01

ES large - large - - ES - large large - large

AUC

Python 100.0 100.0 98.2 91.7 92.3 Python 100.0 100.0 98.5 94.1 94.3

C# 100.0 100.0 97.3 C# 100.0 100.0 98.5 94.6 92.9

JavaScript 100.0 100.0 98.4 92.3 91.9 Rust 100.0 100.0 98.3 94.5 93.8

MD 0.0 0.0 1.1 0.6 0.5 MD 0.0 0.0 0.2 0.5 1.5

p 0.10 0.84 0.01 0.01 0.01 p 0.55 0.42 0.01 0.10 0.01

ES - - large large large ES - - large - large

105

The trained models produced by certain bindings can perform worse

than the models produced by other bindings for the same ML framework.

Table 4.5 shows the test accuracy, F1-score, and AUC-ROC for the trained models

produced by bindings can be different. For the trained VGG-16 models, the Mann-

Whitney U test reveals significant differences between bindings for both frameworks

in these metrics with large effect sizes. This pattern is also observed in the trained

GRU models in PyTorch’s bindings. Specifically, while the test accuracy and F1-

score of the trained LeNet-1 models have statistically significant differences between

bindings for TensorFlow, the AUC-ROC values of LeNet models in TensorFlow and

PyTorch bindings are close (all rounded up to 100 in Table 4.5). Furthermore, we

observed some models produced by non-Python bindings have higher values of the

metrics than the models produced by the default Python bindings, e.g., the VGG-16

model produced by TensorFlow’s JavaScript binding.

Summary of RQ1

TensorFlow and PyTorch bindings can have different training accuracy curves
for training the same DL models even when using the same configuration. In
addition, the test accuracy of the final trained models can be slightly different.
Hence, developers should not assume that all bindings offer the same level of
correctness and should verify the model’s correctness when utilizing a binding
for training.

RQ2: How do the studied bindings impact the cross-binding
test accuracy of pre-trained models?

Approach. We conducted inference experiments with all bindings using pre-trained

models produced by the default Python bindings for TensorFlow and PyTorch (see

Figure 4.4). We loaded the pre-trained models using the supported loading ap-

proach(es) and recorded the cross-binding test accuracy on both CPU and GPU for

each binding. If the cross-binding test accuracy of a pre-trained model in a binding

shows a 0% difference compared to the test accuracy when the model was initially

106

save

Trained models
(serialization)

Frameworks
in Python

All bindings
(Python

included)

Trained models
(parameters)

load

load save

Figure 4.4: All bindings load the trained models that are saved by the default Python
bindings for ML frameworks.

trained, we considered the test accuracy “reproduced” by that binding. Any non-zero

difference resulted in a “failed” mark. Since some bindings only support one way of

loading models (as shown in Table 4.3), we marked the result as “unsupported” if the

loading approach is not supported by a binding.

Findings. The test accuracy of pre-trained models can be reproduced across

bindings in different languages for the same ML framework. Figure 4.5

shows that only PyTorch’s C# binding failed to reproduce the test accuracy in the

saved VGG-16, LSTM, and GRU models. We noticed that the differences in the

test accuracy in these three models are all within 1% and the root cause of the

reproduction failure is a bug that results in “eval() and train() methods not being

properly propagated to all submodules”.16 This bug prevents setting the model to

evaluation mode, hence, the dropout layers of these three models are not disabled

which leads to different cross-binding test accuracy. This bug is fixed in version

0.96.0 which does not support PyTorch 1.9.0 but targets version 1.10.0. In other

words, the saved models can be reproduced in the newer version of PyTorch’s C#

binding. For consistency, we still use the 0.93.9 version of this binding for the other

experiments.

Bindings can reproduce the test accuracy of pre-trained models via dif-

16See https ://github.com/dotnet/TorchSharp/pull/501 and https ://github.com/dotnet/
TorchSharp/issues/500

107

https://github.com/dotnet/TorchSharp/pull/501
https://github.com/dotnet/TorchSharp/issues/500
https://github.com/dotnet/TorchSharp/issues/500

Pyth
on
C# Rus

t
JS Pyth

on
C# Rus

t
JS

states

serialization

states

serialization

states

serialization

states

serialization

states

serialization

states

serialization
BERT

GRU

LSTM

VGG-16

LeNet-5

LeNet-1

TensorFlow PyTorch

reproduced unsupported failed

Figure 4.5: Results of reproducing the test accuracy of pre-trained models in Tensor-
Flow and PyTorch bindings on the CPU and GPU (the results are identical). Note:
the failed cases in the PyTorch’s C# binding were fixed in a newer version of the
binding.

ferent loading approaches and on different types of processing units (i.e.,

CPU and GPU). As shown in Figure 4.5, PyTorch’s Python and Rust bindings

and TensorFlow’s Python binding support both loading via parameters and serializa-

tion, and both loading approaches can reproduce the test accuracy of the pre-trained

models. In addition, we noticed that bindings can reproduce the test accuracy of

pre-trained models on both CPU and GPU.

108

Summary of RQ2

TensorFlow and PyTorch bindings can perform inference using pre-trained mod-
els and reproduce the same test accuracy as when the models were originally
trained. This correctness property holds true whether model inference is per-
formed on CPU or GPU. As a result, developers can leverage the capabilities
of pre-trained models while still being able to use the model in their preferred
language.

4.6 Time Cost Evaluation

Motivation. In RQ1 and RQ2, we studied the impact of bindings for ML frameworks

on correctness, however, the impact of bindings on time cost remains unknown. Given

the time-consuming nature of model training and model inference for ML frameworks,

it is important to investigate how a binding may impact the time cost. Studies

show that runtime efficiency and energy consumption can vary across programming

languages [118, 126, 128]. Consequently, these differences may have an impact on the

time cost of training and inference when using different bindings.

Thus, in RQ3, we study the time cost of training DL models with bindings in order

to offer developers more information about the overhead or advantage in terms of time

cost when training with a binding. In RQ4, we study the inference time of pre-trained

models in bindings. The time of utilizing bindings in model inference can be a crucial

consideration for developers since model inference typically takes place (as a part of

the product) in the production environment, which may have limited resources. The

findings can help developers decide whether or not to utilize a binding for model

inference in their project.

RQ3: How do the studied bindings impact the training time
of the studied DL models?

Approach. To study the difference in training time across bindings, we performed

the Mann-Whitney U test [110] using the Bonferroni correction [145] to adjust the

significance level for multiple comparisons. Specifically, for an initial significance

109

TensorFlow PyTorch

300

500

1,000

Tr
ai

ni
ng

 T
im

e
(S

ec
on

ds
)

LeNet-1

TensorFlow PyTorch300

500

1,000

LeNet-5

TensorFlow PyTorch
2,000
3,000

5,000

10,000

20,000
30,000

VGG-16

TensorFlow PyTorch
300
500

1,000

5,000

Tr
ai

ni
ng

 T
im

e
(S

ec
on

ds
)

LSTM

TensorFlow PyTorch

300

500

1,000

5,000
GRU

Python
C#
Rust
JavaScript

Figure 4.6: Training time distributions when training models in TensorFlow and
PyTorch bindings on the GPU.

level of α = 0.05, we adjusted the significance level to α
n
(where n is the number of

comparisons made) to determine whether the distributions of the training times of

the default Python bindings and the non-Python bindings, which trained the same

model for the same framework, are significantly different. For example, the LeNet-1

model in TensorFlow bindings, we performed Bonferroni-corrected Mann-Whitney U

test between the Python and C# bindings and Python and JavaScript bindings with

an adjusted significance level of α
2
= 0.025. We also computed Cliff’s delta d [106]

effect size to quantify the difference based on Equation 4.1 in Section 4.5.

Findings. Training times can differ greatly across bindings for the same ML

framework. Figure 4.6 shows the training time distributions on GPU for the studied

models across the studied bindings. The Bonferroni-corrected Mann-Whitney U test

shows that the training time distributions of the same model are all significantly

110

Table 4.6: Time costs (in seconds) of the subactivities in the training process using
PyTorch’s Python and Rust bindings on GPU.

Load batch data Forward Backward Total

LeNet-1
Python 148.9 76.2 240.2 465.7

Rust 23.5 69.7 239.2 332.5

LeNet-5
Python 167.4 114.8 293.2 576.4

Rust 24.1 94.3 278.8 397.4

VGG-16
Python 89.2 7094.0 1557.8 8741.2

Rust 31.9 6470.4 1469.5 7971.8

LSTM
Python 8.2 95.4 188.8 292.2

Rust 0.6 83.5 165.3 249.4

GRU
Python 8.5 84.0 151.0 242.8

Rust 0.6 72.5 130.3 203.5

different between the default Python bindings and the other bindings for the same

framework and the effect sizes are all large. In addition, the difference in training

time of bindings for the same ML framework can be very large when training certain

models. For example, the median training time of TensorFlow’s JavaScript binding

for the VGG-16 model is 15 times larger than its Python binding (32,783 vs. 1,991

seconds).

PyTorch’s default Python binding has the slowest training time for the

studied models. Figure 4.6 shows that PyTorch’s Python binding is more than two

times slower than the other two bindings for training LeNet models. However, we

note that the training time difference between PyTorch’s Python binding and other

bindings for the VGG-16, LSTM, and GRU models is relatively small (less than 15%).

In contrast, TensorFlow’s default Python binding has the fastest training time in the

studied models.

111

Batch data loading time affects the training cost of PyTorch’s Python

binding. As shown in Table 4.6, PyTorch’s Python binding has a long batch data

loading time, which is notably slower (between 4 to 14 times) than the Rust binding

for all studied models. Specifically, For LeNet models, the Python binding’s batch

data loading times account for roughly 30% of the training cost, whereas the Rust

binding’s batch data loading for the same models consumes less than 10% of the

training cost. Furthermore, the Python binding consistently underperforms the Rust

binding during both forward and backward propagation phases in the studied models.

The observed variations in batch data loading times between bindings suggest that

the native speed of a programming language [118, 126, 128] is an important factor

that influences the performance of a binding. However, there could be other factors

involved in the implementation of bindings. For example, these factors could include

overheads arising from differences in data structure implementations and initialization

routines. Additionally, the overhead of the marshalling mechanism [13, 43, 174]

implemented to convert data between the binding’s programming language and the

ML framework could impact efficiency. Finally, the way the binding interacts with

the ML framework’s lower-level APIs, such as those for memory management and

tensor operations, could also play a crucial role in performance differences.

Summary of RQ3

Training times for training the same DL models differ significantly between
the default Python bindings and the non-Python bindings for the same ML
framework. Surprisingly, non-Python bindings for PyTorch are even faster in
training the studied models than the default Python binding. Hence, choosing
the right binding can help developers to lower the training time cost for certain
models.

112

Pyt
ho
n C# Rust

JavaScri
pt

Python C#
Rust

JavaScri
pt

0.1

1.0
In

fe
re

nc
e

Ti
m

e
(S

ec
on

ds
)

TensorFlow PyTorch

LeNet-1

Python C#
Rust

JavaScri
pt

Python C#
Rust

JavaScri
pt

0.1

1.0

TensorFlow PyTorch

LeNet-5

Python C#
Rust

JavaScri
pt

Python C#
Rust

JavaScri
pt

1.0

10.0

TensorFlow PyTorch

VGG-16

Python C#
Rust

JavaScri
pt

Python C#
Rust

JavaScri
pt

10.0

100.0

In
fe

re
nc

e
Ti

m
e

(S
ec

on
ds

)

TensorFlow PyTorch

LSTM

Python C#
Rust

JavaScri
pt

Python C#
Rust

JavaScri
pt

10.0

100.0

TensorFlow PyTorch

GRU

GPU CPU

Python C#
Rust

JavaScri
pt

Python C#
Rust

JavaScri
pt

100.0

1000.0

TensorFlow PyTorch

BERT

Figure 4.7: Inference time distributions for pre-trained models in TensorFlow (TF)
and PyTorch (PT) bindings on the CPU and GPU.

RQ4: How do the studied bindings impact the inference time
of pre-trained models?

Approach. We followed the same process as shown in Figure 4.4 and investigated the

inference time of each model on both CPU and GPU. We performed the Bonferroni-

corrected Mann-Whitney U test on the recorded inference time distributions between

the default Python bindings and the non-Python bindings, grouped by the same

framework, model, and processing unit (CPU or GPU). We also computed Cliff’s

Delta effect size as described in RQ3.

113

Findings. The inference time of the same pre-trained model differs greatly

between the default Python bindings and the other bindings for the same

ML framework. Figure 4.7 shows the distributions of the inference time of the

pre-trained models in the studied bindings. The results of the Bonferroni-corrected

Mann-Whitney U test and Cliff’s Delta d show that the Python and non-Python

bindings for the same ML framework have significantly different inference times for

the same model on the same processing unit (i.e., CPU and GPU) and the effect size is

large, except for the TensorFlow bindings for LSTM on CPU and for BERT on GPU

where the Python binding has similar inference time costs as the Rust binding. We

observed that the default Python bindings for TensorFlow and PyTorch do not always

offer the best inference time for all studied pre-trained models, with Rust bindings

often outperforming them. On the other hand, TensorFlow’s C# binding has the

worst performance for the studied models on both CPU and GPU, and PyTorch’s

JavaScript binding has the worst performance on CPU. Moreover, the performance

gap in model inference time can be very large, for example, TensorFlow’s Python

binding is 17 times as fast as the JavaScript binding for the GRU model on the

GPU (3.35 vs. 58.32 seconds).

Inference time differences in PyTorch arise from both batch data load-

ing and forward propagation speed. Table 4.7 shows that the majority of the

inference cost is allocated towards forward propagation and the Rust binding out-

performs the Python binding in this regard. As we observed the same pattern in

RQ3, the Rust binding also demonstrates faster batch data loading times compared

to the Python binding across all studied models. Although both bindings leverage

PyTorch’s computational core, which is written in C/C++ and predominantly runs

computations on GPUs, the variations in time costs can be attributed to overheads

introduced by the bindings themselves.

Certain bindings on the CPU may have a faster inference time than

other bindings on the GPU for the same pre-trained model. Generally,

114

Table 4.7: Time costs (in seconds) of the subactivities in the inference process using
PyTorch’s Python and Rust bindings on GPU.

Load batch data Forward Total

LeNet-1
Python 0.06 0.02 0.08

Rust 0.01 0.02 0.03

LeNet-5
Python 0.06 0.03 0.08

Rust 0.01 0.02 0.03

VGG-16
Python 0.12 6.74 6.86

Rust 0.03 6.26 6.29

LSTM
Python 0.15 2.61 2.76

Rust 0.01 2.57 2.58

GRU
Python 0.15 2.27 2.41

Rust 0.03 2.25 2.28

BERT
Python 0.13 88.86 88.99

Rust 0.12 81.82 81.94

inference time for pre-trained models on GPU outperforms CPU in bindings for both

studied frameworks (as shown in Figure 4.7). However, we found that for the same

framework, one binding that runs inference on CPU can outperform another binding

that runs on GPU for the same pre-trained model. For example, the Rust binding

for TensorFlow is faster on CPU than the C# binding on GPU for LeNet and VGG-

16 models, as well as faster on CPU than the JavaScript binding on GPU for GRU

model. Furthermore, we noticed that TensorFlow’s C# binding in model inference on

CPU is similar to or even faster than on GPU. According to the maintainer of the C#

binding, the reason could be that “there is I/O cost underlying”17 model inference on

GPU.

17https://github.com/SciSharp/TensorFlow.NET/issues/876

115

https://github.com/SciSharp/TensorFlow.NET/issues/876

Certain bindings lack support for certain features which leads to a slower

inference time. We noticed that TensorFlow’s JavaScript binding cannot load a

GRU model with “reset after=True”18, either by loading parameters or through seri-

alization. However, “reset after=True” is the default setting in the framework (and

other bindings) to enable the “fast cuDNN implementation”, which speeds up the in-

ference of the GRUmodel19 This unsupported feature can be one of the reasons behind

the large increase of GRU inference time in TensorFlow’s JavaScript binding (256.5

seconds) compared to the inference time of the default Python binding (3.6 seconds).

Summary of RQ4

TensorFlow and PyTorch bindings have various inference times for the same
pre-trained models on CPU and GPU. Remarkably, the inference time of cer-
tain models in bindings on the CPU can be faster than other bindings for the
same framework on GPU. Therefore, developers can experiment and choose the
fastest binding for their usage scenario.

4.7 Implications

4.7.1 Implications for developers

Developers are not limited to writing their projects in Python when using

an ML framework. Although Python dominates the development in ML [7, 119],

developers can also use bindings in other programming languages. Our results in

Section 4.5 shows that non-default bindings for TensorFlow and PyTorch can have

the same inference accuracy of a pre-trained model as the default Python binding

and sometimes even faster performance. We recommend developers use the binding

in their preferred programming language for either model training or inference if sup-

ported by the binding. Hence, developers can save time and effort when adopting ML

techniques in their projects without having to settle for non-mature ML frameworks

that might be available in the language that their current software is programmed in.

18https://github.com/tensorflow/tfjs/issues/4621
19https://www.tensorflow.org/api docs/python/tf/keras/layers/GRU

116

https://github.com/tensorflow/tfjs/issues/4621
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU

For instance, in Integration Scenario 1 of Section 4.2, Anna can use the JavaScript

binding to perform inference with pre-trained models provided by the ML team.

Developers can use a binding for an ML framework which has a shorter

training time for a certain model and perform inference on the trained

model in another binding that has a shorter inference time based on task

and requirements. Bindings for an ML framework have various training times and

inference times for ML models (Section 4.6). Hence, developers can choose differ-

ent bindings which are faster for a certain model in training and inference respec-

tively since the accuracy of pre-trained models can be reproduced across bindings

for the same framework (Section 4.5). We suggest that developers refer to an exist-

ing benchmark like ours or conduct experiments themselves based on our replication

package [100]. For example, when using TensorFlow for LeNet models as described

in Integration Scenario 3 of Section 4.2, Anna can train the models using the default

Python binding for TensorFlow and then run inference for the trained model in the

Rust binding with the assistance of a hired expert to save time and computational

resources, as this factor is critical in their project requirements.

Developers should perform a sanity check before using a model that

was trained by a binding other than the default Python binding. Bindings

corresponding to different languages can have different training accuracy curves while

training the same model, and the final trained model can behave differently (as dis-

cussed in Section 4.5). Since the Python bindings are the default binding for most ML

frameworks, these Python bindings have a larger user base and better support than

other bindings. We suggest that developers perform a sanity check on the trained

model if they are using a binding other than the default Python binding before de-

ploying the models to the production environment.

In resource-limited scenarios (e.g., CPU only), developers may prefer

or need to use a non-default binding for model inference. Traditionally,

model inference is done using a GPU due to the superior inference time of GPUs [14,

117

96]. However, GPUs are expensive and not available in all scenarios. We found that

the bindings for ML frameworks can be fast for running inference on CPU for some

pre-trained models (Section 4.6). Developers can use such bindings if the production

environment does not contain a GPU or the computational resource is limited. For

example, in Integration Scenario 3 of Section 4.2, if Anna is using PyTorch for LeNet

models and there is no GPU available in the production environment, she can use

PyTorch’s Rust binding on CPU with expert assistance. The inference time of LeNet

models in the Rust binding on CPU is faster than the default Python binding both

on CPU and GPU. This is particularly beneficial for constrained environments like

the Internet-of-Things (IoT) devices (e.g., unmanned aerial vehicles) where resource

availability is often limited [3, 48, 80, 139].

4.7.2 Implications for binding owners

Binding owners should include performance benchmarks for their binding.

We found that bindings can have very different training and inference times for ML

models (Section 4.6), yet this information is not well documented. To address this,

we suggest that binding owners introduce performance benchmarks of training and

running inference for some frequently used ML models (e.g., VGG models) and record

the results in their documentation. This way, developers be aware of the trade-off

between choosing a familiar language and the potential impact on time cost for various

DL models. For example, the performance benchmarks can help Anna in Integration

Scenario 2 of Section 4.2 to make informed decisions when choosing a familiar language

for training while considering the potential impact on time cost.

4.7.3 Implications for researchers

Researchers should investigate the impact of ML framework bindings on

large-scale models and datasets. Our findings provide a starting point, but fur-

ther research is needed to fully understand how binding choices influence performance

118

in large-scale models. While full-parameter fine-tuning can be computationally ex-

pensive, parameter-efficient techniques like Low-Rank Adaptation (LoRA) [68] offer

a cost-effective alternative. However, LoRA’s experimental status in HuggingFace20

and its lack of binding support highlight a direction for further research. We suggest

future research adopt our methodology (see our replication package [100]), starting

with representative data subsets and smaller model variants (e.g., the 7 billion param-

eter variant of Llama 2 [160]). This approach could provide valuable early insights

into potential performance variations before committing to full-scale experiments.

Researchers should investigate methods to enhance the interoperability

and compatibility of pre-trained models across different bindings for ML

frameworks. Our findings demonstrate that pre-trained models can be used across

different bindings for the same ML framework with the same level of accuracy (as

shown in Section 4.5). However, some models may not be supported or may have

a slower inference time when utilizing certain bindings (as discussed in Section 4.6).

While developers and binding owners focus on the implementation of bindings, we

suggest researchers explore ways to contribute at a higher level: by devising algo-

rithms, methodologies, or protocols to increase the interoperability and compatibility

of pre-trained models across different bindings, benefiting a diverse developer base.

Researchers should study the patterns and origins of bugs in bindings

for ML frameworks. We found that bugs in bindings for ML frameworks have

an impact on the model inference correctness (Section 4.5). While the immediate

resolution of bugs in bindings is an engineering concern, a deeper analysis of these

issues can provide invaluable insights into software design and testing paradigms for

bindings. Although researchers have previously studied bugs in ML frameworks [18,

78, 79], there has been no research specifically on bugs in the bindings for ML frame-

works or other libraries. We encourage researchers to systematically analyze the bugs

in bindings and provide guidelines for maintainers to avoid introducing such bugs.

20https://huggingface.co/docs/diffusers/en/training/lora

119

https://huggingface.co/docs/diffusers/en/training/lora

4.8 Related work

4.8.1 Impact of ML frameworks on ML software correctness

Researchers have studied the correctness of ML frameworks. However, no one has

studied how bindings for those frameworks impact the correctness of the ML software

that is created with them. The study by Guo et al. [61] is the closest related to our

work. However, even though they included several bindings in their study, their work

differs from ours as they focus on the impact on ML software quality of using different

ML frameworks and executing ML models on different computing devices (such as

PC and various types of mobile devices). In contrast, we run our experiments on

the same device but we study the impact of various bindings on ML software quality.

Hence, we can reason about the impact of using a binding, while in Guo et al.’s study,

the different devices make this impossible.

Several others have focused on comparing the accuracy of the same model across

ML frameworks. Chirodea et al. [20] compared a CNN model that was built with

TensorFlow and PyTorch and found that these two frameworks have similar training

curves but the final trained model has a lower accuracy in PyTorch. Gevorkyan et al. [55]

gave an overview of five ML frameworks and compared the accuracy of training a neu-

ral network for the MNIST dataset. They reported that the final trained model has a

lower accuracy in TensorFlow than in other frameworks. Moreover, Elshawi et al. [44]

conducted training experiments for six ML frameworks by using the default configu-

ration and reported that certain frameworks have better performance than the other

frameworks on the same model (e.g., Chainer on the LSTM model).

4.8.2 Impact of ML frameworks on ML software time cost

Many studies have compared the time cost across ML frameworks. In a comparison

of the training and inference time for a CNN architecture using PyTorch and Tensor-

Flow, Chirodea et al. [20] found that PyTorch is faster in both model training and

120

inference than TensorFlow. However, Gevorkyan et al. [55] showed that PyTorch has

the worst training time for neural networks among five studied ML frameworks. In

our work, we compared the training and inference time across bindings for the same

ML frameworks.

Several studies have focused on the time cost of ML frameworks on different hard-

ware devices. Buber and Diri [14] compared the running time of DL models on CPU

and GPU and found that GPU is faster. Jain et al. [76] focused on the perfor-

mance of training DNN models on CPU with TensorFlow and PyTorch. They show

that multi-processing provides better training performance when using a single-node

CPU. For mobile and embedded devices, Luo et al. [107] introduced a benchmark

suite to evaluate the inference time cost based on six different neural networks.

4.8.3 Impact of ML frameworks on ML software reproducibil-
ity

Reproducibility has become a challenge in ML research [60, 112, 159]. Liu et al. [103]

surveyed 141 published ML papers and conducted experiments for four ML models.

The results showed that most studies do not provide a replication package and the

models are highly sensitive to the size of test data. In addition, Isdahl and Gunder-

sen [74] introduced a framework to evaluate the support of reproducing experiments

in ML platforms and found that the platforms which have the most users have a rel-

atively lower score in reproducibility. In this chapter, we studied the reproducibility

of pre-trained models across different bindings for the same ML framework.

To improve the reproducibility of ML models, many researchers have conducted

studies to understand and resolve non-deterministic factors in ML software. Pham

et al. [127] studied nondeterminism-introducing-factors in ML frameworks (e.g., weight

initialization and parallel processes) and found that these factors can cause a 10%

accuracy difference in ML models. To improve the reproducibility of ML models,

Chen et al. [17] suggested using patching to minimize nondeterminism in hardware

121

and proposed a record-and-reply approach to eliminate randomness in software. In

addition, they provided guidelines for producing a reproducible ML model. Nagara-

jan et al. [116] studied deterministic implementation for deep reinforcement learning

and proposed a deterministic implementation of deep Q-learning by identifying and

controlling five common sources of nondeterminism.

4.8.4 Empirical Studies of ML Frameworks

Many empirical studies of ML frameworks exist that study software quality aspects

such as software bugs [18, 78, 79], technical debt [104, 143], and programming is-

sues [70, 75, 180]. However, no prior work has investigated the impact of bindings for

ML frameworks on the ML software quality.

Many studies have focused on the bugs of ML frameworks. Jia et al. [78, 79]

investigated TensorFlow’s GitHub repository and identified six symptoms and eleven

root causes of bugs in TensorFlow. In addition, they found that most bugs are related

to interfaces and algorithms. Chen et al. [18] studied bugs from four ML frameworks

and investigated the testing techniques in these frameworks. They showed that the

most common root cause of the bugs is the incorrect implementation of algorithms,

and the current testing techniques have a low percentage of test coverage.

ML software has ML-specific technical debts such as unstable data dependence,

hidden feedback loop, and model configuration debts [143]. This technical debt can

hurt the maintainability of ML systems and introduce extra costs. Liu et al. [104]

analyzed self-admitted technical debt in 7 DL frameworks and concluded that tech-

nical debt is common in DL frameworks, although application developers are often

unaware of its presence.

Researchers have also aimed to understand the ML frameworks from a developer

perspective to study the programming issues when using an ML framework. They

typically researched the questions and answers (Q&As) of developers about ML frame-

works on Stack Overflow (SO). Zhang et al. [180] investigated Q&As which are related

122

to TensorFlow, PyTorch and Deeplearning4j on SO and reported that model migration

is one of the most frequently asked questions. Humbatova et al. [70] studied Q&As

of these three ML frameworks on SO as well and included interviews with developers

and researchers to build a taxonomy of faults in ML systems. Islam et al. [75] mined

Q&As about ten ML frameworks on SO and reported that developers need both static

and dynamic analysis tools to help fix errors.

4.8.5 FFIs and Bindings in Software Engineering

FFIs and language bindings are instrumental in software engineering, serving as

bridges that enable different programming languages to collaborate seamlessly. These

bridges often enable developers to develop applications in their language of choice

while simultaneously using mature libraries that are developed in another language.

The existing body of work predominantly proposes approaches to design and improve

such bindings and FFIs within one specific language. For instance, Yallop et al. [174]

conducted experiments to create bindings for using the ctypes library in OCaml. Their

study differentiated the performance of dynamic and static bindings, revealing that

static bindings could be between 10 to 65 times faster than their dynamic counter-

parts. This finding aligns with our investigation into the time costs associated with

diverse ML software bindings.

Researchers also proposed several approaches to FFIs. For instance, Bruni et al. [13]

introduced an FFI approach called NativeBoost. This approach requires minimal vir-

tual machine modifications and generates native code directly at the language level.

They compared the time cost of different FFIs and the results show that NativeBoost

is competitive. Ekblad et al. [43] presented an FFI tailored for web-targeting Haskell

dialects, emphasizing simplicity and automated marshalling. The authors compare

their FFI with the vanilla FFI, which is based on C calling conventions, and show

that their FFI has some advantages in terms of simplicity and expressiveness, safety,

without introducing excessive performance (i.e., time cost) overhead.

123

In addition, Ravitch et al. [134] automated the generation of library bindings using

static analysis, aiming to simplify the often laborious manual creation process. Their

method not only refined the automated binding generation but also unveiled type

bugs in manually created bindings, highlighting potential threats to software correct-

ness. Meanwhile, Grimmer [59] explored high-performance language interoperability

in multi-language runtimes. Their approach leveraged just-in-time (JIT) compilers

to optimize across language borders, enhancing the efficiency of cross-language oper-

ations.

To the best of our knowledge, our study is the first to systematically investigate

the impact of using different language bindings on ML software quality. While Rav-

itch et al. [134] touched upon type correctness in bindings, the unique challenges posed

by the inherently non-deterministic nature of ML software remain under-explored.

Our work stands out as we specifically evaluate the impact of bindings on the cor-

rectness of ML software for model training and inference across different languages.

In addition, The computationally intensive nature of ML software introduces unique

challenges when assessing time costs, especially when relying on GPUs. While time

cost is a widely used metric in the domain of FFIs and bindings, existing works do

not explore its significance within the context of ML frameworks. Our research ac-

tively fills this void, presenting a comprehensive analysis of time costs associated with

different bindings in ML software on CPUs and GPUs.

4.9 Threats to Validity

4.9.1 Construct validity

We use the accuracy metric to assess the correctness of TensorFlow and PyTorch

bindings on model training and inference since it is a widely used metric among

researchers and developers [20, 44, 55, 61, 107]. However, other metrics may also

be used to assess correctness and use of other metrics could potentially change our

124

results. For evaluating the time cost of bindings on model training, we ran training

experiments on the GPU since training DL models on CPU is time-consuming and

developers usually train DL models on GPU. The results might be different from

those obtained by measuring the time cost on CPU.

4.9.2 Internal validity

When implementing the studied models in TensorFlow and PyTorch bindings, we

used the same/similar interfaces to ensure that the structures of these models are

consistent across bindings. However, bindings might have different implementations

for these interfaces (or have hidden bugs) that result in different structures in the

built models. We saved the built models in bindings (via parameters or serialization)

and loaded them back into the default Python bindings for TensorFlow and PyTorch

to examine whether the structures were the same. The verification results confirm

that the produced models in bindings have the same structures.

TensorFlow’s JavaScript binding does not support training and inference for GRU

with “reset after=True”. Hence, we set “reset after=False” in the training experi-

ment of TensorFlow’s JavaScript binding for GRU and performed inference with a

GRU model that was trained with “reset after=False” in the default Python bind-

ing. This setup differs from other bindings, although it has no effect on the model’s

structure. We compared the results from the JavaScript binding to the results in the

Python binding using “reset after=False”, and our findings still hold. Future studies

should investigate how one can automatically confirm that the configurations of the

bindings are exactly the same.

4.9.3 External validity

We focused on TensorFlow and PyTorch bindings in our work and the results of our

study might not apply directly to other ML frameworks. One reason could be that

other ML frameworks could have a different implementation and do not provide GPU

125

support. Furthermore, the findings of our investigation may not be able to generalize

to other models and datasets. Future studies should leverage our methodology to

analyze bindings for other ML frameworks using different models and datasets.

Our analysis focused on small to medium-sized models that are widely adopted

in real-world applications. However, the implications for large-scale models, par-

ticularly frontier ML models with billions or trillions of parameters, require further

investigation. Future research should build on our work to examine how the observed

differences might persist or change at this extreme scale.

4.10 Conclusion

In this chapter, we investigate the impact on ML software quality (correctness and

time cost) of using bindings for ML frameworks for DL model training and inference.

We conducted model training and model inference experiments on three CNN-based

models and two RNN-based models in TensorFlow and PyTorch bindings written in

four different programming languages. The most important findings of our study are:

• When training models, bindings for ML frameworks can have various train-

ing accuracy curves and slightly different test accuracy values for the trained

models.

• Bindings have different training times for the same model, and the default

Python bindings for ML frameworks may not have the fastest training time.

• Bindings for ML frameworks have the capabilities to reproduce the accuracy of

pre-trained models for inference.

• Bindings for ML frameworks have different inference times for the same pre-

trained model and certain models in bindings on the CPU can outperform other

bindings on the GPU.

126

Our findings show that developers can utilize a binding to speed up the training

time for an ML model. For pre-trained models, developers can perform inference in

their favoured programming language without sacrificing accuracy, or they can choose

a binding that has better inference time.

127

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The rapid growth of ML has driven developers from many domains to integrate ML

capabilities into their applications across different programming languages. However,

the complexity of most ML libraries necessitates extensive expertise for development

and maintenance, making recoding the libraries from scratch in different program-

ming languages infeasible. Bindings have emerged as a practical solution, allowing

developers to reuse the functionality of existing ML libraries across different pro-

gramming languages without recoding. In this thesis, we conducted three studies to

investigate the maintenance quality and software quality of bindings for ML libraries

in software package ecosystems.

In the first research study (Chapter 2), we introduced an approach for automat-

ically identifying bindings and their associated host library names. This enabled

a comprehensive analysis of bindings for ML libraries within software ecosystems,

revealing challenges such as technical lag and inadequate release coverage. In the

second research study (Chapter 3), we examined how ML library bindings utilize

release-level deprecation mechanisms compared to general packages in software pack-

age ecosystems. The study provided insights into the rationale behind deprecation

practices within these bindings and proposed enhancements for deprecation mecha-

nisms in software ecosystems. In our final research study (Chapter 4), we assessed

128

the impact of bindings on the software quality (specifically correctness and time effi-

ciency) of TensorFlow and PyTorch. These experiments highlighted the potential of

utilizing bindings to optimize ML systems and emphasized the importance of thor-

ough evaluation for these bindings.

We outline the methodologies employed, major findings, and significant contribu-

tions from each study as follows:

• In Chapter 2, we introduced BindFind for identifying bindings and extracting

host library names within software package ecosystems. Using BindFind, we

found that bindings are prevalent across ecosystems, with most being main-

tained by the community rather than the official library organizations. How-

ever, we discovered that bindings often cover only a limited range of their host

library’s releases and experience significant delays in supporting new releases,

leading to widespread technical lag. Our findings revealed the availability and

quality of these bindings across different ecosystems. Our findings suggest that

while bindings are prevalent and mostly community-maintained, they often fail

to promptly support new releases of their host libraries, highlighting a crucial

gap in their lifecycle management.

• In Chapter 3, we investigated the prevalence and rationale behind release-level

deprecation in bindings for ML libraries, in comparison to general packages

in the Cargo and npm ecosystems. We found that bindings in Cargo have a

higher deprecation rate compared to general packages, while the deprecation

rate in npm is similar. The primary reasons for deprecation include package

removal or replacement and defects. We also identified the issue of implicitly

deprecated releases in Cargo due to the propagation of deprecation through

the dependency network. These findings advocate for enhancements in package

management systems, including the introduction of a package-level deprecation

mechanism and mechanisms for specifying reasons for deprecation, to improve

129

transparency and governance.

• In Chapter 4, we conducted training and inference experiments to assess the

correctness and time cost of using bindings for TensorFlow and PyTorch across

four programming languages. Our findings indicated that models trained with

one binding could be utilized for inference with another without compromising

accuracy. Furthermore, non-default bindings can outperform the default Python

bindings in certain tasks while maintaining accuracy. We also found significant

differences in inference times across bindings, with some CPU inferences be-

ing faster than GPU inferences in other bindings. These results illustrate the

benefits of selecting appropriate bindings based on specific performance require-

ments (e.g., computational speed and hardware specification), thereby aiding

developers in making informed choices to maximize efficiency in ML projects.

5.2 Future Work

This thesis provided a comprehensive analysis of bindings for ML libraries in software

package ecosystems, offering valuable insights and suggesting practical approaches.

Nonetheless, there remain several promising avenues for future research:

• Explore bindings across software domains using BindFind. Chapter 2

demonstrated the effectiveness of BindFind in identifying bindings. Future re-

search should leverage BindFind in different domains such as web development

frameworks. This expansion could unveil how bindings enhance the interop-

erability of software libraries across different domains. Our replication pack-

age [98] provides a dataset of 250,668 bindings and their host names, which

serves as a foundation for such investigation.

• Investigate the differences between officially-maintained and community-

maintained bindings. Chapter 2 highlighted differences in coverage, delays,

130

and technical lags between community-maintained and officially-maintained

bindings. Future research should explore the underlying reasons behind these

differences and examine strategies to improve communication between develop-

ers of community-maintained bindings and the host library.

• Design automatic matching tools for ecosystem binding releases. In

Chapter 2, we found that identifying which host library release is supported

by an ecosystem binding is a complex and tedious task. Future work should

develop automatic version matching tools for bindings, enabling developers to

find a suitable release without manually examining all the related files of a

binding.

• Design automatic semantic versioning guarantee checkers. Chapter 3

indicated that Breaking SemVer is the most common rationale behind yanking

for general packages, highlighting the difficulty for package owners to deter-

mine whether an update adheres to the guarantee. Future work should develop

tools to analyze code for automatically verifying semantic versioning guaran-

tees before publishing updates. Such tools could also facilitate investigating

how packages in different software ecosystems adhere to the semantic version-

ing guarantee.

• Evaluate the impact of ML library bindings on large-scale models and

datasets. While the findings of Chapter 4 provided a starting point, further re-

search is needed to fully understand how binding choices influence performance

in large-scale models. We suggest future studies adopt our methodology (avail-

able in our replication package [100]), starting with smaller datasets and model

variants to obtain preliminary insights before scaling up the experiments.

• Explore the interoperability and compatibility of pre-trained models

across different bindings for ML libraries. Although Chapter 4 demon-

131

strated that pre-trained models maintain accuracy across various bindings, is-

sues such as limited support and reduced inference speeds persist. Future re-

search should explore new algorithms, methodologies, or protocols that could

improve the interoperability and compatibility of pre-trained models across dif-

ferent bindings, thus broadening their utility for developers.

• Investigate the patterns and origins of bugs in bindings for ML li-

braries. In Chapter 4, we found that bugs in bindings for ML libraries impact

model inference correctness. Future research should conduct a systematic in-

vestigation into the nature and origins of these bugs, potentially establishing

guidelines for maintainers of the bindings.

132

Bibliography

[1] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” in
Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’16, USENIX Association, 2016, pp. 265–283, isbn:
9781931971331. doi: 10.5555/3026877.3026899.

[2] S. S. Abdullahi et al., “Deep sequence models for text classification tasks,” in
International Conference on Electrical, Communication, and Computer Engi-
neering (ICECCE), 2021, pp. 1–6. doi: 10.1109/ICECCE52056.2021.9514261.

[3] A. Albanese, M. Nardello, and D. Brunelli, “Low-power deep learning edge
computing platform for resource constrained lightweight compact uavs,” Sus-
tainable Computing: Informatics and Systems, vol. 34, p. 100 725, 2022, issn:
2210-5379. doi: https://doi.org/10.1016/j.suscom.2022.100725.

[4] B. van Amsterdam, M. J. Clarkson, and D. Stoyanov, “Gesture recognition
in robotic surgery: A review,” IEEE Transactions on Biomedical Engineering,
vol. 68, no. 6, pp. 2021–2035, 2021. doi: 10.1109/TBME.2021.3054828.

[5] G. Avelino, E. Constantinou, M. T. Valente, and A. Serebrenik, “On the aban-
donment and survival of open source projects: An empirical investigation,” in
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, 2019, pp. 1–12. doi: 10.1109/ESEM.2019.8870181.

[6] G. Bavota, G. Canfora, M. D. Penta, R. Oliveto, and S. Panichella, “The
evolution of project inter-dependencies in a software ecosystem: The case of
Apache,” in 2013 IEEE International Conference on Software Maintenance,
ser. ICSM ’13, IEEE Computer Society, 2013, pp. 280–289. doi: 10 .1109/
ICSM.2013.39.

[7] H. Ben Braiek, F. Khomh, and B. Adams, “The Open-Closed Principle of
Modern Machine Learning Frameworks,” in Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories, ser. MSR ’18, Associa-
tion for Computing Machinery, 2018, pp. 353–363, isbn: 9781450357166. doi:
10.1145/3196398.3196445.

[8] K. Blincoe, F. Harrison, and D. Damian, “Ecosystems in GitHub and a method
for ecosystem identification using reference coupling,” in Proceedings of the
12th Working Conference on Mining Software Repositories, ser. MSR ’15,
IEEE Press, 2015, pp. 202–207, isbn: 9780769555942. doi: 10.5555/2820518.
2820544.

133

https://doi.org/10.5555/3026877.3026899
https://doi.org/10.1109/ICECCE52056.2021.9514261
https://doi.org/https://doi.org/10.1016/j.suscom.2022.100725
https://doi.org/10.1109/TBME.2021.3054828
https://doi.org/10.1109/ESEM.2019.8870181
https://doi.org/10.1109/ICSM.2013.39
https://doi.org/10.1109/ICSM.2013.39
https://doi.org/10.1145/3196398.3196445
https://doi.org/10.5555/2820518.2820544
https://doi.org/10.5555/2820518.2820544

[9] K. Blincoe, F. Harrison, N. Kaur, and D. Damian, “Reference coupling: An
exploration of inter-project technical dependencies and their characteristics
within large software ecosystems,” Information and Software Technology, vol. 110,
pp. 174–189, 2019. doi: 10.1016/j.infsof.2019.03.005.

[10] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to Break an API:
Cost Negotiation and Community Values in Three Software Ecosystems,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2016, Association for Com-
puting Machinery, 2016, pp. 109–120, isbn: 978-1-4503-4218-6. doi: 10.1145/
2950290.2950325.

[11] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “When and how to make
breaking changes: Policies and practices in 18 open source software ecosys-
tems,”ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 30, no. 4, 2021. doi: 10.1145/3447245.

[12] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that impact
the popularity of GitHub repositories,” in 2016 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2016, pp. 334–344. doi:
10.1109/ICSME.2016.31.

[13] C. Bruni, S. Ducasse, I. Stasenko, and L. Fabresse, “Language-side foreign
function interfaces with nativeboost,” in International Workshop on Smalltalk
Technologies, 2013.

[14] E. Buber and B. Diri, “Performance analysis and CPU vs GPU comparison for
deep learning,” in 2018 6th International Conference on Control Engineering
Information Technology (CEIT), 2018, pp. 1–6. doi: 10 . 1109/CEIT.2018 .
8751930.

[15] N. Cerpa and J. M. Verner, “Why did your project fail?” Commun. ACM,
vol. 52, no. 12, pp. 130–134, 2009, issn: 0001-0782. doi: 10.1145/1610252.
1610286.

[16] S. Chacon and B. Straub, Pro Git, 2nd. Apress, 2014, isbn: 1484200772. doi:
10.1007/978-1-4842-0076-6.

[17] B. Chen, M. Wen, Y. Shi, D. Lin, G. K. Rajbahadur, and Z. M. J. Jiang,
“Towards training reproducible deep learning models,” in Proceedings of the
44th International Conference on Software Engineering, ser. ICSE ’22, Asso-
ciation for Computing Machinery, 2022, pp. 2202–2214, isbn: 9781450392211.
doi: 10.1145/3510003.3510163.

[18] J. Chen, Y. Liang, Q. Shen, J. Jiang, and S. Li, “Toward understanding deep
learning framework bugs,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 6,
2023, issn: 1049-331X. doi: 10.1145/3587155. [Online]. Available: https://
doi.org/10.1145/3587155.

134

https://doi.org/10.1016/j.infsof.2019.03.005
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1145/3447245
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1109/CEIT.2018.8751930
https://doi.org/10.1109/CEIT.2018.8751930
https://doi.org/10.1145/1610252.1610286
https://doi.org/10.1145/1610252.1610286
https://doi.org/10.1007/978-1-4842-0076-6
https://doi.org/10.1145/3510003.3510163
https://doi.org/10.1145/3587155
https://doi.org/10.1145/3587155
https://doi.org/10.1145/3587155

[19] S. Chiba, “Foreign language interfaces by code migration,” in Proceedings of
the 18th ACM SIGPLAN International Conference on Generative Program-
ming: Concepts and Experiences, ser. GPCE 2019, Association for Computing
Machinery, 2019, pp. 1–13, isbn: 978-1-4503-6980-0. doi: 10.1145/3357765.
3359521.

[20] M. C. Chirodea, O. C. Novac, C. M. Novac, N. Bizon, M. Oproescu, and
C. E. Gordan, “Comparison of Tensorflow and PyTorch in convolutional neural
network-based applications,” in 2021 13th International Conference on Elec-
tronics, Computers and Artificial Intelligence (ECAI), 2021, pp. 1–6. doi:
10.1109/ECAI52376.2021.9515098.

[21] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties
of neural machine translation: Encoder–decoder approaches,” in Proceedings of
SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical
Translation, Association for Computational Linguistics, 2014, pp. 103–111.
doi: 10.3115/v1/W14-4012.

[22] A. Ciborowska and K. Damevski, “Fast changeset-based bug localization with
bert,” in Proceedings of the 44th International Conference on Software Engi-
neering, ser. ICSE ’22, Association for Computing Machinery, 2022, pp. 946–
957, isbn: 9781450392211. doi: 10.1145/3510003.3510042.

[23] M. Claes, T. Mens, and P. Grosjean, “maintaineR: A web-based dashboard
for maintainers of CRAN packages,” in IEEE International Conference on
Software Maintenance and Evolution, 2014, pp. 597–600. doi: 10.1109/ICSME.
2014.104.

[24] M. Claes, T. Mens, and P. Grosjean, “On the maintainability of CRAN pack-
ages,” in IEEE Conference on Software Maintenance, Reengineering, and Re-
verse Engineering (CSMR-WCRE), 2014, pp. 308–312. doi: 10.1109/CSMR-
WCRE.2014.6747183.

[25] J. Coelho and M. T. Valente, “Why modern open source projects fail,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software En-
gineering (ESEC/FSE), ACM, 2017, pp. 186–196, isbn: 9781450351058. doi:
10.1145/3106237.3106246.

[26] J. Coelho, M. T. Valente, L. L. Silva, and E. Shihab, “Identifying unmaintained
projects in GitHub,” in Proceedings of the 12th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, ser. ESEM ’18,
ACM, 2018, isbn: 9781450358231. doi: 10.1145/3239235.3240501.

[27] F. R. Cogo, G. A. Oliva, and A. E. Hassan, “An empirical study of dependency
downgrades in the npm ecosystem,” IEEE Transactions on Software Engineer-
ing, vol. 47, no. 11, pp. 2457–2470, 2021. doi: 10.1109/TSE.2019.2952130.

135

https://doi.org/10.1145/3357765.3359521
https://doi.org/10.1145/3357765.3359521
https://doi.org/10.1109/ECAI52376.2021.9515098
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.1145/3510003.3510042
https://doi.org/10.1109/ICSME.2014.104
https://doi.org/10.1109/ICSME.2014.104
https://doi.org/10.1109/CSMR-WCRE.2014.6747183
https://doi.org/10.1109/CSMR-WCRE.2014.6747183
https://doi.org/10.1145/3106237.3106246
https://doi.org/10.1145/3239235.3240501
https://doi.org/10.1109/TSE.2019.2952130

[28] R. Collobert and J. Weston, “A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning,” in Proceedings of the
25th International Conference on Machine Learning, ser. ICML ’08, Associa-
tion for Computing Machinery, 2008, pp. 160–167, isbn: 9781605582054. doi:
10.1145/1390156.1390177.

[29] E. Constantinou, A. Decan, and T. Mens, “Breaking the borders: An investiga-
tion of cross-ecosystem software packages,” in Proceedings of the 17th Belgium-
Netherlands Software Evolution Workshop, Delft, the Netherlands, December
10th - to - 11th, 2018, G. Gousios and J. Hejderup, Eds., ser. CEUR Workshop
Proceedings, vol. 2361, CEUR-WS.org, 2018, pp. 1–5.

[30] E. Constantinou and T. Mens, “An empirical comparison of developer reten-
tion in the RubyGems and npm software ecosystems,” Innovations in Systems
and Software Engineering, vol. 13, no. 2, pp. 101–115, 2017. doi: 10.1007/
s11334-017-0303-4.

[31] E. Constantinou and T. Mens, “Socio-technical evolution of the Ruby ecosys-
tem in GitHub,” in 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2017, pp. 34–44. doi: 10.
1109/SANER.2017.7884607.

[32] D. R. Cox and A. Stuart, “Some quick sign tests for trend in location and
dispersion,” Biometrika, vol. 42, no. 1/2, pp. 80–95, 1955.

[33] A. Decan, T. Mens, M. Claes, and P. Grosjean, “When GitHub meets CRAN:
An analysis of inter-repository package dependency problems,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengi-
neering, vol. 1, 2016, pp. 493–504. doi: 10.1109/SANER.2016.12.

[34] A. Decan and T. Mens, “How Magic Is Zero? An Empirical Analysis of Initial
Development Releases in Three Software Package Distributions,” in Proceed-
ings of the IEEE/ACM 42nd International Conference on Software Engineer-
ing Workshops, ser. ICSEW’20, Association for Computing Machinery, 2020,
pp. 695–702, isbn: 978-1-4503-7963-2. doi: 10.1145/3387940.3392205.

[35] A. Decan and T. Mens, Lost in zero space – an empirical comparison of 0.y.z
releases in software package distributions, 2021. arXiv: 2101.00836 [cs.SE].

[36] A. Decan and T. Mens, “What Do Package Dependencies Tell Us About
Semantic Versioning?” IEEE Transactions on Software Engineering, vol. 47,
no. 6, pp. 1226–1240, 2021, issn: 1939-3520. doi: 10.1109/TSE.2019.2918315.

[37] A. Decan, T. Mens, and E. Constantinou, “On the impact of security vulner-
abilities in the npm package dependency network,” in Proceedings of the 15th
International Conference on Mining Software Repositories, ser. MSR ’18, Asso-
ciation for Computing Machinery, 2018, pp. 181–191, isbn: 978-1-4503-5716-6.
doi: 10.1145/3196398.3196401.

136

https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1109/SANER.2017.7884607
https://doi.org/10.1109/SANER.2017.7884607
https://doi.org/10.1109/SANER.2016.12
https://doi.org/10.1145/3387940.3392205
https://arxiv.org/abs/2101.00836
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1145/3196398.3196401

[38] A. Decan, T. Mens, and P. Grosjean, “An Empirical Comparison of Depen-
dency Network Evolution in Seven Software Packaging Ecosystems,” Empir-
ical Softw. Engg., vol. 24, no. 1, pp. 381–416, 2019, issn: 1382-3256. doi:
10.1007/s10664-017-9589-y.

[39] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds., Association
for Computational Linguistics, 2019, pp. 4171–4186. doi: 10.18653/v1/N19-
1423. [Online]. Available: https://aclanthology.org/N19-1423.

[40] M. Dilhara, A. Ketkar, and D. Dig, “Understanding software-2.0: A study
of machine learning library usage and evolution,” ACM Trans. Softw. Eng.
Methodol., vol. 30, no. 4, 2021, issn: 1049-331X. doi: 10.1145/3453478.

[41] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, “Querying
and mining of time series data: Experimental comparison of representations
and distance measures,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1542–1552,
2008, issn: 2150-8097. doi: 10.14778/1454159.1454226.

[42] D. Eddelbuettel and J. J. Balamuta, Rcppmlpack, Accessed: 13 March 2024,
2020. [Online]. Available: https://github.com/rcppmlpack/RcppMLPACK1.

[43] A. Ekblad, “Foreign exchange at low, low rates a lightweight ffi for web-
targeting haskell dialects,” in Proceedings of the 27th Symposium on the Im-
plementation and Application of Functional Programming Languages, ser. IFL
’15, Association for Computing Machinery, 2015, isbn: 9781450342735. doi:
10.1145/2897336.2897338.

[44] R. Elshawi, A. Wahab, A. Barnawi, and S. Sakr, “DLBench: A comprehensive
experimental evaluation of deep learning frameworks,” en, Cluster Computing,
vol. 24, no. 3, pp. 2017–2038, 2021, issn: 1573-7543. doi: 10.1007/s10586-021-
03240-4.

[45] A. Esteva et al., “A guide to deep learning in healthcare,” Nature medicine,
vol. 25, no. 1, pp. 24–29, 2019.

[46] A. N. Evans, B. Campbell, and M. L. Soffa, “Is Rust used safely by software de-
velopers?” In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (ICSE), ACM, 2020, pp. 246–257, isbn: 9781450371216.
doi: 10.1145/3377811.3380413.

[47] H. Fang, H. Lamba, J. Herbsleb, and B. Vasilescu, “”this is damn slick!”:
Estimating the impact of tweets on open source project popularity and new
contributors,” in Proceedings of the 44th International Conference on Soft-
ware Engineering, ser. ICSE ’22, Association for Computing Machinery, 2022,
pp. 2116–2129, isbn: 9781450392211. doi: 10.1145/3510003.3510121.

137

https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.1145/3453478
https://doi.org/10.14778/1454159.1454226
https://github.com/rcppmlpack/RcppMLPACK1
https://doi.org/10.1145/2897336.2897338
https://doi.org/10.1007/s10586-021-03240-4
https://doi.org/10.1007/s10586-021-03240-4
https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/3510003.3510121

[48] I. Fedorov, R. P. Adams, M. Mattina, and P. Whatmough, “Sparse: Sparse
architecture search for cnns on resource-constrained microcontrollers,” in Ad-
vances in Neural Information Processing Systems, vol. 32, Curran Associates,
Inc., 2019.

[49] S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones, “H/Direct: A binary
foreign language interface for Haskell,” in Proceedings of the Third ACM SIG-
PLAN International Conference on Functional Programming, ser. ICFP ’98,
Association for Computing Machinery, 1998, 153–162, isbn: 1581130244. doi:
10.1145/289423.289437.

[50] O. Franco-Bedoya, D. Ameller, D. Costal, and X. Franch, “Open source soft-
ware ecosystems: A systematic mapping,” Information and Software Technol-
ogy, vol. 91, pp. 160–185, 2017, issn: 0950-5849. doi: https://doi.org/10.1016/
j.infsof.2017.07.007.

[51] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin, “Linear mode connectivity
and the lottery ticket hypothesis,” in Proceedings of the 37th International
Conference on Machine Learning, vol. 119, PMLR, 2020, pp. 3259–3269.

[52] M. Furr and J. S. Foster, “Checking type safety of foreign function calls,” ACM
Trans. Program. Lang. Syst., vol. 30, no. 4, 18:1–18:63, 2008, issn: 0164-0925.
doi: 10.1145/1377492.1377493.

[53] K. Gao, R. He, B. Xie, and M. Zhou, “Characterizing deep learning package
supply chains in pypi: Domains, clusters, and disengagement,” ACM Trans.
Softw. Eng. Methodol., 2024, issn: 1049-331X. doi: 10.1145/3640336.

[54] D. M. German, B. Adams, and A. E. Hassan, “The Evolution of the R Soft-
ware Ecosystem,” in 17th European Conference on Software Maintenance and
Reengineering, ser. CSMR, IEEE Press, 2013, pp. 243–252. doi: 10 . 1109/
CSMR.2013.33.

[55] M. N. Gevorkyan, A. V. Demidova, T. S. Demidova, and A. A. Sobolev, “Re-
view and comparative analysis of machine learning libraries for machine learn-
ing,” Discrete and Continuous Models and Applied Computational Science,
vol. 27, no. 4, pp. 305–315, 2019, issn: 2658-7149. doi: 10.22363/2658-4670-
2019-27-4-305-315.

[56] S. Godbole and S. Sarawagi, “Discriminative methods for multi-labeled classi-
fication,” in Pacific-Asia conference on knowledge discovery and data mining,
Springer, 2004, pp. 22–30.

[57] D. Gonzalez, T. Zimmermann, and N. Nagappan, “The state of the ML-
universe: 10 years of artificial intelligence & machine learning software de-
velopment on GitHub,” in Proceedings of the 17th International Conference
on Mining Software Repositories, 2020, pp. 431–442.

[58] M. Grichi, E. E. Eghan, and B. Adams, “On the impact of multi-language
development in machine learning frameworks,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, 2020,
pp. 546–556.

138

https://doi.org/10.1145/289423.289437
https://doi.org/https://doi.org/10.1016/j.infsof.2017.07.007
https://doi.org/https://doi.org/10.1016/j.infsof.2017.07.007
https://doi.org/10.1145/1377492.1377493
https://doi.org/10.1145/3640336
https://doi.org/10.1109/CSMR.2013.33
https://doi.org/10.1109/CSMR.2013.33
https://doi.org/10.22363/2658-4670-2019-27-4-305-315
https://doi.org/10.22363/2658-4670-2019-27-4-305-315

[59] M. Grimmer, “High-performance language interoperability in multi-language
runtimes,” in Proceedings of the Companion Publication of the 2014 ACM
SIGPLAN Conference on Systems, Programming, and Applications: Software
for Humanity, ser. SPLASH ’14, Association for Computing Machinery, 2014,
pp. 17–19, isbn: 9781450332088. doi: 10.1145/2660252.2660256.

[60] O. E. Gundersen and S. Kjensmo, “State of the art: Reproducibility in artificial
intelligence,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, no. 1, 2018, issn: 2374-3468.

[61] Q. Guo et al., “An Empirical Study Towards Characterizing Deep Learn-
ing Development and Deployment Across Different Frameworks and Plat-
forms,” in 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), ser. ASE ’19, IEEE Press, 2019, pp. 810–822, isbn:
9781728125084. doi: 10.1109/ASE.2019.00080.

[62] A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja, “Deep learning for
object detection and scene perception in self-driving cars: Survey, challenges,
and open issues,” Array, vol. 10, p. 100 057, 2021, issn: 2590-0056. doi: https:
//doi.org/10.1016/j.array.2021.100057.

[63] J. Han, S. Deng, D. Lo, C. Zhi, J. Yin, and X. Xia, “An Empirical Study of
the Dependency Networks of Deep Learning Libraries,” in 2020 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), ISSN:
2576-3148, IEEE Press, 2020, pp. 868–878. doi: 10.1109/ICSME46990.2020.
00116.

[64] J. Han, S. Deng, X. Xia, D. Wang, and J. Yin, “Characterization and prediction
of popular projects on GitHub,” in 2019 IEEE 43rd Annual Computer Software
and Applications Conference (COMPSAC), vol. 1, 2019, pp. 21–26. doi: 10.
1109/COMPSAC.2019.00013.

[65] X. Han et al., “Pre-trained models: Past, present and future,” AI Open, vol. 2,
pp. 225–250, 2021.

[66] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997, issn: 0899-7667. doi: 10.1162/
neco.1997.9.8.1735.

[67] O. Hourrane, N. Idrissi, and E. H. Benlahmar, “An empirical study of deep
neural networks models for sentiment classification on movie reviews,” in 1st
International Conference on Smart Systems and Data Science (ICSSD), 2019,
pp. 1–6. doi: 10.1109/ICSSD47982.2019.9003171.

[68] E. J. Hu et al., “LoRA: Low-rank adaptation of large language models,” in
International Conference on Learning Representations, 2022.

[69] Q. Hu et al., “An empirical study on data distribution-aware test selection for
deep learning enhancement,” ACM Transactions on Software Engineering and
Methodology, 2022, issn: 1049-331X. doi: 10.1145/3511598.

139

https://doi.org/10.1145/2660252.2660256
https://doi.org/10.1109/ASE.2019.00080
https://doi.org/https://doi.org/10.1016/j.array.2021.100057
https://doi.org/https://doi.org/10.1016/j.array.2021.100057
https://doi.org/10.1109/ICSME46990.2020.00116
https://doi.org/10.1109/ICSME46990.2020.00116
https://doi.org/10.1109/COMPSAC.2019.00013
https://doi.org/10.1109/COMPSAC.2019.00013
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/ICSSD47982.2019.9003171
https://doi.org/10.1145/3511598

[70] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and P.
Tonella, “Taxonomy of real faults in deep learning systems,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering,
ser. ICSE ’20, Association for Computing Machinery, 2020, pp. 1110–1121,
isbn: 978-1-4503-7121-6. doi: 10.1145/3377811.3380395.

[71] G. Iaffaldano, I. Steinmacher, F. Calefato, M. Gerosa, and F. Lanubile, “Why
do developers take breaks from contributing to OSS projects? a preliminary
analysis,” in Proceedings of the 2nd International Workshop on Software Health,
IEEE Press, 2019, pp. 9–16. doi: 10.1109/SoHeal.2019.00009.

[72] S. K. Imminni et al., “SPYSE: A semantic search engine for Python packages
and modules,” in Proceedings of the 38th International Conference on Soft-
ware Engineering Companion, ser. ICSE ’16, ACM, 2016, pp. 625–628, isbn:
9781450342056. doi: 10.1145/2889160.2889174.

[73] International Organization for Standardization, ISO/IEC TR 10182:2016, In-
formation technology - Programming languages, their environments and system
software interfaces - Guidelines for language bindings, International Standard,
2016. [Online]. Available: https://www.iso.org/standard/67465.html.

[74] R. Isdahl and O. E. Gundersen, “Out-of-the-box reproducibility: A survey of
machine learning platforms,” in 15th International Conference on eScience
(eScience), 2019, pp. 86–95. doi: 10.1109/eScience.2019.00017.

[75] M. J. Islam, H. A. Nguyen, R. Pan, and H. Rajan, What Do Developers Ask
About ML Libraries? A Large-scale Study Using Stack Overflow, 2019. arXiv:
1906.11940 [cs.SE].

[76] A. Jain, A. A. Awan, Q. Anthony, H. Subramoni, and D. K. D. Panda, “Perfor-
mance Characterization of DNN Training using TensorFlow and PyTorch on
Modern Clusters,” in IEEE International Conference on Cluster Computing
(CLUSTER), 2019, pp. 1–11. doi: 10.1109/CLUSTER.2019.8891042.

[77] S. Jansen, “Measuring the health of open source software ecosystems: Beyond
the scope of project health,” Information and Software Technology, vol. 56,
no. 11, pp. 1508–1519, 2014, Special issue on Software Ecosystems, issn: 0950-
5849. doi: https://doi.org/10.1016/j.infsof.2014.04.006.

[78] L. Jia, H. Zhong, X. Wang, L. Huang, and X. Lu, “An empirical study on bugs
inside TensorFlow,” in Database Systems for Advanced Applications, Y. Nah,
B. Cui, S.-W. Lee, J. X. Yu, Y.-S. Moon, and S. E. Whang, Eds., Springer
International Publishing, 2020, pp. 604–620, isbn: 978-3-030-59410-7.

[79] L. Jia, H. Zhong, X. Wang, L. Huang, and X. Lu, “The symptoms, causes,
and repairs of bugs inside a deep learning library,” Journal of Systems and
Software, vol. 177, p. 110 935, 2021, issn: 0164-1212. doi: https://doi.org/10.
1016/j.jss.2021.110935.

[80] M. Jouhari et al., “Distributed cnn inference on resource-constrained uavs
for surveillance systems: Design and optimization,” IEEE Internet of Things
Journal, vol. 9, no. 2, pp. 1227–1242, 2022. doi: 10.1109/JIOT.2021.3079164.

140

https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1109/SoHeal.2019.00009
https://doi.org/10.1145/2889160.2889174
https://www.iso.org/standard/67465.html
https://doi.org/10.1109/eScience.2019.00017
https://arxiv.org/abs/1906.11940
https://doi.org/10.1109/CLUSTER.2019.8891042
https://doi.org/https://doi.org/10.1016/j.infsof.2014.04.006
https://doi.org/https://doi.org/10.1016/j.jss.2021.110935
https://doi.org/https://doi.org/10.1016/j.jss.2021.110935
https://doi.org/10.1109/JIOT.2021.3079164

[81] K. Kannee, R. Kula, S. Wattanakriengkrai, and K. Matsumoto, “Intertwin-
ing communities: Exploring libraries that cross software ecosystems,” in 2023
IEEE/ACM 20th International Conference on Mining Software Repositories
(MSR), IEEE Computer Society, 2023, pp. 518–522. doi: 10.1109/MSR59073.
2023.00077.

[82] J. Katz, Libraries.io Open Source Repository and Dependency Metadata, ver-
sion 1.6.0, 2020. doi: 10 . 5281/zenodo .3626071. [Online]. Available: https :
//doi.org/10.5281/zenodo.3626071.

[83] Keras. “About Keras.” (2021), [Online]. Available: https://keras.io/about/.

[84] S. S. Khanal, P. Prasad, A. Alsadoon, and A. Maag, “A systematic review:
Machine learning based recommendation systems for e-learning,” Education
and Information Technologies, vol. 25, no. 4, pp. 2635–2664, 2020.

[85] J. Khondhu, A. Capiluppi, and K.-J. Stol, “Is It All Lost? A Study of Inactive
Open Source Projects,” in 9th Open Source Software (OSS), ser. Open Source
Software: Quality Verification, vol. AICT-404, Springer, 2013, pp. 61–79. doi:
10.1007/978-3-642-38928-3\ 5.

[86] S. Kiliçarslan and M. Celik, “RSigELU: A nonlinear activation function for
deep neural networks,” Expert Systems with Applications, vol. 174, p. 114 805,
2021, issn: 0957-4174. doi: https://doi.org/10.1016/j.eswa.2021.114805.

[87] H. Ko, S. Lee, Y. Park, and A. Choi, “A survey of recommendation sys-
tems: Recommendation models, techniques, and application fields,” Electron-
ics, vol. 11, no. 1, p. 141, 2022.

[88] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images (Tech-
nical Report),” 2012.

[89] R. G. Kula and G. Robles, “The life and death of software ecosystems,” in To-
wards Engineering Free/Libre Open Source Software (FLOSS) Ecosystems for
Impact and Sustainability: Communications of NII Shonan Meetings. Springer
Singapore, 2019, pp. 97–105, isbn: 978-981-13-7099-1. doi: 10.1007/978-981-
13-7099-1 6.

[90] R. G. Kula, C. D. Roover, D. M. Germán, T. Ishio, and K. Inoue, “A gener-
alized model for visualizing library popularity, adoption, and diffusion within
a software ecosystem,” in 25th International Conference on Software Analy-
sis, Evolution and Reengineering, ser. SANER 2018, IEEE Computer Society,
2018, pp. 288–299. doi: 10.1109/SANER.2018.8330217.

[91] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “AL-
BERT: A lite bert for self-supervised learning of language representations,”
in Proceedings of the International Conference on Learning Representations
(ICLR), 2020.

[92] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998. doi: 10.1109/5.726791.

141

https://doi.org/10.1109/MSR59073.2023.00077
https://doi.org/10.1109/MSR59073.2023.00077
https://doi.org/10.5281/zenodo.3626071
https://doi.org/10.5281/zenodo.3626071
https://doi.org/10.5281/zenodo.3626071
https://keras.io/about/
https://doi.org/10.1007/978-3-642-38928-3_5
https://doi.org/https://doi.org/10.1016/j.eswa.2021.114805
https://doi.org/10.1007/978-981-13-7099-1_6
https://doi.org/10.1007/978-981-13-7099-1_6
https://doi.org/10.1109/SANER.2018.8330217
https://doi.org/10.1109/5.726791

[93] Y. LeCun, C. Cortes, and C. J. Burges. “The MNIST database of handwritten
digits.” (1998), [Online]. Available: http://yann.lecun.com/exdb/mnist/.

[94] B. Lee, B. Wiedermann, M. Hirzel, R. Grimm, and K. S. McKinley, “Jinn: Syn-
thesizing dynamic bug detectors for foreign language interfaces,” SIGPLAN
Not., vol. 45, no. 6, pp. 36–49, 2010, issn: 0362-1340. doi: 10.1145/1809028.
1806601.

[95] H. Lei, S. Zhang, J. Wang, G. Xiao, Y. Liu, and Y. Sui, “Why do deep learning
projects differ in compatible framework versions? an exploratory study,” in
2023 IEEE 34th International Symposium on Software Reliability Engineering
(ISSRE), 2023, pp. 509–520. doi: 10.1109/ISSRE59848.2023.00076.

[96] F. Li, Y. Ye, Z. Tian, and X. Zhang, “CPU versus GPU: Which can perform
matrix computation faster—performance comparison for basic linear algebra
subprograms,” Neural Computing and Applications, vol. 31, no. 8, pp. 4353–
4365, 2019, issn: 1433-3058. doi: 10.1007/s00521-018-3354-z.

[97] H. Li and C.-P. Bezemer, “Studying popular open source machine learning li-
braries and their cross-ecosystem bindings,” arXiv preprint arXiv:2201.07201,
2022. doi: 10.48550/ARXIV.2201.07201.

[98] H. Li and C.-P. Bezemer, The replication package of our study, Accessed:
13 March 2024, 2024. [Online]. Available: https://github.com/asgaardlab/
MLBindings.

[99] H. Li, F. R. Cogo, and C.-P. Bezemer, “An empirical study of yanked releases
in the rust package registry,” IEEE Transactions on Software Engineering,
vol. 49, no. 1, pp. 437–449, 2023. doi: 10.1109/TSE.2022.3152148.

[100] H. Li, G. K. Rajbahadur, and C.-P. Bezemer. “The replication package of our
study on bindings for TensorFlow and PyTorch.” (2022), [Online]. Available:
https://github.com/anonymous-git/dl with different languages.

[101] X. Li, B. Karimi, and P. Li, “On distributed adaptive optimization with gra-
dient compression,” in International Conference on Learning Representations,
2022.

[102] E. Lin, Q. Chen, and X. Qi, “Deep reinforcement learning for imbalanced
classification,” Applied Intelligence, vol. 50, no. 8, pp. 2488–2502, 2020, issn:
1573-7497. doi: 10.1007/s10489-020-01637-z.

[103] C. Liu, C. Gao, X. Xia, D. Lo, J. Grundy, and X. Yang, “On the reproducibility
and replicability of deep learning in software engineering,” ACM Transactions
on Software Engineering and Methodology, vol. 31, no. 1, 2021, issn: 1049-
331X. doi: 10.1145/3477535.

[104] J. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “Is using deep learning
frameworks free? characterizing technical debt in deep learning frameworks,”
in Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Software Engineering in Society, ser. ICSE-SEIS ’20, Association
for Computing Machinery, 2020, pp. 1–10. doi: 10.1145/3377815.3381377.

142

http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/1809028.1806601
https://doi.org/10.1145/1809028.1806601
https://doi.org/10.1109/ISSRE59848.2023.00076
https://doi.org/10.1007/s00521-018-3354-z
https://doi.org/10.48550/ARXIV.2201.07201
https://github.com/asgaardlab/MLBindings
https://github.com/asgaardlab/MLBindings
https://doi.org/10.1109/TSE.2022.3152148
https://github.com/anonymous-git/dl_with_different_languages
https://doi.org/10.1007/s10489-020-01637-z
https://doi.org/10.1145/3477535
https://doi.org/10.1145/3377815.3381377

[105] Y. Liu et al., “RoBERTa: A robustly optimized bert pretraining approach,”
arXiv preprint arXiv:1907.11692, 2019.

[106] J. D. Long, D. Feng, and N. Cliff, “Ordinal analysis of behavioral data,” en,
in Handbook of Psychology, I. B. Weiner, Ed. American Cancer Society, 2003,
ch. 25, pp. 635–661, isbn: 9780471264385. doi: 10.1002/0471264385.wei0225.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471264385.wei0225.

[107] C. Luo, X. He, J. Zhan, L. Wang, W. Gao, and J. Dai, “Comparison and Bench-
marking of AI Models and Frameworks on Mobile Devices,” arXiv preprint
arXiv:2005.05085, 2020.

[108] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguistics: Human Lan-
guage Technologies, ser. HLT ’11, Association for Computational Linguistics,
2011, pp. 142–150.

[109] K. Manikas, “Revisiting software ecosystems research: A longitudinal literature
study,” Journal of Systems and Software, vol. 117, pp. 84–103, 2016, issn:
0164-1212. doi: https://doi.org/10.1016/j.jss.2016.02.003.

[110] H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other,” The Annals of Mathemati-
cal Statistics, vol. 18, no. 1, pp. 50 –60, 1947. doi: 10.1214/aoms/1177730491.

[111] J. Maqsood, I. Eshraghi, and S. S. Ali, “Success or failure identification for
GitHub’s open source projects,” in Proceedings of the 2017 International Con-
ference on Management Engineering, Software Engineering and Service Sci-
ences, ACM, 2017, pp. 145–150, isbn: 9781450348348. doi: 10.1145/3034950.
3034957.

[112] M. B. A. McDermott, S. Wang, N. Marinsek, R. Ranganath, L. Foschini, and
M. Ghassemi, “Reproducibility in machine learning for health research: Still a
ways to go,” Science Translational Medicine, vol. 13, no. 586, eabb1655, 2021.
doi: 10.1126/scitranslmed.abb1655.

[113] K. Meerbergen, K. Fresl, and T. Knapen, “C++ bindings to external software
libraries with examples from BLAS, LAPACK, UMFPACK, and MUMPS,”
ACM Trans. Math. Softw., vol. 36, no. 4, 2009, issn: 0098-3500. doi: 10.1145/
1555386.1555391.

[114] T. Mens, M. Claes, P. Grosjean, and A. Serebrenik, “Studying evolving soft-
ware ecosystems based on ecological models,” in Evolving Software Systems.
Springer Berlin Heidelberg, 2014, pp. 297–326, isbn: 978-3-642-45398-4. doi:
10.1007/978-3-642-45398-4 10.

[115] M. M. Morovati, A. Nikanjam, F. Khomh, and Z. M. J. Jiang, “Bugs in
machine learning-based systems: A faultload benchmark,” Empirical Softw.
Engg., vol. 28, no. 3, 2023, issn: 1382-3256. doi: 10.1007/s10664-023-10291-1.

143

https://doi.org/10.1002/0471264385.wei0225
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471264385.wei0225
https://doi.org/https://doi.org/10.1016/j.jss.2016.02.003
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1145/3034950.3034957
https://doi.org/10.1145/3034950.3034957
https://doi.org/10.1126/scitranslmed.abb1655
https://doi.org/10.1145/1555386.1555391
https://doi.org/10.1145/1555386.1555391
https://doi.org/10.1007/978-3-642-45398-4_10
https://doi.org/10.1007/s10664-023-10291-1

[116] P. Nagarajan, G. Warnell, and P. Stone, “Deterministic implementations for
reproducibility in deep reinforcement learning,” in AAAI 2019 Workshop on
Reproducible AI, 2019. doi: 10.48550/ARXIV.1809.05676.

[117] S. Nakata, M. Sugaya, and K. Kuramitsu, “Fault model of foreign function in-
terface across different domains,” in 2011 IEEE/IFIP 41st International Con-
ference on Dependable Systems and Networks Workshops (DSN-W), ISSN:
2325-6664, 2011, pp. 248–253. doi: 10.1109/DSNW.2011.5958850.

[118] S. Nanz and C. A. Furia, “A comparative study of programming languages
in rosetta code,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1, 2015, pp. 778–788. doi: 10.1109/ICSE.2015.90.

[119] G. Nguyen et al., “Machine Learning and Deep Learning frameworks and li-
braries for large-scale data mining: A survey,” Artif. Intell. Rev., vol. 52, no. 1,
pp. 77–124, 2019, issn: 0269-2821. doi: 10.1007/s10462-018-09679-z.

[120] J. Ni, Y. Chen, Y. Chen, J. Zhu, D. Ali, and W. Cao, “A survey on theories
and applications for self-driving cars based on deep learning methods,” Applied
Sciences, vol. 10, no. 8, 2020, issn: 2076-3417. doi: 10.3390/app10082749.

[121] A.-M. Nussberger, L. Luo, L. E. Celis, and M. J. Crockett, “Public attitudes
value interpretability but prioritize accuracy in artificial intelligence,” Nature
communications, vol. 13, no. 1, p. 5821, 2022.

[122] OpenCV, OpenCV-Python is now an official OpenCV project, Accessed: 13
March 2024, 2021. [Online]. Available: https : / /opencv . org/blog/opencv -
python-is-now-an-official-opencv-project.

[123] K. Osman and O. Baysal, “Health is wealth: Evaluating the health of the bit-
coin ecosystem in GitHub,” in 2021 IEEE/ACM 4th International Workshop
on Software Health in Projects, Ecosystems and Communities (SoHeal), 2021,
pp. 1–8. doi: 10.1109/SoHeal52568.2021.00007.

[124] A. Paszke et al., “PyTorch: An imperative style, high-performance deep learn-
ing library,” inAdvances in Neural Information Processing Systems 32, ser. NeurIPS,
Curran Associates, Inc., 2019, pp. 8024–8035.

[125] F. Pedregosa et al., “Scikit-Learn: Machine learning in Python,” the Journal
of machine Learning research, vol. 12, pp. 2825–2830, 2011, issn: 1532-4435.

[126] R. Pereira et al., “Energy efficiency across programming languages: How do en-
ergy, time, and memory relate?” In Proceedings of the 10th ACM SIGPLAN In-
ternational Conference on Software Language Engineering, ser. SLE 2017, As-
sociation for Computing Machinery, 2017, pp. 256–267, isbn: 9781450355254.
doi: 10.1145/3136014.3136031.

[127] H. V. Pham et al., “Problems and opportunities in training deep learning soft-
ware systems: An analysis of variance,” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE ’20,
Association for Computing Machinery, 2020, pp. 771–783, isbn: 9781450367684.
doi: 10.1145/3324884.3416545.

144

https://doi.org/10.48550/ARXIV.1809.05676
https://doi.org/10.1109/DSNW.2011.5958850
https://doi.org/10.1109/ICSE.2015.90
https://doi.org/10.1007/s10462-018-09679-z
https://doi.org/10.3390/app10082749
https://opencv.org/blog/opencv-python-is-now-an-official-opencv-project
https://opencv.org/blog/opencv-python-is-now-an-official-opencv-project
https://doi.org/10.1109/SoHeal52568.2021.00007
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3324884.3416545

[128] L. Prechelt, “An empirical comparison of seven programming languages,”
Computer, vol. 33, no. 10, pp. 23–29, 2000. doi: 10.1109/2.876288.

[129] PyTorch, Pytorch design philosophy, Accessed: 13 March 2024, 2022. [Online].
Available: https://pytorch.org/docs/stable/community/design.html.

[130] PyTorch, PyTorch Mobile, end-to-end workflow from training to deployment
for ios and android mobile devices, Accessed: 13 March 2024, 2021. [Online].
Available: https://pytorch.org/mobile/ios.

[131] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unanswerable
questions for SQuAD,” in Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short Papers), I. Gurevych
and Y. Miyao, Eds., Association for Computational Linguistics, 2018, pp. 784–
789. doi: 10.18653/v1/P18-2124.

[132] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+ ques-
tions for machine comprehension of text,” in Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Processing, J. Su, K. Duh, and
X. Carreras, Eds., Association for Computational Linguistics, 2016, pp. 2383–
2392. doi: 10.18653/v1/D16-1264.

[133] S. Raschka, J. Patterson, and C. Nolet, “Machine learning in Python: Main
developments and technology trends in data science, machine learning, and
artificial intelligence,” Information, vol. 11, no. 4, p. 193, 2020.

[134] T. Ravitch, S. Jackson, E. Aderhold, and B. Liblit, “Automatic generation
of library bindings using static analysis,” in Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI ’09, Association for Computing Machinery, 2009, pp. 352–362, isbn:
9781605583921. doi: 10.1145/1542476.1542516.

[135] J. Reppy and C. Song, “Application-specific foreign-interface generation,” in
Proceedings of the 5th international conference on Generative programming
and component engineering, ser. GPCE ’06, Association for Computing Ma-
chinery, 2006, pp. 49–58, isbn: 978-1-59593-237-2. doi: 10 . 1145 / 1173706 .
1173714.

[136] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react to
API deprecation? the case of a Smalltalk ecosystem,” in Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, ser. FSE ’12, ACM, 2012, isbn: 9781450316149. doi: 10.1145/
2393596.2393662.

[137] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and L. Devine, “Explor-
ing methods for evaluating group differences on the NSSE and other surveys:
Are the t-test and Cohen’s d indices the most appropriate choices,” in annual
meeting of the Southern Association for Institutional Research, Citeseer, 2006,
pp. 1–51.

145

https://doi.org/10.1109/2.876288
https://pytorch.org/docs/stable/community/design.html
https://pytorch.org/mobile/ios
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1145/1542476.1542516
https://doi.org/10.1145/1173706.1173714
https://doi.org/10.1145/1173706.1173714
https://doi.org/10.1145/2393596.2393662
https://doi.org/10.1145/2393596.2393662

[138] F. Roseiro Côgo, G. Oliva, and A. E. Hassan, “Deprecation of packages and
releases in software ecosystems: A case study on npm,” IEEE Transactions on
Software Engineering, 2021.

[139] A. S., S. Sinha, and S. K.G., “Optimization of convolutional neural networks on
resource constrained devices,” in 2019 IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI), 2019, pp. 19–24. doi: 10.1109/ISVLSI.2019.00013.

[140] S. Salvador and P. Chan, “FastDTW: Toward accurate dynamic time warping
in linear time and space,” Intelligent Data Analysis, vol. 11, no. 5, pp. 561–580,
2007.

[141] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled ver-
sion of bert: Smaller, faster, cheaper and lighter,” in Proceedings of the 5th
Workshop on Energy Efficient Machine Learning and Cognitive Computing
(EMC2) co-located with the Thirty-third Conference on Neural Information
Processing Systems (NeurIPS), 2019.

[142] A. A. Sawant, M. Aniche, A. van Deursen, and A. Bacchelli, “Understanding
developers’ needs on deprecation as a language feature,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), 2018, pp. 561–
571. doi: 10.1145/3180155.3180170.

[143] D. Sculley et al., “Hidden technical debt in machine learning systems,” in
Proceedings of the 28th International Conference on Neural Information Pro-
cessing Systems - Volume 2, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett, Eds., ser. NIPS’15, vol. 28, MIT Press, 2015, pp. 2503–2511.

[144] A. Serebrenik and T. Mens, “Challenges in software ecosystems research,” in
Proceedings of the 2015 European Conference on Software Architecture Work-
shops, ser. ECSAW ’15, ACM, 2015, isbn: 9781450333931. doi: 10 . 1145 /
2797433.2797475.

[145] J. P. Shaffer, “Multiple hypothesis testing,” Annual review of psychology,
vol. 46, no. 1, pp. 561–584, 1995.

[146] K. Shen, Y. Zhang, L. Bao, Z. Wan, Z. Li, and M. Wu, “Patchmatch: A tool
for locating patches of open source project vulnerabilities,” in Proceedings of
the 45th International Conference on Software Engineering: Companion Pro-
ceedings, ser. ICSE ’23, IEEE Press, 2023, pp. 175–179, isbn: 9798350322637.
doi: 10.1109/ICSE-Companion58688.2023.00049.

[147] N. Shrestha, C. Botta, T. Barik, and C. Parnin, “Here we go again: Why is it
difficult for developers to learn another programming language?” In IEEE/ACM
42nd International Conference on Software Engineering (ICSE), 2020, pp. 691–
701.

[148] A. A. Shvets, A. Rakhlin, A. A. Kalinin, and V. I. Iglovikov, “Automatic in-
strument segmentation in robot-assisted surgery using deep learning,” in 2018
17th IEEE International Conference on Machine Learning and Applications
(ICMLA), 2018, pp. 624–628. doi: 10.1109/ICMLA.2018.00100.

146

https://doi.org/10.1109/ISVLSI.2019.00013
https://doi.org/10.1145/3180155.3180170
https://doi.org/10.1145/2797433.2797475
https://doi.org/10.1145/2797433.2797475
https://doi.org/10.1109/ICSE-Companion58688.2023.00049
https://doi.org/10.1109/ICMLA.2018.00100

[149] J. Siebert et al., “Construction of a quality model for machine learning sys-
tems,” en, Software Quality Journal, vol. 30, no. 2, pp. 307–335, 2022, issn:
1573-1367. doi: 10.1007/s11219-021-09557-y.

[150] S. da Silva Amorim, J. D. McGregor, E. S. de Almeida, and C. von Flach G.
Chavez, “Software ecosystems architectural health: Challenges x practices,” in
Proccedings of the 10th European Conference on Software Architecture Work-
shops, ser. ECSAW ’16, Association for Computing Machinery, 2016, isbn:
9781450347815. doi: 10.1145/2993412.3011881.

[151] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in 3rd International Conference on Learning Repre-
sentations (ICLR 2015), 2015.

[152] D. Smilkov et al., “TensorFlow.js: Machine learning for the web and beyond,”
in Proceedings of Machine Learning and Systems, A. Talwalkar, V. Smith, and
M. Zaharia, Eds., vol. 1, 2019, pp. 309–321.

[153] C. R. de Souza, F. Figueira Filho, M. Miranda, R. P. Ferreira, C. Treude, and L.
Singer, “The social side of software platform ecosystems,” in Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, Association
for Computing Machinery, 2016, pp. 3204–3214, isbn: 9781450333627. doi:
10.1145/2858036.2858431.

[154] StackOverflow, Stack Overflow Annual Developer Survey 2023, Accessed: 13
March 2024, 2023. [Online]. Available: https://survey.stackoverflow.co/2023.

[155] C. Steglich, A. Majdenbaum, S. Marczak, and R. Santos, “A study on organi-
zational it security in mobile software ecosystems literature,” in 2020 IEEE In-
ternational Conference on Software Architecture Companion (ICSA-C), 2020,
pp. 234–241. doi: 10.1109/ICSA-C50368.2020.00047.

[156] C. Steglich et al., “How do business factors affect developers in mobile software
ecosystems?” InXVI Brazilian Symposium on Information Systems, ser. SBSI’20,
Association for Computing Machinery, 2020, isbn: 9781450388733. doi: 10.
1145/3411564.3411571.

[157] J. Stringer, A. Tahir, K. Blincoe, and J. Dietrich, “Technical lag of dependen-
cies in major package managers,” in 2020 27th Asia-Pacific Software Engi-
neering Conference (APSEC), 2020, pp. 228–237. doi: 10.1109/APSEC51365.
2020.00031.

[158] B. Sullivan and A. Kaszynski, “PyVista: 3D plotting and mesh analysis through
a streamlined interface for the Visualization Toolkit (VTK),” Journal of Open
Source Software, vol. 4, no. 37, p. 1450, 2019. doi: 10.21105/joss.01450.

[159] R. Tatman, J. Vanderplas, and S. Dane, “A practical taxonomy of reproducibil-
ity for machine learning research,” in Reproducibility in Machine Learning
Workshop at ICML 2018, 2018.

[160] H. Touvron et al., Llama 2: Open foundation and fine-tuned chat models, 2023.
arXiv: 2307.09288 [cs.CL].

147

https://doi.org/10.1007/s11219-021-09557-y
https://doi.org/10.1145/2993412.3011881
https://doi.org/10.1145/2858036.2858431
https://survey.stackoverflow.co/2023
https://doi.org/10.1109/ICSA-C50368.2020.00047
https://doi.org/10.1145/3411564.3411571
https://doi.org/10.1145/3411564.3411571
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.21105/joss.01450
https://arxiv.org/abs/2307.09288

[161] M. Valiev, B. Vasilescu, and J. Herbsleb, “Ecosystem-level determinants of
sustained activity in open-source projects: A case study of the PyPI ecosys-
tem,” in Proceedings of the 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE), ACM, 2018, pp. 644–655, isbn: 9781450355735. doi:
10.1145/3236024.3236062.

[162] R. Štrobl and Z. Trońıček, “Migration from deprecated API in Java,” in Pro-
ceedings of the 2013 Companion Publication for Conference on Systems, Pro-
gramming, and Applications: Software for Humanity, ser. SPLASH ’13, ACM,
2013, pp. 85–86, isbn: 9781450319959. doi: 10.1145/2508075.2508093.

[163] B. Wang et al., “On position embeddings in BERT,” in International Confer-
ence on Learning Representations, 2021.

[164] J. Wang, L. Li, K. Liu, and H. Cai, “Exploring how deprecated Python library
APIs are (not) handled,” in Proceedings of the 28th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ACM, 2020, pp. 233–244, isbn: 9781450370431.

[165] K. Wang, Y. Dou, T. Sun, P. Qiao, and D. Wen, “An automatic learning rate
decay strategy for stochastic gradient descent optimization methods in neural
networks,” International Journal of Intelligent Systems, 2022. doi: https://
doi.org/10.1002/int.22883.

[166] Y. Wang et al., “Watchman: Monitoring dependency conflicts for Python li-
brary ecosystem,” in Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering, ser. ICSE ’20, ACM, 2020, pp. 125–135, isbn:
9781450371216. doi: 10.1145/3377811.3380426.

[167] M. Wei, Y. Huang, J. Wang, J. Shin, N. S. Harzevili, and S. Wang, “API rec-
ommendation for machine learning libraries: How far are we?” In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, ser. ESEC/FSE 2022, As-
sociation for Computing Machinery, 2022, pp. 370–381, isbn: 9781450394130.
doi: 10.1145/3540250.3549124.

[168] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
JavaScript package ecosystem,” in Proceedings of the 13th International Con-
ference on Mining Software Repositories, ser. MSR ’16, Association for Com-
puting Machinery, 2016, pp. 351–361, isbn: 9781450341868. doi: 10 . 1145/
2901739.2901743.

[169] T. Wolf et al., “Transformers: State-of-the-art natural language processing,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Association for Computational Linguis-
tics, 2020, pp. 38–45. doi: 10.18653/v1/2020.emnlp-demos.6.

[170] T. Wolter, A. Barcomb, D. Riehle, and N. Harutyunyan, “Open source license
inconsistencies on GitHub,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 5,
2023, issn: 1049-331X. doi: 10.1145/3571852.

148

https://doi.org/10.1145/3236024.3236062
https://doi.org/10.1145/2508075.2508093
https://doi.org/https://doi.org/10.1002/int.22883
https://doi.org/https://doi.org/10.1002/int.22883
https://doi.org/10.1145/3377811.3380426
https://doi.org/10.1145/3540250.3549124
https://doi.org/10.1145/2901739.2901743
https://doi.org/10.1145/2901739.2901743
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1145/3571852

[171] Y. Xi, L. Shen, Y. Gui, and W. Zhao, “Migrating deprecated API to doc-
umented replacement: Patterns and tool,” in Proceedings of the 11th Asia-
Pacific Symposium on Internetware, ACM, 2019, isbn: 9781450377010. doi:
10.1145/3361242.3361246.

[172] X. Xia, S. Zhao, X. Zhang, Z. Lou, W. Wang, and F. Bi, “Understanding
the archived projects on GitHub,” in 2023 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2023, pp. 13–24.
doi: 10.1109/SANER56733.2023.00012.

[173] D. Xu, S. Zhang, H. Zhang, and D. P. Mandic, “Convergence of the RMSProp
deep learning method with penalty for nonconvex optimization,” Neural Net-
works, vol. 139, pp. 17–23, 2021, issn: 0893-6080. doi: https://doi.org/10.
1016/j.neunet.2021.02.011.

[174] J. Yallop, D. Sheets, and A. Madhavapeddy, “A modular foreign function in-
terface,” Science of Computer Programming, vol. 164, pp. 82–97, 2018, Special
issue of selected papers from FLOPS 2016. doi: https://doi.org/10.1016/j.
scico.2017.04.002.

[175] Z. Yan, J. Zhou, and W.-F. Wong, “Near lossless transfer learning for spiking
neural networks,” Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 35, no. 12, pp. 10 577–10 584, 2021.

[176] C. Yang, B. Xu, J. Liu, and D. Lo, “Techsumbot: A stack overflow answer
summarization tool for technical query,” in Proceedings of the 45th Interna-
tional Conference on Software Engineering: Companion Proceedings, ser. ICSE
’23, IEEE Press, 2023, pp. 132–135, isbn: 9798350322637. doi: 10.1109/ICSE-
Companion58688.2023.00040.

[177] J. Yasmin, Y. Tian, and J. Yang, “A first look at the deprecation of REST-
ful APIs: An empirical study,” in IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), 2020, pp. 151–161. doi: 10.1109/
ICSME46990.2020.00024.

[178] A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona, “On the di-
versity of software package popularity metrics: An empirical study of npm,”
in IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2019, pp. 589–593. doi: 10 . 1109 / SANER . 2019 .
8667997.

[179] A. Zerouali, T. Mens, J. Gonzalez-Barahona, A. Decan, E. Constantinou, and
G. Robles, “A formal framework for measuring technical lag in component
repositories — and its application to npm,” Journal of Software: Evolution and
Process, vol. 31, no. 8, e2157, 2019. doi: https://doi.org/10.1002/smr.2157.

[180] T. Zhang, C. Gao, L. Ma, M. Lyu, and M. Kim, “An Empirical Study of Com-
mon Challenges in Developing Deep Learning Applications,” in 2019 IEEE
30th International Symposium on Software Reliability Engineering (ISSRE),
2019, pp. 104–115. doi: 10.1109/ISSRE.2019.00020.

149

https://doi.org/10.1145/3361242.3361246
https://doi.org/10.1109/SANER56733.2023.00012
https://doi.org/https://doi.org/10.1016/j.neunet.2021.02.011
https://doi.org/https://doi.org/10.1016/j.neunet.2021.02.011
https://doi.org/https://doi.org/10.1016/j.scico.2017.04.002
https://doi.org/https://doi.org/10.1016/j.scico.2017.04.002
https://doi.org/10.1109/ICSE-Companion58688.2023.00040
https://doi.org/10.1109/ICSE-Companion58688.2023.00040
https://doi.org/10.1109/ICSME46990.2020.00024
https://doi.org/10.1109/ICSME46990.2020.00024
https://doi.org/10.1109/SANER.2019.8667997
https://doi.org/10.1109/SANER.2019.8667997
https://doi.org/https://doi.org/10.1002/smr.2157
https://doi.org/10.1109/ISSRE.2019.00020

[181] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An Empirical
Study on TensorFlow Program Bugs,” in Proceedings of the 27th ACM SIG-
SOFT International Symposium on Software Testing and Analysis, ser. ISSTA
2018, Association for Computing Machinery, 2018, pp. 129–140, isbn: 978-1-
4503-5699-2. doi: 10.1145/3213846.3213866.

150

https://doi.org/10.1145/3213846.3213866

	Introduction
	Bindings and software package ecosystems
	Motivation
	Thesis objectives
	Thesis outline

	Studying the Development and Maintenance of Bindings for Machine Learning Libraries
	Abstract
	Introduction
	Background
	Software Package Ecosystems
	Cross-Ecosystem Bindings for ML Libraries

	Related work
	Empirical Studies of ML Libraries
	Software Ecosystems
	Foreign Function Interfaces

	Methodology
	Collecting Open Source ML Repositories
	Collecting Bindings for Open Source ML Libraries
	Collecting Releases of Popular ML Libraries and Their Bindings

	Results
	RQ1: How effective is BindFind for identifying bindings, and what are the identified bindings for ML libraries?
	RQ2: How are ML libraries and their bindings distributed across ecosystems?
	RQ3: How are cross-ecosystem bindings for popular ML libraries maintained?

	Implications
	Implications for Developers
	Implications for ML Package Owners
	Implications for Researchers

	Threats to Validity
	Internal Validity
	External Validity

	Conclusion

	Studying Release-Level Deprecation of Bindings for Machine Learning Libraries
	Abstract
	Introduction
	Background
	Package management in Rust
	Dependencies in Cargo
	Yanked releases

	Related work
	Software packaging ecosystems
	Deprecated APIs and packages

	Methodology
	Collecting basic package information
	Mining GitHub repositories of packages with yanked releases
	Collecting historical data of yanked releases
	Collecting package metadata from npm

	Results
	RQ1: What is the prevalence of deprecated releases in bindings for ML libraries compared to general packages?
	RQ2: What is the rationale behind using release-level deprecation in bindings for ML libraries compared to general packages?
	RQ3: How many packages adopt yanked releases of bindings for ML libraries compared to general packages in Cargo?

	Implications
	Implications for maintainers of package managers
	Implications for package owners
	Implications for Cargo maintainers
	Implications for researchers

	Threats to validity
	Conclusion

	Studying the Correctness and Time Cost of Bindings for Machine Learning Libraries
	Abstract
	Introduction
	Background
	ML Frameworks
	Bindings for the ML frameworks

	Study Design
	Environment setting
	Studied datasets and models
	Studied ML frameworks
	Studied bindings
	Correctness evaluation
	Time cost evaluation
	Experimental setup
	Supported features in studied bindings

	Correctness Evaluation
	Time Cost Evaluation
	Implications
	Implications for developers
	Implications for binding owners
	Implications for researchers

	Related work
	Impact of ML frameworks on ML software correctness
	Impact of ML frameworks on ML software time cost
	Impact of ML frameworks on ML software reproducibility
	Empirical Studies of ML Frameworks
	FFIs and Bindings in Software Engineering

	Threats to Validity
	Construct validity
	Internal validity
	External validity

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

