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Abstract

In cantilever-suspended span construction, the beams of
alternate bays cantilever over the tops of columns and a simple span
is suspended between the ends of cantilevers. Secondary framing
members such as open-web steel joists can enhance the stability of
these beams markedly. The joist-beam connection may enable the
joists to provide both lateral and torsional restraints to the beam top
flange at discrete locations which in turn is transmitted to the
compression flange through the web. With practical sizes of joists,
essentially complete (infinite) lateral restraint is provided. The
effective torsional restraint, depending on the joist’s bending
stiffness, the moment-rotation characteristics of the joist-beam
connection, the twisting of the braced flange between braces, and
local web distortions, is limited. While such restraints have a
significant stabilizing effect, the joist loads, which are applied
directly at the level of the top flange of the beam, result in a

destabilizing effect.

Thirty-three full-scale tests were conducted on two different
hot-rolled W-shaped steel cross sections to investigate the effects of
different loading conditions and bracing systems on the buckling
stability of the beams. The results of these tests show that torsional
bracing enhances the stability of the beam much more than the
lateral bracing. Also, the favourable residual stress patterns with
most of the flanges under ten‘sion proved to be beneficial in

enhancing the buckling resistance within the elastic range.



A finite element model, featuring plate elements for the web
and line elements for the flanges, was adopted to predict the
- distortional buckling capacity of steel beams under any combination
of loading and restraint conditions. This model takes into account
inelastic material behaviour, residual stresses and web distortions.
The predicted buckling capacities are in good agreement with the

experimental results.

Based on the finite element model, a simple design approach
was developed for steel beams in cantilever-suspended span
construction. In addition, other design procedures are presented for
cantilever beams, overhanging beams, suspended beams and simply
supported back span beams under lateral and torsional restraints

applied at discrete locations to the top flange.
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[D] = elastic constitutive matrix of web element
[Dlin = inelastic constitutive matrix of web element

dr = shortening displacement of an elemental length of the flange

ds = arc length

E = modulus of elasticity

EI = bending stiffness of a fictitious 2-node element used to simulate

lateral restraint above the top flange
Elyy = lateral bending rigidity of a flange section
(Elyp); = lateral bending rigidity of flange section at node i
(Elyp); = lateral bending rigidity of flange section at node j
F = interaction factor
fi(x) = cubic interpolation function associated with w;
f,(x) = cubic interpolation function associated with Qyi
f3(x) = cubic interpolation function associated with wj

f4(x) = cubic interpolation function associated with Qyj

F = force in the z direction at node j of the fictitious 2-node element
used to simulate lateral restraint above the top flange

Fg = overall safety factor

Fy = yield strength

G = modulus of rigidity

GJs = torsional rigidity of a flange section

h = height of load application above the shear centre

h' = distance between the middle surfaces of the flanges

hh = distance between the middle surface of the top flange and the
point of lateral restraint

I; = moment of inertia of the central portion of the open-web steel joist

between end panels



I, = moment of inertia of the top chord member of the open-web steel

joist

I = moment of inertia about the major axis of a stiffener cross section

I = moment of inertia about the major axis of the I-cross section

Iy = moment of inertia about the minor axis of the I-cross section

J = Saint Venant torsional constant of the I-cross section

J* = modified Saint Venant torsional constant of the I-cross section

Js = Saint Venant torsional constant of a stiffener cross section

k = effective buckling coefficient

ky = effective length factor

kg = effective length factor corresponding to shear centre loading

k; = effective length factor corresponding to top flange loading

K, = bracing bending stiffness divided by the brace spacing

Kg = bending stiffness of bracing member

Ke = effective continuous torsional restraint stiffness

K¢ = effective torsional stiffness of the flange

K = stiffness of the beam to brace connection divided by the brace
spacing

Ky = web stiffness

[K] = global structural stiffness matrix

[Kg] = global geometric stiffness matrix
[Kgl, = global geometric stiffness matrix computed at a loading intensity
corresponding to a maximum in-plane bending moment along the

beam equals to the plastic moment
[kly = structural stiffness matrix of a flange element

[kly = structural stiffness matrix of a stiffener element

[klw = structural stiffness matrix of web element



[kgls = geometric stiffness matrix of a flange element
[k: ]f = geometric stiffness of flange element, associated with lateral

displacement, w
) . . : .
[kg"]f = geometric stiffness of flange element, associated with rotation

about the longitudinal axis
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Chapter 1

INTRODUCTION

1.1 General

The moment capacity of laterally unsupported steel beams and
girders may be greatly reduced by lateral-torsional buckling. This
arises because of the difference in the major and minor axis flexural
- stiffnesses of the type of sections that are normally used to resist
bending in one plane. The problem is characterized by a .latcrally’
unsupported beam, loaded in its stiffer principal plane, that collapses
at loads considerably less than those required to reach the cross-

sectional strength by pure in-plane bending.

Current design procedures generally consider lateral restraint
to be effective only when it is attached to the compression flange.
However, in cases where a beam with cantilevers is braced along the
top flange only, a significant portion of the unbraced flange may be
under compression under some loading conditions. In these
circumstances, the effect of lateral restraint applied to the tension

flange may be enough to preclude lateral-torsional buckling.

When a beam is torsionally restrained along one flange, local
and lateral buckling combine to produce coupled buckling modes
called distortional buckling in which simultaneous cross-sectional
distortion and deflection occur. In cantilever-suspended span
construction, the torsional restraint provided by open-web steel
joists welded to the top flange can enhance the stability of the beams

significantly. Designers need simple design procedures to estimate
1



the distortional buckling resistance of beams under such restraint

conditions and similar ones that may occur in practice.
1.2 Objectives
The objectives of this investigation are:

1. to develop an analytical model for predicting distortional
buckling resistances of steel beams under a variety of loading and

restraint conditions,
2. to verify the analytical model experimentally,

3. to suggest design procedures for cantilever beams, suspended
beams, overhanging beams, restrained beams and beams in

cantilever-suspended span construction.
1.3 Scope

A finite element model is presented to predict the distortional
buckling resistances of beams with W-shaped cross section under
different loading and restraint conditions (Albert et al. 1992). The
model uses 4-node plate elements for the web and 2-node line
elements for the flanges and is, therefore, capable of simulating the

effects of web distortion on lateral-torsional buckling resistances.

A total of 33 full-scale tests were conducted on 11 beams of
two different cross sections and with different loading and restraint
conditions. These restraint conditions were chosen in such a way that
the effect of different bracing systems on the buckling strength of

the beams could be investigated.



An effective length concept is presented for predicting the
buckling strength of built-in cantilevers, which takes into account the
real restraint conditions. Another design procedure is suggested for
overhanging beams under certain restraint conditions. A procedure
for checking the lateral-torsional buckling of a beam lifted under
self-weight during construction is given. A simple design procedure
is developed for a beam, free to warp at its ends and subject to
transverse loads and end moments when lateral and torsional
restraints are applied to the top flange at discrete locations. Design
procedures are developed for cantilever-suspended span beams
under a variety of loading and restraint conditions based on the
distortional buckling finite element model. Resistance factors
consistent with the design procedures and the test results are

presented.



Chapter 2

LITERATURE REVIEW

2.1 General

The problem of lateral-torsional buckling of simply supported
beams with narrow rectangular cross section and loaded by uniform
moment was first investigated by Prandtl (1899) and Mitchell
(1899). Independently of each other, they published in the same
year a theory of lateral-torsional buckling of beams, arriving at
substantially the same solution, a differential equation of the second
order with variable coefficients which controls the problem. Further
development was due to Timoshenko and Gere (1961), who used the
energy method to derive the fundamental differential equation of
beams with symmetric I-sections by including the effect of warping
on the torsional aspect of the problem. Since then many investigators
have developed the subject to handle a variety of loading conditions,
end and intermediate restraints, monosymmetry, non-uniform
sections and inelastic material behaviour. Previous reviews of the
topic have been given by Lee (1960), Trahair (1977) ’and Schmitke
and Kennedy (1984).

2.2 Distortional buckling

The elastic stability of an I-section member has generally been
classified as either local buckling or overall member buckling. In
local buckling, a component plate of the member such as the
compression flange buckles locally over a short length of the member

with local changes in the cross-sectional shape. On the other hand, an
4



overall buckling analysis (Timoshenko and Gere 1961) assumes that
the member deflects from its initially straight configuration, but that
the member cross section remains undistorted (rigid) during
buckling. An analysis in which lateral-torsional buckling and local
buckling are assumed to occur independently and the original shape
of the cross section does not distort is called a linear buckling theory.
Hancock (1978) has shown that thin walled members may also
buckle in an intermediate distortional mode, in which lateral

deflection and twisting are combined with general distortions of the

cross-sectional shape.

In I-section members, the flanges are composed of relatively
thick and narrow plates compared to the web and, therefore, the
distortion in the flanges is much less significant than in the web.
Hancock (1978) and Roberts and Jhita (1983) showed that for
laterally unsupported beams which are restrained laterally and
torsionally at the supports, the geometry of most hot rolled I-section
members is such that the effects of web distortion are not significant,
so that their buckling loads are close to those predicted based on the
classical rigid web analysis. However, Hancock et al. (1980) indicated
that the effects of web distortion in I-section beam-columns decrease
from a maximum for pure beam behaviour to zero for pure column
behaviour. Akay et al. (1977) considered, using a distortional finite
element approach, an I-section beam which is fixed at both ends and
loaded by a single concentrated load at mid-span. They concluded
that web distortion caused a reduction of about 25% in the buckling

load given by rigid web analysis. However, most of this reduction



could be eliminated by the use of web stiffeners at mid-span.
Bradford and Trahair (1981), and Bartels and Bos (1973) indicated
that the effects of web distortion -increases substantially for short
and intermediate length beams when displacements or rotations of
the flanges are allowed at the supports. An example of this is the
lateral stability of beams on seats (Bradford and Trahair 1983 and
Bradford 1989) which prevent only one flange from deflecting
laterally and the other flange is restrained only through the stiffness

of the web.

2.3 Stability of uniform beams restrained along one flange
2.3.1 General

Because the lateral-torsional buckling phenomenon involves
two deformation components, lateral deflection and twist,
intermediate restraints against either action may be used to increase
the stability of a beam. These restraints can be provided to both
flanges in such a way that web distortion is prevented (Nethercot
1973a, Kitipornchai and Richter 1978). Another possible
arrangement is restraints attached to the compression (critical)
flange. In this case the braced beam is designed on the basis of
effective lengths equal to the bracing spacing. Frequently in practical
structural framing systems, lateral and torsional restraints are
applied at discrete locations to the top flange only. For a continuous
beam this is the tension flange in the critical portion of the beam
where the bending moments are largest. This problem is more

complicated and web distortions are of much significance. Many



investigators have considered this problem either analytically or

experimentally as discussed later.

The effects of continuous and complete tension flange restraint
on distortional buckling, as applied to composite steel-concrete
beams have been considered by Johnson and Bradford (1983),
Svensson (1985), Williams and Jemah (1987) and Goltermann and
Svensson (1988). Johnson and Bradford (1983) used the model of
Bradford and Trahair (1982) to conduct a finite element parametric
study of elastic distortional buckling in laterally unstiffened fixed-
ended composite girders with web depth/thickness ratios varying
from 39 to 100. Svensson (1985) presented a method to estimate the
elastic lateral-torsional buckling stress by treating the unsupported
flange as a column with varying axial force, supported on an elastic
foundation representing the web. This method neglects the Saint
Venant torsional contribution. William and Jemah (1987) suggested a
modification to Svensson’s method by including 15% of the web with
the unsupported flange to constitute the column of the model.
Goltermann and Svensson (1988) modified Svensson’s model to
handle the case of a finite torsional restraint applied to the laterally
supported flange and to include the contribution of Saint Venant
torsion. The procedure suggested to predict the elastic lateral-
torsional buckling stress is somewhat complicated and not considered

to be suitable for design purposes.



2.3.2 Analytical investigations

Winter (1941) was the first to investigate the lateral-torsional
buckling of a simply supported monosymmetric beam under uniform
moment when laterally restrained along the tension flange. For a

doubly symmetric section, the given solution reduces to

2
GJ 2tEG

[2.1] Mo == :
dL

where G is the modulus of rigidity, E is the elastic modulus, J is the
Saint Venant torsional constant, C,, is the warping constant, d is the
depth of the cross section and L is the span length. Roeder and
Assadi (1982) considered the same problem and arrived at the same

closed form solution.

Horne and Ajmani (1969) extended the solution, using the
energy method, to the case of a beam-column under linear moment
gradient which is laterally and torsionally restrained by side rails
attached to one flange at discrete locations. They suggested the use of
an effective continuous torsional restraint stiffness which accounts
for the bracing stiffness, the moment-rotation characteristic of the
joint between the side rails and beam-column and web distortion.
However, no expression was given to relate the suggested effective
continuous torsional restraint stiffness to all these variables, and
specifically no suggestion was given on how to account for web
distortions. They introduced a standard eigenvalue problem to

determine the solution for the critical buckling moment. In order to



simplify the solution for design purposes, Horne and Ajmani (1971)
suggested that the torsional restraint be neglected and only the

effect of lateral restraints be considered.

Milner (1975, 1977a) and Milner and Rao (1983) considered,
using the energy method, the problem of a simply supported beam
under uniform moment which is braced laterally and torsionally
through discrete braces attached to the tension flange. Infinite lateral
and finite torsional bracing stiffnesses were assumed. The closed

form solution for this problem is given as

22 2
GJ 2n'mEC, KL

d 2 22
dL nnd

[2.2] M =

where most terms are as defined previously for [2.1], n is the
number of half waves of the buckled compression flange, which may
be selected to make the critical moment a minimum, and K, is the

effective continuous torsional restraint stiffness, given as

[2.3] 1,11
Ke Ko Ky K
where Kp is the bracing bending stiffness divided by the spacing

between braces, Ky, is the web stiffness which accounts for the web

distortion, given as

3
Et,,

S

[2.4] K, =0.5



where ty is the web thickness, s is the spacing between braces and
Kj is the stiffness of the beam to brace connection divided by the
brace spacing, depending on the moment-rotation characteristic of
the joint. Milner (1977a) recommended an infinite value for Kjin
cases of friction grip bolted and welded joints. Milner and Rao (1978)
presented some recommendations for estimating K; for bolted joints

based on experimental tests.

The expression for web stiffness recommended by Milner
(1977a), given by [2.4], which was also used by Nethercot and
Trahair (1984), overlooks the depth of the cross section. Goltermann
and Svensson (1987) presented the following expression, to take the
~ depth into account :

3
[2.5] K, = —C

2
4(1-v )d
where v is Poisson's ratio.

In computing the effective continuous torsional restraint
stiffness, using [2.3], the torsional flexibility of the braced tension
flange is not taken into account. When bracing is provided only at
discrete locations along the tension flange, the flange between the
braces tends to twist, causing a reduction in the effectiveness of the

torsional restraint of the bracing.

Lindner (1987) investigated the stabilization of supporting I-

beams by corrugated sheeting. The effects of lateral and torsional

10



restraints provided to one flange are taken into account. He also used
[2.3] and [2.5] to estimate the effective continuous torsional restraint
stiffness. The critical buckling moment of the beam is approximated

as

26§] Mg =XVH,GCI

where k is the effective buckling coefficient, obtained from a finite
element analysis, and J* is a modified Saint Venant torsional
constant, given as

2
[2.7] J =)+ K°2L
G

Early methods of analyzing web distortion were based on the
assumption made by Goodier and Barton (1944), that the web could
be assumed to be a series of thin walled vertical beams of length

equal to the cross-sectional'depth, provided that the elastic modulus

was changed from E to E/(1 - v2). This assumption led to the
prediction that the variation of the out of plane displacements over
the depth of the web could be represented by a cubic polynomial.
Suzuki and Okumura (1968) used this assumption in a folded plate

analysis.

Exact plate bending theory was used by Goldberg et al. (1964)
to obtain closed form solutions in some cases. Horne and Ajmani
(1969), Bartels and Bos (1973), Milner (1975), and Bradford (1988)

obtained approximate solutions by using energy and variational

11



methods with assumed displacement functions. In some of these

solutions a cubic polynomial was used for the web displacements.

Rajasekaran and Murray (1973) presented a finite element
analysis of the coupled local and lateral buckling of wide flange
beam-columns. Their analysis used one-dimensional beam elements
for the flanges and flexural plate elements for the web. This analysis
is somewhat complex in that it needs eleven degrees of freedom at
each longitudinal node. As well, it does not account for vertical

stresses in the web or residual stresses.

Johnson and Will (1974) used plate elements to represent both
the flanges and web, and cubic polynomials for the element
displacements in deriving their stiffness matrices. Because most of
the cross-sectional distortion occurs in the web, this refinement in

modelling unnecessarily complicates the analysis.

Akay et al. (1977) idealized the flanges as beam elements,
while plate elements, with several divisions over the depth of the
section, were used to represent the web. This leads again to a

relatively large number of degrees of freedom.

Bradford and Trahair (1981, 1982) presented a method for the
elastic distortional buckling of I-beams which alleviated the high
computer cost of other studies. They used 2-node beam elements for
the flanges and plate elements, extending over the whole depth of
the web, to represent the web. Only three degrees of freedom are

needed per node.

12



Bradford (1986) developed a finite element method of analysis
for inelastic distortional buckling of determinate, hot rolled I-beams.
The method permits an economic computer analysis to be made for
members under various conditions of loading, end support and
restraint. However, this method gives inaccurate results due to the
approximation used in including the destabilizing effects of vertical

loads.

A modification of the finite element method is the finite strip
method. In certain cases, it can greatly reduce the number of degrees
of freedom of an element or strip, as only one set of cross-sectional
degrees of freedom are required. This method was used by Hancock
(1978) to demonstrate the interaction between the local, distortional,
and lateral buckling modes of simply supported beams in uniform
bending. Under other loading and support conditions, this method

tends to be so complicated that it cannot be used.
2.3.3 Experimental investigations

To date, most of the experimental studies of the lateral-
torsional buckling of I-beams, which are either restrained along one
flange or with incomplete supports, have been conducted on model
specimens. Although models simplify the testing procedure
significantly as compared with full-scale beams, they do not simulate

the effects of residual stresses or initial imperfections.

Bartels and Bos (1973) investigated, using model specimens,

the effect of the boundary conditions, provided at the supports, on

13



the lateral-torsional buckling stability of both simply supported and
continuous beams. They took cross-sectional deformations into
account. The loading consisted of several equally spaced loads
applied to the top flange. The support boundary conditions were: (a)
forked bearings, in which lateral deflections and longitudinal twisting
of both flanges were prevented; (b) semi-forked bearings, in which
lateral deflections of both flanges as well as twisting of bottom flange
were prevented; and (c) bottom flange restraint, in which only the
bottom flange was laterally and torsionally restrained. They
concluded that cross-sectional deformations within the span of the
beam have a negligible effect on the lateral-torsional buckling
stability if forked bearings are used. On the other hand, a significant
reduction in the lateral-torsional buckling capacity resulted when

semi-forked bearings or bottom flange restraint only were used.

Milner (1977b) conducted several model tests on simply
supported beams with loads applied at the ends of cantilever
overhangs to provide a central portion under uniform moment. The
beams were braced laterally and torsionally by means of purlins
connected to the tension flange. Apparently, no account was taken of

the restraining effect provided by the overhanging portions.

Bose (1982) reported a series of tests on universal beams
under a single concentrated load applied to the top flange at mid-
span. At each support of the simply supported beam, the
compression flange was connected to a spring which provided an
elastic torsional restraint. The effect of torsional restraint at supports

on the buckling strength of the beams was found to be significant.
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Wakabayashi and Nakamura (1983) carried out model tests to
investigate the effect of lateral bracing by purlins or beams on the
lateral-torsional buckling capacity and post-buckling behaviour of H-
shaped beams. Beams with two overhangs were used and several
loading conditions were investigated. The cantilever tips were

restrained laterally and torsionally.
2.4 Stability of cantilever and overhanging beams

The elastic lateral buckling resistance of built-in uniform
cantilevers of doubly symmetric I-shaped cross section has been
studied by many investigators such as Timoshenko and Gere (1961)
and Nethercot (1973b). Although most cantilevers of practical
dimensions would tend to buckle inelastically, elastic buckling
resistances are also of importance during construction. As well,
elastic buckling resistances are needed as one limit of any
empirically derived inelastic buckling resistance; the other limit is

the full flexural resistance of the cross section.

Currently available solutions for cantilevers under different
loading and restraint conditions, as given by the Structural Stability
Research Council (SSRC) Guide (Galambos 1988), use an effective

length concept as follows

22
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where kp, the effective length factor (see Fig. 2.1), models the effects
~ of the type of loading, the level of load application and the type of
end restraint. These solutions are based on Nethercot (1983). Two
problems may be encountered with these solutions which either limit
their applicability or completely invalidate them. The first problem is
that Nethercot (1973b) set a limit on the beam torsional parameter,

R, here redefined as

The limit is given as
[2.10] 0<X<1.57

This limit, restricting the solution to relatively long span cantilevers
(R > 4) was not stated in subsequent publications (Kirby and
Nethercot 1979, Nethercot 1983). The second problem, as shown in
Fig. 2.2, is concerned with restraint conditions at the tip of the
cantilever. The conditions given by the Guide and Nethercot (1983)
differ from those in the original derivation (Nethercot 1973b, Kirby
and Nethercot 1979) where lateral or lateral-torsional restraint at

the cantilever tip is considered to be applied only at the shear centre.

Furthermore a cantilever beam frequently exists as the
cantilever projection of a simply supported beam over an end
support. This is usually called an overhanging beam. The design

recommendations given by the SSRC Guide (Galambos 1988) for



overhanging beams use the effective length concept [2.8] as
recommended by Nethercot (1973b and 1983) combined with the
effective length factors given in -Fig. 2.1. Nethercot, however,
considered only the case of a cantilever span with an equal back
span and with no loads or restraints applied to the back span
between supports. To account for the fact that the restraining effect
of the back span on the cantilever span is reduced as the back span
gets longer, Kirby and Nethercot (1979) introduced the restriction
that the effective length of the cantilever should not .be less than the
back span. However, this restriction is not given in Nethercot (1983)
and the SSRC Guide. Without its use, nonconservative results are
obtained and even with its use inaccurate and nonconservative

results are obtained in some cases.

Lindner (1972) studied the stability of an I-shaped cross
section cantilever beam with a back span for the case when lateral
displacements of the top flange along both spans were restrained.
The loading conditions considered were 1) a single concentrated load
at the cantilever tip; 2) a uniform load along the cantilever span; 3) a
uniform load along both the cantilever and back span and 4) a
concentrated moment at the cantilever tip. The concentrated or
uniform loads were considered to act at the level of the top flange or
shear centre. He suggested that the lateral-torsional buckling
resistance can be approximated as [2.6], in which J* is replaced by
the Saint Venant torsional constant and the coefficient k is given
graphically in terms of the cantilever beam torsional parameter and

the ratio of the back span to the cantilever span.
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Trahair (1983a) has shown that the built-in cantilever model
overestimates the buckling resistance of an overhanging segment. He
also suggested a method to obtain the elastic lateral-torsional
buckling resistance for a beam with two similar overhanging
segments at each end of a central segment based on interaction
buckling (Nethercot and 'Trahair 1976) between the different
segments. The only loading case considered is that of concentrated
loads acting at the cantilever tips. In this method, the buckling load
is estimated using the buckling loads of both cantilever and central
segments which are free to warp at the ends and the buckling load of
a cantilever built-in at the root. Although this method is strictly only
applicable to the loading case described, it gives unconservative
results when the loads are applied to the top flanges of cantilever

tips.
2.5 Stability of suspended beams

A stability problem which has not received much attention
from researchers is the lateral-torsional buckling of I-shaped beams
acted upon by their self-weight when being lifted by cables or
chains. This situation is frequently encountered in construction.
Because the cables provide lateral restraint only when they are
attached to the top flange of the beam, the lateral-torsional buckling
resistance of the beam can be relatively low. Furthermore, the
unusual restraint conditions make the classical buckling solutions
inapplicable. The dominant loading in a lifting operation is the beam

self-weight acting as a uniformly distributed load along the
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centroidal axis. For relatively short beams, the crane picks the beam
up at mid point of the top flange. When the beam is relatively long_, a
spreader beam is likely used and the cables are attached to the top
flange at two symmetrical locations. The beams may be relatively
slender, and being lightly loaded, lateral-torsional buckling likely

occurs within the elastic range.

Dux and Kitipornchai (1988) derived the governing differential
equations of minor axis flexure and torsion for symmetrically loaded
suspended beams. Using the finite integral method, they investigated
the influence of many variables such as the cable angle, loads and
cable attachment positions on the buckling resistance. The theoretical
predictions of elastic buckling loads compared favorably with the
results obtained from a series of small-scale experiments on

aluminum I-beams.

Dux and Kitipornchai (1989) developed buckling .capacity
charts in a non-dimensional format to check the stability of I-beams
under self-weight lifting for different cable angles and attachment

positions.

2.6 Stability of steel beams in cantilever-suspended span

construction

Cantilever-suspended span beams are commonly used in low-
rise industrial and commercial roof construction, especially where
regular joist spacing and equal beam spans can be used. Because the
cantilever span length can be adjusted to balance the positive and

negative bending moments, under the critical loading condition, most
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of the advantages of continuous construction can be realized and
beam sizes can be minimized. This type of ~construction also leads to
reduced erection time as only simple connections are required. The
beams of alternate bays cantilever over the top of columns and a
simple span is suspended between the ends of the cantilevers, as
shown in Fig. 2.3. Secondary framing members such as open-web
steel joists, welded to the top flange as shown in Fig. 2.4, can provide
lateral and torsional restraints to the top flange. By extending the
bottom chord of the joist and attaching it to the bottom flange, lateral
bracing is provided to the bottom flange as well. The restraint of the
joist attachment to the beam enhances the lateral-torsional stability
of the beam dramatically but taking these restraints into account
complicates the solution considerably. Frequently the effect of

torsional restraints has been neglected.

Mehta (1981), and White and Salmon (1987) presented charts
or tables for the preliminary selection of member sizes and
cantilever lengths. These charts and tables were obtained by
equating the maximum positive and maximum negative moments for
each member under different loading conditions. The selection of a
member size is based on its maximum bending capacity. They
suggested, in a lateral-torsional stability check, to wuse the
unsupported length as the spacing between joists. However, this
procedure is unconservative unless all the bottom chords of all joists
are connected to the bottom flange of the beam, a condition which is

rarely encountered in practice.
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The Canadian Institute of Steel Construction (1989) presented
another design procedure which puts much more emphasis on the
lateral-torsional stability criterion in selecting the member sizes. This
procedure appears to be based on the approach given in the Guide to
stability design criteria for metal structures (Galambos 1988) for
overhanging beams. Two stability checks are suggested; one for the
cantilever which takes into account the lateral restraint conditions (if
any) and continuity of the cantilever with the back span, and the
other for the back span, taking into account the lateral restraints as
well as the bending moment diagram. However, both of these
stability checks may be unconservative. The stability check of the
cantilever, based on Galambos (1988) and in turn on Kirby and
Nethercot (1978), reverses the limitation (not stated in the Guide)
that the effective length of the cantilever should not be less than the
back span. The stability check of the back span uses the expression
given by Roeder and Assadi (1982), derived for a simply supported
beam under uniform moment and laterally restrained along the
tension flange [2.1]. In order to account for the effect of nonuniform
bending, a moment modification factor as given by Kirby and
Nethercot (1978) is introduced. This factor was originally suggested
for unrestrained beams apparently loaded at the shear centre and a
modification for restraint to the compression flange had been earlier
proposed by Horne and Ajmani (1973). Nonconservatism in this
approach, depending on the ratio of the central moment to the end
moments, may arise when the loads are applied above the shear

centre even though the top flange is laterally supported. On the



conservative side, the procedure does not account for the torsional
restraint provided by the welded connection between the top flange
and the open-web steel joist which significantly enhances the lateral-

torsional stability of the beam.

2.7 Comparisons

Bradford's analytical work (1986), the most similar to the work
presented herein, differs however in that it uses the consistent
approach in deriving the structural and geometric stiffness matrices
whereas this work uses cubic shape functions for deriving the
structural stiffness matrices and more simplified shape functions for
deriving the geometric stiffness matrices. This simplifies the
formulation significantly. Bradford as well did not consider the effect
of web distortion on the destabilizing effect of loads applied above

the top flange as is considered here.

In this study, the determination of the effective torsional
restraint stiffness is similar to that proposed by Milner (1975) except
that the web stiffness used is that given by Goltermann and
Svensson (1987) and furthermore the twisting of the braced flange

between bracing points is considered.

Because the experimental work cited above was chiefly
conducted on models and not full-scale specimens or further that it
did not consider a spectrum of practical loading and restraint
conditions or that the boundary conditions were not well defined, a

series of full-scale tests with precisely defined boundary conditions
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were carried out in this study to verify the analytical model

experimentally.

Design procedures for cantilever and overhanging beams mark
a significant improvement over that of Nethercot (1973b). The
approach to suspended beam stability is, in some aspects,
considerably simplified as compared to that of Dux and Kitipornchai
(1989). The design procedures for restrained beams and beams in

cantilever-suspended span construction are novel.
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Restraint conditions Effective length factor, k,

Top flange  All other

At root At tip loading cases
S’ Z T 1.4 0.8
- T 1.4 0.7
i { 0.6 0.6
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Fig. 2.1 Effective length factors for cantilever and overhanging
beams given by the SSRC Guide (Galambos 1988)
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Fig. 2.2 Comparison of restraint conditions at cantilever tip
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Chapter 3

BEAM CHARACTERISTICS

3.1 General

The results of measurements of the cross sections, sweep and
camber of the beams used in buckling tests, and of the ancillary tests
including tension coupon tests, residual stress determinations and
stub column tests are presented in this chapter. These results are
used in predicting the buckling behaviour and strength of the beam

tests based on the finite element model.
3.2 Beam types, dimensions and geometric properties

Eleven different test beams were used in the full-scale
buckling tests. Seven beams were W360x39s and the remaining four
were W310x39s. Each group of beams of the same cross section came
from a single heat. These relatively light beam sections were selected
so that the testing frames would be neither too heavy nor too large.
Based on the geometry of the test floor, available with reaction
points at 610 mm on centre, they also provided reasonable span to
depth ratios for cantilever-suspended span construction, and width
to depth ratios of the beams (0.36 and 0.53) in the proportions of
beams used in real structures. The W360x39 was nominally a class 1
section and the W310x39 a class 2 section. Eight beams were
approximately 9 m long while three beams were ordered in 11 m
lengths (3A, 3M and 3K) to provide two metres of material each for

the ancillary tests.
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Because some beams were used to perform as many as seven
tests, the sequence of the tests was planned so that elastic tests
preceded the last test that could be used to demonstrate significant
inelastic behaviour. It follows that any elastic test was stopped
shortly after the occurrence of buckling to avoid any inelastic
straining in so far as possible or to limit it to a relatively small zone

of the beam.

Before any of the major buckling tests were conducted, the
cross-sectional dimensions were measured. Measurements of the
depth, d, flange width, b, and flange thickness, t, were made at ten
equally spaced stations along the beam, while measurements of the
web thickness, t,, were made near the ends. Fillet radii were
measured once for each cross section for specimens used in stub
column tests. The identification numbers of the beams, the number
of observations, n, the mean value, i, and the coefficient of variation,
V, of measured cross-sectional dimensions of the W360x39 and
W310x39 specimens are listed in Tables 3.1 and 3.2, respectively.
The nominal cross-sectional dimensions are also given in these tables
as are the mean/nominal ratios. For all beams, the differences
between the measured and nominal dimensions are small and well
within the allowable tolerances set by CSA Standard G40.20-M81. In
general the mean/nominal ratios are essentially 1.00 and the
coefficients of variations are very small, indications of extremely

good control of the rolling process.
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The cross-sectional area, A, major and minor axes moments of
inertia (I, and Iy, respectively), major axis plastic modulus, Z,, and
major and minor axes elastic moduli (S and Sy, respectively) are
given in Table 3.3 based on the mean measured cross-sectional
dimensions. The contribution of fillets are taken into account. The
measured/nominal ratios of the cross-sectional properties are also
given in Table 3.3. The ratios for the W360x39 are essentially 1.00
while those for the W310x39 are up to 6% below the nominal value,
even though that for the cross-sectional area is 0.993. This is because
the flange thickness is about 3% low while the web thickness is 7%

high.
3.3 Measurement of initial geometrical imperfections

After measuring the cross-sectional dimensions of a beam
specimen, initial geometrical imperfections (sweep of the shear
centre axis, twist and camber) were measured at one-metre

intervals.

Initial sweep or lateral bow at the elastic shear centre was
calculated based on measurements of flange tip deviation from fine
lines stretched between the beam ends. Assuming a perfect web, the
sweep at the shear centre was calculated as the average of the bows
of both flanges. The sweep distributions are given' in Figs. 3.1.a and
3.1.b for W360x39 and W310x39 specimens, respectively. The non-
dimensionalized initial sweeps (sweep/length) are generally small
and below the limit of 0.001 of the length specified' by the CSA

Standard G40.20-M81 except for specimen 3B where this limit was
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“exceeded slightly. The sweeps of the W310x39 specimens were

exceptionally small and did not exceed 0.00055.

To obtain the initial twist, the test specimen was placed with
the lower surface of its bottom flange in the horizontal position. A
straight edge with a level was positioned vertically just touching the
bottom flange tip. The distance of the top flange tip from the straight
edge was then measured to determine the twist angle. This
procedure was repeated at one-metre intervals along the beam. The
initial twist distributions are shown in Figs. 3.2.a and 3.2.b for
W360x39 and W310x39, respectively. The data for specimen 3A are
not available. In all specimens, the values of initial twist are less

than about 1.5°.

Initial camber or vertical bow was measured with the beam
specimen placed such that the web was in the horizontal position.
Measurements were taken of the deviations of the flange surface
from a fine line stretched between the beam ends. The distributions
of camber are given in Figs. 3.3.a and 3.3.b for W360x39 and
W310x39 specimens, respectively. The maximum values of non-
dimensionalized camber (camber/length) in all beam specimens are
generally small and significantly less than the limit of 1/1000 given
in CSA Standard G40.20-M81.

Table 3.4 gives a comparison between the average measured
initial sweep and twist in this study and those reported by Dux and
Kitipornchai (1981) on one cross section, Fukumoto et al. (1980) on

one cross section and Hechtman et al. (1955) on four cross sections.



Generally, the imperfections reported here, although small, are
greater than those reported by other investigators. Fukumoto’s
beams were however relatively short. Hechtman measured the initial
twists and sweeps only at mid-span. The average twists he obtained
are considerably more than those reported by Dux and Kitipornchai,

and Fukumoto.
3.4 Tension coupons

A total of 22 coupons, 14 from the flanges and eight from the
webs, were tested in uniaxial tension to determine the mean flange
and web yield stresses as well as elastic moduli for the two W-
shaped cross sections used in the distortional buckling tests. The
locations and identification marks of the 10 coupons from the
W360x39 (Beam 3K) and the 12 coupons from the W310x39 (Beam
3P) are shown schematically in Figs. 3.4 and 3.5. The surfaces of the
coupons cut from flanges of W310x39 were milled to give parallel
surfaces in order to eliminate a change in thickness across the width
of the specimen. In two tests where this was not done, uneven
gripping of the test specimen by the testing machine resulted in
eccentric loading and unreliable results. The cross-sectional areas of

the coupons were determined prior to testing.

The tension coupons were tested in an MTS 1000 testing
machine. The results for the W360x39 and W310x39 cross sections
are given in Tables 3.5 and 3.6, respectively. The W360x39 coupons
had an average modulus of elasticity of 204 500 MPa with a

coefficient of variation of 0.021, an average flange static yield

31



32

strength of 287.9 MPa with a coefficient of variation of 0.025 and an
average web static yield strength of 317.8 MPa with a coefficient of
variation of 0.040. The results from the W310x39 coupons gave an
average modulus of elasticity of 209 300 MPa with a coefficient of
variation of 0.025, an average flange static yield strength of 352.2
MPa with a coefficient of variation of 0.014 and an average web
static yield strength of 367;4 MPa with a coefficient of variation of

0.017. These variations are not unexpected.
3.5 Residual stresses

Residual stresses in the flanges and webs were determined by
the sectioning method (Galambos 1988). The technique and
procedure followed closely that reported by Dux and Kitipornchai
(1981). Residual strain measurements were taken once for each cross
section of the W-shapes. The locations of residual stress test
specimen "are shown in Fig. 3.6'. These residual stress specimens are
at least twice the depth awray from the ends of the overall specimens

so that residual stresses are fully developed in them.

Before cold sawing the residual stress specimen from the
}overall specimen, a gauge length of 100 mm was defined on each
side of the strips, except for the strip at the web-flange junctions
where five gauge lengths were used, by steel balls punched into the
positions, as shown in Fig. 3.7. The gauge lengths were measured
before and after sectioning using a mechanical extensometer (Bam-
Setzdehnungsmesser). All cuts were made by slow band-sawing at

the locations shown in Fig. 3.7. After cutting, no ball separation was
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evident but significant bowing occurred in the web portions nearest
the flange-web junctions. This phenomenon was also observed by
Dux and Kitipornchai (1981). Because measurements were recorded
on both sides of a strip, no correction due to bowing was necessary

(Galambos 1988).

Residual strains were calculated as the change in the gauge
length after longitudinal sectioning divided by the original gauge
length. Three measurements were recorded for each gauge length. A
gauge length on a steel bar was also measured for temperature
compensation. Because the laboratory temperature varied only
within a range of 1.5° Celsius, the correction due to temperature was
found to be negligible. The repeatability of the measuring device was
excellent with deviations from the mean not exceeding +/- 0.002

mm.

The residual stresses in Fig. 3.8 have been obtained using the
mean moduli of elasticity of 204 500 MPa and 209 300 MPa for
W360x39 and W310x39, respectively, and the mean residual strains
from matching gauge lengths on opposite sides of each strip of the
flanges and webs. The measured patterns show high compressive
residual stresses of about 0.63 to 0.38 of the yield strength for the
W360x39 and W310x39, respectively, over most of the web and high
tensile residual stresses at the flange-web junctions. The flanges of
the W360x39 section were entirely in tension with a maximum
residual stress of 0.69 Fy at the web-flange junction. The tensile
residual stresses at the web-flange junction of the W310x39 were

considerably less at 0.21 Fy and at the flange tips, the average stress
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was about 20 MPa compression equivalent to 0.06 Fy. These features
conforms to that reported by other researchers (Dux and Kitipornchai
1981 and Wong-Chung and Kitipornchai 1987) for beam sections
with relatively narrow flanges. For the W310x39, the residual stress
pattern appears to be disturbed in the flanges due to the effect of
roller straightening. The main specimen length exhibited continuous

yield line pattern extending well into the flanges.
3.6 Stub columns

Stub column tests were made on the two W shapes to obtain
the average stress-strain characteristics for the cross section as a
whole, and to confirm the residual stresses and material properties
which were obtained from the other tests. .Following the guidelines of
the Structural Stability Research Council (SSRC) (Galambos 1988), the
W360x39 and W310x39 stub columns were both sawn to a length of
995 mm, and the ends were milled plane. The stub columns were
white washed and tested according to the SSRC guidelines in an MTS
6000 testing machine.

The stress-strain curves obtained from the stub column tests
on the W360x39 and W310x39 are given in Figs. 3.9 and 3.10,
respectively. As indicated in these figures, the load reduced
appreciably due to local buckling of the webs just after the maximum
load was attained. This was not unexpected due to the high
compressive residual stresses extending virtually constant over
about 60% of the web height. The moduli of elasticity, average yield
strengths of the cross sections and stresses at which first yielding

was observed are given in Table 3.7 for the stub column tests. The



resulting average yield strengths of the W360x39 and W310x39
cross sections are 96% and 98%, respectively, of the corresponding
values from tension coupon tests.

In the W360x39 stub column test, the average stress at first
yield as indicated by flaking of the white wash which occurred
precipitously over the central 200 mm of the web depth was 229
MPa. This implies, based on the web yield stress of 318 MPa, that a
residual compressive stress of about 89 MPa existed. This agrees
reasonably with the computed residual stress of about 100 MPa
which exists at the limit of the area where flaking occurred. At the
mid depth of the web, the computed compressive residual stress was
about 200 MPa. Apparently, the white wash, even though probably
separated from the steel in this area, dislodged as a unit.

In the W310x39 stub column test, the average stress at which
first flaking of white wash occurred (in the web at mid-depth) was
250 MPa. This implies, based on a yield stress of the web of 367
MPa, that the maximum compressive residual stress at that location
was at least 117 MPa, a value which agrees well with the computed
residual stress of 138 MPa obtained by sectioning.

In both stub column tests, the compressive residual stresses in
the web were underestimated, a result of stub column tests also
reported by Dux and Kitipornchai (1981). It should be noted that the
first deviation from a straight line of the average stress-strain curve
is difficult to assess. This happens because yielding actually starts
only at a point, in this case the middle of the relatively thin web.
Opposed to this, when a W-shaped cross section has significant

compressive residual stresses at the flange tips, yielding starts at the
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four flange tips almost simultaneously causing a noticeable deviation
of the inelastic curve from the elastic straight line of the average

stress-strain curve.
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Coupon no. Location Modulus of Static yield
elasticity, MPa stress, MPa
Cl Flange 202 340 291.3
C2 Flange 203 320 2779
C3 Flange 201 730 287.1
C4 Flange 198 600 292.8
C5 Flange 206 920 281.3
C6 Flange 206 240 296.9
u=287.9
=722
V =0.025
C7 - Web 208 740 301.1
C8 Web 200 240 318.8
C9 Web 203 420 318.8
C10 Web 213 230 332.5
Overall p = 204500 H=317.8
o = 4358 c=12.87
V =0.021 V =0.040

Table 3.5 Mechanical properties of W360x39 tension coupons
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Coupon no. Location Modulus of Static yield
elasticity, MPa stress, MPa

C11 Flange 220 600 351.7
C12 Flange 208 610 3474
C13 Flange 215290 351.5
Ci4 Flange 207 740 350.8
C15 Flange 212610 347.9
C16 Flange 204 990 351.5
C17 Flange 206 540 353.9
C18 Flange 214 010 362.9
p=3522

o =4381
V =0.014
C19 Web 204 590 371.5
C20 Web 203 360 361.8
C21 Web 208 710 362.1
C22 Web 204 690 374.0
Overall =209 300 u=367.4

o = 5265 c=6.32
V =0.025 V =0.017

Table 3.6 Mechanical properties of W310x39 tension coupons
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Fig. 3.1.a Initial sweep of W360x39 specimens
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Fig. 3.1.b Initial sweep of W310x39 specimens
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Beam 3B 0

1o E___\\_’,'\\‘_ _______
Beam 3G 0 ]
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Beam 3K ]
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0
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Fig. 3.2.a Initial twist of W360x39 specimens
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Fig. 3.2.b Initial twist of W310x39 specimens
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Beam 3G 0
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Fig. 3.3.a Initial camber of W360x39 specimens
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Fig. 3.3.b Initial camber of W310x39 specimens
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Fig. 3.4 Identification and location of tension coupons for W360x39
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Fig. 3.5 Identification and location of tension coupons for W310x39
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Chapter 4

EXPERIMENTAL PROGRAM

4.1 General

Thirty-three full-scale tests were conducted using eleven W-
shaped steel beams of two different cross sections in a single
overhang configuration, as shown schematically in Fig. 4.1. The
sequence of tests performed on a single beam was planned to avoid
increasing the initial imperfections due to inelastic deformations in
all tests except the last one in the sequence. Aspects of the behaviour

of steel beams investigated included:

1. the elastic and inelastic lateral-torsional buckling capacity of
steel beams in cantilever-suspended span construction, taking into
account the restraining effects provided by open-web steel joists

supported on the beams,

2. the effects of web distortion on the buckling capacity of steel

beams, -

3. the effect of the height of load application above the shear

centre as well as bottom flange loading,

4. the effect of the loading arrangement on the buckling

capacity,

5. the effect of torsional restraint of the bottom flange of the
beam at a column location which may be provided by a rigid

connection between the bottom flange and the column,
57
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6. the effect of lateral bracing of columns which support steel

beams in cantilever-suspended span construction,
7. the effect of the height at which lateral restraint is provided,

8. the buckling modes and determination of the ratio of the

test-to-predicted buckling loads to check the analytical model.

4.2 Test setup

The test setup, shown in Figs. 4.1 and 4.2 was designed to load
beams, with a single cantilever, at up to 5 locations between 2
supports and at the cantilever tip. The five loading frames between
the supports were spaced at 1.22 m on centers to match the strong
floor geometry and the sixth frame was at the tip of a 1.22 m long

cantilever.

Load cells were provided at every load or reaction point so that
statics was confirmed in each test. As well, any combination of
translational and rotational restraints could be provided at the
reactions or load points by using assemblies of rollers, knife edges,
and thrust bearings as discussed subsequently. When the test beam
is laterally unrestrained at a load point, the beam may move
laterally and causes an eccentric load on the loading system. The
typical loading frame shown in Figs. 4.3 and 4.4 shows how this
eccentric load is accommodated while maintaining the load in a
nearly vertical position. The inner frame moves smoothly and
essentially without friction in the vertical direction guided by four

roller bearings between it and the outer frame. The roller bearings,
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by providing equal and opposite forces at diagonally opposite
corners, maintain the equilibrium of the inner frame against
eccentric loading that may occur either due to the initial placement

of the test specimen or due to the lateral movement of the specimen.

When the test beam is laterally restrained, the lateral
restraining force provided by the top horizontal member of the inner
frame is transmitted to the outer frame through the set of roller
bearings. Because the outer frame is relatively stiff and because the
clearance between the two frames is only 2 mm, the deviation of the

test loads from the vertical does not exceed about 1/600 rad.

Vertical loads are applied to the test beam by the inner frames
which are pulled downward by the pair of loading rods attached to
the frame and passing through the floor. The lower ends of the rods
are attached to a yoke. As shown in Fig. 4.5, a jack pushes between
the yoke and the lower surface of the strong floor and a load cell is

provided to measure the jack reaction.

The five frames between supports allow loads to be applied as
they would be by open-web steel joists in an actual structure while
the single frame at the cantilever tip applies the load simulating that
of a suspended span. The frame at the cantilever tip was designed

for greater loads than the other five frames.

Because the six loading frames are independent, loading and
restraint conditions can be different one from another and from one

test to another.
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4.3 Loéding and restraint configurations

In Fig. 4.5, the load cell used to measure the load applied by
the jack is shown. Load cells were also provided at each column
support. All load cells were calibrated before usage. In some tests,
the end reaction at the start of the test was upwards due to the self-
weight of the test specimen but reversed with increasing cantilever
tip load. It was necessary, in these cases, to use a temporary load cell
under the beam and then a permanent one on top of the beam. In
tests where the bottom flange at a column location was allowed to
move laterally (as in test 23), it was necessary to use two load cells
(one beside the other) to provide a stable condition and to measure
the eccentric reaction due to torsional restraint provided to the beam

by the support column.

Figs. 4.6.a, b and ¢ show the points of load application and the
restraint conditions for each test. The test number, test specimen
number and beam cross section designation are also given. In all
tests except test 33, the beam specimen was approximately 9 m long
as shown in Fig. 4.2. In test 33, the dimensions were as indicated in

Fig. 4.6.c.

In Fig. 4.6.a, b and c, the different restraint conditions provided
to the flanges of the test beams at load and reaction points are
represented by different symbols. A white dot represents a point
where only lateral restraint was provided to a flange; a white square
where only torsional restraint existed; and a black dot where both

lateral and torsional restraints existed. When no restraint was



provided, none of these symbols appear. Reactions are denoted by
triangles pointing upward or downward in the direction of the
reaction. As a fork support, at column locations, provides lateral
restraint to both flanges, it is represented by a white dot at each

flange.

Full-depth stiffeners as provided in tests 5 and 19 at the
cantilever tip are indicated by a pair of vertical lines. The stiffeners
had a thickness of 10 mm, an overall width out to out of the pair
equal to the flange width and were welded symmetrically to both

sides of the web.

The nominal relative values of the applied loads are indicated
by the designations P, P/5 or P/2. The numbers in parentheses
following the load designation indicate, in order, the height in
millimetres above the top flange where the load was applied and the
height where lateral restraint was provided. When the flange is
unrestrained, only the height of load application is shown and, where
no numbers are given, the loads, reactions and restraints were
applied directly to the flange surface. In general, the points of load
application and lateral restraint are at the same distance above the
top flange. This occurs when torsional restraint is provided or, as
shown in Fig. 4.7.a, when the freedom of rotation about the
longitudinal axis is ensured by a longitudinal knife-edge. In some
cases, as indicated in Fig. 4.7.b, the point of lateral restraint is above
the point of load application. This occurs when a semi-cylindrical or
hemispherical rocker is used to ensure rotational freedom about the

longitudinal axis. Lateral restraint is provided through friction at the
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top of the rocker but rotation of the rocker causes the point of load

application to be at the top of the flange.
4.4 Simulation of boundary conditions

At all load or reactions points on a flange, special care was
taken to ensure the boundary conditions were accurately modelled.
Of the six degrees of freedom at a load or reaction point, that
associated with vertical movement was not an issue because the
vertical displacement was either that of the loading frames or nil at a
reaction point. Devices used to provide the other five degrees of
freedom included knife edges, rockers, roller assemblies and thrust
bearings. All of these devices had to have capacities sufficient for the

loads to be sustained.

Longitudinal and lateral translational freedom was generally
provided by using a nest of lateral or longitudinal rollers (These
devices, made of hardened steel, have coefficients of rolling friction
in the order of 0.0003 at the load levels encountered). To eliminate
any longitudinal thrust in the specimen, lateral rollers were provided

at all load and reaction points except one.

Rotational freedom about longitudinal or transverse axes was
generally provided by using hardened steel knife edge assemblies
although in some cases a semi-cylindrical rocker proved to have
sufficient capacity and in others a hemispherical rocker provided
rotational freedom about both orthogonal axes. Assuming a static
coefficient of about 0.3, rotations about a longitudinal axis were

limited to about 17° when using longitudinal rockers. A
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hemispherical rocker was also considered to allow rotation of a beam
to occur about a vertical axis at a load point because of the very
limited torsional restraint that could be developed over the small
contact area. When the point load exceeded the load capacity of a
hemispherical rocker, crossed knife edge assemblies coupled with a
thrust bearing were used to provide three degrees of rotational

freedom.
4.4.1 Top flange restraint

The four distinct top flange restraint conditions provided were
those of no restraint (free), lateral restraint only, lateral and

torsional restraints, and torsional restraint only.

The free condition was achieved, as shown in Fig. 4.8.a for
relatively small loads by permitting lateral and longitudinal
displacements by means of longitudinal and lateral rollers,
respectively, and allowing rotations about the longitudinal, lateral,
and vertical axes by means of a hemispherical rocker. For greater
loads, the stresses at the contact points were reduced by replacing
the hemispherical rocker with two semi-cylindrical rockers oriented
longitudinally and laterally, and a thrust bearing, as shown in Fig.
4.8.b, to allow rotations about the longitudinal, lateral, and vertical
axes, respectively. In tests 6 and 7, the free condition of the top
flange at the five interior span loading points was achieved, as shown
in Fig. 4.9, by using a hemispherical rocker for the rotational degrees
of freedom and a nest of ball bearings between two bearing plates to

allow translational movement.



By omitting longitudinal rollers but retaining all the other
elements, as shown in Fig. 4.10, lateral restraint was achieved
through friction between the several elements and the inner loading

frame.

In Fig. 4.11, one further degree of restraint is achieved by
removing the longitudinal semi-cylindrical rocker and the top flange

is both laterally and torsionally restrained.

The condition of torsional restraint about the longitudinal axis
only was achieved by using lateral rollers, longitudinal rollers, a
thrust bearing, and a lateral semi-cylindrical rocker, as shown in Fig.

4.12.

It is recognized that the only two restraint conditions of the top
flange likely to be encountered are those of lateral restraint alone
and combined lateral and torsional restraint. The other two
conditions were investigated however so that the separate effects

could be assessed.

As well, in practice, the torsional restraint offered to the top
flange is limited by the in-plane bending stiffness of the joists
welded to the top flange, a condition intermediate to the test
conditions of zero and complete torsional restraint but much closer to

the latter as discussed subsequently.
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4.4.2 Bottom flange loaded with no restraints

Test 32 was tested in a double cantilever configuration. The
bottom flange at the end of the longer cantilever span was loaded, as
shown in Fig. 4.13 to ensure that it \was essentially free. The weight
of the heavy object was shared by the beam and the crane. The load
carried by the beam, determined as the difference in the weight of
the heavy object and the load cell reading, was increased gradually
by lowering the crane, reducing the tension in the crane cables.
Because the distance to the crane was large, the lateral restraining

effect of the crane on the specimen was considered to be negligible.
4.4.3 Restraint at the columns

To model the practical situation where, at a column location, an
open-web steel joist is welded to the top flange of the supporting
beam and has its bottom chord extended and connected to either the
bottom flange of the beam or the column, a fork support was used as
shown in Fig. 4.14. This ensured that the beam cross section was
restrained from twisting and moving laterally whilst remaining free
to warp, to move longitudinally and to rotate about the major and
minor axes. The fork support consisted of a pair of T-sections, to
which were welded two short cylindrical stubs. The T-sections were
shimmed to just bear against the web on both sides. It was assumed
that longitudinal translation and rotation about a lateral axis were
not impeded by the stubs as the normal forces exerted by them and
hence the longitudinal frictional forces are small and were further

reduced by lubrication.
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When there is no joist at a column, both flanges of the beam
may move laterally. A rigid connection between the bottom flange
and the supporting column provides torsional restraint to the bottom
flange and the buckled shape will be accompanied by web distortion.
This situation was achieved, as shown in Fig. 4.15, by providing a
longitudinal set of rollers under the bottom flange to allow the
bottom flange to move sideways. A pair of load cells was used to
measure the reaction and to provide a sufficiently broad base to
develop the restraining moment on the bottom flange. With the
lateral rollers removed from this location only, a single point of
longitudinal fixity is provided along the length of the beam. The
efficiency of torsional restraint achieved near ultimate loads was
better in the tests with the W310x39 beam than in the tests with the

W360x39 beam because of the broader flange width of the former.

In those tests where the cantilever load was the only applied
load, the downward reaction force at the opposite end of the beam
was provided by a reaction beam bolted to columns on both sides of

the pedestal.
4.5 Instrumentation

Five types of instrumentation were used to measure the loads
and reactions, the displacements of the buckled test beams, the

lateral roller movements at supports and strains in the steel.

By using calibrated load cells, as described previously, at each

load and reaction point, statics could be used to verify the loads
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applied. In particular, any unwanted frictional losses in the system
would be identified. Three linearly variable displacement
transducers (LVDTs) were used to measure the vertical movement of
inner frame at the cantilever tip and the roller movements at both
reaction points. When the test beam was allowed to move laterally at
a reaction point, another two LVDTs were used to measure the lateral

movements of the top and bottom flanges at that location.

In order to determine the buckled shape including cross-
sectional distortion, six cable transducers were used at each of three
stations along the test beam, as shown in Fig. 4.16. The details of one
station are shown in Fig. 4.17 where three cable transducers were
attached to each flange. This arrangement of cable transducers was
enough to measure the vertical deflection, lateral displacement and

angle of twist of each flange.

Bending strains about the major and minor axes as well as
warping strains were monitored by four longitudinal strain gauges
mounted on each flange, as shown in Fig. 4.18, at five locations along
the test specimen. Lateral bending strains in the web due to
distortion were monitored by a vertical strain gauge mounted on
each side of the web near the cantilever tip. The sketch of a beam

specimen given in Fig. 4.19 identifies the gauges.

Two dial gauges mounted near the cantilever tip were used to
monitor the lateral deflection of either the top or bottom flange and

the vertical deflection during the course of a test. The load-deflection
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curves obtained were used to determine the load increments,

particularly as the critical load was being approached.

All electronic measuring devices such as load cells, LVDTs, and

cable transducers were calibrated before use.

The output from electrical resistance strain gauges, LVDTs,
cable transducers, and load cells, amounting to as many as 85
channels, were recorded automatically at each step during the test on

the Fluke data aquisition system.
4.6 Testing procedure

Each load was applied by pumping oil manually to the
hydraulic loading jacks (Fig. 4.5). All five interior jacks were supplied
from the same manifold and therefore were at the same pressure.
The jack at the cantilever tip, applying a much greater load, was on a
separate manifold. In all tests, the interior jack load was increased

before the load at the cantilever tip.

The test load was applied in increments, the size of which
depended on the proximity to failure as estimated from the growth
of buckling deformations and from the analytical model. Increments
were generally as large as 10 kN in the early stages of testing and as
small as 0.5 kN near buckling. To decide on the size of a loading
increment and to detect any anomalous restraints, the vertical and
lateral deflections of the unrestrained flange at the cantilever tip
were plotted against the cantilever tip load. In addition, the lateral

deflection of the bottom flange determined from a cable transducer
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station located in the main span was plotted against the cantilever
tip load using an X-Y recorder. Each load was held for few minutes
until all readings indicated that the beam had stabilized. Buckling
was deemed to occur when a load-deflection curve such as the lateral
deflection of one of the flanges or the rotation of the cross section at
the cantilever tip reached a horizontal asymptote. As the maximum
load was approached, the load was increased only to the extent

required to reach a predefined deformation.

At every load step, a check of static equilibrium was obtained
from the load cell readings, thereby assuring that the system was

functioning properly and that frictional losses were a minimum.
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Fig. 4.2 Overall test setup



Fig. 4.3 Loading frame
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Inner frame
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Fig. 4.4 Schematic diagram of a typical loading frame
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Beam
Test no. Loading and restraint diagram Section designation
§(95,95)
1 2 £ W360x39 3B
(40,40)
2 i) 2 ¥ w360x39 3B
P (40
’(c) ;
3 2 W360x39 3B
4 f 2 8 W360x39 3B
Stiffener
5 {‘4 ¥ W360x39 3C
P 40 @ P/5 (0
G T At el
6 3 W360x39 3A
P (40 5 @ P/5 (0)
P ) I
7 R 3 W360x39 3A
40,40) 5 @ P/5 (0,60)
et il i
8 e 4 W360x39 3A
P (95) 5(90)
9 2 3 W360x39 3K
P(275) P2 (;)0,90)
10 2 2 2 W360x39 3K
P(275) PR (30,90)
11 g = 2 W360x39 3K
5 (205) P2 (;90,90)
12 — - 2 W360x39 3K

Note: Loading and restraint symbols are defined in Fig. 4.6.c

Fig. 4.6.a Loading and restraint configurations for tests 1 through 12
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Test no. Loading and restraint diagram Section deggg;ion

P (205) P2

3 L ! = W360x39 3K
f P/3 (45,45)

14 - == S —%  W360x39 3K
f P/3 (0,60)

15 - ° 2 W360x39 3K
wAO)

16 2 ¥ W310x39 3V
P (60)

17 2 ¥ W310x39 3V

18 Lff $  w310x39 3V
]iL‘Siiffener

19 2 ¥ Ww310x39 3V
P(200)  PI2 (145,205)

0 B : 2 W310x39 3T

P (0,60) 5 @ P/5 (145,205)

21 g—g:j—x—"—“—i—g W310x39 3T

22 f = ¥ w310x39 3T
{ (0,60)

23 W360x39 3G

P g) 60) uls ﬂ 201_§
24 W360x39 3G

Note: Loading and restraint symbols are defined in Fig. 4.6.c

Fig. 4.6.b Loading and restraint configurations for tests 13 through 24



Beam
Test no. Loading and restraint diagram Section designation
f(o ,60)
25 $  w310x39 3P
{0 60) 5 @ P/5 (145,205) |
26 7 L4 iy 2 W310x39 3P
5@P/
I s W
27 2 R W310x39 3P
P (0,60) 5 @ P/5(145,205)
. S U U
28 R 2 W360x39 3H
5 @ P/5 (145,205)
29 = W360x39 3H
P éo,ao) 5 @ P/5 (145,205)
30 L1 2 W360x39 3H
{ J i5@P/5
31 W310x39 3M
(O 60) (-150)
32 g Y W360x39 3D
,i(o,so) 0.60)
33 oy W360x39 3D
1219 3657 mm

(a,b) Height of load application

© Lateral restraint i .
and height of lateral restraint

0 Torsional restraint above top flange, mm,
I Web stiffener if applicable
AV Reaction ¢ Lateral and torsional restraint

Fig. 4.6.c Loading and restraint configurations for tests 25 through 33
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Load

Point of load application
and lateral restraint

Test beam

Longitudinal groove of knife-edge

(a)

Load

Point of lateral restraint

Point of load application

Hemispherical or semi- cylindrical rocker

Test beam

(b)

Fig. 4.7 Determination of the height of load application and the
height of lateral restraint
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Fig. 4.9 Top flange loaded freely using ball bearings

Inner frame
l / lI
|
| |
| | —
|
/ Symbol
Lateral rollers
i Thrust bearing
Semi-cylindrical o
longitudinal rocker e Semi-cylindrical
Test specimen lateral rocker

Fig. 4.10 Details of lateral restraint condition of top flange

79



80

Inner frame
/

Lateral .
rollers l
Thrust bearin EEE—
g ~— .

Test
specimen

Symbol

Semi-cylindrical
rocker

Fig. 4.11 Details of lateral and torsional restraint for top flange

Inner frame
/

rollers Longindinal |
rollers |
Thrust bearing
Test Symbol
- specimen

Semi-cylindrical
rocker

Fig. 4.12 Details of torsional restraint for top flange
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Crane cable

Load cell

Symbol
Test Specimen

Heavy object E%%

~

Fig. 4.13 Details of bottom flange loaded with no restraint



Fork support
(T-Sections)

Short cylindrical
stubs

00—

P

Semi-cylindrical

lateral rocker Load cell Symbol
Thrust “ ” H ~ Lateral
bearing /rlollers “\
- - - -

I 1
LA A A A A A A AT A A A A A Sy JAF iy A A A A A 4 LA AE AL A K AN 4w Aw o 4

Fig. 4.14 Fork support at column location equivalent to joist
connection with bottom chord extension



Semi-cylindrical
lateral rocker

«Test '
specimen Symbol
Load cells

11

\ Longitudinal
rollers

S 1
A A A A A A A A A G G G (i G G G G 4V Gir S G G (A G G (A U G (v G G G s

Fig. 4.15 Details of torsional restraint for bottom flange at column

location.
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35 1419 2638 2038 2638 233
i —le e e

T i 1 L

Fig. 4.16 Stations for measuring displacements

D Ry

™~

Cable transducer

Test specimen

1

Fig. 4.17 Details of a measuring displacement station
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Chapter §

DISTORTIONAL BUCKLING TESTS OF STEEL BEAMS

5.1 Introduction

The results of the full-scale beam tests are presented and
analyzed in this chapter, as are the results obtained from the finite
element analysis used to predict the behaviour of these tests. Thirty
three tests were conducted on a total of 11 beam specimens,
composed of seven W360x39 sections and four W310x39 sections. By
testing a given beam in a sequence of generally increasing restraints,
the beam could be used repeatedly because in the earlier tests it
buckled elastically and returned to its original shape upon unloading.
A specimen was replaced after undergoing inelastic buckling that
resulted in noticeable inelastic deformations, as discussed
subsequently. The 33 tests were performed under different loading
and restraint conditions except for a few tests which were duplicated

in order to rectify some experimental errors.

In cantilever-suspended span construction encountered in
practice, the reaction from a suspended span is usually transferred to
the tips of the cantilever beam through a shear connection between
the webs and near the shear centre of the beam. In these tests, the
cantilever tip loads, as were considered in the finite element
analysis, were applied at or above the top flange. It is recognized
that this test situation represents a more severe loading condition
because of the destabilizing effect of the load applied above the

shear centre.
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5.2 Results of experimental and finite element analyses

The experimental and predicted buckling loads applied at the
cantilever tip and the test-to-predicted ratio of the cantilever tip
loads of the tests are given in Tables 5.1.a, b and c. The second line in
both the test and predicted load columns (as in test 6) gives the
magnitude of the additional loads, applied between supports. The
loading and restraint diagrams and other data for each test have
been given in Figs. 4.6.a, b and c. The test loads include the dead
weight of 3 kN of each of the loading frames and thus, the ratios of
interior loads to the cantilever load may not coincide exactly with the
nominal ratios shown in those figures (e.g. P/5) which refer to the

applied jack loads only.

Figs. 5.1 and 5.2 show the finite element meshes used to predict
the buckling loads for tests 1 through 32 and 33, respectively. The
mesh was refined in the vicinity of the column support next the
cantilever span where the bending moment is a maximum and
yielding sometimes occurs. A mesh refinement was also required at
the cantilever tip to model cross-sectional distortions when torsional
restraint is involved. The self-weight of the beam was neglected in
the analysis of all tests except for test 32 where it proved to be
significant because of the special boundary conditions involved. The
finite element analyses are based on the ratio of the loads applied on
the cantilever and back spans observed at failure (assuming that this

ratio remained constant up to the occurrence of buckling), the
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measured material properties, residual stresses and cross-sectional

dimensions.
§.3 General observations
5.3.1 Test-to-predicted ratios

A measure of the accuracy of both the experimental work and
the analytical method is afforded by computing the test-to-predicted
ratio for each test and the mean value for all the tests. In such a
comparison, experimental errors contribute to deviations from a
value of 1.0 and increase the variation. The results of tests 6 and 8
were considered unreliable, as discussed subsequently, because
unwanted frictional restraints caused higher energy buckling modes.
These tests were repeated in tests 7 and 28. Excluding tests 6 and 8
(indicated by asterisks in Table 5.1), the mean test/predicted ratio
obtained for the remaining 31 tests is 0.99 with a standard deviation
of 0.063. This mean value, for a wide range of boundary conditions,
indicates that the analytical model has good predictive capacity. The
coefficient of variation of 0.064 related both to experimental errors
and model simplifications is relatively small. For comparison, Yura et
al. (1978) reported a coefficient of variation of 0.11 for the
uncomplicated tests of determining the fully plastic moment capacity
of steel beams. The variation is considered to be due to variations in
residual stress patterns, yield strengths and moduli of elasticity of
the beam from the measured values, experimental errors in load
measurements and unwanted friction in the reactive devices as well

as model simplifications. Mirza and MacGregor (1982) suggested a
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coefficient of variation of 0.040 to account solely for errors in
measurement when assessing the strength of reinforced and
prestressed concrete beams. If this were applied, the resulting

coefficient of variation would reduce to 0.050.

5.3.2 Effects of residual stresses

The residual stress distributions of the W360x39 and W310x39
- cross sections, discussed previously (see Fig. 3.8), are characterized
by significant tensile stresses at the flange-web junctions and
approach zero at the flange tips, ranging from small tensile stresses
for the W360x39 to small compressive stresses for the somewhat
stockier W310x39. A significant portion of both webs is in residual
compression. These findings agree with Bjorhovde (1980), who
expected that the residual stresses of the relatively light beam-type
sections are not as adverse, i.e. not as great in compression at the
flange tips, as those of column shapes, they would be expected
therefore to affect the lateral stability less and in fact, the tensile
- residual stresses proved to be beneficial, as discussed subsequently,

in delaying the onset of loss of stiffness.

Based on the mean level of maximum tensile residual stresses
given in Fig. 3.8 of 198 MPa and 74 MPa for the W360x39 and

W310x39 sections, respectively, tensile yielding of the cross section
would be p;edicted to occur at 0.31 and 0.79My or 0.27 and 0.71Mp ,

respectively, where M, is the yield moment and M, is the plastic

moment. For compressive yielding at the flange tips, the mean level

of compressive residual stresses of -0.02 (tensile) and 0.06F, for the



91

W360x39 and W310x39 sections, respectively, would result in values
of 1.02 and 0.94M, or 0.89 and 0.84M,, at the onset of cross-
sectional yielding or degradation in lateral stiffness. Nethercot (1974)
suggested that lateral-torsional buckling can be classified as inelastic
only when the level of applied bending stresses equals or exceeds
the level required to initiate yielding at the compression flange tips.
Even though significant yielding may already have occurred at the
tension flange-web junction, this has little effect on the effective
moment of inertia about the weak axis. Accepting Nethercot’s
hypothesis, all tests except for tests 5, 14, 15, 19, 21, 27, 28 and 31,

can be classified as elastic.

To investigate the effects of residual stresses on the stability of
steel beams, two finite element model predictions were obtained for
each test, by considering and neglecting the effects of yielding and
residual stresses. These predictions are called inelastic and elastic,
respectively. Tables 5.2.a, b and c give the critical buckling moment,
occurring at the root of the cantilever for the two predictions as a
fraction of the plastic moment and, as well, the ratio of the two
predictions. In the tests performed on the W360x39 cross section,
where the whole flange is under tensile residual stresses with a peak
value at the flange-web junction of 0.69F,, a significant beneficial
effect is evident in the Nethercot “elastic” tests, with the ratio of the
two predictions varying from 1.04 to 1.36. This is because the tensile
residual stresses tend to reduce the compressive stresses of the
compression flange, to increase the geometric stiffness of the flanges

and therefore to delay the onset of lateral instability of the overall
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beam. On the other hand, early yielding at the tension flange-web
junction has comparatively little effect. The tension flange deflects
only slightly during buckling and makes only a small contribution to
the buckling resistance (Trahair 1983b). This phenomenon was also

observed by Kitipornchai and Trahair (1975).

The beneficial effect of residual stresses in the elastic range is
less noticeable for the W310x39 tests than for the W360x39 tests
because the peak tensile residual stress at the flange-web junction of
the W310x39 is only about 0.21Fy and moreover, the compressive
residual stresses at the flange tips, although relatively small, have a
detrimental effect. As can be observed in Tables 5.2.b and c, the
beneficial effect of residual stresses is significantly reduced for tests
23, 24, 25, 26, 29 and 30, even though elastic buckling occurred.
Here, the distortional buckling mode is characterized by a significant
web distortion over a considerable length of the beam near the
interior support location. This in turn results in less participation of
the flange in the overall behaviour and consequently a less

stabilizing effect of residual stresses.

For the inelastic tests, again using Nethercot’s definition, the
beneficial effect of residual stresses is reduced significantly because
of yielding at the compression flange tips. In real cantilever-
suspended span construction, it is expected that the depth/width
ratio for the range of beams used would be larger than 1.8, that is
the beam flanges are relatively narrow. Therefore, the residual stress
patterns (Ballio and Mazzolani 1983) would be similar to those

obtained for the W360x39 and W310x39 cross sections with depth to
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width ratios of 2.76 and 1.88, respectively, for which the residual
stresses are beneficial in the elastic range. With these residual stress
patterns,’ a wide range of beams used in real structures would still
buckle elastically even though the critical buckling moment is just

slightly less than the yield moment.
5.3.3 Double cantilever beams

Tests 32 and 33 (see Fig. 4.6.c) were tested in a double
cantilever configuration to examine the stabilizing effect of a load
applied below the shear centre (test 32) and the effect of span length
(test 33). A single fork support was provided at the common root of
the two cantilevers of unequal span. In test 32, The load at the end
of the long cantilever span was applied 150 mm below the
unrestrained bottom flange to model the loading on a monorail beam.
In test 33, the top flange was laterally restrained at both cantilever
tips. The test/predicted load ratios of 1.02 and 1.05 for the two tests
indicate excellent agreement between test and prediction. An end
view of the buckled cross section at the tip of the long span
cantilever in test 33 is given in Fig. 5.3. This shows that the whole
cross section exhibited a significant twisting about the enforced axis
of twist above the top flange, with little evidence of cross-sectional

distortion.
5.3.4 Buckled shapes

The main characteristics of the buckled shape in a distortional
buckling mode are the different lateral deflections and twists of top

and bottom flanges due to web distortion. The finite element model
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predicts not only the buckling load but also the buckled shape
contained in the eigenvector resulting from the solution of the
-governing equation. Because the analytical model is based on the
bifurcation theory, the governing equation does not give the

magnitude of the displacements but a normalized shape only.

The arrangement of twelve cable transducers installed at three
stations along the test specimen (see Figs. 4.16 and 4.17) enabled the
main features of the buckled shape to be discerned. More
information about the displacements was obtained from the restraint
conditions at the supports. When fork supports are provided, no
lateral displacements or twists occur at these locations. In the case
when lateral bracing of the column is omitted at the cantilever root,
lateral deflections of both flanges were monitored throughout the

test and the twisting angle of the top flange was measured at failure.

The measured lateral displacements and twists of both flanges
as well as the vertical displacements of the top flange, at the
maximum test load level, are given in Figs. 5.4 through 5.8 for tests
3, 4, 7, 27 and 28, respectively. The corresponding buckled shapes, as
predicted by the finite element analyses, are given in Figs. 5.9
through 5.13. These shapes show the normalized lateral
displacements of the top flange, the middle of the web and the
bottom flange. These figures show that the measured and predicted
buckled shapes agrecd favourably, as can be seen for exaxﬁple in Fig.
5.14 for test 3. The only exception is in test 7, where the top flange
within the cantilever span moved slightly while it was predicted not

to move. Distortion of the web can be deduced from the diagrams
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giving the angles of the two flanges in Figs. 5.4 to 5.8. When no
distortion occurs, the twist angles of the top and bottom flanges are
the same at any point along the length of the beam. Web distortions
can also be inferred from the normalized displacements of the
buckled shapes of Figs. 5.9 to 5.13 by noting that uneven spacing
between the lines representing the top flange, neutral axis and

bottom flange lateral displacements.

In tests 3, 7 and 28, no torsional restraint was involved and the
twist angle of the two flanges in Figs. 5.4, 5.6 and 5.8 are about the
same at any point along the beam. In the corresponding Figs. 5.9,

5.11 and 5.13, the three displacement lines are evenly spaced.

In test 4 (see Fig. 4.6.a) lateral and torsional restraints were
provided to the top flange of the cantilever tip. From Fig. 5.5, the top
flange displaced the least laterally and there was a significant
difference in the angle of twist of the two flanges at the flange tips.
This is also evident in the uneven spacing of the lateral displacement

lines of Fig. 5.10.

In test 27 (see Fig. 4.6.c) torsional restraint was applied to the
top flange at all 6 load points and as well to the bottom flange at the
reaction support. Fig. 5.7 shows significant difference in the twist
angles of the flanges and Fig. 5.12 shows uneven spacing of the three

lateral displacement lines.

A plan view of a portion of the longitudinal buckled shape in
test 5 is given in Fig. 5.15. The figure shows the main span with the

fork support close to the cantilever located near the bottom of the
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photograph. The bottom flange, the top surface of which is painted
white, has undergone a much greater lateral deflection than the top
flange, with the maximum rotation occurring near the middle of the

main span, towards the top of the photograph.
5.3.5 Effect of lateral and torsional restraints

In those cases where the only applied load is at the cantilever
tip, and the top flange is laterally restrained at the load point, as in
tests 2 and 16, (see Figs. 4.6.a and 4.6.b) the buckling capacities are
little increased by the lateral restraint as compared to the cases
where the cantilever tip is free as in tests 3 and 17 (Figs. 4.6.a and
4.6.b). The test loads are, respectively, 78.9 and 84.0 for tests 2 and
16 as compared to 77.1 and 77.6 for tests 3 and 17. This is explained
by the different behaviour of cantilever beam with an unrestrained
back span as compared to a cantilever with warping restrained at its
root. In the latter case, the top flange deflects more than the bottom
flange but the opposite is observed, as seen in the buckled shape of
test 3 in Fig. 5.4 for an overhanging beam, where the bottom flange
has the greater lateral deflection at the cantilever tip. Thus, when
only the top flange is restrained laterally, little benefit is gained. The
situation is changed when the back span is restrained laterally at

locations of interior loads.

Test 7 was conducted with five loads, each about one-fifth of the
cantilever load, applied on the back span. This loading configuration
models the limit of the unbalanced condition in which the suspended

span is loaded to the full intensity of a uniformly distributed load
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and the main span is loaded to one half the intensity. However, no
lateral support was provided at any of the load points with lateral
restraint occurring solely from the fork supports. A shorter length of
the bottom flange is in compression in test 7 as compared to test 3,
where the entire bottom flange in compression. Unlike test 3, the
buckled shape of test 7 (Fig. 5.6) showed little bottom flange
movement while the top flange displayed significant lateral
displacements at the interior load points, where it is in compression.
Notwithstanding this, the predicted buckling load for test 3 of 78.4
kN is greater than that for test 7 of 65.6 kN.

The addition of lateral restraint, 205 mm above the top flange,
at all load points in test 28 (Fig. 4.6.c), increased the predicted
buckling strength from 65.6 kN for test 7 to 136.7 kN and greatly
altered the buckled shape, as seen by comparing Figs. 5.6 and 5.8.
This is attributed to the enhancement of strength of the back span by
reason of the fact that most of the top flange within the back span is
under compression and laterally restrained. Test 21, carryed out on a

W310x39, gave similar performance and behaviour to test 28.

Now consider tests 3, 7 and 9, all unrestrained except for the
fork supports provided at support locations. The cantilever tip loads
in tests 3 and 7 were applied at the same height of 40 mm above .the
top flange, while in test 9 the height was 95 mm. All of the bottom
flange of the back span in test 3 is in compression while in test 7
only about 0.29 of the bottom flange of the back span is in
compression. However, the predicted buckling load in terms of the

cantilever tip load reduced from 78.4 kN to 65.6 kN because of the
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destabilizing effect of the loads acting on top flange of the back span
in test 7. In test 9, the predicted buckling load was further reduced
to 36.6 kN because both the cantilever tip load and the interior load
were applied higher above the shear centre and also because of the
‘shape of bending moment diagram is more critical than in test 7 with

the compression flange in the back span more heavily stressed.

Compare tests 4 and 14, both laterally and torsionally restrained
at the cantilever tip but with lateral restraint also provided to the
top flange at the middle of the back span in test 14. The significant
increase in the predicted buckling load of test 14 to that of 4 (137.1
kN versus 112.6 kN), is due to the change in the shape of the bending

moment diagram and the additional lateral restraint provided.

In spite of the beneficial effects of the lateral restraints and the
shape of bending moment diagram in tests 24 and 26 on W360x39
and W310x39, respectively, as compared to tests 23 and 25
respectively, the predicted buckling strength actually reduced to
439 kN from 49.8 kN and to 45.4 kN from 54.1 kN because the back

span loads were applied higher above the top flange.

In tests 9 through 15, loads were applied at the cantilever tip
and at mid-point of the back span of a W360x39, using various ratios
of the two loads and various restraint conditions. Although the height
of the cantilever tip load and the bending moment diagram are more
severe in test 10 than in test 9, both tending to decrease the failure
load, the test and predicted loads actually increased because of the

lateral restraint provided at the mid-point load in test 10. The
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increase in the cantilever test loads was from 35.5 to 41.1 kN and in
the predicted loads from 36.6 to 40.8 kN. Test 13 showed a slight
increase in predicted strength from 50.4 kN to 52.9 kN compared to
test 12, other things being equal, because of the added torsional

restraint at mid-span in test 13.

One method to investigate the behaviour of an overhanging
beam (Essa and Kennedy 1992) is to consider it as an interaction
buckling problem between the cantilever and back spans, both free
to warp at the common end. Considering ali the tests with fork
supports at column locations, the cantilever span is the critical span
while the back span is the restraining one. Restraining the critical
cantilever span is, in fact, more effective in enhancing the overall
buckling strength than providing restraint to the restraining back
span as is evident from an examination of tests 13 and 14. In these
tests, loads were applied at the cantilever tip and at the mid-point of
the back span. Even though the back span loading condition of test
13 is considered to be less severe than that of test 14 with a shorter
length of unsupported compression flange, providing lateral and
torsional restraints of top flange at the cantilever tip in test 14 is
much more effective in increasing the buckling strength than
providing the same restraint to the top flange of the back span as in
test 13. The predicted buckling loads are 137.1 kN and 52.9 kN with

the test loads in about the same proportion.

Consider tests 16, 17, 18 and 22 as a set with a load applied only
at the cantilever tip of a W310x39. The tests, in order of increasing

restraint at the point of load application are: 17, no restraint, 16,
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lateral restraint only, 18, torsional restraint only and 22, lateral and
torsional restraints. Both the test and predicted loads show an
orderly increase in loads through this progression: 77.6, 84.0, 118.9
and 133.3 kN for the test loads and 78.0, 83.9, 111.5 and 129.6 for
the predicted or theoretical loads. Test 18 was the only test in which
torsional restraint alone was provided without lateral restraint of the
top flange and resulted in a greater strength, in this case, than in test
16 which was provided only with lateral restraint. When both lateral
and torsional restraints were provided as in test 22, there was a
slight improvement in the strength as compared with providing
torsional restraint only. This sequence of tests therefore clearly
demonstrates theoretically and experimentally that torsional
restraint is much more effective than lateral restraint in enhancing

the strength of the beam.
5.3.6 Web distortion and effect of stiffeners

The buckling modes observed in these tests were characterized
in general by changes in the cross-sectional shape, arising from web
distortions. The webs of I-shaped beam cross sections are relatively
thin. Web distortion permits the flanges at a cross section to undergo
different angles of twist about the longitudinal axis. This greater
flexibility tends to reduce the buckling strength of the beam as
compared to that if the web remains rigid. Test observations show
that web distortion is noticeable and critical where: 1) lateral bracing
at column locations is omitted, 2) torsional restraint is provided to
one flange only and 3) load is applied relatively high above the top

flange.
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When lateral bracing at a column is omitted, it is normal practice
to provide torsional restraint to the bottom flange by means of a
rigid connection between the beam and the column. Under practical
loading conditions, as in test 26, the bottom flange is in considerable
compression at the column location. Lateral restraint is provided by
the open-web steel joists to the top flange at the cantilever tip as
well as at the back span loading points, and because of the lateral
stiffness of the top flange to some extent, to the top flange at the
column location. Under such conditions, for the bottom flange to
deflect laterally at column location, significant web distortion must
occur. Fig. 5.16 illustrates the web distortion, observed in test 26, at
the main column and at the cantilever tip. Web distortion can be
reduced at column supports by providing either lateral bracing or
web stiffeners at the supports. The latter are effective only when
they are connected to the beam flanges and there is a moment

connection between the column and the beam.

The increase in the buckling strength due to torsional restraint
applied to the tension flange is reduced due to web distortions. In
cantilever-suspended span construction, lateral and torsional
restraints are provided at discrete locations by means of the open-
web steel joists attached to the top flange. Under practical loading
conditions, web distortion becomes noticeable within the cantilever
span where the top flange is in tension. In Fig. 5.17 for test 4, the top
flange at the cantilever tip has not twisted because of the torsional
restraint, while the 'twisting of the bottom flange has resulted in

significant web distortion. Although, because of the introduction of
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lateral and torsional restraints in test 4, the test buckling load of that
test (104.9 kN) showed a significant increase as compared to the
unrestrained case of test 3 (77.1 kN), the beneficial effect of the

torsional restraint is not obtained in full because of web distortion.

Web stiffeners can be used to minimize the distortion occurring
in the web and further enhance the buckling capacity. In tests 5 and
19, a web stiffener was used at the load point which was also
laterally and torsionally restrained at the top flange. A significant
improvement in the test buckling loads was obtained in test 5 (125.8
kN) as compared to test 4 (104.9 kN) on the W360x39 and in test 19
(152.6 kN) as compared to test 22 (133.3 kN) on the W310x39. These
four tests indicate, based on the relative values of buckling loads,
that the reduction of buckling capacity due to web distortion

increases with the depth of the cross section.

The elevated point of application of the cantilever load in tests
11 through 13 showed a destabilizing effect which tended to increase
twisting in the top flange and induce a noticeable distortion in the
web. In test 11, the cantilever tip load was applied 275 mm above
the top flange. A view of the cross-sectional deformations is given in
Fig. 5.18, where the top flange has undergone a much greater twist
than the bottom flange and the web is significantly distorted.
Another example of significant web distortion at the cantilever tip is
seen in Fig. 5.19 for test 20, which was conducted using a W310x39
cross section with the load was applied at 200 mm above the top

flange.
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5.3.7 Effect of lack of lateral restraint at column locations

When lateral restraint is omitted at a column location and only
torsional restraint is provided to the bottom flange through a rigid
moment connection, the web is forced into a distortional buckling
mode. This situation was simulated at the main support in tests 23
through 27 and 29 through 31. In test 23, a W360x39 beam was
loaded and laterally restrained at the cantilever tip. A test load of
45.9 kN was obtained as compércd to 78.9 kN in test 2 in which fork
supports (top and bottom bracing) were provided at both columns.
These results clearly indicate that torsional restraint alone at the
column as may be supplied by a rigid connection between the beam
and the column does not compensate for the omission of bracing or

alternatively of web stiffeners.

In test 24 on a W360x39, lateral restraint was provided at all
six load points and the bottom flange of the beam was provided with
torsional restraint at the main support but was free to translate
there. The test load at the cantilever tip was only 40.7 kN as
compared to 128.8 kN obtained in test 28, in which lateral bracing
was supplied at the column but was otherwise identical. A
comparison of parallel tests 23 and 2 on a W360x39 with lateral
restraint at the cantilever tip where the only load was applied but
with only torsional restraint at the column in test 23 and forked

supports in test 2 give test loads of 45.9 kN and 78.9 kN,

respectively.
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The same phenomenon was demonstrated in the companion
tests on W310x39 beams, test 26 similar to test 24 with torsional
restraint at the column only had a test load of 46.7 kN while test 21
with forked sﬁpports has a test load of 154.5 kN. In the W310x39
beams with loads at the cantilever tip only (tests 25 and 16), the
respective loads are 55.9 kN and 84.0 kN.

Three conclusions can be drawn from these comparisons. First as
stated previously, torsional restraint of the bottom flange at a
column is not nearly as effective as lateral restraint to both flanges.
Second, the reduction in buckling load for such restraint conditions is
greater when loads are applied to the back span as well as the
cantilever tip because of the destabilizing effect of the back span
loads applied above the top flange (the relative load ratios are
40.7/128.8 = 0.32 and 45.9/78.9 = 0.58 for the W360x39 and
46.7/154.5 = 0.30 and 55.9/84.0 = 0.65 for the W310x39). Third, the
reduction of buckling capacity due to web distortion, as discussed in
section 5.3.6, increases with the depth of the cross section. For tests
with a cantilever tip load only, test 23, on a W360x39, with torsional
restraint only at the column support has only 0.58 of the strength of
test 2 with fork supports while for the parallel tests (tests 25 and
16) on a W310x39, the ratio is 0.67.

Providing torsional restraint to the top flange in addition to
lateral restraint has a significant effect in enhancing the buckling
strength of the beam. Essentially identical tests 27 and 31 with

lateral and torsional restraints at all load points have a test load of
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about 128 kN at the cantilever tip while test 26 with only lateral
restraint at load points but otherwise identical reached a failure load
of only 46.7 kN, only 37% of the former. Again, the only difference
between tests 24 and 29 is that test 29 had lateral and torsional
restraints at the cantilever tip while 24 had lateral restraint only. At
all other load points only lateral restraint was provided. Test 24 had
a failure load of 40.7 kN, only 53% of the 76.3 kN of test 29. Torsional
restraint mobilizes the distortional strength of the web whenever it

is provided and thus enhances the resistance of the beam.

The distortional buckling mode at the cantilever tip in test 31 is
seen in Fig. 5.20. The top flange, restrained intentionally by the
loading system, has remained horizontal while the bottom flange has
rotated and translated laterally, with considerable distortion in the
web. When joist shoes are properly welded to the top flange of the
beam, the joists provide torsional restraint to the beam flange and
enhance the stability of the beam. While in the tests, essentially
complete torsional restraint was obtained, the actual degree of fixity

in practice is proportional to the flexural stiffness of the joists.
5.3.8 Effect of shape of bending moment diagram

To investigate the effect of the shape of the bending moment
diagram on the critical buckling resistance, the finite element
predictions were made for the several restraint and loading
conditions given in Fig. 5.21, for a W360x39 beam. Fig. 5.21a shows
two different restraint conditions: condition A with only fork

supports at the column locations and condition B with fork support at
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the right end, complete torsional restraint only applied to the bottom
flange at the intermediate support location and complete lateral and
torsional restraints applied to the top flange at the cantilever tip. As
indicated in Fig. 5.21b, four different loading configurations are
considered with all the loads being applied at either the shear centre
or the top flange. The corresponding bending moment diagrams are

“also given in Fig. 5.21b.

Finite element predictions were obtained for each loading and
restraint condition with the residual stresses being either neglected
or considered. The predicted ratios of M¢/M, are given in Table 5.3.
For the cases of shear centre loading, the results of both restraint
conditions indicate that the shape of bending moment diagram has
an orderly effect on the buckling resistance increasing in the
following order: case IV, where the maximum moment occurs at the
centre of the back span, case III, where the maximum moment
occurs at the interior support, case II, where positive moment with a
maximum value of 0.4M covers a significant length of the back span,
and case I, where most of the back span is under a positive moment
with a maximum value of 0.25M. When all the loads are applied at
the top flange the same order of severity of bending moment
~diagrams persists except that cases II and III are switched because
the destabilizing effect of the loads applied to the back span is more
pronounced than the effect of the shape of bending moment diagram.
Again, the beneficial effect of residual stresses in restraint condition

B is less noticeable than in restraint condition A. This is attributed to
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the web distortion which reduces the flange participation in the

overall behaviour of the beam.
5.3.9 Load-strain behaviour and strain distributions

The measured flange strains reflect the effects of bending about
both the strong and weak axes and of warping associated with the
deformations due to lateral-torsional buckling. The measured vertical
web strains reflect the effects of bending due to web distortion as
well as the effects of vertical loads. To investigate all of these effects,
four strain gauges were mounted longitudinally on each flange at
every strain gauge station and, as well, a strain gauge was mounted
vertically on each side of the web at the cantilever tip, as shown and

identified in Fig. 4.19.

In Figs. 5.22, 5.23 and 5.24, for test 4 are plotted the test load
versus flange strains of the outer (3 and 6) and inner (4 and 5) strain
gauge pairs on the bottom flange and of outer pair of gauges (7 and
10) on the top flange, respectively, of the station located at 843 mm
from the cantilever tip, about half way between the cantilever tip
load and the main support. The general behaviour of these curves is
the same. At relatively small loads, strains due to the strong axis
bending domirate. The inner and outer bottom flange strains
increase linearly with load and are about the same in compression
and of opposite sign to the top flange strains in tension. As the beam
begins to buckle laterally, the strains on the same flange but on
opposite sides of the webs begin to diverge as lateral bending and

warping take place. Readings of the two strain gauges mounted on
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the same side of the bottom flange, gauges 6 and 5, tend to develop
tensile strains. In all cases, the load versus strain relationship
reaches a horizontal asymptote at the maximum load, indicating that
buckling is imminent. Strain gauge 6 on the bottom flange and strain
gauge 10 on the top flange are on the same side of the web. As
buckling was approached, both showed tensile straining, indicating
~that the lateral bending effect, in this case, was more pronounced

than warping.

The load versus mid-height web strains obtained from gauges 1
and 2 in the vertical direction, 233 mm from the cantilever tip and
therefore directly under the load point, for test 4 are given in Fig.
5.25. The diverging strain readings with one gauge in tension and the
other in compression indicates that out of plane bending of the web

or web distortion begins almost immediately on loading.

Fig. 5.26 shows the distributions of normal strains due to major
axis bending, minor axis bending and warping of a cross section
located at 4267 mm from the end support (gauges 38 through 45) for
test 3 at the buckling load. As indicated in this figure, the strains due
to lateral bending exceed that due to major axis bending. The total
strain distribution in bottom flange was obtained using the best-fit
line of the strain readings of the gauges mounted on bottom flange.
For the top flange, the slope of the best-fit line for the strain
readings as well as the strain determined at the bottom flange-web
junction (448 pe) were used to be consistent. Knowing the general
shape of the strain distributions for lateral bending, warping and

major axis bending, the strain values of these distributions at the
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flange tips could be determined from the total strain distribution. As
a check, the maximum major axis bending strain was computed
based on the buckling load, the self-weight, cross-sectional
dimensions and material properties, and a value of 444 ueg was

obtained as compared to 448 pe given by the strain distributions.

Figs. 5.27 and 5.28 show the cantilever tip load versus the
strains of the outer pair of gauges mounted on the bottom and top
flanges (gauges 38 and 41 and 42 and 45, respectively, as shown) for
test 21 at a station located about 1/2 way along the back span. The
strains all increase at zero load when the self-weight of the inner
frames is applied at the five interior load points. The figures show
that the warping had more effect than lateral bending from the
beginning until buckling load was approached. At any intermediate
load level, the tensile straining of gauge 38 on the bottom flange
increases more rapidly than that of gauge 41 on the opposite side of
the web while the compression straining of gauge 42 on the top
flange and on the side of the web as 38 increases more rapidly than
that of gauge 45 on the opposite side of the web. This is consistent
with warping. At the buckling load, the lateral bending effects
dominated and significant tensile strain increments occurred on the

side of gauges 38 and 42.
5.3.10 Load-deflection behaviour

By monitoring the load-deflection behaviour during the test,
deformation control could be invoked as the buckling load was

approached. Buckling was considered to occur when the load-
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- deflection curve reached a horizontal asymptote. In those tests
where the beam behaved elastically and was intended to be used
again, the beam was unloaded shortly after the buckling was
observed in order to eliminate or minimize any permanent
deformations which would magnify initial imperfections. For inelastic
tests, on the other hand, the investigation of the post buckling
behaviour was only restricted by the deformation limit of the loading

or reaction devices such as rockers or knife-edges.

The load-lateral deflection curve for both the loading and
unloading stages of the bottom flange about 1/3 of the back span
from the main support for test 17 is shown in Fig. 5.29. The lateral
deflection increases first slowly and then more rapidly as the
ultimate load is approached. The deformations before buckling were
relatively small, as would be expected from the small measured
initial geometrical imperfections. The unloading curve shows a
nonlinear behaviour which is almost identical to the loading curve
and resulted, at zero load, in a negligible permanent deformation.
Thus, the specimen, which unloaded in a nonlinear elastic manner,

could be used in another test.

The load-lateral deflection curves for tests 5 and 19 in Figs. 5.30
and 5.31, are examples of tests that showed a significant inelastic
behaviour. These curves are plotted for the same location as test 17,
i.e. about 1/3 of the back span from the main support. In test 5, a
relatively little lateral deflection was observed up to the ultimate
load where the load decreased with increasing deformations. When

the load was removed, the lateral deformations decreased rapidly
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but a significant amount of permanent lateral deformation of about
70 mm remained at this location. Comparing Fig. 5.31 for test 19 with
Fig. 5.30 for test 5, it is seen that the effect of initial imperfections is
more pronounced in the early stage of loading in test 19 than in test
5. This is attributed to the fact that the specimen used in test 19,
beam 3V, had already been used in three previous tests and
although care was exercised to minimize any inelastic action in these
tests, they probably contributed to an increase of initial
imperfections. The specimen in test 5, beam 3C, was used only in that
test. Notwithstanding this, the test/predicted ratio in test 19 was still
0.95. In test 19, the post buckling behaviour was characterized by
the development of large deformations accompanied by a slight drop
in the loading capacity. The beam was only deflected laterally about
65 mm as compared to 200 mm in test 5 and upon unloading, most

of the lateral deflection was recovered.

Fig. 5.32 shows an example of the load-vertical deflection curve
for the cantilever tip of test 5. As would be expected, the vertical
deflection, including the effect of shear deflection, is in a good
agreement with the calculated values based on the linear elastic
theory. Beyond a load of 40 kN where yielding commenced at the
tension flange-web junction due to the presence of residual stresses,

the vertical deflections increase more rapidly than the elastic theory

predicts.
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§.3.11 Experimental errors

In full-scale distortional buckling tests of steel beams, several
- factors may contribute to experimental errors. For these tests, the
factors include: (i) errors in calibration of load cells, (ii) incorrect
measurements of the geometry of both the cross section and the
overall specimen, (iii) incorrect assessment of the material properties
of the specimen, (iv) unintentional eccentricity in loading, (v)
reaction and load devices that either do not function properly over
the entire test loading range or introduce unwanted restraint or
friction and (vi) reaction devices that do not provide the restraint

anticipated.

To minimize errors in the calibration of load cells, all load cells
were calibrated and, by measuring each and every reaction and load
point, statics provides an overall check on the calibration. In an
initial test this check revealed an error in the calibration of a load
cell which otherwise would have resulted in a greater scatter of the
test/predicted ratio. Furthermore, as the reactions were measured
directly beneath the beams and the loads were measured only at the
jacks, any frictional losses in the loading apparatus as the inner

loading frame rolls inside the outer loading frame is at once detected.

Errors due to the second two factors listed are minimized or
eliminated by taking sufficient measurements to have samples of
sufficient statistical size. The measures taken to eliminate errors in
factors (ii) and (iii), as related to the beams themselves, are more

fully discussed in Chapter 3. The cross-sectional properties of each
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beam were determined, as discussed, by taking measurements of the
depth, flange width and thickness and web thickness. Initial sweep
and camber were also determined. The overall geometry of each test
setup was checked to eliminate blunders. Special attention was paid
to the determination of the height at which loads were applied as
this is a critical parameter in determining the buckling loads. The
material properties of the various cross sections tested were
established as given in Chapter 3, using redundant measurements. As
in the case of residual stress measurements, the equations of statics

can be used to detect errors.

Errors in factors (i), (ii) and (iii) are as likely to have a positive
effect as a negative effect and are minimized by careful
measurement using statistically significant samples. Unintentional
load eccentricities will reduce the buckling strength and again can

only be minimized by careful experimentation.

Reaction or load devices that do not function properly for the
full range of the test by introducing unwanted restraints or friction
increase the test load. Elimination of these unwanted restraints is the
most difficult challenge for the experimentalist and requires
increased vigilance. Discussion of some of the difficulties encountered

and steps taken to overcome them follow.

Test 1 was performed under the same loading and restraint
conditions of test 2 except that the cantilever tip load was applied 95
mm above the top flange in test 1 and only 40 mm above in test 2.

Test 1, was therefore predicted to have a lesser capacity but actually
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carried a slightly greater load than in test 2. This is attributed to the
use of a longitudinal knife-edge at the cantilever tip, which was
intended to provide the freedom of rotation about the longitudinal
axis but developed a small torsional restraint due to friction. Fig. 5.33
shows the relationship between the load and the lateral displacement
of the bottom flange at the cantilever tip for tests 1 and 2. Because
the top flange was laterally restrained, the lateral displacement of
‘the bottom flange is an indirect measure of the cross-sectional
twisting at the cantilever tip. In test 1, very little twist occurred
before the maximum load was reached when the bottom flange
abruptly deflected about 45 mm as the load decreased from 84.4 kN
to 75.1 kN. This indicates that the torsional restraint developed due
to friction in the knife-edge was overcome and the load decreased to
about the buckling load consistent with rotational freedom. Taking
this second load as the true value gives a test/predicted ratio for test
1 of 1.05. On the other hand, test 2 displayed a completely different
behaviour. The displacement increased considerably more as the load
approached the buckling value. This indicates that even though the
same type of longitudinal knife-edge was used in both tests, only
that in test 2 functioned properly. It is essential that knife-edges be
examined carefully to ensure that no burrs or scratches exist that
will restrain movement even minutely and that movement is not
restrained by the geometry of the knife-edge and its matching

groove.

This problem was encountered again in test 8, when the same

longitudinal knife-edge as used in test 1 was apparently
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inadvertently used again at the cantilever tip. This test was repeated
as test 28 where the longitudinal knife-edge at the cantilever tip was
replaced by a semi-cylindrical rocker and resulted in a test/
predicted ratio of 0.94 instead of 1.33. Fig. 5.33 shows the cantilever
tip load versus the lateral deflection of bottom flange at the
cantilever tip for tests 8 and 28. In test 8, the lateral deflection was
about 5 mm at the buckling load, while in test 28 it exceeded 40 mm.
Thus, the specimen in test 8 rotated less than one degree about the
longitudinal axis at the cantilever tip as compared to about 6 degrees
in test 28. Furthermore in test 8, the fact that the initial tendency of
the specimen to deflect laterally to the left was reversed indicates
that torsional restraint was active. The test/predicted ratios of 0.94
in test 28, which is one of the lower values in all the tests in this
series, is likely partly attributable to an unintentional eccentricity.
Fig. 5.34 shows that on the first increment of load, the bottom flange
lurched almost 2 mm sideways. This has the opposite effect of

unwanted restraints and tends to reduce the buckling load.

Once again improper functioning of the longitudinal knife-edge
was discovered in test 17, but here when the applied load exceeded
the anticipated buckling capacity and the beam showed no sign of
buckling, the load was removed and the test was repeated with a
semi-cylindrical rocker replacing the longitudinal knife-edge. Fig.
5.35 shows the results of the two loadings of test 17. The excellent
results of the second loading are indicated by a test/predicted ratio
of 0.99 (Table 5.1.b) and as well the lateral deflection at buckling

increased asymptotically. The major difference in behaviour between
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the first and second loadings is that lateral displacement of the
bottom flange did not occur in the first loading. Because buckling was
not observed in the first loading, the result is not reported in Table

5.1.

In test 6, arrays of 13 mm diameter ball bearings were used at
the interior load points in an attempt to provide lateral, longitudinal
and rotational freedom about the vertical axis. Fig. 5.36 shows the
load versus lateral displacement of the top flange near the middle of
the back span for tests 6 and 7. For test 6, almost no displacement
’was observed up to the maximum load when a small lateral
disturbing force estimated at 0.6 kN was applied by hand to the top
flange near the middle of the interior span. The load then suddenly
dropped from 94.5 kN to about 71 kN when a- significant lateral
| displacement and twist was observed. This indicates that a relatively
small amount of friction between the ball bearings and the bearing
plates was enough to restrain the top flange laterally, forcing the
beam into a higher energy buckling mode. Test 7 was a duplicate of
test 6 with the same loading and restraint conditions. However, in
test 7 a small lateral disturbing force of about 0.6 kN was applied
after every load step to overcome friction. Buckling occurred with
considerable lateral deflection of the top flange, as indicated by the
load-deflection curve of Fig. 5.36 and in Fig. 5.6. The test/predicted
ratio decreased from 1.47 in test 6 to 1.16 in test 7. It is apparent,
however, that the lateral disturbing force of 0.6 kN was not enough
to eliminate the effect of friction completely, as the test/predicted

ratio of 1.16 in test 7 is still too high. The ball bearings were not used
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subsequently. A corollary to the fact that a small amount of
unwanted lateral restraint increases the test buckling load
substantially means that in practice a small amount of unaccounted
for lateral restraint may improve the load ’carrying capacity of a

structural member considerably.

Test 11 was a duplicate of test 10 because an unintentional
eccentricity of about 2 mm of the cantilever tip load was observed
after buckling occurred in test 10. The buckling load in test 11 was

44.1 kN compared to 41.1 kN in test 10.

Another source of errors in the test series is the incomplete
torsional restraint at column location where lateral restraint is not
provided. In tests 23 and 24, it was attempted to provide torsional
restraint to the bottom flange, while allowing lateral translation to
take place, as shown in Fig. 4.15, by sitting the beam on a relatively
wide plate supported by two load cells to provide a stable base with
the entire assembly free to move laterally on a nest of rollers. For
this system to be effective in providing torsional restraint, the beam
flange must not lift off the supporting plate. The narrow flange width
of 127 mm of the W360x39 was insufficient to completely prevent
the rotation about the longitudinal axis and a slight separation
between the edge of the flange and the supporting assembly was
observed at failure in these two tests. This explains the relatively

low test/predicted ratio obtained in tests 23 and 24 of 0.92 and 0.93,

respectively.
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Test number Buckling loads Test/Predicted
Test Predicted
(kN) (kN)
1 75.1 71.7 1.05
2 78.9 79.0 1.00
3 71.1 78.4 0.98
4 104.9 112.6 0.93
5 125.8 136.6 0.92
6 94.5 64.5 1.47*
214 14.6
7 76.1 65.6 1.16
17.1 14.7
8 164.9 124.1 1.33*
359 27.0
9 355 36.6 0.97
35.0 36.1
10 41.1 40.8 1.01
22.5 223
11 44.1 40.3 1.09
23.8 - 21.7
12 46.4 50.4 0.92
247 26.8

Table 5.1.a Test and predicted buckling loads for tests 1 through 12



Test number Buckling loads Test/Predicted
Test Predicted

(kN) (kN)

13 48.2 52.9 0.91
25.9 284

14 1324 137.1 0.97
46.8 48.5

15 136.8 143.0 0.96
48.5 50.7

16 84.0 83.9 1.00

17 77.6 78.0 0.99

18 118.9 111.5 1.07

19 152.6 160.7 0.95

20 52.7 50.6 1.04
279 26.8

21 154.5 1554 0.99
33.1 33.3

22 133.3 129.6 1.03

23 45.9 49.8 0.92

24 40.7 43.9 0.93
9.6 104

Table 5.1.b Test and predicted buckling loads for tests 13 through 24

119
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Test number Buckling loads Test/Predicted
Test Predicted
(kN) (kN)
25 55.9 54.1 1.03
26 46.7 45.4 1.03
11.2 10.9
27 127.5 142.8 0.89
26.7 29.9
28 128.8 136.7 0.94
28.2 29.9
29 76.3 72.4 1.05
17.5 16.6
30 , 422 43.0 0.98
10.7 10.9
31 127.8 143.9 0.89
27.2 30.6
32 72.3 70.9 1.02
33 73.4 70.0 1.05
pn=0.99
¢ = 0.063
V =0.064

Table 5.1.c Test and predicted buckling loads for tests 25 through 33
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Test ~ Beam Range Predicted Mq/M, Ratio M/M,,
number depth

Residual stresses )
o, considered

Neglected Considered o, neglected
1 353 elastic 0.362 0.468 1.226
2 353  elastic 0.388 0.516 1.248
3 353  elastic 0.387 0.512 1.244
4 353  elastic 0.614 0.735 1.165
5 353 inelastic 0.852 0.892 1.045
6 353  elastic 0.325 0.421 1.228
7 353  elastic 0.328 0.428 1.234
8 353  elastic 0.628 0.810 1.225
9 353  elastic 0.184 0.239 1.230
10 353 elastic 0.218 0.267 1.184
11 353 elastic 0.217 0.263 1.175
12 353  elastic 0.265 0.329 1.195

Table 5.2.a Theoretical predictions demonstrating the beneficial effects of
residual stresses on tests 1 through 12
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Test Beam Range Predicted Mo/M, Ratio Mg /M,
number depth

Residual stresses )
o, considered

Neglected Considered o, neglected

13 353  elastic 0.286 0.346 1.173
14 353 inelastic 0.779 0.894 1.129
15 353 inelastic 0.838 0.934 1.103
16 310 elastic  0.450 0.493 1.087
17 310 elasic  0.407 0.458 1.111
18 310 elastic 0.629 0.655 1.040
19 310 inelastic 1.126 0.944 0.838
20 310 elastic 0.272 0.297 1.084
21 310 inelastic 0.909 0.913 1.004
22 310 elastic 0.702 0.761 1.078
23 353  elastic 0.308 0.325 1.052
24 353  elasic 0.272 0.287 1.052

Table 5.2.b Theoretical predictions demonstrating the beneficial effects of
residual stresses on tests 13 through 24
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Test ~ Beam Range Predicted Mq/M, Ratio M,/M,
number depth

esidual stre i
Residual stresses o, considered

Neglected Considered o, neglected

25 310  elastic 0.307 0.318 1.035
26 310 elastic  0.261 0.267 1.022
27 310 inelastic 0.842 0.839 0.996
28 353 inelastic 0.728 0.893 1.185
29 353  elastic 0.454 0473 1.040
30 353 elastic  0.268 0.281 1.046
31 310 inelastic 1.840 0.845 1.006
32 353  elastic 0.372 0.466 1.202
33 353  elastic  0.296 0.459 1.355

Table 5.2.c Theoretical predictions demonstrating the beneficial effects of
residual stresses on tests 25 through 33
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M, /M,

residual stresses

Restraint Loading  Load position

condition case Neglected Considered

A 1 Shear centre 1.05 1.000
A i Shear centre 0.575 0.731

A 1 Shear centre 0.482 0.599
A AY Shear centre 0.386 0.448
B I Shear centre 0.544 0.578
B I Shear centre 0.535 0.566
B I Shear centre 0.386 0.438
B v Shear centre 0.351 0.397
A 1 Top Flange 0.467 0.641
A I Top flange 0.395 0.513
A Il Top flange 0.415 0.538
A v Top flange 0.232 0.291
B I Top flange 0.425 0.468
B I Top flange 0.364 0.428
B I Top flange 0.385 0.434
B v Top flange 0.220 0.267

Table 5.3 Finite element predictions, effect of shape of bending moment
diagram
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Fig. 5.3 End view of buckled specimen in test 33



127

0 m
100

o Top flange

= Bottom flange

a) Lateral displacements

50mm

0 /—u \

50

b) Vertical displacements of top flange

10

0 S———————

10

o Top flange

@ Bottom flange

c) Twist angles

Fig. 5.4 Buckling displacements of test 3
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Fig. 5.5 Buckling displacements of test 4
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Fig. 5.6 Buckling displacements of test 7
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Fig. 5.7 Buckling displacements of test 27
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Fig. 5.14 Measured and predicted buckled shapes, test 3
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b) Loading conditions

Fig. 5.21 Restraint and loading conditions used to investigate the effect
of bending moment diagrams
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Chapter 6

FINITE ELEMENT ANALYSIS

6.1 General

A significant feature of lateral-torsional buckling of cantilever-
suspended span beams is the possibility of cross-sectional distortion.
Local and lateral buckles combine to produce coupled buckling
modes in which there is simultaneous distortion and deflection of the
cross section. Such instability is called distortional buckling. Johnson
and Will (1974) have suggested the use of two dimensional plate
elements to model both flange and web elements to reflect the cross-
sectional distortion. However, because the flanges of wide flange
beam sections are relatively thick and narrow as compared to the
web, the distortion of the flanges is not as significant as that of the
web, and the model of Johnson and Will may be unnecessarily
complicated introducing more degrees of freedom than really

required and requiring too much computer time.

The finite element model adopted here (Albert et al. 1992)
uses 4-node plate elements for the web and 2-node line elements for
the flanges, as shown in Fig. 6.1. All nodes are located at the
intersection of the middle surfaces of the flanges and web plates. At
each node, there are three degrees of freedom associated with out of
plane displacements : the lateral displacement, w, along the z-axis;
rotation, 6,, about the x-axis; and rotation, By, about the y-axis. The
right-hand rule is used as a sign convention for all rotations. Under a

practical loading condition, three types of in-plane stresses are

155
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induced in the web: oy, oy, and T4y as indicated in Fig. 6.1. This model
has been implemented on a micro-computer to predict lateral-
torsional buckling on the basis of bifurcation theory. It computes the
tangent modulus buckling load based on the extent of yielding just

prior to buckling (Galambos 1968).

The finite element approach presented herein differs from that

adopted by Bradford (1986) in the following three ways:

(1) The solution technique used herein (inverse iteration with shift)
converges faster than the determinant search method wused by

Bradford.

(2) Bradford used the consistent approach in which both the
structural and geometric stiffnesses are based on the same
displacement assumptions (cubic displacement shape functions for
the flanges and the web). The present model uses cubic shape
functions for deriving the structural stiffnesses and lower order
polynomials (linear displacement shape functions for the flanges and
bilinear displacement shape functions for the web) to derive the
geometric stiffnesses. The later approach has been shown to yield
sufficient accuracy (Clough and Felippa 1968) for plate buckling.
Also, it requires less computational effort and simplifies the

formulation.

(3) In order to account for the destabilizing effect of vertical loads,
Bradford assumed that the slope of the line joining the shear centre

and the point of load application is equal to the angle of twist of the
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top flange. This underestimates the destabilizing effect. The

procedure adopted by the present approach is given in section 6.5.2.
6.2 Basic assumptions

The present finite element approach uses the following

assumptions

(1) The material model is elastic-perfectly plastic and strain
hardening is neglected. Strain hardening only occurs where there is
significant yielding in the cross section. In practice, the critical
bending moment is high. Therefore, if there is a significant yielding
at that location, strain hardening is confined to a short length of the
beam and most of the beam remains elastic. The inclusion of strain
hardening may be useful when the bending moment is nearly
constant over a significant length. However, when the case of a
nearly uniform bending moment is the critical loading condition, it is
likely, for the practical range of beam geometries, that the buckling

load will be elastic and therefore strain hardening is not an issue.

(2) The yield stress is assumed to be the same within the whole cross
section and is taken as that of the flanges. Normally, the yield stress
of the web is higher than that of the flanges. However, since the
effect of web yielding on the loss of lateral stability (governed
mostly by Iy) is small in most cases, it is adequate to adopt a uniform

yield stress over the cross section.
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(3) Because the contribution of the fillets to the lateral stability is
small, it is reasonable to exclude the fillets from the geometry of the

cross section.

(4) It is assumed that no distortion occurs in the flanges. This is
justified because the flanges are relatively thick and, therefore, the
distortion of the flanges is not as significant as that of the web. This
assumption has been adopted by Bradford (1986), Bradford and
Trahair (1981, 1982) and Akay et al. (1977). For this reason, local
buckling cannot be predicted using the present model, and must be

computed independently.

(5) The problem of lateral-torsional buckling is treatved as a
bifurcation problem, neglecting the effect of initial imperfections. As
given by Galambos (1963), small initial imperfections do not affect

the buckling strength.

(6) Shifting of the shear centre due to different yielding patterns of
the top and bottom flanges is neglected. The significance of this
assumption is related to the fact that the shear centre is the centre of
rotation of the cross section. With a beneficial residual stress
distribution, characterized by predominantly tensile stresses in the
flanges, the tension flange yields before the compression flange. In
positive sagging moment regions, the shear centre shifts upwards (i.e
towards the compression flange), and tends to decrease the
destabilizing effect of the loads applied above the shear centre. In
cantilever-suspended span construction, yielding likely starts in the

negative moment region of the beam above the column support. The
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effect of shifting of the shear centre downward towards the reaction
is again favourable, but becomes insignificant when cross-sectional

twisting is prevented at that location.
6.3 Material properties

Because the finite element model deals with inelastic lateral-
torsional buckling, in which the effects of both yielding and residual
stresses are considered, material properties such as the stress-strain
relationship and residual stress distribution, substantially affect the

critical loads.

The elastic-perfectly plastic stress-strain relationship, given in
Fig. 6.2, was used for the analysis. The effect of strain hardening was

neglected as discussed previously.

The shear modulus, G, is assumed to be equal to the elastic
shear modulus in both the elastic and inelastic ranges. As given by
Horne and Ajmani (1973), the retention of an elastic value for G is
justified by two considerations. First, the shear stress is usually small
when inelastic action starts. Secondly, since the beam is torsionally
flexible, large shear stresses cannot be induced in the practical range
of deformations. The relationship between the shear modulus and

the modulus of elasticity is given as

E
2(1+v)

[6.1] G=

where v is Poisson's ratio which is taken as 0.3 for steel.



162

points across the flange width and two integration points over the
length of the element. Because the modulus of rigidity, G, is assumed
to be the same in both the elastic and inelastic ranges, the torsional
rigidity, GJs, at any flange cross section is not affected by yielding

and given as
[6.8] GI(t) =b t3 G/3

Where b is the flange width and t is the flange thickness. Using
Castigliano's first theorem, the strain energy expression in [6.6] and
numerical integration, the structural stiffness of a flange element is

obtained as shown in Fig. 6.4.
6.4.2 Web

The web is modelled using nonconforming rectangular four
node plate bending elements. Unlike the model adopted by Akay et
al. (1977), the plate element used here has only one division over the
depth of the web. With this modelling, the effect of two dimensional
state of stress in the web is included and the vertical stresses, oy,
which may give rise to local buckling of the web and contribute to

the occurrence of lateral buckling are considered.

As shown in Fig. 6.5 there are twelve degrees of freedom per

plate element. Thus the nodal displacement vector is defined as

[6.9] {r}t=1[I[n] [5] [l [nl]
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in which [ri]=[ wi 6y;i @yi] and [rj], [Tk] and [T1] are defined
similarly. However, from plate theory, Equation [6.9] can be

rewritten as

[610]  {rit=[[R] [R] [Rd [Ri]]

in which

6111  Ri=[w; - -
ady ox

and [Rj], [Rk] and [R]] are defined similarly.

The two dimensional cubic shape function for the lateral

displacement, w, (Zienkiewicz 1977) can be written as

[6.12] (0] =[[nj] [m] [ng] [m] ]
in which
[6.13] Mil=[(Eo+ 1Mo+ 1IN2+E +mo-E2-12)/8

bni(&o + (Mo + DA(no - 18 - a&i( &o + 1)2(&o- 1)(Mo + 1)/8 ]

where £ = (x - xc)/a; ,n = (y - yc)/b1, €0 =E Ej and no =1 nj . The
shape functions [nj], [nk] and [n] are defined similarly. It is now
possible to write the expression for the out of plane displacement, w,

within the element as

[6.14] w(§ ,n) = [n] {r}
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From elastic plate theory, applying equilibrium gives (Brown

1984)

2

ow

2

&

Mx Et3 1 v 0 a2

[6.15] Myy=—o¥— |, 1 ¢ _V;
M, 120 3 0 0 (1-v)2 3y

2

2aw

oxdy

or {M} = [D] {C} where {C} is the curvature vector for element dxdy;
My, M, and M,, are moments/unit length as shown in Fig. 6.6; ty is
the web thickness; and [D] is the elastic constitutive matrix. Within

the inelastic range, the constitutive matrix becomes

00 O
[6.16] D =/00 0
n 3

0 0 Gty /12

The strain energy of an element dxdy can be expressed as

2 2 2
? d J
[6.17] U, =;—{-dey( ~)dx - Mydx(—)dy +2My (——)dxdy)
Ix dy oxdy

Using [6.15], equation [6.17] can be rewritten as
[6.18] Up = {C}t {M} dxdy/2 = {C}' [D] {C} dxdy/2

However from [6.14], the curvatures can be found such that
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2
ow
T2
a2
[6.19]  {C}=|-== | =[B]{1)
2
9w
Oxdy
where [B] is given as
[ 2 2 2 2
o] 9] 3l 3]
2 2 2 2
ox ox ox ox
2] oy o1 9]
' [6.20] (B] = ) [n;] ] izﬂ ) [n;] ) [n21]
oy %y oy oy
2 2 2 2
20 ,9m] 9,3y
| oxoy ox oxdy axdy |

The structural stiffness matrix of the web element can be

obtained using [6.18] and [6.19] in the form

[6.21] [k]w=fA [B]t[D] [B]dA,,

where Ay is the web area. Because the resulting form of integrand in
[6.21] cannot be integrated in a closed form, recourse is made to
numerical integration. For elastic solutions, a 3x3 pattern of Gaussian
integration is used. Inelastic solutions use a refined pattern,

featuring 3 points across the length and 9 points across the depth in
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order to represent the extent of yielding in the web. The Gaussian
‘integration points used for inelastic solutions do not coincide with the
points used in defining the residual stress distribution. In this model,
residual stresses at Gaussian points are obtained by linear
interpolation between the equally spaced points used to define the
residual stress pattern. As expected, the resulting element stiffness

matrix of the web involves all three degrees of freedom per node.
6.4.3 Stiffeners

Web stiffeners, if present, are modelled as line elements. Each
element consists of two nodes with a total of six degrees of freedom.
It is assumed that the stiffeners extend over the full depth of the
- web and are symmetrically arranged on both sides of the web. It is
also assumed that stiffeners are not affected by yielding. The
element stiffness matrix of stiffeners as obtained from Segerlind

(1984) is given in Fig. 6.7.
6.5 Geometric element stiffnesses
6.5.1 Flanges

The geometric stiffness matrix is constructed by differentiating,
with respect to nodal displacements, the work done by in-plane
stresses as component plates shorten during buckling. For a flange
element, the geometric stiffness involves only the longitudinal
stresses o, . Integrating the work done by an elemental force oydArs
through a displacement dr, the work done by longitudinal stresses in

a flange element is given by:
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[6.22] Wi =f fcdifdr
LsAg

where Lf and Af are the element length and cross-sectional area,
respectively. The displacement dr can be obtained by expanding the

arc length, ds, as follows (Galambos 1968):

[6.23] dr=ds-dx ='\/ 1 +(v')2+(w')2 dx - dx
= [1 +—; (V')2 +'—; (W')2] dx -dx
2
-1 (v +(w) % dx

where v' and w' are derivatives with respect to x of the
displacements along the y and z axes, respectively. Substituting the
relationship v=-6,z into [6.23] and differentiating [6.22] with respect

to nodal displacements, w and 6,, we obtain:

[6.24] [kﬂf:fv (W} x O {\v}t,x dv

0
[6.25] [kjf=fv {V} x zzcrx {\y}fx dv

‘where dV = dAgdx, [k‘g”]f and [keg"]f are the geometric stiffness

matrices of a flange element associated with lateral displacements
and rotations about the longitudinal axis, respectively. Commas

denote differentiation with respect to x. The expression {y} is a
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vector of linear shape functions for interpolating the displacements,
w or 84, between the two nodes of a flange element, which has the

same form as the one used in [6.5]. In evaluating [6.24] and [6.25], it

is assumed that the integral of the stress terms o6x and z2<sx over the

cross-sectional area vary linearly over the length of a flange element.
Following the above procedure, the geometric stiffness matrix
of a flange element is obtained as given in Fig. 6.8, in which:

[626]  N=(N;+N)/2 , p=(B;+B)/2 where

2
[6.27] N=foxt dz , B=fzoxt dz
b b

where b is the flange width. The subscripts i and j given in [6.26]
denote the end node of the element at which the indicated function

(N or B) is evaluated. The integrals in [6.27] are computed

numerically.

6.5.2 Web

The geometric stiffness of a web element due to longitudinal

and shear stresses is given by Johnson and Will (1974) as:

t
[6.28] [kﬂw= [{tb},x {M'Y]I: oy 1xy][ {0} .x ]dv

Ty 0 || {01y
A
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where {®} is a vector of bilinear shape functions for interpolating the

lateral displacement w between the four nodes of a web element:
[6.29] {@}=[®; & Py ®;]in which
[6.30] Di=(& +1)(no + 1)/4

where o =& &; and ng = n n;. The values of ®j, ®x and ®; are defined
similarly. The commas in [6.28] denote differentiation with respect to
the indicated coordinate (x or y). Rotational displacements, 8x and 6,
are not included in the formulation. Taking advantage of a statically
determinate beam system, the longitudinal and shear stresses can be
determined easily from the bending moment and shear diagrams
through ordinary theory of flexure. The distribution of shear stresses
is assumed to be constant over the web depth. Once the stresses, Cx
and Txy. are thus obtained, they can be substituted in [6.28]. The
same Gauss-Legendre numerical integration scheme used for
obtaining the structural stiffness of web element is also used herein.
To determine the longitudinal stress due to bending at a sampling
point, a linear variation of the longitudinal stress is assumed over the
length of a web element, while the shear stress is virtually the same
at all sampling points since loads are applied at longitudinal points

which form the right and left sides of a web element.

The geometric stiffness due to vertical stress, oy, which results
from vertical loads and reactions, follows from the work done by

vertical forces appiied above or below the shear centre as the point
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of application of the forces moves vertically during lateral-torsional

buckling. A simple expression for this work is given by:
[6.31] Wp =PA

where A is the vertical displacement of the load point during twisting
of the cross section due to buckling, as shown in Fig. 6.9.a. For loads
applied above the shear centre but between the flanges, the angle of
twisting rotation, 6,, is expressed in terms of the nodal lateral
displacements, w, and w;, of the top and bottom flanges respectively
~and the vertical displacement, A, is approximated by the first term of
its polynomial expansion:
2

2
6 Wi-W
6.32 A=a(l-cosB.)=a x=a t b
[6.32] ( $6,) 7 .._2( -

where h' is the distance between the middle surfaces of the flanges
and a is the height of load application with respect to the shear

centre. Using the principle of minimum potential energy, the

. . . 2 . . .
geometric stiffness matrix, [kg]w, due to oy for this case is obtained

as given in Fig. 6.10. Web distortion is ignored in [6.32] since its

effect is less significant for loads applied between the flanges.

For loads applied at distance ap; above the top flange, as shown
in Fig. 6.9.b, an additional vertical displacement occurs due to the
effect of web distortion and can be expressed in terms of the nodal

rotation of the top flange about the longitudinal axis, 6x¢. The

resulting expression for the vertical displacement is given as:
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[6.33] A=

2
h'[wi-wy 1 2
RN

. . . 3 .
For this case, the geometric stiffness, [kg]w, due to vertical stresses,
oy, is given in Fig. 6.11.

When loads or reactions are applied at a distance a below the
shear centre but above the bottom flange, as shown in Fig. 6.9.c, the

vertical displacement, A, is approximated as follows (neglecting web

distortion):

2
[6.34] A=- i(_w_tﬂ)

. . . . 4 .
Fig. 6.12 gives the geometric stiffness, [kg]w, due to vertical stresses

for this case.

For loads applied at a distance a, below the bottom flange, as
shown in Fig. 6.9.d, the effect of web distortion is significant and
must be taken into account. The expression for total vertical

displacement of the load point is given as:

' - 2
[6.35] Az-%h (M_b) -%azexb

where Oxp is the nodal rotation of the bottom flange about

co g . . . 5 .
longitudinal axis. The geometric stiffness, [kg]w, due to vertical

stresses for this case is given in Fig. 6.13.
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In obtaining the geometric stiffnesses of a web element due to
vertical stresses for all the above four cases, it is assumed that the
shear centre is not displaced due to inelastic behaviour. When the
buckling load falls between the yield and plastic capacities of the
beam, the location of shear centre can vary drastically. Shifting of
shear centre is not considered because it leads to instability in the
numerical solution of inelastic beams. The shear centre is therefore
assumed to be located at mid-depth'of the dbubly symmetric cross

section up to the theoretical plastic moment, if could be reached.

6.6 Restraints

Because the finite element model is designed to simulate the
boundary conditions of beams in cantilever-suspended span
construction, restraints provided either by the columns to the bottom
flange of the beam through a rigid moment connection or by
properly welded open-web steel joists to the top flange of the beam,
must be considered. Generally, a displacement corresponding to a
degree of freedom, r1j,is prevented by adding an arbitrarily large
number on the main diagonal of the global structural stiffness matrix
at the address corresponding to rj. A value of 1015 is used to avoid
overflow errors. An elastic restraint of a given stiffness can be
specified by adding the stiffness directly to the global structural
stiffness matrix. This procedure is followed when the restraint is

applied directly to either the top or bottom flange (nodal points).

When lateral restraint is applied at a point other than the top

or bottom flange, as shown in Fig. 6.14, a fictitious 2-node element i-j
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is used with a bending stiffness EI. In order to avoid ill-conditioning
problems due to the use of a too large value of I, it has been found
that a value as large as the weak axis moment of inertia of the flange
is appropriate. The force-displacement relationship for this element
involving forces and displacements at node j is given as

Fi{ 3EL T ay)fwj

6.3 =
[6.36] wi= 3|

J a; | 43 a, Xj

where w; is the displacement of node j in the Z direction, Bxj is the

rotation of the node j about the longitudinal axis of the beam, a3 is

the distance between the middle surface of top flange and the

enforced axis of twist while F; and M; are nodal forces as indicated in
Fig. 6.12. The coefficients given in [6.36] are added to the global
structural stiffness matrix as shown in Fig. 6.15. A similar procedure
can be used to simulate the restraint provided by the column to the

bottom flange of the beam.
6.7 Solution technique

The finite element inelastic distortional buckling analysis of a

complete beam can be represented in matrix form by:
[6.37] ([K] + [KgD {r}={R}={0}

where [K] and [Kg] -are the global structural and geometric stiffness
matrices, respectively, which are functions of the load factor A; {r} is
the vector of out of plane nodal displacements; and {R} is the vector

of (zero) global out of plane forces.
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When the effects of yielding and residual stresses are not

considered (elastic analysis), the geometric stiffness, [Kg] is a linear

function of the loading intensity and [6.37] reduces to
[6.38] (K] + A [Kglp ) {r} = {0}

where A is a load factor and [Kg], is the global geometric stiffness
matrix computed at a loading intensity corresponding to a maximum
in-plane bending moment along the beam equals to the plastic

moment.

The global matrices, [K] and [Kg], can be assembled from the
individual element structural and geometric stiffness bmatrices,
respectively. The values of A which yield a nontrivial solution for {r}
in [6.37] are the eigenvalues, while the corresponding values of {r}
~ are the eigenvectors. In general, [6.37] is only solved for the smallest
A since it corresponds to the smallest buckling load. Buckling is
assumed to take place from the initial geometry. Both [K] and [Kg] are
referenced from the initial geometry as well as the stresses that are
used to form [Kg]. Since [6.37] is homogeneous, the buckled mode
shape may be\ determined while the actual magnitude of

displacements remains undefined.

The eigenvalue problem is solved using a routine for inverse
iteration with shifts (Bathe 1982 and Humar 1990), in which a
loading intensity is assumed and iterations are performed until the
computed intensity agrees with the assumed value. By choosing a

shift point close to the anticipated eigenvalue, a more accurate
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estimate of such eigenvalue as well as of the corresponding
eigenvector can be obtained after a relatively small number of
iterations. As indicated in Fig. 6.16, if the shift point is located
between the eigenvalues A, and A,,;, and p - A, is smaller than
An+1 - W, iteration will converge to A, and the rate of convergence
will depend on (u - Ap)/(Apey - w); the smaller this ratio, the faster
the convergence. On the other hand, if Ay, - u is smaller than p - Ap,
iteration will converge to Ap,; and the rate of convergence will
depend on the ratio (Ap,q - u)/(n - A,). Obviously, rapid convergence
can be achieved if the shift, p, is located close to the desired
eigenvalue.

In the case where an approximate value for the desired
eigenvalue is not known, it is recommended to use the following

scheme:

1. Select a relatively small positive value for the shift, u, as indicated

in Fig. 6.17.

2. If the solution converges to the negative eigenvalue, A.1, try again
with a shift slightly more than 2u - A_;. A positive eigenvalue is

anticipated, which would be the right solution.

3. If the solution converges to a positive eigenvalue, try again with a
slightly reduced shift. A negative eigenvalue is anticipated to confirm

that the obtained positive eigenvalue is the right solution.
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6.8 Computer program
6.8.1 Introduction

A complete list for the distortional buckling finite element
program (FEM) is given in Appendix A. The computer program is
written in BASIC and designed to be implemented on a micro-
computer. The major operations for the main program are given in
Fig. 6.18, which frequently uses the main routine shown in Fig. 6.19.
As indicated in Fig. 6.18, the program allows the user to select an
elastic or an inelastic solution. The elastic solution, which is much
faster, neglects the effects of residual stresses and yielding. In an
inelastic solution, the extent of yielding in the beam is determined at
each cross section iterating on the curvature and neutral axis with
the bisection method. The global structural and geometric stiffness
matrices in an inelastic solution are non-linear functions of the
loading intensity due to the presence of remdual stresses and partial
yielding, which are not linearly proportional to the loading intensity.
This renders the problem highly non-linear. The solution is obtained
using the bisection method by specifying an upper and lower limits
for the loading intensity, between which the solution is armmpated
in the input data. For convenience, all the units used throughout the

program are expressed in terms of Newtons and millimetres.
6.8.2 Mesh characteristics

The first step in solving a specific problem, using the FEM

program, is to select the mesh characteristics. In order to enable the
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finite element model to accurately simulate a beam with two
overhangs which is used typically in cantilever-suspended span
construction, the finite element mesh must be refined in the vicinity
of column supports where the bending moment is a maximum and
yielding is more likely to occur. A mesh refinement is also necessary
at the cantilever tips to model web distortion in the case when
torsional restraint is provided for only the top flange at this location.
Points where loads, reactions, restraints and stiffeners act must be

included in the longitudinal points.

As indicated in Fig. 6.20, the beam is divided into a number of
main divisions. Each main division contains a group of equally spaced
subdivisions. Each longitudinal point should be numbered in a left-
right order. There are two nodes at each longitudinal point located at
mid-surfaces of top and bottom flanges. The nodes should be

numbered in a left-right and bottom-top order.
6.8.3 Input data

The FEM program first reads all the user input data, which are
- listed immediately after the main program. All the units are in

Newtons and millimetres. The necessary input data required for the

program are as follows:
1. Select the type of solution: O for elastic and 1 for inelastic.
2. Cross-sectional dimensions:

1. Depth, breadth, flange thickness and web thickness.
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3. Mesh characteristics:
1. Number of main divisions.

2. For each subdivision, with a left-right order along the beam,

write the number of subdivisions and their regular spacing.
4. Material properties:
1. Elastic modulus, yield stress and Poisson's ratio.

5. Residual stresses. Positive for tension and negative for
compression (refer to Fig. 6.3). Required only for inelastic solution,

otherwise the zero values should be used to keep the order of data:
1. Flanges: (6:9)1, (6¢£)2 , (Grf)3 , (Orf)g and (Oyg)s.
2. Web: (0rw)1, (0rw)2 5 (Orw)3 » (Orw)a and (ory)s.

6. Loads and reactions:
1. Number of loads and reactions.

2. For each load and reaction, write the longitudinal point
number at which it acts, its magnitude (positive if acts upwards and
vice versa) and height of application (measured upwards from the

shear centre).

7. Bending moment at a selected longitudinal point:
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1. Selected longitudinal point number and magnitude of
bending moment at that point (positive if causing tension at the

bottom surface of the beam and vice versa).

8. Shift, lower bound and upper bound, for the ratios of anticipated
maximum (critical) moment to the plastic moment of the cross
section (lower and upper bounds are used only for inelastic solution,
otherwise they may be taken as zeroes to keep the order of the

data).

9. Nodal restraints (where the restraints are applied directly to the

nodal points):
1. Number of restrained nodes.

2. For each restrained node, enter the node number, stiffness in
N/mm for lateral restraint, stiffness in Nmm/rad for rotational
restraint  against twisting about the longitudinal axis and stiffness in
Nmm/rad for restraint against rotation about the vertical axis. For

infinite values of stiffnesses, use -1.

10. General restraints (where the restraint is applied at a distance

above the top flange).

In this case, any torsional restraint acting above the top flange
-can be assumed to be applied directly to the top flange and,
therefore, can be considered in the last data section. Only lateral

restraints above the top flange are taken into account at this stage.
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1. Number of points which are laterally restrained above the

top flange.

2. For each point, enter the node number nearest to the point
and the height of lateral restraint above the middle surface of top

flange.
11. Initial displacement vector

Inverse iteration solution requires a non-zero initial vector to
start vector iteration. The ideal initial vector will closely resemble
the displacements of the expected buckled shape, ensuring shift
convergence. However, very simple displacement vectors including
the normalized value (usually taken equal to 1) of a single
displacement or rotation at a selected node will also work. It is
important to realize that this initial vector does not represent initial

imperfections.
1. Number of nodes at which displacements are specified.

2. For each node, enter the node number, the specified values
for lateral displacement, rotation about the longitudinal axis, and

rotation about the weak axis.
12. Stiffeners
1. Number of stiffeners.

2. For each stiffener, enter the longitudinal point number at

which the stiffener is located, its width, and its thickness.
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6.8.4 Solution methodology

In any practical problem, an approximate value for buckling
load is difficult to estimate because many variables are involved
such as the geometrical properties of the cross section, the material
properties including residual stresses, loading and restraint
conditions. Since an inelastic solution takes a considerable amount of
computer time unless the values of shift, upper and lower bounds
are sufficiently close to the expected buckling load, it is instructive to
start with a quick elastic computer run with relatively small shift
(usually takes about one minute on a 486 personal computer) to get
a rough estimate for that load. Then, an inelastic run is performed

using that estimate. A worked example is given in Appendix B.
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Fig. 6.9 Vertical displacements used to obtain the work done by verical loads,
applied at different positions
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Chapter 7

DESIGN PROCEDURES FOR LATERALLY UNSUPPORTED BEAMS

7.1 Introduction

Several simplified procedures are presented in this chapter for
designing laterally unsupported doubly symmetric I-shaped beams
against lateral-torsional buckling, under different types of support,
loading and restraint conditions. Included is a refined approach for
the design of cantilever beams which avoids the defects of solutions
currently available. Approaches are also proposed for the design of
overhanging beams, suspended beams acted upon by their self-
weight, simply supported beams which are restrained laterally and
torsionally along ohe flange at discrete locations and cantilever-
suspended span beams. In all cases, the suggested solutions were
checked numerically against analysis made using the distortional

buckling finite element program.
7.2 Built-in cantilever beams

A built-in cantilever is defined as a beam completely fixed at
the root. Three restraint conditions at the cantilever tip are
considered: (i) completely free, (ii) laterally restrained at the top
flange and (iii) laterally restrained at both the top and bottom
flanges. A point load, applied to either the top flange or the shear
centre at the tip, is considered. This represents practical cases and is
more severe than a distributed loading case. The elastic lateral-

torsional buckling resistance is taken as

199
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where X is the beam torsional parameter, defined by [2.9], L is the
span, E is the modulus of elasticity, Iy is the moment of inertia about
the minor axis, G is the modulus of rigidity, J‘is the Saint Venant
torsional constant and C,, is the warping constant. The effective
length factor, ky in [7.1] which models the effects of the type of
loading, the level of load application and the type of end restraint is
given in Table 7.1 as a function of the beam torsional parameter X.
The effective length factors have been obtained by curve fitting to

the results of the finite element program.

7.2.1 Cantilevers with free tips

Figs. 7.1 and 7.2 show comparisons for a W410x39 cross section
of the finite element method, the proposed method and that given in
the SSRC Guide for top flange and shear centre loadings, respectively.
The upper values of cantilever lengths shown are recognized as being
impractical. Although the SSRC solution is conservative for shear
centre loading condition (Fig. 7.2), it becomes extremely
unconservative for top flange loading with relatively short spans
(Fig. 7.1). The problem arises with the SSRC solution because the

limitation of [2.10] has not been applied.
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Nethercot (1973) chose the range given by [2.10] based on a
study embracing all beam and column sections in the British Steel
Handbook to limit buckling to the elastic range. Subsequently,
Nethercot (1983) stated that the solutions were applicable to the
practical range of beam torsional parameter, X. Equation [2.10] limits
the cantilever span to more than four metres for the W410x39 cross
section. Therefore the SSRC solution is not applicable to a wide range
of spans. From Figs. 7.1 and 7.2, it is observed that the proposed
expressions for effective length factors give results which are in good

agreement with the finite element solution.
7.2.2 Lateral restraint at top flange

Comparisons of the different solutions for top flange and shear
centre loadings are given in Figs. 7.3 and 7.4, respectively, for the
case when lateral restraint provided to the top flange at the
cantilever tip. It is clear that SSRC solutions are conservative by a
factor of up to 1.8. The reason is apparent from Fig. 2.2. While
Nethercot (1973) obtained the solutions for lateral restraint of the
shear centre at the cantilever tip, he (1983) recommended
conservatively the same solution when lateral restraint of the top

flange is provided.
7.2.3 Lateral restraint of top and bottom flanges

In this case, the cross section at the cantilever tip is, in effect,
laterally and torsionally restrained, and the height of load application

at this location is immaterial. Fig. 7.5 show a comparison of the
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different solutions. Again, the SSRC solution is very conservative as
can be seen as well from Fig. 2.2. Torsional restraint applied at the
shear centre does not prevent lateral movement of the beam at the
cantilever tip. Lateral restraint of both top and bottom flanges

prevents both lateral movement and twisting.
7.2.4 Effect of load position

As can be seen in Fig. 2.1, the SSRC Guide gives only two load
positions: top flange loading and "all other cases". As the "all other
cases" was originally based on shear centre loading, it can lead to
unconservative results when the load position is located somewhere

between the top flange and the shear centre.

In practice, a cantilever tip load can be applied at any level by
means of a shear connection. When this level is located at a distance,
h, above the shear centre, the effective length factor, k;, can be
interpolated between the factors of the two extreme cases of top

flange loading, k;, and the shear centre loading, kg, both obtained

from Table 7.1, as follows

[7.2] ky =1k, + (1 - Dk{
where

h
[7.3] a—(l 5+-—) and

d = depth of the cross section
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For the case when two loads are applied at the cantilever tip,
say one at the top flange and the other at any level between the
shear centre and the top flange, the effective length factor can be
interpolated between the effective length factors corresponding to

the applied load levels in proportion to the loads.

7.3 Overhanging beams

In practice, a cantilever beam may exist as the cantilever
projection of a simply supported beam over an end support, as
depicted in Fig. 7.6. Predicting the buckling resistance for this type of
beams is much more complicated than for a single built-in cantilever
because many variables, such as the ratio of cantilever span to back
span and the loading and restraint conditions of both the cantilever
and back spans, must be taken into account. In this study, the
restraint conditions considered at the tips of the cantilever spans are:
free; lateral restraint at the top flange or lateral restraint at both the
top and bottom flanges. Also, the back span is assumed to be free

except at the supports.

Without interaction, the buckling resistances of both cantilever
and central segments are based on the free to warp conditions, in
which lateral deflection and twist about a longitudinal axis are
prevented at support locations. However, interaction will occur
between adjacent segments during buckling and the less critically
loaded segment will elastically restrain the more critically loaded
segment. When the back span segment is more critical, Trahair

(1983) has shown that the effects of warping restraints provided by
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the overhanging segments are not significant, and the buckling
resistance of the back span segment can be taken as the overall
buckling resistance of the overhanging beam. When the overhanging
segments are more critical, the buckling resistance of the overall

overhanging beam can be determined as
[7.4] M, =M. + FM; - M)

where M. is the elastic critical moment of the cantilever segment
which is free to warp at the root, M is the elastic critical moment of
the back span which is free to warp at both ends and F is the
interaction factor which is a function of the ratio of the back span to

the cantilever span.

When two overhanging cantilevers with either different spans

or different loading conditions are encountered, a conservative

approach is to use the lesser value of M; in [7.4]. The buckling
resistance of a cantilever which is free to warp at its root with either
~a free of laterally restrained top flange at the tip for top flange
loading and shear centre loading was found, using the finite element
program for a variety of cross sections, to be closely approximated

by
[7.5] M, = 1.5 GJd

and

[7.6] M, =£‘ EL,GJ

c
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where L. = cantilever span, respectively. The equations for free tip

cantilevers are also in good agreement with the results given by

Trahair (1983).

For shear centre loading, the elastic critical moment of the back

span is given by

2.2
n E1,C,
2

0.)27f
[7.7] My =—2 4 [ H,GI+
L L

where L is the back span and w; accounts for nonuniform moments.
For the cases when the back span loads are applied at the top flange
level, the finite element program must be used to obtain the elastic

critical moment of the back span.

For the case of overhanging beams with free tip cantilevers
(see Fig. 7.6a), the value of the interaction factor, F, for a particular
ratio of L/L. for a single cantilever overhang configuration with a
concentrated load at the flange tip and with top flange loading was
found by establishing the elastic critical moment using the finite
element program and back computing, knowing M. and M,, from
[7.4]. By repeating this procedure for different ratios of L/L., other
values of F were found. A good approximation for F by curve fitting

is
[7.8] F =-0.08 + 0.18 L/L, - 0.009(L/L,)?

In the case where lateral deflections and longitudinal twisting

are prevented at the support locations and lateral restraint is



206

provided for the top flange at the cantilever tips (see Fig. 7.6b),
equations [7.5] and [7.6] are still valid to obtain M¢ but the

interaction factor F to be used in [7.4] is approximated as

[7.9] F = 0.064 + 0.162 L/L, - 0.009(L/L.)*

The case where lateral deflection and twist are prevented at
both support and cantilever tip locations (see Fig. 7.6c), can be
treated easily using procedures for interaction buckling of laterally
continuous segments as given in the SSRC Guide or by Schmitke and

Kennedy (1985).
7.4 Stability of suspended and spreader beams
7.4.1 Suspended beams under self-weight

During the construction process, the need often arises to lift
into place a slender beam acted upon by its self-weight. After placing
the beam, bracing or connection to other members stabilizes the
beam under the imposition of further loading. Therefore, the lifting
process represents one of the most critical stages at which the beam
could buckle under its self-weight. Due to the unusual boundary
conditions involved, the classical buckling formulae (Galambos 1988)
are not applicable in assessing the lateral-torsional buckling strength

of the beam while being lifted.

Dux and Kitipornchai (1989) established a basis for the stability
of suspended beams. They used the finite integral method to obtain
buckling capacity charts in a non-dimensional format to be used for

checking the stability of I-beams when lifted under self-weight for
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different cable angles and attachment positions. Their solutions are
verified herein using the finite element technique and some
simplifications are suggested for the case when the lifting cables are
vertical. This situation occurs when a spreader beam is used. Because
the only restraints are the lateral restraints of the top flange applied
at the loading points, rigid body twisting modes at zero load
represent a potential problem during  investigation. This problem is
overcome by using the inverse iteration with shift technique to solve
the eigenvalue problem involved in the finite element analysis.
While both symmetric and anti-symmetric buckling modes are
possible, because the problem is symmetric with regard to loading,
restraint and geometry, it has been observed throughout this study
that the symmetric mode is the critical one. This observation was

also reported by Dux and Kitipornchai (1989).

Consider the flexural member shown in Fig. 7.7, which is lifted
symmetrically by vertical cables and acted upon by its self-weight,
w, applied along the shear centre. As suggested by Dux and
Kitipornchai (1988 and 1989), the critical buckling load cén be

approximated as
3
[7.10] wc,='y»\/EIyGJ/ L

in which y is the non-dimensional elastic buckling load parameter

and L is the length of the member.

The value of the elastic buckling load parameter, y, proved to

be dependent on the location of cables along the lifted member and
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the beam torsional parameter, X, defined in [2.9]. Using the finite
element approach, the curves giving the elastic buckling load
parameter versus different symmetrical arrangements of vertical
cables (Z,/L, where Z, is the distance of cable attachment from the
mid-span as indicated in Fig. 7.7) are given in Fig. 7.8 for X = 0.2, 0.4,
0.6 and 0.8. These results were obtained using a W360x39 cross
section for the case where the cables are attached directly to the top
flange but subsequently checked against a wide range of other cross
sections and the difference was found to be in all cases less than 5%.
The results of these curves are in good agreement with those
obtained by Dux and Kitipornchai (1989) and indicate that buckling
resistance is greateét when the cables are placed near the quarter
‘points. In the vicinity of that optimum location, the buckling capacity
is extremely sensitive to the cable attachment position. This indicates
that extra care should be given to insure the right position of the
cables while operating in this region. As the cable attachment
positions move from the optimum location towards either the middle

or the ends, the buckling strength decreases.

For the case where the cable attachment positions are located
between the midspan and the quarter points, the relationship
between y/X and Z,/L reduces to a unique curve as indicated in Fig.
7.9. By curve fitting the available data, the value of the elastic

buckling load parameter, y, can be approximated as
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(11] = 1000 X

3
9.91- 5.47%—- 324.61(%) +794 (%)
Further simplification for the right hand branch of the curves given
in Fig. 7.8 (where 0.3 < Z,/L < 0.5) proved to be difficult to obtain.
Therefore, it is recommended, for this range, to find the value of by
y by interpolating between the curves as suggested by Dux and
Kitipornchai (1989). The elastic buckling load parameter curves for
Z,/L in the range 0.3 to 0.5 are presented separately with expanded

scale in Fig. 7.10.

In checking the stability of beams under self-weight lifting the

overall safety factor, Fs, can be defined as:

[7.12] Fo=we,/ Wey

where wg,, is the self-weight of the beam. Dux and Kitipornchai
suggested that a value of 2 for the overall safety factor should be
used because elastic buckling results in a catastrophic sudden failure
and to account for dynamic effects and initial imperfections.
Engineers may wish to decide on an appropriate overall safety factor

based on the circumstances at hand.
7.4.2 Spreader beams

In case when the spreader beam is picked up by inclined crane
cables attached at its ends, the spreader beam is designed as a beam-
column. When a spreader beam, as shown in Fig. 7.11, is lifted at

midspan, the lateral-torsional stability must be checked. Neglecting
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the self-weight of the beam and assuming elastic behaviour, Dux and
Kitipornchai (1988) suggested that the critical buckling load, Wy, be

obtained in the form
' 2
[7.13] Wcr=y«/EIy GJ/ L

where y is a function of the beam torsional parameter, X. Using the
finite element program and a W360x39 cross section, the values of y
were obtained for different values of X. As given in Fig. 7.12, this

curve is almost a straight line and can be approximated as

[7.14] y=1+12X

7.5 Stability of restrained beams

A design procedure is given here for the lateral-torsional
stability of doubly symmetric I-shaped beams laterally and
torsionally restrained by purlins fastened to one ﬂange' only. While
the restraint provided by purlins may significantly increase the
moment resistance of the beam, it also increases the difficulty of the
solution. Current standards consider bracing of this type to be
~effective only when it is attached to the critical flange, that is the
compression flange except for the case of cantilevers. However, in
cantilever-suspended span construction, only the top flange is
laterally and torsionally braced at discrete locations and the
compression bottom flange, except at column location, is
unrestrained. Under such circumstances, the restraint provided to
the tension flange may be sufficient to preclude lateral-torsional

buckling.
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The proposed solutions presented here are applicable to beam
members, in which axial loads are small and can be neglected. This
situation commonly arises in low rise industrial buildings. It is
assumed that lateral displacements and twists are prevented at each
end and the ends are free to warp. When the beam ends are not
- simply supported, warping interaction occurs between the beam
under consideration and the other members, and the solutions tend
to give either the upper or the lower bound prediction of the
buckling resistance, depending on whether the beam in question is

the restraining or the restrained member, respectively.
7.5.1 Simply supported beam under uniform moment

Consider the simply supported beam, shown in Fig. 7.13,
subjected to uniform moment and with discrete braces attached at
equally spaced intervals to the tension flange. The braces exert
complete (infinite) Iateral restraint and incomplete (finite) torsional
restraint. Milner (1975) used the energy method to obtain the
following expression for the critical buckling moment

GJ 2n211:2ECw KeL2
= + +

d 2 22
dL nnd

[7.15]) M,

where most terms are as defined previously in chapter 2, n is the
number of half waves of the buckled compression flange, which is

selected so as to minimize the critical moment as follows



212

[7.16]

The effective continuous torsional restraint stiffness, K, in [7.15] and
[7.16] is defined as the the equivalent continuous stiffness of the
torsional restraint which is effectively applied to the compression
flange. Because the actual torsional restraint is applied to the tension
flange at discrete locations, it is transmitted to the compression
flange through the beam-purlin connection as well as the web. The
value of K. depends on: (1) the bending stiffness of the purlins, (2)
the moment-rotation characteristics of the beam-purlin connection,
(3) local web distortion and (4) twisting of the braced flange between
braces. A useful model to account for the effects of all the above
variables 1is that suggested by Milner (1975). The effective

continuous torsional restraint stiffness, K., is estimated as

[7.17) L e
Kv K Kt
where K is the bending stiffness of the purlins divided by the
purlins spacing, Ky, is the web stiffness, K; is the stiffness of the

beam-purlin connection divided by the purlins spacing and Ky is the

effective torsional stiffness of the flange.

The web stiffness, K,, ,which accounts for the web distortion is

given as
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3 3
Et, Et,

" 44

[7.18] Ky = >
4(1-v )d

where t is the web thickness, v is Poisson's ratio and s is the spacing
between purlins. The equivalent continuous stiffness of the beam-
purlin connection, K;, depends on the moment-rotation characteristic
of the connection. Milner (1977a) recommended an infinite value for
K;in cases of welded and friction grip bolted joints. Milner and Rao
(1978) presented some recommendations for estimating K; for

bolted joints based on experimental tests.

Because the bracing is provided only at discrete locations along
the tension flange, the flange between the braces tends to twist,
causing a reduction in the effectiveness of the torsional restraint of
the overall system. This effect can be taken into account by
considering the torsional stiffness of the portion of the braced flange
between bracing points. The equivalent continuous torsional stiffness

of the flange can be taken as

3
_CGbt

2
s

[7.19] K;

where b is the flange width, t is the flange thickness and C is a
constant which is determined so that the results of the present
design model would agree with the finite element solution. Using this

procedure, a value of 7.29 is obtained for C.
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In practice, the bending moment distribution along the beam is
nonuniform. However, Milner (1977a) recommended that the present
design approach could be applied conservatively to check the
stability of a beam element extracted from a complete structure
where the boundary conditions of the basic analysis are reasonably
satisfied, and assuming that a uniform moment equals the maximum

moment.
7.5.2 Simply supported beam under nonuniform moment

The conservative assumption of a uniform moment in the
application of [7.15] may lead to a considerable underestimation of
the buckling resistances. Consider the beam shown in Fig. 7.14, which
is braced laterally and torsionally at discrete locations along the top
flange and is acted upon by end moments as well as a uniform top
flange loading. The beam ends are assumed to be laterally restrained
and free to warp. When the beam is continuous over supports,
warping interaction occurs between the beam under consideration
and the adjacent ones, and the following procedure tends to give
either the upper or the lower bound predictions of the buckling
resistance, depending on whether the beam is the restraining or the
restrained member, respectively. For the purpose of generalization,
assume f to be the ratio of the end moments and R to be the ratio
between the maximum static moment due to the loads and the
maximum end moment. Lindner (1987) suggested that the critical

buckling moment can be estimated as
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[7.20] M, =X VELG)

where k is the effective buckling coefficient, obtained from the finite

=

element analysis, and J* is a modified Saint Venant torsional
constant, given as
2

%k
[7.21] J =J+K‘“’2L
G

The design approach given by [7.20] and [7.21] was suggested
by Lindner (1987) to handle the stabilization of I-section beams by
corrugated sheeting. However, it can be used when the bracing
system is as depicted in Fig. 7.14, provided that the effective
continuous torsional restraint stiffness, Ke, is taken as given in [7.17].
Lindner (1987) showed that the effective buckling coefficient, k, is
actually a function of the bending moment diagram as well as the
beam torsional parameter X. In order to understand the correlation
between the solutions given by [7.15] and [7.20], consider the
simplified case of a beam under uniform moment and no torsional

restraint. In this case, equation [7.15] reduces to

2
_GJ 27EG

2
d dL

[7.22] M,

Equating [7.20] and [7.22] gives

[7.23] k="_(1+2%)
' T 2X
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As indicated in Fig. 7.15, the effective buckling coefficient, k,
varies considerably with the beam torsional parameter. The
minimum value of k is 4.44, which corresponds to a value of the
beam torsional parameter, X, 0.71. Lindner (1987) showed that for a
wide range of variation in the bending moment distribution, the
minimum values of k occur within the range 0.31 < X < 0.71. It is
important at this stage to define the range of practical values of the
beam torsional parameter. Kirby and Nethercot (1979) presented
graphically the relationship between X2 and L/d for relatively
narrow cross sections and for relatively wide cross sections (column
sections). Using these curves and assuming L/d to be within the
range of 15 to 25, it can be shown that the corresponding range of
variation in the beam torsional parameter is 0.35 to 1, with an

average of 0.68.

As suggested by Lindner (1987), the minimum values of k,
corresponding to different bending moment distributions, can be
used directly for design. This is justified by its simplicity, which is a
major requirement in any design approach, and the fact that the
practical range of the beam torsional parameter is close enough to
the range within which the minimum values of k are located for a
wide range of bending moment distributions. Fig. 7.16 gives the
minimum values of the effective buckling coefficient, k, for a range
of end moment ratios, B, between O and 1 and a range of R values
between 0 and 2. It should be noted that the critical buckling

resistance given by [7.20] corresponds to the critical value of the



217

maximum end moment, even though the absolute value of the

maximum positive moment may be larger.

The above procedure tends to overestimate the elastic lateral-
torsional buckling resistances. This occurs because it is assumed that
the increase in Saint Venant torsional constant due to torsional
restraint given by [7.21] is independent of the bending moment
distribution. However, it has been found that [7.21] is only valid for
the case when the whole braced flange is under tension. When the
bending moment distribution is such that a part of the braced flange
is under compression, the unbraced flange does not tend to buckle
within the part under tension, and the effect of torsional restraint
within that region is reduced. Therefore, [7.21] tends to overestimate
the modified Saint Venant torsional constant under these
circumstances. However, under such bending moment distributions
and the applied lateral and torsional restraints, the beam buckling is
highly inelastic. Using the empirical inelastic buckling formula given
by CSA Standard CAN/CSA-S16.1-M89 (CSA 1989), the differences
between the inelastic buckling resistance corresponding to the elastic
solution given by [7.20] and that corresponding to the elastic solution

given by the finite element, tend to be only within 2%.

7.7 Design of beams in cantilever-suspended span

construction

Lindner (1972) has shown that the critical buckling moment
for a back span with a single overhang cantilever, restrained

laterally at top flange, can be estimated using the same formula for
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the back span that is free to warp (equation [7.20] in which J* is
-replaced by the Saint Venant torsional constant), provided that the
span ratios and loading conditions are to be taken into account for
determining the value of the effective buckling coefficient, k. This
concept is used here, together with [7.20] to obtain a design

procedure for steel beams in cantilever-suspended span construction.

Consider the double overhanging beam shown in Fig 7.17,
which is restrained laterally and torsionally at the level of top flange
at joist locations. The boundary conditions at the column supports, as
well as at the cantilever tips are dependent on whether or not joists
with or without bottom chord extension exist at these locations. The
elastic critical buckling moment at the support location is assumed to
be given by [7.20], where L is the length of the back span. The value
of the effective buckling coefficient, k, is dependent on the loading,
geometry and boundary conditions. Because insufficient information
is available about the residual stress patterns in relatively narrow
flange beams, it is recommended that the inelastic reduction formula
given in the CSA Standard CAN/CSA-S16.1-M89 (CSA 1989) be used

when the elastic buckling moment exceeds 0.67 M. ie,
[7.24] M; = 1.15 My(1 - 0.28 My/M,)
where M; is the unfactored inelastic buckling moment resistance.

In order to estimate the modified Saint Venant torsional
constant, J*, using [7.21], the effective continuous torsional restraint

stiffness, Ke can be obtained from
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[7.25] . 1r,1.1

K. Ky Ky K
where K, and Ky are given by [7.18] and [7.19], respectively.
Equation [7.25] is basically the same as [7.17] except that the Kj is
considered to assume an infinite value for welded connection (Milner
1977a). The value of Kp is determined as the in-plane bending
stiffness of the brace, Kp, divided by the brace spacing. A simplified
expression for the in-plane bending stiffness of the open-web steel
joists is given in Appendix C. Hence, the value of K, can be obtained

as

[7.26] ==

where Kp is the in-plane bending stiffness of the joist, Iz is the
moment of inertia of the top chord of the joist about the centroidal
horizontal axis, Lp is the length of the end panel and s is the joists
spacing. Based on a study embracing the practical range of joists, it is
recommended that a minimum value of 3x107 Nmm/rad. be used for
KB in cases where no data are available. In the case of interior beams
with joists on both sides, the value of K; can be obtained by adding
the contribution of the joists on each side. In the case where the joist
acts compositely a with concrete slab, a significant enhancement of
the torsional stiffness is achieved and the moment of inertia of the
composite section of the concrete and the top chord acting together is

used instead to compute I, in [7.26]. However, the composite action is

effective for the joists on only one side of the beam because when
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the beam tends to rotate, the joists are bent in opposite directions

and the concrete would be in tension on one side.
7.7.1 Basic assumptions

Because the loading, geometry and boundary conditions of the
beams in cantilever-suspended span construction may vary

considerably, it is reasonable to make the following assumptions

1. Symmetric geometry and loading conditions. As indicated in Fig.
7.17, the overhanging cantilever spans are assumed to have the same

length and loading configuration.

2. The ratio of the back span to the cantilever span is assumed to be

within the range of 4 to 6.

3. The load transmitted from the suspended span to the cantilever
tip is assumed to act at a maximum distance of 0.15 the depth of the

beam above the shear centre.

4. The joist loads within the back span are applied at the level of top

flange of the beam.
5. All the joists have the same in-plane bending stiffness.

6. The value of beam torsional parameter, X, based on the back span
length is assumed to be within the range of 0.4 to 1.2. This is based
on Kirby and Nethercot (1978) and was checked using the W-shaped
cross sections given by the Canadian standard for practical range of

beam spans.
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7. The columns are spaced uniformly.

8. All the joist seats are welded to the top flange of the beam.
7.7.2 Critical bending moment diagrams

Two distinct systems may be encountered in cantilever-
suspended span construction, depending on whether or not fork
supports (lateral restraint of both the top and bottom flanges of the
beam at column locations) exist. A fork support, which is the main
feature of the “forked system”, is provided by an open-web steel
joist with its top chord welded to the top flange and its bottom chord
extended to either the beam or the top of the column to provide
lateral restraint. The “unforked system” is encountered when no

open-web steel joists exist at either column location.

Consider the forked and unforked systems, with symmetrical
loading and restraint conditions, given in Fig. 7.18. The beam is a
W360x39 cross section having geometrical and material properties as
determined in the test program. For the case when only lateral
restraint is applied to the top flange at loading points and for a given
value of R, the finite element program may be used to determine the
buckling capacity when the effect of residual stresses is taken into
account and when it is neglected. For the forked support ‘system, the

values of M. /M for a range of R values between O and 2 are given

in Fig. 7.19.

In the forked system, as the value of R increases, either the

compressive stresses decrease or the tensile stresses increase within
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a considerable portion of the unrestrained bottom flange within the
back span and, therefore, the critical buckling moment increases. The
critical loading condition for a combination of dead and live loads, as
given in Fig. 7.20, can be obtained by maximizing the negative
moments above the supports and minimizing the static moment

caused by the back span loads.

The critical loading condition in the unforked system is not as
obvious as that in the forked system because, in this case, the critical
buckling moment increases as R increases up to a certain limit, then
decreases up to R=2 and then increases again as shown in Fig. 7.21.
For values of R less than 2, the negative moment over the supports is
the critical moment and for values of R greater than 2, the positive
moment at the middle of the back span is the critical moment. For
small values of R, the beneficial effect of the shape of the bending
moment diagram causes the buckling capacity to increase. Beyond
these values of R up to 2, the buckling capacity is significantly
reduced because the destabilizing effects of both the loads applied at
top flange level of the back span and the reactions are more
pronounced than the beneficial effect of the shape of the bending
moment diagram. The buckling resistance increases for values of R
greater than 2 because the midspan moment, which is larger than

‘the negative moment, becomes the critical moment.

It can be observed from Fig. 7.19, for the forked system, for
values of R between 0 and 2, that the beneficial effect of residual
stresses (with the flanges predominantly in tension) is noticeable

throughout the range of R. On the other hand, in the unforked system
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as seen from Fig. 7.21, the effect of residual stresses diminishes as
the value of R increases because the increased web distortion due to
the destabilizing effect of the reactions dominates and flange

participation in the overall behaviour is of secondary importance.

Consider the unforked system given in Fig. 7.18b. Neglecting

the effects of residual stresses, the values of Mc/Mp obtained from
the finite element program for a range of R values between O and 2
are given in Fig. 7.22 for the case when only lateral restraints and
the case when lateral and torsional restraints with Kg = 3x107
Nmm/rad. are provided. It is apparent that the apex of the curve is
shifted to the left when torsional restraint is applied. This

corresponds to the practical restraint condition.

Generally, roofs of structures can be classified as either
standard roofs or, simply, roofs in which the only loads considered
are the dead and snow (with rain) loads, or parking roofs, in which
the dead, parking or snow loads are considered. As given in Table
7.2, the ratio of maximum to minimum factored loads for a range of
roof structures with specified loads in accordance with the National
Building Code of Canada (1990) is within the range of 1.08 to 2.2.
Using these results together with the critical loading condition
described in Fig. 7.20 for beam with fork supports, the value of R
(ratio of static moment to the moment at the column ldcation) was

found to be within the range of 0.6 to 1.6.

For beams without fork supports, the two loading conditions of

full and partial loading shown in Fig. 7.21 need to be investigated.
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Following the same procedure as for the forked system, the

corresponding range of R for the unforked system was found to be

1.3 to 4.
7.7.3 Design of beams with fork supports

This type of beam is encountered in a regular grid system, in
which an open-web steel joist with bottom chord extension exists at
both column locations. Under symmetrical geometry, loading and
boundary conditions, three distinct cases arise. As given in Fig. 7.24,
these cases are: case 1, in which an open-web steel joist with bottom
chord extension exists at each cantilever tip; case 2, in which an
open-web steel joist without bottom chord extension exists at each
- cantilever tip; and case 3, in which no open-web steel joist exists
within the cantilever spans. For these cases, the critical loading
condition is that given in Fig. 7.20, where the negative moments at
the column locations are maximized and the sagging moment at the

middle of the back span is minimized.
a) Case 1

In this case (Fig. 7.24a), the beam cross section at the
cantilever tips is in effect laterally and torsionally restrained and the
height of load application at that location is immaterial. Because the
value of the effective buckling coefficient, k, is dependént on many
parameters such as the ratio of the cantilever span to the back span,
the moment ratio, R, and the beam torsional parameter, X, the

procedure given in section 7.5.2 which uses the minimum values of k
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within the practical range of the beam torsional parameter (0.4 to

1.2) is followed.

Using the finite element program, the minimum values of k
were obtained for a practical range of loading conditions (0.6 < R <
1.6) and practical ratios of cantilever span to the back span (1/6, 1/5

and 1/4) for a W610x82 beam and are given in Fig. 7.25.

To check the general applicability of these design curves,
critical moments were computed using the finite element program
and using the design curves for a broad range of parameters as given

in Table D.1.

The design procedure to determine the factored moment

resistance is as follows

(i) Establish the geometric and material properties of the

assumed beam section,
(ii) From the given loading condition, establish the value of R,

(iii)) Determine the web stiffness as

3 3
Et, Et,,

"4

[7.18] K, = 5
4(1-v )d

(iv) Determine the effective torsional stiffness of the flange as

3
_7.29Gbt

2
S

[7.19] K;
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(v) Determine the in-plane bending stiffness, Kp, of the joists

attached to the beam as given in Appendix C. A value of 3x107

Nmm/rad. can be used if no data are available. The value of Ky is

determined as

[7.26) K, = B
S

where s is the joists spacing,

(vi) Determine the effective continuous torsional restraint

stiffness, K., from

[7.25]

(vii) Determine the modified Saint Venant torsional constant as

2
) *
[7.21] J =J+KeL

r G

(viii) From Fig. 7.25 establish the value k, interpolating

between the curves of L./L as necessary,

(ix) Determine the value of the elastic critical moment from

7200 Mcr=£VELGI

(x) To determine the factored moment resistance based on the

procedures of the CSA Standard CAN/CSA-S16.1-M89 (CSA 1989), it
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is first necessary to establish an appropriate value of the resistance

factor as discussed subsequently.

Table D.1 shows that there is excellent agreement between the
factored moment resistance obtained using the finite element
program and that obtained using Fig. 7.25 with a mean ratio of the
predicted/design moment (without resistance factors) of 1.002 with

a coefficient of variation of 0.010.

b) Case 2

This case (Fig. 7.24b) corresponds to the existence of open-web
steel joists without bottom chord extensions at the cantilever tip
locations. In this case, the effective buckling coefficient has been
found to be virtually independent of the ratio of the cantilever span
to the back span. For the practical range of torsional restraint
stiffnesses provided by the joists, the effective buckling coefficient,
k, has also been found to be independent of the torsional restraint
stiffness. For practical geometrical conditions in cantilever-
suspended span construction, the ratio of the load transferred from
the suspended span to that applied directly by the joist is within the
range of 0.5 to 1.5. However, this ratio has been found to affect the
critical buckling moment by not more than 5%. The significant
parameters affecting the effective buckling coefficient are the shape
of bending moment diagram and the value of the beam torsional
parameter, X, of the back span. Fig. 7.26 gives the values of k as a

function of these two parameters for this case.



228

The general applicability of the design curves of Fig. 7.26 is
confirmed by Table D.2, which gives a ratio of the mean value of the

predicted/design moment of 1.012 with a coefficient of variation of

0.020.

The design procedure to determine the factored moment
resistance is basically the same as in case 1, except for step (viii),

which is as follows:

(viii) Determine the value of the beam torsional parameter as

2
n E
[2.9] X= -———-—-—C:
GJL

and hence from Fig. 7.26, the value of k interpolating between the

curves of R values as necessary.

c) Case 3

In this case (Fig. 7.24c), no open-web steel joist exists at the
cantilever tips and the only loads acting at these locations are
provided by the shear connections near the shear centre. The
significant parameters affecting the values of k are the shape of the
bending moment diagram, the beam torsional parameter, X, of the
back span and the ratio of the back span to the cantilever span. Figs.
7.27, 7.28 and 7.29 give the values of k for ratids of the cantilever

span to the back span of 0.25, 0.20 and 0.167, respectively.
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As indicated by Figs. 7.27, 7.28 and 7.29, the value of critical
buckling coefficient, k, decreases as the ratio of the cantilever span to
the back span increases. Table D.3 shows for this case that the design
curves of these figures are generally applicable. A conservative
simplified approach for design purposes would be to use the values
of k given by Fig. 7.27 and neglect the effect of the ratio of the
cantilever span to the back span. However, this approach results in
as much as 23% conservatism in predicting the elastic critical

buckling moment.

The design procedure followed is the same as for case 2.

d) Resistance factors

It is necessary to develop resistance factors which can be used

with the design procedures given for cases 1, 2 and 3.

Generally, the value of the modulus of elasticity, E, is significant
for elastic buckling, whereas the value of the yield stress, Fy, is
significant for inelastic buckling. Kennedy and Baker (1984) give the

statistics of these material properties for rolled sections as

[7.28] pg=1.020, VE=0.012, pg =1.060, Vg, =0.051

where p is the ratio of the mean value to the nominal value and V is

the coefficient of variation. The statistical properties of the material

(pM and Vi) are taken as those of either E or Fy. The significant

geometric property in beam buckling is taken as the plastic modulus.
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The statistics of this geometric property of rolled sections is also

given in Kennedy and Baker (1984) as
[7.29] pG=0.99,V5=0.038

The value of p, corresponding to the test/design ratio is

~ obtained as the product
[7.30] PP=PP1% Pp2

where pp; is the mean value of the test/predicted, and pp; is the
mean value of the predicted/design. The corresponding value of V is

given as

,\/ 2 2
[7.31] Vp=NY¥Vp; +Vpsy

As obtained from the test series, the value of p for the
test/predicted ratio is 0.99 with a coefficient of variation of 0.064. In
Appendix D, the finite element predictions and the design predictions
(given by the proposed design procedure) for different beam
sections, restraint and loading conditions are given in Tables D.1, D.2
and D.3 for cases 1, 2 and 3, respectively. Also given in these tables
are the mean values and coefficients of variations for the

predicted/design ratios.

The value of p corresponding to the resistance of the member is

given as
[7.32] PR=PGX PMX Pp1X Pp2

and the corresponding value of V is given as
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,\/ 2 2 2 2
[7.33] VR = VG+VM+Vp1 +Vp2

The resistance factor, ¢, is taken as
[7.34] ¢=prexp(-f ag Vp)

where B is the reliability index, taken as 3.0, and oR is the coefficient

of separation, taken as 0.55.

A resistance factor of 0.90 was found to be appropriate for all
the three cases of a beam with fork supports. This procedure
assumes, in the inelastic range, that the inelastic curves of S16.1 do
not introduce any additional variability, as the residual stresses are
more favourable than assumed in S16.1. However any error is

expected be relatively small.
7.7.4 Design of beams without fork supports

Fig. 7.30 gives the geometry of a beam with symmetric
geometry and boundary conditions, with no joists on the column
lines. The joists are evenly spaced with a joist on each cantilever
span, and with the columns located halfway between two
neighbouring joists. When the top of the column is unbraced, ‘the
bottom flange of the beam can move laterally at the columns but
torsional restraint is provided to the bottom flange due to the rigid

connection of the beam to the column. The support is unforked.

As discussed previously, two loading conditions need to be

investigated for a beam under such boundary conditions (see Fig.



232

7.23). As a result of the significant web distortion of the beam near
the columns, a substantial degradation of the critical buckling
~ capacity is expected in the unforked system as compared to that of
the forked system. For this reason, this system is not recommended.
Using the finite element program, the values of k were obtained as
given in Fig. 7.31. Table D.4 shows that the design curves of Fig. 7.31
result in factored moment resistances in good agreement with the
finite element predictions. It should be noted that the critical
buckling resistance given by [7.20] together with Fig. 7.31
corresponds to the critical value of the maximum negative moment
over the column support, even though the absolute value of the
maximum positive moment may be larger. The design procedure
followed is basically the same as for cases 2 and 3, except that the
inelastic buckling moment resistance is determined based on the
maximum absolute elastic buckling moment along the beam, which is
the negative moment over the support for R < 2 and is the positive
moment at midspan for R > 2. The elastic critical midspan moment
resistance can be estimated from the corresponding value of the

negative moment over the support and the value of R.

Using the procedure described in [7.28] through [7.34],
together with the statistical properties of the predicted/design ratio,

given in Table D.4, a resistance factor of 0.85 is obtained.
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Fig. 7.5 Comparison of design rules with finite
element solution for laterally restrained top and
bottom flanges at tip
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b) Laterally restrained top flange

= A

c) Laterally restrained top and bottom flanges

| Fig. 7.6 Restraint conditions at the cantilever tip of overhanging beams

w, N/mm
IR T TR

le |
(i 1

Fig. 7.7 Loading and geometry of suspended flexural member
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Fig. 7.8 Buckling load parameter for different lift points
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Fig. 7.9 Unique curve of buckling load parameter for members lifted
near midspan
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Fig. 7.11 Spreader beam lifted at midspan
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Fig. 7.13 Simply supported restrained beam under uniform moment
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Fig. 7.14 Simply supported restrained beam under nonuniform moment
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Fig. 7.15 Effective buckling coefficient for beams under uniform moment
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Fig. 7.24 Design cases for beams with fork supports
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Chapter 8

CONCLUSIONS

8.1 Observations and conclusions

1. Residual stresses wefe determined using a sectioning technique
in which the gauge length was established between hardened
steel balls pressed into the steel surface. The measuring
procedure gives good repeatable readings and consequently very

reliable results.

2. Based on the determined residual stress patterns of two
different W-shaped beam cross sections, it is expected that a
wide range of beams used in real structures would buckle
elastically even though the critical buckling moment may be just
slightly less than the yield moment. This arises because residual
stresses patterns in hot-rolled W-shaped beam sections with
relatively narrow flanges are significantly different from those
in column sections. Most of the flange is in tension and at the
flange tips the residual stresses are either tensile or of small
compressive value. Most of the web is under compression, with
high tensile stresses at the web-flange junction. Because of the
favourable tensile stresses in the flanges, there is a stabilizing
effect increasing the range of elastic behaviour. The geometric
stiffness of the flanges is increased over inelastic values and the

onset of lateral instability is delayed.

3. The analytical method modelling web distortion, residual

stresses, and inelastic behaviour is reliable in predicting the
258
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distortional buckling capacity of steel beams under a variety of
loading and restraint conditions, as confirmed by a
test/predicted ratio of 0.99 with a coefficient of variation 0.066

for 31 tests.

The experimental results are very sensitive to unforeseen
restraints. Even a minimal amount of friction will force the beam
into a higher energy buckling mode. In test 6, for example, it
was observed that a relatively small amount of friction between
the ball bearings and the bearing plates was sufficient to
restrain the top flange laterally, forcing the beam into a higher
energy buckling mode. The corollary is that the lateral bracing

force required to restrain a real beam is quite small.

Because the bifurcation model predicted the test results closely,
the influence of initial imperfections on the buckling strength
does not appear to be significant so long as the imperfections are

within rolling and fabrication tolerances.

The effects of web distortion are particularly significant for
beams with relatively deep cross sections and thin webs, and
especially when the beam is braced torsionally along one flange
or when the load is applied relatively high above the shear
centre. When a web stiffener is introduced at a section where
one flange is torsionally restrained, the overall stability is
enhanced by eliminating web distortion and preventing twisting

of the cross section about its longitudinal axis.

When open-web steel joists are properly welded to supporting
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beams, they provide both lateral restraint to the top flange and
torsional restraint through their flexural action. The provision of
torsional restraint to the top flange further improves the
buckling strength by forcing the beam into a distortional
buckling mode. The in-plane bending stiffness of open-web steel
joists is relatively large, particularly when the joist acts
compositely with a concrete slab. The torsional restraint
provided to the beam enhances its stability dramatically, even
though it acts at discrete locations only and twisting of the
braced flange between bracing points tends to localize the effect
of torsional bracing. This bracing is considered reliable in

enhancing the beam stability.

8. Both the experimental and theoretical results show that the
restraint conditions dominate the behaviour of steel beams in
cantilever-suspended span construction. At the same time the
shape of the moment diagram, that is to say, which flange and

how much of it is in compression, is significant.

9. When lateral restraint is not supplied to the column at the
cantilever root, otherwise identically loaded and restrained
beams have failure loads reduced to as low as 30% of those when

such restraint is provided.

10. Lateral restraint of the top flange is particularly effective in
increasing the buckling strength when it is provided where that

flange is in compression.

11. For beams with fork supports in cantilever-suspended span
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13.

14.

15.
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construction, the additional conditions that most enhance the
beam stability are joists with bottom chord extensions to provide
lateral support to the bottom flange of the beam at each

cantilever tip.

While the critical loading condition for a beam with fork
supports is obtained by maximizing the negative moment at the
supports and minimizing the positive moment within the back
span, two loading conditions need to be investigated for a beam
without fork supports that can translate at the column supports.

Web distortion predominates in the latter case.

The effective length factors for cantilever beams given by the
SSRC Guide (Galambos 1988) tend to give unreliable results
because the original limitation on the beam parameter was
overlooked and the original restraint assumptions in deriving

these factors are overly conservative.

The effective length factors for overhanging beams given by the
SSRC Guide do not take into account the restraint and loading

conditions of the back span and the ratio of the cantilever to the

back span. This results in inaccurate, and, in some cases,

unconservative designs.

Although the general design procedure for beams in cantilever-
suspended span construction given by the Canadian Institute of
Steel Construction (1989) neglects the beneficial effect of
torsional restraint, unconservatism may result due to the

destabilizing effect of loads applied above the shear centre.
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16. When a beam is braced laterally and torsionally along one
flange, the effective length concept is not accurate in predicting

its lateral-torsional buckling resistance.

17. The design procedures proposed here to predict the lateral-
torsional buckling resistances of cantilever beams are in good

agreement with the finite element results.

18. The buckling resistance of a beam lifted under self-weight, is
greatest when the cables are placed near the quarter points. In
the vicinity of that optimum location, the buckling resistance is
extremely sensitive to the cable attachment position. The design
procedure to predict the lateral-torsional buckling resistance of
such beams given here is in good agreement with finite element

analyses.

19. Design procedures are developed for ‘cantilever-suspended span
beams under a variety of loading and restraint conditions based
on the distortional buckling model that is in excellent agreement
with the finite elemenf model, itself corroborated by tests.
Resistance factors proposed for these design procedures range
from 0.85 for the case when the column supports are not
restrained laterally to 0.90 for the case when fork supports are

provided.
8.2 Areas of further research

Areas that need further research are:
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Studies are needed to evaluate the residual stress distributions
in a wide range of beam sections with relatively narrow flanges.
Based on these studies, more accurate predictions for the
inelastic lateral-torsional buckling can be developed, taking into
account the expected beneficial effect of residual stresses in

extending the elastic range.

The development of design formulas for single overhanging

cantilever beams in cantilever-suspended span construction.

It is expected that loading conditions which involve wind suction
loads, are not critical because they are countered by the dead
loads and because they act upwards at the level of top flange,
giving a significant stabilizing effect. However, it is
recommended that design formulas be developed for such

loading conditions of cantilever-suspended span beams.

The design approach suggested here, accounting for the effect of
torsional restraint offered by the joists with welded seats should
be extended to joists with bolted seats provided that moment-

rotation characteristics of such connections are established.
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Appendix A

COMPUTER PROGRAM

REM FINITE ELEMENT PROGRAM

CLS:PRINT"BEAM BUCKLING, FINITE ELEMENT SOLUTION":PRINT
DEFDBL A-Z:REM DOUBLE PRECISION

REM **kkkhkkdhkhkdhhkhhhkhhhhkhhhhhkkhkhhhkkhhkkddhhkdkkdkhhhddhhk

REM SOLUTION; BUCKLING MOMENT IS GIVEN AS FRACTION OF Mp
REM DATA INPUT dhkkkdkhkhkkhkhkhkdkhkhkhhkhkkhhhhkhkhkhkhkhkkkhkhkkhkhhkhhkhikk
REM All UNITS; N, mm

REM SOLUTION TYPE; 0 FOR ELASTIC AND 1 FOR INELASTIC
READ SOLUT

REM CROSS-SECTIONAL DIMENSIONS

READ D,B,T,W

HP=D-T:H=D=-2*T

REM NUMBER OF LONGITUDINAL MAIN DIVISIONS

READ NPART

DIM NAR(NPART,?2)

FOR I=1 TO NPART

READ NAR(I,1l),NAR(I,2)

NEXT I

NLONG=1

FOR I=1 TO NPART

NLONG=NLONG+NAR(I, 1)

NEXT I

DIM XLONG (NLONG)

XLONG(1)=0

COLON=0

ccc=1

FOR I=1 TO NPART

CCC=CCC+COLON

COLON=NAR(I,1)

FOR J=1 TO COLON

XLONG (J+CCC) =XLONG (J+CCC-1) +NAR (I, 2)
NEXT J

NEXT I

NUMNP=2*NLONG:REM NUMBER OF NODES

NEL=NLONG-1:REM NUMBER OF LONGITUSINAL ELEMENTS
NEQ=3*NUMNP:REM NUMBER OF EQUATIONS

HBW=12:REM HALF-BANDWIDTH OF GLOBAL STIFFNESS MATRICES
REM ELMOD=MODULUS OF ELASTICITY IN ELASTIC RANGE
REM FY=YIELD STRESS OF FLANGES

REM NU=POISSON'S RATIO

READ ELMOD, FY,NU

SHMOD=ELMOD/2/ (1+NU)

REM SECTION PROPERTIES

REM COMPUTE MOMENT OF INERTIA ABOUT MAJOR AXIS
IBEAM=(B*T"3/12+B*T* (HP/2) ~2) *2+H 3+W/12
SSX=IBEAM/ (D/2) :MOYI=SSX*FY
ZZX=(B*T*HP/2+H/2*WkH/4) *2

MOPL=ZZX*FY:REM PLASTIC MOMENT

274



370
380
387
390
400
430
440
442
444
445
446
447
448
449
450
451
452
453
460
465
470
480
490
500
510
520
530
540
550
562
578
620
630
640
650
660
670
680
690
692
693
740
742
743
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EY=FY/ELMOD:REM YIELD STRAIN
REM RESIDUAL STRESSES
DIM RESIDF(5),RESIDW(5)
FOR I=1 TO S5:READ RESIDF(I) :NEXT I
IF SOLUT=1 THEN 440
FOR I=1 TO S:RESIDF(I)=0:NEXT I
FOR I=1 TO S5:READ RESIDW(I) :NEXT I
IF SOLUT=1 THEN 445
FOR I=1 TO 5:RESIDW(I)=0:NEXT I
REM INTERPOLATE WEB STRESSES AT GAUSSIAN POINTS
DIM RESIDWW(9):IF SOLUT=0 THEN 470
RESIDWW(5)=RESIDW (1)
RESIDWW(6)=RESIDW(2)+.296% (RESIDW(3)-RESIDW(2))
RESIDWW(7)=RESIDW(3)+.452* (RESIDW(4)~RESIDW(3))
RESIDWW(8)=RESIDW(4)+.344* (RESIDW(5)-RESIDW(4))
RESIDWW (9)=RESIDW(4)+.872+* (RESIDW(5) -RESIDW(4))
RESIDWW (1) =RESIDWW(9) :RESIDWW (2)=RESIDWW (8)
RESIDWW (3) =RESIDWW(7) :RESIDWW (4)=RESIDWW (6)
REM KV ()=STORING VECTOR FOR GLOBAL STRUCT. STIFF. MAT.
REM KGV()=STORING VECTOR FOR GLOBAL GEOM. STIFF. MAT.
TOTA=HBW* (HBW+1) / 2+ (NEQ-HBW) *HBW
DIM KEF(6,6) ,KEW(12,12) ,KGEF(6,6) ,KGEW(12,12),KV(TOTA)
DIM KEFS(6,6),QKL(6),QKU(6) ,KBAR(TOTA) ,KINV(TOTA)
DIM C(12,24),B(3,12),D(3,3),E(12,3) ,KGV(TOTA)
DIM F(12,12),M(2,12),SIGM(2,2),MTS(12,2) ,MTSM(12,12)
DIM R(NEQ),Y(NEQ),bZ(NEQ) ,VX(NEQ),KGD(6,6),R0(NEQ)
DIM SHEAR(NEL,2),SHDIA(NEL,2),BETAT (NLONG)
DIM BEND (NLONG) ,MOMDIA (NLONG) , ENC (NLONG)
DIM ET (NLONG) ,EC(NLONG) ,BETAC (NLONG) , ENT (NLONG)
DIM IFC(NLONG) ,JFC(NLONG) ,IFT(NLONG),JFT (NLONG)
REM LOAD DATA; INCLUDE ALL LOADS AND REACTIONS
READ NNLOAD:REM NUMBER OF LOADS AND REACTIONS
DIM NLOADV (NNLOAD, 3) , LOADV (NNLOAD)
REM NLOADV(I,1)=LONGIT. POINT NUMB. OF LOAD OR REACTION
REM NLOADV(I,2)=MAGNITUDE OF LOAD
REM NLOADV(I,3)=HEIGHT OF LOAD APPLIC. ABOVE SH. CENTRE
FOR I=1 TO NNLOAD
ﬁgAg ¥L0ADV(I,1),NLOADV(I,2),NL0ADV(I,3)
X
READ MMOMLON, MMOMENT
REM CONSTRUCT SHEAR AND MOMENT DIAGRAMS FROM LOADS
FOR I=1 TO NEL
SUM=0
FOR J=1 TO NNLOAD
IF NLOADV(J,1)>I THEN 748
SUM=SUM~-NLOADV (J, 2)
NEXT J
SHDIA(I,1)=SUM:SHDIA(I,2)=SUM
NEXT I
FOR I=1 TO NLONG
SUM=0
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FOR J=1 TO I-1 ,
SUM=SUM~SHDIA (J, 1) * (XLONG (J+1) =XLONG (J) )

NEXT J

MOMDIA (I1)=SUM

NEXT I .

MMOOMM=MMOMENT-MOMDIA (MMOMLON)

FOR I=1 TO NLONG:MOMDIA (I)=MOMDIA (I)+MMOOMM:NEXT I
REM EIGENVALUE SHIFT

READ SHIFT

REM LOWER AND UPPER BOUNDS,INELASTIC SOLUTION
READ GAMMAO,GAMMA1

PLOTINC=2

REM RESTRAINT CONDITIONS

READ NRNOD:REM NUMBER OF RESTRAINED NODES

DIM NODRES (NRNOD, 4)

FOR I=1 TO NRNOD .

REM NODE NUMBER, RESTRAINS AGAINST W, THETA-X & THETA-Y
READ NODRES(I,1),NODRES(I,2),NODRES(I,3),NODRES(I,4)
NEXT I »

REM ELASTIC RESTRAINT COEFFICIENTS

READ RAMAD

DIM TOTO1 (RAMAD,2)

NNRESS=3 *RAMAD

DIM CCOEFF (NNRESS, 3)

EIRAG=ELMOD*B* (T"3) /12

FOR I=1 TO RAMAD

READ TOTO1(I,1),TOTO1(I,2)

NEXT I

FOR I=1 TO RAMAD

SHAB=TOTO1 (I, 1)

ADAD=TOTO1 (I,2)

RAGA1=3*ETIRAG/ADAD"3

RAGA2=3*EIRAG/ADAD"2

RAGA3=3*EIRAG/ADAD

S0S01=3*SHAB~-2

S0S02=3*SHAB~-1

CCOEFF (3*I-2,1)=S0S01

CCOEFF (3*I~-1,1)=S0S01

CCOEFF (3*I,1)=S0S02

CCOEFF (3*I-2,2)=S0S01

CCOEFF (3*I-1,2)=S0S02

CCOEFF (3*I,2)=S0S02

CCOEFF (3*I-2,3)=RAGAl

CCOEFF (3*%I-1,3)=RAGA2

CCOEFF (3*I,3)=RAGA3

NEXT I

REM INITIAL DISPLACEMENT EIGENVECTOR

READ NDIS:REM NUMBER OF NODES WITH GIVEN INITIAL DISP.
REM READ NODE NUMBER, DISPLACEMENT W, THETA-X, THETA Y
FOR I=1 TO NDIS

READ NODD,RO ( (NODD-1)*3+1),R0( (NODD-1) *3+2)



2717

945 READ RO ( (NODD-1) *3+3)
950 NEXT I
970 REM NSTIF=NUMBER OF STIFFENERS
980 READ NSTIF:DIM STIFFEN(NSTIF, 3)
990 FOR I=1 TO NSTIF
1000 READ STIFFEN(I,1),STIFFEN(I,2),STIFFEN(I,3)
1010 REM LONGITUDINAL POINT NUMBER, WIDTH, THICKNESS
1020 NEXT I
1040 DIM KSI(4),ETA(4) ~
1050 KSI(1)=-1:KSI(2)=-1:KSI(3)=1:KSI(4)=1
1060 ETA(1)=-1:ETA(2)=1:ETA(3)=-1:ETA(4)=1
1070 REM SAMPLING POINTS & WEIGHTS
1080 IF SOLUT=1 THEN 1120
1090 DIM XSP(3),YSP(3),WSPX(3),WSPY(3)
1100 XSP(1)=-.7745967:XSP(2)=0:XSP(3)=.7745967
1105 YSP(1)=XSP(1):YSP(2)=XSP(2):YSP(3)=XSP(3)
1110 WSPX(1)=.5555556:WSPX(2)=.8888889:WSPX(3)=.5555556
1112 WSPY(1)=WSPX(1) :WSPY (2)=WSPX(2) :WSPY (3)=WSPX(3)
1115 GOTO 1155
1120 DIM XSP(3),YSP(9),WSPX(3),WSPY(9)
1130 XSP(1)=-.7745967:XSP(2)=0:XSP(3)=.7745967
1140 YSP(1)=-.9681602:YSP(2)=-.8360311:YSP(3)=-.6133714
1142 YSP(4)=-.3242534:YSP(5)=0:YSP(6)=-YSP(4)
1144 YSP(7)=-YSP(3):YSP(8)=-YSP(2):YSP(9)=-YSP (1)
1146 WSPX(1)=.5555556:WSPX(2)=.8888889:WSPX(3)=.5555556
1148 WSPY(1)=.0812744:WSPY(2)=.1806482:WSPY(3)=.2606107
1150 WSPY(4)=.3123471:WSPY(5)=.3302394:WSPY (6)=WSPY (4)
1152 WSPY(7)=WSPY(3) :WSPY (8)=WSPY (2) :WSPY (9)=WSPY (1)
1154 REM COEFFICIENTS FOR SIMPSON'S RULE
1155 DIM COEFS(5)
1156 COEFS(1)=1/3:COEFS(2)=4/3:COEFS(3)=2/3:COEFS(4)=4/3
1157 COEFS(5)=1/3 .
1158 REM COEFFICIENTS FOR TRAPEZOIDAL RULE
1159 DIM COEF(5)
1160 COEF(1)=.5:COEF(2)=1:COEF(3)=1:COEF(4)=1:COEF(5)=.5
1165 REM **dkdkkdkhkkdkhkhkhkdkhdhkhhkdkdhhhhhkkhkkhdhhhhkhhhhrkhhhkhkdhkhdkhhkkdhhk
1170 REM MAIN ALGORITHM
1190 IF SOLUT=1 THEN 2230
1200 GAMMA=1:GOSUB 2660
1230 CLS:PRINT "ELASTIC SOLUTION: Mcr =";1AMBDA;"Mp"
1260 REM NORMALIZED BUCKLED SHAPE, EIGENVECTOR R()
1300 PRINT:PRINT "Normalized buckled shape"
1310 PRINT:PRINT "NODE 2 THETA-X THETA-Y"
1320 PRINT "----- - - ——— e "
1330 FOR I=1 TO NUMNP
1340 PRINT USING "###";I;

"

1350 PRINT ",

1360 PRINT USING “##.## "~ "";R((I-1)*3+1);

1370 PRINT " *;

1380 PRINT USING "##.##~"""";R((I-1)*3+2);
1"

13920 PRINT

" .
14
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1405
1406
1408
‘1410
1420
1430
1450
1460
1470
1480
1490
1500
1510
1520
1530
1532
1534
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1538
1545
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1548
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
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1670
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1770
1780
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1820

PRINT USING "##.##~ "~ "";R((I-1)*3+3)
IF INT((I-15)/20)=((I-15)/20) THEN 1408

GOTO 1410

PRINT: INPUT"PRESS ENTER TO CONTINUE ...";AZ:CLS
NEXT I

PRINT: INPUT"PRESS ENTER TO CONTINUE ...";AZ

REM PLOT BUCKLED SHAPE
CLS:SCREEN 2:KEY OFF

REM NORMALIZED BUCKLED SHAPE SO THAT W-MAX = 1.0
DIM RNORM (NEQ)

ZMAXX=0

FOR I=1 TO NEQ

IF ABS(R(I))>ZMAXX THEN ZMAXX=ABS (R(I)):IMAXX=I
NEXT I

FOR I=1 TO NEQ:RNORM(I)=R(I)/R(IMAXX):NEXT I
LINE(40,70)-(600,70)
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LOCATE 1,23:PRINT"NORMALIZED BUCKLED SHAPE, PLAN VIEW"

IF SOLUT=1 THEN 1546
LOCATE 3,23

PRINT"Mcr =";:PRINT USING "##.####";LAMBDA; : PRINT" Mp"
GOTO 1550

LOCATE 3,23

PRINT"Mcr =";:PRINT USING "##.####";GAMMA; :PRINT" Mp"

REM PLOT EACH LONGITUDINAL DIVISION
FOR I=1 TO NEL
X1=XLONG (I) : X2=XLONG (I+1)
XX1=X1/XLONG (NLONG) *560+40 : XX2=X2 / XLONG (NLONG) *560+4 0
FOR J=XX1 TO_ (XX2-PLOTINC) STEP PLOTINC
REM TOP FLANGE

ETA=1:GOSUB 1930

REM MIDDLE OF WEB

ETA=0:GOSUB 1930

REM BOTTOM FLANGE

ETA=-1:GOSUB 1930

NEXT J

NEXT I

REM PLOT FLANGES AND WEB SYMBOLS

FOR I=2 TO NLONG-1

J=XLONG (I) /XLONG (NLONG) *560+40
X1=XLONG (I) : X2=XLONG (I+1)

REM TOP FLANGE

ETA=1:GOSUB 2090

LINE (XPLOT-2, YPLOT+1) - (XPLOT+2, YPLOT-1)
REM MIDDLE OF WEB

ETA=0:GOSUB 2090

LINE (XPLOT, YPLOT-1) - (XPLOT, YPLOT+1)

REM BOTTOM FLANGE

ETA=-1:GOSUB 2090
LINE(XPLOT~2,YPLOT~-1) - (XPLOT+2, YPLOT+1)
NEXT I

REM LEGEND
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1830 LINE(170,124)-(270,124):LINE(218,125)-(222,123)
1840 LINE(170,140)-(270,140):LINE(220,139)-(220,141)
1850 LINE(170,156)-(270,156):LINE(218,155)-(222,157)
1860 LINE(170,172)~-(270,172)

1870 LOCATE 16,40:PRINT"TOP FLANGE"

1880 LOCATE 18,40:PRINT"MIDDLE OF WEB"

1890 LOCATE 20,40:PRINT"BOTTOM FLANGE"

1900 LOCATE 22,40:PRINT"INITIAL POSITION"

1901 LOCATE 23,1

1929 END

1930 REM PLOT BUCKLED SHAPE ROUTINE

1940 XPLOT=J:GOSUB 1980:XPLOT1=XPLOT:YPLOT1=70-2Z%*25
1950 XPLOT=J+PLOTINC:GOSUB 1980:XPLOT2=XPLOT:YPLOT2=70-Z2Z%25
1960 LINE(XPLOT1,YPLOT1)- (XPLOT2,YPLOT2)

1970 RETURN

1980 REM COMPUTE BUCKLED SHAPE WITH INTERPOLATION FUNCTIONS
1990 SUM=0

2000 FOR K=1 TO 4

2010 KSI=(XPLOT-(XX1+XX2)/2)/((XX2-XX1)/2)

2020 KSIO=KSI*KSI (K) : ETAO=ETA*ETA (K)

2025 SOKR1=RNORM( (I-1)*6+(K-1)*3+1)* (ETAO+1)

2030 SUM=SUM+ (KSIO0+1) * (2+KSIO+ETAO-KSI 2-ETA"2) *SOKR1
2035 SOKR2=RNORM( (I-1)*6+(K-1)*%3+2)*(ETAO-1)

2040 SUM=SUM+HP/2*ETA (K)* (KSIO+1)* (ETAO+1) ~2*SOKR2
2045 SOKR3=(KSIO-1)* (ETAO+1)*RNORM( (I~1)*6+(K-1)*3+3)
2050 SUM=SUM-(X2-X1)/2*KSI (K)* (KSIO+1) ~2*SOKR3

2060 NEXT K ‘

2070 2ZZ=SUM/8

2080 RETURN

2100 SUM=0

2110 KSI=-1

2120 FOR K=1 TO 4

2130 KSIO=KSI*KSI (K) :ETAO=ETA*ETA (K)

2135 SOKR4=(ETAO+1) *RNORM( (I-1)*6+(K-1)*3+1)

2140 SUM=SUM+(KSIO+1)* (2+KSIO+ETAO-KSI~2-ETA"2) *SOKR4
2145 SOKRS=(ETAO-1) *RNORM( (I-1)*6+(K-1)*3+2)

2150 SUM=SUM+HP/2*ETA (K)* (KSI0+1)* (ETAO+1) ~2*SOKRS5
2155 SOKR6=(ETAO+1) *RNORM( (I-1)*6+(K-1)*3+3)

2160 SUM=SUM-(X2-X1)/2*KSI (K)* (KSIO+1) ~2* (KSIO-1)*SOKR6
2170 NEXT K

2180 2Z=SUM/8

2190 XPLOT=J

2200 YPLOT=70-22%25

2210 RETURN :

2220 REM *%k%kkkkhkhhkhkhkhkdhkhhhkhhkhkhkhhkhkhkhkhhhhhhdhhkhhkhhhkhkhkhkhhkhkhkhkhkk
2230 REM ALGORITHS FOR EIGENVALUE SOLUTION, INELASTIC
2270 REM Shift=EIGENVALUE SHIFT

2340 GAMMA=GAMMAO:GOSUB 2660 .

2360 LAMPPO=LAMBDA-GAMMAO
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PRINT GAMMA, LAMBDA
IF GAMMAO=.01 THEN 2382
IF LAMPPO<O THEN 2380
GOTO 2382
PRINT: PRINT"Mcr/Mp < LOWER LIMIT GAMMAO":END
IF LAMPPO<O THEN PRINT:PRINT"Mcr = O":END
GAMMA=GAMMA1:GOSUB 2660
LAMPP1=LAMBDA-GAMMA1
PRINT GAMMA, LAMBDA
IF GAMMAl1=.99 THEN 2432
IF LAMPP1>0 THEN 2430
GOTO 2432
PRINT:PRINT "Mcr/Mp > UPPER LIMIT GAMMA1":END
IF LAMPP1>0 THEN PRINT:PRINT "Mcr = Mp":END
IF LAMPPO*LAMPP1>0 THEN PRINT"ERROR":STOP
REM LAMBDA FOR GAMMA2 AT MID-INTERVAL
GAMMA2= (GAMMAO+GAMMA1) /2
GAMMA=GAMMA2 :GOSUB 2660
LAMPP2=LAMBDA-GAMMA2 :
PRINT GAMMA,LAMBDA
IF LAMPP2=0 THEN 2580
IF LAMPPO*LAMPP2<0 THEN -2540
LAMPPO=LAMPP2 : GAMMAO=GAMMA 2
GOTO 2550
LAMPP1=LAMPP2 : GAMMA1=GAMMA2
REM CHECK CONVERGENCE
IF ABS(GAMMA1-GAMMAO) /ABS (GAMMAl) <.01 THEN 2580
GOTO 2450
REM FINAI, LOAD INTENSITY; END OF PROGRAM
GAMMA=GAMMA2 .
CLS:PRINT"INELASTIC SOLUTION: Mcr =";GAMMA;"Mp"
GOTO 1260:REM PLOT BUCKLED SHAPE
REM dhkhkhkhkhkhkhhkhhkdkhkhhhkhhkhhhkhkhkhkhkhkhkhkkhkhkkhkhkhhbhkhkkhthhkhkhkhkhkkk
REM FORM ELEMENT STIFFNESS MATRICES
FOR I=1 TO NNLOAD:LOADV(I)=NLOADV(I,2)*GAMMA:NEXT I
REM SHEAR DIAGRAM FOR GIVEN LOAD INTENSITY
FOR I=1 TO NEL:SHEAR(I,1)=GAMMA*SHDIA(I,1)
SHEAR (I, 2)=GAMMA*SHDIA(I,2) :NEXT I
REM MOMENT DIAGRAM FOR GIVEN LOAD INTENSITY
FOR I=1 TO NLONG:BEND(I)=GAMMA*MOMDIA(I):NEXT I
FOR I=1 TO NLONG
=ABS (BEND (I))
IF SOLUT=0 THEN 2880
IF (ABS(M*HP/D)/SSX+ABS(RESIDF(1)))>FY THEN 2920
IF (ABS(M*HP/D)/SSX+ABS(RESIDF(5)))>FY THEN 2920
REM NO YIELDING
ET (I)=(M/SSX)*HP/D/ELMOD:EC (I)=-ET(I)
GOTO 3400
REM CHECK IF MOMENT EXCEEDS PLASTIC MOMENT
REM COMPUTE PLASTIC MOMENT
IF M>MOPL THEN PRINT"PLASTIC MOMENT IS EXCEEDED":STOP
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3030
3050
3060
3080
3100
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3130
3140
3150
3180
3200
3220
3230
3240
3250
3260
3270
3280
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CURVO=M/ELMOD/ (1.2*IBEAM)
CURV1=M/ELMOD/ ( . 05*IBEAM)

CURV=CURVO

GOSUB 3420

GOSUB 3980

MMDO=MMD

CURV=CURV1

GOSUB 3420

GOSUB 3980

MMD1=MMD

IF MMDO*MMD1>0 THEN PRINT"ERROR":STOP
CURV2= (CURVO+CURV1) /2

CURV=CURV?2

GOSUB 3420

GOSUB 3980

MMD2=MMD

IF MMD2=0 THEN 3320

IF MMDO*MMD2<0 THEN 3280
CURVO=CURV2 : MMDO=MMD2

GOTO 3290

CURV1=CURV2 : MMD1=MMD2

REM CHECK TOLERANCE

IF ABS (CURVO-CURV1) /ABS(CURV1)<.01 THEN 3320
GOTO 3150

ET(I)=ET:EC(I)=EC
NEXT I

GOTO 4050
YBARO=T:YBAR1=D~-T

REM EVALUATE TOTAL AXIAL FORCE FOR YBARO
YBAR=YBARO:GOSUB 3660:PO0=AXIALF

REM EVALUATE TOTAL AXIAL FORCE FOR YBAR1
YBAR=YBAR1:GOSUB 3660:P1=AXIALF

IF PO*P1>0 THEN PRINT"ERROR":STOP
YBAR2=(YBARO+YBAR1) /2

YBAR=YBARZ2 :GOSUB 3660

P2=AXIALF

IF P2=0 THEN 3630

IF PO*P2<0 THEN 3590

PO=P2:YBARO=YBAR2

GOTO 3600

P1=P2:YBAR1=YBAR2

REM CHECK TOLERANCE

IF ABS(YBARO-YBAR1) /ABS(YBAR1)<.01 THEN GOTO 3630
GOTO 3510

YBARF=YBAR2

RETURN

REM SUBROUTINE, TOTAL AXIAL FORCE

REM EXTENT OF YIELDING

GOSUB 3720

REM TOTAL AXIAL FORCE IN SECTION

GOSUB 3920

281
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3710 RETURN

3720 REM STRAINS

3730 REM ECP, ETP ARE STRAINS AT EXTREME FIBERS

3740 ETP=CURV*D/ (1+(D-YBAR) /YBAR)

3750 ECP=-ETP* (D-YBAR)/YBAR

3760 REM EC, ET ARE STRAINS AT FLANGE MID-FIBERS

3770 EC=ECP*(D-YBAR-T/2)/(D-YBAR) : ET=ETP* (YBAR-T/2) /YBAR
3920 REM SUBROUTINE, COMPUTE TOTAL AXIAL FORCE IN SECTION
3922 REM 9-POINT TRAPEZOIDAL RULE, FLANGES

3924 AXIALC=0:AXIALT=0:FOR KKJ=1 TO 5

3925 STRESSCC=ELMOD*EC+RESIDF (KKJ)

3926 IF STRESSCC<-FY THEN STRESSCC=-FY

3927 STRESSTT=ELMOD*ET+RESIDF (KKJ)

3928 IF STRESSTT>FY THEN STRESSTT=FY

3930 AXIALC=AXIALC+STRESSCC*B/8*T*COEF (KKJ)

3935 AXIALT=AXIALT+STRESSTT*B/8*T*COEF (KKJ)

3940 NEXT KKJ:AXIALC=2*AXIALC:AXIALT=2*AXIALT

3941 REM AXIAL FORCE, WEB, TRAPEZOIDAL RULE .

3943 SUMW=0:FOR KKJ=1 TO 5

3945 SSTRAIN=ET+ (KKJ+3) /8* (EC-ET)

3946 STRESSW=ELMOD*SSTRAIN+RESIDW (KKJ)

3947 IF ABS(STRESSW)>FY THEN STRESSW=SGN (STRESSW)*FY
3948 SUMW=SUMW+COEF (KKJ) *HP/8*W*STRESSW

3949 NEXT KKJ:AXIALW=SUMW

3951 SUMW=0:FOR KKJ=1 TO 5

3952 SSTRAIN=EC: (KKJ+3) /8% (ET-EC)

3953 STRESSW=ELMOD*SSTRAIN+RESIDW (KKJ)

3954 IF ABS(STRESSW)>FY THEN STRESSW=SGN (STRESSW) *FY
3955 SUMW=SUMW+COEF (KKJ) *HP/8*W*STRESSW:NEXT KKJ

3959 AXIALW=AXTALW+SUMW

3960 AXIALF=AXIALC+AXIALT+AXIALW

3970 RETURN

3980 REM BENDING MOMENT ABOUT MID-FIBER OF BOTTOM FLANGE
3990 MM=AXIALC*HP

3991 REM MOMENT CONTRIBUTION, WEB, SIMPSON'S RULE, 9 POINTS
3993 SUMW=0:FOR KKJ=1 TO 5

3995 SSTRAIN=ET+(KKJ+3) /8% (EC-ET)

3996 STRESSW=ELMOD*SSTRAIN+RESIDW (KKJ)

3997 IF ABS(STRESSW)>FY THEN STRESSW=SGN (STRESSW)*FY
3998 SUMW=SUMW+COEFS (KKJ) *HP/8*W*STRESSW* ( (KKJ+3) *HP/8)
3999 NEXT KKJ

4000 MM=MM+SUMW

4002 SUMW=0:FOR KKJ=1 TO 5

4003 SSTRAIN=EC+(KKJ+3) /8% (ET-EC)

4004 STRESSW=ELMOD*SSTRAIN+RESIDW (KKJ)

4005 IF ABS(STRESSW)>FY THEN STRESSW=SGN (STRESSW)*FY
4006 SUMW=SUMW+COEFS (KKJ) *HP/8*W*STRESSW* ( (5-KKJ) *HP/8)
4007 NEXT KKJ

4008 MM=MM+SUMW

4010 MMD=-MM-M

4020 RETURN
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4040 REM *kkkkkdhhkhhhhkhhhhhhkhhhhhkhkhhkkhkhhkhhhhdkhkhkhkhhhhhkrhsk

4050 REM STRUCTURAL STIFFNESS, FLANGES

4090 ERASE KV,KGV:DIM KV(TOTA) ,KGV(TOTA)

4100 FOR I=1 TO NLONG

4110 IFC(I)=0:IFT(I)=0:FOR KKJ=1 TO 5

4111 AXZZC=1:AXZZT=1:STRESSCC=ELMOD*EC (I)+RESIDF (KKJ)
4112 STRESSTT=ELMOD*ET (I)+RESIDF (KKJ)

4113 IF SOLUT=0 THEN 4116 '

4114 IF STRESSCC<-FY THEN AXZZC=0

4115 IF STRESSTT>FY THEN AXZZT=0

4116 SOKR7=((KKJ-1)*B/8) "2*%AXZZC

4117 IFC(I)=IFC(I)+ELMOD*COEFS (KKJ)*B/8*T*SOKR7
4118 SOKR8=((KKJ-1)*B/8) "2*AXZZT

4119 IFT(I)=IFT(I)+ELMOD*COEFS (KKJ)*B/8*T*SOKRS
4120 NEXT KKJ

4125 IFC(I)=2*IFC(I):IFT(X)=2*IFT(I)

4130 JFC(I)=SHMOD*B*T"3/3

4150 JFT(I)=SHMOD*B*T"3/3

4170 ENC(I)=0:BETAC(I)=0

4180 ENT(I)=0:BETAT(I)=0

4190 FOR J=1 TO S

4195 STRESSCC=ELMOD*EC(I)+RESIDF(J)

4197 STRESSTT=ELMOD*ET (I)+RESIDF (J)

4199 IF SOLUT=0 THEN 4204

4200 IF STRESSCC<~-FY THEN STRESSCC=-FY

4203 IF STRESSTT>FY THEN STRESSTT=FY

4204 ENC(I)=ENC(I)+COEF(J)*B/8*T*STRESSCC

4206 ENT(I)=ENT(I)+COEF(J)*B/8*T*STRESSTT

4208 BETAC(I)=BETAC(I)+COEFS(J)*B/S*T*STRESSCC*((J-I)*B/B)“2
4210 BETAT(I)=BETAT(I)+COEFS(J)*B/8*T*STRESSTT* ((J-1)*B/8) "2
4360 NEXT J ,
4370 ENC(I)=2*ENC(I):BETAC(I)=2*BETAC(I)

4380 ENT(I)=2*ENT(I):BETAT(I)=2*BETAT(I)

4390 NEXT I

4430 FOR I=1 TO NEL

4440 PRINT"[K] flanges",1I

4450 LE=XLONG(I+1)~-XLONG(I)

4470 IF BEND(I)<0 THEN 4510

4480 IFI=IFT(I):IFJ=IFT(I+1)

4490 JFI=JFT(I) :JFJ=JFT(I+1)

4500 GOTO 4530

4510 IFI=IFC(I):IFJ=IFC(I+1)

4520 JFI=JFC(I):JFJ=JFC(I+1)

4530 GOSUB 4560

4550 GOTO 4730

4560 KEF(1,1)=(6*IFI+6*IFJ)/LE"3

4590 KEF(1,3)=(-4*IFI-2*IFJ)/LE"2

4600 KEF(1,4)=(-6*IFI-6*IFJ)/LE"3

4610 KEF(1,6)=(-2*IFI-4*IFJ)/LE"2

4620 KEF(2,2)=(JFI/2+JFJ/2) /LE

4630 KEF(2,5)=(-JFI/2-JFJ/2) /LE
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KEF(3,3)=(3*IFI+IFJ) /LE
KEF(3,4)=(4*IFI+2*IFJ) /LE"2
KEF(3,6)=(IFI+IFJ)/LE
KEF(4,4)=(6*IFI+6*IFJ) /LE"3
KEF(4,6)=(2*IFI+4*IFJ) /LE"2
KEF(5,5)=(JFI/2+JFJ/2) /LE
KEF(6,6)=(IFI+3*IFJ)/LE

RETURN

REM ADD TO GLOBAL VECTOR KV()

FOR II=1 TO 2:FOR JJ=II TO 2

FOR KK=1 "TO 3:FOR LL=1 TO 3

REM IKKE,JKKE ARE ADDRESSES IN ELEMENT MATRIX
REM IKK, JKK ARE ADDRESSES IN GLOBAIL. MATRIX
IKKE=(II-1) *3+KK

JKKE=(JJ-1) *3+LL

IF IKKE>JKKE THEN 4860
IKK=((I-1)*2+(II-1)*2)*3+KK
JKK=((I-1)*2+(JJ-1)*2) *3+LL

REM KGLOBAL=ADDRESS IN GLOBAL VECTOR
GOSUB 9670

KV (KGLOBAL) =KV (KGLOBAL) +KEF (IKKE , JKKE)
NEXT LL:NEXT KK:NEXT JJ:NEXT II

IF BEND(I)>=0 THEN 4920
IFI=IFT(I):IFJ=IFT(I+1)

JFI=JFT(I) :JFJ=JFT(I+1) -

GOTO 4940

IFI=IFC(I) :IFJ=IFC(I+1)

JFI=JFC(I) :JFJ=JFC(I+1)

REM FORM 6x6 MATRIX

GOSUB 4560

REM ADD TO GLOBAL VECTOR

FOR II=1 TO 2:FOR JJ=II TO 2

FOR KK=1 TO 3:FOR LL=1 TO 3
IKKE=(II-1) *3+KK

JKKE= (JJ-1) *3+LL

IF IKKE>JKKE THEN 5090

TIKK=( (I-1) *2+1+ (II-1)*2)*3+KK

JKK=( (I-1)*2+1+(JJ-1)*2)*3+LL

GOSUB 9670

KV (KGLOBAL) =KV (KGLOBAL) +KEF (IKKE, JKKE)
NEXT LL:NEXT KK:NEXT JJ:NEXT II

NEXT I

REM *%%kkkkkdkdhkkdhhkhhkdhdhhdhhhhkhhdkdhdhrhkhkhkhkdhhkhkdhkhkhkhkhhkhhkk
REM STRUCTURAL STIFFNESS, STIFFENERS
FOR I=1 TO NSTIF

IFS=STIFFEN(I,2) "3*STIFFEN(I,3)/12
JFS=STIFFEN(I,2)*STIFFEN(I,3)"3/3
REM FORM 6x6 MATRIX
KEFS(1,1)=12*ELMOD*IFS/HP"3
KEFS(1,2)=6*ELMOD*IFS/HP" 2
KEFS(1,4)=-12*ELMOD*IFS/HP"3
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KEFS (1,5)=6*ELMOD*IFS/HP"2
KEFS (2, 2) =4 *ELMOD*IFS/HP

KEFS (2, 4) =—6*ELMOD*IFS/HP"2

KEFS (2,5)=2*ELMOD*IFS/HP

KEFS (3, 3) =SHMOD*JFS /HP

KEFS (3, 6) =-SHMOD*JFS/HP

KEFS (4,4)=12*ELMOD*IFS/HP"3

KEFS (4,5)=-6*ELMOD*IFS/HP"2

KEFS (5,5) =4 *ELMOD*IFS/HP

KEFS (6, 6 ) =SHMOD*JFS/HP

REM ADD TO GLOBAL MATRIX

FOR II=1 TO 2:FOR JJ=II TO 2

FOR KK=1 TO 3:FOR LL=1 TO 3
IKKE=(II-1) *3+KK

JKKE=(JJ~-1) *3+LL

IF IKKE>JKKE THEN 5440

IKK=( (STIFFEN(I,1)-1)*2+(II-1)) *3+KK
JKK=( (STIFFEN(I,1)~1)*2+(JJ-1) ) *3+LL
GOSUB 9670

KV (KGLOBAL) =KV (KGLOBAL) +KEFS (IKKE , JKKE)
NEXT LL:NEXT KK:NEXT JJ:NEXT II

NEXT I .

REM *%kkkhhkhkhkhkhhhdhhkhhhhkhhkhkdhhhkdkkhkhkdhhkdhkdkkhkhkhkhkdkkhkkkkkk
REM GEOMETRIC STIFFNESS, FLANGES

FOR I=1 TO NEL

PRINT"[Kg] FLANGES",I

LE=XLONG (I+1)-XLONG(I)

IF BEND(I)<O THEN 5562
NI=ENT(I) : BETAI=BETAT(I)

IF BEND(I+1)<0 THEN 5550 .
NJ=ENT (I+1) : BETAJ=BETAT (I+1) :GOTO 5554
NJ=ENC (I+1) : BETAJ=BETAC (I+1)
NIJ=(NI+NJ) /2:BETAIJ=(BETAI+BETAJ) /2
GOTO 5590

NI=ENC(I) : BETAI=BETAC(I)

IF BEND(I+1)>=0 THEN 5580 :
NJ=ENC(I+1) :BETAJ=BETAC(I+1):GOTO 5584
NJ=ENT (I+1) : BETAJ=BETAT (I+1)
NIJ=(NI+NJ)/2:BETAIJ=(BETAI+BETAJ) /2
REM FORM 6x6 MATRIX

GOSUB 5620

GOTO 5730

KGEF (1,1)=NIJ/LE

KGEF (1,4)=-NIJ/LE

KGEF (2,2)=BETAIJ/LE

KGEF (2,5)=-BETAIJ/LE

KGEF (4,4)=NIJ/LE

KGEF (5,5)=BETAIJ/LE

RETURN

REM ADD TO GLOBAL VECTOR

FOR II=1 TO 2:FOR JJ=II TO 2
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FOR KK=1 TO 3:FOR LL=1 TO 3
IKKE= (II-1)*3+KK
JKKE=(JJ-1) *3+LL

IF IKKE>JKKE THEN 5850
IKK=((I-1)*2+(II-1)*2)*3+KK

" JKK=( (I-1)*2+(JT-1)*2) *3+LL

GOSUB 9670
KGV (KGLOBAL) =KGV (KGLOBAL) +KGEF (IKKE , JKKE)
NEXT LL:NEXT KK:NEXT JJ:NEXT II

IF BEND(I)<O THEN 5910
NI=ENC(I):BETAI=BETAC(I)

IF BEND(I+1)<0 THEN 5892

NJ=ENC (I+1) : BETAJ=BETAC(I+1) :GOTO 5894 .
NJ=ENT (I+1) : BETAJ=BETAT (I+1)
NIJ—(NI+NJ)/2'BETAIJ=(BETAI+BETAJ)/2
GOTO 5930

NI=ENT (I):BETAI=BETAT(I)

IF BEND(I+1)>=0 THEN 5922

NJ=ENT (I+1) : BETAJ=BETAT (I+1) : GOTO 5924
NJ=ENC (I+1) : BETAJ=BETAC (I+1)
NIJ=(NI+NJ)/2:BETAIJ=(BETAI+BETAJ) /2
GOSUB 5620

REM ADD TO GLOBAL VECTOR

FOR II=1 TO 2:FOR JJ=II TO 2

FOR KK=1 TO 3:FOR LL=1 TO 3
IKKE=(II-1)*3+KK

JKKE=(JJ-1) *3+LL

IF IKKE>JKKE THEN 6080
IKK=((I-1)*2+1+(II-1)*2)*3+KK

JTKK=( (I-1) *2+1+ (JJ-1) *2) *3+LL

GOSUB 9670

KGV (KGLOBAL) =KGV (KGLOBAL) +KGEF ( IKKE, JKKE)
NEXT LL:NEXT KK:NEXT JJ:NEXT II

NEXT I

REM dkkkhkdkhhkhkhhkhkhhhkbdhhbhhdkhhkhhhkhhkkhkhkhkhkhthkhkhkkhhdkhhhkhhkk
REM GEOMETRIC STIFFNESS OF VERTICAL LOADS & REACTIONS
FOR I=1 TO NNLOAD

QET=NLOADV (I, 3)-HP/2:IF QET<0 THEN QET=0
QEB=NLOADV (I,3)+HP/2:IF QEB>0 THEN QEB=0
KGD(2,2)=0:KGD(5,5)=0

KGD(1, 1)-LOADV(I)*(NLOADV(I 3) ~QET-QEB) /HP"2
KGD(1,4)=-KGD(1,1)

KGD(4,4)=KGD(1,1)
KGD(2,2)=KGD(2,2)+LOADV (I) *QEB

KGD(5, 5)=KGD(5,5) +LOADV (I) *QET

REM ADD TO GLOBAL VECTOR KGV ()

FOR II=1 TO 6:FOR JJ=II TO 6
IKK=(NLOADV(I,1)-1)*6+II
JKK=(NLOADV(I,1)-1)*6+JJ

GOSUB 9670

KGV (KGLOBAL) =KGV (KGLOBAL) +KGD (II,JJ)
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6260 NEXT JJ:NEXT II
6270 NEXT I

6280 RE]\{ **************************************************
6290 REM STRUCTURAL ELEMENT STIFFNESS MATRIX, WEB

6330 FOR I=1 TO NEL

6340 PRINT"([K] web",I

6350 GOSUB 6380

6360 NEXT I

6370 GOTO 7130

6380 AA=(XLONG (I+1)-XLONG(I))/2

6410 BB=HP/2 .

6500 REM GAUSS INTEGRATION

6510 REM CLEAR KEW :

6520 ERASE KEW:DIM KEW(12,12)

6530 JGAUSS=3:KGAUSS=3:IF SOLUT=1 THEN JGAUSS=3:KGAUSS=9
6540 FOR J=1 TO JGAUSS

6550 FOR K=1 TO KGAUSS

6570 KSI=XSP(J) : ETA=YSP (K)

6590 WEIGH=WSPX (J) *WSPY (K)

6600 IF SOLUT=0 THEN YIEL=0:GOTO 6660

6620 YIEL=0

6622 IF BEND(I)<O THEN 6636

6624 KORAN1=ELMOD* (EC(I)~ET(I))*((ETA+1)/2)

6630 STRESL=RESIDWW (K)+ELMOD*ET (I)+KORAN1:GOTO 6640

6636 KORAN2=(ET (I)~-EC(I))*((ETA+1)/2)

6638 STRESL=RESIDWW (K)+ELMOD*EC (I)+ELMOD*KORAN2

6640 IF BEND(I+1)<0 THEN 6644

6641 KORAN3=ELMOD* (EC(I+1)-ET(I+1))*((ETA+1)/2)

6642 STRESR=RESIDWW (K)+ELMOD*ET (I+1)+KORAN3:GOTO 6646
6644 KORAN4=ELMOD* (ET (I+1)-EC(I+1))*((ETA+1)/2)

6645 STRESR=RESIDWW (K)+ELMOD*EC (I+1)+KORAN4

6646 SIGX=STRESL* (.5-KSI/2)+STRESR* (.5+KSI/2)

6648 IF ABS(SIGX)>FY THEN YIEI=1

6660 REM CONSTITUTIVE MATRIX D()

6680 EETT=ELMOD:GGTT=SHMOD:IF YIEL=1 THEN EETT=0

6690 D(1,1)=EETT*W~3/12/(1-NU~2)

6695 D(1,2)=EETT*W~3/12/(1-NU"2)*NU

6700 D(2,1)=D(1,2):D(2,2)=D(1,1)

6710 D(3,3)=GGTT*W"3/12

6720 REM [B] MATRIX

6730 FOR JJ=1 TO 4

6740 RI=KSI(JJ) : EI=ETA(JJ) :KO=KSI*KSI(JJ) : EO=ETA*ETA (JJ)
6750 KK=(JJ-1)*3

6755 KORANS5=2% (K0+1)* (E0+1)

6760 B(1,KK+1)=~1/8/AA"2% (2*KI* (EO+1) * (KI-2*KSI)-KORANS)
6765 KORAN6=4 *AA*KI"3% (KO+1) * (EO+1)

6770 B(1,KK+3)=1/8/AA"2* (2*¥AA*KI 3% (KO~-1) * (E0+1) +KORAN6)
6780 B(2,KK+1)=-1/8/BB"2* (2*EI* (KO+1) * (EI-2*ETA) ~KORANS )
6785 KORAN7=4*BB*EI~3* (KO+1)* (E0+1)

€790 B(2,KK+2)=-1/8/BB 2% (2*BB*EI ~3* (K0+1) * (EO-1) +KORAN7)
6795 KORAN8=KI*EI* (2+K0O+E0-KSI"2-ETA"2)
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KORAN9=KI* (EO+1) * (EI-2*ETA) + (KO+1) *EI* (KI~-2*KSI)
B(3,KK+1)=2/8/AA/BB* (KORAN8+KORAN9)
KORIA1=2*BB*EI~2*KI* (E0"2-1) +BB*EI 2*KI* (E0+1) "2
B(3,KK+2)=2/8/AA/BB*KORIA1
KORIA2=2*AA*KI“2*EI* (KO~ 2-1) +AA*KI " 2*EI* (KO+1) "2
B(3,KK+3)=-2/8/AA/BB*KORIA2

NEXT JJ -

FOR JJ=1 TO 12:FOR KK=1 TO 3:SUM=0:FOR LL=1 TO 3
SUM=SUM+B (LL, JJ) *D (LL, KK)

NEXT LL:E(JJ,KK)=SUM:NEXT KK:NEXT JJ

REM [E] [B] MATRIX PRODUCT, PUT IN [F)

FOR JJ=1 TO 12:FOR KK=1 TO 12:SUM=0:FOR LL=1 TO 3
SUM=SUM+E (JJ,LL) *B (LL, KK)

NEXT LL:F(JJ,KK)=SUM:NEXT KK:NEXT JJ

FOR JJ=1 TO 12:FOR KK=1 TO 12

KEW (JJ, KK) =KEW (JJ , KK) +AA*BB*WEIGH*F (JJ, KK)

NEXT KK:NEXT JJ

NEXT K:NEXT J

REM ADD TO GLOBAL VECTOR

FOR II=1 TO 4:FOR JJ=II TO 4

FOR KK=1 TO 3:FOR LL=1 TO 3

IKKE= (II-1) *3+KK

JKKE= (JJ-1) *3+LL

IF IKKE>JKKE THEN 7110

IKK=( (I-1)*2+(II-1))*3+KK

JKK=( (I-1)*2+(JJ-1)) *3+LL

GOSUB 9670

KV (KGLOBAL) =KV (KGLOBAL) +KEW ( IKKE , JKKE)

NEXT LL:NEXT KK:NEXT JJ:NEXT II

RETURN g

REM GEOMETRIC STIFFNESS.MATRIX WEB **kkkkkkskkkhkkkhdsk
FOR I=1 TO NEL

PRINT" [Kg] WEB",I

GOSUB 7200

NEXT I

GOTO 7910

REM SUBROUTINE; GEOMETRIC STIFFNESS ELEMENT MATRIX
AA= (XLONG (I+1) ~XLONG(I))/2:BB=HP/2

REM CLEAR KGEW

ERASE KGEW:DIM KGEW(12,12)

REM GAUSS INTEGRATION

FOR J=1 TO JGAUSS

FOR K=1 TO KGAUSS

KSI=XSP(J) : ETA=YSP (K) :REM NATURAL COORDINATES
WEIGH=WSPX (J) *WSPY (K)

REM STRESSES AT SAMPLING POINTS

REM SIGMA-X

IF BEND(I)<0 THEN 7350

KORIA3=ELMOD* (EC(I)-ET(I))* ((ETA+1)/2)
STRESL=RESIDWW (K) +ELMOD*ET (I) +KORIA3:GOTO 7390
KORIA4=ELMOD* (ET (I)-EC(I))*((ETA+1)/2)
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STRESL=RESIDWW (K) +ELMOD*EC (I) +KORIA4
IF BEND(I+1)<0 THEN 7410
KORIAS=ELMOD* (EC (I+1)~ET (I+1))* ( (ETA+1)/2)
STRESR=RESIDWW (K)+ELMOD*ET (I+1)+KORIA5:GOTO 7460
KORIA6=ELMOD* (ET (I+1)-EC(I+1))*( (ETA+1)/2)
STRESR=RESIDWW (K) +ELMOD*EC (I+1) +KORIA6
SIGX=STRESL* (.5-KSI/2)+STRESR* (.5+KSI/2)

IF SOLUT=0 THEN 7480

IF ABS(SIGX)>FY THEN SIGX=SGN (SIGX)*FY

REM TAU-XY; CONSTANT SHEAR STRESS OVER WEB HEIGHT
TAUXYL=SHEAR (I, 1) /HP/W:TAUXYR=SHEAR(I,2) /HP/W
TAUXY=TAUXYL* (. 5-KSI/2)+TAUXYR* (.5+KSI/2)

SIGY=0

FOR JJ=1 TO 4

KI=KSI(JJ) : EI=ETA(JJ) : KO=KSI*KSI(JJ) : EO=ETA*ETA (JJ)
KK=(JJ-1) *3

M(1,KK+1)=1/4 /AA*KI* (E0+1)
M(2,KK+1)=1/4/BB*EI* (KO+1)

NEXT JJ

REM FORM MATRIX [SIGM] 4x4 OF STRESSES
SIGM(1,1)=SIGX:SIGM(1,2)=TAUXY:SIGM(2,1)=TAUXY
SIGM(2,2)=SIGY

FOR II=1 TO 12:FOR JJ=1 TO 2:SUM=0:FOR KK=1 TO 2
SUM=SUM+M (KK, IT) *SIGM (KK, JJ)

NEXT KK:MTS(II,JJ)=SUM:NEXT JJ:NEXT II

FOR II=1 TO 12:FOR JJ=1 TO 12:SUM=0:FOR KK=1 TO 2
SUM=SUM+MTS (II,KK) *M(KK,JJ)

NEXT KK:MTSM(II,JJ)=SUM:NEXT JJ:NEXT II

REM ADD CONTRIBUTION TO ELEMENT MATRIX

FOR II=1 TO 12:FOR JJ=II TO 12 .

KGEW (II,JJ)=KGEW(II,JJ)+MTSM(II,JJ)*WEIGH

NEXT JJ:NEXT II

NEXT K

NEXT J

FOR II=1 TO 12:FOR JJ=II TO 12

KGEW (II,JJ)=KGEW(II,JJ)*AA*BB*W:NEXT JJ:NEXT II
REM ADD TO GLOBAL VECTOR

FOR II=1 TO 4:FOR JJ=II TO 4

FOR KK=1 TO 3:FOR LL=1 TO 3

IKKE= (II-1)*3+KK

JKKE= (JJ-1) *3+LL

IF IKKE>JKKE THEN 7890

IKK=( (I-1)*2+(II-1))*3+KK

JKK=( (I-1) *2+(JJ-1) ) *3+LL

GOSUB 9670

KGV (KGLOBAL) =KGV (KGLOBAL) +KGEW ( IKKE , JKKE)

NEXT LL:NEXT KK:NEXT JJ:NEXT TI

RETURN

REM EIGENVALUE ROUTINE dhkkhkhkhkhkkhkhkdkdhkhhkhkkhkkkkhkkhhkhhkkhkkkx
REM INVERSE ITERATION, WITH EIGENVALUE SHIFTING
REM ADD (FIXED) RESTRAINT CONDITIONS TO [K]



7940
7960
7970
7980
7990
8000
8010
8020
8022
8023
8024
8025
8026
8040
8070
8100
8110
8130
8140
8150
8170
8180
- 8200
8210
8220
8230
8240
8250
8260
8270
8280
8290
8300
8310
8320
8340
8350
8360
8370
8400
8410
8420
8440
8450
8480
8490
8500
8510
8520
8530
8540
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FOR I=1 TO NRNOD
FOR J=1 TO 3
IKK=(NODRES (I,1)~1) *3+J : JKK=IKK

GOSUB 9670

RESTRAI=NODRES (I,J+1)

IF RESTRAI=-1 THEN RESTRAI=1E+15:REM FIXED RESTRAINT
KV (KGLOBAL) =KV (KGLOBAL) +RESTRAI

NEXT J:NEXT I

REM ADD ELASTIC RESTRAINT COEFFICIENTS

FOR I=1 TO NNRESS
IKK=CCOEFF (I, 1) : JKK=CCOEFF (I, 2) :GOSUB 9670
KV (KGLOBAL) =KV (KGLOBAL) +CCOEFF (I, 3)

NEXT I

FOR J=1 TO TOTA:KGV(J)=KGV(J)/GAMMA:NEXT J
FOR I=1 TO TOTA:KBAR(I)=KV(I)+SHIFT*KGV(I):NEXT I
FOR I=1 TO TOTA:KINV(I)=KBAR(I):NEXT I
GOSUB 8960

REM INVERSE ITERATION ROUTINE

REM LAMBDA=EIGENVALUE; LAMBDAP=SHIFTED EIGENVALUE
LAMBDAO=1E+20

REM RO() IS INITIAL ASSUMED DISPLACEMENT EIGENVECTOR
FOR I=1 TO NEQ:R(I)=RO(I):NEXT I

ERASE Y:DIM Y (NEQ)

FOR I=1 TO NEQ

JLIM1=1:JLIM2=I+HBW-1

IF I>HBW THEN JLIM1=I-HBW+1

IF I>NEQ-HBW THEN JLIM2=NEQ

FOR J=JLIM1 TO JLIM2

IKK=TI : JKK=J

IF JKK<IKK THEN IKK=J:JKK=I

GOSUB 9670

Y (I)=Y(I)+KGV(KGLOBAL)*R(J)

NEXT J

NEXT I

YYS=0

FOR I=1 TO NEQ

YYS=YYS+Y (I)*Y(I)

NEXT I

YABS=SQR (YYS)

FOR I=1 TO NEQ

2(I)=Y(I)/YABS

NEXT I

GOSUB 9250

REM RAYLEIGH QUOTIENT

ERASE Y:DIM Y (NEQ)

FOR I=1 TO NEQ

JLIM1=1:JLIM2=I+HBW-1

IF I>HBW THEN JLIM1=I-HBW+1

IF I>NEQ-HBW THEN JLIM2=NEQ

FOR J=JLIM1 TO JLIM2

IKK=I : JKK=J



8550
8560
8570
8580
8590
8620
8630
8640
8650
8660
8670
8680
8690
8700
8710
8720
8730
8750
8760
8770
8780
8800
8810
8820
8830
8850
8860
8870
8880
8890
8900
8910
8920
8950
8960
8990
9010
9020
9030
9040
9060
9070
9080
9100
9110
9130
9140
9160
9170
9180

IF JKK<IKK THEN IKK=J:JKK=I
GOSUB 9670

Y (I)=Y(I)+KGV(KGLOBAL)*R(J)
NEXT J

NEXT I

ERASE VX:DIM VX (NEQ)

FOR I=1 TO NEQ
JLIM1=1:JLIM2=I+HBW-1

IF I>HBW THEN JLIM1=I-HBW+1
IF I>NEQ-HBW THEN JLIM2=NEQ
FOR J=JLIM1 TO JLIM2
IKK=I : JKK=J

IF JKK<IKK THEN IKK=J:JKK=I
GOSUB 9670

VX (I)=VX(I)+KBAR(KGLOBAL)*R(J)

NEXT J
NEXT I

PROD1=0

FOR I=1 TO NEQ
PROD1=PROD1+R(I) *VX(I)
NEXT I

PROD2=0

FOR I=1 TO NEQ
PROD2=PROD2+R (I) *Y (I)
NEXT I
LAMBDAP=-PROD1/PROD2
LAMBDA1=LAMBDAP+SHIFT
PRINT "lambda=";LAMBDA1
REM CHECK CONVERGENCE

IF ABS (LAMBDA1-LAMBDAO) /ABS (LAMBDA1)<.001 THEN 8920

LAMBDAO=LAMBDA1l

GOTO 8320

LAMBDA=LAMBDA1

RETURN

REM CROUT REDUCTION ROUTINE
FOR J=2 TO NEQ

Il=2

IF J>HBW THEN I1=J-HBW+2
FOR I=I1 TO J

SUM=0

Kl=1 :

IF J>HBW THEN K1=J-HBW+1
FOR K=K1 TO I-1

IKK=K:JKK=1

GOSUB 9670:AKI=KINV (KGLOBAL)
IKK=K:JKK=J

GOSUB 9670:AKJ=KINV (KGLOBAL)
IKK=K:JKK=K :
GOSUB 9670:AKK=KINV (KGLOBAL)
SUM=SUM+AKI*AKJ /AKK
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9190
2200
9210
2220
9230
9240
9250
9270
9290
9300
9310
9330
9340
9360
9370
2380
9390
9400
9410
9440
9450
9460
9470
9480
9450
9510
9520
9530
9540
9560
9570
9580
9590
9610
9620
9630
9640
9650
9660
9670
9680
9690
9700
9710
9720
9730
9731

NEXT K
IKK=1:JKK=J:GOSUB 9670

KINV (KGLOBAL)=KINV (KGLOBAL) -SUM

NEXT I

NEXT J

RETURN

FOR I=2 TO NEQ

SUM=0

Kl=1

IF I>HBW THEN K1=I-HBW+1
FOR K=K1 TO I-1

IKK=K:JKK=1

GOSUB 9670 : AKI=KINV (KGLOBAL)
TKK=K:JKK=K

GOSUB 9670 : AKK=KINV (KGLOBAL)
SUM=SUM+AKI*Z (K) /AKK

NEXT K

Z(I)=2(1)-SUM

NEXT I

ERASE R:DIM R(NEQ)

IKK=NEQ: JKK=NEQ

GOSUB 9670

R (NEQ) =2 (NEQ) /KINV(KGLOBAL)
FOR I=NEQ-1 TO 1 STEP -1
SUM=0

J2=NEQ

IF J>HBW THEN J2=HBW+I-1

IF J2>NEQ THEN J2=NEQ

FOR J=I+1 TO J2

IKK=I : JKK=J

GOSUB 9670:AIJ=KINV (KGLOBAL)
SUM=SUM+AIJ*R(J)

NEXT J

IKK=I:JKK=1I

GOSUB 9670:AII=KINV (KGLOBAL)
R(I)=(Z(I)-SUM)/AII

NEXT I

RETURN
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REM **************************************************

REM SUBROUTINE, ADDRESSES IN GLOBAL VECTORS

IF IKK>JKK THEN 9720
IF JKK>HBW THEN 9710

KGLOBAL=IKK+JKK* (JKK-1) /2:GOTO 9720
KGLOBAL=HBW* (HBW+1) / 2+ (JKK-HBW-1) *HBW+IKK- (JKK-HBW)

RETURN

REM DATA STATEMENTS *kkkkkhkkkkhhkhkkhhhhkhkdhdkhhhhkkhrdx

REM SOLUTION TYPE (ELASTIC=0,

INELASTIC=1)



9732
9740
9750
9760
9770
9772
9775
9776
9777
9800
9810
9820
9821
9822
9824
9826
9840
9850
9852
9854
9866
9868
9870
9872
9874
9876
9880
9890
9898
9899
9900
9901
9902
9903
9905
9906
9909
9912
9915
9923
9924
9926
9928
9930
9932
9980
9981
9985
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DATA O
REM CROSS-SECTIONAL DIMENSIONS
DATA 353,128,10.7,6.5

REM NUMBER OF MAIN DIFFERENT LONGITUDINAL DIVISIONS
DATA 3

REM NUMBER OF SUBDIVISIONS, SUBDIVIDING INTERVAL
DATA 6,500 ’

DATA 7,1000

DATA 3,500

REM MATERIAL PROPERTIES

DATA 2E5,300,0.3

REM RESIDUAL STRESSES

REM FLANGES

DATA 200,100,40,20,10

REM WEB

DATA -180,-170,-130,-40,200
REM LOADS AND REACTIONS DATA
DATA 8

DATA 1,-48.5625E3,30

DATA 1,-48.5625E3,231.9

DATA 5,139.617E3,~176.5

DATA 8,-24.2813E3,231.9

DATA 10,-24.2813E3,231.9

DATA 12,-24.2813E3,231.9

DATA 14,127.4765E3,-176.5
DATA 17,-97.125E3,0

REM BENDING MOMENT AT ONE LONGIUDINAL POINT
DATA 1,0

REM SHIFT, GAMMAO, GAMMA1l
DATA 0.2,0,0

REM NODAL RESTRAINTS

DATA 7

data 2,0,1E7,0

data 10,-1,0,0

data 16,0,1E7,0

data 20,0,1E7,0

data 24,0,1E7,0

DATA 27,-1,0,0

DATA 28,-1,0,0

REM GENERAL RESTRAINTS

DATA 4

DATA 2,55.35

DATA 16,55.35

DATA 20,55.35

DATA 24,55.35

REM INITIAL DISPLACEMENT EIGENVECTOR
DATA 1

DATA 1,1,0,0

10000 REM STIFFENERS
10010 DATA 1
10012 DATA 5,128,10



Appendix B

WORKED EXAMPLE

Consider the beam with two overhangs shown in Fig. B.1. The
beam geometry, loading and restraint conditions are also shown in
that Figure. The dimensions of the W360x39 cross section used as
well as the residual stress distribution are given in Fig. B.2. The mesh
‘idealization which was used is shown in Fig. B.3 where the
longitudinal point numbers are indicated by circles and nodal point
numbers are also given. For a quick apprbximate estimate of the
buckling load, an elastic solution is sought with a small value of the
shift. This solution is used afterwards to estimate the best values of

shift, lower and upper bounds to be used with the inelastic solution.
B.1 Preliminary calculations to prepare input data

1. Determine the plastic moment from the nominal dimensions,

neglecting the fillets:

The plastic modulus Z;:
(d 2t)2t
z‘=bt(d-t)+;4-—‘!

2
(353-2x10.7) x6.5
4

3 3
=128x10.7(353-10.7) + =647.5x10 mm

3 6
M, =Z Fy =647.5x10x 300 =194.2x10 N.mm

2. The value of P corresponding to a maximum negative

moment, which occurs at left column, equals to the plastic moment is:
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6
M,  194.2x10

3
= = =48.56x10 N
2x2000 2x2000

3. For lateral restraint above the top flange:

The distance, hh, between the centroid or middle surface of top
flange and the point of lateral restraint (within which a fictitious 2-

node element is introduced).
hh = 50 + 5.35 = 55.35 mm

B.2 Input data
1. Solution type: SOLUT
SOLUT =0 for elastic.
SOLUT =1 for inelastic.
An elastic solution is chosen as a first trial:
DATA O
An inelastic solution is chosen in the final trial:
DATA 1
2. Cross-sectional dimensions: D,B,T,W.
DATA 353,128,10.7,6.5
3. Mesh characteristics
Number of longitudinal main divisions:

DATA 3

For each main division, in a left-right order along the beam, a |
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data statement is expressed containing the number of subdivisions

and their regular spacing:

DATA 6,500

DATA 7,1000

DATA 3,500
4. Material properties: elastic modulus (ELMOD), yield stress (FY) and
Poisson's ratio (NU).

DATA 2ES,300,0.3
5. Residual stresses:

Flange ( (5r)1, (Or0)2, (0103, (Grp)a, (Or)s ):

DATA 200,100,40,20,10

WEB ( (0rw)1. (Orw)2, (6rw)3: (Orw)4, (Orw)s ):

DATA -180,-170,-130,-40,200
6. Loads and reactions:

Number of loads and reactions:

' DATA 8

The longitudinal point number where the force is applied, the

force (positive upwards and negative downwards) and the height of

application of the force above or below the shear centre (positive

above and negative below):
DATA 1,-48.5625E3,30

DATA 1,-48.5625E3,231.9
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DATA 5,139.617E3,-176.5
DATA 8,-24.2813E3,231.9
DATA 10,-24.2813E3,231.9
DATA 12,-24.2813E3,231.9
DATA 14,127.4765E3,-176.5
DATA 17,-97.125E3,0
7. Bending moment at a selected longitudinal point:

Longitudinal point number, bending moment (positive if

causing tension on the bottom flange and negative otherwise):
DATA 1,0
8. Shift, lower bound and upper bound.

An elastic solution is first sought with a relatively small shift.

The chosen values for upper and lower bounds are unimportant
DATA 0.2,0,0

After obtaining a value of M /Mp = 0.77 an inelastic solution

is sought with the following data statement:
DATA 0.7,0.6,0.99
9. Nodal restraints;

Number of restrained points:
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DATA 8

For each restrained node enter the node number, restraint
against lateral deflection, restraint against twisting rotation and
restraint against rotation about the vertical axis. A value of -1
implies a fixed restraint and a value of O implies no restraint. An
elastic (partial) restraint is specified simply by entering the actual
restraint stiffness. The lateral restraint above nodes 2, 16, 20 and 24
will be considered in the next data section "General restraint". It is
important to exclude these lateral restraint acting above the nodal
points at this stage. It can be assumed that the torsional rotation
angles above the nodes have the same values at these nodes. The
elastic restraints against twisting applied above nodes 2, 10, 20 and

24 will therefore be specified at these nodes:

DATA 2,0,1E7,0

DATA 9,0,-1,0

DATA 10,-1,0,0

DATA 16,0,1E7,0

DATA 20,0,1E7,0

DATA 24,0,1E7,0

DATA 27,-1,0,0

DATA 28,-1,0,0
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10. General restraints
Number of points restrained above the top flange.
DATA 4

For each restrained point, enter the node number nearest that
point and the height of lateral restraint above the middle surface of

top flange.
DATA 2,55.35
DATA 16,55.35
DATA 20,55.35
DATA 24,55.35
11. Initial displacement vector:
Number of nodes at which displacements are specified:
DATA 1

For each node, enter the specified normalized values for the
lateral displacement, the rotation about the longitudinal axis, and the

rotation about the vertical axis:
DATA 1,1,0,0
12. Stiffeners:

Number of stiffeners:
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DATA 1

For each stiffener, enter the longitudinal point number at
which the stiffener is used, the width of the stiffener, and its

thickness:
DATA 5,128,10
B.3 Output data
1. Normalized buckling displacements at all nodes, given in Fig. B.4.

2. M /My, given as 0.8986 in Fig. B.5.

3. Normalized buckled shape, given in Fig. B.5.
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INELASTIC SOLUTION:

Mcr

= .8985937499999999 Mp

Normalized buckled shape

6.77E-04

Press ENTER to continue

7.98E-05
7.29E~04
8.54E-05
6.49E-04
7.62E-05
5.12E-04
6.02E-05
3.47E-04
4.19E-05
1.71E-04
2.90E-05
1.17E-17
-4.46E-17
-7.41E-05
-2.58E-05
-1.39E-04
-5.39E-05
-1.98E-~04
-8.14E-05

Theta-~X

-2.04E-09
-5.38E-07
-5.17E-07
=-1.07E-06
-1.03E-06
-1.82E-06

-1.42E-06
-1.89E-06
-1.88E-06
-1.78E-06
-1.37E-06
-1.33E-06
-1.34E-06

-9.36E-07

-7.48E-07
-4 .24E-07
-4 .22E-07
-4.94E-09
-1.29E-08
1.39E-07
1.30E-07
2.48E~07
2.42E-07
3.11E-07
3.06E-07

Theta~Y

=2.77E-07

3.51E-08
-2.99E-07

1.33E-08
=3.57E-07
-3.26E-08
-4 .24E~07
-7.62E-08
-4 .79E-07
=-1.23E-07
-4 .39E-07
-3.78E-08
=-3.50E-07
-2.16E-08
-1.41E-07

-8.06E-09
2.65E-08
1.31E-09
1.17E-07
1.40E-08
1.55E-07
1.86E-08
1.73E-07
1.46E-08
1.77E-07
1.66E-08
1.58E-07
4.47E-08
1.38E-07
5.56E-08
1.22E~-07
5.59E~08
1.16E-07
5.46E~08

Fig. B.4 Normalized buckling displacements, predicted
for the worked example
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Appendix C

BENDING STIFFNESS OF OPEN-WEB STEEL JOISTS

Fig. C.1 shows an open-web steel joist with a span length L and
end panel length Lp. The top chord at both ends was assumed to
extend a certain distance beyond the end of the the web member to

account for the joist seat. This joist can be modelled as a beam with a

moment of inertia I for the central portion between end panels and

a moment of inertia Ip, which is taken equal to that of the top chord

member, for the end panel spans, as indicated in Fig. C.2. Applying an
in-plane bending moment, M, at the end q, and assuming simply

supported end conditions, the end rotation is given as

M

c.1] Oy = ———
[ 9 3EI,LI,

2 2 2 3
[IIL - (I;- I(L"- 3LL, +3L, - 2Lp/L)]

Because I] >> I and L >> Lp, the expression for end rotation can

be approximated as

[C.2] o, = ——PL

Therefore, the in-plane bending stiffness of the open-web steel

joist is obtained as

[C3] kg=M_ El2

aq Lp

306



307

L, L,
. L
[ o
r |
Fig. C.1 Open-web steel joist
I, I, I,
é—%ﬂ
Ly Lp
le L ol
I o

Fig. C.2 Equivalent beam model



Appendix D

The design procedures given in Chapter 7 for cantilever-
suspended span beams are verified here for different cross sections
under a variety of loading, geometry and restraint conditions. These
verifications are given in Tables D.1, D.2, D.3 and D.4 for cases 1, 2
and 3 of beams with fork supports, and for the case of beams
without fork supports, respectively. The yield stress and modulus of
elasticity are taken as 300 MPa and 200000 MPa, respectively. The
elastic values of M. /M, are given in the tables for both the
proposed design procedure and the finite element predictions. These
elastic values were reduced according to the CSA standard CAN/CSA-
S16.1-M89 (CSA 1989) using equation [7.26] to obtain the inelastic
buckling capacities. The predicted/design ratios of the inelastic
buckling capacities are given in the tables. The ratio P;/P, shown on
Tables D.2 and D.4 indicates the ratio of the load transferred to the
cantilever tip from the suspended span, to the joist load applied at
the top flange level within the cantilever span. It should be noted

that the values of M., given in the tables refer to the maximum

absolute moment along the beam.
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Section L m R L_/L Kz Elastic M;/M,, Inelastic
(S16.1)
Design Predicted predicted
Nmmy/rad. (FEM) m
W310x39 06 0.25 6E7 3.097 3.285 1.00
W310x39 0.6 0.25 3E9 3.591 3.983 1.00
W310x39 1.0 0.25 3E9 4062 4917 1.00
W310x39 1.0 025 6E7 3.502 4.276 1.00
W310x39 1.6 0.25 6E7 3.713 5.454 1.00
W310x39 1.6 0.25 3E9 4.305 5.602 1.00
W310x39 1.6 0.17 3E9 6.398  6.501 1.00
W310x39 1.6 0.17 6E7 5517 6.324 1.00
W310x39 1.0  0.17 6E7 4720 5.018 1.00
W310x39 1.0 0.17 3E9 5474  5.809 1.00
W310x39 06 0.17 3E9 4.044 4291 1.00
W310x39 06 0.17 6E7 3487  3.557 1.00
W310x39 1.0 0.17 6E7 4540 4.162 1.00
W310x39 1.0 017 3E9 5371  4.582 1.00
W310x39 1.0 0.25 3E9 3410 3.633 1.00
W310x39 1.0 0.25 6E7 2.883 3.337 1.00

Table D.1 Verification of design procedure, Case 1
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Section L, m R L./L Kg Elastic Mo/M, I(Iéellg.slti)c
Design Predicted predicted
Nmm/rad. (FEM) _ITsign——
W360x39 06 0.25 6E7 1.787 1.673 0.99
W360x39 06 0.25 3E9 2.151 1.981 0.99
W360x39 1.0 025 3E9 2432 2379 1.00
W360x39 1.0 0.25 6E7 2021 2.149 1.01
W360x39 1.6 025  6E7 2.143 2475 1.00
W360x39 1.6 0.25 3E9 2579 2726 1.00
W360x39 1.6 0.17 3E9 3.831 3.753 1.00
W3 Ix39 1.6 0.17 6E7 3.184 3315 1.00
W360x39 1.0 0.17 6E7 2724 2.702 1.00
W360x39 1.0 0.17 3E9 3.278 3.055 1.00
W360x39 06 0.17 3E9 2422 2.261 1.00
W360x39 0.6 0.17 6E7 2.013 1.870 0.99
W360x39 06 0.17 1E15 2420 2.272 1.00
W360x39 06 0.17 3E7 1.758 1.684 0.99
W360x39 06 0.25 3E7 1.563 1.514 0.99
W360x39 06 0.25 1E15 2.159 1.989 0.99

Table D.1 continued



Table D.1 continued

Secion L, m R L. /L K Elastic M/M, Inelastic
(S16.1)
Design Predicted predicted
Nmm/rad. (FEM) _ﬁgsi—gr-l-
W410x39 9 06 0.17 6E7 1.670  1.663 1.00
W410x39 9 06 0.17 3E9 1.917 1.881 1.00
W410x39 9 1.0 0.17 3E9 2595 2.786 1.00
W410x39 9 1.0 0.17 6E7 2.261  2.548 1.00
W410x39 9 1.6 0.17 6E7 2.642 3.057 1.00
W410x39 9 1.6 0.17 3E9 3.033  3.401 1.00
W410x39 9 1.6 025 3E9 2.041 2.545 1.01
W410x39 9 1.6 0.25 6E7 1.778  2.323 1.03
W410x39 9 1.0 025 6E7 1.678  2.039 1.04
W410x39 9 1.0 0.25 3E9 1.926  2.206 1.02
W410x39 9 06 025 3E9 1.703  1.678 1.00
W410x39 9 0.6 0.25 6E7 1.483 1.489 1.00
- W410x39 10 1.0 0.17 1E15 2440 2.835 1.00
W410x39 10 1.0 0.25 1E15 2.175  2.050 0.99
W410x39 10 1.0 0.25 3E7 1410 1.704 1.04
W410x39 10 0.6 025 3E7 1.244  1.256 1.00
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Section L, m R L./L Kg Elastic My/M, I(Iéellg'slti)c
Design Predicted predicted
Nmm/rad. (FEM) Design

W410x39 7.5 06 025 3E7 1484 1.711 1.03
W410x39 7.5 06 0.17 3E7 1.661 1.835 1.02
W410x39 7.5 06 0.17 1E15 2130 2.184 1.00
W410x39 15 1.0 0.17 1E15 1.800 1.745 0.99
W460x74 12 0.6 025 6E7 1.718  1.721 1.00
W460x74 12 0.6 025 3E9 2524 2325 1.00
W460x74 12 1.0 0.25 3E9 2.855  2.853 1.00
W460x74 12 1.0 025 6E7 1.943 2334 1.02
W460x74 12 1.6 0.25 6E7 2060 2.628 1.01
W460x74 12 1.6 0.25 3E9 3.027  3.276 1.00
W460x74 12 1.6 0.17 3E9 4497 4470 1.00
W460x74 12 1.6 0.17 6E7 3.060 3.426 1.00
W460x74 12 1.0 0.17 6E7 2.618 2.864 1.00
W460x74 12 1.0 0.17 3E9 3.848  3.651 1.00
W460x74 12 0.6 0.17 3E9 2.843  2.639 1.00
W460x74 12 0.6 0.17 6E7 1.935 1917 1.00
n =64

p=1.002

Table D.1 continued V =0.010
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Secion L, m R L,/L PP, K Elastic Mo/M,, gilgiﬁ)c

Design Predicted predicted

Nmm/rad. (FEM) m—
W310x39 6 06 025 1 3E7 1.348 1.453 1.02
W310x39 6 1.0 025 1 3E7 1543 1577 1.01
W310x39 6 1.6 025 1 3E7 1867 1.744 0.99
W310x39 9 06 025 1 3E8 1.808  1.803 1.00
W310x39 9 1.0 025 1 3E8 2012 2.005 1.00
W310x39 9 1.6 0.25 1 3E8 2286  2.133 1.00
W360x39 9 | 06 025 1 3E7 1205 1.102 0.97
W360x39 9 1.0 025 1 3E7 1.331 1.253 0.98
W360x39 9 1.6 025 1 3E7 1442 1.334 0.98
W360x39 6 06 025 1 3E7 1.128  1.180 1.01
W360x39 6 1.0 025 1 3E7 1266 < 1.256 1.00
W360x39 6 1.6 025 1 3E7 1463  1.357 0.98
W360x39 6 06 025 1 1IE8 1348 1406 1.01
W410x39 12 1.6 025 2 3E9 1.241 1.367 1.03
W410x39 12 1.6 025 2 6E7 1.091 1.219 1.04
W410x39 12 16 0.17 1 6E7 1.091 1.134 1.01

Table D.2 Verification of design procedure, Case 2
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Table D.2 continued

Secion L,m R L./L P/P, Kp  Elastic M/M, Inelastic
(S16.1)
Design Predicted predicted
Nmm/rad. (FEM) _D_e_s;i—g-;x—
W410x39 9 06 0.25 3E7 0.814 0.888 1.04
W410x39 9 1.0 025 3E7 0908 1.009 1.05
W410x39 9 1.6 025 3E7 1.036 1.058 1.01
W410x39 6 0.6 0.25 3E7 0.815 0.892 1.05
W410x39 6 1.0 0.25 3E7 0933 0.971 1.02
W410x39 6 1.6 0.25 3E7 1.130 1.078 0.98
W410x39 12 0.6 0.25 6E7 0906 0.967 1.03
W410x39‘ 12 0.6 0.25 3E9 1.031 1.120 1.03
W410x39 12 0.6 0.25 3E9 1.031 1.157 1.04
W410x39 12 0.6 0.25 6E7 0906 1.000 1.04
W410x39 12 1.0 0.25 6E7 0989 1.114 1.04
W410x39 12 1.0 0.25 3E9 1.125 1.262 1.04
W410x39 12 1.0 0.25 3E9 1.125  1.207 1.02
W410x39 12 1.0 0.25 6E7 0.989 1.063 1.03
W410x39 12 1.6 0.25 6E7 1.091 1.151 1.02
| W410x39 12 1.6 0.25 3E9 1.241  1.296 1.01
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Section L,m R L /L PP, K; Elastic M /M, I(x;ellg‘slti)c

Design Predicted predicted

Nmm/rad. (FEM) Design
W410x39 12 1.6 0.17 3E9 1241 1.277 1.01
W410x39 12 1.6 0.17 39 1241 1.399 1.03
W410x39 12 1.6 0.17 6E7 1.091 1.239 1.04
W410x39 12 1.0 0.17 6E7 0.989 1.110 1.04
Ww410x39 12 1.0 0.17 39 1125 1.269 1.04
W410x39 12 1.0 0.17 3E9 1.125 1.175 1.01
W410x39 12 1.0 0.17 6E7 0989 1.032 1.02
W410x39 12 0.6 0.17 6E7 0906 0.930 1.01
W410x39 12 0.6 0.17 3E9 1.031 1.084 1.02
W410x39 12 06 0.17 3E9 1.031 1.149 1.04
W410x39 12 06 0.17 6E7 0.906 0.983 1.04
W460x74 12 0.6 0.17 6E7  1.201 1.159 0.99
W460x74 12 06 0.17 3E9 1.765 1.613 0.98
W460x74 12 0.6 0.17 3E9 1765 1.718 0.99
W460x74 12 0.6 0.17 6E7 1.201 1.223 1.01
W460x74 12 1.0 0.17 6E7  1.334 1.461 1.02

Table D.2 continued



Table D.2 continued
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Section L,m R L /L P/P, Kp Elastic Mo/M,, I(téellgf»{i)c

Design Predicted predicted

Nmm/rad. (FEM) —D—e—s—ié;_
w460x74 12 1.0 0.17 3E9 1.961 1.936 1.00
W460x74 12 1.0 0.17 3E9 1961 1.784 0.98
W460x74 12 1.0 0.17 6E7 1.334 1.353 1.00
Ww460x74 12 1.6 0.17 6E7 1.468  1.440 0.99
W460x74 12 1.6 0.17 39 2157 1953 0.99
W460x74 12 1.6 0.17 3E9 2157 2.148 1.00
W460x74 12 1.6 0.17 6E7 1.468 1.569 1.02
W460x74 12 1.6 0.25 6E7 ..468  1.560 1.01
W460x74 12 1.6 0.25 3E9 2157 2.137 1.00
W460x74 12 1.6 0.25 39 2157 1.986 0.99
W460x74 12 1.6 0.25 6E7 1.468 1.446 1.00
W460x74 12 1.0 0.25 6E7 1334 l..378 1.01
-W460x74 12 1.0 0.25 3E9 1.961 1.849 0.99
W460x74 12 1.0 0.25 3E9 1961 1.966 1.00
Ww460x74 12 1.0 0.25 6E7 1.334 1474 1.03
W460x74 12 0.6 0.25 3E9 1.765 1.771 1.00
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Section L,m R L./L PP, Kg Elastic Mo/M, I(geilgslti)c
Design Predicted predicted

Nmm/rad. (FEM) Design

W460x74 12 0.6 025 2 6E7 1201 1.261 1.01

W460x74 12 06 025 1 6E7 1.201 1.205 1.00

W460x74 12 06 0.25 1 3E9 1.765 1.692 0.99
n =67

w=1.012
V =0.020

Table D.2 continued



Table D.3 Verification of design procedure, Case 3
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Secion L,m R L[ /L Kp Elastic Mg /M, Inelastic
(S16.1)
Design Predicted predicted
Nmm/rad. (FEM) ‘m
W310x39 6 0.6 0.25 6E7 1.665 1.v646 1.00
‘'W310x39 6 0.6 0.25 3E9 1.931 1.879 1.00
W310x39 6 0.6 0.17 6E7 1.876  1.855 1.00
W310x39 6 06 017  3E9 2176 2238  1.00
W310x39 6 1.0 0.17 6E7 2.171 2.058 0.99
W310x39 6 1.0 0.17 3E9 2.519 2398 1.00
W310x39 6 1.0 0.25 6E7 1.760 1.756 1.00
W310x39 6 1.0 0.25 3E9 2.042 1.950 v.99
W310x39 6 1.6 0.25 6E7 1.863  1.893 1.00
W310x39 6 1.6 0.25 3E9 2.160 2.037 0.99
W310x39 6 1.6 0.17 3E9 2.800 2.601 1.00
W310x39 6 1.6 0.17 6E7 2415 2.339 1.00
W310x39 9 1.0 0.17 6E7 1.691 1.771 1.01
W310x39 9 1.0 0.17 3E9 2000 1.899 0.99
W310x39 9 1.0 0.25 3E9 1.554 1.413 0.98
W310x39 9 1.0 0.25 6E7 1.319 1.362 1.01
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Section Lm R L /L Kp Elastic M;/M, Inelastic
(S816.1)
Design Predicted pregicted
Nmm/rad. (FEM) —D@—
W360x39 6 06 025 6E7 1.114 1.258 1.04
W360x39 6 0.6 0.25 3E9 1.318 1.331 1.00
W360x39 6 0.6 0.17 3E9 1.632 1.576 0.99
W360x39 6 0.6 0.17 6E7 1.379 1.460 1.01
W360x39 6 1.0 0.17 6E7 1.569 1.581 1.00
W360x39 6 1.0 0.17 3E9 1.856 1.818 1.00
W360x39 6 1.0 0.25 3E9 1.395 1.422 1.01
W360x39 6 1.0 0.25 6E7 1.179 1.309 1.03
W360x39 6 1.6 0.25 6E7 1.216 1.374 1.04
W360x39 6 1.6 0.25 3E9 1.438 1.467 1.01
W360x39 6 1.6 0.17 3E9 2.002 1.943 0.99
W360x39 6 1.6 0.17 6E7 1.693 1.73'9 1.01
W360x39 9 1.0 0.17 6E7 1.196 1.250 1.01
W360x39 9 1.0 0.17 3E9 1.439 1.344 0.98
W360x39 9 1.0 0.25 3E9 1.035 0.999 0.99
W360x39 9 1.0 0.25 6E7 0.860 0.964 1.05

Table D.3 continued
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Section L,m R L /L Kg Elastic M/M, Inelastic
(516.1)

Design Predicted predicted

Nmm/rad. (FEM) m‘

W410x39 8 06 025  6E7 0.812  0.839 1.02
W410x39 8 06 025  3E9 0933  0.885 0.98
W410x39 8 06 017  3E9 1.146  1.097 0.98
W410x39 8 06 0.17  6E7 0.997  1.005 1.00
W410x39 8 1.0 0.17  6E7 1.143  1.166 1.01
W410x39 8 1.0 0.17  3E9 1314  1.264 0.99
W410x39 8 1.0 0.5 3E9 0.992 0.941 0.98
W410x39 8 1.0 025  6E7 0.863  0.899 1.02
W410x39 8 1.6 025  6E7 0.889  0.926 1.02
W410x39 8 1.6 025  3E9 1.022 0972 0.98
W410x39 8 16 017  3E9 1412  1.357 0.99
W410x39 8 1.6 017  6E7 1.228  1.246 1.00
W410x39 12 1.0 025  6E7 0.59  0.617 1.04
W410x39 12 10 025  3E9 0.678  0.635 0.94
W410x39 12 1.0 016  3E9 0939  0.891 0.98
W410x39 12 1.0 016  6E7 0.826  0.841 1.01

Table D.3 continued



321

Secion L m R L /L Kp Elastic M,/M, Inelastic
(816.1)
Design Predicted pregicted
Nmm/rad. (FEM) Design
W460x74 12 1.0 0.17 3ES8 1.542 1.518 1.00
W460x74 12 1.0 0.17 3E9 1.709 1.582 1.00
W460x74 12 1.0 025  3E9 1240 1.177 0.8
W460x74 12 1.0 0.25 3E8 1.119 1.153 1.01
W460x74 12 0.6 0.17 3E8 1.436 1.374 0.99
W460x74 12 06 0.17 3E9 1.590 1.465 0.98
W460x74 12 06 0.25 3E8 1.089 1.109 1.01
W460x74 12 0.6 0.25 3E9 1.206 1.144 0.98
W460x74 12 1.6 0.17 3ES8 1.657 1.634 1.00
W460x74 12 1.6 0.17 3E9 1.836 1.691 0.98
W460x74 12 1.6 0.25 3E9 1.271 1.210 0.99
W460x74 12 1.6 0.25 3E8 1.147 1.190 1.01
n =60
M1 =1.000
V=0.018

Table D.3 continued



Table D.4 Verification of design procedure, Beams without fork supports

322

Section L, m R L./LP/P, Kg Elastic M,/M, I(Iéellgiti)c

Design Predicted predicted

Nmm/rad. (FEM) —B&_i-gﬁ—
W310x39 7.2 1.5 017 1  3E7 0.663 0.686 1.03
W310x39 72 15 017 1 3E9 0.875 0.967 1.04
W310x39 72 40 017 1 3E9 1.521 1.803 1.04
W310x39 7.2 40 017 1 3E7 1.152 1.257 1.03
W310x39 96 15 017 1 3E7 0.842 0.819 0.99
WwW310x39 9.6 15 0.17 1 3E9 1.116  1.123 1.00
Ww310x39 9.6 4.0 0.17 1 3E9 2.004 2.169 1.01
W310x39 9.6 4.0 0.17 1 3E7 1.512  1.545 1.01
W360x39 54 15 017 1 3E7 0545 0.497 0.91
W360x39 54 15 017 1 39 0.721 0.719 1.00
W360x39 54 4.0 0.17 1 3E9 1.254 1.329 1.02
W360x39 54 40 017 1 3E7 0.810 0.888 0.97
W360x39 7.2 15 017 1 3E7 0695 0.601 0.87
Ww360x39 7.2 15 017 1 3E9 0940 0.851 0.96
W360x39 7.2 40 0.17 1 3E9 1.689 1.629 0.99
W360x39 7.2 40 017 1 3E7 1248 1.104 0.96
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Section L,m R L /L P/, Kpg Elastic M/M,, ?éfilg.slﬁ)c
Design Predicted predicted
Nmm/rad. (FEM) Design
W410x39 1491 1.5 0.17 3E7  0.612 0.604 0.99
W410x39 1491 4.0 0.17 3E7 1167 1.221 1.01
W410x39 9.94 1.5 0.17 3E7 0479 0.496 1.04
W410x39 994 4.0 0.17 3E7 0.861 0.939 1.04
W410x39 994 4.0 0.17 3E9 1.074  1.287 1.07
W410x39 9.94 1.5 0.17 3E9 0598 0.657 1.10
W410x39 9.94 1.5 0.25 3E9 0598 0.708 1.16
W410x39 9.94 1.5 0.25 3E7 0479 0.533 1.11
W410x39 9.94 4.0 0.25 3E7 0.861 0.996 0.96
W410x39 9.94 4.0 0.25 3E9 1.074 1.377 1.08
W410x39 9.94 1.5 0.17 3E7 0479 0.524 1.09
W410x39 994 1.5 0.17 3E9  0.598 0.689 1.14
W250x39 6.27 1.5 0.17 3E7 1.295 1.128 0.96
W250x39 6.27 1.5 0.17 3E9 1.875 1.698 0.98
W250x39 6.27 4.0 0.17 3E9 3366 3.225 1.00
W250x39 6.27 4.0 0.17 3E7 2325 2.046 0.99

Table D.4 continued



Section L.m R

LC/L PI/PZ KB

Elastic M/M, Inelastic

Table D.4 continued

324

(S16.1)

Design Predicted predicted

Nmm/rad. (FEM) m
W410x39 12 1.5 0.25 3E7 0.556 @ 0.574 1.03
W410x39 12 1.5 0.25 3E9 0685 0.746 1.06
W410x39 12 1.5 0.25 3E9 0.685 0.760 1.07
W410x39 12 1.5- 0.25 3E7 0.556  0.589 1.06
- W410x39 12 1.5 0.17 3E7 0.556 0.549 0.99
W410x39 12 1.5 0.17 3E9 0.685 0.708 1.02
W410x39 12 1.5 0.17 3E9 0.685 0.731 1.04
W410x39 12 1.5 0.17 3E7 0.556 0.572 1.03
W410x39 12 4.0 0.17 3E7 1.015 1.072 1.02
W410x39 12 4.0 0.17 3E9 1.251 1436 1.04
W410x39 12 4.0 0.17 3E9 1.251  1.471 1.04
W410x39 12 4.0 0.17 3E7 1.015  1.103 1.03
W410x39 12 4.0 0.25 3E7 1.015 1.121 1.04
W410x39 12 4.0 0.25 3E9 1.251 1.516 1.05
W410x39 12 4.0 0.25 3ES 1.251 1.541 1.05
W410x39 12 4.0 0.25 3E7 1.015 1.146 1.04
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Secion L,m R L /L PP, Kp Elastic M;/M,, I(gellg.slti)c

Design Predicted predicted

Nmm/rad. (FEM) Tes-igT
W460x74 12 1.5 025 1 3E7 0.664 0.649 0.98
W460x74 12 15 025 1 3E9 1.158  1.117 0.99
W460x74 12 1.5 0.25 2 3E9 1.158 1.149 1.00
W460x74 12 1.5 025 2 3E7  0.664 0.680 1.02
W460x74 12 1.5 017 1 3E7  0.664 0.606 0.91
W460x74 12 1.5 017 1 3E9 1.158 1.048 0.97
W460x74 12 1.5 017 2 3E9 1.158  1.093 0.98
W460x74 12 1.5 017 2 3E7 0.664 0.643 0.97
W460x74 12 40 0.17 1 3E7 1.211  1.095 0.97
W460x74 12 4.0 017 1 3E9 2112 2.062 1.00
W460x74 12 40 0.17 2 3E9 2112 2,122 1.00
W460x74 12 4.0 0.17 2 3E7 1211 1.134 0.98
W460x74 12 40 025 1 3E7 1.211  1.152 0.98
W460x74 12 4.0 025 1 3E9 2112 2.184 1.00
W460x74 12 40 025 2 3E9 2.112 2.234 1.00
W460x74 12 40 025 2 3E7 1.211 1.188 0.99

Table D.4 continued
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Section L m R L./L PP, Kg Elastic M/M,, I(réelgstic
16.1)
Design Predicted predicted

- Nmm/rad. (FEM) Design

W610x241 12 1.5 0.17 1 3E7 0.808 0.607 0.81

W610x241 12 15 0.17 1 3E9 1.926  1.659 0.97

n =66
u=1.010
V =0.055

Table D.4 continued





