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Abstract 

 

In this dissertation, I propose that network theory offers a useful frame for 

informing mathematics education. Mathematical understanding, like the discipline 

of formal mathematics within which it is subsumed, possesses attributes 

characteristic of complex systems. As the techniques of network theorists are 

often used to explore such forms, a network model provides a novel and 

productive way to interpret individual comprehension of mathematics. 

A network structure for mathematical understanding can be found in 

cognitive mechanisms presented in the theory of embodied mathematics described 

by Lakoff and Núñez.  Specifically, conceptual domains are taken as the nodes of 

a network and conceptual metaphors as the connections among them. 

Examination of this „metaphoric network of mathematics‟ reveals the scale-free 

topology common to complex systems.  

Patterns of connectivity in a network determine its dynamic behavior.  

Scale-free systems like mathematical understanding are inherently vulnerable, for 

cascading failures, where misunderstanding one concept can lead to the failure of 

many other ideas, may occur.  Adding more connections to the metaphoric 

network decreases the likelihood of such a collapse in comprehension.  

I suggest that an individual‟s mathematical understanding may be made 

more robust by ensuring each concept is developed using metaphoric links that 

supply patterns of thought from a variety of domains.  Ways of making this a 

focus of classroom instruction are put forth, as are implications for curriculum 



   

 

and professional development.  A need for more knowledge of metaphoric 

connections in mathematics is highlighted. 

To exemplify how such research might be carried out, and with the 

intent of substantiating ideas presented in this dissertation, I explore a small 

part of the proposed metaphoric network around the concept of 

EXPONENTIATION.  Using collaborative discussion, individual interviews and 

literature, a search for representations that provide varied ways of making 

sense of EXPONENTIATION is carried out.  Examination of the physical and 

mathematical roots of these conceptualizations leads to the identification of 

domains that can be linked to EXPONENTIATION.   
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Chapter 1 

Introduction 

Some of the deepest truths of our world may turn out to be truths 

about organization, rather than about what kinds of things make up 

the world and how those things behave as individuals. (Buchanan, 

2002, p. 19) 

 

Throughout the history of modern schooling, the pedagogy of mathematics 

has been organized around prevailing beliefs regarding the nature of mathematical 

knowledge. Euclid‟s development of geometry as a rigid and logical structure 

helped to give shape to linear curricula formulated in terms of assumed-to-be-

basic concepts that were elaborated incrementally and hierarchically.  The work 

of the Formalists in the early twentieth century was taken up in North America 

within the New Math Curriculum by a focus on axioms, laws and proofs. In 

contrast, the view of mathematics as fallible, tentative, and formed through 

communication among individuals underlies constructivist approaches where 

learners actively develop their own understandings of mathematical ideas. 

As a student, I experienced mathematics instruction that was influenced by 

these and other philosophies.   In many classes, teachers defined perfect 

mathematical forms and described their properties. Logical and structured proofs 

in Euclidean geometry were presented as the ideal way to establish rigor and 

truth.  I studied New Math, where sets and properties of number systems were 

used to develop concepts.  And in my first calculus course, I was forced to 

acknowledge that to comprehend mathematics I had to make sense of concepts on 

my own.   
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As a mathematics major at university, I learned far more than course 

content; mathematics was more than just a collection of rules and techniques.  

There was excitement in creating mathematical ideas that were new – at least to 

me.  I saw and appreciated the beauty and elegance of the discipline for the first 

time. And the unexpected connections I found among diverse branches of 

mathematics not only fascinated me, but also showed that more than one approach 

could be used when solving most problems. These revelations were not part of 

any formal instruction at university or, for that matter, at public school; I became 

aware of them quite incidentally in my own work. 

As a teacher, I tried to share my appreciation of these often-obscured 

qualities of mathematics with learners.  Classroom walls were plastered with 

quotations from mathematicians about their conceptions of and love for the 

discipline.  Stepping back, I provided chances for young people in my classes to 

come up with their own solutions, to do mathematics.  We had fun together in 

units on Statistics, where students chose questions they wanted to investigate, and 

designed and carried out inquiries in groups.  And I tried to recreate in them the 

sense of wonder and power that I had experienced when I recognized that no field 

of mathematics was isolated, that all were linked together in some way.    

This last point seemed particularly important, for all too often learners‟ 

understandings of mathematics seemed segmented, as if information about 

different concepts was stored away in distinct mental „files‟. Students had 

difficulty relating topics learned one month to those studied in the next.  

Deliberately pointing out relationships among various ideas was not successful in 
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breaking down the walls of these separated compartments.  Students might nod 

their heads and take down notes when connections were mentioned, but there still 

was little carry over from one unit to another.  Learners perceived mathematics as 

a collection of discrete topics, each with its own particular set of techniques.  I 

was at a loss; I had no idea how this view came to be established or why it 

persisted so stubbornly.  Nor did I know how to counter its influence in an 

effective manner.   

When I returned to university to undertake a doctoral program, I was 

introduced to complex systems – self-organizing, self-maintaining wholes whose 

behaviors emerge from the interactions of their components.  Similarities in the 

dynamics of colonies of ants, social behavior in communities, links in the World 

Wide Web and many other phenomena became evident. And I learned how the 

mathematics of network theory provided ways of developing insights into both 

how complex forms are structured and how they behave.   

Some researchers have suggested and presented evidence that a variety of 

disciplines – language (Barabási, 2003; Cilliers, 1998; Motter, de Moura, Lai & 

Dasgupta, 2002), music (Zanette, 2006), and science (Cilliers, 1998) – display 

properties that are consistent with those seen in complex unities. Reflecting on 

these works, I began to wonder whether mathematics too could be profitably 

viewed as a self-constituting complex system.  Looking at mathematics in this 

way offered a novel perspective on the discipline; the connections among 

different branches and concepts played a critical role in determining the dynamic 

behavior of such a form.  Could this new conception enhance knowledge of 
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students‟ comprehension of mathematics?  Would explanations emerge that shed 

light on why a learner‟s mathematical knowledge is all too often segmented and 

why this is problematic? What effects on pedagogy might a complexity and 

network-based interpretation of mathematics have?  I found the possibilities 

intriguing.   

By applying the techniques of network theory to mathematics – viewed as 

a complex system with an underlying web-like structure – I hoped to understand 

some of the difficulties learners experience in their studies of mathematics and 

perhaps find ways to assist them to overcome these problems.  Exploring what 

such a network structure might consist of, how it would act, and what this could 

mean for teaching and learning mathematics occupied the better part of the next 

four years of my work at the University of Alberta. 

 

1.1   Commencing with Network Theory  

Networks are in the news and will likely remain there.  To 

understand our world, we need to start thinking in these terms.  

(Buchanan, 2002, p. 22) 

 

In this dissertation, I develop the suggestion that the field of network 

theory, a new development in mathematics arising in the last decade or so, may 

present a novel way of understanding the structure of mathematical understanding 

and, in consequence, of informing pedagogy. Briefly, network theory examines 

the various ways in which a group of objects can be connected in some fashion. 

Originally developed as a branch of applied mathematics (specifically, an 

extension of graph theory), techniques developed in network theory have been 
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employed to analyze diverse complex systems in nature, society, and business. 

The significance of the field lies in the finding that the conclusions of network 

theory arise from the underlying structure and topology of a complex system 

rather than from the particular objects of which it is comprised. 

In the last sixty years or so, scientists in many fields have examined the 

dynamic, integrated, and unpredictable world of complexity (e.g., Johnson, 2001).  

Most research done during this period has concentrated on the study of complex 

systems, where the independent interactions of multiple entities lead to collective 

behavior.  The abilities and potentials exhibited by these systems are different 

from and potentially far more sophisticated than those possessed by the agents 

themselves.  Until recently, the study of complex systems, from collections of 

neurons in the brain to species in an ecosystem, has attempted to explain how 

such coherent and purposive wholes can emerge out of the apparently 

autonomous actions of individuals. 

In the late 1990s, researchers began to develop the field of network theory 

as a means to explore the structural dynamics of the networks underlying complex 

systems. Specifically, their foci were the interactions among the system‟s 

components or agents, rather than the entities themselves or their particular 

characteristics. Viewing the elements of a system as nodes in a network and their 

interactions as links among nodes, the system of entities and their connections can 

be portrayed by a graph. Using this technique, Watts and Strogatz (1998) and 

Barabási and Albert (1999) identified patterns not previously seen in complex 

phenomena and formulated simple, yet comprehensive, laws that describe 
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network structure and evolution. Scientists in many disciplines, ranging from 

physics to sociology, have found these principles invaluable in explaining how 

and why complex systems behave as they do.  

 

1.2 Interrelating Complexity Science, Network Theory, and 

Mathematical Understanding 

Although the use of network theory in analyzing complex systems is 

rapidly expanding, it has not previously been applied to the field of mathematics 

education. Thus, it was necessary to look for possible network structures that 

would reflect the complexity I saw in mathematical understanding.  In the 

literature of mathematics education, I found several graphic structures that have 

been developed to assist in the learning and teaching of mathematics.   

One of these – the „conceptual field‟ – is defined as “a set of situations, the 

mastery of which requires mastery of several concepts of different natures” 

(Vergnaud, 1988, p. 141). For example, the multiplicative conceptual field 

comprises activities related to proportion, multiplication, and division.  These 

situations have been analyzed according to a variety of task variables and 

arranged in hierarchical structures (e.g., Behr & Harel, 1990; Nesher, 1988; 

Vergnaud, 1988; see Figure 1).  This tree diagram is seen “to reflect the nature of 

the [multiplicative conceptual field], both mathematically and cognitively” (Behr 

& Harel, 1990, para. 2).  Conceptual fields have proved useful in understanding 

the “filiations and jumps” in students‟ competencies of multiplication and related 
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topics (Vergnaud, 1988, p. 151) and in designing classroom instruction (Behr & 

Harel, 1990). 

 

 

 

 

 

 

 

 

 

Another type of graphic representation is the „concept map‟, used to 

clarify the meaning of a chosen domain by identifying subordinate concepts and 

their relationships (Novak & Gowin, 1984). Skemp (1989) suggests the need to 

analyze a mathematical idea before introducing it to students –“ [to] „take it to 

pieces‟ … to see what are the contributory concepts” (p. 67).  Each of these 

instances is in turn examined for subordinate topics, and so on, until the many 

ideas upon which a concept is based are identified. The results of this analysis are 

represented in a hierarchical graph – similar to a tree diagram, but with the 

possibility of additional links joining some subsidiary nodes – that displays topics 

with different levels of specificity that contribute to the meaning of a more 

general, superordinate concept (Skemp, 1987; see Figure 2). Concept maps can 

assist in designing instruction (e.g., Schmittau & Vagliardo, 2006;  Skemp, 1989) 

Multiplicative Conceptual Field 
Situations 

Number 

Structure 

Semantic 

Structure 

Propositional 

Structure 
Contextual 

Structure 

Mathematical 

Structure 

Figure 1:  Types of task variables that constitute the nodes of a graph for 

the Multiplicative Conceptual Field.   
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and have been used to trace changes in students‟ and teachers‟ understandings of 

mathematical concepts (Hough, O‟Rode, Terman & Weissglass, 2007; McGowen 

& Tall, 1999). 

 

 

 

  

 

 

 

 

While each of these structures is undoubtedly a graph, I found that I could 

not accept either as a network, as the term is used in complexity science.  

Conceptual fields and concept maps just did not „feel right‟; somehow they did 

not reflect the essence of areas that I had come to understand as complex systems.  

To clarify my thoughts, I found my reflections on the term „structure‟ and its 

different connotations useful.   

„Structure‟ can refer to an architectural edifice that is designed and 

constructed by a person or group of persons to serve a particular purpose. One can 

understand the formation and its behavior by examining its elements separately; 

the system is understood simply as the sum of its parts.  A blueprint or 

hierarchical schematic shows what role these components play in providing a 

sound foundation for the whole.  

Function 

Polynomial Rational Non-algebraic 

Figure 2:  The beginnings of a simple concept map for „Function‟. 

Cubic Linear Quadratic Reciprocal Exponential Logarithmic 
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When I looked at conceptual fields and concept maps, I saw architectural 

structures. Both types of representation are designed by an external observer – a 

researcher, teacher, or student.  A mathematical concept is analyzed (taken apart) 

and portrayed as the sum of its many components, whether these are related 

situations or subsidiary topics, and hierarchical tree diagrams can serve as useful 

blueprints. 

But complex systems tend to call up images of biological structures 

(Davis, Sumara & Luce-Kapler, 2000).  These are not hierarchical, for “in nature 

there … are no hierarchies.  There are only networks nesting in other networks” 

(Capra, 1996, p. 35).  A complex form does possess components, but these are not 

simpler than the whole; each part is itself a complex, dynamic entity. An 

ecosystem is comprised of many organisms, each life form is constituted by many 

organs and each organ contains many cells. Such systems are not planned or 

constructed, but rather emerge and evolve from the interactions of their elements.  

Thus, the network I envisaged underlying the complex system of 

mathematical understanding would be quite different from the hierarchical, 

pyramidal structure of conceptual fields and concept maps. Forms would be 

nested within forms, and concepts would not be broken up, for “the important 

characteristics of a complex system are destroyed when it is taken apart” (Cilliers, 

2000, p. 41).  Instead, connections that affect the evolution of the system as a 

whole would be emphasized.  I found these characteristics in the web of cognitive 

mechanisms described in the theory of embodied mathematics, as set forth by 
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Lakoff and Núñez (2000); this was the type of network structure that I had been 

looking for.  

 

1.3   Linking Embodied Mathematics  

In this chapter, I have suggested that complexity science and network 

theory may present a novel and productive way to interpret mathematical 

understanding.  Applying the techniques developed for identifying and 

investigating network behavior in other disciplines to mathematics offers 

educators a different view of the nature of the discipline. Insights that emerge may 

prove useful for developing understandings and informing actions in mathematics 

education. 

In particular, I propose that a possible network model for mathematical 

understanding may be found in the conceptual domains and conceptual metaphors 

presented in the theory of embodied mathematics (Lakoff & Núñez, 2000). In the 

discussion that follows, I will argue that using such cognitive mechanisms as 

components of a network for mathematics offers an appropriate and fruitful 

means for exploration into the understanding of mathematics.  

In developing this argument, I acknowledge that network theory and the 

theory of embodied mathematics offer only one possible construal of what 

mathematical understanding is and how it is structured. Both offer rich sources of 

images and insights, with which I attempt the beginnings of a scientific 

explanation for mathematical comprehension and learning. In other words, I work 

from the assumption that the discussion should be treated in terms of a useful – 



  11 

 

not an objectively real – interpretation of the structure of mathematical 

understanding.  

 

1.4   Developing New Connections 

Three interconnected themes permeate this dissertation:  complexity 

science, the theory of embodied mathematics, and network theory.  To frame the 

work that follows, I begin, in Chapter 2, by developing the suggestion that 

mathematics and mathematical understanding might be understood as a complex 

unity. That is, informed by the transdisciplinary realm of complexity science, I 

argue that these forms manifest properties that are typical of those studied by 

complexivists.  I open with this point because, as Cilliers (1998) argues, “a 

complex system is constituted by a large number of … units forming nodes in a 

network [italics added] with a high degree of non-linear connection” (p. 91).   

I have suggested that a suitable and productive model of mathematical 

understanding can be found in the cognitive mechanisms described in the theory 

of embodied mathematics (Lakoff and Núñez, 2000).  In Chapter 3, I describe 

particular aspects of this theory that are critical for this argument.   

Chapter 4 explores how the conceptual domains and conceptual metaphors 

described in this theory can be seen to constitute a network, which I refer to 

throughout the dissertation as the metaphoric network of mathematics.  The 

topology and dynamic behavior of this structure are examined in Chapter 5.  In 

particular, the effect these network characteristics have for the learning and 

teaching of mathematics are explored.   
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Most of the discussion to this point is quite abstract and, in an effort to 

illustrate the patterns described and to provide some substantiation for the 

conclusions made regarding mathematical pedagogy, Chapter 6 discusses my 

exploration of a very small portion of the proposed metaphoric network of 

mathematics, one centered on the concept of EXPONENTIATION.  

Chapter 7 looks back on different aspects of the dissertation research.  I 

reflect on the model set up for mathematical understanding, the implications it 

had for the learning of mathematics, and both the method and results of my 

investigation of the concept of EXPONENTIATION.  Possible future directions for 

research are also discussed. 
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Chapter 2 

 Mathematics is a Complex System 

In the second half of the 20
th

 century, there was a confluence of interest 

among a group of scientists drawn from many fields who began to realize that the 

phenomena they studied, while tremendously varied, had some deep 

commonalities. It was noted, for example, that anthills, brains, and cities seemed 

to obey analogous dynamics and to have structures that were oddly reminiscent of 

one another (cf., Johnson, 2001). This realization of common interest prompted 

the discourse field of complexity. 

Complex systems cannot be investigated in the same ways that 

trajectories, forces, or orbits are. Nor can they be analyzed using techniques 

suitable for studies of more difficult problems like the inheritance of genetic traits 

or the laws of thermodynamics.   The well-understood rules and analytic methods 

that proved so successful in research into such fields are based on the long-held 

philosophy that the universe and all things in it are mechanical assemblages of 

components.  But complex phenomena, like the flocking of birds or the behaviors 

of economies, are anything but machine-like. 

 

2.1 The Mechanical Universe 

During the Enlightenment, principles were set forth which laid the 

foundations for science as it has largely been conducted into the twenty-first 

century.  Galileo (1564 – 1642) was perhaps the first to state clearly that the 

universe operates according to predicable mathematical laws (Hooker, 1999).  
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Shortly after, Descartes (1596 – 1650) set forth a rigorous approach for 

establishing scientific truth.  This Cartesian method included two tenets that were 

to have a profound influence not only on how research was conducted, but on 

views of the world and knowledge: to learn about an area of difficulty, one 

divides the topic into as many small parts as possible, and then develops 

understanding by examining the simplest components first, gradually assembling 

them into more and more complicated groups, until one is able to comprehend the 

whole (Latham & Smith, 1925). 

Descartes‟s ideas, specifically the complementary processes of analysis 

(breaking up) and synthesis (combining together), played a major factor in 

transforming science from speculative descriptions and conjectures to a more 

certain enterprise, grounded in the physical world and mathematics (Scientific 

Revolution, 2004). When Isaac Newton proposed the laws of universal 

gravitation, confidence in this conception of knowledge as machine-like grew.  

Subsequent work by other scientists confirmed “a mechanical world-view that 

regarded the Universe as something that unfolded according to mathematical laws 

with all the precision and inevitability of a well-made clock” (Bolton, Durrant, 

Lambourne, Manners, & Norton, 2000, para. 2).   

The perception that the universe and all things in it were as rational and 

predictable as the mathematical formulae used to describe them became the 

predominant model of European scientific thought (Hooker, 1999). Everything 

was seen as the sum of its parts; comprehension of the whole required little more 

than a sound understanding of each of its components.  Systems could be 
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designed to fulfill specific purposes and each would operate according to its 

particular design (Davis, Sumara & Luce-Kapler, 2000). Phenomena reflecting 

the characteristics of this mechanical world-view have come to be known as 

complicated (Waldrop, 1992). 

 

2.2 Complicated vs. Complex 

Several distinct types of systems can described as complicated 

phenomena. „Simple‟ problems, like the swing of a pendulum or the motion of a 

billiard ball, involve a limited number of components that do behave according to 

mathematical laws (Weaver, 1948).  Other fields involve a very large number of 

variables that behave in an erratic or unknowable manner, but can be analyzed to 

reveal typical conditions.  For instance, the average number of phone calls in an 

hour can be forecast, as can the number of insurance claims due to car accidents 

in a month.  Weaver describes such problems as „disorganized complexity‟.  

Using a variety of mathematical techniques, both kinds of situations can be made 

sense of by closely examining their components and by determining how these 

parts are related to each other.  The aim in studies of these complicated areas is to 

understand the causes of particular effects and to identify the fundamental 

principles underlying their behavior (Davis, Sumara & Luce-Kapler, 2000). 

Although this mechanistic approach had been applied to problems in 

politics, history, and economics (Hooker, 1999), by the late 18
th

 and early 19
th

 

centuries, it became evident that such a mindset might not be appropriate for 

studying all phenomena. For example, the works of Adam Smith (1723-1790), 
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Charles Darwin (1809-1882), and Friedrich Engels (1820-1858) examined 

systems that could not conceived of as machine-like (Johnson, 2001).  By 1900, a 

number of scientists in both the physical and social sciences were using 

evolutionary rather than mechanical models in their studies (Dewey, 1910).  At 

the time, similarities among these works went unnoticed, but the fields they 

examined shared characteristics of what came to be known as complex systems. 

Such studies– whether in biology, psychology or epidemiology – involve a 

“sizable number of factors which are interrelated into an organic whole” 

(Weaver, 1948, Problems of Organized Complexity section, para. 3; italics in 

original).  Organization of this unity is not determined by external laws; it is 

shaped instead by the independent and interdependent actions of its elements. As 

these respond in a mutual and recursive manner to each other and to their 

environment, changes in the operations of the structure occur.  Thus, a particular 

stimulus may not always produce the same result (Davis & Simmt, 2003).  

Complex fields are not predictable, nor can they be understood merely as the sum 

of their components: such systems are not machine-like, but more closely 

resemble living entities.   

These kinds of phenomena – from collections of neurons in the brain to 

relationships among species in an ecosystem – share the property of emergence, 

where coherent and seemingly purposive wholes emerge out of the apparently 

independent actions of individual elements.  These entities follow no external 

rules, but somehow their dynamic interactions lead to perceptible macrobehaviors 

for the group in its entirety (Johnson, 2001).  Moreover, the abilities and 
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potentials exhibited by such systems are different from and more sophisticated 

than those possessed by the agents themselves (Davis & Simmt, 2003).  

 

2.3 Formal Mathematics is a Complex System
1
  

Because of the very involved and ever-changing nature of interactions 

among such entities, complex systems cannot be described easily.  Despite this, 

Cilliers (1998) suggests that general characteristics of complex forms can be 

identified, based on his survey of the complexity literature.  In particular, he sees 

ten qualities as necessary to complex systems: 

(i) Complex systems consist of a large number of elements. … 

(ii) The elements in a complex system interact dynamically. … 

(iii) The level of interaction is fairly rich. … 

(iv) Interactions are non-linear. … 

(v) The interactions have a fairly short range. … 

(vi) There are loops in the interconnections. … 

(vii) Complex systems are open systems. … 

(viii) Complex systems operate under conditions far from 

equilibrium. … 

(ix) Complex systems have histories. … 

(x) Individual elements are ignorant of the behavior of the 

whole system in which they are embedded. (p. 119-123) 

 

Cilliers (1998) posits that any system possessing these properties can be 

analyzed in terms of a neural-network model, originally developed from 

comparisons to the human brain (e.g., Edelman, 1987; Rumelhart & McClelland, 

1986).  He demonstrates how this model can be used in analysis of postmodern 

society and suggests that it may also be appropriate for examining language and 

scientific knowledge.  I attempt here to show that the discipline of mathematics 

                                                 
1
  A version of Section 2.3 is drawn from an article accepted for publication.  

Mowat & Davis (in press). Complicity: An International Journal of Complexity 

and Education. 
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also possesses the requisite characteristics of complex systems and that, in 

consequence, a network model of mathematics is meaningful.
2
  

 (i) Mathematics consists of a large number of elements. 

At first sight, it might seem that this claim requires no justification or 

elaboration. However, it is important to be clear as to the nature of the elements, 

which varies according to how one defines mathematics. For example, if defined 

as „what mathematicians do‟, it would seem that the interacting elements are 

human individuals. Conversely, if defined in terms of the contents of a 

standardized examination, the elements might be taken to be discrete technical 

competencies. In this chapter, I argue that mathematics comprises a large number 

of ideas or concepts; these are the elements of the complex unity of mathematics.   

In imposing this sort of definition, however, I am compelled to 

acknowledge that it represents an artificial and ultimately untenable delimitation – 

but, nonetheless, a necessary one.  Complex systems do not have fixed or tidy 

edges. They intersect with, subsume, and are embedded in other complex unities. 

Hence, any study of a specific complex form inevitably entails an imposition of 

some sort of artificial boundaries on the part of the observer. 

(ii) The elements in mathematics interact dynamically. 

Pickering (1995) comments that practice in mathematics is “organized 

around the production of associations, the making of connections and the creation 

                                                 
2
  When referring to instances from the historical development of 

mathematics in this section and following chapters, I must acknowledge that what 

I see has “at least as much to with the interpreter as it does with any set of 

historical „facts‟ ” (Dubinsky, 1994, p. 158).  My perceptions are shaped not only 

by the framework underlying this work, but also by current social and cultural 

conceptions of the past. 
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of alignments between disparate … elements” (p. 22). Of course, few would argue 

with the suggestion that mathematical ideas interact; the critical point here is that 

they interact dynamically rather than coming together to form some sort of rigid 

architecture.  Each idea informs and influences others in a constant choreography 

of emergent meaning.  Thus, as mathematics historian Eric Bell (1945) describes 

change in the system, some ideas die if they prove to be trivial, inadequate, or 

incorrect, while others survive, often with modification to ensure coherence with 

other concepts. 

(iii) The level of interaction among concepts in mathematics is fairly rich. 

Relationships among concepts are rich and intricate.  New mathematical 

concepts are formed from interactions among those already existing (Hersh, 

1998).   These novel ideas may enrich established mathematical knowledge, and 

may, in turn, interact with other concepts to spur the development of new areas of 

mathematics (Struik, 1987).  Mathematicians have developed a number of means 

to enable these rich interactions of ideas. As Rotman (2000) notes, 

… it would be perverse not to infer that for large stretches of 

time [mathematicians] are engaged in a process of 

communicating with themselves and one another; an inference 

prompted by the constant presence of standardly presented 

formal written texts (notes, textbooks, blackboard lectures, 

articles, digests, reviews, and the like) being read, written, and 

exchanged, and of all informal signifying activities that occur 

when they talk, gesticulate, expound, make guesses, draw 

pictures, and so on. (pp. 7–8) 

 

Such communication ensures that each instance of mathematical knowledge 

influences and is influenced by many other ideas. 
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(iv) Interactions in mathematics are non-linear. 

There are two aspects to the non-linearity of complex unities. The first has 

to do with the manner in which systems unfold through time.  Within complex 

systems, certain perturbations can prompt unpredictable consequences.  Thus, a 

small idea may spark large-scale changes in the system of mathematical 

knowledge as a whole.  For example, Fermat and Pascal‟s discussion of a game of 

chance in 1654 led to the formation of the theories of probability and statistics 

(Bell, 1945).   

The second aspect of non-linearity involves potentially asymmetrical 

relations among elements as they interact in the moment.  For example, a concept 

may be associated in different ways with different ideas.  Analogous to the way in 

which the relationship of „red‟ to „blue‟ is not similar to its relationship to „blood‟ 

(Cilliers, 1998), the relationship of sin to cos and tan is not the same as its 

relation to the integral or the power series.   

(v) Interactions among mathematical concepts have a fairly short range. 

Most mathematical ideas interact primarily with the other elements of their 

particular branch of mathematics.  Thurston (1994) observes that “basic concepts 

used every day within one subfield are often foreign to another subfield” (p. 6).  

Such relatively local ideas may play an important role in providing specific 

instances that lead to the formulation of generalizations in an area (Bell, 1945).   

However, as Cilliers (1998) notes, “despite the short range of immediate 

interactions, nothing precludes wide-ranging influence” (p. 121).  Ideas, such as 

set, permeate many branches of mathematics and, in the process, provide a 
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unifying structure.  Other long-range interactions may lead to novel concepts in 

mathematics.  For example, the connections between algebra and geometry, made 

in efforts to give meaning to complex numbers, led to the development of 

alternate algebras and foreshadowed modern vector analysis (Pickering, 1995). 

(vi) There are loops in the interconnections among mathematical ideas. 

“Feedback is an essential aspect of complex systems.  Not feedback as 

understood simply in terms of control theory, but as intricately interlinked loops 

in a large network” (Cilliers, 1998, p. 121).  There are many examples of these 

interconnected loops in the history of mathematics, such as the deep connections 

involved in the emergence of number systems. For example, the sexagesimal 

positional notation used by Babylonians may have influenced the development of 

the decimal system (Cajori, 1896).  This more efficient numeration system, in 

turn, led to a decline in the use of the earlier notation for most purposes.  Another 

instance took place when work with sets led to the development of Russell‟s 

Paradox and Gödel‟s Incompleteness Theorem.  These results forced the re-

examination of the entire field; set theory was not discarded, but was reshaped in 

the search for a foundation of mathematics (Hersh, 1998).  Thus, loops in the 

interconnections among mathematical concepts can affect both the survival and 

the meaning of those ideas. 

(vii) Mathematics is an open system. 

Mathematics is constantly bombarded with input from its physical, 

cultural and intellectual environment. The conceptual content of mathematics is 

influenced by other fields, from astronomy and agriculture in ancient times to 
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psychology and physics today (Struik, 1987).  Moreover, the “configuration and 

content of mathematical knowledge is properly and intimately defined by the 

culture in which it develops and in which it is subsumed” (Radford, 1997, p. 32). 

(viii) Mathematics operates under conditions far from equilibrium. 

One of the challenges to commonsense belief presented by complexity 

thinking is the assertion that living and learning forms do not seek or operate in 

equilibrium (Kelly, 1994). Rather, they exist in imbalance and cannot survive in a 

static condition. Examination of the history of mathematics reveals that the 

discipline is not fixed (cf., Bell, 1945; Struik, 1987), but “evolves by rather 

organic … processes” (Thurston, 1994, p. 169).  As with any evolving system, 

changes in mathematics may occur in a sequence of small steps or through major 

revolutions (Grabiner, 1998).  Its openness to external influences and the many 

loops in interactions among its elements ensure that the system of mathematical 

concepts is not at equilibrium, but is continually changing. 

(ix) Mathematics has a history. 

Mathematics has a history and mathematical concepts carry with them 

vestiges of their past.  Residues of once commonly used notions can be seen in 

notation, terminology, and procedures (Bell, 1945). Such traces persist long after 

the original idea has been changed beyond recognition. Thus, the meaning of a 

mathematical concept is dependent on both its past and its present interactions 

with other elements of mathematics. 
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(x) Individual elements are ignorant of the behavior of the whole system in 

which they are embedded. 

Since the 19
th

 century, mathematics has been splintered into many 

specialized fields (Struik, 1987; Thurston, 1994).  Consequently, concepts interact 

primarily with ideas that lie within the same branch of mathematics, that is, they 

respond to relatively local information.  While each is, in itself, intricate, it is 

unlikely that a concept could reflect the complexity of the subfield, much less the 

entire system of mathematics. Therefore, it would seem that the complexity of 

mathematics, as with any other complex system, is “the result of a rich interaction 

of … elements that only respond to the limited information each of them are 

presented with.  … The complexity emerges as a result of the patterns of the 

interaction between the elements” (Cilliers, 1998, p. 5). 

Given that the field of mathematics appears to manifest the defining 

characteristics of complex systems set forth by Cilliers (1998), it would seem 

reasonable to consider it as a complex unity.  While I realize that this point has 

not been demonstrated conclusively, I proceed here under the assumption that it is 

appropriate to use a neural network as a model for mathematics in general, and for 

related systems involved in mathematical pedagogy. 

 

2.4 Complex Systems in Mathematics Education 

Like other complex phenomena, educational systems might be argued to 

be forms nested in and interacting with other forms (Davis & Simmt, 2006). Just 

as the personal, subjective mathematical understanding of an individual shapes 
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and is shaped by the collective knowledge of the classroom, understandings 

developed in a class influence and are influenced by mathematics as portrayed in 

a curriculum, which itself affects and is affected by the system of formal 

mathematics (see Figure 3). Other levels of organization could be considered as 

well. On a smaller – but not less complex – scale, one can find the neurological 

structure in the brain that contributes to innate mathematical abilities; on a larger 

one, there exists the culture within which formal mathematics is subsumed. In 

complexivist terms, the entire series of nested systems can be viewed as 

constituting mathematics.   

 

 

 

 

 

 

 

 

 

 

 

Clearly defined distinctions between forms are difficult to establish, as the 

many layers of this structure simultaneously enable and constrain each other. All 

stages display similar emergent qualities and dynamic behaviors (Davis & Simmt, 

Figure 3: Some dynamic co-evolving complex phenomena of concern 

to the mathematics teacher  (adapted with permission from Davis & 

Simmt, 2006, p. 296). 
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2006); boundaries are fuzzy and layers overlap. Thus, patterns found at one level 

– for instance, the characteristics of complex phenomena found in formal 

mathematics – can be seen in the many other forms nested within the system. 

Thus, any of the layers of organization can be “properly identified as complex” 

(Davis & Simmt, 2006, p. 4). 

To illustrate, curricula can be described as emergent forms, although they 

change at a different rate from mathematics as a whole.  Grumet (1988) uses the 

image of a stream – a complex system that cannot be understood just by 

examining the behavior of individual drops of water – to depict the always-

moving, ever-changing nature of curriculum. More specifically, in their 

discussion of programs of study based on fractal geometry, Davis and Sumara 

(2000) describe characteristics of recursion, embedded forms, similarity over a 

range of scales, and the inseparability of part from whole – all properties of a 

complex form. Moreover, likenesses in the underlying dynamics of the evolution 

of mathematics as a discipline and in the production of curricula have been noted 

(Davis & Simmt, 2006).  

Similarly, the classroom collective displays attributes of a complex 

system. In the 1980s, several researchers applied the work of Ilya Prigogine 

(1980) on dissipative structures – where order emerges from internal interactions 

– to the field of education.  Groups of students can become self-organizing 

systems (Sawada & Caley, 1985), if teachers motivate reorganization of the 

classroom and allow learners the “opportunity to reflect, to try alternatives and to 

disagree” (Doll, 1986, p. 15).  Davis and Simmt (2003) found not only self-
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organization, but the emergence of collective knowledge in mathematics 

communities that display the characteristics of internal diversity, redundancy, 

decentralized control, organized randomness, and neighbor interactions.  In a 

related study, Proulx (2004) concludes that the absence or neglect of these five 

conditions prevents collective knowledge from developing and ensures that 

understanding remains at the level of individual agents. 

Subjective understanding of mathematics can also be considered a 

complex phenomenon, for “ … the same evolutionary dynamics and same 

complex emergent qualities seem to be at play in the cognitive processes of 

individual and collective” (Davis & Sumara, 2000, p. 832).  For this reason and 

because the boundaries of nested complex phenomena are difficult to determine, 

Davis and Simmt (2006) “refuse a rigid distinction between collective and 

individual in [their] research” (p. 4).   

 

2.5 Subjective Mathematical Understanding is a Complex System 

 
I suggest here that the descriptions offered and the implications developed 

by Cilliers (1998) are relevant not just to the formal knowledge of the discipline 

of mathematics (the outer layer of Figure 3), but also to the subjective 

understanding of individuals (the inner layer of Figure 3). As elements in a series 

of nested systems, the two levels of understanding enable and constrain each 

other, and “these forms obey similar dynamics” (Davis & Simmt, 2006, p. 5; 

italics in original).   Developing these insights, it becomes evident that: 
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(i) subjective understanding of mathematics consists of a large 

number of concepts; 

(ii) relationships among these ideas change continually; 

(iii) each concept interacts with a large number of other ideas; 

(iv) interactions among concepts vary in response to changing 

circumstances; 

(v) concepts primarily interact with ideas in the same branch of 

mathematics; 

(vi) feedback loops can be found in the interactions among concepts; 

(vii) subjective understanding is an open system continually influenced 

by physical, cognitive, and cultural factors; 

(viii) subjective understanding cannot exist in a state of equilibrium, but 

constantly grows and changes; 

(ix) subjective understanding of mathematics has a history – 

understanding at a particular moment depends on what had been 

learned before; and 

(x) individual concepts are constructed on a relatively limited amount 

of information; the learner is not aware of all of the relationships 

among the mathematical ideas he or she comprehends.    

Dynamic interactions and adaptations transpire in similar ways in the 

systems of formal mathematics and subjective understanding. Changes in 

structure occur at both levels, but at vastly different rates; networks of formal 

mathematical concepts are transformed more slowly as new conjectures are 
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gradually developed, vetted, and adopted by communities of mathematicians, 

while modifications may occur quite quickly as students construct their own 

understanding of topics new to them.   In spite of this, Davis and Simmt (2006) 

state that drawing a clear distinction between what Cooney and Wiegel (2003) 

term „fixed‟ and „constructed‟ mathematics is problematic. 

Likenesses between formal mathematics and individual understanding 

have been noticed by many scholars. Haeckel‟s (1874) biological „law of 

recapitulation‟ had a strong influence on social theories.  In particular, Piaget and 

Garcia (1983) elaborate on this idea, stating that the construction of knowledge in 

history involves processes related (if not parallel) to those used in an individual‟s 

construction of understanding.  More recently, Sfard (1995) claims, “There are 

good reasons to expect that, when scrutinized, the phylogeny and ontogeny of 

mathematics will reveal more than marginal similarities” (p. 15).   

Others feel that it would be naive to accept this view, as it ignores the 

sensitivity of the human mind to its culture (Radford, 1997; Radford & Puig, 

2007).  Mathematical findings of the past were developed within the contexts of 

their own times and societies.  And for individual learners, it is impossible to 

separate natural lines of conceptual development from the cultural environment.  

Thus, “conditions of the actual psychological genesis of a mathematical concept 

are ineluctably different from their historical genesis” (Radford, 1997, p. 28).     

Despite these observations, similarities can be identified in the evolution 

of some topics on the two levels, notably in the development and use of algebraic 

symbolism (Harper, 1987).  Moreover, correspondences have been noted between 
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obstacles from the historical development of mathematics and difficulties 

understanding particular concepts experienced by students (Artigue, 1992; 

Brousseau, 1983; Herscovics, 1989; Thomaidis and Tzanakis, 2007). Similar 

likenesses are found in learners‟ approaches to problems and solutions that 

appeared in mathematical history (Moreno & Waldegg, 1991; Thomaidis and 

Tzanakis, 2007).  These findings are perhaps not surprising, given that “the 

contexts in which we think are anchored on an ubiquitous stratum of historically 

constituted cognitive activity from which we draw in a fundamental way – even if 

not consciously” (Radford & Puig, 2007, p. 148).   

 

2.6  Summary 

In this chapter, I have demonstrated that subjective understanding of 

mathematics, like the discipline of formal mathematics within which it is 

subsumed, shares attributes that comprise Cilliers‟ (1998) general description of 

complex systems.  Thus, mathematical understanding that develops in the mind of 

an individual – subjective mathematics – can be explored using a network model.    

I posit that a possible network structure for subjective mathematics may be 

found in the conceptual domains and conceptual metaphors presented in the 

theory of embodied mathematics, specifically the version put forth by Lakoff and 

Núñez (2000).  Their work sets forth a proposal describing how cognitive 

superstructures are constructed, beginning with inborn abilities and physical 

experiences from everyday life. The cognitive mechanisms through which this 

process is accomplished this are discussed in the next chapter.  
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Chapter 3 

The Theory of Embodied Mathematics
3
 

The theory of embodied mathematics was first expounded by Lakoff and 

Núñez in Where Mathematics Comes From: How the Embodied Mind Brings 

Mathematics into Being (2000). In this work, convergent evidence from a wide 

variety of disciplines is used to demonstrate that mathematical understanding is 

shaped by certain properties that typify human reasoning.  Key among these 

characteristics is the embodiment of the human mind, the unconscious nature of 

cognition, and the metaphoric nature of thought.  

Lakoff and Núñez (2000) assert that mathematics exists by virtue of the 

embodied mind.   Cognitive structures used in all modes of thinking are initially 

developed from physical sensations and activities.  The brain receives input 

exclusively from other parts of the body.  Therefore, distinctive characteristics of 

our corporeal structure – what can be perceived, how we physically function in 

the world, and ways in which neurological configurations process information – 

determine the form and content of the mind. “There is no … fully autonomous 

faculty of reason separate from and independent of bodily capacities such as 

perception and movement” (Lakoff & Johnson, 1999, p. 17).  

Most reasoning is largely unconscious; cognitive scientists believe that 

humans are not aware of ninety-five percent of their thought processes (Lakoff & 

Johnson, 1999).  Most every-day thinking takes place at too fast a pace and at too 

                                                 
3
  A version of this chapter has been published. Mowat 2005. delta-K. 

42(2): 20-29. 
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low a level for people to be aware of exactly what occurs.  For example, in an 

informal conversation with friends, one speaks using a language that does have a 

formal grammar, but one does not consciously check these rules as one talks.  Nor 

in casual speech are words deliberately chosen from one‟s vocabulary.  Phrases 

flow effortlessly, conveying intended meanings.  Inferences are drawn from tones 

of voices and expressions on faces without having to examine intentionally how 

these conclusions are arrived at. Choices are made with every sentence, although 

the speaker is unable to explain how he or she knew what to do and say.  Lakoff 

and Núñez (2000) argue that as with most of human thinking, mathematical 

thought, “involves automatic, immediate, implicit rather than explicit 

understanding – making sense of things without having conscious access to the 

cognitive mechanisms by which you make sense of things” (p. 28).   

Metaphor, more than a mere figure of speech, is a central part of everyday 

thought.  Metaphoric mappings are reflected in systems of expressions.  For 

example, many statements reflect ways in which quantity is conceptualized in 

terms of vertical motion (Lakoff & Johnson, 1980) – „newspaper sales went up 

this month‟,  „his batting average is high‟, „my income fell this year‟, and „Susan 

is underage‟.  Such wordings reveal that when individuals think about abstract 

concepts, “much of the way we conceptualize them, reason about them, and 

visualize them comes from other domains of experience” (Lakoff & Johnson, 

1999, p. 45).  Lakoff and Núñez (2000) argue that mathematical thought also 

draws on metaphoric reasoning, as when we think of numbers as points on a line 

or equations as balances.  
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Thus, most mathematical reasoning is not unlike other types of human 

thinking; it is embodied, largely unconscious, and metaphoric in nature. Lakoff 

and Núñez (2000) use this premise to address the following questions: “What are 

the simplest mathematical ideas and how do we build on them and extend them to 

develop complex mathematical ideas” (p. 15).  The answer to the first of these 

inquiries lies in descriptions of mathematical abilities that humans possess from 

birth – in what is called innate arithmetic (Butterworth, 1999; Lakoff & Núñez, 

2000). 

 

3.1 Innate Arithmetic 

 
Humans are born with certain arithmetic capacities; the very notion of 

„number‟ is engraved on our brains (Lakoff & Núñez, 2000).  Highly specialized 

sets of neural circuits enable us to subitize, that is, instantly and accurately 

recognize the number of objects in small collections (Kaufman, Lord, Reese & 

Volkman, 1949). Moreover, the number of flashes of light or bursts of sound in a 

sequence can be quickly and accurately identified (Davis & Pérusse, 1988). Even 

babies can immediately discriminate between groups of one, two, three or four 

elements (Antell & Keating, 1983; Strauss & Curtis, 1981).  While neural 

processes enabling this ability are not yet known, it is accepted that subitizing is 

more than just pattern-recognition (Lakoff & Núñez, 2000).   

By the age of four or five months, infants possess limited understanding of 

addition and subtraction with small numbers of objects (Wynn, 1992; Wynn, 

1995).  Other capacities needed for simple counting and numerosity – the ability 
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to make rough consistent estimates for larger numbers – also develop at an early 

age.  All these facets of innate arithmetic involve a sense of quantity, which is 

thought to be located in the inferior parietal cortex where vision, hearing and 

touch are linked (Dehaene, 1997).  

However important these inborn capacities are for the beginnings of 

mathematical thinking, they cannot account for the understandings required to 

do arithmetic and more advanced mathematics. When investigating how 

individuals can make such enormous growth in mathematical knowledge, 

Lakoff and Núñez (2000) point to similarities between ordinary sense making 

and mathematical thinking. They conclude, “a great many cognitive 

mechanisms that are not specifically mathematical are used to characterize 

mathematical ideas” (p. 28). 

 

3.2  Cognitive Mechanisms
4
 

Cognitive mechanisms are referential systems that assist people in 

understanding and employing concepts (Lakoff & Núñez, 2000).  The term 

cognitive mechanism broadly refers to “anything that plays a causal role in 

guiding behavior on the basis of neurally coded information” (Barrett, 2008, p. 

                                                 
4
  The word „mechanism‟ often indicates a complicated system, as 

characterized in Chapter 2.  However, many cognitive scientists, including Lakoff 

and Núñez, utilize the term to describe mental processes that are certainly 

complex in nature.  In this dissertation, while I keep with this convention and 

refer to „cognitive mechanisms‟ when discussing mental processes, I feel that it is 

important always to keep in mind the organic, non-mechanical character of the 

systems indicated. 
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174). Such structures provide the means by which simple ideas can be made sense 

of and extended to more sophisticated conceptions. 

In their discussion of the theory of embodied mathematics, Lakoff and 

Núñez (2000) highlight the role that cognitive mechanisms play in the creation 

and evolution of mathematical ideas.  Specifically, they discuss the importance of 

three types of cognitive mechanisms: the conceptual domain, the conceptual 

metaphor, and the conceptual blend. 

 

3.2.1 The Conceptual Domain
5
 

Although Lakoff and Núñez  (2000) refer to conceptual domains 

throughout their work, a definition of what characterizes this cognitive 

mechanism is not provided.  However, accounts that clarify its nature can be 

found in writings by other cognitive scientists: Kövecses (2002) describes a 

conceptual domain as a “coherent organization of experience” ( p. 4); Gentner 

(1983) defines a domain as a system of “objects, object attributes, and relations 

between objects” (p. 156); and  Clausner and Croft (1999) declare, ”A concept 

is a mental unit, a domain is the background knowledge for representing 

concepts” (p. 3).  While a clear distinction between concept and domain is 

implied in this last statement, the line between them is blurred.  A concept may 

become a domain (that is, background information) for another concept. Thus, 

conceptual domains are often embedded in other domains, forming intricate 

structures. 

                                                 
5
  The words „concept‟ and „domain‟ are often used in the literature to refer 

to this mental phenomenon, as are the terms „idea‟ and „topic‟. 
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Many conceptual domains are embodied, arising from basic experiences.  

For example, BALANCE is part of everyday life for all humans.
6
  We first 

encounter equilibrium, or the lack thereof, as babies wobbling across the floor.  

Over the years, BALANCE becomes such an intrinsic part of our lives that we are 

hardly aware of it, but it is extremely important for our coherent perception of the 

world (Johnson, 1987).  Since physical experiences in situations involving 

BALANCE make use of sight, touch, language and reasoning, corresponding 

regions of the brain are activated (Lakoff & Núñez, 2000).  Consequently, this 

type of body-based experience forms a general and flexible neural structure that 

can be and is used repeatedly.  Such a recurring configuration establishes patterns 

of understanding and analysis in cognitive processes.  Thus, the conceptual 

domain of BALANCE can be utilized to make sense of more abstract situations 

involving chequebooks, relationships, or equations.   

Other domains, like FUNCTION, are more abstract and comprise more 

elaborate propositional configurations.  Regardless of their intricacy, conceptual 

domains are not just mental pictures, but act as general, flexible, and evolving 

patterns providing the inferential structure that makes our perceptions of the 

world meaningful. Of particular importance for human reasoning are image 

schemas, domains that derive from spatial relations (Clausner & Croft, 1999; 

Lakoff & Núñez, 2000). 

 

                                                 
6
  Throughout this work, the convention of identifying cognitive 

mechanisms using small capitals is used. 
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 3.2.1.1  The Image Schema 

 An image schema like CENTRE, STRAIGHTNESS or VERTICALITY is a 

conceptual domain that represents the spatial logic inherent in a physical 

situation (Lakoff & Núñez, 2000).  As such, it is a fundamental mode of 

cognition positioned between abstract domains and concrete experiences 

(Johnson, 1987).   These cognitive mechanisms are recognitions of recurrent 

patterns across different physical activities and perceptions, and are not 

specific to a particular sense (Johnson, 1987; Lakoff, 1987).  For example, 

SCALE may refer to differences in position, temperature, pitch or brightness 

(Clausner & Croft, 1999).  Moreover, image schemas appear to be universal – 

independent of culture and language (Lakoff & Núñez, 2000). 

Image schemas “emerge as meaningful structures for us chiefly at the 

level of our bodily movements through space, our manipulation of objects and our 

perceptual interactions” (Johnson, 1987, p. 29).  To illustrate, the CONTAINER 

image schema develops from early bodily actions involving material containers.  

Common statements often refer to components of the container: its boundary 

(he‟s on the brink of disaster), its exterior (she‟s out of her league), and its interior 

(he‟s always getting into trouble). Thus, normal language use illustrates how often 

the CONTAINER image schema is used to reason about nonspatial situations 

(Johnson, 1987; Lakoff & Núñez, 2000).  

The CONTAINER image schema is particularly important for mathematical 

reasoning.  The logic inherent in dealings with physical containers can be 
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projected onto „cognitive‟ containers (Lakoff & Núñez, 2000), as represented by 

sets in Figure 4. 

 

 

 

 

 

 

 

 

 

Moreover, an image schema can go beyond the original context and 

introduce new ideas or extensions that do not arise from physical experiences 

(Lakoff & Núñez, 2000).  Figure 5 illustrates how one can imagine two sets 

overlapping even though two separate material containers cannot be made to 

intersect in this way. 

 

 

 

  

 

 

3.2.2 The Conceptual Metaphor 

Metaphors, which are often perceived as literary devices, have been shown 

to be important cognitive mechanisms.  Conceptual metaphors project inferential 

Figure 5:  The concept of intersecting sets as introduced by the 

CONTAINER image schema. 

The stone is in the cup.                                        P is an element of set A. 

The cup is in the pail.                                          Set A is a subset of set B. 

Therefore, the stone is in the pail.                            Therefore, P is an element of set B. 

 

 
A 

B 

P 

 

Figure 4:  Reasoning from physical experience transferred to abstract 

mathematics through the CONTAINER image schema. 
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structure; particular features from one domain – the source – are mapped onto 

corresponding aspects of another domain – the target (Lakoff & Johnson, 1999; 

Lakoff & Núñez, 2000).  Ways of perceiving and thinking abstracted from a 

relatively concrete domain are used, automatically and unconsciously, in 

reasoning about the more abstract concept (Lakoff & Núñez, 2000).
 7

 An essential 

part of all types of human understanding, conceptual metaphors provide structure 

for our thought, experiences and language (Lakoff & Johnson, 1980). 

Many conceptual metaphors arise initially from the everyday experiences 

of children.  A baby, held in his mother‟s arms, feels both love and warmth.  The 

two sensations are so often conflated that, for some time, the infant cannot 

distinguish between them.  Later, differences are noticed, but the associations that 

have been created persist (Johnson, 1997); they provide the basis for the 

AFFECTION IS WARMTH
8 metaphor.  Perceptions from incidents involving the 

source domain of warmth are mapped onto relationships in the target domain of 

affection. Because the inferential structure inherent in these experiences is 

preserved, the more abstract concept of affection can be understood in terms of 

the more concrete area of warmth.  

While evidence of the existence of metaphors is seen in everyday 

language – „they warmed up to each other‟ or „she gave him an icy stare‟ – they 

are not just linguistic devices.  Gesture analysis shows that conceptual metaphors 

                                                 
7
  Other mental processes, such as metonymy, also allow us to go from 

concrete to abstract thinking.  In this chapter, following the example of Lakoff 

and Núñez (2000), I focus on the role conceptual metaphors play in this transition. 
8
  Metaphors will be identified using the convention TARGET IS SOURCE.  In 

the example discussed here, AFFECTION IS WARMTH, the source of inferential 

structure is WARMTH, while the target of the metaphoric mapping is AFFECTION.  
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have a very real psychological existence (Edwards, 2005; Núñez, 2004). 

Moreover, conceptual metaphors are empirically observable processes in the 

mind; their use results in the simultaneous activation of two different areas of the 

brain (Lakoff & Núñez, 2000; Narayanan, 1997).  This establishes new neural 

connections between the regions and generates a single multifaceted experience. 

As well as transferring inferential structure from one domain to another, 

conceptual metaphors can also introduce new elements or extensions into the 

target domain (Lakoff & Núñez, 2000).  The statement „I had to work hard on that 

question‟ provides evidence of several metaphors, among them LEARNING IS A 

JOB.  Subtle aspects of this metaphor, which are not initially evident (see Figure 

6), are absorbed and unconsciously influence thinking. 

 

 

 

 

   

  

 

 

 

3.2.2.1 Grounding metaphors 

Conceptual metaphors that establish correlations between physical 

experiences and abstract concepts – like AFFECTION IS WARMTH – are called 

grounding metaphors.  In mathematics, the grounding metaphor is the primary 

tool that enables the extension of inborn numerical abilities to arithmetic within 

the set of natural numbers, and ultimately to more sophisticated concepts.  Such 

Learning is work.    

Learning is routine.    

Learning is difficult.    

I deserve some compensation for learning. 

 

Learning is not play. 

Learning is not fun. 

 
 Figure 6:  Entailments of the LEARNING IS A JOB conceptual metaphor.  
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metaphors ground arithmetic in everyday activities like “forming collections, 

putting objects together, using measuring sticks, and moving through space” 

(Lakoff & Núñez, 2000, p. 102).   

For example, a child who puts blocks into piles is establishing neural 

connections between areas of the brain responsible for the physical action and 

innate arithmetic.  This initiates the ARITHMETIC IS OBJECT COLLECTION 

metaphor, where numbers are identified with groups of objects (Lakoff & Núñez, 

2000).  Adding is derived from putting two collections together, while subtracting 

involves taking a small collection from a larger one. The Natural Number system, 

which includes quantities too large to be subitized, is formed.  Properties of 

number-collection entities are consistent with those of inborn mathematical 

abilities, but are extended to include new properties.  Since the sum of any two 

collections is another collection, the sum of any two numbers must be another 

number.  Thus, the natural numbers possess the property of Closure, which is not 

a characteristic of innate arithmetic.   

Similar grounding metaphors are ARITHMETIC IS OBJECT CONSTRUCTION, 

where items are put together to form new objects, the MEASURING STICK 

metaphor, in which objects are measured using physical segments, and 

ARITHMETIC IS MOTION ALONG A PATH, where numbers are point locations on a 

line (Lakoff & Núñez, 2000).  Each is based on the bodily experiences of children 

and possesses its own set of entailments and extensions (see Table 1). 
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Table 1 

Characteristics of the Four Grounding Metaphors  
 

Grounding  

metaphor 

ARITHMETIC 

IS OBJECT  

COLLECTION 

ARITHMETIC IS 

OBJECT 

CONSTRUCTION 

THE 

MEASURING  

STICK 

METAPHOR 

ARITHMETIC 

IS MOTION 

ALONG A 

PATH 

Physical 

basis  

Manipulation Manipulation Manipulation Ambulation 

Numbers are 

… 

Collections of 

objects 

Wholes with parts Physical 

segments 

Points on a line 

Addition   

is … 

Adding objects Adding parts Putting 

segments  

end-to-end 

Moving away 

from the origin 

Subtraction  

is … 

Taking objects 

away 

Removing parts Taking  

segments away 

Moving towards 

the origin 

Entailments 

and 

Extensions 

Natural 

  numbers 

Natural numbers  

Fractions 

 

Natural  

  numbers  

Fractions  

Irrational 

  numbers 

Natural numbers 

Fractions  

Irrational 

  numbers 

Integers 

Real numbers 

Properties Discrete Discrete Discrete Continuous 

Zero is the origin 

 

 

These four grounding metaphors are not imaginary; evidence of their 

existence can be found in language and in mathematical constructs of the past.  

ARITHMETIC IS OBJECT COLLECTION appears in such expressions as „add some 

lettuce to the salad‟ and „take a log from the woodpile‟.  ARITHMETIC IS OBJECT 

CONSTRUCTION is seen in Roman numerals like IX and VII, where parts are being 

added to or subtracted from a whole.  The MEASURING STICK metaphor is 

revealed by the use of units of measurement like cubits, feet and paces.  And 

ARITHMETIC IS MOTION ALONG A PATH is reflected in expressions like „6 is close 

to 8‟ and „starting at 20 count to 50‟.   

Nor are these four grounding metaphors arbitrarily chosen.  Of the many 

grounding metaphors that have been identified, Lakoff and Núñez (2000) find that 

only these four have physical sources with properties and logic sufficient to form 
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a connection with inborn numerical capacities.  “Each of them forms just the right 

kind of [correlation] with innate arithmetic to give rise to just the right kind of 

metaphorical mappings so that the inferences of the source domains will map 

correctly onto arithmetic…” (Lakoff & Núñez, 2000, p. 102). 

 

3.2.2.2 Linking metaphors 

While grounding metaphors tie conceptual domains directly to physical 

experiences, abstract domains can also be connected to each other by conceptual 

metaphors.  These linking metaphors may project inferential structure from 

domains that are directly grounded to more sophisticated concepts.  To illustrate, 

the metaphor FUNCTIONS ARE NUMBERS transfers ways of reasoning from its 

source, NUMBERS, which can be made sense of using a variety of physical 

representations.
9
 Thus, components of the inferential structure of the domain of 

NUMBERS, including the operations of addition, subtraction, multiplication and 

division, can be meaningfully applied to FUNCTIONS.  

Other linking metaphors carry modes of reasoning even farther – from one 

abstract mathematical domain to another.  Lakoff and Núñez (2000) refer to the 

PROPERTIES ARE FUNCTIONS metaphor.  For example, a dimension-function 

assigns the number zero to a point, one to a line, and two to a square. Ultimately, 

through elaborate chains of metaphors, all conceptual domains possess grounding, 

however, distant, in bodily perceptions and actions (Lakoff & Johnson, 1999; 

Lakoff & Núñez, 2000). 

                                                 
9
  The term „representation‟ refers to external manifestations of a concept  – 

examples, images, gestures, phrases – that assist learners to construct 

understanding of the domain. 
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3.2.3  The Conceptual Blend 

Distinct concepts can be combined into a new domain; the conceptual 

blend projects some of the corresponding features of two or more different 

cognitive sources onto a new conceptual domain (Fauconnier & Turner, 1998; 

Lakoff & Núñez, 2000).  For example, the UNIT CIRCLE is a conceptual blend of 

the circle in the Euclidean plane and the Cartesian plane with coordinate axes 

(Lakoff & Núñez, 2000; see Figure 7)
10

.  

 

 

 

 

 

 

 

 

 

 

                                                 
10

  Figure 7 was my own attempt to illustrate the UNIT CIRCLE conceptual 

blend.  Later, I discovered that it has a remarkable similarity to figures on pages 

390-392 in Where Mathematics Comes From (Lakoff & Núñez, 2000).  

Independent development of the diagram illustrates how particular metaphors 

have entailments that compel certain interpretations.  It is likely that any graphic 

representation of the UNIT CIRCLE conceptual blend would closely resemble 

Lakoff and Núñez‟s images. 

x 

y 

(1, 0) (-1, 0) 

(0, 1) 

(0, -1) 

(x, y) = (cos , sin) 

 

x 

y 
Cartesian plane 

P 

(x,y

) 

 

A circle in the 

Euclidean plane 

Figure 7:  Features of Euclidean and Cartesian geometry combined 

into the UNIT CIRCLE.   

UNIT CIRCLE  
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In the Euclidean plane, a circle consists of all points in the plane a fixed 

distance, called the radius, from a fixed point, called the center.  The two-

dimensional Cartesian plane is defined by two axes set at right angles to each 

other.  The horizontal or x-axis and the vertical or y-axis intersect at a point called 

the origin, O.  By using a unit length on each axis and forming a grid, the position 

of any point on the Cartesian plane can be described using (x, y) coordinates.    

The UNIT CIRCLE conceptual blend inherits characteristics from both input 

domains.  A circle is still composed of points a set distance from its center.  But 

now this center is at the origin, the radius of the circle has a length of one unit, 

and coordinates can be used to describe points on the circle.  Moreover, new 

characteristics may arise in the conceptual blend (Fauconnier, 1997; Lakoff & 

Núñez, 2000); the UNIT CIRCLE has emergent properties related to trigonometry 

that are not part of either of the original source domains.  

 

3.3  Summary 

The theory of embodied mathematics, as set forth by Lakoff and Núñez 

(2000), portrays mathematics as being extended from a rather limited set of 

inborn skills through bodily experiences to an ever-growing web of conceptual 

domains. These are connected by conceptual metaphors – cognitive mechanisms 

used automatically and unconsciously – which project patterns of inference. 

Grounding metaphors make basic arithmetic possible by forming correlations 

between innate abilities and physical actions.  Linking metaphors connect 

arithmetic to more abstract mathematical concepts, each metaphor carrying 
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inferential structure systematically from one domain to another. New concepts are 

formed as domains fuse and create conceptual blends; new metaphors involving 

these blends are subsequently formed.  

This „network of ideas‟ is the basis of mathematical knowledge and 

knowing (Lakoff & Núñez, 2000, p. 376).  Although it is not clear that Lakoff and 

Núñez mean to evoke the mathematical discipline of network theory with this 

phrase, I would contend that closer examination of the structure of cognitive 

mechanisms in terms of networks sheds light on the subjective understanding of 

mathematics.  In cognition, as with other complex phenomena, “what happens and 

how it happens depends on the network” (Watts, 2002, p. 28).   
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Chapter 4 

The Metaphoric Network of Mathematics
11

 

In preceding chapters, I have argued that mathematical understanding is a 

complex system and, therefore, that representing this form and investigating its 

properties using a network model is appropriate.  I have also described the 

conceptual domains and conceptual metaphors, as put forth in the theory of 

embodied mathematics (cf., Lakoff & Núñez, 2000), that can be used to account 

for the creation and development of mathematical ideas.  Connecting these 

frames, I propose that such cognitive mechanisms comprise the basis for a 

network structure for subjective comprehension of mathematics.  

Viewing mathematical understanding, or any complex system, as a 

network necessitates stripping away specific details and focusing on 

characteristics of the formation that lies beneath it.  As with any mathematical 

model, the network structure of a complex form is a drastic simplification of the 

reality it represents; important properties of the system are inevitably missed 

(Cilliers, 1998).  But one is enabled to draw on the techniques and understandings 

established by network theorists and, in doing so, it is possible to develop new 

insights that are ordinarily obscured by the very richness of features that make 

complex systems fascinating objects of study. 

                                                 
11

  Parts of this chapter have been drawn from an article that is published.  

Mowat 2008. For the Learning of Mathematics. 28(3): 20-27.  Used with 

permission.  Other elements come from an article accepted for publication.  

Mowat & Davis (in press). Complicity: An International Journal of Complexity 

and Education. 
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In any attempt to understand a network as a whole, it is necessary to 

carefully examine the components of the structure (Barabási, 2003). The nature of 

the vertices or nodes of the network and the edges or links that connect them are 

critical in determining characteristics of the system. In particular, the ways in 

which these constituent parts interact govern the structure‟s overall configuration 

or topology.  

In this chapter, I discuss attributes of the conceptual domains and 

conceptual metaphors that I have suggested constitute a network for individual 

mathematical understanding – henceforth referred to as the metaphoric network of 

mathematics.   Characteristics of the network structure that emerges from these 

properties are also explored.  In particular, I develop the argument that subjective 

mathematics exhibits the scale-free topology that distinguishes all complex 

systems. 

 

4.1. Conceptual Domains as Nodes 

 I propose to take, as nodes in the metaphoric network of mathematics, 

conceptual domains like the CONTAINER image schema, ARITHMETIC, or 

FUNCTION. Even the simplest of these domains possesses considerable internal 

structure (Johnson, 1987); each contains interconnected elements related to a 

variety of sensory experiences, language, and related concepts. Thus, every 

conceptual domain is a subnetwork of the larger network that forms the cognitive 

system (Kimmel, 2002; Kövacses, 2002; Lamb, 1999).  
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While most work in this area has been done in other fields, I am applying 

the principles to mathematical domains.  For example, the concept CIRCLE 

contains many nodes representing a person‟s knowledge of and experiences with 

circles, all held together by a central coordinating conceptual node.  This network 

is dynamic, changing with new experiences and interpretations, and differs from 

person to person.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 illustrates only part of a possible network for the concept of 

CIRCLE: it is not possible to provide a complete map, for any concept may contain 

thousands of nodes (Lamb, 1999). Moreover, no component of the subnetwork 

V    looking into someone‟s 

            eyes 

T   feeling a Lifesaver 

        on your tongue 

C    

A   hearing children play 

     „ring around the rosy‟ 

V    seeing a pie 

K   cutting a piece of pie 

V   seeing the wheel of a 

           bicycle  

K  playing with a ring on 

        your finger 

E   pleasure 

C     

C    SPHERE 

A   hearing a ball roll across the 

         floor 

C = conceptual V = visual  L = lexical A = auditory 

T = tactile  K = kinesthetic   E = emotional 

Figure 8:  Part of a conceptual domain of CIRCLE following Lamb‟s (1999) 

example of CAT.  

K     playing „ring 

around the rosy‟ 

CYLINDER    C 

L    round 

CIRCLE 

circle    L 

RADIUS 

C 
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can be considered an indivisible unit.  For example, the visual node labeled 

„seeing a pie‟ in Figure 8 includes many different optical features (color, size, 

topping) that might be involved in a person „seeing a pie‟. Each node is itself a 

subnetwork of the conceptual domain (Lamb, 1999). 

Patterns of spatial relations also have their own network structure.  Figure 

9 presents some of the nodes contained in the subnetwork that an individual might 

construct for the CONTAINER image schema.  As mentioned earlier, this 

conceptual domain is particularly important for reasoning in mathematics (Lakoff 

& Núñez, 2000). 
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If an object is outside 

A, then it is not in A. 
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the sink 
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and A is in B, then the 
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seeing a cup 

in the sink 
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a cup 

L 
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C = conceptual T = tactile A = auditory  E = emotional   

K = kinesthetic L = lexical S = spatial logic V = visual 

 

Figure 9: Part of the CONTAINER image schema. 
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When sensori-motor, lexical, and conceptual nodes in a subnetwork are 

activated, they operate together and form an individual‟s perception of the domain 

(Lakoff, 1987; Lakoff & Núñez, 2000; Lamb, 1999).  Not all of the nodes in a 

conceptual domain must be stimulated in order to awaken this gestalt. “For most 

… concepts there are many properties, and if enough of them are present in a 

given situation, the [concept] is activated” (Lamb, 1999, p. 154). Thus, each 

concept has a threshold of activation – the number of nodes, not all of equal 

weight, that must function in order to make the domain active.  For some 

concepts, the threshold may be just one. The sight of a bicycle wheel, for instance, 

might be enough to stimulate the central conceptual node for CIRCLE and, through 

it, the rest of the nodes in the subnetwork. Other domains may have higher 

activation thresholds. There is no simple way of determining how many properties 

need to be satisfied for a conceptual domain to become active (Lamb, 1999).   

Moreover, traits of individual elements of the subnetwork have an effect 

on the activation of the domain.  Each node requires a particular number of 

interactions with other vertices to initiate a change in state.  Some “early 

adaptors” are easily altered; if even one nearby node is activated, its status will be 

modified (Watts, 2002, p. 233).  Others are more stable, but if the number of 

active neighbors is large enough, they too will be energized. Thus, the likelihood 

of a conceptual domain becoming operational is affected by both the propensity of 

different nodes to be activated and the number of connections they have to other 

parts of the subnetwork. 
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4.2 Conceptual Metaphors as Links 

Following the work of Lakoff and Núñez (2000), I propose that links in 

the metaphoric network of mathematics be conceptual metaphors.  These cross-

domain mappings establish connections between concepts by projecting 

inferential structure from one domain to another.  Each metaphor transfers an 

entire cluster of nodes and their relations from the subnetwork of the source 

domain to that of the target (Gentner, 1983; Gentner & Toupin, 1986; Gholson, 

Smither, Buhrman, Duncan & Pierce, 1997). 

However, not all characteristics of the source are mapped onto the target 

domain.  It is typical of a metaphor that it has “unused parts” (Lakoff & Johnson, 

1980, p. 54). If aspects of a source domain do not correspond to some portion of 

the target domain, they will simply not be projected onto it (Kövecses, 2002), for 

“metaphorical mappings preserve the cognitive topology … of the source domain 

in a way consistent with the inherent structure of the target domain [italics 

added]” (Lakoff, 1993, p. 11).   

For example, the metaphor AN ACTIVITY IS A SUBSTANCE (Lakoff & 

Johnson, 1980) is revealed in sentences like „How much homework did you do 

last weekend?‟ and „I did a lot of marking‟.  While the quantifiability of a 

material SUBSTANCE is projected onto an ACTIVITY like schoolwork, other 

characteristics of the source domain are not mapped onto the target; the actions of 

marking papers and doing assignments cannot be touched or put in a container.  

Sections of the SUBSTANCE subnetwork that correspond to these qualities do not 



  52 

 

correspond to innate properties of ACTIVITY and, thus, are not transferred onto the 

domain.   

Some source domains provide a framework for a variety of targets 

(Kövecses, 2002).  For example, consider the many metaphors (some of which are 

listed in Figure 10) that can be based on the conceptual domain of SET. These 

metaphors all project significant characteristics from the source of SET onto 

various targets, thus developing common inferential structures in disparate 

domains. These shared modes of reasoning can provide powerful tools for 

mathematical understanding.  For instance, the metaphors, AN ORDERED PAIR IS A 

SET and A NUMBER IS A SET, provide a means for understanding all of 

mathematics using set theory (Lakoff and Núñez, 2000), an insight that, from the 

perspective of cognitive science, underlies the work done by the foundationalist 

philosophers of mathematics in the early 1900s.  

 

 

 

 

Just as source domains may be metaphorically linked to more than one 

target, some targets are connected to a variety of sources.  For many conceptual 

domains, a single source does not possess enough structure to support all features 

of the concept (Bills, 2004; Lakoff & Johnson, 1999). For example, Lakoff and 

Núñez (2000) state that four grounding metaphors are needed to fully capture the 

many characteristics of ARITHMETIC  (see Figure 11). These metaphors not only 

AN ORDERED PAIR IS A SET.   A NUMBER IS A SET. 

A FUNCTION IS A SET.    A LINE IS A SET. 

A LOGICAL PROPOSITION IS A SET.  A GRAPH IS A SET. 
 

   Figure 10: Metaphors with a source domain of SET. 
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provide structures for distinct aspects of the target (Chiu, 2001; Kimmel, 2002; 

Kövecses, 2002; Sfard, 1997; Sinclair & Schiralli, 2003), but also enable 

alternative interpretations of the target domain in different contexts (Kimmel, 

2002). Together, a collection of conceptual metaphors from distinct sources can 

construct a coherent understanding of their common target domain (Lakoff & 

Johnson, 1980). 

 

 

 

 

 

 

The likelihood of a conceptual domain being activated is increased when it 

is structured by a collection of metaphors. As each conceptual metaphor transfers 

a group of related nodes, the target contains tightly knit clusters that are loosely 

connected to each other.  Stimulating any one of the source domains from which 

one of these bits of inferential structure is inherited may provide the trigger that 

initiates activation of the entire target domain. 

The network topology as portrayed to this point is very intricate.  Some 

sources are connected to and provide modes of reasoning for many target 

domains; some targets are metaphorically linked to and receive structure from a 

variety of different sources.   This depiction implies that metaphors are directional 

ARITHMETIC IS OBJECT COLLECTION 

 

ARITHMETIC IS OBJECT CONSTRUCTION 

 

ARITHMETIC IS MEASURING WITH PHYSICAL SEGMENTS 

 (the MEASURING STICK metaphor) 

 

ARITHMETIC IS MOTION ALONG A PATH 

Figure 11: Grounding metaphors for the target domain ARITHMETIC. 
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mappings from source domain to target domain – a view accepted by many 

researchers (e.g., Falkenheiner, Forbus & Gentner, 1989; Lakoff & Núñez, 2000).   

However, there is evidence that metaphors may not always transfer 

inferential structure in just one direction (Barnden, Glasbey, Lee & Wallington, 

2004; Black, 1993; Danziger, 1990). Metaphoric projections involve the 

simultaneous activation of two distinct neural structures, resulting in the 

establishment and reinforcement of neural connections between them.  

Neuroscientists have found that such links are generally reciprocal, with 

activation flowing both ways between the source and target regions. (Lamb, 2005; 

Narayanan, 1997). 

Other researchers confirm the bidirectional nature of metaphor.  Meisner 

(1995) observes that, just as an idiom like „he is a pig‟ creates particular images of 

the person referred to, repeated use of the expression increases negative 

perceptions about the appetite and cleanliness of swine. The metaphor not only 

defines features of the target domain, but also modifies the source.  

On occasion, the source and target of a metaphor exchange places when 

the perceived importance of the domains is altered.  Kimmel (2002) relates how 

Newton initially explained gravitation in terms of sociability in groups of people.  

But as scientific reasoning became the accepted standard of truth in Europe, 

people started describing social interactions using the language of physical 

gravity.  Over time, the target of a metaphor may gradually come to be viewed as 

a source, changing understanding of the original source domain or domains that 

shaped it (English, 1997; Sfard, 1997). 
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This transformation is most likely to occur when the target is structured by 

more than one source (Meisner, 1995). To illustrate, the metaphor ARITHMETIC IS 

OBJECT CONSTRUCTION is revealed in expressions like „2 plus 3 makes 5‟ and „6 

can be broken up into 3 groups of 2‟. Experiences constructing objects affect our 

thinking about ARITHMETIC and NUMBER. In turn, these imported modes of 

reasoning influence perceptions in other source domains for ARITHMETIC, such as 

MOTION ALONG A PATH; we speak of „breaking a journey up into three easy 

stages‟. Something of the structure of numbers that originates in experiences 

constructing objects – not part of the MOTION ALONG A PATH domain – has been 

added. A conceptual metaphor is not static, but involves “ceaseless two-way 

interaction between the old and the new … [in a] process of coemergence” (Sfard, 

1997, p. 355).   

 

4.3   The Topology Of The Network 

Cognitive mechanisms offer a network structure for mathematics, with 

conceptual domains (nodes) connected to each other in intricate ways by 

conceptual metaphors (links).  Within this formation, each concept is a 

subnetwork encompassing a multitude of sensory perceptions, linguistic forms, 

and related domains.  A closer look at such a formation reveals yet more deeply 

embedded structures, like the optical web that might represent the many different 

aspects of a particular visual perception.  Figure 12 offers an image of this nested 

organization, which is typical of complex systems (Davis & Simmt, 2006).  
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Networks underlying complex forms share a number of attributes, 

including the arrangement of forms fitted inside each other discussed above. 

Many other characteristic patterns are found in the structures and evolution of 

these configurations (Barabási, 2003; Watts, 2002).   In particular, network 

models of complex systems tend to display a scale-free topology (Barabási & 

Albert, 1999).   

 

4.3.1 The Scale-free Topology of Networks 

Connectivity in a scale-free network displays several distinctive 

properties.  A graph representing the number of links per node in such a structure 

does not form the normal curve that characterizes data for many phenomena, but 

is more properly determined by a power law (Barabási & Albert, 1999).
12

 Such a 

distribution lacks the characteristic peak of the bell shape that indicates an 

                                                 
12

  A power law distribution is formed when N(k), the number of nodes with 

k links, satisfies the relation, N(k) ~ k
-
, where  lies between 2 and 3 for most 

complex systems (Barabási, 2003). 

Figure 12:  Nested networks:  a subnetwork (perhaps of the many visual features 

involved in „seeing a pie‟) nested within the subnetwork of the CIRCLE domain 

(see Figure 8), which is itself nested within the metaphoric network of 

mathematics. 
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„average‟.  Instead, it is depicted by a continuously decreasing function (see 

Figure 13), revealing that a few nodes possessing very many connections coexist 

with numerous vertices that have only a small number of links. The degree of 

connectivity varies so much that no node can be considered representative and, 

therefore, there is no intrinsic scale, or typical number of links, in the network 

(Barabási, 2003).   

 

 

 

 

 

 

 

 

 

This pattern of connectivity arises from the organization of complex 

networks (Barabási, 2003; Watts, 2002).  Highly connected nodes or hubs play a 

key role in the organization of the structure.  In a scale-free network, clusters are 

formed within which every vertex is connected to a hub; these are in turn linked to 

more central nodes, and so on (see Figure 14). 

 

 

 

Number of nodes 

Number of 

connections 

per node 

Figure 13:  The power law distribution of 

connectivity in a scale-free network. 
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Much research has been done investigating complex systems and the 

networks that underlie them. Barabási and Albert (1999) state that two conditions – 

growth and preferential attachment – are necessary and sufficient conditions for a 

network to display the scale-free pattern of organization.  I argue here that the 

metaphoric network of mathematics possesses these attributes and is, thus, a scale-

free structure. 

 

4.3.2 Growth:  How Nodes are Formed, Modified and Reorganized. 

 The metaphoric network of mathematics comprises an intricate web of 

conceptual domains linked by conceptual metaphors.  As a model for subjective 

mathematics, the network can only be truly understood by considering the nature 

of the processes through which this complex system evolves (Watts, 2002).   An 

individual‟s mathematical understanding is not static, but develops as he or she 

continues to learn; existing domains change and novel concepts come into being.  

Metaphors provide the “scaffolding for [this] … growing conceptual system” 

(Sfard, 1997, p. 350). 

Figure 14:  A simple network displaying a scale-free topology. 
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The conceptual metaphor is such an intrinsic part of human reasoning 

and human language that one is constantly exposed to this cognitive 

mechanism. Many metaphors are so deeply embedded in everyday life and 

mathematical culture that individuals are hardly conscious of their use (Lakoff 

& Johnson, 1980; Lakoff & Johnson, 1999). For example, people are unaware 

that they are using a metaphor when they say, „97 is close to 100‟,  „12 can be 

broken up into its prime factors‟, or „the curve reaches its maximum at (1, 5)‟.  

But these invisible metaphors are so much a part of thought patterns that most 

individuals would be hard pressed to think of other ways of expressing the 

ideas (Sfard, 1997).  

Learners are introduced to conceptual metaphors from many sources – 

peers, parents, and teachers.  Exegetical metaphors, that is, metaphors used for 

schooling, like AN EQUATION IS A BALANCE, play an important role in assisting 

students to learn mathematical concepts needed for every-day routines and to 

acquire the mathematical competencies necessary for becoming part of the larger 

mathematics community (Travers, 1996). Some people also construct 

idiosyncratic metaphors, relating newly encountered concepts to personal 

experiences or previously understood ideas (Pimm, 1987; Presmeg, 1992; Sinclair 

& Schiralli, 2003).
13

  Metaphors, regardless of the source, both bring new 

concepts into being and modify existing domains. 

                                                 
13

  There is some controversy about the difference between the conceptual 

metaphor and the idiosyncratic metaphor. Many researchers characterize the 

conceptual metaphor as a “publicly accessible tool” (Sinclair & Schiralli, 2003, p. 

5) and contrast it to the “private, personal” idiosyncratic metaphor (Presmeg, 

1997a, p. 277) that spontaneously evolves when an individual tries to make sense 
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A conceptual metaphor may possess entailments that can lead to new 

understandings of previously encountered conceptual domains and to the 

development of novel concepts.   For example, the MEASURING STICK metaphor 

portrays numbers as physical segments (Lakoff & Núñez, 2000).  Using this 

metaphor, anything that can be measured – not just using a ruler or other rigid 

item, but with any device, perhaps a measuring tape – can be considered a 

number; this provides some inferential structure for a previously unknown 

domain, the irrational numbers (see Figure 15). 

 

 

 

 

 

 

Nodes are also added to the metaphoric network of mathematics through 

conceptual blends. These cognitive mechanisms construct a partial 

correspondence between two unrelated sources and project this onto the novel 

blended domain (Fauconnier & Turner, 1998; Lakoff & Núñez, 2000). For 

example, ARITHMETIC IS MOTION ALONG A PATH can be blended with ROTATION 

                                                                                                                                     

of mathematics on their own (Sinclair & Schiralli, 2003; Sfard, 1997).  But an 

idiosyncratic metaphor may in fact be a conceptual metaphor, that is, “a 

grounded, inference-preserving cross-domain mapping” (Lakoff & Núñez, 2000, 

p. 6).  For example, Machtinger (1965) creates a metaphor, GROUPS OF CHILDREN 

ARE NUMBERS, to assist kindergarten children in conjecturing and justifying 

theorems about number theory.  The metaphor, while certainly idiosyncratic, is 

just as surely conceptual.  Viewed from this perspective, the distinctions drawn 

between idiosyncratic and conceptual metaphors seem perhaps artificial. 

1 

1 

√2 

 

Figure 15:  Grounding √2 and  using the MEASURING STICK 

metaphor. 

1 
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BY 180 to form a conceptual blend that accounts for MULTIPLICATION BY A 

NEGATIVE NUMBER (Lakoff & Núñez, 2000; see figure 16).
14

  

  

 

 

 

 

 

 

 

Most significantly, metaphors have the power to create previously 

unknown concepts; metaphoric mappings do not merely highlight a domain that 

already exists, but bring new concepts into existence by transplanting inferential 

structure from one context into another (Boyd, 1993; Chiu, 2000; Lakoff & 

Johnson, 1980; Presmeg, 1997a; Sfard, 1997). For example, the metaphor linking 

rotation by 90 to i, which was used by Argand to give geometric meaning to 

complex numbers (O‟Connor & Robertson, 2000), is a classic use of this type of 

constitutive metaphor in mathematics. 

While often unrecognized or ignored, the role that metaphor plays in the 

creation of new conceptual domains in the subjective understandings of 

                                                 
14

  While much of the discussion in this dissertation is organized around 

examples from Lakoff and Núñez (2000), I acknowledge that mathematicians 

throughout history originally developed many of these conceptions.  

ARITHMETIC IS MOTION ALONG A PATH  

(1 x 3) 

MULTIPLICATION BY A NEGATIVE 

NUMBER IS ROTATION BY 180 

ROTATION BY 180 

-3  -2  -1    0    1    2    3 

-3  -2  -1    0    1    2    3 

Figure 16: The conceptual blend for MULTIPLICATION BY A NEGATIVE NUMBER 

IS ROTATION BY 180. 

-3  -2  -1    0    1    2    3 
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mathematicians is sometimes acknowledged.  Sfard (1994) quotes a 

mathematician who describes the important function metaphor serves in his work:  

To understand a new concept I must create an appropriate 

metaphor.  A personification.  Or a spatial metaphor.  A 

metaphor of structure.  Only then can I answer questions, 

solve problems.  I may even be able then to perform some 

manipulation on the concept.  Only when I have the 

metaphor.  Without the metaphor I just can‟t do it. (p. 48) 

 

 

As learners assimilate and construct metaphors, the domain structure that 

comprises mathematical understanding grows.   Entailments and extensions of 

existing metaphors, conceptual blends, and constitutive metaphors all lead to the 

creation of new concepts.  Thus, the metaphoric network of mathematics satisfies 

the criterion of growth that is necessary for any scale-free structure. 

 

4.3.3  Preferential Attachment:  Why some Nodes Attract more Connections. 

Although it is clear that the network model for mathematical 

understanding expands, perhaps unexpectedly, it does not grow in an evenly 

distributed manner.  Not all nodes are equally likely to make new connections; “if 

a source domain is used to shed light on one or more salient target domains … 

this increases its likelihood to be chosen as a source domain in the future” 

(Kimmel, 2002, p. 108). When a concept is used as the source for a number of 

targets, it not only creates coherence among them by providing a common basis 

for their grounding, but it is strengthened in itself, simply because it is used 

repeatedly (Boyer, 1994).  Recurrent use contributes to the source domain 
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becoming an “attractor of meaning” (Kimmel, 2002, p. 113) – a hub in the 

metaphoric network of mathematics.   

The term „preferential attachment‟ is used to describe the pattern of 

development in networks where a disproportionately large number of new links 

involve nodes that are already highly connected (Barabási, 2003).  Researchers 

have identified a number of factors that contribute to a node‟s attractiveness to 

connections. 

Domains added to the network early in its development have more time to 

acquire links (Adamic & Huberman, 2000; Barabási, 2003; Barabási, Albert, 

Jeong & Bianconi, 2000; Krapivsky & Redner, 2001; Wagner & Fell, 2001). 

Thus, sensori-motor image schemas learned in early childhood, like the 

CONTAINER image schema or ROTATION, act as the source domain for many 

grounding metaphors and become hubs which are connected to a large number of 

concepts.  

Concepts that have a greater degree of „fitness‟ also tend to have more 

connections than other nodes (Bianconi & Barabási, 2001).  Certain domains are 

repeatedly employed as sources, because of the power and utility of their 

particular inferential structures.  Projections from such conceptual domains 

become not just acceptable, but expected.  History provides examples; soon after 

Cantor‟s development of set theory in the late 1800s, the domain of SET was taken 

as the foundation for newly developed concepts in many other branches of 

mathematics (Eves, 1997; see Figure 10). 
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Other conditions may be involved.  People are likely to use sources that 

they are already familiar with; “in the end, we all follow an unconscious bias, 

linking with higher probability to the nodes we know which are inevitably the 

more connected nodes of the [network]” (Barabási, 2003, p. 85). As well, formal 

education might be understood in terms of reinforcing the use of commonly 

accepted metaphors.   

For many reasons, metaphors tend to link new concepts to domains that 

are already used as sources for a number of other concepts.  Age, fitness, 

familiarity, and possibly other factors determine whether a node is likely to attract 

new links.  Source domains with numerous links are likely to become even more 

well connected, causing the evolving network of metaphors in mathematics to 

exhibit the property of preferential attachment.   

The two features of growth and preferential attachment are the requisite 

characteristics of a scale-free network topology (Barabási & Albert, 1999). As the 

metaphoric network of mathematics exhibits these characteristics, it possesses a 

scale-free structure.  Thus, it shares the “common blueprint … [that governs] the 

structure and evolution of all the complex networks that surround us” (Barabási, 

2003, p. 6).   

 

4.4 Summary 

In mathematics, as in all areas of human understanding, “from the day 

we are born, we use metaphoric projections to construct intricate conceptual 

systems” (Sfard, 1997, p. 343).  New vertices are continually being added to 
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the metaphoric network of mathematics through entailments of metaphors, 

conceptual blends and constitutive metaphors.  Each node might be the target 

for projections from several sources, just as each concept might serve as the 

source for metaphors to a variety of targets.  Domains that supply inferential 

structure to a number of concepts are likely to attract even more connections.  

Thus, the metaphoric network of mathematics – exhibiting both growth and 

preferential attachment – possesses a scale-free topology. 

But there is more to understanding a network than determining its 

topological structure.  One also needs to investigate its behaviors and discover 

how these actions are influenced by structural properties.  For, in complex 

phenomena, “which outcomes occur, how frequently they occur, and with what 

consequences, are all questions that can only be resolved by thinking jointly about 

structure and dynamics, and the relationship between the two “ (Newman, 

Barabási & Watts, 2006, p. 7).  In next chapter, I will examine dynamic behaviors 

of the metaphoric network of mathematics and explore how these affect 

mathematical understanding.  Implications for the learning and teaching of 

mathematics are also discussed. 
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Chapter 5 

Dynamic Behaviors of the Metaphoric Network: 

How these Impact the Learning and Teaching of 

Mathematics
15

 

Cognitive mechanisms outlined in the theory of embodied 

mathematics are seen to offer a useful model for representing mathematical 

understanding, with conceptual domains taken as the nodes of a network and 

conceptual metaphors viewed as the connections among them.  When 

examined, this structure is seen to display properties of growth and 

preferential attachment.  Thus, the metaphoric network of mathematics 

possesses the scale-free topology that is characteristic of all complex forms.   

To understand a complex network, however, it is necessary to consider 

more than its structure; one must also examine the dynamics of the system 

(Barabási, 2003). In particular, one must not “overlook or oversimplify the 

relationship between structural properties of a networked system and its 

behavior” (Newman, Barabási & Watts, 2006, p. 7).  In this chapter, I explore 

how the topology of the metaphoric network of mathematics influences the 

interactions that take place among its many nodes.  These dynamical traits are 

of particular interest for they have a direct impact on subjective understanding 

                                                 
15

  Parts of this chapter have been drawn from an article that is published.  

Mowat 2008. For the Learning of Mathematics, 28(3): 20-27.  Used with 

permission.  Other elements come from an article accepted for publication.  

Mowat & Davis (in press). Complicity:  An International Journal of Complexity 

and Education. 
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of mathematics.  This finding is discussed below, as are implications for the 

learning and teaching of mathematics. 

 

5.1 The Dynamics of the Network  

Much research has been done investigating how the structure of a 

complex network affects its overall behavior. The most conspicuous feature of 

a scale-free network is its distribution of connectivity; most nodes do not have 

many connections to other domains, but a few vertices have large numbers of 

links (Barabási, 2003; Watts, 2002; see Figures 13 and 14).  Such highly 

connected nodes have an influence that is out of proportion to their number  

(Watts, 2002), for they not only ensure the ease and efficacy of interactions 

across the web, but “determine the structural stability, dynamic behavior, 

robustness, and error and attack tolerance of real networks” (Barabási, 2003, 

p. 72).  

 

5.1.1 Interactions within the Network 

 Vertices with a great many connections have a major effect on 

relationships within the network, for “hubs create short paths between any two 

nodes in the system” (Barabási, 2003, p. 64). A scale-free structure is often 

considered to be a small world (Watts, 2002), as the „distance‟ or number of 

links between different vertices is not large.  Thus, chains of interactions can 

spread quickly throughout the web. 
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Despite this characteristic, if a network is made up of links that project 

inferential structure in just one direction, communication inside the formation is 

limited (Barabási, 2003).  While a one-way path from node A to node B may 

consist of 2 or 3 short steps, the reverse path from B to A may not even exist.  The 

network is segmented into several distinct regions and interactions between these 

areas are restricted.  In such networks, paths only exist among approximately one 

quarter of the vertex pairs in the network (Broder et al., 2000). 

In contrast, where connections are not directional, the network acts as a 

single homogeneous structure, ensuring that short paths can be found between any 

two nodes (Barabási, 2003).  As discussed in Chapter 4, while conceptual 

metaphors in mathematics may appear to project modes of perception and 

reasoning in just one direction, there is evidence that such mappings come to 

exhibit reciprocal behavior.  Sources for conceptual metaphors do develop co-

emergent meanings with their target domains.  Therefore, it is likely that the 

metaphoric network of mathematics is a unified structure.  One might thus expect 

that any conceptual domain in mathematics can be linked to any other by a 

sequence of relatively few conceptual metaphors, a point that might be supported 

through reference to recent examinations of the figurative underpinnings of some 

mathematical concepts (cf., Lakoff & Núñez, 2000; Mazur, 2003). 

 

5.1.2 The Stability of the Metaphoric Network 

As well as having this efficient pattern of connectivity, scale-free 

networks are generally very robust. Since the majority of nodes have only a few 
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links, a significant number of vertices can fail with little or no effect on the 

system.  Yet the network can be subject to severe collapses. 

This characteristic is highlighted when the scale-free topology is 

compared to two other structures – the centralized and distributed systems (see 

Figure 17).  As nodes in a centralized system are separated by at most one vertex, 

such webs are vulnerable to massive failures. If the core dies, the network 

disintegrates into isolated nodes.  Interactions become impossible.  In contrast, 

because of its many connections, a distributed system is extremely robust. Many 

vertices can be removed from the mesh-like structure before relationships among 

nodes are hampered and the system begins to fail (Baran, 1964).   

 

 

 

 

 

 

 

A scale-free network lies somewhere between these types of formations in 

terms of its robustness (Watts, 2002). The breakdown of a single central node 

does not cause the structure to become completely fragmented, but, if a highly 

connected hub is damaged, the network‟s stability may be seriously compromised 

(Barabási, 2003). The collapse may result in what is perhaps the most significant 

threat to the strength of a scale-free network – the cascading failure. 

Figure 17:  Centralized, scale-free, and distributed networks. 
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5.1.3   Cascading Failures in the Metaphoric Network of Mathematics 

In a cascading failure, the weakening of a key concept reverberates 

throughout the network; nodes directly connected to the hub fail first, nodes 

linked to these fall next and so on (see Figure 18).  While this damage can go 

unnoticed for a long time, the collapse of one highly connected vertex may 

eventually cause a large part of the network to break down and become 

fragmented (Albert, Jeong & Barabási, 2000; Barabási, 2003; Watts, 2002).  

 

 

 

 

 

 

 

To illustrate this dynamic process in the metaphoric network of 

mathematics, consider the many topics that are based on the image schema of 

ROTATION.  Figure 19 displays just some of the domains – from ANGLES to 

ROOTS OF REAL NUMBERS
16– that may be jeopardized if the concept of 

ROTATION breaks down.  Mathematical ideas linked to these conceptual 

domains may in turn collapse.  Consequently, the failure of this important 

                                                 
16

  Any real number like 1 has 3 complex cube roots. The principal cube root 

of 1 is 1 = 1 + 0i = (1, 0).  The two non-real cube roots of 1 can be found by 

repeatedly rotating the line segment from the origin to (1, 0) through an angle of 

120˚ = 360˚/3. 

Figure 18:  The effect of a cascading failure on a scale-free network.  
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source domain ripples throughout the metaphoric structure and an individual‟s 

understanding of mathematics may be severely compromised. 

 

 

 

 

 

 

 

 

 

Thus, the scale-free structure formed by conceptual domains and 

conceptual metaphors influences the dynamic behavior of the network as a whole.  

Lines of communication go through key mediating nodes, which are powerful, 

commonly used sources.  These hubs serve to connect clusters of related concepts 

and, ultimately, all nodes in the network. At the same time, dependence on such 

vertices puts the network at risk; if a hub fails, sizable portions of the web may 

break down.  Those parts of the formation that remain are isolated, fragmented, 

and consequently more vulnerable.  The scale-free topology of the metaphoric 

network of mathematics proves to be both a strength and a weakness of its 

structure. 

There is some intrinsic credibility in the idea of the vulnerability of 

concepts and cascading failures in an individual‟s knowledge of mathematics.  

ROTATION 

MULTIPLICATION BY NEGATIVE NUMBERS 

Figure 19: Some concepts metaphorically linked to ROTATION.  

 

MULTIPLICATION BY COMPLEX NUMBERS 

ROOTS OF REAL NUMBERS 

ANGLES 

ROTATIONS IN TRANSFORMATIONAL 

GEOMETRY  
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Experience in the classroom leads one to recognize situations where the 

catastrophic collapse of a student‟s understanding does occur.  A learner may 

seem to comprehend a mathematical topic well, and then something happens.  

Perhaps one too many idea is introduced, or some critical piece of background 

material is shaken, but suddenly the student‟s understanding of the concept 

falls apart.   

As an educator, I believe I have witnessed this in the middle school 

classroom. For example, the concept of MULTIPLICATION tends to be 

constrained by „definitions‟ of repeated addition and grouping.  These 

interpretations work well for elementary arithmetic, but, when learners 

encounter multiplication of negative numbers, they lack a key metaphor – 

MULTIPLICATION BY -1 IS ROTATION BY 180º – needed to make sense of the 

new situation.  A once well-understood idea is no longer clear.  

As discouraging as this is for a teacher to witness, it is even harder to see 

comprehension of a whole group of related concepts shatter.  The student whose 

understanding of a key idea is limited will inevitably have difficulty with 

associated topics.   In high school classes, I have seen the trouble Grade 10 

students have comprehending EXPONENTIATION and their consequent problems 

working with connected domains such as POLYNOMIALS, QUADRATIC 

EQUATIONS, and LOGARITHMS.  A cascading failure, described previously in 

theoretical terms, becomes visible in the classroom when it is set in motion by the 

weakness of a single mathematical concept.  
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The dynamics that occur in the metaphoric network of mathematics offer 

some explanation for why students experience these types of difficulties.  As a 

scale-free structure, mathematical understanding is inherently vulnerable because 

of the crucial role that certain conceptual domains play in ensuring the 

connectivity of the system.  As in other complex networks, some nodes are simply 

more important than others.  An inadequate understanding of one of these hubs 

has the potential to handicap severely a student‟s comprehension of concepts that 

are linked to it and, perhaps, of mathematics as a whole. 

 

5.1.4   Increasing the Network’s Stability   

 To support the learning of mathematics, there is a need to counteract the 

damaging effect that the weakness of a highly connected node can have on the 

stability of the metaphoric network – to limit cascading failures.  Various options 

present themselves.  For instance, attention might be focused on strengthening a 

learner‟s grasp of major source domains used in mathematical metaphors. There 

are two difficulties with this approach. First, little research has been done 

examining which source domains might be hubs; such research is confounded by 

the fact that hubs are not necessarily the same for everyone.   Second, teachers 

can assist learners to construct more stable conceptions of source domains that are 

seen as key, but this will not eliminate the vulnerability that is characteristic of a 

scale-free network. Hubs are still hubs; they retain their central position as 

attractors of meaning in the network of mathematics. 
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In order to improve the stability of the network of metaphors, one must 

change its structure. There are several ways in which this might be accomplished. 

Watts (2002) suggests that reducing the number of connections to a hub would 

lessen the likelihood of network failure. He states, “even in the event a hub did 

fail, fewer [nodes] would be affected, causing the system as a whole to suffer 

less” (p. 193).  

This course is not one that a mathematics teacher can readily choose; 

particular concepts are repeatedly selected as source domains because of their 

usefulness and because the mathematics community has traditionally employed 

them to develop new concepts. It is not likely that a teacher would deliberately 

refuse to use domains that do provide a coherent structure for developing 

mathematical knowledge, nor would this be responsible.  

It would seem that another approach is required. Increasing the number of 

links among conceptual domains would have the desired effect of reducing the 

network‟s dependence on its hubs.  Adding even a few connections – called weak 

links – between clusters of nodes decreases the network‟s vulnerability (Barabási, 

2003; Buchanan, 2002; see Figure 20). The more distributed structure that results 

has sufficient redundancy to ensure that “even if some nodes [go] down, 

alternative paths [maintain] the connections between the rest of the nodes” 

(Barabási, 2003, p. 144).   
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Thus, connections added to a scale-free network play a key role in tying 

the structure together (Barabási, 2003; Buchanan, 2002). By serving as „bridges‟ 

between different segments of the network, these new links decrease the chance 

of a cascading failure occurring.  The collapse of one node is therefore less likely 

to cause the catastrophic fall of many other vertices; the network remains a 

functional whole.  Following a tenet of complex dynamics, even a small change, 

like a slight increase in connectivity, can make a tremendous difference to the 

dynamics and robustness of the network.   

This insight offers a more effective, and more acceptable, pedagogical 

approach. By promoting the establishment of new connections among 

mathematical concepts, teachers should be able to assist students to construct 

more robust understandings of mathematics.  Suggestions for implementing and 

supporting such a methodology are discussed in the following section. 

 

Figure 20:  Increasing stability by adding a few weak 

links to a scale-free network. 
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5.2   Implications for Mathematics Education 

Awareness of the dynamic behaviors described above offers a way for 

educators to enhance their understandings of mathematics.  In particular, 

recognizing events – more specifically, cascading failures – that are characteristic 

of a scale-free structure can shed light on students‟ difficulties in learning and 

utilizing mathematics. Such insights have significant implications for the learning 

and teaching of mathematics. 

 

5.2.1 Adding Connections to Subjective Mathematics 

In mathematics education, some metaphors are traditionally employed to 

make sense of certain concepts (e.g., EQUATIONS ARE BALANCES); such 

connections are strong because they are widely used and constantly reinforced.  

However, relying on a single link to provide structure for an idea can be 

dangerous.  Failure to comprehend the source a concept is connected to not only 

jeopardizes understanding of the topic, but threatens comprehension of many 

related mathematical domains. 

It is desirable, therefore, that students draw on a variety of conceptual 

metaphors when making sense of a mathematical idea.  Then, if a learner‟s 

comprehension of one source breaks down, he or she can rely instead on 

metaphors linking the topic to other domains.  When concepts are not dependent 

on the strength of a single key source domain, then the network of metaphors that 

constitutes a student‟s understanding of mathematics should become more robust 

and not subject to the cascading failures and fragmentation that are characteristic 
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of scale-free networks. “If our mathematical conceptions are to be sound and 

stable, they must stand on more than one metaphorical leg” (Sfard, 1997, p. 367). 

Support for this approach can be found in recent studies in mathematics 

education (although the work does not refer explicitly to network theory). Tall 

(2003) states that the automatic use of previously learned metaphors for 

arithmetic can cause confusion for students. He describes how young children feel 

that adding two numbers should always yield a larger sum. This perception is 

justified if one is using the ARITHMETIC IS OBJECT COLLECTION metaphor, but the 

OBJECT COLLECTION source domain cannot deal with situations where the 

addition of integers leads to smaller sums (adding 2 to -7 gives you -5). Moses 

and Cobb (2001) find the same reliance on ARITHMETIC IS OBJECT COLLECTION. 

They suggest that ARITHMETIC IS MOTION ALONG A PATH is more useful in this 

context and develop a series of activities using experiences familiar to students, 

like riding on the subway, to strengthen this metaphor. With such techniques, they 

are successful in improving children‟s understanding of integer arithmetic. 

Davis and Simmt (2006) report on a study of teachers‟ understanding of 

the concept of MULTIPLICATION. While the most common definition for 

MULTIPLICATION given in primary textbooks is that of repeated addition (3  4 = 

4 + 4 + 4), participants identify a large cluster of different representations.  In a 

more recent work, still more interpretations of MULTIPLICATION are found (Davis, 

2008); conceptualizations from the two articles are presented in Figure 21.  

Teachers in both studies come to realize that MULTIPLICATION does not have a 

single meaning, but many, as revealed by the images, actions, and analogies they 
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list. Moreover, they concur that if learners are made aware of such multiple 

interpretations, they will be able to appreciate how MULTIPLICATION is used in so 

many diverse contexts.  

 

 

 

 

 

 

While metaphoric reasoning is not explored in either work, both 

concept studies can be viewed as suggesting metaphoric connections to 

MULTIPLICATION.  Indeed it would be strange if metaphors were not revealed, 

for in all discourse language and gestures are replete with surface 

manifestations of underlying conceptual metaphors (Lakoff, 1993; Núñez, 

2004).   Thus, varied representations for MULTIPLICATION expose bits of the 

complex inferential structures they embody.  Many of the images brought to 

light in these studies, while they cannot simply be reduced to the four 

grounding metaphors of ARITHMETIC, point to links with the image schemas 

upon which these are based (see Figure 22).  Connections to other domains 

may also be indicated. 

 

 

 

Multiplication is … 

-  repeated addition  -  equal grouping 

-  number-line hopping -  sequential folding 

-  many-layered  -  ratios and rates 

-  array-generating  -  area-producing 

-  dimension changing  -  number-line stretching or compressing 

-  steady rise/slope  -  branching 

-  number-line rotation (for multiplication of integers) 

  
Figure 21:  Representations for MULTIPLICATION. 
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These four studies confirm that it is advantageous to utilize more than one 

metaphor when making sense of a concept.  This approach is consistent with what 

is known about the internal structure of conceptual domains.  As discussed in 

Chapter 4, a domain actively contributes to an individual‟s understanding only 

when a certain number of nodes are activated (Lamb, 1999). If a concept is 

connected to only one source and it fails, then the cluster of vertices that would 

have been transplanted from the domain‟s subnetwork to that of the target is no 

longer available.  Consequently, the threshold of activation for the target domain 

may not be met.  If several links from different source domains to the concept 

exist, there is less chance that this will occur. Although nodes corresponding to 

properties of one source may remain dormant, clusters of vertices associated with 

different sources are still available for activation. Augmenting the number of 

domains that map onto a target increases the likelihood that the concept and other 

topics, which in turn depend on its inferential structure, are activated.   

Thus, in the metaphoric network of mathematics, it is important to develop 

additional connections among domains.  A collection of different metaphors can 

provide varied ways of comprehending the many distinct aspects of a concept; 

OBJECT  OBJECT MEASURING MOTION 

COLLECTION CONSTRUCTION STICK ALONG A LINE 
repeated addition repeated addition repeated addition repeated addition 

equal grouping sequential folding  number-line hopping  

many-layered array generating   number-line stretching 

 area producing 

 branching   

 

 Figure 22: Representations of MULTIPLICATION linked to the four grounding 

metaphors. 
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these mappings ensure a rich and complex subnetwork for the mathematical idea. 

If topics are not each dependent on a single source – if weak links are made to 

several domains – then subjective understanding of mathematics should become 

more stable and less prone to the cascading failures and fragmentation that can 

hamper scale-free networks.   

 

5.2.2 Influences on Pedagogy 

A central role in building these connections is played by teachers, for they 

largely determine students‟ exposure to mathematical ideas.  To facilitate the 

construction of „metaphorical legs‟, instruction could be oriented around the 

utilization of varied metaphors when a new concept is being introduced or a 

previously encountered one is being extended.  It would not be advisable to 

present multitudes of metaphors all at once, for students would almost surely find 

this confusing.  But during a unit or course – or even throughout classes over a 

several years of schooling – a number of different metaphoric connections to each 

mathematical topic could be established. Regular use of a variety of metaphors 

from different domains to make sense of concepts ought to benefit students in 

their learning of mathematics. 

From the point of view of a classroom teacher, this makes sense.  In 

discussions with colleagues, a number commented that using several metaphoric 

approaches to a topic increases the likelihood of students understanding the 

concept.  That some of these peers were speaking of their experiences teaching 

subjects other than mathematics is particularly interesting.  It appears that teachers 
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in many disciplines can appreciate the desirability of establishing connections to a 

target from a number of source domains. 

Teachers play a critical part in this process, for they introduce the images, 

models, and other representations that trigger metaphoric links in students‟ 

subjective understandings of mathematics.  Moreover, instructors design the 

activities and explanations that assist learners to understand and internalize these 

connections. Neither of these undertakings is simple for there are many different 

factors that must be considered.    

Metaphors need to be selected carefully; it is important that the source 

domain accurately reflects some aspect of the structure of the target domain 

(Chiu, 2001; English 1997).  For example, the activity of walking along a street 

might appropriately be used as a source for the concept of a number line (Chiu, 

2000).  The ideas of starting point, location, distance, and directions correspond to 

features of the target domain like zero, number, absolute value, and positive or 

negative quantities. When a natural correlation between source and target 

domains exists, learners find it easier to transfer appropriate inferential structures 

from one to the other (English, 1997). 

In contrast, consider the metaphor Sandra chooses to develop the concept 

of inverse functions – as gears in a car that are shifted into reverse (Heaton, 

1992). There is no real sense of „undoing‟  – the essence of the inverse of a 

function – in Sandra‟s image; thus understanding of situations involving inverse 

functions is limited.  Students‟ familiarity with cars may be motivational, but the 
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comparison provides “an ambiguous (and potentially deceitful) impetus with 

which to make sense of the problem” (Sinclair & Schiralli, 2003, p. 85).  

It is also important for students to be familiar with the source of a 

metaphoric mapping (Chiu, 2000; Davis & Maher, 1997; Schifter, 2001), for 

“inadequate understanding of the source domain of a metaphor limits a person‟s 

reasoning through that metaphor” (Chiu, 2000, p. 7).  For example, Edwards 

(2003) finds that, while rotations about a point that lies within an object are well 

understood, learners have difficulties when the centre of rotation is outside the 

object.  Although not stated explicitly in Edwards‟ work, it appears that limited 

comprehension of the source of the ROTATION IS TURNING metaphor handicaps 

people studying transformation geometry.   Individuals interpret TURNING using 

physical experiences like rolling over  – with themselves as the centre of rotation 

– and do not consider other „turning‟ situations like children playing on a swing or 

satellites orbiting a planet.  As the degree of understanding of a source both 

facilitates and restricts reasoning using a conceptual metaphor, it is desirable to 

ensure that students comprehend the many different features of source domains.  

In addition, each conceptual metaphor has limitations that could be 

brought to students‟ attention.  Even if learners comfortably draw on a metaphor 

to make sense of a concept, they are not likely to be aware of everything that is 

implicit in the mapping – what it introduces and what it hides – and unquestioned 

use may lead to “invalid inferences, unreliable justifications, and inefficient 

procedures” (Chiu, 2001, p. 94). Nolder‟s (1991) discussion of the PRIME 

NUMBERS ARE PRIMARY COLORS metaphor exemplifies some of these liabilities.  
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From the source domain of PRIMARY COLORS, basic relations are projected onto 

the target of PRIME NUMBERS; „secondary colors are composed of primary colors‟ 

becomes „natural numbers are composed of prime numbers‟.  But use of this 

metaphor may cause misconceptions.  Individuals may incorrectly assume that, 

because there are three primary colors, only a finite number of prime numbers 

exist.  Clarifying the boundaries of metaphoric projections is an important part of 

the teacher‟s task when conceptual metaphors are introduced and utilized in 

classroom activities. 

Moreover, when several appropriate metaphoric links have been 

established from well-understood sources to a target, the mathematics educator 

can integrate these connections.  Distinct metaphors each have their own modes 

of reasoning and “lead to different conscious and unconscious beliefs that can 

cause obstacles to drawing various aspects [of target domains] into a central core 

mathematical concept” (Watson, Spyrou & Tall, 2003, p. 74).  Núñez, Edwards 

and Matos (1999) illustrate this in their study of conflicting metaphors used in 

calculus. In high school, the metaphor A LINE IS THE MOTION OF A TRAVELER 

TRACING THAT LINE shapes introductory descriptions of the limit.  Later, at 

university, a different analogy – A LINE IS A SET OF POINTS – underlies the 

Cauchy-Weierstrass - definition of the concept.  As students are never told that 

these conceptualizations have dissimilar embodied foundations, difficulties 

naturally arise (Lakoff & Núñez, 2001; Núñez, 1997; Núñez, Edwards, & Matos, 

1999).  To avoid such problems, special efforts are needed to combine inferential 

structures from different source domains into a coherent whole.    
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Classroom communication plays a significant role in addressing these 

tasks. When interacting with students, teachers cannot help but use metaphoric 

utterances for “metaphor is as central to the expression of mathematical meaning, 

as it is to the expression of meaning in everyday language” (Pimm, 1987, p. 11-

12).  Metaphors may be explicitly stated or implicit in representations hidden in 

diagrams drawn on the board, in displays on the wall and in a teacher‟s casual 

expressions and gestures (Bolite Frant, Avecedo & Font, 2005).  It is particularly 

important that educators be aware of the effect their words and actions have on 

students.  For since a learners‟ mathematical development is shaped significantly 

by the instructor‟s preferred modes of reasoning, the ways metaphors are used by 

teachers have a real effect on their students‟ understandings (Bolite Frant, 

Acevedo & Font, 2005; Presmeg, 1997b).   

References to metaphors could also be an integral part of classroom 

discourse.  Attention can be drawn to the use of metaphoric terms, notations and 

images, and, as individuals are likely to understand a metaphor in terms of their 

own personal experience (Pimm, 1987), learners can be encouraged to discuss the 

associations these bring to mind.  Students can also be invited to articulate ways 

in which various metaphors linked to a concept are different and similar, and to 

identify features in various sources that correspond to certain aspects of the target 

domain.  Such discussion might not only help learners realize which metaphors 

are appropriate for use in particular situations, but may also emphasize the need 

for having more than one metaphoric perspective from which to view a concept.  
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Social interaction among students could also be encouraged, as this has 

been shown to be important in determining the efficacy and usefulness of 

metaphoric thought in the classroom (Madden, 2001). As learners work together 

on mathematical activities, they can collectively explore and reinforce their 

understandings of the mappings conveyed by different conceptual metaphors.  

Moreover, problems are likely to be interpreted with idiosyncratic metaphors. 

Since life experiences vary from child to child, the comparison one student uses to 

understand a mathematical concept may not be the same as that constructed by 

another (Presmeg, 1997a).  Discussions provide opportunities for learners to 

explore and evaluate these personal analogies. Thus, private metaphoric links may 

develop taken-as-shared meanings and become part of the classroom culture 

(Presmeg, 1997a; Sfard, 1997).  Moreover, opportunities emerge for teachers and 

students to integrate idiosyncratic metaphors, when appropriate, with the 

conceptual metaphors of formal mathematics (Bolite Frant, Acevedo & Font, 

2005; Presmeg, 1997a; Sinclair & Schiralli, 2003; Wood, Cobb & Yackel, 1991).  

As metaphors are an intrinsic part of mathematical thinking, paying 

attention to the reasoning revealed in classroom interactions can provide 

educators with insights into learners‟ understandings or misunderstandings (Bolite 

Frant, Acevedo & Font, 2005; McClain & Cobb, 2001; Presmeg, 1997a; Schifter, 

2001).  For student errors are not random; they contain an element of logic, even 

though it is incorrect (Schifter & Fosnot, 1993; Wood, Cobb & Yackel, 1991).  

Thus, it is important for teachers to “dig under [the] children‟s words to find the 

sense in their perplexities” (Schifter, 1998, p. 78).  One learner may base his or 



  86 

 

her reasoning on a domain that does not provide appropriate inferential structure 

for a particular topic; a second may misconstrue correspondences between source 

and target.  Still another may hang on to “a concrete metaphor that refuses to die” 

(Sfard, 1997, p. 368), not making the necessary transition to using more abstract 

concepts as source domains.  Awareness of these problems is important if 

mathematics educators are to assist students in forming sound understandings of 

metaphoric projections and in leaving inappropriate links behind and moving on 

to more suitable connections.   

 

5.2.3 Other Consequences for Mathematics Education 

The teacher cannot alone implement recommended changes to 

instructional practices.  In particular, support from curriculum structures is 

desirable. Current programs of study focus on distinct mathematical topics, 

arranging them in an essentially linear fashion. Mathematics is presented as a 

hierarchical structure, with concepts at each level being built on those taught in 

previous grades. Students accumulate a collection of techniques from isolated 

units to use in prescribed ways. 

This presentation of mathematics inevitably conflicts with what 

complexity science and network theory reveal about mathematical understanding. 

The structure of mathematics is more akin to an ecosystem of vibrant notions, 

rather than a tower of static ideas. Concepts are important, but the connections 

between them are even more vital; it is the metaphoric links in mathematics that 

determine a concept‟s inferential structure, connect it to clusters of associated 
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topics, and ensure its stability. Curricula could highlight multiple interpretations 

of mathematical concepts at each level – indeed across grades – and mandate their 

inclusion in classroom instruction.  A syllabus might also actively encourage 

teachers to seek out and make use of activities that present and reinforce 

metaphoric representations differing from those explicitly included in programs of 

study or authorized texts. Without changes to curriculum, attempts to make 

systematic use of metaphors in mathematics education are not likely to be 

successful.  

Programs of professional development could also assist teachers in 

developing a repertoire of teaching strategies that facilitates the effective 

introduction and use of metaphors in classrooms. One approach that has been 

shown to be effective in assisting students reason metaphorically involves setting 

forth a familiar situation or object, discussing it using ordinary, everyday 

language, and finally introducing mathematical terminology (Nesher, 1989). 

Knowledge of this technique and other methods for enabling students to 

successfully acquire and utilize metaphoric connections would be invaluable for 

educators. 

As well, awareness of the network structure of mathematics and the 

important role conceptual metaphors play in cognition could be increased.  

Classroom teachers, authors of textbooks, and designers of programs of study can 

learn more about the many metaphors that connect mathematical concepts 

together.  Facilitating this is not easy, for identification of metaphors requires 

sensitive attention to language, gestures, and images. The multifaceted meanings 
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of mathematical concepts are “constructed on the basis of scattered cues and 

sustained innuendo” (Kimmel, 2002, p. 518). Providing opportunities for a more 

stable understanding of mathematics requires educators to pick up on these subtle 

hints, to identify underlying metaphors, and to share them with students. This is a 

daunting task for there are so many conceptual metaphors linking multitudes of 

domains, and very little is known about which cognitive mechanisms are related 

to particular mathematical ideas. 

While metaphoric structures have not been studied extensively, some 

progress has been made. In the field of cognitive science, some researchers try to 

clarify the precise nature of particular mathematical concepts (cf., Lakoff & 

Núñez, 2000). But a thorough analysis of mathematical ideas – explicating what 

the structure of each conceptual domain is, showing how it is ultimately 

grounded, and elucidating how it is metaphorically connected to other 

mathematical concepts – is lacking. Without this information, it is difficult to 

imagine teachers presenting mathematics as a system of complex domains knitted 

together by metaphorical reasoning.  Designing programs of study and classroom 

activities to encourage students to construct their understandings of mathematical 

concepts using inferential structures conveyed by clusters of metaphors would 

also be problematic. Only when more is known about the many connections 

among conceptual domains can educators assist students to make the metaphoric 

links needed for more robust understanding of mathematics.   
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5.3  Summary 

As with other complex systems, network theory provides valuable tools 

for examining subjective mathematics.  By looking past the specific details of the 

system to the decontextualized structure of nodes and links, it is possible to see 

patterns of dynamic behavior not otherwise evident (Barabási, 2003).  

Specifically, the innate vulnerability of the scale-free topology of mathematical 

understanding to cascading failures becomes apparent, as does the possibility of 

decreasing the chance of such a collapse by adding more connections to the 

metaphoric network of mathematics.  

In particular, I have proposed that mathematical understanding may be 

made more robust by ensuring concepts are linked to multiple source domains.  

Ways of making this a focus of classroom instruction have been put forth and 

different aspects involved in realizing this goal have been described.  

Modifications to curriculum design and professional development to support this 

strategy have also been suggested, as has the need for systematic research into the 

structure of the metaphoric network of mathematics.  Attending to what is known 

of the dynamics of complex systems, it is hoped that these ideas are useful for 

ongoing cyclical elaborations of school mathematics and pedagogical practice. 

In Chapter 6, I seek to contribute to the needed understanding of 

metaphoric webs of mathematical concepts with the intent of substantiating 

ideas presented to this point.   However, carrying out a comprehensive 

“mathematical idea analysis”  (Lakoff & Núñez, 2000, p. 29) would require 

the life work of many researchers and is clearly far beyond the scope of what I 



  90 

 

might attempt in my investigation. Therefore, I will explore a very small part 

of the proposed metaphoric network of mathematics, focusing on the concept 

of EXPONENTIATION.  More specifically, I will search for representations 

identifying conceptual domains that provide varied ways of making sense of 

EXPONENTIATION; these can function as sources for the multiple metaphoric 

connections to the topic that should increase the stability of students‟ 

understandings of mathematics.   
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Chapter 6 

  Exploring the Metaphoric Network of Mathematics 

In this dissertation, I have proposed that complexity science and, hence, 

network theory offer a new way of looking at subjective mathematics.  I have 

further suggested that the theory of embodied mathematics (Lakoff & Núñez, 

2000) provides a possible network model for mathematical understanding, where 

conceptual domains represent nodes in the network and conceptual metaphors 

provide the links among them.  By applying techniques developed by network 

theorists to this structure, I have demonstrated that it exhibits the scale-free 

topology and consequent dynamic behaviors commonly found in complex 

systems.  Specifically, the metaphoric network of mathematics is prone to 

cascading failures, which threaten the robustness of individual mathematical 

understanding.  Adding to the connectivity of the network structure lessens the 

chance of such systemic collapses and increases the stability of subjective 

mathematics. 

In particular, I have presented evidence that this reinforcement of the 

metaphoric network can be accomplished by ensuring that the meaning of a 

mathematical idea does not depend solely on patterns and modes of reasoning 

mapped from a single conceptual domain.  Thus, for each concept there is a need 

to develop metaphoric connections to a variety of sources.  This conclusion has 

implications for mathematics education; classroom instruction, curriculum, and 

professional development are affected.   
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Before changes in these areas can be implemented, however, more needs 

to be known about metaphors that can provide important inferential structure for 

specific concepts. This is a daunting task, for “it is a non-trivial process to tease 

out the connotations and meanings … which underlie fundamental relationships 

among fields of mathematical ideas” (Presmeg, 2002, p. 59).  While some 

progress has been made, only a few topics have been explored to date, and these 

areas have been interpreted using small numbers of metaphoric connections.  

Thus, a more systematic investigation of the cognitive structure of mathematics, 

identifying conceptual metaphors that support understandings of different 

concepts, is badly needed.   

In this chapter, I report on my efforts to carry out such an inquiry.  This 

work was done with the intent of substantializing the claims described above. My 

study followed recent trends in complexity science that develop understanding of 

a network structure based on dynamics that occur at a local level (Newman, 

Barabási & Watts, 2006). Thus, I focused on the nodes, connections, and 

dynamics of one small neighborhood in the metaphoric network of mathematics.  

In doing so, I hoped to illustrate that „metaphorical legs‟ for a mathematical 

concept can be identified and to exemplify ways in which research in this area can 

be conducted.    

 

6.1   EXPONENTIATION:  An Illustrative Example 

With these goals in mind, I chose to explore the cognitive structure of 

EXPONENTIATION.  More specifically, I looked for representations – examples, 
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images, models, gestures, turns of phrase – that can be used to make sense of the 

concept.  Such depictions and interpretations are more than just illustrations; 

drawn from a variety of physical and social experiences, “these elements are … 

embodiments of the concept” (Davis & Simmt, 2006, p. 314).   Such 

conceptualizations, therefore, should indicate sources from which important 

inferential structures can be projected onto EXPONENTIATION.  These metaphoric 

mappings would provide the additional connections needed to enhance the 

robustness of mathematical understanding. 

My decision to focus on this concept was influenced by several factors. 

EXPONENTIATION plays an important role in many branches of mathematics. A 

wide range of topics – basic arithmetic, elementary algebra, trigonometry, 

logarithms, calculus, abstract algebra, and so on – incorporate exponential ideas.    

By virtue of its numerous links to substantial numbers of concepts, it is possible 

that EXPONENTIATION may serve as a hub in the metaphoric network of 

mathematics. 

Reflecting this high degree of connectivity, EXPONENTIATION is related to 

a substantial part of school mathematics. In one form or another, it permeates 

classroom activities – from the introduction of units of measurement and place 

value in primary grades to the use of polynomials and equations at secondary 

levels.  To successfully construct mathematical understanding of such topics, 

students need a sound comprehension of the concept.   

Such knowledge is also important for individuals‟ participation in public 

life. EXPONENTIATION plays a significant role in modeling many phenomena, 
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both scientific and social. For appreciating and dealing with such issues as 

uncontrolled population growth, global warming, or the disposal of radioactive 

elements, the importance of understanding EXPONENTIATION cannot be doubted 

(Confrey, 1994).   

Thus, my intention to explore the structure and dynamics manifest in 

this conceptual domain seemed worthwhile.  The discovery of „metaphorical 

legs‟ upon which the concept of EXPONENTIATION stands would clarify the 

nature of one small section of the metaphoric network of mathematics.   And 

increased understanding of this cognitive structure would assist educators in 

their efforts to support students‟ constructions of sound and stable mathematical 

understanding.  

I must admit that, when I first outlined my proposal for this task, I 

expected the work to be accomplished relatively quickly. However, this part of 

my doctoral project soon grew beyond all expectation; it became much more 

involved and took a good deal longer to complete than I had planned.  In 

retrospect, I should have anticipated this, as research into complex systems and 

their models is not likely to be straightforward.   

What was meant to be a brief example, describing some metaphoric 

connections to EXPONENTIATION and illustrating how such links could be found, 

became a major piece of work. As my understanding of EXPONENTIATION grew, 

my interpretations of results from previous stages were affected and ways in 

which I carried out research changed.  The following sections of the chapter relate 
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how this study evolved and present the many unforeseen findings that emerged 

during the project. 

 

6.2   The Methodology of the Study   

Over a period of twenty-two months, I looked for representations that 

pointed to conceptual metaphors for EXPONENTIATION; explorations consisted of 

three, often concurrent, components.  The first involved reading about the many 

conceptualizations identified by others.  Throughout the study, I examined 

textbooks and teaching materials, read articles reporting on classroom activities 

and research studies, and investigated the historical development of concepts 

related to EXPONENTIATION.  

The second and central stage involved a „concept study‟; that is, a 

collaborative examination of representations – gestures, images, analogies, 

metaphors, models, activities, and applications – used to develop understanding of 

a topic (Davis, 2008). Addressing questions like, “When you hear the term 

EXPONENTIATION, what do you think of?”, a group of six mathematics teachers 

who were enrolled in graduate programs developed a variety of 

conceptualizations.  The concept study discussion was videotaped and field notes 

were taken. 

Audiotaped interviews with different groups were also conducted. I met 

with each participant in the concept study, posing a series of questions directed at 

pedagogy. I hoped that this shift in focus would elicit additional images and 

analogies for EXPONENTIATION.  As well, I interviewed five mathematicians and 
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seven other mathematics educators, with the expectation that these individuals 

would mention novel representations for the concept.  Notes were taken of 

gestures and other details not recorded on the tapes. 

These parts of the study are described below in more depth.  For each 

phase, representations for EXPONENTIATION that emerged from the work are 

outlined and conceptual domains associated with them identified.  My reactions to 

and reflections on each stage of the work are also included, for I found that I was 

a participant in all levels of the study.  Changes that occurred in my own 

understandings of representations and conceptual metaphors are also 

acknowledged. 

 

6.3   Preliminary Readings 

My first explorations in the literature led to two conceptualizations for 

EXPONENTIATION: a definition – “the mathematical operation of raising one 

quantity (the base) to the power of another (the exponent)” (Exponentiation, 

1989); and numerous references to repeated multiplication.  Many dictionaries, 

encyclopedias, articles, textbooks, and teaching materials alluded to one or both 

of these interpretations.   

Examination of meanings of related terms yielded the same ideas.  An 

exponent sets forth the number of identical factors in a product. The word power 

indicates a value formed through the multiplication of a number by itself one or 

more times.   An index points to a smaller symbol written to the right and above a 

numerical quantity. These themes – a particular notation and repeated 
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multiplication – occurred again and again. Some sources even stated that only 

these representations are meaningful; “a whole-number exponent is simply 

shorthand for repeated multiplication of a number times itself, … that is the only 

conceptual knowledge required” (Van de Walle & Folk, 2005, p. 424).  

In spite of this, a few writings encouraged my search for different ways of 

thinking about EXPONENTIATION.  One medieval source suggested a connection 

to geometry. The term „zenzizenzizenzic‟ was used to represent a number raised 

to an exponent of eight; it was defined as “the square of squares squared” in The 

Whetstone of Witte (Recorde, 1557, p. 150).
17

  At that time, there was no easy way 

of denoting a larger power except by breaking it down into a combination of 

squares and cubes (Cajori, 1928). And in modern work, Lakoff and Núñez (2000) 

refer to an exponential as a function or mapping “from the domain of real 

numbers under addition to the range of positive real numbers under 

multiplication” (p. 405). These two representations – pointing to geometric shapes 

and to functions – stimulated my search for metaphoric connections to 

EXPONENTIATION.   

 

6.4   The Concept Study 

The core of my investigation was a concept study involving six 

mathematics teachers. Participants had widely differing backgrounds; they had 

taught at various levels, had been educated in different countries, and had 

                                                 
17

  The root word „zenzic‟ was derived from the Italian „censo‟ meaning 

squared (Zenzic, 1989).  



  98 

 

experienced teaching many subject areas.  All were members of a graduate 

mathematics education course that met once a week. 

Before the session, information on the theory of networks and embodied 

mathematics was shared with participants, in the form of several related articles. 

Subsequently, they talked about their understandings of EXPONENTIATION, 

engaging with and reacting to each other‟s ideas.  While the concept study was 

originally scheduled for the second half of one class, the group revisited the topic 

a week later.  Both of these sessions are analyzed below. 

 

6.4.1  The Initial Discussion 

The concept study began with questions: “When I mention the word 

exponentiation, what does that mean to you? What do you start thinking of? What 

kind of images leap into your mind?”.  After a brief pause, participants began to 

comment. The first responses echoed dictionary definitions: 

Yvette:  I always think of 2 to the power x, you know just the basic 

simple base 2. 

 

Ellen: I think of x squared. 

 

But different representations soon emerged.  The following exchange 

took place in the fifteen-minute period immediately following the above 

comments.
18

 

Ardis:  I always think of the growth curve
19

 and its contrast to linearity 

[sketching the shapes of an exponential curve and a linear curve with her 

hands]. 

                                                 
18

  Parts of the discussion – expressions of agreement, long explanations of 

ideas, etc – are omitted to reduce the length of this extract from the transcript.  
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Gary: I usually think of growth as well. ... I always think about it as a 

growth, I never think about it as decay. 

 

Ardis:  And that‟s really interesting because the specific context I was 

thinking about is decay and yet I called it growth. 

 

Yvette:   It‟s like rabbits doubling [using her hand to shape an exponential 

curve].  … But then that‟s so funny to think about rabbits multiplying 

right. … When they‟re breeding, rabbits aren‟t there with a little pencil in 

their paw, … but doubling, doubling, spreading out. 

 

Gary:  To me it‟s like addition and multiplication.  Addition is the basic 

compilation and multiplication is a more expedient way of writing it. 

 

Odette:   I couldn‟t help but think outside the mathematical context and I 

think it‟s because I am a biology teacher, so I thought more about 

population growth rate. 

 

Ivan: Mine‟s more simple that that. …What I see is a picture; it‟s not 

necessarily a symbol. It’s just a little picture with one [number] as a 

superscript in the corner, so that‟s the symbol there [drawing the image 


on the whiteboard]. 

 

Ellen:  One [idea] that immediately came to mind was decimals and place 

value in a variety of bases. … When you‟re talking about rotations, that 

is represented as the equivalent of exponentiation.  

 

Ardis:  I think of activities I used to do with chain letters, pyramid 

marketing … email spam – „Bill Gates is giving away his fortune‟. … 

But all these things go back to that growth pattern.  To me, this image 

says exponentiation and then I think of bronchioles and blood vessels and 

tree roots and tree branches and drainage systems and road maps. … 

The whole structure, somehow, even if it„s not represented in symbols, 

could mean this is exponentiation. … This branching structure, each 

time it branches, you‟re growing exponentially.    

 

Odette:  Family trees! … Family trees make sense.  … They are very 

basic. 

 

Ellen:  Well along the same lines, by the time I was in fifth grade, we had 

been through three generations of cats, and we started with two and each 

of them had a few babies. 

                                                                                                                                     
19

  I have emphasized, using bold type, utterances in this discussion that I see 

as referring to representations of EXPONENTIATION. 
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Yvette:  You know a lot of classrooms have some kinds of pets or 

something that would grow. 

 

Ardis:  Or flies. 

 

Yvette:  I like the blocks for base arithmetic, like the single unit, which 

is any number, … and then you have the first power [moving her hand 

along an imaginary rod] and then flat [shaping a square] which is the 

second power and then the cube which is to the third power [using her 

hands to form a cube].  

 

Gary:  Cuisenaire rods  

 

Yvette:  They can even build up to the next exponent.  They take 10 of the 

rods and that becomes the flat … and then ten of the flats and [that 

becomes] the cube and then where do you go from there?  I have ten of 

the cubes [that represent the third power] in a rod [using her hands to 

shape a rod]. 

 

Ellen:  I wonder if it‟s too early to introduce Zeno’s paradox at that point  

- where you drink half your glass of milk, and then drink half of 

what’s left, and half of what’s left. 
 

Yvette:  That‟s fantastic! 

 

Although the discussion occasionally drifted back to standard definitions, 

a wide variety of conceptualizations for EXPONENTIATION emerged.  While the 

range of representations was substantial, many shared certain characteristics.  

Each cluster of ideas hinted at a source domain for connections to 

EXPONENTIATION.    

I must acknowledge that, when I interpreted participants‟ contributions 

to the talk about EXPONENTIATION, I could not help looking for links to the 

image schemas upon which Lakoff and Núñez‟s (2000) grounding metaphors 

for ARITHMETIC are based.  Because their inferential structures give meaning to 

MULTIPLICATION, it seemed likely that these domains would also be connected 
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to EXPONENTIATION.  It is not surprising, therefore, that I saw collections of 

objects, object construction, measuring with segments, and motion along a line 

in the conceptualizations mentioned by members of the concept study.  But 

representations also arose that suggested links to other domains.  Some echoed 

ideas found in my early reading about the concept; others were quite 

unanticipated.  Participants‟ understandings revealed that EXPONENTIATION is a 

far more complex concept than I had imagined. 

Findings from this first meeting are presented below.  These are 

organized according to the various sources that I perceived as having been used 

to make sense of EXPONENTIATION. Illustrative representations and brief 

explanations are provided for each conceptual domain to show how connections 

to EXPONENTIATION were made in the concept study.  For reasons of length, 

some variations of conceptualizations mentioned by participants are not 

included here.  

OBJECT CONSTRUCTION:  

 Repeated multiplication
20

 – The face of a combination lock shows 

thirty-nine numbers; the dial must point to three values, not 

necessarily distinct, in the right order. The number of possible 

combinations for the lock is 39  39  39 = 39
3
. 

 Geometric shapes – Students can get a physical sense of what 

powers of one, two and three mean by looking at geometric shapes 

                                                 
20

  Lakoff and Núñez (2000) state that repeated multiplication implicitly 

reflects use of the OBJECT CONSTRUCTION domain.  See Section 6.6.2 for further 

discussion of this point. 
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such as lines, squares, and cubes.  Base 10 blocks make use of this 

connection.  

 Changing dimensions – As the power increases, so does the 

associated dimension.  The unit cm measures a one-dimensional 

length, cm
2
 refers to a two-dimensional area and cm

3
 is used to 

quantify a three-dimensional volume.  

 Constructing sequences of shapes – Illustrative patterns can be 

formed by doubling a square sideways to form a rectangle, 

doubling this rectangle vertically to form a larger square, 

doubling this square sideways to form a new rectangle, etc.  In 

this progression, powers that are „perfect squares‟ always have 

a square shape.  

 Fractals – The Koch snowflake and Sierpinski triangle exhibit 

many properties involving exponents. With each iteration, the 

number of units, the perimeter and the area change exponentially. 

 Creating new units – The act of renaming a collection of items 

effectively creates a new entity, thus involving the construction of 

a novel object.  A loaf can be cut into ten slices, each slice cut into 

ten toast fingers, and each toast finger cut into ten croutons.   

Articles at each stage are different from those at other levels: a 

crouton does not have the same properties or purposes as a loaf of 

bread. 
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 Positional number systems – A positional number is an ordered set 

of symbols in which the value of each character is determined by 

its place.  The decimal number 327 can be broken up into three 

hundreds, two tens and seven ones. 

 An object changing at a constant rate – Radioactive decay can be 

simulated using a cube made up of sixty-four blocks. After the first 

half-life, thirty-two blocks decay and are broken off. Next, sixteen 

blocks are taken away, then eight, etc.  

OBJECT COLLECTION:  

 Comparing sets that have a common ratio – The traditional story of 

the King of Persia rewarding the inventor of chess tells of gold 

coins piled on the squares of a chessboard. Each square has twice 

as many coins as the one before.  

 A set changing at a constant rate – Radioactive decay can be 

simulated by repeatedly rolling a collection of dice.  When the dice 

are thrown, those showing an even number are considered to have 

decayed and are removed.  Dice with an odd number are rolled 

again. Compound interest and population growth involve sets of 

units – dollars and living entities respectively – which grow at a 

constant rate. 

 Branching structures – This pattern is exemplified by a family 

tree, where one person has two parents, four grandparents, eight 

great-grandparents, and so on.  Each generation contains twice as 
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many people as the previous one.  Tree diagrams are often used 

to display such structures (see Section 6.6.3 for discussion of 

natural branching structures like bronchioles and see Section 

6.6.4 regarding the related notion of „splitting‟).  

 Sets that form a geometric series – In a chain letter, where each 

person writes three letters to friends, the total number of people 

sending letters can be represented by the series 1 + 3 + 9 + 27 + …. 

MOTION ALONG A PATH: 

 Motions along path that form a geometric series – Zeno‟s paradox 

of the Dichotomy describes a very fast runner who needs to reach a 

particular location.  He or she must run halfway to the goal first, 

then go half of the remaining distance, and so on.  This could be 

represented by the series: 



1

2


1

4


1

8
 ...

  

FUNCTION:  

 Mapping an arithmetic progression onto a geometric progression – 

For the function, y = 2
n
, n  N0, 0 is mapped onto 1, 1 is mapped 

onto 2, 2 is mapped onto 4, 3 is mapped onto 8, etc. 

 An exponential curve  – The curve of an exponential function was 

indicated in many gestures (see Figure 23). 

 

 

 

Figure 23:  The gestural path 

signifying an exponential curve. 
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 Rate of change of slope – The rate at which the slope of an 

exponential curve increases surpasses that of linear and quadratic 

functions. 

ROTATION:  

 Rotating in the complex plane – Powers of complex numbers 

involve rotation around the origin in the complex plane.
21

 

The concept study proved to be the richest source of representations in all 

of the stages of research into EXPONENTIATION.  Several factors may have 

contributed to this.  Before the session began, participants had read and discussed 

articles about the theory of embodied mathematics.  As well, the idea of 

mathematical concepts comprising a network was familiar, for I had explained my 

hypothesis when obtaining each individual‟s consent to take part in the project.  

Knowledge of the theories upon which this work is based may have facilitated the 

fruitful discussion of EXPONENTIATION that occurred.   

As often happens in discourse, understandings that emerged from the 

concept study surpassed those held by individuals before the session.  One 

participant expressed her appreciation of this situation.  

Ellen:  What really surprised me … was … how absolutely stuck I was on 

exponentiation as repeated multiplication and could not get that out of my 

head until you kind of seeded me [gesturing toward the group] with a few 

other ways to look at it and it was only then that I found more experiences 

                                                 
21

  Lakoff and Nüñez (2000) construct a complex blend of domains to 

account for MULTIPLICATION in the complex plane.  These include ROTATION, the 

NUMBER LINE, the CARTESIAN PLANE and the ROTATION PLANE. 

EXPONENTIATION in the complex plane must necessarily involve these, and 

possibly other, sources. 
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that were related to it. … You know those things were in there, but … I 

literally had to get out of the textbooks and start putting the links together. 

 

The added stimulation of exchanging ideas with peers may have contributed to the 

generation of new insights.  For as Surowiecki (2004) comments, “A face-to-face 

group … makes everyone work harder, think smarter, and reach better 

conclusions than they would have on their own” (p. 176).    

But more is involved here.  Davis and Simmt (2003) discuss the delicate 

balances – diversity with redundancy and order with randomness – necessary for 

the generation of collective knowledge. Shared understandings that go beyond 

that of individuals in a group often emerge under such conditions.  As the 

exchange of ideas among participants in the concept study displayed these 

properties, it is not surprising that particularly astute insights were developed.   

 

6.4.2 One Week Later 

The group of mathematics teachers met for the next class in seven days 

and spontaneously started talking about the concept study and the 

representations of EXPONENTIATION that had emerged from it. I was surprised, 

but delighted.  The discussion was not videotaped or audiotaped, but field notes 

were taken.   

Participants had not stopped thinking about EXPONENTIATION when our 

session ended the week before. Many ideas from the concept study were revisited 

and extended. For example, the root quad and its connections to both geometric 

shapes and algebraic forms were explored. One teacher brought a tape entitled 

Powers of 10 to show the group; the creation of new units – angstroms, microns 
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and light years – was exemplified in the brief video clip. And new representations 

for EXPONENTIATION emerged; these conceptualizations are described below. 

OBJECT CONSTRUCTION: 

 Sequential folding – Repeated folding of a piece of paper involves 

the exponential growth in the number of smaller shapes and the 

exponential decay of their areas.  

MEASURING WITH SEGMENTS: 22 

 Comparing segmented distances that have a common ratio – A 

group of students lines up against a wall.  The first takes one step, 

the second takes two, the third takes four, the next eight, etc. 

Distances traveled have a common ratio. Moreover, final positions 

trace an exponential curve. 

LOGARITHMS:  

 Mapping an arithmetic progression onto a geometric progression – 

The source domain LOGARITHM subsumes this representation, 

which was previously related to FUNCTION in Section 6.4.1. 

 Orders of magnitude – Logarithmic scales for sound (dB), 

earthquakes (the Richter scale) and acidity (pH) represent 

sensations occurring over extremely wide ranges – from barely 

detectable to overwhelming. 

                                                 
22

  Lakoff and Núñez (2000) use the phrase “THE USE OF A MEASURING 

STICK” (p. 68) to describe the source for the MEASURING STICK metaphor.  

However, I prefer the expression MEASURING WITH SEGMENTS, which seems to 

reflect the essence of the domain more clearly. 
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Participants spoke favorably about the experience of being involved in 

the concept study. Several stated they had enjoyed the discussion; others felt 

that similar experiences exploring other concepts would be beneficial. 

Comments included, “These activities are often seen as enrichment – why are 

they not core activities?” and “If only we could talk about every topic in math in 

this way!”.   

Significantly, there appeared to have been a shift in participants‟ 

conceptualizations of EXPONENTIATION.  No one mentioned repeated 

multiplication or notation; instead, the image of the rapidly growing rate of 

increase associated with EXPONENTIATION predominated.  When the question, 

“So, what‟s it like to be an exponent?”, was posed, Yvette responded, 

“Powerful!”, tracing an exponential curve with her hand.  Around the room, heads 

nodded.
23

  

 

6.5   Interviews 

This phase of the study involved a series of interviews from which I hoped 

to elicit more and different representations for EXPONENTIATION. A separate 

meeting was held with each participant of the concept study; these discussions 

focused not on general thoughts about the concept, but on teaching and learning in 

the classroom.  I also talked one-on-one to five mathematicians and seven 

                                                 
23

  This play on words – using „power‟ to refer simultaneously to exponents 

and to the ability to produce a great effect – occurred repeatedly throughout the 

study. 
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mathematics educators of varied backgrounds.  It seemed likely that these 

individuals might reveal novel understandings of EXPONENTIATION.   

I was not surprised when many conceptualizations that emerged during 

the concept study were mentioned in these interviews, although the specific 

images called on were often quite different.  But new and insightful perceptions 

of EXPONENTIATION were found. Following the form of earlier parts of the 

chapter, discussion will focus on previously unseen representations and 

conceptual domains.  As well, my own realizations about conceptions and 

metaphoric connections are described.  

 

6.5.1 New Conceptualizations from Members of the Concept Study 

Individual interviews were held with teachers from the concept study; 

these sessions focused on the teaching and learning of EXPONENTIATION. 

Discussions were centered around a series of questions, which included: 

How do you introduce students to exponents in your classes? 

What are typical problems experienced by students?   

Are there explanations you use to successfully overcome these? 

When talking to students, how do you make sense of 2
-3

, 2 
1/2

, or 2
√2

? 

What are the prerequisite skills needed to understand exponents?   

Which mathematical concepts require an understanding of exponents? 

Which types of applied problems call for knowledge of exponents? 

 

Although I found that participants often referred to types of representations 

discussed in the concept study, it was clear that they had continued to reflect on 

these conceptualizations in the intervening period of time. Individuals elaborated 

on images and applications; some shared classroom activities that illustrated 
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particular representations. And several new ways to construct understanding of 

EXPONENTIATION arose in conversations.   

OBJECT CONSTRUCTION:  

 Comparing objects that have a common ratio – Take a piece of 

paper and rip it in half; retain one part and tear the remaining piece 

in two; keep one of these quarters and divide the other in two, and 

so on.  When the bits of paper are placed side by side, their lengths 

display a common ratio. 

 LOGARITHMS: 

 Scientific notation – …, 2.3  10
-1

, 2.3  10
0
, 2.3  10

1
, … 

 The only metaphor explicitly stated in the entire study arose in one of 

these interviews; I mentioned a comparison that I had used in teaching exponents 

to a grade 10 class.  Many years ago it had seemed useful and appropriate, but 

with all that I had learned about EXPONENTIATION, its weaknesses became 

obvious.   

This idiosyncratic metaphor likens the index of an exponential expression 

to the turnstile at the door of a library, where a counter records the number of 

people entering the room.  I compared this to an exponential expression like 2
3
, 

where the index 3 indicates the number of 2‟s in its expansion as 2  2  2.  If four 

people enter the library (2
4
) and a group of seven follow (2

7
), then eleven 

individuals pass the turnstile (2
4
  2

7
 = 2

11
).  The similarity can even be stretched 

to division of exponential terms if one is subtracted from the counter for each 

person leaving the library.  When five people enter and two leave, then three 

remain (2
5
 ÷ 2

2
 = 2

3
).  
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In retrospect, it is clear that EXPONENTIATION IS A TURNSTILE is not a 

satisfactory comparison.  While grounded in a situation that is familiar to 

students, it fails in another, more significant, way.  As mentioned in Chapter 5, in 

a „good‟ metaphor, the mathematics of the target domain is embedded in the 

source.  But many properties of EXPONENTIATION can hardly be said to be 

intrinsic elements of the domain of turnstiles and counters.  When thinking of 

EXPONENTIATION, the image of a turnstile does not leap to mind in the same way 

geometric shapes or family trees do.  No natural correspondence between the 

domains exists here.  

Comparisons of conceptual domains can be assessed, based on different 

types of structure mapped from source to target (Bowdle & Gentner, 2005; 

Gentner, 1983).  The „turnstile metaphor‟ focuses on a surface element of the 

domains involved – a component is discretely countable.  Some inferential 

structure is also projected onto EXPONENTIATION, as interpretations of 

multiplication and division involving only whole number exponents are possible.  

But the comparison cannot provide sufficient modes of reasoning for the target 

domain as a whole; thinking of turnstiles does not provide any way to understand 

negative exponents, fractional exponents or exponential growth. 

Using Gentner‟s (1983) classification of mappings, the „turnstile‟ 

comparison can be described as a “literal similarity” (p. 161).  As such, it does 

provide some degree of assistance in understanding the concept of 

EXPONENTIATION.  However, as learners tend to rely on superficial similarities 

between domains and do not examine relational structures carefully, 
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misconceptions may arise (Gholson et al., 1997; Ratterman, 1997).    Hence, the 

representation has limited value in illuminating EXPONENTIATION. 

 The „turnstile‟ image is not the only conceptualization arising in the study 

that is inadequate in some way.  In Chapter 5, I pointed out that because a 

representation is often based on a source domain that differs inherently from the 

target, it inevitably has limitations and may lead to invalid inferences.  Thinking 

of EXPONENTIATION as collections of objects restricts one to natural number 

exponents.  Conceptualizations using geometric shapes cause learners to have 

difficulty imagining powers larger than three.  Tracing the outline of an 

exponential curve in piles of coins uses discrete units; the continuous nature of an 

exponential function is obscured.  Making sense of EXPONENTIATION in a variety 

of ways enables individuals to overcome the limitations of individual 

conceptualizations. 

 

6.5.2 Mathematicians’ Conceptualizations  

The five mathematicians interviewed in this study differed in many ways.  

Two had extensive experience teaching EXPONENTIATION to secondary students, 

undergraduates, or teachers who had returned to university for upgrading, while 

others only instructed more advanced courses.  One participant had a keen interest 

in the history of mathematics; another had a background in computing science.  

This diversity contributed to the range of representations voiced in interviews 

with these individuals. As expected, mathematicians had unique perspectives and 

novel representations of EXPONENTIATION were revealed. 
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OBJECT CONSTRUCTION: 

 A power of 



1

n
 means breaking up a number into n equal pieces. 

MOTION ALONG A LINE:  

 Lengths on a line – Reference was made to Descartes, who stated, 

“Here it must be observed that by a
2
, b

3
, and similar expressions, I 

ordinarily mean only simple lines”  (Latham & Smith, 1925, p. 

5).
24

  

 A length changing at a constant rate – A Chinese „dragging 

noodle‟ can be repeatedly stretched so that it doubles in length 

each time.   

 Comparing motions along a path that have a common ratio – When 

a ball is dropped, the heights it reaches on successive bounces form 

a geometric sequence. 

FUNCTION: 

 Derivative – The derivative of e
x
 is equal to the function itself.  

 Limit – 



ex  lim
n

1 x
n 
n

 

 Power series – The value of e can be approximated using the 

power series 



ex  xn

n!
n0



  

                                                 
24

  Descartes was responsible for making the final break between geometric 

shapes and algebraic exponents.  With this new perspective, mathematicians could 

use powers larger than three without being concerned about their lack of 

geometric meaning (Katz, 1993).  
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 Recursion – Exponentiation can be viewed as a type of primitive 

recursion. 



b0 1 

0

1  , Nnbbb nn   

I observed several differences between perceptions of mathematicians and 

views expressed in other phases of the study.  The connection between MOTION 

ALONG A LINE and EXPONENTIATION was pointed out more clearly by a variety of 

representations. And, most notably, mathematicians found the relationship 

between EXPONENTIATION and FUNCTION to be paramount. Concept study 

participants suggested links between the concepts, just as they associated many 

other domains.  In contrast, all five mathematicians emphasized the primary 

importance of the connection; EXPONENTIATION was viewed as a crucial member 

of a “menagerie of functions”.  Indeed, some felt that this was the only 

conceptualization of any significance.  As one mathematician stated, “When you 

talk about exponentiation, I don‟t think about the process of exponentiation, I 

think about function.”  Moreover, reflections shifted to consideration of a singular 

function – the exponential, y = e
x
. 

 

6.5.3 Mathematics Educators’ Conceptualizations 

The third set of interviews involved seven mathematics educators with 

different backgrounds.  Some had been mathematics teachers, but were now 

pursuing other avenues in mathematics education. Two were graduate students in 

Education and others were experienced researchers.  While many 



  115 

 

conceptualizations similar to those found in previous phases of the study were 

seen, novel representations for EXPONENTIATION surfaced in discussions.   

MOTION ALONG A PATH:  

 Number-line „dancing‟ – Six students stand on a number line at 

points corresponding to 0, 1, 2, 3, 4, and 5.  They do a „plus 2‟ 

dance and return to their starting positions, then they perform a 

„times 2‟ dance, a „square‟ dance, and a „2 to the power x‟ dance.  

 OBJECT CONSTRUCTION:  

 Asymptotic behavior – “I take a square, take half the square, take 

half of the half and this goes to zero”.  

 Embedded figures – Many embedded geometric figures illustrate 

exponential decay (see Figure 24). 

 

 

 

 

 

FUNCTION: 

 Additive rate of change – Consider a table of values for an 

exponential function with columns for x and y = 2
x
.   A third 

column for differences in y, y, will contain numbers that are 

identical to those in the column for y, as will columns for (y) 

and ((y)).  In contrast, values change with every difference 

Figure 24:  Embedded figures that represent EXPONENTIATION. 
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column for algebraic expression like y = x, y = x
2
, and y = x

3
, until 

eventually numbers in a column all equal zero. 

 

6.6   Further Readings 

 Throughout all phases of research, I looked for conceptualizations of 

EXPONENTIATION in a variety of writings.  Textbooks, other teaching materials, 

research studies, reports of classroom activities, and historical accounts were all 

examined. Not surprisingly, many representations mentioned in earlier sections of 

this chapter were also found in these sources.  But I found much more – novel 

representations for source domains identified in other parts of the study, fresh 

insights into previously encountered conceptualizations, and two image schemas 

that provide patterns of reasoning for EXPONENTIATION. 

 

6.6.1 New Representations for Already-Identified Domains 

OBJECT COLLECTION: 

 „Square‟ numbers – Mesopotamian and Greek mathematicians 

considered a number to be “a multitude composed of units” 

(Heath, 1956, p. 277). Of special significance, figurative numbers 

were represented by items arranged in geometric shapes.  The 

numbers 4 and 9 were considered „square numbers‟ because they 

correspond respectively to a 2  2 and 3  3 array of pebbles, 

cuneiforms, or vertical lines (Cordrey, 1991).  This representation 

is widespread; images of square numbers are found on Neolithic 
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pottery (Struik, 1987) and in present day textbooks (e.g., Small et 

al., 2008). 

OBJECT CONSTRUCTION: 

 Objects that form a geometric series – Mason (1992) describes a 

problem: “The carrot patch is square.  One spring day, you dig half 

of the bed.  On each succeeding day, you dig half of what remains.  

How long until you finish?” (p. 67). The geometric series 



1 1
2
 1

4
 1

8
 ... is indicated (see Figure 25). 

 

 

 

 

 

MEASURING WITH SEGMENTS: 

 Segments that form a geometric series – Rinvold (2007) uses 

segments to justify the statement 1 + 2
1
 + 2

2
 + 2

3
 = 2

4
 – 1. (See 

Figure 26). 
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Figure 26:  Segments that form a geometric series.   

Figure 25:  Objects that form a geometric series.  

(Printed with permission from Mason, 1992, p. 67). 
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 A segmented length changing at a constant rate – Thompson 

(1992) illustrates powers of two by placing segments end to end.  

The length of the resulting shapes grows at a constant rate (see 

Figure 27).  

 

 

 

 

 

FUNCTION: 

 New-to-old ratio – Confrey and Smith (1994) discuss the “new-to-

old” ratio of an exponential function (p. 55).  An examination of 

the bar graph representing natural number powers of a given base 

(see Figure 28) shows that, for each bar, the original function and 

the added increment are proportional.  

 

 

 

 

 

 

6.6.2 Returning to Repeated Multiplication 

In early readings and during the first meeting of concept study teachers, 

repeated multiplication was introduced as a representation of EXPONENTIATION.  

Figure 28:  Comparing the new-to-old ratio of  

y = 2
x
, for x = 1, 2, 3. 

2
1
 

2 x 2
1 = 

 2
2
 

2 x 2
2 = 

2
3
 

2 x 2
3 = 

2
4
 

Figure 27:  Powers of two conceived by putting segments together. 
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Following the example of Lakoff and Núñez (2000), I interpreted this 

conceptualization as indicating a link to OBJECT CONSTRUCTION. “When we write 

32 [or 2
5
] as 2  2  2  2  2, we are implicitly making use of the grounding 

metaphor ARITHMETIC IS OBJECT CONSTRUCTION; that is, a whole that is made up 

of five instances of the same part, 2, put together by multiplication” (Lakoff & 

Núñez, 2000, p. 404). But this statement does not appear to be entirely consistent 

with other sections of their work where the foundations of ARITHMETIC are 

developed.  

Just as Lakoff and Núñez describe repeated multiplication as a 

manifestation of OBJECT CONSTRUCTION, one would expect to find repeated 

addition regarded in the same way.  And this stance is found as part of the 

ARITHMETIC IS OBJECT CONSTRUCTION metaphor; multiplication is defined as 

“the repeated addition (A times) of A parts of size B to yield a whole object of 

size C” (Lakoff & Núñez, 2000, p. 66).   

But similar definitions are found in isomorphisms for ARITHMETIC IS 

OBJECT COLLECTION, the MEASURING STICK metaphor and ARITHMETIC IS 

MOTION ALONG A PATH  (Lakoff & Núñez, 2000).  Statements refer to the 

repeated addition of collections, segments, and movements away from the origin.  

If repeated addition is connected to all four image schemas upon which the 

grounding metaphors for ARITHMETIC are based, then it would seem plausible 

that repeated multiplication also draws inferential structure from each of these 

domains.  And looking back, repeated multiplication can be seen to lie beneath 

representations associated with these schemas. 
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OBJECT COLLECTION: 

 Repeated multiplication
25

 – The face of a combination lock shows 

thirty-nine numbers; the dial must point to three of these in the 

right order. The number of possible combination for the lock is    

39  39  39 = 39
3
. 

OBJECT CONSTRUCTION: 

 Repeated multiplication – To calculate the volume of a cube with 

sides 4 cm in length, one multiplies 4 cm  4 cm  4 cm = 64 cm
3
.  

A new unit is created. 

MEASURING WITH SEGMENTS: 

 Repeated multiplication – On a trail, a woman finds that she is 

three paces from a skunk.  She cautiously moves so that the animal 

is six paces away, but she can still catch a whiff of the skunk‟s 

odor.  So she steps back until she is twelve paces away and sniffs 

the air, etc. Figure 29 uses segments to illustrate the pattern of 

movement. 

 

 

 

 

                                                 
25

  This example was originally presented as a representation of OBJECT 

CONSTRUCTION (see Section 6.4.1).  But in light of the above discussion, it 

appears to fit better with OBJECT COLLECTION, as arrangements of three numbers 

chosen from a set of thirty-nine numbers (with repetition allowed) are being 

considered. 

Figure 29:  Repeated doubling of segmented lengths. 

3 = 3  2
0
 

3  2 = 3  2
1
 

3  2  2 = 3  2
2
 

3  2  2  2 = 3  2
3
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MOTION ALONG A PATH: 

 Repeated multiplication – A „Twizzler‟ gets shorter when one boy 

devours half, passing what is left to a friend who consumes half, 

giving what remains to another boy who eats half and so on.  The 

original length, L, shrinks and becomes  1
2
1

2
1  LL , 

 2
2
1

2
1

2
1  LL ,  3

2
1

2
1

2
1

2
1  LL , … . 

 

6.6.3 Reexamining Branching Structures  

In the concept study, Ardis mentioned natural branching structures like 

bronchioles, tree roots and drainage systems (see Section 6.4.1).  Such forms 

closely resemble fractal trees (see Figure 30), in which both the number of 

branches and the lengths of the branches vary exponentially.   These structures 

and many other fractals, like the Koch snowflake or the Sierpinski triangle, offer 

conceptualizations for EXPONENTIATION on several levels. 

 

 

                             

                            

       

However, natural structures like bronchioles do not possess certain key 

properties that define fractals (Peitgen, Jürgens & Saupe, 1991).  They lack the 

attribute of self-similarity – the exact repetition of every detail at all degrees of 

Figure 30:  A fractal tree.   
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magnification.  Yet, such forms do exhibit ‟statistical‟ self-similarity over a 

limited range of levels (Jelinek, Jones & Warfel, 1998).  Thus, their fractal or 

Hausdorff dimension can be estimated and the calculation of this descriptor does 

involve exponents (Mandelbrot, 1967).  While natural forms are certainly 

connected to EXPONENTIATION, they are not, strictly speaking, true 

representations of the concept.                            

   

6.6.4 Image Schemas Linked to EXPONENTIATION 

 It was not until I related conceptualizations located in the many texts and 

accounts I read to representations found in the concept study and interviews that I 

became aware of two image schemas from which inferential structures could be 

mapped onto EXPONENTIATION.  These organizing patterns – ITERATION and 

SPLITTING – seemed to permeate representations associated with other conceptual 

domains.  This should not have surprised me, for image schemas are generalized 

patterns of thought distilled from many bodily and perceptual experiences. 

 Conceptualizations for EXPONENTIATION often involve recurrent actions 

such as continually doubling the number of coins in a pile or repeatedly folding a 

piece of paper in half. Everyday experiences like these form the basis for the 

image schema of ITERATION (Johnson, 1987; Lakoff, 1987; Lakoff & Núñez, 

2000).  Inferential structure from this cognitive domain clearly plays an essential 

role in the process of EXPONENTIATION. 

I was directed to a second image schema during an interview, when one 

mathematics educator suggested that an interesting perspective on 
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EXPONENTIATION might be found in Confrey‟s (1994) notion of „splitting‟, 

which is defined as  “… an action of creating equal parts or copies of an 

original” (p. 300).  This conception is extended to refer to a multitude of 

representations, such as doubling, halving, folding, similarity, magnifying, 

sharing, dividing symmetrically, embedded figures, and growth spirals 

(Confrey, 1994; Confrey & Smith, 1994; Confrey & Smith, 1995). Such diverse 

situations are seen as providing important ways of developing division, 

multiplication and EXPONENTIATION (Confrey & Smith, 1995). 

As a class of actions, splitting uses inferential structure from not one, but 

many conceptual domains.  Halving a pile of candies involves OBJECT 

COLLECTION, while sharing a cookie entails OBJECT CONSTRUCTION.  Similarly, 

magnification might refer to MOTION ALONG A PATH  (see Figure 31), whereas 

growth spirals (see Figure 32) call on the MEASURING STICK metaphor.  The use 

of one expression, „splitting‟, to describe all of these conceptualizations tends to 

obscure the varied nature of these one-to-many correspondences. 

 

 

 

 

 

 

Moreover, use of the generic term „splitting‟ is problematic because it 

refers to two quite different types of actions.  The most primitive conception of 

Figure 32:  Splitting shown 

in a growth spiral. 

Figure 31:  Splitting shown 

in magnification. 
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splitting is copying or “creating simultaneously multiple versions of an original” 

(Confrey & Smith, 1994, p. 146).  A cell repeatedly multiplies to become two, 

four, eight, sixteen cells and so on.  A chain letter starts with one person, then 

grows to five friends, twenty-five, one hundred twenty-five, etc.   This type of 

multiplicative formation, previously referred to as a „branching structure‟ (see 

Section 6.4.1), is perhaps more appropriately described by the word “replication” 

(Confrey & Smith, 1994, p. 148), which captures the image of populations 

growing in size, and highlights its relationship to OBJECT COLLECTION. 

But „splitting‟ also refers to situations where objects are not copied but 

divided up; these make use of modes of perception and reasoning from the image 

schema of SPLITTING.  Cognitive scientists envisage SPLITTING as the inferential 

structure involved in activities such as breaking up a set, object or segment into a 

number of equal parts (Johnson, 1987; Lakoff & Núñez, 2000).  More recently, 

Peña (2008) finds this the same meaning in language use: “The SPLITTING schema 

… is described as a notion underlying expressions which convey the idea of a 

whole separated into several parts” (p. 1062).   

Using this conception, new representations for EXPONENTIATION that 

derive from SPLITTING become apparent. These are characterized by a „sequence 

of splits‟, where a unit is divided into n smaller parts, each of which is cut into n 

pieces, and so on (Confrey, 1994).  The repetition of action indicates that a 

conceptual blend with ITERATION is formed; the resulting domain is itself often 

combined with other image schemas, as is illustrated in the following examples.  
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OBJECT COLLECTION: 

 A sequence of splits – A pile of dollars is divided in two, the resulting 

stacks of bills are halved, and so on. 

OBJECT CONSTRUCTION:   

 A sequence of splits – A child wants to share with friends, so he or 

she cuts a pie in half, splits the halves in two, and then divides the 

quarters into equal pieces (Confrey & Smith, 1994).   

MEASURING WITH SEGMENTS: 

 A sequence of splits – One mathematics educator described activities 

using old-fashioned continuous computer paper for dot matrix printers.  

Suppose that one pile of paper contains sixty-four sheets, and that this 

long strip is carefully separated into two equal sections.  Each of these 

parts is split in half; the resulting pieces are themselves divided in two, 

and so on.   

MOTION ALONG A LINE: 

 A sequence of splits – To build a picket fence, you might carefully 

measure where planks and the spaces between them are to go.  Or 

you could nail a board up at the midpoint of the span and place 

planks in the centers of the two spaces on either side of it.  Pickets 

could then be attached in the middle of each of the four sections, 

etc. (Confrey, 1994). 
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6.7   Discussion of Results 

My search for links to EXPONENTIATION was far more productive than 

anticipated; numerous representations arose from the concept study, individual 

interviews, and readings.  From these clues, a number of conceptual domains to 

which EXPONENTIATION can be connected were identified.  While previous 

sections of this chapter describe findings for each phase of the study, the sheer 

volume and variety of data make it difficult to get an overall picture of the 

complex organization implied.  When everything is drawn together (see Table 2), 

different levels of understanding are possible.  For the display not only represents 

findings from all phases of the study, it re-presents them so that new interpretive 

possibilities are enabled. 

As expected, source domains for the four grounding metaphors of 

ARITHMETIC – OBJECT COLLECTION, OBJECT CONSTRUCTION, MEASURING WITH 

SEGMENTS, and MOTION ALONG A PATH – can be connected to EXPONENTIATION.  

Furthermore, striking similarities in conceptualizations from these domains exist. 

Five representations – „repeated multiplication‟, „ a sequence of splits‟, „a unit 

changing at a constant rate‟, „comparing units that have a common ratio‟, and 

„units that form a geometric series‟ – draw on inferential structure from each of 

these sources in only slightly varied forms. As definitions for MULTIPLICATION 

based on the grounding metaphors of Lakoff and Núñez (2000) show parallel 

structure and content, it should not be surprising to see comparable likenesses in 

representations for EXPONENTIATION. 
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Table 2 

Representations linking EXPONENTIATION to different source domains 

OBJECT 

COLLECTION 

OBJECT 

CONSTRUCTION 

MEASURING 

WITH 

SEGMENTS 

MOTION 

ALONG A 

PATH 

ROTATION FUNCTION LOGARITHM 

Repeated 
multiplication 

Repeated 
multiplication 

 

Repeated 
multiplication 

Repeated 
multiplication 

   

A sequence of 
splitsS 

 

A sequence of 
splitsS 

A sequence of 
splitsS 

 

A sequence of 
splitsS 

   

A set changing 
at a constant 

rate 

An object 
changing at a 

constant rate 

A segmented 
length 

changing at a 

constant rate 

 

A length 
changing at a 

constant rate 

 

   

Comparing sets 

that have a 
common ratio 

Comparing objects 

that have a 
common ratio 

Comparing 

segmented 
distances that 

have a 

common ratio 

Comparing 

motions along 
a path that 

have a 

common ratio 
 

   

Sets that form 

a geometric 
series  

 

 

Objects that form a 

geometric series 

Segments that 

form a 
geometric 

series 

Motions 

along a path 
that form a 

geometric 

series 
 

   

Branching 

structures 
(replication) 

 

Square  

numbers 

Constructing 

sequences of 
shapes 

 

Fractals  

 

Embedded figuresS 
 

Sequential foldingS 

 
Creating new 

unitsS 

 
Positional number 

systems 

 
A power of 1/n 

means breaking up 

a number into n 
piecesS 

 

Geometric shapes 
 

Changing 

dimensions 
 

Asymptotic 

behavior 

 

 
 

Lengths on a 

line 
 

Number-line 

dancing 

 

 
 

 

 

Rotating in 

the complex 
plane 

Recursion 

 
Power series 

 

Limit  

 

Additive 
rate of 

change 

 
Rate of 

change of 

slope 
 

Derivative 

 
New-to-old 

ratio 

 
An 

exponential 

curve 

Mapping an 

arithmetic 
progression 

onto a 

geometric 

progression 

 
Orders of 

magnitude 

 
Scientific 

notation 

 

 

Representations 

involving ITERATION are 

located above the 

dashed line. 

SPLITTING is not just found in 

“sequences of splits”, but is 

also part of other 

representations in the table.  

Some of these are signified 

by the subscript, S. 



  128 

 

A number of other patterns became apparent as I examined the chart.  

For example, the key role that ITERATION plays in many representations of 

EXPONENTIATION is highlighted as the image schema spreads in a wide swath 

across Table 2.  While the importance of recursion is not immediately obvious 

when thinking of „geometric shapes‟ or „square numbers‟, in other images like 

„branching structures‟ or „fractals‟ ITERATION is clearly observable.  The shift 

in mode of reasoning required, when moving from conceptualizations that do 

not require iterative thinking to those that do, may explain some of the 

difficulties a student experiences in trying to construct an understanding of 

EXPONENTIATION.  

Other schemas can be seen throughout the table. Consider SPLITTING, 

which is found, not just in „sequences of splits‟, but also in blends revealed by 

other representations. The definition „a power of 



1
n

 means breaking up a number 

into n pieces‟ refers to the combination of SPLITTING and OBJECT 

CONSTRUCTION, as do „sequential folding‟ of pieces of paper and „creating new 

units‟ of smaller size in the decimal system.  It is likely that other themes recur in 

many scattered conceptualizations. 

It is also evident that representations connected to a particular source 

domain are not completely distinct.  Various conceptualizations may be related, 

with only subtle differences distinguishing them.  For example, several 

representations linked to FUNCTION – „rate of change of slope‟, „derivative‟, 

„additive rate of change‟ and „new-to-old ratio‟ – address the same aspect of 

EXPONENTIATION using different tools and vocabulary.   
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Table 2 proved to be of great assistance in organizing and 

summarizing data from the study.  Moreover, assembling the chart caused me 

to reexamine and reflect on relationships among the representations and 

conceptual domains identified there.  But as I explored the information 

contained there, I began to question the appropriateness of this particular 

format for displaying these findings.  The work in this chapter and throughout 

the dissertation is based on the supposition that conceptual domains and the 

connections among them form a complex network.  Thus, a network structure 

would be a more suitable mode for presenting understandings arrived at in this 

research.    

Generating such a portrayal is not without difficulties.  Each 

conceptual domain discussed in this chapter has its own internal structure 

representing associated language, experiences, and modes of reasoning.  

Producing a figure that depicts these complex subnetworks and shows the 

inferential structure from each that is projected onto EXPONENTIATION is far 

beyond the scope of this study.  But part of the network structure can be 

illustrated; a number of domains that can act as sources for EXPONENTIATION 

have been identified, as have some of the connections among them.   Figure 

33, while it cannot be complete, is an attempt to portray a small part of the 

metaphoric network of mathematics centered on the concept of 

EXPONENTIATION.    
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6.8   Summary 

In this chapter, I reported on my search for different representations for 

EXPONENTIATION in a collaborative discussion, individual interviews and 

writings.  The views of mathematics teachers, mathematics educators, and 

mathematicians were sought with the aim of demonstrating that „metaphorical 

legs‟ for EXPONENTIATION can be identified. The process was not easy; 

conceptualizations offered only “scattered cues and sustained innuendo” 

EXPONENTIATION  

MOTION ALONG A PATH 

OBJECT 

CONSTRUCTION 

OBJECT 

COLLECTION 

MEASURING WITH 

SEGMENTS  

FUNCTION 

LOGARITHM 

ROTATION 

ITERATION 

SPLITTING 

Figure 33:  Part of the metaphoric network of mathematics around  
EXPONENTIATION. 

 

mappings of inferential structure onto EXPONENTIATION             

links among domains identified in discussions with participants 

connections from image schemas 
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(Kimmel, 2002, p. 518) and I found it difficult sometimes to look past them and 

see underlying source domains.  

Moreover, inferences were mutable, meanings slippery.  Phases of the 

study formed a series of recursive elaborations.  For each comment I heard, each 

image I saw, each realization I came to at one point in time not only influenced 

what I perceived in the next, but forced me to reexamine and reanalyze all that I 

had previously become aware of.  It is likely that such ever-evolving 

understandings are inevitable when exploring a complex system. 

Despite these difficulties, connections between EXPONENTIATION and a 

number of other mathematical concepts emerged from the work.  Participants, 

both individually and collectively, displayed an extraordinary understanding of 

EXPONENTIATION.  Their perceptions, supplemented by what I learned from 

academic and pedagogical texts, yielded many representations that shed light on 

different aspects of the concept.  Examination of the physical and mathematical 

roots of these conceptualizations led to the identification of sources from which 

inferential structure can be projected onto the target of EXPONENTIATION.   

While this research yielded much useful information, it should not be 

viewed as providing a definitive collection of representations and source domains.  

Further reflection may lead to new interpretations of ideas presented here.  And 

future studies will undoubtedly find conceptualizations that reveal novel ways to 

link EXPONENTIATION to domains identified in this chapter, or that connect it to 

distinct and unexpected concepts.   
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Although this work was successful in locating sources that contribute to an 

understanding of EXPONENTIATION, I find that I am unable to set down 

conceptual metaphors stating, “EXPONENTIATION IS  …”.  When developing 

grounding metaphors for ARITHMETIC, Lakoff and Núñez (2000) found four 

image schemas that had exactly the right inferential structure to not only “fit and 

extend what is known about innate arithmetic” (p. 101), but to account for “all 

[italics added] the properties and computational inferences about the 

mathematical target” (p. 101). Even OBJECT COLLECTION, the most basic and 

most intuitive of these sources, provides a means for conceptualizing the immense 

and intricate domain of ARITHMETIC with natural numbers, although simple 

blends are required to account for groups of collections and zero. 

I cannot find this degree of fusion between EXPONENTIATION and any of 

the conceptual domains discussed in this research.  To say, for example, that 

EXPONENTIATION IS OBJECT CONSTRUCTION is to deny the complexity of the 

concept.  One domain cannot provide all of the modes of reasoning necessary for 

understanding the many varied aspects of EXPONENTIATION; an elaborate mix of 

ideas from both concrete and abstract sources is required.  Thus, I find it 

necessary to think of EXPONENTIATION as a conceptual blend, one of such 

involvedness that I cannot trace the ways in which notions combine and evolve, as 

Lakoff and Núñez (2000) have done for ARITHMETIC.  

But while a list of metaphors for EXPONENTIATION is not compiled here, 

the existence and characteristics of its „metaphorical legs‟ are indicated.  

Examination of conceptualizations explicit in the words and implicit in the images 
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of mathematics teachers, educators, mathematicians, and researchers who have 

written about the concept was very productive.   It is hoped that the findings of 

this study, this illustrative example of network analysis, will provide valuable 

assistance for mathematics educators in designing classroom instruction, in 

developing curricula, in planning programs of professional development, and in 

crafting further inquiries into the metaphoric structure of mathematical 

understanding. 



  134 

 

Chapter 7 

       Re-viewing Ideas 

I began this dissertation by noting that, throughout the history of 

schooling, beliefs regarding the nature of mathematical knowledge have shaped 

pedagogy.  As a student, I experienced many practices that reflect different views 

of mathematics.  These varied approaches helped me to extend my understanding 

and to develop a love for the discipline, but none emphasized the many 

relationships among mathematical concepts that I found both fascinating and 

empowering.  Nor, as a mathematics teacher, was I satisfied with my efforts to 

highlight these connections in the classroom.  I was not aware of any effective 

ways of helping students to overcome what seemed to be a natural tendency to 

divide mathematical knowledge into discrete sections. 

It was not until I encountered the study of complex systems that a new 

conception of knowledge domains came to my attention – a perspective from 

which interactions among elements of a field are paramount.  As I learned more, I 

began to wonder whether mathematics is a complex form and, if so, what this 

might mean for teaching and learning.  Was it possible that such a view might 

shape techniques to help me encourage students‟ appreciation of the 

interconnectedness of mathematical ideas?  Would I find it easier to understand 

learners‟ difficulties in making sense of mathematics?  Could methods be 

developed to enhance students‟ understandings of mathematics?  What changes in 

mathematics education might be called for?  These intriguing questions motivated 

my explorations of ideas as described in this work. 
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7.1   A Brief Summary 

In earlier chapters, I posited that, since mathematics exhibits properties 

typical of complex forms, it is appropriate to explore mathematical understanding 

using a network model. I further suggested that the theory of embodied 

mathematics provides a possible frame for such a structure, where conceptual 

domains represent nodes in the web and conceptual metaphors provide the links 

among them.  Examination of this metaphoric network of mathematics provided 

evidence that it displays the scale-free topology typical of complex systems.  

I proposed that closer examination of this network of concepts offers fresh 

insights into the dynamics of subjective mathematics.  In particular, if 

comprehension of a central concept deteriorates, a debilitating cascading failure 

may lead to the collapse of many other topics.  As constructing additional links 

among domains increases the robustness of mathematical understanding, I 

suggested that it is desirable to utilize a variety of metaphors in making sense of 

each concept.  Implications for classroom teaching, curriculum, professional 

development, and research activities were discussed.   

Following the proposal that further investigation of the metaphoric network 

is warranted, and with the aim of substantiating ideas presented in this work, I 

explored collective and individual understandings of EXPONENTIATION.  A rich 

assortment of representations emerged, indicating various conceptual domains 

that can be linked to this concept; patterns of connections in a small region of the 

metaphoric network of mathematics became clearer. 
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7.2 Reflections on Complexity 

Looking back, I cannot help but ponder the nature of complexity-based 

research.  It is not possible to come to an accurate and complete understanding of 

subjective mathematics or, indeed, of any complex system.  Models used to 

explore these forms must, by their very nature, be less complex than the systems 

themselves, for in order to understand the truly complex it is necessary to leave 

things out, to make patterns easier to understand (Cilliers, 1998).  In addition, 

while a complex system does not have well-defined boundaries and often 

overlaps, is nested within and subsumes other forms, the choice of a model 

unavoidably sets boundaries that separate the system from the many other areas 

with which it interacts (Osberg & Biesta, 2003).  Thus, any description will 

inevitably fail to depict truly the dynamic properties and behaviors of a complex 

system. 

Moreover, a complex form continuously evolves due to the nature of 

interactions among its components.  Characteristics of the system emerge from 

myriads of interactions; these do not stop when a researcher completes her work, 

but continue on in an increasingly involved manner. The result of any analysis 

must, therefore, be thought of as merely a „snapshot‟, a moment‟s insight into an 

ever-changing, ever-growing form.     

The very act of trying to capture an elusive truth changes that reality, for 

the investigations used to explore a phenomenon influence its structure and 

behavior (Proulx, 2008).  Interpretations cannot be described as objective, for 
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“when we deal with complexity, we cannot avoid framing our descriptions thereof 

in some way or another” (Cilliers, 2000, p. 43).  Thus, the knower shapes the 

known, regardless of any efforts made to avoid personal predispositions and 

biases.  And, in turn, the knower is shaped by the known.  Observations and 

descriptions of a phenomenon alter how and what the researcher observes and 

describes (Proulx, 2008). Thus, through continuous cycles of examination, 

interpretation, and creation of new possibilities for the complex system, the 

researcher and the researched co-determine one another.   

What then can be said of the work presented here?  Both my exploration 

of the larger structure of subjective mathematics and my search for 

representations that contribute to understandings of EXPONENTIATION are 

inevitably constrained.  Neither can be acclaimed as truly correct or complete, and 

neither can be viewed as rising from assumption-free and objective observations.  

But, considering Maturana‟s (1988) description of the many “different, equally 

legitimate … explanatory realities” (p. 31) that can be observed, the metaphoric 

network of mathematics may be taken as a valid construal of the structure of 

mathematical understanding and connections to EXPONENTIATION revealed in 

Chapter 6 may be acknowledged as part of the cognitive structure of that concept.   

As such, I hope that my attempts to develop the beginnings of a scientific 

explanation – indeed, since I am using insights from network theory, almost a 

mathematical explanation – for subjective understanding of mathematics are 

found to be both informative and useful. 
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7.3 New Perspectives 

Developing a new finding or conceptualization through research is a 

complex process.  Novel concepts and theories emerge from the interactions of 

disciplines and discourses. Just as these frames shape the constructs of research, 

they are in turn themselves affected.  Consequent reinterpretations of these areas 

lead to still deeper understandings of a study‟s insights, and so on.  Another cycle 

– where contributing thoughts and emerging realizations recursively influence 

each other – directs research activities.   Thus, just as an inquiry should 

acknowledge what it has heard from various fields, “it has a concomitant 

responsibility to in some manner „reply‟ to the domains to which it listens” (Davis 

& Sumara, 2006, p. 165).   

My interpretation of mathematical understanding as a network of 

metaphors is influenced by interactions among ideas from complexity science, 

network theory, and embodied mathematics.  And, as developed above, these 

fields of thought should, in some respect, be reciprocally acted upon by the ideas 

presented in earlier chapters.  Ways in which both the development of the 

metaphoric network of mathematics and the subsequent exploration of 

EXPONENTIATION contribute to these ideational systems are discussed below. 

Of the three elements, complexity science plays perhaps the largest role in 

this dissertation for it not only constitutes one of the main arguments in support of 

my thesis, but it forms the perspective and shapes the approaches I use to 

investigate both mathematics as a network structure and EXPONENTIATION as the 

target of metaphoric projections.   It is too much to expect that one study can 
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greatly affect such a major domain of ideas, but those parts of this work providing 

evidence that mathematics and mathematical understanding are complex systems 

do make a contribution to the field. For while researchers have shown that many 

physical and social systems – even language – display characteristics of complex 

forms, similar work for mathematical cognition has not previously been carried 

out. 

I also draw heavily on the insights and techniques of network theory in 

exploring the structure of mathematics.  Because of the particular nature of 

mathematical understanding, or indeed cognition in any discipline, I believe that 

my work offers a new way to explore and analyze network structures.   

While the first studies using network theory tended to focus on simple 

(often random) mathematical models, network theorists soon began to focus on 

real-world networks and consider empirical details as well (Newman, Barabási & 

Watts, 2006). In particular, researchers began to question which kinds of nodes 

possess the largest number of links and how much influence these nodes have on 

the network as a whole.  Statistical studies of data sets and the development of 

computer-based models representing network dynamics became commonly used 

modes of inquiry.   

These types of studies are not, at present, possible for investigating 

metaphoric connections in mathematics. While quantitative analysis of 

mathematical links could potentially be made on the basis of whether two 

concepts are referred to in the same sentence or text, this type of research would 

not reveal underlying metaphoric relationships.  Detecting these connections 
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requires looking beyond surface details like proximity and being sensitive to 

underlying conceptual meanings.   Qualitative methodologies, like the concept 

study and personal interviews employed in this dissertation to explore 

EXPONENTIATION, are more appropriate for obtaining these types of insights.    

Research described in this dissertation also adds to understandings of 

embodied mathematics. A new way of exploring the field is developed; by 

looking at the network beneath the theory – with specific details removed from 

the system – patterns in the interactions of conceptual domains and conceptual 

metaphors become more apparent. As well, the search for metaphors that can be 

used to make sense of EXPONENTIATION reveals at least part of the underlying 

cognitive structure of that topic.  While “no amount of information at the level of 

the individual … agent can hope to reveal the patterns of organization that make 

the collective function as it does” (Buchanan, 2002, p. 15), understanding some of 

the metaphoric connections to even one concept does shed light on the nature of 

links among domains in general.  

But the concept study exploring EXPONENTIATION contributes more; it 

demonstrates that the search for connections among concepts is not exclusively 

the work of the cognitive scientist, but a task for educators as well. Teachers 

possess powerful understandings of mathematical ideas, as revealed in the images, 

activities and analogies they use – consciously or unconsciously – with learners in 

the classroom.  These representations reflect, not only teachers‟ knowledge of 

mathematics, but also their knowledge of how learners‟ understandings develop.  
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With this special perspective, educators have an important role to play in the 

search for conceptual structures.  

 

7.4 What Emerges Next? 

Complex systems are never at rest, but continually change and grow.  And 

thus it is with knowledge; when it appears that puzzles are solved, queries are 

answered and conjectures are confirmed, new questions inevitably arise. From the 

work in this dissertation, insights and instruments from complexity science, 

embodied mathematics and network theory widen the universe of possibilities for 

mathematics education. A multitude of possible avenues for future research 

suddenly appear. 

It is impossible to write down all the ideas that leap to mind; some 

investigations are not just desirable, but necessary for the implementation of 

changes to mathematics education proposed in this work.  The search for 

metaphoric connections among mathematical concepts could fully occupy 

researchers‟ time and energy.  Efforts to focus schooling on building connections 

among concepts would be facilitated by studies that attempt to identify and 

evaluate different methods of introducing, discussing and utilizing metaphors in 

instruction.   Along with this, explorations of ways to help individuals become 

aware of and articulate their tacit metaphoric understandings of mathematical 

concepts would of great value to teachers in the classroom and in pre-service 

programs. Students‟ responses to the development of concepts using multiple 

metaphors could be explored to determine if attitudes toward mathematics 
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become more positive.  Researchers could investigate whether understandings of 

mathematics become more robust.  The opportunities seem endless.  

An area that particularly interests me is exploration of teachers‟ reactions 

to views of mathematics and pedagogy suggested in this dissertation.  While I did 

not systematically study participants‟ feelings on these matters during my 

research into EXPONENTIATION, a variety of opinions were expressed about the 

desirability of developing concepts from a variety of metaphoric connections.  

One teacher stated that using rules from the textbook was a much more efficient 

mode of instruction – that focusing on metaphoric links would be time-

consuming, require a great deal of work, and be less effective in preparing 

students for examinations.  Others were more positive.  One participant declared: 

You would do well to get students comfortable with switching 

back and forth among different metaphors, and feeling that sense 

of power that I can choose the one that works best for this context. 

… So I think what we‟re talking about is more than just 

introducing two ways to look at things.  It‟s changing the way you 

think about things.  And part of that is realizing there are many 

ways of looking at things, and exploring the connections, and 

getting that sense of ownership that I can use the one that works 

for me. … I‟m not sure why I‟m convinced of this, but I‟m 

convinced kids start that way. And then they‟re put into rows and 

lined up and taught a recipe and they lose that. 

 

Such remarks were encouraging and gave me the sense that educators 

might appreciate the value of using metaphors and multiple connections in the 

classroom.  But, although the temptation is great, I cannot generalize from a 

limited number of teacher comments to educators in general.  Further research in 

this area is needed if proposed changes for mathematics education are to be 

implemented. 
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Developing this suggestion, researchers might also investigate ways of 

encouraging teachers to accept the use of metaphoric connections in developing 

mathematical understandings.  I have seen how colleagues can quietly and 

effectively resist when they feel that a particular change mandated for 

instructional strategies or a program of studies is not desirable.  Preventing 

unfavorable outlooks from forming and overcoming negative attitudes that arise is 

necessary, for teachers control classroom activities and, ultimately, classroom 

curriculum.   

Concept studies provide one means of modifying educators‟ opinions, for 

such group discussions can influence participants‟ ways of thinking about 

mathematics (Davis, 2008) and their readiness to adopt the results of research 

projects (Davis, 2009).  By recasting teachers as active partners in the production 

of knowledge rather than passive recipients of academic findings, a concept study 

openly values educators‟ particular knowledge of mathematics and the learning of 

mathematics.  The development of other methods of inquiry that involve 

educators in collaborative research should increase the likelihood that the 

recommendations of researchers actually impact pedagogy. 

 

7.5 Making Connections 

Throughout my experiences as a student and a teacher, I have been 

fascinated by the relationships among ideas in mathematics.  My work developing 

and investigating the metaphoric network of mathematics, and subsequently 

exploring EXPONENTIATION using this frame, was both challenging and exciting.  
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Long-held intuitions regarding the importance of making connections among 

concepts were confirmed.   

As I developed new perspectives on mathematics and on the learning of 

mathematics, questions that had intrigued me were answered.   Viewing 

mathematics as a complex network did explain some of students‟ difficulties 

learning mathematics.  A teaching strategy – making sense of concepts by linking 

them to a variety of physical and social experiences, and other mathematical ideas 

– was developed that could help students construct more complete and robust 

understandings.  Changes in curriculum and professional development would 

support this approach.    

Moreover, my studies have opened new areas to investigate.  What are the 

source domains that contribute to understandings of other mathematical concepts?  

How can the construction of metaphoric links be facilitated?  Which methods of 

instruction are most successful?  Will teacher and student reactions be positive?  

Can opinions be changed? It seems that more puzzles are posed than solved by 

my proposals.  

In the end, I find that my efforts to apply the insights of network theory to 

mathematical understanding gives me more than solutions and new problems to 

explore.  I have a much keener awareness of complex patterns of interactions in 

mathematics and in the world that surrounds us. So now, when I hear reports 

describing massive blackouts caused by the destruction of a power plant in a 

hurricane, I mutter, “It‟s a hub”.  When viewing programs that show images of 

the effects of global warming, I exclaim, “It‟s a cascading failure”.   And when I 
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reflect on teaching mathematics, imagining how I might present material to 

students, I think, “It‟s a network”.    

Just as the network analysis of mathematics put forth in this dissertation 

has changed my perceptions, it is my hope that the teaching of mathematics and, 

more generally, mathematics education may also be affected.  And perhaps 

ripples may spread even farther, for I suspect that the significance of network 

theory extends into the pedagogy of other disciplinary fields.  It may also assist in 

understanding the dynamics of other sorts of systems involved in schooling, such 

as classroom collectives and programs of study.  In other words, my speculations 

may be only a beginning for an important complex conversation in education. 
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