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Abstract—The application of artificial intelligence (AI) technol-
ogy in the field of power systems and power electronic devices is
increasingly prevalent. With massive datasets generated by a wide
range of equipment, AI-based modeling is promising in the future
of hardware-in-the-loop (HIL) emulation. This paper studies and
improves the machine learning (ML) based modeling approach
for power electronic devices, and the inferencer-in-the-loop (IIL)
system is proposed together with optimized neural network (NN)
models. The high-speed rail (HSR) microgrid, includes auto-
transformer rectifier unit subsystems (ATRUSs), energy storage
subsystems (ESSs), two-level converter based permanent magnet
synchronous motor (TLC-PMSM) propulsion subsystems, and
modular multilevel converter based induction motor (MMC-IM)
propulsion subsystems, serves as study cases to demonstrate the
adaptability of this approach. Finally, to show high accuracy
and versatility of the IIL real-time emulation system, the system-
level (1 µs timestep) and device-level (50 ns timestep) results
are compared in three domains: the referencer system (C code
simulation program in NVIDIAr Jetson and offline SaberRDr

datasets), offline inferencer emulation on Xilinxr VCU118 board,
and online refined inferencer emulation on Xilinxr VCU118
board.

Index Terms—Artificial intelligence (AI), field-programmable
gate arrays (FPGAs), hardware-in-the-loop (HIL), insulated-gate
bipolar transistor (IGBT), inferencer-in-the-loop (IIL), machine
learning (ML), power electronics, recurrent neural network
(RNN), real-time systems, silicon carbide (SiC).
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I. INTRODUCTION

High-speed rail (HSR) [1], [2] provides a reliable, fast,
and efficient transport solution to carry passengers between
long-distance densely populated metropolis, which helps to
drive the construction demand in the short term and stimulates
economic productivity and competitiveness in the long run.
For example, there are around 56,129 km HSR in operation
worldwide over the speed of 200 km/h in 2021, 22,562 km
HSR under construction, and more than 52,000 km HSR
planed globally [3]. However, the corresponding power system
simulation technologies can not keep up to the pace of these
rapidly developed extensive HSR networks due to insufficient
computational resources based on the traditional electromag-
netic transient program (EMTP) method, which poses threats
to the entire HSR network because of lacking the capability
of testing its optimal control, device-level and system-level
stress assessment, etc. Therefore, it is highly desirable to have
the high-accuracy and the low-latency execution hardware for
these scenarios.

In recent years, machine learning (ML) enables the black-
box model to be created directly from raw field data with
time-saving training methodology and its efficient parallel
execution hardware. Different neural network configurations
have been investigated for different types of modeling ob-
jectives, including traditional artificial neural network (ANN)
[4], recurrent neural network (RNN) [5], convolutional neural
network (CNN) [6], and so on. Currently, ML approaches
have been widely applied in the power system or power
electronics area [7], including design [8], [9], control [10],
[11], maintenance [12], [13], etc. These approaches, however,
are rarely utilized for power system or power electronics
modeling [14], [15], let alone real-time simulation modeling
with hardware acceleration [18].

With the rapid development of the microelectronic tech-
nology, massive paralleled compute structures, such as field-
programmable gate arrays (FPGAs), graphic processing units
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Fig. 1. NN structure: (a) different NNs’ fitting ability; (b) lumped NN; (c) partitioned NN; (d) partitioned NN with constant features.

(GPUs), etc., appeared in the market for dedicated purposes:
1) FPGA, originally designed for a reconfigurable electronic
circuit, is employed for real-time emulation of AC-DC net-
works [16], large-scale power system simulation [17], power
electronics drive systems [19], ML modeling [18], fault detec-
tion and isolation (FDI) [20], etc.; 2) GPU, initially designed
for computer graphics, is applied for accelerated computing
in microgrid modeling [21], parallel computation [22], (neural
networks) NN training, etc. FPGA operates at a lower fre-
quency (stable at 100 MHz) but with more flexible data width
and depth design options, is suitable for real-time inferencer-
in-the-loop (IIL) application, while the fast-clocking powerful
GPU is advisable for iterative training of NN models. Thus, it
is beneficial to utilize the FPGA for real-time ML-based model
inferencer (efficient resource usage), and GPU as the execution
hardware for online training (real-time adaptivity). To fully
capture the real-time effect of aging and thermal phenomena,
a trained model is necessary in real-time with finer steps, then
the inferencer model should refresh periodically.

This paper proposes a real-time IIL hardware emulation
for a detailed HSR microgrid based on online-learning ML
modeling, which can conduct a system-level emulation at the
timestep of 1 µs and device-level emulation at the timestep of
50 ns. The rest of the paper is organized as follow: Section
II introduces the ML modeling methods. Section III presents
the modeling strategies for the HSR microgrid. Section IV
describes the parameter design of NN models as well as soft-
ware and hardware implementation of IIL on NVIDIAr Jetson
AGX Xavier, the Xilinxr VCU118 FPGA, and ML cluster
with NVIDIAr V100 GPUs. Section V depicts the results of
the referencer simulation, the inferencer offline emulation, and
the inferencer online emulation. Finally, Section VI gives the
conclusion.

II. MACHINE LEARNING MODELING METHODS

This section discusses the ML modeling of power electron-
ics objectives and its improvements with empirical knowledge.

Based on the complexity and function of equipment, NN
models can be classified as component-level, device-level, and
system-level models as in [18]. However, it is an illusion that
an elementary NN can fit every power electronics device.
Although [23] demonstrates that an NN with sufficiently
elaborate cells can approximate any functions, this bloated
NN model may lead to massive data demand, challenging
training process, and high hardware resource consumption.
The improvement of the NNs modeling method with concepts
and experiences from power electronics is essential to make
the models efficient, flexible, and accurate. The NN approach
in our paper is optimized from lumped NN (LNN) and
partitioned NN (PNN) to partitioned NN with constant features
(PNNCF). As shown in Fig. 1 (a), PNNCF is less generalizable
than LNN, but it can achieve higher efficiency.

A. Lumped NN

Without feature engineering, the LNN model is simplest
to be built as a “black box”. It can work better than any
traditional models because of its extensive learning ability and
versatility. It typically consists of a single NN, as shown in
Fig. 1 (a). This LNN can be built without interdisciplinary
knowledge and then mapped to any function based on its
multiple layers and huge hidden layers. The performance of
the model is highly dependent on the size of the dataset
available. However, its redundant structure results in a waste
of hardware resources. The large LNN matrices also lead to
a difficult training process, and time-consuming execution. Its
general mathematical description is

{y1, · · · , ym} = f (x1, · · · , xn) , (1)

where x1 . . . xn are the inputs and y . . . ym are the outputs.

B. Partitioned NN

Although numerous signals and variables can be included
in the initial LNN, a vast amount of irrelevant signals may
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cause a large number of zero weights and biases in the
calculation matrix. As opposed to the LNN that lacks pro-
fessional knowledge and feature engineering, the PNN is built
based on the LNN but utilizes mathematics and understanding
of electromagnetic transients to improve compactness and
efficiency. The PNN is divided into multiple blocks, similar
to matrix decomposition, reducing the matrix dimension and
speeding up the calculation. For example, the electromagnetic
transient simulation process and the mechanical process of the
motor can be calculated in parallel. As a result, a large LNN
model can be transformed into partitioned parts, consisting of
numerous lower-dimensional NNs in cascade or parallel.

A one-layer linear NN can be expressed as Y = AX, shown
as the grey block in Fig. 1 (b). The matrix operation in Fig.
1 (b) includes both unrelated functions, which are marked as
green and purple in the equivalent system of Fig. 1 (c). Taking
five inputs and five outputs one-layer linear NN as an example,
here is the equation of it:

y1

y2

y3

y4

y5

 =


a11 a12 0 0 a15

a21 a22 0 0 a25

0 0 0 a34 a35

0 0 a43 a44 0
0 0 a53 0 a55



x1

x2

x3

x4

x5

 . (2)

The matrix in Y = AX can be further decomposed as in
equation (3):
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]
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,
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 = C

x3

x4

x5

 ,C =

 0 a34 a35

a43 a44 0
a53 0 a55

 ,
(3)

where B and C represent the green and purple dots in the
grey block of Fig. 1 (b), or the green and purple blocks in
Fig. 1 (c). Here, the matrix’s rank is reduced, and the blocks
can run in parallel. As a result, the partition approach can be
highly efficient in hardware resources and execution time.

C. Partitioned NN with Constant Features

When the PNN is applied in the field of power electronics,
they are more likely to be a collection of devices, such as
a family of motors with varying powers, stator impedances,
and voltage levels, rather than a single object, such as a fixed-
parameter motor. Hence, PNNCF is the powerful and most ef-
ficient method for this situation. The difference between PNN
and PNNCF are the inputs, including parameters of the PNN
models, which are not needed in PNNCF. As shown in Fig. 1
(c), the orange dots represent the parameter features, and they
are varying inputs in PNN while serving as constant weights
and bias inside PNNCF, as shown in Fig. 1 (d). This method
reduces the rank of the input matrix and the calculation matrix,
thereby further saving resource consumption and accelerating
calculation.

III. MACHINE LEARNING MODELING FOR HIGH-SPEED
RAIL MICROGRID

The whole HSR microgrid, including auto-transformer rec-
tifier unit subsystems (ATRUSs), energy storage subsystem
(ESSs), and propulsion subsystems, is depicted in Fig. 2 (a).
Although each type of subsystem differs from the others, They
can be equivalently divided into two parts by transmission
line modeling (TLM), as in Fig. 2 (b). The central DC bus
connects all of the equivalent voltage sources of subsystems;
the others are their own subsystem networks that contain
equivalent DC voltage sources and their device. ATRUSs
primarily serve as power suppliers, delivering energy from
the power grid to the propulsion subsystems. When the entire
system disconnects from the main grid, ESSs can provide
energy for the propulsion subsystems, but they primarily act
to store power and reduce the DC voltage when machines
brake. Some HSR propulsion subsystems can run connected
to the main power grid (by ATRUSs) and temporarily dis-
connected from power lines along the route (with the help
of the ESSs) [24], [25], [26]. Their machines can work as
power supplies to feedback energy during train braking. The
generic ATRUSs and ESSs are briefly illustrated, followed by
a detailed description of the modeling and update process of
the HSR propulsion system, in which motors and converters of
various types and architectures may be applied. Two common
topologies are represented separately: 1) Modular multilevel
converter induction motor (MMC-IM) propulsion subsystem.
This structure is complicated as MMC may have large numbers
of submodules; the MMC is built by the hybrid model (it
has an algebraic component and an ML component), and the
IM model is constructed by multi-NNs. 2) Two-level con-
verter permanent magnet synchronous motor (TLC-PMSM)
propulsion subsystem. This is relatively simple compared to
the MMC-IM system. Here, RNN is applied to model the two-
level converter, and multi-NNs are used for the PMSM. The
different types of converters and motors used in these two
systems allow the illustration of both the modeling details and
its versatility.

A. ATRUS and ESS

To update the network node data, the classical modeling
based on the nodal method, normally utilizes the historical
current of each node of the whole network as input and the
voltage as output or the full node voltage as input and the
current as output. However, voltage and current changes of
each node are primarily related to the data of surrounding
nodes, and nodes that are not directly connected have minimal
influence. This type of network can be easily partitioned
into numerous independent portions based on the device. For
example, the ATRUS is decomposed into three parts, a phase-
shifting transformer, a dual-rectifier, and an LC filter in the
Fig. 3 (a). All of these partitioned parts can be modeled
by traditional or NN methods. Fig. 3 (b) shows the input
and output of NN model, where vgrid, vt ab1, vt bc1, vt ab2,
vt bc2, vrec, vdc ATRU , igrid, ita1, itb1, itc1, ita2, itb2, itc2,
irec, and idc ATRU are the grid side voltage, the transformer
secondary side voltage, the rectifier output voltage, the LC
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Fig. 2. HSR microgrid: a) general topology; b) equivalent circuit.

Fig. 3. Auto-transformer rectifier unit subsystem: (a) topology; (b) corre-
sponding ANN models.

filter output voltage, the grid side current, the transformer
secondary side current, the rectifier output current, and LC
filter output current, respectively.

Similarly, the ESS also can be divided into three parts ( a

Fig. 4. Energy storage subsystem: (a) topology; (b) corresponding ANN
models.

converter, an inductor, and a battery) in Fig. 4 (a). Then, the
NN models of ESS are shown in Fig. 4 (b), where vdc, vcb, vb,
idc b, ibl are the DC link voltage, the converter output voltage,
the battery volatge, the DC link current, and the inductor
current, respectively ; gl and g2 are the control signal of the
converter.

B. MMC-IM Propulsion Subsystem

In Fig. 5 (a), this propulsion subsubsystem contains a three-
phase MMC and an induction motor, where each MMC arm
has an inductor and four SMs to achieve five voltage levels.
The MMC-IM subsystem dq control strategy is shown in Fig.
5 (h). The MMC propulsion subsystem has many submodules,
which leads to a huge calculation burden and long execution
delay. Hence, the TLM method is a popular modeling tool
for replacing linear and nonlinear reactive parts of a circuit to
address the large lumped network issue. To create a TLM-
based network, the Thévénin equivalent circuit models are
applied to replace arm inductors as well as dc capacitors inside
the MMC. This is a traditional approach to separate the lumped
MMC networks and make each submodule run in parallel.
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Fig. 5. MMC-IM propulsion subsystem: (a) MMC-IM subsystem topology; (b) MMC submodule topology; (d) MMC arm ANN model; (e) MMC submodule
equivalent circuit; (f) MMC submodule ANN model; (g) IM ANN detailed model; (h) control strategy; (i) MMC single-phase equivalent circuit; and (j) MMC
single-phase TLM equivalent circuit.

Because the three-phase MMC is symmetrical, the study of
one phase can be generalized as Fig. 5 (j). The process of
dividing the vast MMC one-phase network, which consists
of many nodes and meshes, into multiple electrically related
but structurally separate subcircuits is also depicted in Fig.
5 (j) [27]. As the number of SM increases, the computing
overhead grows, and the model is impractical to execute within
a limited timestep. The MMC circuit is partitioned based on
voltage current source coupling for faster emulation speed,
which isolates all SMs from the arm in the emulation system.

As for the SM, here is an example to show the significant
versatility of the proposed NN modeling approach. The classic
MMC half-bridge submodule used in the MMC is shown in
Fig. 5 (b), and Fig. 5 (c) shows a portion of the circuit. To
solve the discrete-time value of the submodule, the calculation
is given by the Euler method [28] as follows:

Ia1 =

[
Zc1 + Zs1 + Zs2 −Zs2

−Zs2 Zs2 + Zs

]−1 [
vt−∆t
hist v

−vt−∆t
hist w

]
, (4)

[
vtc
vts

]
=

[
−Zc1 0

0 Zs

]
Ia1 +

[
vt−∆t
hist v

vt−∆t
hist w

]
, (5)[

vthist v
vthist w

]
= 2

[
−Zc1 0

0 Zs

]
Ia1 +

[
vt−∆t
hist v

vt−∆t
hist w

]
, (6)

where Zc1, Zs1, Zs2 and Zs represent the impedance of
equivalent inductance σL, IGBT S1, IGBT S2, and capacitor
C1, respectively; Ia1 is the current matrix of the submodule;
v c and v s are the real voltage of equivalent inductance σL
and capacitor C1; the historical features of devices, are marked
as vhist v and vhist w of v and w ponits.

To produce v c and v s, a new equation can be obtained

from (4)–(6) or simply represented as the nonlinear model:{
vtc, v

t
s, v

t
hist v, v

t
hist w

}
= f

(
vt−∆t
hist v, v

t−∆t
hist w, g1, g2

)
.
(7)

Equation (6) can be trained as a nonlinear model as shown in
Fig.5 (f), i.e., an ML-based ANN model is built to replace the
linear model, which requires matrix inversion.

Then, the MMC Arm main circuit model in Fig. 5 (j) can be
simplified to Fig. 5 (i), where ΣV and ΣZ represent the sum
of voltage and resistance of SMs in each arm, and u and d
represent the up and the down arms, respectively. The two-port
network in the TLM method can pass the voltage information
between the arm circuit model and the submodule model.
Hence the modeling of the arm circuit model is the same
as that of the submodule. Based on the Thévénin equivalent
circuit model in Fig. 5 (i), a similar ANN nonlinear model
can be constructed as in Fig. 5 (d), but the input sizes are
significantly increased. Finally, the arm-level model function
is expressed as:{

vta, i
t
au, i

t
ad

}
= f

(
vt−∆t
a1 , · · · vt−∆t

an , vtdc, i
t−∆t
a

)
, (8)

where v a1, · · · v an denote the history voltage of submodule;
i au and i ad represent the up and down arm current; v a and
v a are the voltage and current of one phase MMC output;
and v dc is the DC link voltage input.

For insulated-gate bipolar transistor (IGBT) modeling, the
conventional model uses formulas to determine the voltage and
current outputs but does not discriminate between transient
and steady states. The analytical nonlinear behavioral model,
on the other hand, is quite complex, and it is difficult to finish
the computation, which may include the Newton-Raphson

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on June 04,2022 at 01:11:55 UTC from IEEE Xplore.  Restrictions apply. 

READ O
NLY



2687-9735 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTIE.2022.3179959, IEEE Journal
of Emerging and Selected Topics in Industrial Electronics

6

Fig. 6. SiC IGBT hybrid model output waveform.

iterations or exponential functions, in a short time. To fit the
conventional IGBT model and expedite execution, a lumped
NN model can be employed. This model will be identical to
the traditional model, and it may be applied to the transient
state or the steady-state of the switches. However, in that case,
the following issues will arise: 1) to maintain the accuracy of
the model during the switching transient, the time-step must
be set to be very small, making it difficult for the model to
produce real-time operating output; 2) the model must properly
anticipate both transient and steady-state waveforms, resulting
in a sophisticated model structure that can adapt to the features
of diverse IGBT operating situations; 3) because the transient
waveform accounts for a small part of the total waveform and a
significant portion of the data is information characterizing the
steady-state waveform, learning the properties of the transient
waveform is rather challenging for the lumped NN model.

In order to solve these problems that are limitation of the
lumped NN model and the traditional model, the IGBT NN
model is divided into two parts. Each section exclusively
focuses on special applications and makes use of their unique
architecture and parameters. In contrast to the lumped NN
model, the partitioned NN model may be broken into smaller
ML portions using empirical knowledge, providing a remark-
able instance of the interdisciplinary use of power electronics
and ML [18]. The IGBT transient unit ANN in Fig 5 (c) and
the MMC submodule ANN in Fig 5 (f). The input vIGBT ,
iIGBT , vc, and ic can be calculated by the submodule ANN
model (system-level), and then the IGBT transient waveforms
are generated by the IGBT transient unit ANN model (device-
level). Besides, it is challenging to finish the calculation for
transient waveform within a few clock cycles. However, the
IGBT transient unit can output 20 points of the switching
transient for each execution (1 µs), making a tiny timestep
(50 ns) possible for the switching transient. Fig. 6 shows
how the IGBT transient ANN works together with the MMC
submodule ANN.

As for the IM, since the IM is similar to PMSM with damp-
ing circuits, it can be modeled by the same strategy. Hence,
its modeling is detailed together with PMSM in subsection B.

C. TLC-PMSM Propulsion subsystem

The MMC-IM subsystem has too many nodes, and the
complicated neural network causes a considerable delay, mak-
ing it difficult to fulfill the real-time requirements. Hence,
ANN can be utilized as the simplest way to achieve a minor

Fig. 7. Two-level converter propulsion subsystem: (a) topology; (b) converter
RNN model; (c) control strategy; (d) PMSM ANN-based detailed model.

execution delay with relatively few resources in the MMC-
IM subsystem. However, as shown in Fig. 7 (a), the TLC-
PMSM subsystem is relatively simple compared to the MMC-
IM subsystem, making the RNN modeling method a better
option. This approach outperforms ANN in terms of accuracy
and can realize large neural networks with fewer weights and
biases. In Fig. 7 (b), the modeling approach for TLC followed
here is the same as our early research [18], which is also
called LNN in this paper. The same three-step RNN-based
LNN can provide an inaccuracy of less than 1%. Then, the
control strategy for the TLC-PMSM subsystem is displayed
in Fig. 7 (c). Despite the fact that the motor is still a PMSM
with the same characteristics, a new hybrid model is employed,
which surpasses the previous models in terms of speed and
torque dynamic performance. This is because the prior model
only examined the standard PMSM, while the new model
also considers the PMSM with a dampening circuit, and some
RNN units are replaced with ANN units to minimize hardware
resource usage in Fig. 7 (d). The analytical equations of
PMSM with short-circuit windings are presented first in order
to analyze modeling method:

vq = Riq + ωrλd +
dλq

dt , (9)

vd = Rid − ωrλq + dλd

dt , (10)

0 = rkdikd + dλkd

dt , (11)

0 = rkqikq +
dλkq

dt , (12)
λq = Lqiq + Lmqikq, (13)

λd = Ldid + Lmdikd + λm, (14)
λkq = Lmqiq + Lkqikq, (15)

λkd = Lmdid + Lkdikd + λm, (16)

where vd, vq , id, iq , λd, and λq are the dq axis voltage, current,
and flux linkage of the PMSM; ikd, ikq , λkd, and λkq mean dq
axis current, and flux linkage of short-circuit windings; R, Ld,
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Lq , Lkd, Lkq , λm represent dq axis resistance, stator induc-
tance, short-circuit windings inductance, and flux linkage of
permanent magnets, respectively; ωr is the speed of the motor.
From (9)-(16), the inputs and outputs of flux units are uniquely
determined. Based on these equations, the relationship of the
physical variables is specified, and the flux unit ANN is built
to update the flux linkage λd and λq:

{∆λd,∆λq} = f
(
vtd, v

t
q, i

t−∆t
d , it−∆t

q , λt−∆t
d , λt−∆t

q , ωt−∆t
r

)
.

(17)

Then, the calculation of short-circuits windings ANN model,
called damping flux unit ANN, is similar to flux unit ANN,
and it can be written as:

{∆λkd,∆λkq} = f
(
it−∆t
kd , it−∆t

kq

)
. (18)

After the flux linkage update, current unit is executed based
on the present λtd, λtq , λ

t
kd, and λtq:{

itd, i
t
q, i

t
kd, i

t
kq

}
= f

(
λtd, λ

t
q, λ

t
kd, λ

t
kq

)
. (19)

And the calculation of Te can be expressed as:

{Te} = f
(
itd, i

t
q, λ

t
d, λ

t
q

)
. (20)

Then, the electric torque θr and ωr can be calculated as:

{∆θr,∆ωr} = f
(
{Te, Tm, θr, ωr}t−∆t,t−2∆t

)
. (21)

As for the comparative NN model, a general RNN-based
PMSM model was built in our previous research [18], where
only the easily measured signals were selected as inputs, but
a filter would be added to enhance stability if necessary. Here
are its NN functions for the current and the torque:

{iq, id} = f (vq, vd, ωr) , (22)

{Te} = f
(
itd, i

t
q

)
, (23)

Sometimes ML models seem to make original calculation
complex in terms of the hardware resource consumption, the
number of parameters, the simplicity of expression, etc. But
they are different in the following ways: 1) The traditional
method may require solving equations or matrix inversion, but
the ML models only have matrix addition and multiplication,
which can run in parallel and be accelerated by hardware. 2)
ML models contain more parameters than traditional state-
space methods. ML models can learn the difference between
transient and steady states while the state-space methods may
be approximately linear. 3) ML models can be updated in a
highly manageable way than the traditional method in the IIL
system. For example, the state-space motor equations have the
precondition that the parameters are unchanged. However, ML
models can be updated in changeable situations considering
the changing parameters. ML models have the same NN
structure for all devices, while traditional methods may be
different vary from the device.

Fig. 8. IIL system software structure: (a) IIL topology and connection; (b)
Jetson function; (c) FPGA function.

IV. HARDWARE IMPLEMENTATION OF REAL-TIME
INFERENCER-IN-THE-LOOP EMULATION

The architecture of the IIL system, including the hardware
and software structure, is explained in-depth in this section
first; then, the hardware resource and hardware consumption
are reported. Various considerations of the IIL system design,
especially the data processing and update policy, are taken into
account to maintain accuracy and improve resource utilization.
Following the update time analysis, the NN model training
parameters and iterative update errors reduction is examined.
Finally, suitable parameters in terms of update time, model
error, and resource consumption have been attained.

A. Inferencer-in-the-loop Implementation

Fig. 8 (a) depicts the structure of the IIL system, which is
divided into three parts: the referencer system, the ML cluster,
and the real-time inferencer system. The referencer system is a
source of datasets from which all NN models are trained, and it
can be a physical system or a convincing, credible, and stable
simulation system. Then, the ML cluster is the training section,
which contains the offline models trained by offline data and
online models trained by datasets from referencer system.
After training, these weights and biases are sent periodically to
the final part, the real-time inferencer system. This real-time
inferencer system has NVIDIAr Jetson AGX XavierTM as
the data center for transferring data and signals, and Xilinxr

VCU118 FPGA works as a hardware peripheral for NVIDIAr

Jetson AGX XavierTM. In Fig. 8 (b), not only can Jetson work
as an emulation data transfer station, but it can also run the
simulation programs serving as the referencer. As for the real-
time inferencer system on Xilinxr VCU118 FPGA, the NN
emulation system is running inside intellectual property (IP)
cores, and the inferencer system receives and updates models
in IP cores over peripheral component interconnect express
(PCIe) interface as illustrated in Fig. 8 (c). The internal design
and dataflow of real-time in-memory database structure are
show in Fig. 9 (a) and (b), respectively.

Fig. 10 shows the hardware connection of the IIL sys-
tem, including NVIDIAr Jetson AGX XavierTM and Xilinxr

VCU118 FPGA board. In this paper, NVIDIAr Jetson AGX
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Fig. 9. Real-time in-memory database (Redis): (a) internal design; (b)
dataflow.

Fig. 10. Hardware components of the real-time IIL emulation system.

Xavier works as the referencer system to generate training
datasets for NN models and also serves as a data bridge
in the inferencer system. The traditional transient simulation
programs in NVIDIAr Jetson AGX Xavier are written in
C, and their accuracy was verified by PSCAD/EMTDCr.
The raw data are sent from NVIDIAr Jetson AGX Xavier
to Redis real-time in-memory database in the cloud. Then,
the ML cluster with two Intelr Silver 4216 Cascade Lake
central processing units (CPUs) and four Nvidiar V100 Volta
graphics processing units (GPUs), processes the data and
runs the Pytorch training script. Finally, the NN models are
implemented on Xilinxr VCU118 FPGA board, and their
hardware resource consumption is shown in Table I. The
Xilinxr VCU118 board with the XCVU9P FPGA runs at 100
MHz, and has the following resources: 4,320K block random-
access memories (BRAMs), 6,840 digital signal processors
(DSPs), 2,364,480 flip flops (FFs), and 1,182,240 lookup
tables (LUTs).

B. Data Processing and Update Policy

One of the essential aspects of NN model training is data
processing. In general, the more operational conditions incor-
porated, the better the training datasets will ensure the gener-
ality of model. However, transferring all of the acquired data

TABLE I
MODEL HARDWARE RESOURCE CONSUMPTION

Device BRAM DSP FF LUT Latency

IGBT 0 0.63% 0.17% 0.52% 0.63 µs
Submodule 0 0.55% 0.09% 0.44% 0.29 µs
MMC Arm 0 1.21% 0.31% 1.01% 0.31 µs

MMC 0 49.56% 12.34% 40.53% 0.92 µs
ATRUS 0% 1.54% 0.39% 1.31% 0.64 µs

ESS 0% 0.88% 0.23% 0.74% 0.55 µs
RNN Converter 4.37% 7.88% 0.56% 4.01% 0.64 µs
Hybrid PMSM 0% 2.75% 1.23% 2.24% 0.84 µs
RNN PMSM 4.37% 9.52% 0.48% 4.22% 0.81 µs
Hybrid IM 4.37% 3.31% 1.36% 2.55% 0.82 µs

Available 4320 6840 2364k 1182k

to the training algorithms is inefficient and time-consuming.
Then, data simplification and selection procedures are critical
for reducing training time and increasing accuracy. Using the
NN model training for PMSM as an example, the datasets are
gathered at various speeds, torque, voltage, and current (e.g.,
the motor speed varied from -0.1 to 1.5 p.u. and the torque
changed from 0 to 1.2 p.u. in 8 s when the time-step is 1 µs,
resulting in 8,000,000 groups of data). The term “group” is
one dataset of variables combination (speeds, torque, voltage,
current, etc.) collected simultaneously. Only after the ML mod-
els are trained with the data selection (varying speeds, torque,
voltage, and current), can they comprehend the character of the
PMSM and run in a variety of conditions that were not offered
in training. Then, The collected dataset (8,000,000 groups of
data) is sampled with the interval (1,000) to build a new
training dataset (8,000 groups of data). It is worth mentioning
that the sampling interval and the size of the training dataset
are also affected by the complexity of the modeling object.
The training datasets of offline models could be larger than
those for online training because offline models have more
time and hardware resources for training, and the update time
is taken into consideration.

Ideally, the IIL system can continuously update the NN
models to maintain model accuracy and generality. However,
this is not the best policy for the IIL system since it may
produce over-fitting concerns when the update process is
running continuously. Another challenging issue is that the
data collection, selection, and procession may not be able to
keep up with the high-demand real-time update frequency. For
example, the IGBT transient waveform datasets are challeng-
ing to locate and collect with a 50 ns timestep. Furthermore,
the characteristics of IGBT, changed by aging, temperature,
and humidity variations, are likely to be distinct over hours,
days, or months rather than minutes or seconds. Although the
IIL system has the ability to update constantly, the updated
frequency and its update policy are determined by practical
demands.

The update process for the IGBT transient ANN model is
depicted in Fig. 11. The online dataset and model updating
processes operate concurrently and are managed by manually
designed strategies. The data for IGBT will be detected when
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Fig. 11. IGBT transient ANN update processes.

the datasets are submitted to the data washer; then, the
transient data may be filtered by driving signal g1: If a major
shift in the drive signal is identified, a group of data (20 points
of voltage, current, and drive signals with a time-step of 50 ns,
corresponding to a 1 µs waveform) will be selected and sent
to datasets for training. When the number of groups hits 5,000,
the order of the groups in the dataset will be randomized in
order to optimize training.

It should be highlighted that the offline model can also be
generated from real-world devices in system experiments, not
only a simulation reference program. The offline models work
well with generality in most situations, but the IIL system
improves them in such a creative approach. The training
procedures are not constantly active, and they will cease when
the error falls below a threshold or reaches the artificially set
training times. Since the characteristics of device will changed
because of aging, temperature and humidity variations, and any
other environmental fluctuations, error are likely to occurred
between models and real-world objects. The updating process
is not related to error correction but is aimed to monitor and
model running devices in the real world. These models can
be updated and improved in the emulation system with daily
monitoring data. The online training process is only used to
reduce the error of models or reflect unobserved phenomena
since experiments cannot fully reflect practical scenarios.

C. NN Models’ Parameters and Error

The ANN is a traditional feedforward NN that is both
simple and effective for hardware acceleration. The standard
activation functions employed in ANNs and RNNs include
rectified linear unit (ReLU), sigmoid function, and tanh func-
tion. Tanh function performs best for nonlinear regression NN,
but it consumes a lot of resources (particularly BRAMs on
FPGAs) and has a high latency relatively. The error of the
models with all of these activation functions, on the other
hand, is close. As a result, tanh and sigmoid are used in
RNN models, whereas ReLU is used in ANN for quicker
execution and lower hardware usage. Although the mean
absolute error (MAE) criterion measuring the performance,
Adam optimization algorithm [29], and models’ parameters

Fig. 12. Update time consumption: (a) ANN model update time at different
hidden size and dataset size; (b) RNN model update time at different sequence
length and dataset size.

Fig. 13. Iteration updated error reduction: (a) TLC model’s error during
update; and (b) MMC submodule model’s error during update.

were discussed in our previous research [18], the parameters
should be redesigned when the update time interval in the ML
cluster is taken into consideration. The hidden size of ANN
has essentially no effect on update time in Fig. 12 (a), while
the sequence size of RNN only slightly increases time in Fig.
12 (b). Only the size of the dataset has a visible impact on the
update time. Fig. 13 shows the error reduction of both ANN
and RNN models with different hidden sizes during updates.
RNN models have better performance than ANN models with
the same hidden size in Fig. 13 (a). The bigger the hidden
size they have, the minor error will be produced shown in
Fig. 13 (a) and (b). However, ANN has the highest priority
to be selected when the error is within the allowable range.
Hence, the parameters may be produced similar to our study
[18], which indicates that the hidden size for both ANN and
RNN should be 2-4 times of the input size, and the sequence
size for RNN should be 3 or 4. The number of layers of ANN
is 1 or 2 (depending on the complexity of models), while it
is 1 for RNN. The learning rate of online training, marked as
Lr, is shown in Fig. 13 and it is initial 0.001 in the offline
models.

V. RESULTS AND DISCUSSION

The outcomes of IIL emulation systems and referencer
simulation systems, including the ESS, the ATRUS, the TLC-
PMSM subystem, and the MMC-IM subsystems, are compared
in this section. These system-level and device-level waveforms
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Fig. 14. System-level results in the ESS and ATRUS from offline simulation
(top), and real-time ANN-based model emulation (bottom) for: (a) ESS
inductor current; (b) ATRUS rectifier voltage; (c) ATRUS DC bus current;
and (d) ATRUS DC bus voltage.

of referencer come from nodal analysis simulation in C pro-
grams, and datasets of SaberRDr, respectively. The real-time
IIL emulator results on FPGA contain the waveforms from
the offline-trained model and refined models after the online
training update. In addition, a comparison between RNN-based
PMSM model in our earlier research [18] and the ANN-based
hybrid detailed PMSM model is shown.

Fig. 14 shows the system-level results of the ESS and
ATRUS.The ESS and ATRUS are connected to the TLC-
PMSM propulsion system. The ESS inductor current (in Fig.14
(a)) changes because of the adjustment of DC bus voltage (in
Fig. 14 (d)). When the DC bus voltage is dropped by the
PMSM driving in 2 s to 4 s, the ESS subsystem works as a
power supply, and vice versa. Fig. 14 (b) shows the voltage
output of both traditional rectifier models and rectifier ANN
models. Almost no difference between the two waveforms can
be found because the error is too small. Then, the influence
between DC bus voltage and current is displayed in Fig. 14
(c) and Fig. 14 (d) . When the output current increases, the
output voltage is slightly decreased, but the DC bus voltage is
almost kept on about 910 V steadily.

Fig. 15 shows the results of PMSM models: 1) Stable speed
and changing mechanical torque from 1 s to 4 s. During this
period, the reference speed is constant at 0.5 p.u. while the
mechanical torque raises from 0 to 1.2 p.u. at 2 s and drops
from 1.2 p.u. to 0.6 p.u.. 2) Stable mechanical torque and

Fig. 15. System-level PMSM results in the TLC-PMSM propulsion subsystem
from offline simulation (top), real-time RNN-based general model emulation
(middle), and real-time ANN-based detailed model emulation (bottom) for:
(a) PMSM torque; and (b) PMSM rotor speed.

Fig. 16. System-level two-level converter RNN results from offline referencer
simulation (top), real-time offline model inferencer emulator (middle), and
real-time refined model inferencer emulator (bottom) for: (a) three-phase
current; and (b) single-phase voltage.

changing speed from 4 s to 6 s. The command speed reduces
from 0.5 p.u. to 0.2 p.u. at 4 s and increases to 0.8 p.u. at 5 s
while the mechanical torque is kept at 0.6 p.u.. The results of
PMSM speed and torque in Fig. 15 (a) and (b) show both the
RNN-based general PMSM model and ANN-based detailed
PMSM model have excellent steady-state performance, but
ANN-based detailed model has better performance and larger
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Fig. 17. Device-level SiC IGBT ANN results from offline referencer simula-
tion (top), real-time offline model inferencer emulator (middle), and real-time
refined model inferencer emulator (bottom) for: (a) transient voltage; and (b)
transient current.

Fig. 18. System-level MMC submodule ANN results from offline referencer
simulation (top), real-time offline model inferencer emulator (middle), and
real-time refined model inferencer emulator (bottom) for: (a) capacitor voltage;
and (b) capacitor current.

signal bandwidth, mainly shown in Fig. 15 (b). This is because
a low-pass filter has to be applied in the RNN-based general
PMSM model, and bandwidth is sacrificed in exchange for
waveform stability when this model does not take short-
circuit windings into account. In other words, the ANN-based
detailed PMSM model has better dynamic performance and
more details compared with the RNN-based general PMSM
model.

Fig. 19. System-level MMC single-phase circuit ANN models’ results from
offline referencer simulation (top), real-time offline model inferencer emulator
(middle), and real-time refined model inferencer emulator (bottom) for: (a)
single-phase voltage; and (b) single-phase current.

Fig. 16 depicts the difference between the offline reference
system, the real-time offline inferencer model, and the real-
time online inferencer model for the two-level converter RNN
model. Fig. 16 (a) shows three PMSM currents that are heavily
influenced by the TLC model. Their single-phase output
voltage is shown in Fig. 16 (b). Clearly, the results from the
real-time online inferencer model are closer to the referencer’s
results than those from the real-time offline inferencer model.
After updates, the outputs are more reliable and accurate.

When it comes to the MMC model, results from three
ANN models should be discussed: device-level SiC model,
system-level submodule model, and system-level single-phase
model. In Fig. 17, the transient waveforms from SaberRDr

are shown at the top. Then, the waveforms from the real-
time offline model are displayed in the middle, while those
from the real-time online model are at the bottom. The results
from the online model are much more similar to that from the
referencer. As for the system-level MMC submodule model,
both the offline and online real-time inferencer results are
close to that of the referencer system. The capacitor voltage
amplitude is about 220 V , and the current jumps between 0
A and about 145 A in Fig. 18 (a) and (b), respectively. Due
to the simple function of the MMC submodule, the real-time
offline ANN model works as well as the online model. As for
the single-phase current in Fig. 19 (b), the results of the three
models are almost identical. However, a more evident contrast
between the offline ANN model and the online ANN model
will appear in Fig. 19 (a), which shows refined model performs
better than the offline one. While the system-level MMC
single-phase circuit offline model can only roughly outline the
waveform, the refined model can restore the waveform details.
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VI. CONCLUSION

This paper proposed the LNN modeling for power electronic
devices, then developed PNN and PNNCF approaches based
on LNN technique to accelerate execution and conserve re-
sources. To show the adaptability of these NN models, the
ATRUS, the ESS, the MMC-IM propulsion subsystem and
the TLC-PMSM propulsion subsystem for the HSR microgrid
are chosen as study cases. In designing the models of these
subsystems, the tradeoff between adaptability and computa-
tional efficiency of various NN models is considered. The
IIL system is further constructed with NVIDIAr Jetson AGX
Xavier, Xilinxr VCU118 FPGA, and the ML cluster with
Nvidiar V100 GPUs to improve the accuracy and flexibility
of the proposed NN models, and the inferencer system can
accomplish real-time system-level (1 µs timestep) and device-
level (50 ns timestep) emulation within 0.2% error.

The IIL system offers the following two primary benefits:
1) Accuracy and real-time update ability: in comparison to
traditional models, the AI-based IIL system can handle the
changes caused by equipment aging, temperature and humidity
variations, and any other environmental fluctuations. The NN
models in the IIL system are more accurate because the IIL
system works as a bridge between virtual simulation and
natural physical systems. 2) Versatility with fewer hardware
resources: The previous offline NN model required massive
hardware resources to provide adaptability and robustness.
However, simple NN models can simulate a diverse set of
different devices and environment conditions in the IIL system.
The IIL system was improved with PNNCF modeling, which
lowered hardware resources consumption while maintaining
accuracy.

APPENDIX

PMSM parameters: nominal apparent power: 60 kV A; rated
frequency: 60 Hz; stator winding resistance: 0.126 Ω; stator
leakage reactance: 1.019 mH; d-axis and q- axis inductance:
10.969 mH; d-axis damper winding resistance: 0.33 Ω; q-axis
damper winding resistance: 1.098 Ω; d-axis damper reactance:
9.87 mH; q-axis damper reactance: 18.706 mH .

IM parameters: nominal apparent power: 373 kV A; stator
winding resistance: 0.087 Ω; stator winding inductance: 35.5
mH; rotor winding resistance: 0.228 Ω; rotor winding induc-
tance: 35.5 mH; mutual inductance between stator winding
and rotor winding: 34.7 mH .

MMC parameters: DC bus voltage: 900 V ; DC capacitors:
400-800 mF ; switching frequency of converter: 2 kHz;
inductance linking upper bridge to load: 1 mH; inductance
linking lower bridge to load: 1 mH; submodule capacitors:
100 mF .

SiC IGBT parameters: emitter inductance: 10 nH; collector
inductance: 20 nH; parasitic inductance: 30 nH; total capac-
itive charge: 2.5 µC; peak reverse recovery current: 100 A.
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