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Abstract 

Speed effects on moving cracks in ductile or nonlinear materials are studied with newly 

developed theoretical models in the present thesis. Speed-dependent stress field, traction 

distribution and fracture energy are discussed in detail in four chapters. 

1) An asymptotic analysis near the tip of a steady-state moving crack in a compressible 

hyperelastic material is given based on a finite plane strain model. The crack tip deformation 

and stress fields are derived up to the third order which meets the strict positivity of Jacobian 

determinant in the vicinity of the moving crack tip. Comparison with the experimental data 

shows that the crack-face profile and the energy release rate predicted by the present model are 

in reasonable agreement with experiments and several recent nonlinear elastic models. In 

addition, the crack branching angle predicted by the present model also agrees well with some 

known experimental data.  

2) Steady-state moving crack under mode-I loading is studied with a modified cohesive 

zone model which addresses speed-dependent role of the normal stress parallel to the crack axis 

and the non-uniformity of traction force in cohesive zone. Unlike the classical Dugdale model 

which predicts independence of the cohesive zone length on crack speed, the present modified 

model predicts that the cohesive zone length strongly depends on crack speed. Comparison with 

some known experimental data suggests that the present modified model has the potential to 

capture the speed effects on moving cracks in ductile materials especially at high crack speed. 

3) The modified cohesive zone model is then applied to a self-similar high-speed expanding 

crack problem. Numerical results show that the normal stress parallel to the crack face increases 

with increasing crack speed and can be even larger than the normal traction in the cohesive zone, 
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which justifies the necessity of including the normal stress parallel to the crack faces in the 

yielding condition at high crack speed. Strain hardening effect is also examined based on a 

non-uniform traction distribution given by a polynomial whose coefficients are to be determined 

as part of the solution. 

4) A simple mass-spring model is presented to study inertia effect of cohesive zone for a 

Yoffe-type mode-I steady-state moving crack of constant length. Traction distribution 

surrounding the cohesive zone and fracture energy at high crack speed are solved numerically by 

a proposed numerical method. Results show that fracture energy predicted by the present model 

increases significantly at high crack speed, which defines a limiting crack speed above that 

fracture energy tends to infinity. Reasonable agreement with some known experimental data 

suggests that the present model has the potential to catch inertia effect of cohesive zone of a 

high-speed moving crack which has not been considered by existing cohesive zone models. 

The theoretical models and numerical results achieved in this thesis contribute new ideas 

and insights into the study of high-speed dynamic fracture of nonlinear and ductile materials, 

and some results predicted by the present models provide plausible explanations for a few 

important phenomena of moving cracks at high crack speed which have not been well explained 

by the existing models. 
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Chapter 1: Introduction 

1.1 Introduction  

Crack growth is a common cause of material failure. The speed of crack propagation could 

be as high as 1000m/s in ductile fracture (Zehnder and Rosakis, 1990) and even higher in brittle 

materials (e.g., 1500m/s in glass (Anthony et al., 1970)), and the associated dynamic effects 

(such as inertia effect) can play a decisive role in both crack-tip field and fracture energy. For 

example, some recent experiments have shown that the crack-tip profiles of gels (Bouchbinder 

et al., 2008, 2010; Livne et al., 2010) and fracture toughness of structural steels (Rosakis and 

Zehnder, 1985; Zehnder and Rosakis, 1990) can strongly depend on crack speed, as shown in 

Fig. 1.1 and Fig. 1.2. In addition, at high crack speed, in brittle materials, crack branches and 

propagates along a direction inclined to its original path (Murphy et al., 2006); in ductile 

materials, a terminal crack speed is observed beyond that fracture energy G increases 

dramatically with crack speed (see Fig 1.3) (Rosakis and Zehnder, 1985). Unfortunately, by far, 

little effort has been made to investigate the above-mentioned high-speed related phenomena in 

dynamic fracture of nonlinear and ductile materials and little has been known about how crack 

speed affects the crack-tip field and fracture energy at high crack speed. 

The present thesis aims to develop new theoretical models (such as modified cohesive zone 

models or hyperelastic model) for high-speed moving cracks, to study the effect of crack speed 

on crack-tip field and fracture energy and explore its implications to dynamic fracture of 

nonlinear and ductile materials. Incorporating the inertia effect in newly developed models, 

speed-dependent crack-tip field and fracture energy are studied in detail in the following 4 

chapters, and high-speed related phenomena such as crack branching and dramatically 

increasing fracture energy with increasing high crack speed are examined for nonlinear and 

ductile materials.  
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Fig. 1.1 The dependence of crack-tip profiles on crack speed V for gels (Livne et al., 2010). Fig. 1.1a shows 

crack-tip profiles at different crack speed and Fig. 1.1b shows that the crack-tip curvature decreases with 

increasing crack speed. Cs is the transverse elastic wave speed. 

 
Fig. 1.2 The dependence of fracture toughness KD

IC on crack speed V for structural steels (Rosakis and 

Zehnder, 1985). KD
IC is the dynamic stress intensity factor at which crack starts to propagate. 
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Fig. 1.3 The fracture energy of structural steels G increases dramatically when crack speed V > 900m/s 

(Zehnder and Rosakis, 1990). G0 is the fracture energy at V = 0. 

 

 

1.2 Linear elastic models for moving cracks 

Linear elastic fracture mechanics (LEFM) (Irwin, 1957; Williams, 1957), which predicts an 

inverse square root singularity of stress field near a static crack tip, is the most common tool in 

fracture analysis and has been successfully extended to a moving crack by Yoffe (Yoffe, 1951), 

who studied a steady-state moving crack of constant length in an infinite elastic media. 

Furthermore, Craggs (Craggs, 1960) studied a semi-infinite steady-state moving crack using 

complex variable methods. A self-similar crack expanding at both tips from zero initial length 

was studied by Broberg (Broberg, 1960) using Fourier transformation and by Craggs (Craggs, 

1963) based on dynamic similarity. In addition, Rice (Rice, 1968) derived an asymptotic 

solution near a propagating crack tip using Williams eigen-expansion method (Williams, 1957). 

In these studies, under mode-I remote loading, the crack-tip stress field can be given by 

 ( ) ( , ) (1), 0, , , ,
2

II
ij ij

K t f V O r i x y j x y
r

σ θ
π

= + → = =  (1.1) 
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where, r is distance to crack tip and θ is the associated angle inclined to x-axis (see Fig. 1.4), KI(t) 

is the stress intensity factor at time t under mode-I remote loading, and fij
I are universal functions 

of θ at crack speed V and their specific value can be found in (Freund, 1990).  

 

 

 

 

Fig. 1.4 Hoop stress σθθ at crack tip. 

In addition, the hoop stress is 

 2 2sin cos 2 sin cosxx yy xyθθσ σ θ σ θ σ θ θ= + −  (1.2) 

Thus, taking Eq. (1.1) into (1.2), based on LEFM, it is found that when crack speed exceeds 

about 0.6 of elastic transverse wave speed, the singular hoop stress near the mode-I crack tip is 

no longer maximized at its original propagation direction, instead the hoop stress is maximized 

at an angle inclined to the crack faces, which could define a crack branching angle (Yoffe, 1951). 

However, this predicted branching angle of about 60o (Craggs, 1960) is clearly larger than 

experimental results of about 25o for PMMA (Murphy et al., 2006) and Homalite-100 (Ramulu 

et al., 1984) and about 30o for bursting steels (Ramulu et al., 1982).  

 

 

1.3 Hyperelastic models for moving cracks  

At the actual crack tip, nonlinear or plastic deformation is dominant. Indeed, a nonlinear 

zone near a moving crack tip is observed in recent experiments (Livne et al., 2010). As a 

consequence, some results such as crack-tip deformation field given by LEFM are in direct 

contradiction with experimental data of a moving crack tip for some brittle materials 

(Bouchbinder et al., 2008, 2010; Livne et al., 2010).  

Different than linear elastic models which neglect the second-order terms of Lagrangian 

 

θ 

y 

σθθ 

x 

r 
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finite strain tensor and are limited to small strain condition, hyperelastic models account for 

higher order terms of Lagrangian strain tensor and can be applied in large deformation problems, 

thus provide a theoretical tool to study deformation field near a crack tip. From the definition of 

elastic materials, the Piola stress P in undeformed configuration is equal to the derivative of 

strain energy density function W with respect to deformation gradient tensor F 

 W∂
=
∂

P
F

 (1.3) 

And the Cauchy stress in deformed configuration is given by 

  (1.4) 

where, J is the determinant of deformation gradient tensor F and measures the volume change 

after deformation, FT is the transpose of F. Based on different definitions of strain energy 

density function W, different types of hyperelastic models are developed, such as 

Mooney-Rivlin model (Mooney, 1940; Rivlin, 1948), Neo-Hookean model (Knowles and 

Sternberg, 1983) and Harmonic model (John, 1960) which is employed in chapter 2 of this 

thesis. 

Since finite deformation near crack tips is often involved in brittle fracture, Hyperelastic 

models have drawn considerable attentions and have the potential to predict a more reasonable 

crack-tip field compared with LEFM. For example, it is well known that LEFM predicts 

oscillatory singularities at an interface crack tip which lead to physically inadmissible 

interpenetration of crack faces (England, 1965). To remove this physically inadmissible result, 

hyperelastic models have been successfully developed in static interface crack problem 

(Geubelle, 1995; Geubelle and Knauss, 1994; Knowles and Sternberg, 1975, 1983; Ru, 1997; Ru, 

2002). Recently, a few hyperelastic models were employed to investigate dynamic fracture at 

finite deformation of nonlinear elastic materials. For instance, Tarantino (Tarantino, 2005) 

derived a second-order asymptotic stress field near a moving crack tip in a compressible 

Mooney-Rivlin material. A Moving crack in an incompressible Neo-Hookean material was 

studied by Livne et al. (Livne et al., 2010) and the obtained theoretical crack-tip field is in good 

agreement with experimental data. 
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1.4 Cohesive zone models for moving cracks  

To account for the plastic or nonlinear deformation near the crack tip, cohesive zone models 

were first presented by Barenblatt (Barenblatt, 1959) and Dugdale (Dugdale, 1960) for static 

cracks. In the concept of cohesive zone models, a fracture process zone with zero thickness is 

defined collinear with (or inclined to) actual crack faces (see Fig. 1.5). The constitutive relation 

in cohesive zone representing real mechanical behaviour such as strain hardening and softening 

are defined separately from surrounding bulk materials. 

 

 

 

 

 

Fig. 1.5 A cohesive zone of length c' near a semi-infinite crack tip. 

The traction on cohesive zone, which prevents the crack to propagate, results in a negative 

singular stress near the cohesive zone tip. Thus, the length of cohesive zone c' can be determined 

by the stress singularity cancelation condition. And the fracture energy G dissipated in cohesive 

zone is given by (Embley and Sih, 1972) 

 
0

'

2 dy
c

uG S x
V t−

∂
=

∂∫  (1.5) 

where, Sy is the traction in cohesive zone, V is the crack speed, t is the time and u is the 

displacement of cohesive zone faces (x-directional for mode-II loading and y-directional for 

mode-I loading). 

Supported by reasonable agreement with experimental data (Dugdale, 1960) and its great 

potential in numerical simulations (Needleman, 1987; Xu and Needleman, 1994), the cohesive 

x 

y 

c' 

actual crack tip 
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zone model has become one of the most popular nonlinear models for fracture analysis of 

nonlinear and ductile materials. For elastic-perfectly plastic materials under mode-I remote 

loading, Dugdale (Dugdale, 1960) assumed that the plastic deformation is confined to a line strip 

collinear with the actual crack and the normal traction on plastic strip is equal to the yielding 

stress of the material. Thus the length of confined strip, which represents plastic zone size, is 

found to depend on the yielding stress, crack length, and remote loading. The cohesive zone 

model was first extended to dynamic fracture by Goodier and Field (Goodier and Field, 1963) 

for a semi-infinite steady-state moving crack. Atkinson (Atkinson, 1968) determined the 

cohesive zone length near a self-similar expanding crack tip. A steady-state moving crack was 

studied by Kanninen (Kanninen, 1968). In these studies, a common key assumption is that the 

normal traction on cohesive zone is equal to the yielding stress of the material and independent 

of crack speed. 

Different value of uniform traction force was studied by Becker and Gross (Becker and 

Gross, 1988) for a multiaxial loading fracture problem by assuming that the constitutive relation 

in cohesive zone is governed by von Mises criterion. Yao and Huang (Yao and Huang, 2011) 

established a relation between the uniform traction force and crack tip opening displacement 

(CTOD) based on nonlocal continuum mechanics. Instead of considering the cohesive zone 

collinear with the actual crack, inclined strip yielding models were studied in (Atkinson and 

Kanninen, 1977; Rice, 1974; Vitek, 1976).  

Strain hardening in cohesive zone near a static crack tip was studied in (Daniewicz, 1994; 

Harrop, 1978; Isherwood and Williams, 1970; Siegmund and Brocks, 2000; Theocaris and 

Gdoutos, 1974) by assuming that the traction force is an unknown function of the coordinate in 

the cohesive zone. Alternatively, nowadays, with the development of computer power and 

numerical techniques, the traction are commonly defined by a function of separation of cohesive 

zone faces and the associated traction-separation law (T-S law) defining strain hardening in 

cohesive zone are widely employed in both analytic analysis (Kubair et al., 2002; Zhang et al., 

2003) and numerical simulations (Needleman, 1987; Tvergaard and Hutchinson, 1994; Xu and 
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Needleman, 1994; Zhou et al., 2005) of moving cracks. The T-S law is thought to be a material 

property and its implication to ductile fracture has been studied recently. For example, Williams 

and Hadavinia (Williams and Hadavinia, 2002) considered the maximum value of traction and 

the separation work as two major parameters characterizing the cohesive zone model, while the 

shape of T-S law is considered as secondary importance. However, Volokh (Volokh, 2004) 

showed that the shape effect of the T-S law significantly affects the fracture energy in cohesive 

zone through a block-peel test. The link between T-S law of a macro crack and the nucleation 

and growth of micro voids is established by Siegmund and Brocks (Siegmund and Brocks, 2000) 

and Scheider (Scheider, 2009) via Gurson model (Gurson, 1977).  

The constitutive relation in cohesive zone is also influenced by other factors. For instance, 

the effect of specimen thickness and in-plane constraint on traction force on cohesive zone was 

studied by Neimitz (Neimitz, 2004). Thermal effect in cohesive zone was studied by Costanzo 

and Walton (Costanzo and Walton, 2002) for a steady-state moving crack. Strain rate effect was 

studied by Kanninen (Kanninen, 1968) with a uniform rate-dependent traction force for a 

mode-I steady-state moving crack, Kubair et al. (Kubair et al., 2002) with a strain softening 

model for a mode-III steady-state moving crack, and Zhang et al. (Zhang et al., 2003) with a 

strain hardening-softening model for a mode-I steady-state moving crack.  

 

 

1.5 Limitations of the existing models  

In recent years, although hyperelastic models and cohesive zone models have drawn 

considerable attention and been extensively applied for static cracks in nonlinear and ductile 

materials, little attention has been paid to the studies on moving cracks. Actually, a number of 

key questions have remained unanswered regarding the speed effect on high-speed fracture of 

nonlinear and ductile materials. In particular, 

1) the speed dependence of crack tip field and energy release rate on crack speed in 
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hyperelastic materials are not well studied. For example, compared with experimental value of 

crack branching angle of about 25o for PMMA (Murphy et al., 2006) and Homalite-100 (Rosakis 

and Zehnder, 1985) and about 30o for bursting steels (Ramulu et al., 1982) , LEFM predicts a 

much larger crack branching angle of about 60o (Craggs, 1960), and little effort has been made 

to resolve this discrepancy between LEFM and experiment; 

2) the dependence of fracture energy on crack speed for ductile and nonlinear materials, 

especially the dramatically increasing fracture energy at high crack speed, is not well explained 

by the existing cohesive zone models. To better understand the high-speed fracture in nonlinear 

and ductile materials, refined cohesive zone models are needed which account for high-speed 

effect (particularly inertia effect) more carefully, for example, 

2.1) in existing cohesive zone models for mode-I moving cracks, the traction force on the 

cohesive zone is usually assumed to be uniform and equal to the yielding stress of the material 

and the influence of normal stress parallel to the crack axis is completely ignored (Atkinson, 

1968; Goodier and Field, 1963; Kanninen, 1968). At high crack speed, however, inertia effect 

significantly influences crack tip stress state (Freund, 1990). As a result, other stress components, 

especially the normal stress parallel to the crack axis, could come to play an important role in 

the cohesive zone. By far, the speed-dependent role of the normal stress parallel to the crack axis 

and its implication to the cohesive zone models remains unclear; in particular, speed-dependent 

crack tip field and fracture energy of a self-similar expanding crack at high crack speed raise 

even more challenging research topics; 

2.2) in existing cohesive zone models, the cohesive zone is simplified as a line segment 

without a volume and mass. Since the cohesive zone actually represents a region near the crack 

tip in which plastic or nonlinear deformation dominates (Livne et al., 2010; Rosakis and Freund, 

1982), the inertia of this region, which has been ignored in the previous existing cohesive zone 

models, could have a significant effect on dynamic fracture. It is of great interest to study the 

inertia effect of cohesive zone on high-speed moving cracks in nonlinear and ductile materials. 
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1.6 Objectives of the thesis  

Dynamic fracture of nonlinear and ductile materials is an important topic in engineering 

design and material selection. When crack propagates at high speed, the dynamic effect, 

particularly the inertia effect, will come to play a decisive role. Despite the practical importance, 

as mentioned in section 1.5, the speed effects on crack-tip field and fracture energy, as well as its 

implication to dynamic fracture of nonlinear and ductile materials have not been well addressed 

in the literature. Aiming at investigating the role of crack speed in dynamic fracture of 

nonlinear/ductile materials, my research is to achieve the following objectives: 

1) achieve a finite plane strain analysis of a high-speed moving crack in a compressible 

hyperelastic material and, particularly, study the speed effect on fracture energy and achieve a 

crack branching angle in reasonable agreement with experimental results; 

2) develop a more accurate speed-dependent cohesive zone model which accounts for the 

effect of normal stress parallel to the crack-faces and strain hardening-caused non-uniform 

traction, and use the developed model to investigate speed-dependent traction and fracture 

energy for a steady-state moving crack of constant length;  

3) similarly, develop speed-dependent cohesive zone models for a self-similar expanding 

crack, and investigate the difference between a Yoffe-type steady-state moving crack of constant 

length and a self-similar expanding crack in a ductile material; 

4) develop a cohesive zone model which accounts for the inertia of cohesive zone, in 

particular, use the developed model to investigate limiting terminal crack speed above that 

fracture energy tends to infinity. 

 

 

1.7 Thesis layout  

Inspired by the above-mentioned limitation of existing models, more accurate models will 
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be developed in the present thesis to study high-speed moving cracks in nonlinear and ductile 

materials, and the obtained theoretical predictions will be discussed with comparison to known 

experiment data available in the literature. The present thesis is organized as follows: 

Chapter 1 provides a general introduction of the involved research topics, the limitations of the 

existing models and the objectives of my research.  

Chapter 2 derives a third-order asymptotic stress field near a moving crack tip based on a plane 

strain hyperelastic model of harmonic materials. Speed-dependent crack faces profile, energy 

release rate are studied in detail, and the results obtained are in good agreement with some 

known experimental data and other existing nonlinear models. In particular, the predicted crack 

branching angle is in reasonable agreement with known experimental observation. 

Chapter 3 presents a modified speed-dependent cohesive zone model for a steady-state moving 

crack of constant length. Strain hardening is studied by considering a non-uniform traction given 

by an arbitrary polynomial. Compared with classical cohesive zone model (Dugdale model), the 

present modified cohesive zone model predicts a more reasonable fracture energy especially at 

high crack speed. 

Chapter 4 extends the modified cohesive zone model proposed in chapter 3 to a self-similar 

expanding crack. Speed-dependences of traction force, cohesive zone length, CTOD and 

fracture energy are discussed in detail. In particular, results show that the dependence of traction 

on crack speed near a self-similar expanding crack tip is similar to the one near the tip of a 

Yoffe-type steady-state moving crack of constant length. 

Chapter 5 presents a new cohesive zone model to investigate the inertia effect of cohesive zone 

on a high-speed moving crack. The inertia effect of cohesive zone on traction distribution and 

fracture energy is studied numerically. Results show that the inertia effect of cohesive zone leads 

to a practically infinite fracture energy as a finite limiting speed is approached, which could 

define a limiting terminal crack speed for a ductile material. 

Chapter 6 summarizes the major conclusions of this research and suggests a few research topics 

for future studies. 
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Chapter 2: Speed-dependent tip fields of a moving crack in a hyperelastic 

material 

2.1 Introduction 

Crack growth is a common cause of material failure. LEFM predicts an inverse square root 

singularity near a static or moving crack tip (Williams, 1957; Yoffe, 1951). At the actual crack 

tip, however, large deformation is involved and finite elasticity theory is more relevant. Recently, 

some research results (Bouchbinder et al., 2008; Livne et al., 2010) addressed that finite strain 

analysis near a moving crack tip is essential for a physically realistic description of the crack-tip 

stress and deformation fields. 

Finite strain analysis of static cracks in hyperelastic materials has attracted considerable 

attention in the past decades. For example, Knowles and Sternberg (Knowles and Sternberg, 

1983) studied crack tip fields near an interface crack tip in a Neo-Hookean material. Ru (Ru, 

2002) derived a complete solution for an interface crack in a harmonic elastic material. For 

dynamic crack in hyperelastic materials, more recently, Bouchbinder et al. (Bouchbinder et al., 

2010) showed that some predictions given by linear elasticity are in direct contradiction with 

experiment observation of the moving crack's tip fields. These authors stressed the importance 

of finite strain analysis for physical phenomena of moving cracks in hyperelastic materials. 

This chapter aims to study finite strain tip fields near a steadily propagating crack in a 

compressible hyperelastic material of harmonic-type. The harmonic material model was first 

presented by John (John, 1960), and studied by a number of authors (Knowles and Sternberg, 

1975; Li and Steigmann, 1993; Ru, 1997; Varley and Cumberbatch, 1980). The model of 

harmonic materials and the formulation of a moving crack are described in sections 2.2.1 and 

2.2.2. Detailed analysis of the tip asymptotic fields up to the third order is given in sections 

2.2.3-2.2.5. In section 2.3, the tip stress and deformation fields are analyzed based on the 
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asymptotic solutions obtained in sections 2.2.3-2.2.5. The results obtained are applied to a 

specific hyperelastic material in section 2.4 for which some recent experimental data are 

available. Implications of the present solutions are further discussed in section 2.5. Finally, the 

main conclusions are summarized in section 2.6. 

 

 

2.2 Asymptotic solution near a moving crack tip in a harmonic material 

2.2.1 Harmonic materials 

Let (X1,X2) be the initial coordinate of a material point in undeformed configuration, and 

(y1,y2) be the coordinate of the point after deformation at time t under condition of plane strain, 

defined by the fixed coordinate system (X1,X2) (see Fig. 2.1) 

 1 1 1 2 1 1 1 2

2 2 1 2 2 2 1 2

( , , ) ( , , )
( , , ) ( , , )

y y X X t X u X X t
y y X X t X u X X t
= = +

 = = +
  (2.1) 

where, u1, u2 are the displacements of material point (X1,X2) at time t. Then, the deformation 

gradient is given by 

 

[ ]
1 1

1 2

2 2

1 2

[ ]ij

y y
X X

F
y y
X X

∂ ∂ 
 ∂ ∂ = =
∂ ∂ 

 ∂ ∂ 

F   (2.2) 

Here, we employ the model of harmonic hyperelastic materials, which is introduced by John 

(John, 1960), and is shown to be relevant for some nonlinear elastic materials, such as rubber 

(Varley and Cumberbatch, 1980). The strain energy density function of harmonic hyperelastic 

materials in plane-strain has the following form: 

 ( , ) 2 [ ( ) ]hW I J F I Jµ= −  (2.3) 

in which μh is a positive material constant of harmonic material, I and J are two scalar invariants 



14 

 1 2 1 2 11 22 12 212 ,ij ijI F F J J F F F Fλ λ λ λ= + = + = = −  
(2.4) 

where λ1 and λ2 are the two principal stretches, and F(I) is a real material response function of I. 

In addition, J measures the volume change after deformation so we require J > 0. Equation of 

motion can be expressed as (John, 1960) 

 

11 12
1, 11,1 12,2

1 2

21 22
2, 21,1 22,2

1 2

tt

tt

P Pu P P
X X
P Pu P P
X X

ρ

ρ

∂ ∂ = + = + ∂ ∂
 ∂ ∂ = + = +
 ∂ ∂

  (2.5) 

where Pij are Piola stress components, ρ is the mass density, and a comma stands for partial 

derivative with respect to t, X1 or X2 . Introducing a complex variable 

 1 2w y iy= +  (2.6) 

the Piola stresses of a harmonic material are given by (John, 1960)  

 

12 22 ,2 ,1 ,1

11 21 ,2 ,2 ,1

'( )2 ( )

'( )2 ( )

h

h

F IP iP w iw iw
I

F IP iP i w w iw
I

µ

µ

 + = + −  
 + = − +  

  (2.7) 

Combining Eq. (2.5) and (2.6), we get the complex form of the equation of motion as 

 
,1 ,2 ,1 ,2 1, 2,

,1 ,2

'( ) '( )2 ( ) 2 ( )h h tt tt
F I F Iw iw i w iw u i u

I I
µ µ ρ ρ   − + − = +      

 (2.8) 

which is equivalent to Eq. (2.18) in (John, 1960). 

 

 

2.2.2 A steadily moving crack 

In this chapter, we consider a moving crack, steadily propagating at a constant velocity V in 

an infinite plane of a homogeneous harmonic material under a constant remote mode-I loading 

(see Fig. 2.1). This type of steady-state crack propagation is convenient to be analyzed in a 

moving coordinate system (x1, x2) defined by 
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 1 1 2 2x X Vt x X= − =，   (2.9) 

 

 

 

 

 

 

 

 

Fig. 2.1 A moving crack of speed V in a plane of harmonic material under steady propagation condition. 

As in Fig. 2.1, we introduce polar coordinate system (r, θ), defined by r = (x1
2+x2

2)1/2 and θ = 

arctan(,x2/x1). Under steady-state propagation condition, w(X1,X2,t) will not explicitly depend on 

time t in the moving frame (x1, x2), and then w(X1,X2,t) = w(x1, x2). Putting w(x1, x2) into Eq. (2.8) 

and noticing 

 
2 2

1, 1,11 2, 2,11,tt ttu V y u V y= =  (2.10) 

the equation of motion (2.8) is expressed as 

 
2

,1 ,2 ,1 ,1 ,2 ,2 ,11
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I I

µ µ ρ− + − =
 

(2.11) 

Here, without any confusion, a comma stands for partial derivative with respect to x1 or x2. In the 

present problem, traction-free boundary condition on the crack faces and the remote loading 

condition are given by 
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in which ∞
0P  is a given constant mode-I remote stress at infinity. 
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2.2.3 First order solution 

It is expected that singularity exists near the crack tip. Thus, the first-order asymptotic form 

of w is given by  

 1( ) ( ),m mw r G o rθ= +  0 1m< <  as 0, [ , ]r θ π π→ ∈ −  (2.13) 

where G1(θ) is an undetermined complex-valued function of θ. In addition, we assume that F(I), 

as well as its asymptotic behaviour for large values of I is described by (Ru, 2002) 

 
21'( ) 16

4
F I I I αβ

α
 = + −   

and 2

'( ) 1 2 , as
2

F I I
I I

β
α

≈ − →∞   (2.14) 

where α and β are two material constants. Knowles and Sternberg (Knowles and Sternberg, 1983) 

showed that F'(I)/I should approach unity when I tends to infinity, which implies α = 1/2. In 

addition, to get a negative Piola stress at large compression, β > 0 is required. Therefore, from 

Eq. (2.14), one gets the first order expansion of response function F(I)  

  
'( ) 1F I
I

= , as I →∞  (2.15) 

In view of Eq. (2.13) and (2.15), the lowest-order form of Eq. (2.11) is 
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where s is defined in terms of crack speed V, the density ρ and the material constant μh as 
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If we use new variables 

 1 2' , 'x sxξ η= =  (2.18) 

Eq. (2.16) becomes 
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In the polar coordinates of (ξ', η'), Eq. (2.19) has the following form: 
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where 

 
2 2' ' , arctan( '/ ')R ξ η ϕ η ξ= + =

 
(2.21) 

On the other hand, it follows from Eq. (2.7) and (2.12) that the traction-free boundary condition 

on the crack faces are given by  

 
,2 ,1 ,1

( ) ( ) 0,F I w iw iw
I

ϕ π
′

+ − = = ±
 

(2.22) 

Solving Eq. (2.20) with the boundary condition (2.22), we find 

 sin(2 ) 0mπ =  (2.23) 

From Eq. (2.13), one gets m = 1/2 and 

 
1/2

1 sin( / 2)w R C ϕ=
 

(2.24) 

where C1 = a1 + ia2 is an arbitrary complex constant. In view of the symmetric condition of the 

mode-I crack: y2(R, φ) = −y2(R,−φ), y1(R, φ) = y1(R,−φ), one gets 

 
1/2

2 sin( / 2)w iR a ϕ=   (2.25) 

where a2 is an arbitrary positive constant defining the intensity of the lowest-order tip field, and 

the restriction a2 > 0 reflects the fact that the remote mode-I stress is tensile. 

Unfortunately, it can be verified that this lowest order approximation of w leads an 

identically vanishing Jacobian determinant J. Therefore, we have to seek second order solution 

of w, in order to ensure the kinematic condition J > 0. 

 

2.2.4 Second order solution 

To get the second-order tip field, we now seek the solution of the form 

 
(1) (2)w w w= + and 

1
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with n > 1/2. The second order expansion of F(I) is 
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Equation of motion (2.11) up to the second-order is given by 
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First, the RHS of Eq. (2.28) can be expressed as a product of R-1/2 and a function of φ. So, if n < 

3/2, the RHS of (2.28) are higher-order small quantities and then should be neglected within the 

second-order solution. Therefore Eq. (2.28) becomes a homogeneous equation 
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And from Eq. (2.22), the boundary condition for the second-order solution is 
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∂
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Therefore, the second order solution is obtained with n = 1 as w(2) = C2Rcos(φ), where C2 = 

b1+ib2 is an arbitrary complex constant. In view of the symmetric condition, one gets b2 = 0 and 

 
(2)

1 cos( )w b R ϕ=  (2.31) 

where b1 is an arbitrary real constant which determines the second-order tip field. For the 

mode-I loading, the symmetry implies that b1 > 0. 

Up to the second-order solution, taking Eq. (2.25) and (2.31) into (2.4), in view of (2.9) and 

(2.18), one gets 
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Therefore, J > 0 can be met everywhere except on the two crack surfaces φ = ± π, which leaves 

us have to pursue the third order solution. 

 

2.2.5 Third order solution  

To get the third-order tip solution, we now seek the solution of the form  
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Here, similar to (Knowles and Sternberg, 1975), we introduce lnR term in imaginary part 

because only RpT2(φ) term cannot satisfy the boundary condition. In Eq. (2.33), T1(φ), T2(φ) and 

T3(φ) are real functions and p > 1. Thus, omitting all higher order terms, Eq. (2.11) becomes 
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Noticing that the first order approximation of I is 
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putting Eq. (2.35) into (2.34), one gets equation for the third-order solution 
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where, f1(φ) is a real symmetric function and f2(φ) is a real anti-symmetric function, given by 
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 (2.37) 

From Eq. (2.36) and Eq. (2.37), it is seen that p = 3/2. It follows from Eq. (2.22) that the third 
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order boundary condition is 
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 (2.38) 

Substituting Eq. (2.33) into (2.36), and (2.38), one gets equations and boundary conditions for 

the three unknown functions T1(φ), T2(φ) and T3(φ). In particular, for T1(φ), we have 

 1 1 1
9 ( ) ( ) ( )
4

T T fϕ ϕ ϕ′′+ =  (2.39) 

and boundary conditions 
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(2.40)  

In addition, for T2(φ) and T3(φ), we have two coupled equations 
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(2.41) 

with boundary conditions 
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(2.42) 

First, for T1(φ), we change the boundary value problem (2.39), (2.40) into an initial value 

problem. Based on the shooting method (Hildebrand, 1987), let us rewrite Eq. (2.39) and (2.40) 

as 
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4( ) 0, ( )

( ) 1, ( ) 0

U U
sa

V V

βϕ ϕ ϕ π

ϕ ϕ ϕ π

′= = = −

′= = = −

 (2.43) 

Clearly, Eq. (2.43) is equivalent to (2.39) and (2.40) provided the real constant c1 meets c1V1'(π) 

= [−4β/sa2−U1'(π)]. From (2.43) we have V1(φ) = sin(3φ/2) and V1'(π) = 0. Therefore, to satisfy 

the above condition (2.43), we have U1'(π) = −4β/sa2. Since f1(φ) is a symmetric function, T1'(π) 

= −T1'(−π) and V1'(π) = 0, U1'(π) = −4β/sa2 is consistent with its boundary condition at ϕ π= − . 

Therefore, one gets 

 
1 1 1

3( ) ( ) sin( )
2

T U cϕ ϕ ϕ= +
 

(2.44) 

where, c1 is an arbitrary real constant and U1(φ) can be solved numerically based on the initial 

value problem Eq. (2.43), as shown in Fig. 2.2.  

 
Fig. 2.2 Numerical results for U1(φ) (unit:2β/a2). Where V0 is normalized speed and V0 =(μh/ρ)1/2. 

For mode-I crack T1(φ) should be symmetric while U1(φ) is not a symmetric function. 

Therefore, c1 must be determined to cancel the anti-symmetric part of U1(φ) so that T1(φ) 

remains a symmetric function. For example, c1 = 0 when s = 1. With such chosen c1, T1(φ) is a 

symmetric function without any arbitrary constant, as shown in Fig. 2.3. It is noted that when s = 

1, V = 0 (static case), T1(φ) has a simple form 
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(2.45) 
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For this static case, the differences between the analytical solution and our numerical solution 

are shown in table 2.1. This validates accuracy of the present numerical method. 

 
Fig. 2.3 Numerical results for T1(φ) (unit: 2β/a2). 

Table 2.1 Error analysis (when s = 1, unit: 2β/a2) 

T1(φ) φ = 0 φ = π/6 φ = π/3 φ = π/2 φ = 2π/3 φ = π 

analytical 0 0.2588 0.8660 1.4142 -0.8660 0 

Present 

numerical 
0 0.2592 0.8652 1.4147 -0.8652 0 

error 0 -0.0004 0.0008 -0.0005 -0.0008 0 

To solve T3(φ) and T2(φ), let us first get T3(φ) from the first equation in (2.41) and the first 

set of boundary condition in (2.42), as follows 

 

3
3( ) sin( )
2

T dϕ ϕ=

 
(2.46) 

in which d is a real constant dependent of s. Taking Eq. (2.46) into the second equation of (2.41), 

multiplying sin(3φ/2) on both sides and integrating from − π to π, in view of the boundary 

conditions for T2(φ), one gets 

 
2

3sin( ) ( )
2

3

f d
d

π

π
ϕ ϕ ϕ

π
−=
∫

 
(2.47) 

From (2.47) and (2.37), we know d varies with s, and d(s) = 0 when s = 1.  
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Next, we can adopt the same numerical method to find T2(φ) as 

 
2 2 2

3( ) ( ) sin( )
2

T U cϕ ϕ ϕ= +
 

(2.48) 

where U2(φ) is a particular solution of the second equation of (2.41) with the boundary 

conditions (2.42) whose existence is ensured under condition (2.47), while the second term on 

RHS of (2.48) is a homogeneous solution with an arbitrary constant c2. Numerical results for the 

particular solution U2(φ) are shown in Fig. 2.4.  

 
Fig. 2.4 Numerical results for U2(φ) (unit:2β/a2). 

Clearly, T3(φ) and T2(φ) are both odd functions. Therefore, the third order solution is 
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(2.49) 

where c2 is an arbitrary constant associated with the third-order tip field.  

In summary, we derived the crack-tip fields up to the third-order. The obtained tip fields are 

controlled by two controlling parameters b1 and a2 related to the constant mode-I remote loading, 

while another arbitrary parameter, c2, appears in the third-order field. Furthermore 

 

1/2 1/2
1,1 1 1 1,2 2

1/2 1/2 1/2
2,1 2 3 1

1/2 1/2 1/2
2,2 2 4 2

( ) ( )
1 sin( ) ( ) ( ) ln
2 2

1 cos( ) ( ) ( ) ln
2 2

y b R P y R sP

y a R R P R Q R

y a R s R sP R sQ R

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

−

−

= + =

= − + +

= + +

 

(2.50) 
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where 
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 (2.51) 

To justify the condition J > 0, it follows from Eq. (2.4) that 
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 (2.52) 

From Eq. (2.41), one gets 

 
1/22 ( ),J O rβ ϕ π= + = ±  (2.53) 

Clearly, the third order solution ensures J > 0 everywhere including the two crack faces. From 

Eq. (2.50), we can see that different from static case (when s = 1, V = 0), the present third order 

solution of moving crack possesses an additional term O(R3/2lnR).  
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2.3 Stress field near the moving crack tip 

Based on the asymptotic solution obtained in previous sections, the Piola stress can be 

obtained from Eq. (2.7) as 
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(2.54) 

where 
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Noticing the relation (Knowles and Sternberg, 1983) 
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(2.56) 

the symmetric Cauchy stress components are given as 
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  (2.57) 

For convenience, stress field can also be written in the (x1,x2) plane. Using the polar coordinates 

(r, θ) in the (x1, x2) plane, we have 

 
2 2 2sin ( ) cos ( ), arctan[ tan( )]R r s sθ θ ϕ θ= + =  (2.58) 
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Substituting r, θ into Eq. (2.55) and (2.57), one gets Piola stress in the (x1, x2) plane (up to the 

most singular terms) 
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And the Cauchy stress (up to the most singular terms) are given by 
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It is seen that the leading-order singular stress field is controlled by the two parameters b1 and a2, 

which are determined by the constant mode-I remove loading and the crack speed, and the other 

parameter, c2, does not appear in the above leading-order stress field. 

In addition, for a steadily propagating crack in a nonlinear hyperelastic material, the 

dynamic energy release rate is given by (Freund, 1990) 
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(2.61) 

where the contour Γ is around the moving crack tip. Here, the value of G is calculated by 

choosing a rectangular contour Γ around the moving crack tip (Freund, 1990). After substituting 

Eq. (2.59) into (2.61), one gets  

 
2

22 hG a sπ µ=
 

(2.62) 
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2.4 Comparison to experimental data 

Experiments on crack tip fields in hyperelastic materials have been rarely reported in the 

literature. Recently, Bouchbinder et al. (Bouchbinder et al., 2008, 2010) conducted a series of 

experiments to study the tip deformation fields of a moving crack using polyacrylamide gels. 

Here, we apply our crack tip solution obtained in previous sections to their experiments, by 

determining the two controlling parameters b1 and a2 of our solutions to fit their measured data. 

In doing so, we are able to examine the implications of the present solution to propagating 

cracks in hyperelastic materials, with a particular interest in speed-dependent nonlinear 

phenomena near a moving crack tip in a hyperelastic material. 

i) Determination of b1  

In reference (Livne et al., 2010), the normal strain along the crack propagation direction u1,1 

at θ = 0 was measured. From their measured data, u1,1 is found to approach a finite constant 

when the crack tip is approached along θ = 0, which is consistent with the present solution from 

(31): b1−1 = u1,1 when θ = 0. From experiment (Livne et al., 2010), we find that the estimated b1 

(from the measured strain at r = 0.2mm, see Fig.3.b in (Livne et al., 2010)) nearly linearly 

increases with the crack speed, for example, b1 increases from 1.6 at V = 0.3Cs to 2.9 at V = 

0.8Cs (where, Cs is the transverse elastic wave speed). In particular, in agreement with (Livne et 

al., 2010), u1,1 at φ = 0 near crack tip is a positive constant, in contradiction with linear fracture 

mechanics that predicts u1,1 ~ r−1/2 near the crack tip. This indicates that nonlinear large 

deformation is indeed essential for a realistic description of crack tip deformation field in a 

hyperelastic material. 

ii) Determination of a2 

The crack tip surfaces predicted by the present model, obtained from Eq. (2.25) and (2.31), 

is given by 
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2 2
1 1 2 2/y b y a=

 
(2.63) 

In order to compare the above prediction with the measured crack profile, we first obtain the 

value of b1/a2
2 from experimental data (Bouchbinder et al., 2008) over the range r = 0.03mm to r 

= 0.2mm, and thus determine the value of a2 based on the determined value of b1. We found that 

the crack profile given by Eq. (2.63) with a2 = 0.021m1/2 when V = 0.2Cs and a2 = 0.030m1/2 

when V = 0.53Cs best fits the experiment data (Fig. 2 in (Bouchbinder et al., 2008)). After 

determining the value of a2, the theoretical prediction of (2.63) is compared with experimental 

measurements given in Fig. 2 in (Bouchbinder et al., 2008) at a larger region (from r =0.2mm to 

r = 0.42mm). From Fig. 2.5 in this chapter, it is seen that the theoretical perdition of the present 

harmonic material model is well consistent with experiment data of polyacrylamide gels (Fig. 2 

in (Bouchbinder et al., 2008)) over a quite larger range, indicating the robustness of the present 

model. 

 
Fig. 2.5 Crack tip profiles at V = 0.2Cs (Fig. a) and V = 0.53Cs (Fig. b). Blue circles stand for the measured 

crack tip profile. Red solid lines are the parabolic fitted crack tip profile (b1/a2
2 =3398m-1 when V = 0.2Cs and 

b1/a2
2 =2066m-1 when V = 0.53Cs) and black dash lines are the predicted crack surfaces by Eq. (2.63). 

iii) Energy release rate G  

Once a2, as well as its dependence on crack speed V, is determined, the energy release rate 

G can be calculated from Eq. (2.62) as a function of crack speed V. We first investigate the 

-                    -                    
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energy release rate based on the present harmonic material model (Gh) in static case. From Eq. 

(2.62), we get Gh = πμha2
2/2, when V = 0. While Neo-Hookean theory predicts Gn = πμa2

2/4 

(Livne et al., 2010), where μ is the elastic shear modulus in linear elastic theory. To study the 

speed effect on energy release rate, we assume that these two models are coincident in static 

case, therefore μh = μ/2. Together with the estimated values of b1 and b1/a2
2 based on 

experimental data of reference (Livne et al., 2010), we calculated the energy release rate based 

on the present harmonic material model (Gh), as shown in Fig. 2.6. The energy release rate given 

by a weakly nonlinear theory (Bouchbinder et al., 2008) (Gw) or by a neo-Hookean material 

model (Livne et al., 2010) (Gn) were also presented in Fig. 2.6 for a comparison. It is seen from 

Fig. 2.6 that harmonic model is in reasonable agreement with other two models. Moreover, all 

the three nonlinear models predict an nearly linear increased energy release rate with the crack 

speed, in good agreement with experimental data given for other gels in references (Baumberger 

et al., 2006; Tanaka et al., 2000).  

 
Fig. 2.6 Energy release rate from different theories at different crack speed V. 
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2.5 Further discussions 

In what follows, we further examine the implications of the present solutions to tip 

nonlinear phenomena of a moving crack in a hyperelastic material.  

i) The dominate stress component in front of crack tip  

First, linear elastic dynamic fracture mechanics for mode-I crack predicts σ22 ≤ σ11 (Freund, 

1990) in front of the crack tip (θ = 0). On the other hand, the present harmonic material model 

Eq. (2.60) predicts that σ22 is more singular than all other stress components, which implies that 

σ22 (r, 0) > σ11 (r, 0) at the crack tip.  

 

ii) Crack branching at high crack speed 

Yoffe (Yoffe, 1951) has explained crack-path branching with linear dynamic fracture 

mechanics based on the maximum hoop stress criterion. Her analysis showed that when crack 

speed reaches a critical value, the singular hoop stress at the moving crack tip is no longer 

maximized at the crack propagation direction θ = 0, which implies crack branching. In the 

present harmonic material model, the Cauchy hoop stress can be obtained from Eq. (2.60) as 

 2 2
11 22 12sin cos 2 sin cosθθσ σ θ σ θ σ θ θ= + −  (2.64) 

It is seen that the leading-order singular hoop stress always attains its maximum at θ = 0 for all 

crack speed. However, many previous works, see e.g. Cotterell (Cotterell, 1965), Ramulu et al. 

(Ramulu et al., 1982) have suggested that crack-path branching depends on non-singular stresses. 

Instead of considering the most singular hoop stress immediately in the front of the crack tip, it 

is suggested that one should consider the hoop stress at a small but finite distance (rc) away from 

the crack tip. Based on this idea, for example, if we expect that crack branching happens at Vc = 

0.8Cs, which is the critical velocity for oscillatory instability in polyacrylamide gels 

(Bouchbinder et al., 2008, 2010), based on the parameters we got from last section, we obtain 

the critical distance rc = 0.01mm, which is on the same order of critical value 0.05mm suggested 

for PMMA (Williams and Ewing, 1972). The hoop stresses at rc = 0.01mm for several crack 
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speed are shown in Fig. 2.7. From Fig. 2.7 we can see, at crack speed V = 0.8Cs, the hoop stress 

is maximized at θ = 30o. Therefore, the moving crack is expected to be deflected and propagate 

along at an angle 30o to the original direction of crack propagation. This predicted angle is close 

to the experimentally observed 25o for PMMA (Murphy et al., 2006) which has been shown to 

have similar dynamic crack oscillation behavior as polyacrylamide gels (Bouchbinder et al., 

2010). 

 
Fig. 2.7 Variation of the normalized hoop stress with angle θ at rc = 0.01mm for several values of crack speed, 

where, / ( 0)θθ θθ θθσ σ σ θ= = , is normalized hoop stress. When V = 0.8Cs, hoop stress is maximized at θ = 

30o, which indicates that crack more likely propagates along a direction inclined at about 30o to the crack 

surfaces. 

iii) Interface crack in harmonic bi-materials 

A well-known problem with linear elastic fracture mechanics is the oscillatory singularity 

and associated interpenetration of bi-materials near an interface crack tip. Knowles and 

Sternberg (Knowles and Sternberg, 1975), Ru (Ru, 1997) have shown that finite deformation 

models can eliminate oscillations near a static interface crack tip. Here, we will prove that 

oscillatory tip field does not occur near a moving interface crack tip in harmonic bi-materials. 

Let us consider an interface crack lying between two different harmonic materials, the upper is 

material 1, and lower is material 2. Therefore, the lowest-order solution must satisfy the 
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equation of motion, traction-free crack-face and continuous interface conditions as follows 
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(2.65) 

where, [w]i and [σ12+iσ22]i stands for the deformation and stress field for each material, and 

 

2 2 2 2 2 2 1 2 2 2
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(2.66) 

The only first order asymptotic solution which satisfies Eq. (2.65) is given by 
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(2.67) 

where, C is an arbitrary complex constant. Thus, oscillation does not occur and interpenetration 

can be prevented as long as Re(C) > 0, Im(C) > 0, which is ensured by the condition that the 

remote mode-I stress is tensile. 

 

 

2.6 Conclusions 

A finite strain harmonic material model is employed to study mode-I steadily moving crack 

in hyperelastic materials. The asymptotic crack tip fields are derived up to the third order, which 

depend on two controlling parameters to be determined by the constant remote loading and the 

crack speed. The solution is applied to a specific hyperelastic material for which some recent 
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experiment data are available in the literature. It is found that the present harmonic material 

model can well describe the observed crack-face profile near a moving crack tip, and the energy 

release rate and its dependence on the crack speed predicted by the present model are in 

reasonable agreement with those given by several existing nonlinear elastic models. In particular, 

crack branching angle predicted by the present model is also in reasonable agreement with some 

known experimental data. These results suggest that, instead of its mathematical simplicity, the 

harmonic material model has the potential to catch the main nonlinear phenomena near a 

moving crack tip in a nonlinear hyperelastic material.  
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Chapter 3: A modified speed-dependent cohesive zone model for a 

steady-state moving crack of constant length 

3.1 Introduction  

 The cohesive zone models, first proposed by Barenblatt (Barenblatt, 1959) and Dugdale 

(Dugdale, 1960) for a static crack, have been applied to dynamic crack problems of nonlinear or 

ductile materials, see e.g. (Atkinson, 1968; Goodier and Field, 1963; Kanninen, 1968). In these 

works, a major assumption is that the normal traction force on the cohesive zone is constant and 

equal to the yielding stress of the material, and therefore the early models are unable to 

incorporate strain hardening and the influence of normal stress (σxx) parallel to the crack axis. 

Thus, modified cohesive zone models are developed and employed in static crack analytic 

analysis (Bhargava and Bansal, 2002; Daniewicz, 1994; Harrop, 1978; Isherwood and Williams, 

1970; Theocaris and Gdoutos, 1974; Yao and Huang, 2011), in which the effect of normal stress 

σxx is showed to be of secondary importance for static cracks. Furthermore, non-uniform traction 

distribution is widely employed in numerical simulation of crack propagation (Scheider, 2009; 

Tvergaard and Hutchinson, 1994; Xu and Needleman, 1994; Zhou et al., 2005). At high crack 

speed, however, inertia effect significantly influences crack tip stress state (Freund, 1990). As a 

result, other stress components, especially the normal stress σxx along the crack axis, could play 

an important role in the cohesive zone. Actually, some experiments (Alpa et al., 1979; Lu and 

Chow, 1990) have shown that the stress component σxx significantly influences fracture process, 

a phenomenon which has not been well studied by the existing cohesive zone models (such as 

(Atkinson, 1968; Bhargava and Bansal, 2002; Daniewicz, 1994; Goodier and Field, 1963; 

Harrop, 1978; Isherwood and Williams, 1970; Kanninen, 1968; Theocaris and Gdoutos, 1974; 

Yao and Huang, 2011) for ductile materials. For example, the effect of σxx on the yielding 

criterion imposed on the cohesive zone has recently drawn considerable attentions (Lu and 
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Chow, 1990; Neimitz, 2004; Scheider, 2009; Siegmund and Brocks, 2000; Tvergaard and 

Hutchinson, 1994; Wnuk and Legat, 2002) for static cracks. However, to the best of my 

knowledge, little attention has been paid to dynamic cracks. In particular, analytic solution for a 

moving crack with variable cohesive zone traction is not available in literature, and the crack 

speed effects on yielding criterion, cohesive zone length and fracture energy for mode-I moving 

cracks remains unclear.  

 In this chapter, the problem of a steady-state moving crack under mode-I remote loading is 

studied with a modified cohesive zone model described in section 3.2. In this modified model, 

normal traction force on the cohesive zone is assumed as an arbitrary symmetric polynomial of 

the coordinate x along the crack axis, which is to be determined as a part of the solution by 

satisfying specific stress-based criterion on the cohesive zone (e.g. von Mises yielding criterion 

with or without hardening). In section 3.3, with the von Mises criterion without hardening 

defined by a constant yielding stress Y, unlike the classical Dugdale model of moving cracks 

(Goodier and Field, 1963; Kanninen, 1968) which predicts that the cohesive zone length is 

independent of crack speed, the present model predicts that the cohesive zone length increases 

monotonically with crack speed under moderate remote mode-I loading T (T ≤ 0.5Y). A more 

general non-uniform traction distribution defined by a sixth-order symmetric polynomial is 

studied in section 3.3.2, where the non-uniform traction is determined by the material ductility 

property (Siegmund and Brocks, 2000; Wnuk and Mura, 1983), initial yielding stress, hardening, 

crack speed and remote loading. Numerical results show that the cohesive zone length and 

displacements of the zone face depend on the form of traction distribution, and the polynomial 

traction model predicts a better crack profiles than the uniform traction model as compared to 

experimental data. Reasonable agreement between the present results and some known 

experimental data, demonstrated in section 3.4, suggests that the speed dependent cohesive zone 

traction force (as described by the present model) is essential to capture the speed effect on 

dynamic fracture. Finally, main conclusions are summarised in section 3.5. 
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3.2 A modified cohesive zone model for a steady-state moving crack 

 In this section, a modified cohesive zone model is proposed for a Yoffe-type steady-state 

moving crack of constant length 2c in an infinite elastic plane, subjected to the mode-I remote 

tensile loading T. It is assumed that the cohesive zone have a length c' at each of two crack tips 

(see Fig. 3.1). In a fixed coordinate system (x', y'), the crack is moving along the x' axis at a 

constant speed V. Under the steady-state conditions, stress and displacement fields will not 

explicitly depend on time t in the moving frame (x, y) defined by x = x' − Vt, y = y' (see Fig. 3.1). 
Thus the two displacement components (ux, uy) in the moving frame (x, y) can be given in terms 

of two wave functions ς(x, y) and ψ(x, y) (Craggs, 1960) 

 ,x yu u
x y y x
ς ψ ς ψ∂ ∂ ∂ ∂

= + = −
∂ ∂ ∂ ∂

 (3.1) 

The two wave functions ς(x, y) and ψ(x, y) meet harmonic equations  

 
2 2 2 2

2 2 2 20, 0
d sx y x y

ς ψ
   ∂ ∂ ∂ ∂

+ = + =   ∂ ∂ ∂ ∂   
 (3.2) 

where  

 2 2 2 2
1 2 1 2, , 1 / , 1 /d s d sy y y y V C V Cβ β β β= = = − = −  (3.3) 

with Cd > Cs > V (the crack speed is slower than the transverse elastic wave speed), and Cd and 

Cs are longitudinal and transverse elastic wave speeds defined by 

 2 21 ,
1d sC Cκ µ µ

κ ρ ρ
+

= =
−

 (3.4) 

in which ρ is the mass density, μ is the elastic shear modulus, and κ is defined by Poisson's ratio 

ν as 

 
3 4 plane strain
3 plane stress
1

ν
κ ν

ν

−
= −
 +

 (3.5) 
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Fig. 3.1 A crack of constant length 2c in the moving coordinate system (x, y) with remote loading T and 

traction force P(x) on the cohesive zone. 

In the present mode-I crack problem, the stress field is symmetrical about the real axis and 

the shear stress σxy vanishes on crack faces and the cohesive zone. Therefore, the boundary 

conditions for the present problem are 

 

0

( ) ' at 0

0 '

0, 0, at infinity
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 (3.6) 

where the undetermined normal traction force P(x) on the cohesive zone can be an arbitrary 

symmetric function of x and will be determined as part of the solution so that specific 

stress-based yielding criterion is met along the cohesive zone. As mentioned before, in the 

classical Dugdale model (Atkinson, 1968; Dugdale, 1960; Goodier and Field, 1963; Kanninen, 

1968), the normal traction force P(x) on the cohesive zone is constant and equal to the yielding 

stress Y. To the best of our knowledge, except few works which studied simpler linear (Bhargava 

and Bansal, 2002), or parabolic (Harrop, 1978), or exponential cohesive force (Daniewicz, 1994; 

Wnuk and Legat, 2002) under small scale yielding condition for static cracks, no attempt has 

T 

x', x 

Vt y 

y' 

c' c 
σyy = P(x) 

T 
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been made to study more general non-uniform cohesive force P(x) especially for moving cracks. 

Therefore, in what follows, an analytic solution will be derived for a moving crack with a 

non-uniform cohesive force P(x) defined by an arbitrary polynomial of the coordinate x.  

 For this purpose, first, let us introduce complex variables (Craggs, 1960) 

 1 2,d sz x iy z x iy= + = +  (3.7) 

Thus the two wave functions can be given as 

 1 1 1 1 1 2 2 2 2 2
1 1( ) ( ) ( ) , ( ) ( ) ( )

2 2
z F z F z z i F z F zς ψ

µ µ
   = + = −     (3.8) 

where F1(z1) is an analytical function of the complex variable z1, and F2(z2) is an analytic 

function of the complex variable z2, respectively, in the entire complex plane except the crack 

faces and the cohesive zone, and 1 1( )F z  and 2 2( )F z  are their conjugates. Denoting 

 1 1 2 2
1 2

1 2

d ( ) d ( )( ) , ( )
d d

F z F zz z
z z

Φ = Ψ =  (3.9) 

it can be verified (Rice, 1968) that stresses in the entire plane can be given by 

 

{ }
{ }
{ }

2 2
1 2 1 2 2
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2 1 2 2

2
1 1 2 2

Re (2 1) ( ) 2 ( )

Re ( 1) ( ) 2 ( )

Im 2 ( ) ( 1) ( )

xx

yy

xy

z z

z z

z z

σ β β β

σ β β

σ β β

′ ′= − + Φ − Ψ

′ ′= − + Φ + Ψ

′ ′= − Φ + + Ψ

 (3.10) 

where, prime stands for derivate. From the third equation in (3.10) and the condition (3.6) that 

the shear stress vanishes along both crack and cohesive zone (where z1 = z2 = z), one gets on the 

crack and cohesive zone faces 

 
( ) ( )
( ) ( )

2 2
1 2 1 2

2 2
1 2 1 2

2 ( ) 1 ( ) 2 ( ) 1 ( )

2 ( ) 1 ( ) 2 ( ) 1 ( )

z z z z

z z z z

β β β β

β β β β

+ −

− +

   ′ ′ ′ ′− Φ + + Ψ = − Φ + + Ψ   

   ′ ′ ′ ′− Φ + + Ψ = − Φ + + Ψ   

 (3.11) 

where the superscripts '+' and '−' denote the limit values from the upper and lower half -planes, 

respectively. Thus, it follows from Eq. (3.11) that the expression inside the brackets on the 

left-hand side of the following equation is continuous across the crack and the cohesive zone, 

namely 
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 2 2
1 1 2 22 ( ) 2 ( ) (1 ) ( ) (1 ) ( ) 0z z z zβ β β β

+

−
 ′ ′ ′ ′− Φ − Φ + + Ψ + + Ψ =   (3.12) 

Therefore, it follows from the principle of analytic continuation that the expression is analytical 

on the entire complex plane and thus must be a constant (Lang, 1999) 

 2 2 2
1 1 2 2 1 22 ( ) 2 ( ) (1 ) ( ) (1 ) ( ) 4 ( ) 2(1 ) ( )z z z zβ β β β β β′ ′ ′ ′ ′ ′− Φ − Φ + + Ψ + + Ψ = − Φ ∞ + + Ψ ∞  (3.13) 

in the entire complex plane. Here, the asymptotic stress conditions at infinity indicate that the 

limits of the two functions Φ' and Ψ' at infinity are bounded and real, and furthermore 

 
2 2

1 2
2 2 2 2

1 2 2 1 2

2 1( ) , ( )
2( ) 4 ( )

T Tβ β
β β β β β

− +′ ′Φ ∞ = Ψ ∞ =
− −

 (3.14) 

Substituting Eq. (3.13) into (3.11), one gets 

 ( ) ( )2 2 2
1 2 1 2 1 22 ( ) 1 ( ) 2 ( ) 1 ( ) 4 ( ) 2(1 ) ( )z z z zβ β β β β β

+ −
   ′ ′ ′ ′ ′ ′− Φ + + Ψ + − Φ + + Ψ = − Φ ∞ + + Ψ ∞      

  (3.15) 

Combined with Eq. (3.14) and the third equation in (3.10), the bounded solution of the above 

inhomogeneous equation (which is bounded at the tips of crack and cohesive zone) is given by 

 ( ) ( )( )
( )

2 2 2
1 2 2 1 22

1 2 2 2
2 1 2

4 1 2 1
2 ( ) 1 ( )

4
z z T

β β β β β
β β

β β β

− + + − +
′ ′− Φ + + Ψ =

−
 (3.16) 

In particular, substituting Eq. (3.16) into (3.10), one gets a general relation between σxx and σyy 

on the entire real axis  

 ( )
2 2 2

1 2 2
2 2

1 2 2

2( )(1 )( ) , ( ) 1
4 (1 )xx a yy aR V T R V β β βσ σ
β β β

− +
= − = −

− +
 (3.17) 

where Ra(V) is a speed-dependent function, its value increases continuously from unity, at V = 0, 

to infinity at the Rayleigh wave speed CR, similar to dynamic elastic models (Freund, 1990). It is 

seen from (3.17) that, at high crack speed for which Ra(V) is much larger than unity, the normal 

stress σxx could be much larger than σyy and thus play an important role in the cohesive zone. It is 

stressed that Eq. (3.17) holds for arbitrary traction force P(x). In classical Dugdale model, P(x) is 

taken as a constant equal to the yielding stress Y. Here, we consider the general case when P(x) 

is defined by an arbitrary polynomial with real coefficients, 
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 1
1 1 0( ) n n

n nP x A x A x A x A−
−= + + ⋅⋅⋅ + +  (3.18) 

where n is an arbitrary positive integer, the real coefficients A0, A1,...An are to be determined by 

satisfying specific stress-based criterion on the cohesive zone (see section 3.3.1 and 3.3.2) and 

symmetric conditions of a mode-I crack.  

 Now, from the second equation in Eq. (3.10) and the normal stress condition on the upper 

and lower faces of the crack and the cohesive zone, the limit values of Eq. (3.10-2) on the crack 

and cohesive zone faces from the upper and lower half planes give  
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   ′ ′ ′ ′− + Φ +Φ + Ψ +Ψ = −   
   ′ ′ ′ ′− + Φ +Φ + Ψ +Ψ = −   

 (3.19) 

where H(|x|−c) is Heaviside step function. Thus, the subtraction of the two equations in Eq. 

(3.19) gives 

 2 2
2 2 2 2(1 ) ( ) (1 ) ( ) 2 ( ) 2 ( ) 0z z z zβ β β β

+

−
 ′ ′ ′ ′− + Φ + + Φ + Ψ − Ψ =   (3.20) 

Therefore, it follows from principle of analytical continuation and conditions (3.14) at infinity 

that 

 2 2
2 2 2 2(1 ) ( ) (1 ) ( ) 2 ( ) 2 ( ) 0z z z zβ β β β′ ′ ′ ′− + Φ + + Φ + Ψ − Ψ =  (3.21) 

in the entire complex plane. Taking Eq. (3.21) into Eq. (3.19), one shows that along crack faces 

and cohesive zone 

 ( ) ( )2 2
2 2 2 21 ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( ) ( )z z z z P x H x cβ β β β

+ −
   ′ ′ ′ ′− + Φ + Ψ + − + Φ + Ψ = −     (3.22) 

Condition (3.22) is a non-homogeneous Riemann-Hilbert problem (Rice, 1968), and its general 

solution (which has the inverse square-root singularity at the tips of cohesive zone) is given by 

(see appendix A for details) 
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  (3.23) 

where Q(z) is an arbitrary polynomial of finite degree to be determined by the remote conditions 

at infinity, and a T-related term has been separated from Q(z) just for convenience. From Eq. 

(3.14) and (3.23), it is verified that Q(z) must be a polynomial of z with real coefficients. In 

particular, for the present mode-I crack problem, the traction force P(x) is symmetric about 

y-axis and thus an even polynomial in x, therefore  
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 (3.24) 

where n is an even integer, and B0, B2, B4... Bn are some real constants to be determined by 

remote loading condition. It is seen from Eq. (3.1), (3.8), (3.9), and (3.23) that single valued 

displacements (ux, uy) are assured by the fact that Q(z) given by (3.24) is an odd function of z 

and does not contain a non-zero constant term. From Eq. (3.16) and (3.23), one gets 
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   (3.25) 

where H1 and H2 are two real constants related with crack speed V and remote loading T with 
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   (3.26) 

For |z| →∞, Eq. (3.23) has the following asymptotic form 
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where, g1
(i)(0) is the value of the ith derivative of g1(z) at the point 0, g2

(i)(0) is the value of ith 

derivative of g2(z) at the point 0, with  

 1 22 2

1 1( ) 2arctan , ( )
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c zg z g z
zc c c

−
= =

−+ −
 (3.28) 

Thus, the coefficients B0-Bn can be determined by Eq. (3.27) and the remote loading conditions 

that σyy = T at infinity. For example, for a sixth order polynomial traction P(x) with n = 6 and 

four real coefficients A0, A2, A4 and A6, the condition σyy = T at infinity gives 
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  (3.29) 

It follows from Eq. (3.24) and (3.29) that the four coefficients B0, B2, B4, B6 are given in terms of 

the coefficients A0, A1, A4 and A6 which are shown in appendix B. The cohesive zone length can 

be determined by the condition of cancelling the inverse square root singularity at the two ends 

of the cohesive zone |z| = c+c' in Eq. (3.23), which gives Q(c+c') = πT(c+c'). Thus from Eq. (B.1) 

one gets 
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In particular, if P(x)≡A0 and A0 is independent of crack speed, it can be easily verified that Eq. 

(3.30) reduces to the results of classical Dugdale model 
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In addition, if P(x)=A0+A2x2, and A0, A2 are independent of crack speed, Eq. (3.30) gives  
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which is identical to the result of (Harrop, 1978) (see Eq. (7) in (Harrop, 1978)).  

 Furthermore, the displacement uy at y = 0 can be determined by (Rice, 1968) 

 { }1Im ( )d ( )d /yu x x x xβ µ′ ′= − Φ − Ψ∫ ∫  (3.31) 

Taking Eq. (3.25) into (3.31), one shows that on the cohesive zone, 
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where,  
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And the fracture energy in the cohesive zone can be determined by 
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Thus the open displacement and fracture energy in the cohesive zone can be obtained by Eq. 

(3.32) and (3.34) explicitly for a uniform cohesive force P(x)≡A0, and numerically for 

non-uniform polynomial cohesive force P(x) of the form (3.24). 

 

 

3.3 Results and Discussion 

3.3.1 A simple model with von Mises criterion without hardening (plane stress) 

 First, we consider a simple case that the material is under plane stress and satisfies the von 

Mises criterion with a constant yielding stress Y (without hardening) in the cohesive zone. 

Therefore, in view of Eq. (3.17) and the fact that shear stress vanishes on the cohesive zone, the 

normal traction P(x) must be a constant on the entire cohesive zone, denoted by S, and 

determined by the von Mises yielding criterion, which gives  
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Thus, in this simple case, unlike the classical Dugdale model which gives S = Y, the constant 

traction force S given by the present model is a function of crack speed, remote loading and 

material yielding stress Y (see Fig. 3.2). In this case, P(x) = A0 = S. The cohesive zone length c' 

can be obtained from Eq. (3.30)  
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Fig. 3.2 Variations of the uniform traction force S with crack speed V given by the simple model without 

hardening (κ = 2.1, Cs is the transverse elastic wave speed, Y is the material yielding stress.).  

Clearly, from Eq. (3.17) and (3.35), one can see that when V→CR, Ra→∞ and S→T. Thus it 

follows from Eq. (3.36) that c'→∞ when V→CR. Therefore, to ensure a finite cohesive zone 

length, the crack speed must be lower than CR. 

 Dependence of the constant traction force S on crack speed is shown in Fig. 3.2. It is seen 

from Fig. 3.2 that when T ≤ 0.5Y, the normal traction force S in cohesive zone decreases with 

crack speed while it increases with remote tensile loading. In particular, due to the increase of 

Ra(V) with increasing speed, the traction force decreases quickly with crack speed after V = 

0.2Cs, which indicates that the dependence of traction force S on crack speed is significant and 

cannot be neglected at high crack speed (V > 0.2Cs). In addition, different from the classical 

Dugdale model of steady-state moving crack in (Goodier and Field, 1963; Kanninen, 1968) 

which gives a constant cohesive zone length, it is seen from Eq. (3.35) and (3.36) that the 

cohesive zone length c' predicted by the present model increases monotonously with crack speed 

under low and moderate remote loading (T ≤ 0.5Y). Dependence of the cohesive zone length on 

remote loading is shown in Fig. 3.3. It is seen from Fig. 3.3 that the cohesive zone length 

increases with remote loading, and the effect of crack speed on cohesive zone length varies with 
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remote loading and becomes insignificant when T = 0.7Y. This can be confirmed from Fig. 3.2 

which shows that the dependence of traction force S on crack speeds is not significant when T = 

0.7Y. 

 
Fig. 3.3 Relation between cohesive zone length c' and remote loading T at different crack speeds given by the 

simple model without hardening (κ = 2.1). 

 On the other hand, the crack tip opening displacement (CTOD) δ at the crack tip |z| = c can 

be obtained by Eq. (3.32)  

 4 '( ) ln( )S c cA V c
c

δ
πµ

+
=  (3.37) 

The associated fracture energy in cohesive zone can be determined by Eq. (3.34)  

 
24 '( ) ln( )S c cG A V c

cπµ
+

=  (3.38) 

The speed effect on CTOD δ and fracture energy G are shown in Fig. 3.4 and 3.5. In Fig. 3.4, δ0 

is the CTOD obtained from classical Dugdale model under the same remote loading T but at V = 

0. It is seen from Fig. 3.4 that, CTOD predicted by the present model increases more rapidly 

with crack speed than classical Dugdale model. Furthermore, different from the classical 

Dugdale model which gives a T-independent δ-V relation, the δ-V relation given by the present 

model is influenced by remote loading T. In addition, the relation between fracture energy G and 

crack speed V is shown in Fig. 3.5, where G0 is the fracture energy obtained from classical 
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Dugdale model under the same remote loading T but at V = 0.  

 
Fig. 3.4 Relation between δ (CTOD) and crack speed V given by the simple model (κ = 2.1), where δ0 is the 

CTOD given by classical Dugdale model under the same remote loading T but at V = 0.  

 
Fig. 3.5 Relation between fracture energy G and crack speed V given by the simple model (κ = 2.1), where G0 

is the fracture energy given by classical Dugdale model under the same remote loading T but at V = 0. 

It is seen from Fig. 3.5 that, at high crack speed, although the present simple model gives a 

very different traction force in cohesive zone, the G-V relations predicted by the classical 

Dugdale model and the present simple model are quite similar. This is not surprising because 

larger traction force introduces a smaller cohesive zone length and CTOD, which lead to a 

similar fracture energy (the product of traction force and CTOD). In particular, when T << S, 

from Eq. (3.36) and (3.38), it can be seen that G ≈ A(V)πcT2/2μ, which is independent of traction 
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force S. It can be seen from Fig. 3.2-3.5 that, under small or moderate loadings (T ≤ 0.5Y), the 

present simple model gives a larger cohesive zone length and CTOD, but a similar fracture 

energy at high crack speed as compared with classical Dugdale model. 

 

3.3.2 A polynomial model with hardening (plane stress) 

 In general, however, the traction force could be non-uniform on the cohesive zone (Volokh, 

2004; Williams and Hadavinia, 2002) especially due to hardening. Traction-separation law is 

convenient to be employed in numerical simulation but difficult to be used in analytical analysis. 

To pursue explicit results, traction distribution as a function of the coordinate x is assumed in the 

present paper, as well as in some other papers (Bhargava and Bansal, 2002; Daniewicz, 1994; 

Harrop, 1978; Wnuk and Legat, 2002). Here, we consider a general case when the cohesive 

force P(x) is a polynomial of x and specified by four parameters: the values of traction at the two 

ends of the cohesive zone, plus the value and location of the maximum traction on the cohesive 

zone. For this end, let us adopt the following assumptions: 

i) Initial yielding at the end of cohesive zone: at the end of cohesive zone (|x| = c+c') where the 

material starts to yield (Wnuk and Legat, 2002), the traction force is equal to initial yielding 

traction force S0 defined by Eq. (3.35) (by setting Y = Y0 on RHS of (3.35), where Y0 is the initial 

yielding stress of material of hardening. Material is under plane stress condition.). 

ii) The maximum value of traction: In the present paper, we set σmax=mS0, where m (m ≥ 1) is a 

dimensionless parameter which measures the strain hardening (the maximum value of traction) 

and is independent of crack speed. Clearly, the mean traction force along cohesive zone 

increases with m thus the cohesive zone length decreases with m. 

iii) Location of the maximum traction: the maximum traction occurs at |xm| = c+c'Δ, where xm is 

the coordinate of maximum traction location, Δ is assumed to be a dimensionless material 

property (0 ≤ Δ ≤ 1) independent of crack speed and determined by material ductility (Wnuk and 

Legat, 2002; Wnuk and Mura, 1983). It defines the location of maximum traction in cohesive 
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zone. In the present paper, for a sixth-order even polynomial, to ensure a positive traction force 

along the entire cohesive zone, it turns out that 0.1 < Δ < 0.9. Therefore, the material experiences 

strain hardening on the interval (c+c'Δ < |x| < c+c') and strain softening within c < |x| < c+c'Δ. 

Clearly, the mean traction force along cohesive zone decreases with Δ thus the cohesive zone 

length increases with Δ. 

iv) Traction vanishes at the crack tip: the traction force reduces to zero at the other end of 

cohesive zone (|x|= c) (Volokh, 2004; Williams and Hadavinia, 2002).  

 Therefore, with given material property Δ and the dimensionless parameter m (m ≥ 1), a 

sixth-order even polynomial P(x) with 4 coefficients A0, A2, A4 and A6 can be determined 

uniquely to meet the following 4 conditions 

 0 0 0 0( ) 0, ( ') ( , , ), ( ) 0, ( ) ( , , )m mP c P c c S V T Y P x P x mS V T Y′= + = = =  (3.39) 

In doing so, the 4 real coefficients A0, A2, A4 and A6 will be determined by the crack speed V, 

remote loading T, the initial yielding stress Y0, the material ductility property Δ, hardening 

parameter m, crack length 2c, and the cohesive zone length c'. Substituting A0, A2, A4, and A6 into 

Eq. (3.30), the cohesive zone length c' can be determined. Finally, stress and displacement fields 

can be obtained from Eq. (3.10), (3.25), (3.29) and (3.32).  

 For example, for a crack under remote loading T = 0.4Y0, assuming that Δ = 0.7 and m = 1.5 

(Adams et al., 2001; Bucaille et al., 2006; Livne et al., 2010; Wnuk and Mura, 1983) (for 

materials with moderate hardening and the hardening zone is relatively small), the traction 

distribution at different crack speed is shown in Fig. 3.6 (κ = 1.7). Furthermore, the effect of 

material parameters m and Δ on cohesive zone length is shown in Fig 3.7. From Fig. 3.7, it can 

be seen that, similar as the previous simple model discussed in section 3.3.1, the cohesive zone 

length given by the present polynomial model increases with crack speed under moderate 

loading T = 0.4Y0. The zone length is determined by both values of m and Δ, and decreases with 

the hardening parameter m. In addition, it is found that when setting m = 1.24, Δ = 0.7 (in this 

case, the average traction force in cohesive zone is about 0.92S0), the dependence of cohesive 

zone length on crack speed predicted by the present sixth-order polynomial model is quite 
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similar to the previous simple model given in section 3.3.1. 

 

 
Fig. 3.6 Variations of traction force P(x) with crack speed V given by the polynomial model with hardening (T 

= 0.4Y0, κ = 1.7, Δ = 0.7, m = 1.5. Y0 is the material initial yielding stress.). 

 
Fig. 3.7 Variations of normalized cohesive zone length c'/c with crack speed V given by the polynomial model 

and simple model (T = 0.4Y0, κ = 1.7).  

  To explore the effect of non-uniform traction distribution given by the polynomial model, 

we calculated the CTOD based on the simple model and the polynomial model with m = 1.24, Δ 

= 0.7, respectively. From Eq. (3.32), the CTOD for the polynomial model and the simple model 

is evaluated numerically under different loading conditions, and the results are shown in Fig. 3.8. 

In Fig. 3.8, δ0 is the CTOD obtained by the simple model under the same remote loading T but at 
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V = 0. From Fig. 3.7 and 3.8, it can be seen that although the simple model and the polynomial 

model give almost same cohesive zone length, the CTOD predicted by the two models are quite 

different. Generally, the CTOD given by the polynomial model is about 30% larger than that 

given by the simple model. And the difference given by the two models increases with the 

remote loading and crack speed (for example, the differences is about 40% at V = 0.8Cs, T = 

0.6Y0), which indicates that the effect of non-uniformity of traction increases with the length of 

cohesive zone.  

 
Fig. 3.8 Relation between δ (CTOD) and crack speed V given by the simple model and the polynomial model 

(κ = 1.7, Δ = 0.7, m = 1.24. δ0 is the CTOD given by the simple model under the same remote loading T but at 

V = 0.). 

Therefore, the opening displacement of the cohesive zone is significantly influenced by the 

non-uniformity of traction distribution. For example, in reference (Döll, 1983), in static case, the 

crack face profiles predicted by the classical Dugdale model are shown in reasonable agreement 

with experimental data of some materials but deviates for a polycarbonate sheet (Fig. 8 in (Döll, 

1983)). In our Fig. 3.9a, we evaluate the crack face profiles using the present simple model and 

the polynomial model. Since the problem is under small yielding condition, we set T = 0.05Y0 

and T = 0.1Y0. From Fig. 3.9a, it can be seen that under small scale yielding condition, the crack 

face profiles given by the present polynomial model are insensitive to remote loading and 

largely determined by the material parameters m and Δ. For instance, in Fig. 3.9a, the crack 

faces predicted by the polynomial model (m = 1.04, Δ = 0.85) under T = 0.05Y0 (solid line) and T 

= 0.1Y0 (dash-dot line) are indistinguishable with each other. Based on the experimental data 
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about CTOD (δ = 4.3μm) at the point near crack tip (x−c = 2.4μm), using the numerical results 

of Eq. (3.32), one gets (κ+1)Y0/πμ = 0.054 for both the simple model and the polynomial model 

with m = 1.04 and Δ = 0.85, and (κ+1)Y0/πμ = 0.045 for the polynomial model with m = 1.1 and 

Δ = 0.85. By setting V = 0, the crack face profiles predicted by the simple model with (κ+1)Y0/πμ 

= 0.054, the polynomial model with m = 1.04, Δ = 0.85 and (κ+1)Y0/πμ = 0.054, the polynomial 

model with m = 1.1, Δ = 0.85 and (κ+1)Y0/πμ = 0.045 are shown in Fig. 3.9a. From Fig. 3.9a, it 

can be seen that, the polynomial model with m = 1.04 and Δ = 0.85 best fits the experimental 

data. Thus, compared with the simple model, the polynomial model with adjustable parameters 

m and Δ is in better agreement with experimental data given in (Döll, 1983) and has the potential 

to capture main features of both the crack face profile and cohesive zone length. In addition, the 

associated traction-separation laws derived from the polynomial models with different m and Δ 

are shown in Fig. 3.9b. 

 
Fig. 3.9a Cohesive zone profiles given by the simple model and the polynomial model, where x−c is the 

distance to crack tip, uy is the y-displacement of the cohesive zone faces. The crack profiles are obtained by 

the simple model with (κ+1)Y0/πμ = 0.054, or the polynomial model with m = 1.04, Δ = 0.85 and (κ+1)Y0/πμ = 

0.045, or the polynomial model with m = 1.1, Δ = 0.85 and (κ+1)Y0/πμ = 0.045. 
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Fig. 3.9b Traction-separation laws derived from the polynomial models with different m and Δ. 

 On the other hand, the fracture energy are calculated based on the simple model and the 

polynomial model with m = 1.24, Δ = 0.7. As discussed above, these two models give almost 

same cohesive zone length for a wide range of crack speeds. The fracture energy given by the 

two models is shown in Fig. 3.10, where G0 is the fracture energy given by the simple model 

under the same remote loading T but at V = 0. From Fig. 3.8-3.10, it can be seen that although 

the two models predict different CTOD, the fracture energy given by the two models are very 

similar (the difference is no more than 10% at V = 0.8Cs, T = 0.6Y0), especially under low 

remote loading T = 0.2Y0. Therefore, from Fig. 3.7-3.10, it can be concluded that: i) the form of 

traction distribution in cohesive zone significantly influences the crack tip profiles and CTOD; ii) 

fracture energy is much less sensitive to the non-uniformity of traction distribution. This 

conclusion is consistent with reference (Williams and Hadavinia, 2002) which states that the 

fracture energy is insensitive to the shape of traction-separation law. However, the 

non-uniformity of traction distribution gives a more reasonable crack faces profiles for some 

materials (Döll, 1983) thus has the potential to better capture fracture phenomenon of ductile 

materials with strain hardening in cohesive zone. 
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Fig. 3.10 Relation between fracture energy G and crack speed V given by the simple model and the 

polynomial model (κ = 1.7, Δ = 0.7, m = 1.24. G0 is the fracture energy given by the simple model under the 

same remote loading T but at V = 0.). 

 

 

3.4 Further comparison to experimental data 

 Here let us further compare our results with available experiments in the simple case when 

traction P(x) is a constant S, as discussed in section 3.3.1. In reference (Livne et al., 2010), a 

nonlinear zone is observed near moving crack tip in a polyacrylamide gel sheet, which cannot be 

explained by linear elastic fracture mechanics. For comparison, we choose the nonlinear zone 

length obtained from (Livne et al., 2010) as the cohesive zone length c' defined in the present 

model. Thus, fracture energy G at different crack speeds predicted by the present simple model 

is given by Eq. (3.38). Assuming that c' << c and T << Y, we have cln(1+c'/c) ≈ c' in Eq. (3.38). 

On the other hand, from test data of (Livne et al., 2010), we have fracture energy G = 14J/m2 

and cohesive zone length c' = 0.038mm at V = 0.34Cs (see Fig. 2 and Fig. 4 in (Livne et al., 

2010)). Using these two values of test, the present simple model (see Eq. (3.35) and (3.38)) 

gives the value of Y 2/μ = 0.4MPa. Assuming μ is a constant independent of crack speed and ν = 

0.5 (Livne et al., 2010), fracture energy at different crack speed predicted by the present simple 
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model (with P(x) = S, from Eq. (3.35) and (3.38)) is shown in Fig. 3.11 with comparison to 

classical Dugdale model and experimental data of (Livne et al., 2010). It is seen from Fig. 3.11 

that, as compared to classical Dugdale model, the present model is in much better agreement 

with the test results of (Livne et al., 2010) especially at high crack speeds. Actually, the 

difference between the present simple model and classical Dugdale model is not significant 

when V < 0.4Cs, which confirms that the speed effect predicted by the present model becomes 

significant especially for high crack speeds. At higher crack speed, when V > 0.4Cs, the 

differences between the present simple model and classical Dugdale model increases rapidly 

with crack speed. For example, at V = 0.78Cs, fracture energy predicted by classical Dugdale 

model is nearly 10 times the experimental result (Livne et al., 2010), while the result given by 

the present simple model is only about 40% higher than the experimental result. In addition, if 

strain rate effect on yielding stress Y is considered, traction force in cohesive zone will increase 

with crack speed, which leads to a larger fracture energy at high crack speed thus the results in 

Fig. 3.11 will deviates from experimental data. Also, from Fig. 3.2 it can be seen that the traction 

force decreases to blow 40% of its original value at high crack speed. Thus, it is reasonable to 

assume that the inertia effect dominates at high crack speed and is mainly responsible for 

physically reasonable fracture energy at high crack speed. These results show that the 

speed-dependence of traction force, as predicted by the present model, is essential to explain 

some known test results of nonlinear/ductile materials especially at high crack speeds. 

 Furthermore, if non-uniform traction distribution is considered, as discussed in section 3.2, 

it can be seen from Fig. 3.7 and 3.10 that under low remote loading, c'-V relation and G-V 

relation given by the present polynomial model are insensitive to the non-uniformity of traction 

distribution. Thus, the polynomial model will predict a similar G-V relation as the simple model 

without hardening.  
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Fig. 3.11 Relation between fracture energy G and crack speed V given by the classical Dugdale model and the 

present simple model (without hardening). (κ = 1.7)  

 

 

3.5 Conclusions  

 A steady-state moving crack of Yoffe-type is studied with a modified cohesive zone model. 

New features of this modified model are that the effects of the normal stress parallel to the crack 

axis and the non-uniformity of normal traction force in cohesive zone are examined, and 

non-uniform traction force on the cohesive zone is expressed by an arbitrary symmetric 

polynomial to be determined by specific yielding criterion imposed on the cohesive zone. The 

main conclusions can be summarized as:  

i) For materials defined by von Mises criterion without hardening, it is shown that the normal 

traction force is a speed-dependent constant which could be even much smaller than the normal 

stress parallel to the crack axis at high crack speed. Unlike the classical Dugdale model of a 

moving crack which predicts a speed-independent cohesive zone length, the present model 

predicts that the cohesive zone length increases with crack speed under lower or moderate 

remote mode-I loading.  

ii) Effect of non-uniformity of traction distribution is studied with a polynomial model in which 
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the traction is expressed by a sixth-order symmetric polynomial with four coefficients 

determined by the value and location of the maximum traction and the values of traction at two 

ends of the cohesive zone. Numerical results show that the non-uniformity of traction 

distribution significantly influences the opening displacement of cohesive zone, and the 

polynomial model predicts a more reasonable crack face profile than the simple model without 

hardening as compared with experimental data.  

iii) Comparison with some known experimental data shows that the present model is in better 

agreement with experimental data than the classical Dugdale model especially at higher crack 

speeds.  

 These results suggest that the present model is plausible to capture some speed effects on 

the cohesive traction and associated fracture energy at higher crack speed. 
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Chapter 4: A modified speed-dependent cohesive zone model for a 

high-speed self-similar expanding crack 

4.1 Introduction 

In this chapter, the speed-dependent cohesive zone model presented in chapter 3 is applied 

to a self-similar expanding crack problem. It is well known that large plastic deformations are 

often involved near the crack tip in ductile materials. Thus, to describe the stress field in this 

region, the cohesive zone models, were proposed by Barenblatt (Barenblatt, 1959) and Dugdale 

(Dugdale, 1960) for a static crack, and have been applied to dynamic crack problems of 

nonlinear or ductile materials (Atkinson, 1968; Goodier and Field, 1963; Kanninen, 1968; Wu 

and Huang, 2013). In these works, the materials in cohesive zone along crack faces are assumed 

to be yield and become the part of the crack faces while crack is propagating. A major 

assumption in these models (Dugdale model) is that the normal traction force in the cohesive 

zone is constant and equal to the yielding stress of the material. With such an assumption, for 

example, the role of the normal stress parallel to the crack faces is completely ignored in the 

yielding condition in the cohesive zone. However, it is known that high crack speed influences 

crack tip stress state and causes high inertia zone near crack tip. As a result, other stress 

components, especially the normal stress σxx parallel to the crack axis, comes to play an 

important role in the yielding condition in the cohesive zone at high crack speed. Moreover, 

Sousa et al. (Sousa et al., 2013) shows that the constant T-stress parallel to crack axis influences 

the plastic zone size near a static crack tip and cannot be ignored under moderate loading 

conditions; Jayadevan et al. (Jayadevan et al., 2003) shows that the fracture toughness is 

enhanced significantly with negative T-stress parallel to crack axis in a numerical analysis. 

These studies (Jayadevan et al., 2003; Sousa et al., 2013) suggested that the normal stress 

parallel to the crack axis, σxx, significantly influences fracture process in ductile materials, a 
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phenomenon which cannot be studied by the above-mentioned existing models (Atkinson, 1968; 

Goodier and Field, 1963; Kanninen, 1968; Wu and Huang, 2013). Therefore, the effects of σxx on 

the cohesive zone have recently drawn considerable attentions for static cracks (Siegmund and 

Brocks, 2000). However, to the best of my knowledge, little attention has been paid to dynamic 

cracks in ductile materials based on analytic cohesive zone models. In addition, non-uniform 

traction force in the cohesive zone has not been considered in previous analytic models. 

However, strain hardening (or softening) of materials are often involved in cohesive zone thus 

the traction usually are not constant along the zone (Siegmund and Brocks, 2000). Therefore, 

non-uniform traction distribution is studied in this chapter, and the effect of σxx, combined with 

remote loading T, on traction force, cohesive zone length, crack tip opening displacement 

(CTOD) and energy release rate near an expanding crack tip is discussed.  

Thus, in this chapter, self-similar high-speed crack propagation is studied with a modified 

cohesive zone model. With the present model, the normal traction distribution and the normal 

stress parallel to the crack in the cohesive zone are to be determined by satisfying the specific 

yielding criterion in the cohesive zone. It is shown in section 4.3 that for a ductile material 

defined by von Mises criterion without hardening, the traction force on cohesive zone is a 

constant and depends on crack speed Va and mode-I remote loading T. In particular, the present 

model confirms that the normal stress parallel to the crack faces, which has been ignored in 

previous related studies (Atkinson, 1968; Goodier and Field, 1963; Kanninen, 1968; Wu and 

Huang, 2013), can be larger than the normal stress perpendicular to the crack faces at high crack 

speed and thus play an important role in the cohesive zone. In addition, as shown in section 

4.3.1, at high crack speed, the cohesive zone length given by the present model is 2 times the 

zone length predicted by the classical Dugdale model. The CTOD and energy release rate 

calculated by the present model in section 4.3.2, are shown to decrease with increasing crack 

speed. In section 4.4, strain hardening effect is examined with a non-uniform traction 

distribution in the cohesive zone. Comparison between a self-similar expanding crack and a 

Yoffe- type steady-state moving crack based on the present model is discussed in section 4.5. 
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Finally, the main conclusions are summarized in section 4.6. 

 

 

4.2 A modified cohesive zone model for a self-similar expanding crack 

Let us consider a central crack lying on the x'-axis in an infinite elastic plane, which has an 

initial length 0 at t = 0 and expands at both tips along x' axis, with the tip velocity Va. The crack 

surfaces are under uniform pressure − T, where T corresponds to the mode-I remote loading. In 

addition, two symmetric cohesive zones, ahead of the two crack tips, expanding at the velocity 

of Vc and are under force Sy−T, where Sy is the traction on the cohesive zone (see Fig. 4.1). 

Unlike classical Dugdale model and previous related models studies (Atkinson, 1968; Goodier 

and Field, 1963; Kanninen, 1968; Wu and Huang, 2013) in which the traction Sy on the cohesive 

zone is taken as the yielding stress Y of material, the traction Sy in the present model is to be 

determined by satisfying specific yielding criterion on the cohesive zone.  

 

 

 

 

 

 

 

Fig. 4.1 A self-similar expanding crack with cohesive zones ahead of crack tips. 

It is known that for the present plane dynamic elastic problem, similar as Eq. (3.1) in chapter 3, 

the two displacement components (ux, uy) at time t can be given in terms of two wave functions 

ς(x', y', t) and ψ(x', y', t) (Craggs, 1960) 

 ,
' ' ' 'x yu u

x y y x
ς ψ ς ψ∂ ∂ ∂ ∂

= + = −
∂ ∂ ∂ ∂

 (4.1) 

σyy = −T 
Vct 

σyy = Sy−T 

 x' 

y' 

Vat 
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and the two wave functions meet motion equations  
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2 2 2
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1 0,
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x y C t
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∂ ∂ ∂
+ − =

∂ ∂ ∂

∂ ∂ ∂
+ − =

∂ ∂ ∂

 (4.2) 

where, Cd and Cs are longitudinal and transverse elastic wave speeds defined by Eq. (3.4). And 

the boundary conditions of the present problem are 
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= = >

 (4.3) 

with the asymptotic conditions that all stresses vanish at the infinity. 

For self-similar plane problems, stresses and velocities depend on the two combinations t/x' 

and t/y' and thus are homogeneous functions of x', y' and t of degree zero. As a result, the number 

of independent variables for stresses and velocities is reduced from three to two. Consequently, 

for the present mode-I expanding crack problem, as shown in reference (Freund, 1990) that the 

eight related functions on the left of the following Eq. (4.4) and (4.5) depend on two 

combinations of x', y' and t and eventually can be given in terms of eight respective analytical 

functions (Fxx, Fxy, Fyy, Fyt, Gxx, Gxy, Gyy, Gxt) on the right of Eq. (4.4) and (4.5) as 

{ } { } { } { }
2 2 2 2

2 2Re ( ) , Im ( ) , Re ( ) , Im ( )
' ' ' ' 'xx d xy d yy d yt dF F F F

x x y y y t
ς ς ς ςµ ζ µ ζ µ ζ µ ζ∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂ ∂ ∂
  

  (4.4) 

and 

{ } { } { } { }
2 2 2 2

2 2Im ( ) , Re ( ) , Im ( ) , Im ( )
' ' ' ' 'xx s xy s yy s xt sG G G G

x x y y x t
ψ ψ ψ ψµ ζ µ ζ µ ζ µ ζ∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂ ∂ ∂

  

  (4.5) 

where Fxx, ..., Gxt are eight functions (which are analytical in the entire complex plane except the 

crack, cohesive zone, and the circular wave front) of the two complex variables ζd and ζs defined 
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by (Freund, 1990) 

 
2 2

2 2
1 22 2 2 2 2 2

' ' ' ',d s
d s

x y r x y ri t i t i t i t
r r C r r C

ζ ξ η ζ ξ η= + = + − = + = + −  (4.6) 

where r = (x'2+y'2)1/2 < Cdt. In particular, along the crack faces and the cohesive zone we have ζd 

= ζs = ζ, and the interval of Vat < |x'| < Vct at y' = 0 is then mapped into Vc
-1 < |ξ| < Va

-1, the 

interval of 0 < |x'| < Vat at y' = 0 is mapped into |ξ| > Va
-1, and the circular wave front r = Cdt in 

the physical plane is mapped into 0 ≤ | ξ| ≤ Cd
-1. For the present 2D plane problem, only two of 

the above eight analytical functions are independent. Actually, as shown in reference (Freund, 

1990) from Eq. (4.4-4.6) that for the present mode-I problem the following six relations hold 

between the eight functions (Fxx, ……Gxt)  
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2 2 2 2 2 2 2
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′ ′ ′ ′− = − = − = − −

′ ′ ′ ′− = − − = − = − −
 (4.7) 

which effectively reduces the number of independent functions from eight to two. Furthermore, 

the stress field then can be described as (Freund, 1990) 

 

{ }
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d d
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d d
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σ ζ ζ ζ
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   = + − +  
   
   = − + −  
   

= + −

 (4.8) 

Final determination of all analytical functions depends on the boundary conditions. In view of 

the presence of the cohesive zone, the present problem has different boundary conditions on the 

cohesive zone than the elastic mode-I crack (Freund, 1990). In particular, different than the 

elastic mode-I crack (Freund, 1990), the normal traction in the present problem suffers a 

discontinuity across the crack tip. Thus, the arguments and derivations used in reference (Freund, 

1990) for the elastic mode-I crack need to be verified or modified for the present case. First of 

all, it can be seen that, similar to the case in reference (Freund, 1990; Georgiadis, 1991), shear 

stress vanish at circular wave front r = Cdt. Therefore, in view of the third equation in (4.8), the 

condition that the shear stress vanishes along the upper and lower faces of the crack, the 
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cohesive zone and the wave front (along which ζd = ζs = ζ) gives 

 
2 ( ) ( ) ( ) 2 ( ) ( ) ( ) ,

2 ( ) ( ) ( ) 2 ( ) ( ) ( )
xy yy xx xy yy xx

xy yy xx xy yy xx

F G G F G G

F G G F G G

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

+ + + − − −

− − − + + +

′ ′ ′ ′ ′ ′+ − = + −

′ ′ ′ ′ ′ ′+ − = + −
 (4.9) 

where the superscripts '+' and '−' denote the limit values from the upper and lower half -planes, 

respectively. Thus, from Eq. (4.9), the following combination is continuous across the crack, 

cohesive zone and wave front 

 2 ( ) ( ) ( ) 2 ( ) ( ) ( ) 0xy yy xx xy yy xxF G G F G Gζ ζ ζ ζ ζ ζ
+

−
 ′ ′ ′ ′ ′ ′+ − + + − =   (4.10) 

On the other hand, from Eq. (4.7) and (4.8) and the first boundary conditions in (4.3), one gets 

on crack faces 

 
2 22 2
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Re ( ) 2 ( ) 2 ( ) 0yy dd d

xy xy yy
s sd s
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σ ζζ ζζ ζ ζ
ξ ζζ ζ

−

− −

 ∂ −  ′ ′ ′= − − + =  ∂ − −   
  

  (4.11) 

In addition, it follows from Eq. (4.7) that Gyy' = −Gxx' as ζ→∞. Thus, from Eq. (4.11) one gets 

 { }Re 2 ( ) ( ) ( ) 0xy yy xxF G G′ ′ ′∞ + ∞ − ∞ =  (4.12) 

Therefore, from the principle of analytical continuation, it follows from Eq. (4.10) and (4.12) 

that  

 2 ( ) ( ) ( ) 2 ( ) ( ) ( ) 0xy yy xx xy yy xxF G G F G Gζ ζ ζ ζ ζ ζ′ ′ ′ ′ ′ ′+ − + + − =  (4.13) 

in the entire complex plane including the crack faces, the cohesive zone and wave front. 

Substituting Eq. (4.13) into Eq. (4.9), one gets that along the crack faces, cohesive zone and 

wave front 

 2 ( ) ( ) ( ) 2 ( ) ( ) ( ) 0xy yy xx xy yy xxF G G F G Gζ ζ ζ ζ ζ ζ
+ −

′ ′ ′ ′ ′ ′   + − + + − =     (4.14) 

This is a Hilbert problem and the solution bounded at the cohesive zone tips and |x'| = Cdt, y' = 0 

is (Rice, 1968) 

 2 ( ) ( ) ( ) 0xy yy xxF G Gζ ζ ζ′ ′ ′+ − =  (4.15) 

Combined with Eq. (4.7), one gets 

 2 2 22 ( ) ( 2 ) ( ) 0yt s xtF C Gξ ξ ξ ξ−′ ′+ − =  (4.16) 
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Therefore, from Eq. (4.7) and (4.16), the number of independent functions is now further 

reduced to one. For example, it is verified from Eq. (4.7), (4.8) and (4.16) that the following 

equations hold at y' = 0, for the crack faces and the cohesive zone, respectively, in terms of the 

single analytical function Gxt'(ξ) by 
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 (4.17) 

with 

 2 2 2 2 2 2 2 2( ) (2 ) 4V s d sR C C Cξ ξ ξ ξ ξ− − −= − − − −  (4.18) 

In particular, it is easily seen from Eq. (4.17) that σyy is constant on the cohesive zone implies 

that Gxt'(ξ) must be purely imaginary on the cohesive zone, and thus σxx is also constant on the 

cohesive zone. On the other hand, since the normal traction suffers a discontinuity at the crack 

tip, it is seen from (4.17) that Gxt'(ξ) has a simple pole at the crack tip. Thus, the final step is to 

determine Gxt'(ξ) from the normal traction boundary conditions on the crack and cohesive zone. 

In what follows, this will be discussed for materials without or with strain hardening, 

respectively. 

 

 

4.3 Materials defined by von Mises criterion without hardening 

Let us first consider the materials without hardening defined by von Mises criterion with a 

constant yielding stress Y. Under plane stress condition, shear stress vanishes in the cohesive 

zone and the von Mises criterion in the cohesive zone is given by 

 2 2 2
xx y xx yS S Yσ σ+ − =  (4.19) 

As stated above, σyy is constant on the cohesive zone implies that σxx is constant on the cohesive 
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zone. Therefore, for materials without hardening defined by von Mises criterion (4.19) with a 

constant yielding stress Y, both Sy and σxx are constant on the cohesive zone. From Eq. (4.17) and 

the uniformity of normal traction on the crack faces and cohesive zone respectively, the real part 

of Gxt'(ζ) vanishes on the upper and lower faces of the crack and cohesive zone while Gxt'(ζ) has 

the crack tip as a simple pole. Thus the product Gxt'(ζ)(Va
-2 −ζ2) vanishes on the upper and lower 

faces of the crack and cohesive zone, without having the crack tip as a simple pole. This implies 

that on the faces of crack and cohesive zone  
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 (4.20) 

Thus, the product Gxt'(ζ)(Va
-2 −ζ2) is continuous across the crack and the cohesive zone 

 ( ) ( )2 2 2 2( ) ( ) 0a xt a xtV G V Gζ ζ ζ ζ
+

− −

−
 ′ ′− − − =   (4.21) 

On the other hand, from Eq. (4.1), (4.4-4.7), similar as reference (Freund, 1990), one gets  
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 (4.22)  

It follows from the fourth boundary condition in (4.3) that Im{Gxt'(ξ)}= 0 at |ξ| ≤ Vc
-1. Therefore, 

from the principle of analytical continuation, it follows from Eq. (4.21) that  

 ( ) ( )2 2 2 2( ) ( ) 0a xt a xtV G V Gζ ζ ξ ζ− −′ ′− − − =  (4.23) 

in the entire complex plane including the crack faces and cohesive zone. Substituting Eq. (4.23) 

into Eq. (4.20), one gets along the crack faces and cohesive zone 

 ( ) ( )2 2 2 2( ) ( ) 0a xt a xtV G V Gζ ζ ζ ζ
+ −

− −   ′ ′− + − =     (4.24) 

This is a Hilbert problem for the product Gxt'(ζ)(Va
-2−ζ2). In view of the continuous stress 

condition at wave front r = Cdt for a linearly increasing force (Freund, 1990), the bounded 

solution for Gxt'(ζ)(Va
-2 −ζ2), which leads to Gxt'(ζ) having 1/2 singularity at the cohesive zone 

tips (while stress singularity at the cohesive zone tip is cancelled), is given by (Rice, 1968) 
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where P(ζ) is an arbitrary polynomial of ζ with real coefficients. Furthermore, from the 

symmetric stress condition it can be verified that P(ζ) must be a symmetric polynomial. It can be 

verified from Eq. (4.22) and (4.25) that the single displacement condition can be met if P(ζ) is a 

symmetric polynomial. In addition, to ensure a finite particle velocity when t→∞, from Eq. 

(4.22), P(ζ) must be a constant C. Thus, noticing that σyy = 0 at the wave front, it follows from 

the first and second boundary condition in (4.3) that 
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where, Va
-1− stands for the limit value from the left point of Va

-1, and Va
-1+ stands for the limit 

value from the right point of Va
-1. Eq. (4.26) can be solved for the two constants C and Vc by 

applying Cauchy's integral theorem to an infinite closed rectangular path with a simple pole at ξ 

= Va
-1 in upper-half plane (four integration limits are ξ = 0, ξ = ∞, ξ = ∞+i∞, and ξ = i∞). The 

purpose of selecting different integration path is to avoid the imaginary part of the integrand in 

(4.26). By using Jordan's lemma (Brown and Churchill, 1996) and the condition that stresses 

vanish along Im{ξ} = 0, |ξ| ≤ Cd
-1, one gets  
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  (4.27) 

Noticing the following integral results along small upper-half circle 
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it then follows from Cauchy's integral theorem and Eq. (4.26-4.28) that  
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 (4.29) 

For given Va, Sy and T, the two conditions (4.29) determine the two constants C and Vc. In 

particular, it follows from Eq. (4.29) that, 
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From Eq. (4.18) and (4.29), it can be seen that when crack speed Va is equal to Rayleigh wave 

speed CR, RV(CR
-1) = 0 and Eq. (4.29) has no solution. Therefore, the theoretical limit crack 

speed is CR. On the other hand, if Vc and Va and Sy are all given, the remote loading T can be 

solved numerically from Eq. (4.29). The numerical results can be checked in the following two 

special cases. 

i) For a static crack when both the crack tip speed and cohesive zone tip speed Va→0 and Vc→0, 

then Vc
-1→∞ and Va

-1→∞ (but t→∞ so that the crack length Vat is not zero), it can be shown that 

RV(iξ) →2(Cs
-2− Cd

-2)ξ2 when ξ→∞. Thus from Eq. (4.29), one gets  
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Therefore 
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which is identical to the classical result of a static crack (Dugdale, 1960). 

ii) When Va > 0, Sy = Y, the relation between the relative cohesive zone length lc = (Vc − Va)/Vc 

and T under different crack speeds are determined by Eq. (4.29). The results are shown in Fig. 

4.2, which agree well with the Fig. 3 in (Embley and Sih, 1972) derived by a different approach 
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based on the 1D yielding condition Sy = Y.  

 
Fig. 4.2 Relation between relative cohesive zone length lc = (Vc − Va)/Vc and remote loading T at different 

crack speed Va given by the classical Dugdale model with constant yielding stress Y. (ν = 0.3, plane stress) 

In this chapter, we consider the 2D von Mises yielding criterion (4.19) without hardening. 

Thus, from Eq. (4.17), (4.19) and (4.25), similar as Eq. (3.17) in chapter 3, one gets, under plane 

stress condition, 
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with  
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 (4.34) 

The values of Ra and Sy under different crack speed are shown in Fig. 4.3-4.4. In Fig. 4.3, the 

black dot-line is the Ra value near the crack tip at y' = 0 predicted by LEFM (Freund, 1990). It 

can be seen from Fig. 4.3 that Ra increases with increasing crack speed. This confirms that at 

high crack speed, the normal stress parallel to the crack faces σxx can be even larger than the 

normal traction Sy on the cohesive zone and cannot be ignored. This justifies the necessity of 

including the normal stress σxx in the yielding condition especially at high crack speed, as 

studied in this chapter. In addition, Ra increases with remote loading T. If T << Sy, the second 
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equation in (4.29) can be neglected and Eq. (4.29) is reduced to  

 
2 2 2 22( )( 2 ) ( ) ,

( )
s d s a V a

a y
V a

C C C V R VR T S
R V

− − −− − −
= <<  (4.35) 

which is identical to the near tip results given by LEFM (Freund, 1990). Thus, from Fig. 4.3 it 

can be seen that the inertia effect becomes even more important in the cohesive zone model as 

compared with LEFM. 

 
Fig. 4.3 Relation between the ratio Ra and crack speed Va under different loading T. (ν = 0.3, plane stress, Cd is 

the longitudinal elastic wave speed) 

 
Fig. 4.4 Relation between uniform traction force Sy and crack speed Va under different loading T. (ν = 0.3, 

plane stress)  

From Fig. 4.4 it can be seen that under moderate and low remote loading T ≤ 0.6Y, with the 

inertia effect, the traction force Sy on cohesive zone decreases monotonously with crack speed, 
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but when T = 0.8Y as shown in Fig. 4.4, the traction force attains maximum at around Va = 0.2Cd 

and then decreases to about 0.9Y at V = 0.4Cd. Finally, it should be clarified that in common, the 

maximum fracture speeds for ductile materials such as metals is around 0.2Cd. However, the 

present high-speed model is also applicable for materials experiencing yielding in cohesive zone 

while propagating, such as small scale yielding in brittle fracture. In what follows, the 

implications of the present model for the cohesive zone length, crack tip open displacement and 

energy releases rate are examined in more detail. 

 

4.3.1 Cohesive zone length  

Taking Eq. (4.33) into (4.29), the relation between crack speed Va and relative cohesive 

zone length l = (Vc − Va)/Vc under different mode-I loading T can be obtained and shown in Fig. 

4.5. From Fig. 4.5, the present model predicts that the cohesive zone length decreases with 

increasing crack speed, in consistency with the classical Dugdale model (Atkinson, 1968; 

Embley and Sih, 1972; Wu and Huang, 2013) based on 1D yielding condition Sy = Y. However, 

the cohesive zone length given by the present model decreases with crack speed slowly as 

compared to the classical Dugdale model, as a result of the inertia effect. The differences 

between these two models are shown in Fig. 4.6. From Fig. 4.6 it can be seen that the present 

model predicts a larger cohesive zone length at high crack speed especially under low remote 

mode-I loading. For example, the relative zone length given by the present model is larger than 

2 times the zone length give by classical Dugdale model at Va = 0.4Cd and T = 0.2Y. 
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Fig. 4.5 Relation between relative cohesive zone length l = (Vc − Va)/Vc and crack speed Va under different 

remote loading T given by the present model. (ν = 0.3, plane stress) 

 
Fig. 4.6 The relative cohesive zone length predicted by the present model (l) and classical Dugdale model (lc) 

at different crack speed Va. (ν = 0.3, plane stress) 

 

4.3.2 Crack tip opening displacement (CTOD) and energy release rate 

From Eq. (4.1), (4.4-4.7), (4.22), (4.25), for an expanding crack under remote loading T and 

cohesive force Sy, one gets at y = 0, along the upper cohesive zone face 
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which gives 
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here the constant term has been ignored. At the crack tip, when ξ→Va
-1, from Eq. (4.37), in view 

of the symmetry of the displacement, one gets the CTOD δ 
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where, β1 = (1−Va
2/Cd

2)1/2, β2 = (1−Va
2/Cs

2)1/2 as shown in chapter 3. Under the same crack length 

x' = Vat, the relation between CTOD and crack speed given by the present model is shown in Fig. 

4.7. From Fig. 4.7 it can be seen that the CTOD given by the present model decreases with crack 

speed, in consistency with classical Dugdale model (Wu and Huang, 2013). The ratio between 

CTOD given by the present model δ and the classical Dugdale model δc is shown in Fig. 4.8. 

From Fig. 4.8, it can be seen that at low crack speed, the present model predicts a smaller CTOD 

as compared with the classical Dugdale model, because the present model predicts a larger 

traction force on cohesive zone (see Fig. 4.4). However, the ratio between the present model and 

the classical Dugdale model increases with crack speed and becomes larger than 1.4 at Va = 

0.4Cd and T = 0.2Y.  
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Fig. 4.7 Relation between CTOD δ and crack speed Va given by the present model. (ν = 0.3, plane stress) 

 
Fig. 4.8 CTOD given by the present model (δ) and the classical Dugdale model (δc) at different crack speed Va. 

(ν = 0.3, plane stress) 

In addition, the energy release rate G is given by (Embley and Sih, 1972) 
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From Eq. (4.36) and (4.39), one gets 
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 (4.40) 

Let us consider the energy release rate normalized by the energy release rate G0 in elastostatic 

case (Embley and Sih, 1972) with G0 = (κ+1)πVatT2/8μ. The normalized energy release rate 

G/G0 at different remote loading T is shown in Fig. 4.9 as a function of crack speed. From Fig. 

4.9 it can be seen that the normalized energy release rate decreases with crack speed, and its 

dependence on the remote loading T becomes insignificant at high crack speed, in consistency 

with the classical Dugdale model (Embley and Sih, 1972; Wu and Huang, 2013). The energy 

release rate given by the classical Dugdale model (Gc) is compared with the present model (G) in 

Fig. 4.10. From Fig. 4.10, it can be seen that differences between these two models are relatively 

small, especially when crack is under low remote loadings. The ratio between G/Gc increases 

with crack speed, which means that the inertia effect with high crack speed in cohesive zone has 
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the potential to increase the energy release rate for a high-speed expanding crack. 

 
Fig. 4.9 The normalized energy release rate G/G0 at different crack speed Va given by the present model. (ν = 

0.3, plane stress) 

 
Fig. 4.10 Energy release rate given by the present model (G) and classical Dugdale model (Gc) at different 

crack speed Va. (ν = 0.3, plane stress) 

 

 



76 

4.4 Strain hardening with non-uniform traction distribution in the cohesive 

zone 

Strain hardening (or softening) of materials are often involved in cohesive zone thus the 

traction usually are not constant along the zone (Siegmund and Brocks, 2000). Therefore, in the 

present paper, non-uniform traction distribution is employed to describe the strain hardening 

effect in the cohesive zone. More specifically, the traction force in cohesive zone is assumed to 

be a symmetric function Sy(t/x') of variable t/x'. For elastic mode-I crack without a cohesive zone, 

a distributed pressure on the crack faces described by a polynomial of t/x' has been studied in 

some previous works (Georgiadis, 1991) by an integral equation approach. However, to the best 

of the present author's knowledge, no attempts have been made to an expanding crack with 

variable traction force in cohesive zone. In this section, the non-uniform traction is solved 

numerically by replacing the continuous traction distribution by a group of constant traction 

force along cohesive zone (Theocaris and Gdoutos, 1974). This method was employed in 

reference (Theocaris and Gdoutos, 1974) to solve a static crack problem and now is extended to 

dynamic problem in this thesis. Therefore, the solution of Gxt'(ξ) can be expressed by the 

superposition of n solutions of expanding cracks each of which is under a uniform traction force 

in a cohesive zone (Vc
-1 < ξ < ξj, j = 1,2…n, see Eq. (4.42)) and remote mode-I loading. Thus, 

compared with Eq. (4.25), one gets 
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with  

 ( )1 1 1 ( 1) /j a a cV V V j nξ − − −= − − −  (4.42) 

where, Qj(ξ) is a symmetric polynomial with real constant to be determined by boundary 

conditions. In particular, considering the cancelation of singularity at the cohesive zone tip and 

finite particle velocity at infinity in ζ plane, Eq. (4.41) can be expressed by 
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where, Dj is a real constant to be determined by boundary conditions. Thus, from the first and 

second boundary condition in (4.3) and Eq. (4.29), one gets 
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with k = 1, 2, ......n. Eq. (4.44) is a set of n+1 linear equations with n+1 unknowns Dj and T, so 

can be solved numerically. In particular, when Va→0, similar as Eq. (4.31), from Eq. (4.32), one 

gets 
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which enable us to compare our numerical results with existing analytical results in static case. 

For example, we consider the case that Sy(t/x') = q1(t/x')-2, where q1 is a real constant. This is 

equivalent to the problem of a static crack with crack length 2Va and cohesive zone length 

(Vc−Va) in the (x'/t, y) plane under traction force Sy(x'/t) = q1(x'/t)2 in cohesive zone and remote 

tensile loading T, which has an analytic solution given in reference (Harrop, 1978) derived by 

weight function method 

 2 2 21 arccos a
c a c a

c

VqT V V V V
Vπ

 
= + − 

 
 (4.46) 

Theoretically, the accuracy of numerical results increases with increasing n. Thus, our numerical 

results from Eq. (4.45) with n = 1000 is compared to the analytic results (Harrop, 1978) and 

errors are shown in table 4.1. From table 4.1, it can be seen that good accuracy can be achieved 

by the present numerical method when n is sufficiently large. Therefore, Eq. (4.43) provides a 
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simple and accurate way to consider the non-uniform traction force in cohesive zone for a 

high-speed expanding crack. 

Table 4.1 Validation of numerical results of an expanding crack under non-uniform traction force Sy(t/x') = 

q1(t/x')-2 in cohesive zone. 

 Va=0.05Cd, Vc=0.1Cd Va=0.08Cd, Vc=0.1Cd Va=0.02Cd, Vc=0.1Cd 

numerical 0.004707q1Cd
2 0.003575q1Cd

2 0.004965q1Cd
2 

analytic 0.004712q1 Cd
 2 0.003576q1Cd

2 0.004983q1Cd
2 

relative error 0.11% 0.03% 0.36% 

From Eq. (4.17) and (4.43), the distribution of normal stress σxx in cohesive zone can be 

derived as 
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Therefore, from Eq. (4.47) and (4.48) it can be seen that, different from the Yoffe-type moving 

crack model of constant crack length which predicts that the ratio Ra between σxx and σyy is a 

constant in the cohesive zone and independent of the form of traction distribution (Kanninen, 

1968), the present self-similar expanding crack model predicts that Ra varies along cohesive 

zone and depends on the specific form of traction distribution. For example, variations of Ra 

along cohesive zone at different crack speed Va  and cohesive zone tip speed Vc under non- 

uniform traction Sy(t/x') = q1(t/x')-2 is shown in Fig. 4.11. From Fig. 4.11 it can be seen that Ra 

varies along cohesive zone under non-uniform traction Sy(t/x') = q1(t/x')-2 and tends to a constant 

at low crack speed when Va = 0.08Cd.  
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Fig. 4.11 Variations of Ra along cohesive zone at different crack speed Va and cohesive zone tip speed Vc under 

non-uniform traction force Sy(t/x') = q1(t/x')-2. 

Finally, the displacement uy in cohesive zone and energy release rate G under non-uniform 

traction can be obtained from Eq. (4.36-4.40), (4.43) 
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4.5 Comparison between the self-similar expanding crack and steady-state 

moving crack 

From Fig. 3.2 and 4.4 it can be seen that based on von Mises criterion, under low and 

moderate remote loading, the modified cohesive zone model predicts a decreasing traction force 

with increasing crack speed for both steady-state moving crack and self-similar expanding crack. 

Thus, in this section, the traction force ahead of a self-similar expanding crack tip is compared 

with that head of a moving crack tip, as shown in Fig. 4.12. It can be seen from Fig. 4.12 that the 

effect of crack speed on traction force is more significant for a self-similar expanding crack 

compared with a steady-state moving crack of constant length. Actually, at low crack speed 

when Va < 0.15Cd, the different between these two types of moving cracks is small. At higher 

crack speed, the traction force ahead of a self-similar expanding crack tip decreases more 

severely with increasing crack speed. However, the predicted traction decreases with increasing 

crack speed for both types of moving cracks studied in chapter 3 and 4. This indicates although 

Yoffe-type model (studied in chapter 3) is an over-simplified mathematical model for moving 

cracks, the stress state in cohesive zone given by the Yoffe-type model is similar to that given by 

a self-similar expanding crack model (studied in this chapter). Thus the Yoffe-type model is still 

of physical interest for moving crack problems. 

 
Fig. 4.12 Relation between uniform traction force Sy and crack speed Va under different loading T for 
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self-similar expanding and Yoffe-type moving cracks. (ν = 0.3, plane stress)  

 

 

4.6 Conclusions 

Self-similar crack propagation is studied with a modified cohesive zone model, in which the 

effects of the normal stress parallel to the crack faces σxx and strain hardening are included. It is 

shown that the normal stress parallel to the crack faces, which has been ignored in all previous 

related models, is even larger than the normal traction on the cohesive zone at high crack speed, 

which justifies the necessity of including it in the yielding condition on the cohesive zone. Based 

on von Mises criterion without hardening, it is shown that different from classical Dugdale 

model for an expanding crack, the traction force on cohesive zone predicted by the present 

model decreases with increasing crack speed under moderate or low mode-I remote loading, but 

attains maximum when crack speed is around 0.2 of longitudinal elastic wave speed under high 

mode-I remote loading. By considering the inertia effect, the present model predicts a larger 

cohesive zone length and CTOD at high crack speed as compared to the classical Dugdale model, 

while the difference between the energy release rate given by the present model and classical 

Dugdale model is relatively small. These results indicate that the inertia effect cannot be ignored 

at high crack speed and a speed-dependent traction force is required in analytic and numerical 

analysis in dynamic fracture. Finally, strain hardening effect is studied with a non-uniform 

traction distribution in cohesive zone solved numerically by replacing the continuous traction 

distribution by a group of step functions. The accuracy of this method is verified by good 

agreement with known analytic results in static case.  
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Chapter 5: Inertia effect of cohesive zone on a high-speed moving crack 

5.1 Introduction 

The cohesive zone models, first proposed by Barenblatt (Barenblatt, 1959) and Dugdale 

(Dugdale, 1960) for a static crack, have successfully been employed in analytical and numerical 

studies of crack propagation in nonlinear or ductile materials (Costanzo and Walton, 2002; 

Kubair et al., 2002; Scheider, 2009; Tvergaard and Hutchinson, 1994; Xu and Needleman, 1994; 

Zhang et al., 2003). In all of these studies, the cohesive zone is simplified as a line segment 

without a volume and mass. The constitutive law in cohesive zone is modeled by linear or 

nonlinear springs distributed along the cohesive zone (Volokh, 2004; Williams and Hadavinia, 

2002) and the surrounding bulk materials are often assumed to be linearly elastic (Costanzo and 

Walton, 2002; Kubair et al., 2002; Zhang et al., 2003). Apparently, all of the above-mentioned 

existing cohesive zone models have completely ignored the mass and inertia of the cohesive 

zone. Since the cohesive zone actually represents a region near the crack tip in which plastic or 

nonlinear deformation dominates (Livne et al., 2010; Rosakis and Freund, 1982), the mass of 

this region, which has been ignored in the existing cohesive zone models (Costanzo and Walton, 

2002; Kubair et al., 2002; Scheider, 2009; Tvergaard and Hutchinson, 1994; Volokh, 2004; 

Williams and Hadavinia, 2002; Xu and Needleman, 1994; Zhang et al., 2003), could have a 

significant effect on dynamic fracture of a high-speed moving crack. Therefore, it is of great 

interest to study the inertia effect of cohesive zone on a moving crack in a ductile or nonlinear 

material. To the best of my knowledge, this issue has not been well addressed in the literature. 

This chapter aims to study the inertia effect of the cohesive zone on a mode-I Yoffe-type 

steady-state moving crack of constant length. The cohesive zone of mass and inertia is modeled 

as distributed springs with concentrated mass attached at the two ends of each spring, as shown 

in Fig. 5.1. This new cohesive zone model for a steady-state moving crack of Yoffe-type is 

described in section 5.2. Determination of the mass distribution function in cohesive zone is 
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discussed in section 5.3. In particular, the mass distribution along cohesive zone is defined by a 

simple function which vanishes at the two ends of the cohesive zone and ensures that traction 

remains finite at both crack tips and cohesive zone tips. Iteration method and an alternative 

numerical method are described and tested in section 5.4. Traction distribution surrounding the 

cohesive zone and speed-dependent fracture energy are then solved numerically and discussed in 

section 5.5. Finally, main conclusions are summarized in section 5.6. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.1 A crack of constant length 2c moving along the x-axis at speed V in the moving coordinate system (x, 

y) with a cohesive zone characterized by distributed mass-springs, where T is the remote mode-I loading, c' is 

the cohesive zone length, Sy is the outer traction surrounding the cohesive zone, M is the distributed mass 

attached on the two ends of each spring, uy is the half of cohesive zone separation and a+ is the y-directional 

acceleration of the upper end of the spring.  

 

 

5.2 A mass-spring cohesive zone model 

Let us consider a Yoffe-type steady-state moving crack. The crack of constant length 2c in 

an infinite elastic sheet or plane, subjected to the mode-I remote tensile loading T, is moving at a 
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constant speed V along the x-axis in a moving coordinates system (x, y). The cohesive zone is 

defined as a line segment and have a length c' ahead of each crack tip (see the left figure in Fig. 

5.1). However, different from the traditional cohesive zone models in which the mass of the 

cohesive zone is ignored, in the present paper, the cohesive zone is modeled by a mass-spring 

system in which a distributed mass M(x) (per unit length along the cohesive zone, whose 

specific form is to be determined below) is attached to the two ends of the distributed springs in 

the cohesive zone (see the right figure in Fig. 1). Thus, the outer traction Sy surrounding the 

cohesive zone is given by  

 ( ) ( ) ( ) ( ), | | 'y yS x f u M x a x c x c c+= + ≤ ≤ +  (5.1) 

where, a+ is y-directional acceleration of the upper cohesive zone face (at the upper end of the 

spring), uy is the half of cohesive zone separation, and f(uy) is the inner traction inside the 

cohesive zone which defines the T-S law in the cohesive zone (Volokh, 2004; Williams and 

Hadavinia, 2002). In the present paper, we consider the T-S law inside the cohesive zone can be 

described by a bilinear model with 2 adjustable parameter Smax and u0 (see Fig. 5.2) as follows 

 
max 0 0 0 0

max 0 0

( ) ( ) / ( )
( )

( ) ( ) / ( ) ( )
y y

y
y y y y

S S u x u S u x u
f u

S u c u x u c u u x u

− + ≤=     − − ≥    
 (5.2) 

where, S0 is the initial yielding traction at the end of cohesive zone which is related with crack 

speed (see Eq. (3.35) in chapter 3 with S0 = S), and Smax is the maximum traction in cohesive 

zone, u0 is the half of cohesive zone separation at the location of maximum traction, and uy(c) is 

the half of cohesive zone separation at the crack tip. In the present study, the value of Smax/S0 and 

u0/uy(c) are assumed independent of crack speed. When u0 = 0, from the second equation in (5.2), 

the traction-separation law in cohesive zone reduces to a linear strain softening model (Kubair et 

al., 2002): Sy(x) = Smax[1−uy(x)/uy(c)].  
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Fig. 5.2 A bilinear T-S law f(uy) employed in the present paper, where S0 is the initial yielding traction at the 

end of the cohesive zone, Smax is the maximum traction in cohesive zone, and u0 is the half of cohesive zone 

separation at the location of maximum traction. 

To solve Eq. (5.1), one needs a relation between the outer traction Sy(x) and the cohesive 

zone separation 2uy(x). For this end, we consider that the traction Sy(x), surrounding the cohesive 

zone, can be given in the form of symmetric polynomial P(x) with n/2+1 real coefficients  

 2 2
2 2 0( ) ( ) n n

y n nS x P x A x A x A x A−
−= = + + ⋅⋅⋅+ +  (5.3) 

where, n is an even integer and A0, A2, ..., An are real constants and will be determined by Eq. 

(5.1). From Eq. (3.32) in chapter 3, the half of cohesive zone separation can be given by 

( ) ( )
( ) ( ) ( ) ( )

2 22 2

2 2 2 22 2 2 2

' '( ) ( )( ) ( ) ln d
' ' ' '

y

x c c c c c c xA V Q x Txu x P x x
x c c c c c c x c c x c c x

π
πµ

 + − + + − = − + −
 + − − + − + − + − 

∫  

  (5.4) 

where, A(V) is a speed dependent function shown in Eq. (3.33). In addition, Q(x) in Eq. (5.4) is a 

polynomial of finite degree 

 1 1 3
2 2 0( ) n n

n nQ x B x B x B x B x+ −
−= + + ⋅⋅⋅ + +  (5.5) 

where, B0, B2, ..., Bn are some real constants determined by the remote loading condition at the 

infinity, which depend on the traction P(x) (see e.g. Appendix B). Actually, from the asymptotic 

uy 
uy(c) u0 

Smax 

S0 

f(uy) 

0 
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stress field at infinity when x→∞, one gets n/2+1 linear relations between A0, A2, ..., An and B0, 

B2, ..., Bn (see Eq. (3.27) and (3.28)). 

 

( ) ( )2 2/2 /2
1 2

2 22 2
1 1

(0) (0)( ) ( ') ( ) ( ')( ) 2arctan 1 0
! !( ')

i ii in n

i i

g gP x c c c Q x c cP x
i x x i xc c cπ π= =

      + +   − + − + =      
+ −          

∑ ∑   

  (5.6) 

where, g1
(i)(0) is the ith derivative of g1(x) at the point 0, g2

(i)(0) is the ith derivative of g2(x) at 

the point 0, with  

 1 22 2

1 1( ) 2arctan , ( )
1( ')

c xg x g x
xc c c

−
= =

−+ −
 (5.7) 

In addition, the y-directional acceleration of upper cohesive zone face can be determined by Eq. 

(5.4) and steady-state condition as follows 
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  (5.8) 

For given remote loading T, the length of cohesive zone can be determined by the stress 

singularity cancelation condition at the cohesive zone tip: Q(x) = πTx at the point x = c+c'. 

Alternatively, for a given length of cohesive zone, the remote loading T can be determined by 

the above singularity cancelation condition at the cohesive zone tip Q(c+c') = πT(c+c'). Finally, 

similar as Eq. (3.34), the fracture energy can be calculated by 
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5.3 The determination of mass distribution of cohesive zone 

In the present study, we assume that the mass distribution M(x) of cohesive zone is a 

function of x, determined by the thickness of cohesive zone at point x. From Eq. (5.8), it is seen 

that the acceleration has a logarithm singularity at crack tips and an inverse square-root 

singularity at cohesive zone tips. Thus, it follows from Eq. (5.1) that, to ensure a finite traction 

at both the crack tip and the cohesive zone tips, the mass M(x) must vanish at both crack tips and 

cohesive zone tips. Here we assume that M(x) is of a simple elliptical form 

 
( ')

( ) , '
'

b c c x x c
M x c x c c

c
ρ + − −

= ≤ ≤ +  (5.10) 

where, ρ is the mass density of surrounding bulk material (per unit area), b is a positive constant 

of a dimension of length and determined by the maximum thickness of cohesive zone. Thus, the 

mass distribution M(x) given by Eq. (5.10) is consistent with a reasonable assumption that the 

thickness of the cohesive zone vanishes at the ends of cohesive zone. In addition, consistent with 

the strip yielding assumption, the maximum thickness b cannot be much larger than the length c' 

of the cohesive zone. Thus, in the present paper, we assume that b ≤ 2c'.  

 

 

5.4 Numerical scheme 

It can be seen from Eq. (5.1) and (5.3) that the outer traction distribution function P(x) 

surrounding the cohesive zone contains n/2+1 unknown coefficients (A0, A2, ..., An). Thus, n 

/2+1 collocation points are required to solve Eq. (5.1) based on collocation method (Iserles, 

2009; Zhang et al., 2003). In this section, two different numerical approaches are presented 

 

5.4.1 Successive iteration method  

In successive iteration method, it is assumed that the Eq. (5.1) holds at n/2+1 collocation 
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points x = {x1, x2, …, xn/2+1} in the cohesive zone. Combined with Eq. (5.2), (5.4), (5.7) and (5.8), 

Eq. (5.1) can be represented by a system of n/2+1 nonlinear equations with the n/2+1 unknowns 

A0, A2, ..., An. Given an initial assumed traction Pold(x), the displacement and acceleration of 

cohesive zone faces can be calculated by Eq. (5.4) and (5.10). Then a new traction Pnew(x) can 

be obtained from the right hand side of Eq. (5.1), which is generally different than the assumed 

Pold(x). The error is ||Pnew(x)–Pold(x)||. The iteration procedure continues with the new traction 

Pnew(x) until the relative error ||Pnew(x)–Pold(x)||/||Pold(x)|| is smaller than a prescribed tolerance 

(for example, in the present study, we take the tolerance as 10-4).  

 

5.4.2 An alternative numerical method 

In the previous related researches, solving nonlinear equations seems inevitable for 

traditional spring cohesive zone models (Costanzo and Walton, 2002; Kubair et al., 2002; Zhang 

et al., 2003). However, the convergence of the solution of nonlinear equations is difficult and 

strongly depends on initial condition (Edwards and McRae, 1993; Zhang et al., 2003). Therefore, 

in the present paper, a new linear method is presented for the simple mass-spring cohesive zone 

model which is defined by a bilinear T-S law. First, let the displacement at crack tip uy(c) = δ/2 

(where δ is the crack tip opening displacement), and the Eq. (5.1) holds at the other n/2 

collocation points x = {x2, x3, …, xn/2} in cohesive zone. Combined with the remote loading 

condition (5.6), a system of n+2 linear equations can be constructed and solved for the n+2 

unknown coefficients A0, A2, …, An and B0, B2, …, Bn. Finally, the value of δ can be determined 

by the condition that P(c) = 0.  

 

 

5.5 Results and discussion 

Numerical calculation of Eq. (5.1) was carried out using the two numerical methods 

described in section 5.4. In the present paper, the inertia effect of cohesive zone on dynamic 

fracture energy will be studied by examining the role of key thickness parameter b. In Eq. (5.10), 

b = c' is assumed in section 5.5.1-5.5.3 (see Fig. 5.3-5.8) while variable value of b is examined 
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in section 5.5.4 (see Fig. 5.9a and Fig. 5.9b). Poisson's ratio ν = 0.3 and coefficients number n = 

10 are used in all calculations, and the tolerance is set to be 10-4. Numerical results at different 

crack speed are discussed in the following sections. 

 

5.5.1. Comparison between the two numerical methods 

The traction distribution Sy(x) surrounding the cohesive zone at different crack speed is 

calculated by the above two methods in the case that c' = 0.5c. The results are shown in Fig. 5.3. 

From Fig. 5.3, it is seen that these two methods give almost identical results for different T-S 

law parameters at low crack speeds, which confirms the accuracy of these two numerical 

methods. However, the iteration method fails to converge at higher crack speeds (V > 0.35Cs 

when u0 = 0, and V > 0 when u0 > 0, Smax = 1.2S0) while a convergent solution can be obtained 

by the alternative numerical method proposed in section 5.4.2. Furthermore, our calculations 

show that other nonlinear iteration technique such as Newton-Raphson method (Kubair et al., 

2002) also fails to converge at higher crack speed. Thus, for the present problem, the numerical 

method proposed in section 5.4.2 is more robust than widely used nonlinear techniques 

(Costanzo and Walton, 2002; Kubair et al., 2002; Zhang et al., 2003) and can be applied to the 

present problem even at high crack speed. 

 
Fig. 5.3 Traction distributions Sy(x) surrounding cohesive zone obtained by two different numerical methods at 

different crack speed V, when the cohesive zone thickness parameter b = c', and the relative length of cohesive 

zone is given by c'= 0.5c. Smax = 1.2S0 is assumed for u0 > 0, and Cs is the transverse elastic wave speed. 
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5.5.2. Oscillatory and negative traction 

It is verified from Eq. (5.8) that the acceleration of the upper cohesive zone faces can be 

either positive or negative. Thus negative traction Sy(x) surrounding the cohesive zone emerges 

at higher crack speed (V ≈ 0.4Cs), as shown in Fig. 5.4-5.7. In Fig. 5.4-5.7, traction Sy(x) is 

calculated in the case that c' = 0.5c at different crack speed for various T-S law parameters. 

Although traction distribution is quite smooth as shown in Fig. 5.4 for the strain softening model 

with u0 = 0, traction oscillation at higher crack speed (V ≈ 0.4Cs) is found for strain hardening- 

softening models in Fig. 5.5-5.7. In addition, from Fig. 5.4-5.7 it is seen that when crack speed 

exceeds a certain critical value, the outer traction surrounding cohesive zone may become 

negative. This critical value of crack speed depends on the T-S law parameters.  

 
Fig. 5.4 Traction distributions Sy(x) surrounding cohesive zone at different crack speed V when the cohesive 

zone thickness parameter b = c', and the relative length of cohesive zone is given by c' = 0.5c, using a strain 

softening model with u0 = 0.  



91 

 
Fig. 5.5 Traction distributions Sy(x) surrounding cohesive zone at different crack speed V when the cohesive 

zone thickness parameter b = c', and the relative length of cohesive zone is given by c' = 0.5c, using a strain 

hardening-softening model with u0 = 0.1uy(c), Smax=1.2S0.  

 
Fig. 5.6 Traction distributions Sy(x) surrounding cohesive zone at different crack speed V when the cohesive 

zone thickness parameter b = c', and the relative length of cohesive zone is given by c' = 0.5c, using a strain 

hardening-softening model with u0 = 0.3uy(c), Smax=1.2S0. 
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Fig. 5.7 Traction distributions Sy(x) surrounding cohesive zone at different crack speed V when the cohesive 

zone thickness parameter b = c', and the relative length of cohesive zone is given by c' = 0.5c, using a strain 

hardening-softening model with u0 = 0.5uy(c), Smax=1.2S0.  

 

5.5.3 The effect of crack speed on the remote loading and cohesive zone length 

For a given relative length of cohesive zone, the remote loading T depends on the crack 

speed. The variation of remote loading T at different crack speed is calculated in the case that c' 

= 0.5c and shown in Fig. 5.8. From Fig. 5.8 it is seen that, different from the existing cohesive 

zone models (with ignored inertia of cohesive zone) which gives a constant T/S0 at different 

crack speed (Kanninen, 1968), the present model predicts that T/S0 increases with increasing 

crack speed V for all T-S law parameters. This speed-dependence of T/S0 is attributed to 

increasing traction with increasing crack speed, as a result of the inertia effect of cohesive zone. 

Consequently, the present model predicts that, under a constant remote loading, the cohesive 

zone length decreases with increasing crack speed, in agreement with the existing cohesive zone 

model for a self-similar expanding crack (Atkinson, 1968; Embley and Sih, 1972). 
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Fig. 5.8 Variations of remote loading T at different crack speed V when the cohesive zone thickness parameter 

b = c', and the relative length of cohesive zone is given by c' = 0.5c. 

 

5.5.4. The inertia effect on dynamic fracture energy 

What is of major interest is the inertia effect of cohesive zone on speed-dependent fracture 

energy. From Eq. (5.10), it is evident that the present model reduces to the traditional cohesive 

zone model when b = 0. In this section, the inertia effect of cohesive zone is studied by 

examining the speed-dependent fracture energy as a function of the cohesive zone thickness 

parameter b.  

To study fracture energy of steady-state cracking, a critical condition for steady-state crack 

propagation is needed. In (Kubair et al., 2002; Zhang et al., 2003), the crack propagates steadily 

when uy(c) reaches a critical value. Thus, in the present paper, the fracture energy are calculated 

based on the steady-state crack propagation condition: uy(c) = 0.008c'0 (Zhang et al., 2003), 

where c'0 is the cohesive zone length at V = 0, and c'0 = 0.5c and c'0 = 0.5c are used in this 

calculation (our calculation shows that the choose of c'0 has negligible influence on the 

numerical results, as shown in Fig. 5.9a and 5.9b). The numerical results are shown in Fig. 5.9a 

and 5.9b with the strain softening model with u0 = 0. In Fig. 5.9a and 5.9b, initial yielding 

traction S0 at variable crack speed is calculated from Eq. (3.35) in chapter 3 and μ/Y = 20 is used, 

where Y is the yielding stress of material. From Fig. 5.9a and 5.9b, it is seen that, as a result of 

the inertia effect of cohesive zone, the dynamic fracture energy G predicted by the present model 
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first varies gently with increasing crack speed at lower speed. However, when the crack speed 

approaches a critical value, the fracture energy predicted by the present model increases 

dramatically and becomes practically infinite (10 times larger than static fracture energy G0), 

which could define a limiting terminal crack speed in dynamic fracture (Lee and Prakash, 1998; 

Zhou et al., 2005). In particular, this limiting crack speed decreases with increasing cohesive 

zone thickness parameter b. On the other hand, when the inertia effect of the cohesive zone is 

ignored and thus b = 0, the predicted fracture energy will decrease with increasing crack speed 

and a finite limiting crack speed does not exist, as shown in Fig. 5.9a and 5.9b. 

 
Fig. 5.9a Fracture energy G calculated by the present model based on different cohesive zone thickness 

parameter b using a strain softening model with u0 = 0, when c'0 = 0.5c. G0 is the fracture energy at V = 0. 

 
Fig. 5.9b Fracture energy G calculated by the present model based on different cohesive zone thickness 
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parameter b using a strain softening model with u0 = 0, when c'0 = 0.3c. 

It is worth notice that the dramatically increasing fracture energy at high crack speed 

predicted by the present model agrees qualitatively with experimental observations (Rosakis and 

Zehnder, 1985; Zhou et al., 2005) although the specific value of the limiting crack speed 

predicted by the simplified present model, which is about 0.7Cs when b = 2c', is slightly higher 

than the experimental data (about 0.6Cs for PMMA and 0.4Cs for structural steels) (Rosakis and 

Zehnder, 1985; Zhou et al., 2005). This indicates that the inertia effect of cohesive zone, as 

depicted in the present model, could play an essential role at high-speed crack propagation.  

 

 

5.6 Conclusions 

All existing cohesive zone models have assumed cohesive zone as a line segment and 

ignored mass and inertia of the cohesive zone. The present work proposed a simple mass-spring 

model to examine the inertia effect of cohesive zone on a high-speed moving crack. A bilinear 

T-S (traction-separation) law is employed inside the cohesive zone, and the mass distribution of 

cohesive zone is defined by a simple function so that traction remains finite at the ends of 

cohesive zone. Our results show that, as a consequence of the inertia of cohesive zone, the 

fracture energy predicted by the present model increases dramatically when a critical value of 

crack speed is approached, which could define a limiting terminal crack speed above that 

fracture energy practically tends to infinity. Agreement of these predictions with known 

experimental observations suggests that the present model has the potential to catch inertia 

effects of cohesive zone on a high-speed moving crack. 
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Chapter 6: Conclusions and future works 

6.1 Conclusions 

In this thesis, new theoretical models are developed to study the speed effect on moving 

cracks in nonlinear and ductile materials. The main conclusions of this research are summarized 

below: 

1) A hyperelastic model is employed to study a mode-I steadily moving crack in a finite 

strain compressible material under plane strain condition. The asymptotic crack tip stress and 

deformation fields are derived up to the third order to meet the condition for strict positivity of 

Jacobian determinant. Results show that: 

1.1) the near tip crack face profiles at different crack speed predicted by the present model 

are in good agreement with experimental data for a nonlinear gel material; 

1.2) the fracture energy and its dependence on the crack speed predicted by the present 

model are in reasonable agreement with those given by several existing nonlinear elastic models; 

1.3) crack branching angle at high crack speed predicted by the present model is in 

reasonable agreement with some known experimental data which cannot be explained by the 

classical Yoffe’s solution based on linear elastic fracture mechanics.  

 

2) A modified cohesive zone model is presented to study the speed effect on a mode-I 

Yoffe-type steady-state moving crack of constant length. Main features of this new model and 

associated results are: 

2.1) instead of assuming the traction force in cohesive zone to be equal to the yielding stress 

of material, the present modified model predicts a speed-dependent traction force determined by 

the specific yielding criterion imposed in the cohesive zone; 

2.2) strain hardening in cohesive zone is studied by assuming a non-uniform traction 

distribution given by an unknown polynomial to be determined as part of the solution; 
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2.3) the present model predicts that the normal traction force decreases with increasing 

crack speed under lower or moderate remote mode-I loading. As a consequence, unlike the 

classical Dugdale model of a moving crack which predicts a speed-independent cohesive zone 

length, the present model predicts that the cohesive zone length increases with increasing crack 

speed under lower or moderate remote mode-I loading; 

2.4) comparison with some known experimental data shows that fracture energy at high 

crack speed given by the present model is in more reasonable agreement with experiments than 

the classical Dugdale model of a moving crack.  

 

3) The modified cohesive zone model is further extended to the basic problem of a mode-I 

self-similar expanding crack. The results obtained show that: 

3.1) the normal stress component parallel to the crack faces, which has been ignored in all 

previous related cohesive zone models, is even larger than the normal traction on the cohesive 

zone at high crack speed, which justifies the necessity of including the normal stress parallel to 

the crack faces in the yielding condition in the cohesive zone; 

3.2) the present modified model predicts a larger cohesive zone length and CTOD at high 

crack speed as compared to the classical Dugdale model of a self-similar expanding crack; 

3.3) strain hardening effect is studied with a non-uniform traction distribution in cohesive 

zone which is solved numerically by replacing the continuous traction distribution by a group of 

step functions, and the accuracy of this method is verified by good agreement with known 

analytic results in the case of static cracks.  

3.4) the dependence of traction on crack speed near a self-similar expanding crack tip is 

similar to the one near the tip of a Yoffe-type steady-state moving crack of constant length. 

 

4) A simple mass-spring model is presented to examine the inertia effect of cohesive zone 

on a high-speed mode-I Yoffe-type moving crack. Main results include: 

4.1) instead of ignoring the mass and inertia of cohesive zone, in the present model, the 
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mass distribution of cohesive zone is defined by a simple function which ensures that traction 

remains finite at the ends of cohesive zone; 

4.2) the fracture energy predicted by the present model increases dramatically when a finite 

critical value of crack speed is approached, which could define a limiting terminal crack speed 

above that fracture energy practically tends to infinity; 

4.3) the predicted values of limiting crack speed are in reasonable agreement with some 

known experimental data. This remarkable agreement of theoretical predictions with known 

experimental observations suggests that the present model has the potential to catch inertia effect 

of cohesive zone on a high-speed moving crack. 

 

In summary, to study the speed-effect of moving cracks and its implication to dynamic 

fracture, different types of nonlinear models for specific materials are employed or modified in 

the present research. Compared with existing models, high-speed effects are accounted more 

carefully in the present models and some results predicted by the present models provide 

plausible explanations for some important phenomena of dynamic fracture at high crack speed 

which have not been well explained by the existing models. The main achievements in the thesis 

are: 1) crack branching in brittle fracture is explained by a hyperelastic model and the predicted 

branching angle is in good agreement with experimental data; 2) in modified cohesive zone 

models, the relation between normal traction and crack speed is addressed and the obtained 

fracture energy is shown in good agreement with experimental data; 3) dramatically increasing 

fracture energy at high crack speed is explained by a new proposed cohesive zone model which 

considered the inertia effect of the cohesive zone and the predicted crack limiting speed is in 

reasonable agreements with experimental data. Therefore, theoretical models presented and 

numerical results achieved in this thesis contribute new ideas and insights into the study of 

high-speed dynamic fracture of nonlinear and ductile materials. It is hoped that the present study 

has the potential to stimulate further research interest in high-speed dynamic fracture of 

nonlinear and ductile materials. 
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However, in the present research, strain-rate effects are not considered, so the results 

achieved in this thesis may not be relevant for materials in which strain-rate effects dominate. 

And strip-yielding condition is assumed in the present thesis for ductile materials. 

 

 

6.2 Future works 

Based on research results achieved in the present thesis, the following topics are 

recommended for further studies: 

 

1) Study the asymptotic field near a moving oblique crack tip in a hyperelastic 

material: 

How to extend the asymptotic approach in chapter 2 to a moving oblique crack under mixed 

mode loading raises an interesting subject. 

 

2) Apply the modified speed-dependent cohesive zone model in numerical simulations 

of high-speed moving cracks:  

Chapter 3 and 4 have shown that the inertia effect of bulk materials significantly influences 

the traction in cohesive zone at high crack speed. Thus, a modified speed-dependent cohesive 

zone model was presented for a Yoffe-type steady-state moving crack and a self-similar 

expanding crack in chapter 3 and 4, respectively, and the predicted speed-dependent fracture 

energy is in better agreement with experimental data than the classical Dugdale model. It is of 

great interest to further extend the analytic model presented in chapter 3 and 4 to numerical 

simulations of high-speed moving cracks in ductile materials. 

 

3) Further explore the inertia effect of cohesive zone on high-speed moving cracks: 

Chapter 5 has shown that the inertia of cohesive zone leads to a limiting crack speed above 
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that the fracture energy practically tends to infinity. To better understand the effect of inertia of 

cohesive zone on high-speed moving cracks, further studies are suggested: 

3.1) study the influence of mass distribution of cohesive zone: in chapter 5, mass 

distribution of cohesive zone is given by a simple elliptical function. It is of great interest to 

study the effect of different mass distributions of cohesive zone on speed-dependent fracture 

energy for high-speed moving cracks; 

3.2) study inertia effect of cohesive zone for other types of moving cracks: the Yoffe-type 

moving crack of constant length employed in chapter 5 is a simplified model, how to extend the 

new model proposed in chapter 5 to a semi-infinite steady-state moving crack or a self-similar 

expanding crack raises an interesting and challenging subject for future study. 

 

4) Study the effect of other factors on high-speed moving cracks:  

For example, chapter 3 and 4 have shown that the non-singular T-stress influences the 

traction and fracture energy in cohesive zone. Therefore, the role of other factors in high-speed 

fracture of ductile materials, such as T-stress and material anisotropy, could be explored in future 

studies.  
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Appendix A 

Here, we prove that Eq. (3.23) in chapter 3 is the general solution of (3.22) for any real 

polynomial traction force P(x) of finite degree n given in Eq. (3.18). Actually, it is well known 

(Rice, 1968) that the general solution of Riemann-Hilbert problem (3.22) is given by  

  

 (A.1) 

where, R3(z) is an arbitrary polynomial with complex coefficients, to be determined by remote 

conditions imposed at infinity, and within the interval from (−c−c') to (c+c'), 

 2 2 2 2( ') ( ')x c c i c c x
+

 − + = + −   (A.2) 

To evaluate the integral on RHS of (A.1) with an arbitrary real polynomial P(x), first, we notice 
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where g0(x) and h0(x) are two real bounded functions of x, f0(z) is a real polynomial of z, and 

specific forms of g0(x), h0(x) and f0(z) are not important for our purpose. Now, in order to use 

mathematical induction, let us assume that  
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where gn-1(x) and hn-1(x) are two real bounded functions of x, fn-1(z) is a real polynomial of z. 
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where gn(x) and hn(x) are two real bounded functions of x, fn(z) is a real polynomial of z. Thus, 

on using mathematical induction, it follows from (A.3-A.5) that 
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where gi(x) and hi(x) are two real bounded functions of x, fi(z) is a real polynomial of z (i = 

0,1,2…n). 

Now the definite integral on RHS of (A.1) can be written as  
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Applying the indefinite integral (A.6) to the two definite integrals of (A.7), one gets  
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It can be verified that Eq. (A.8) is valid in entire z plane. Furthermore, Eq. (A.8) can be 

simplified as 
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Putting the second term into the third terms on RHS of (A.9), we get the general solution Eq. 
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(3.23), where Q(z) is an arbitrary polynomial of finite degree, and a T-related term has been 

separated from Q(z) just for convenience. As indicated in the text, it is easily verified that the 

present solution reduces to the result of classical Dugdale model when P(x) is a constant and 

reduces to the result of (Harrop, 1978) (see Eq. (7) in (Harrop, 1978)) when P(x) is a quadratic 

even function of x. 
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Appendix B 

The four coefficients of Q(z) in chapter 3 determined by Eq. (3.28) are 
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